nvmm: Improve CPUID emulation #4: handle Fn0000_0004 on Intel
[dragonfly.git] / sys / dev / virtual / nvmm / x86 / nvmm_x86_vmx.c
1 /*      $NetBSD: nvmm_x86_vmx.c,v 1.82 2021/03/26 15:59:53 reinoud Exp $        */
2
3 /*
4  * Copyright (c) 2018-2020 Maxime Villard, m00nbsd.net
5  * All rights reserved.
6  *
7  * This code is part of the NVMM hypervisor.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30
31 #include <sys/param.h>
32 #include <sys/systm.h>
33
34 #include <sys/bitops.h>
35 #include <sys/cpumask.h>
36 #include <sys/globaldata.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h> /* contigmalloc, contigfree */
39 #include <sys/thread2.h> /* lwkt_send_ipiq, lwkt_send_ipiq_mask */
40
41 #include <vm/pmap.h> /* pmap_ept_transform() */
42 #include <vm/vm_map.h>
43
44 #include <machine/cpufunc.h>
45 #include <machine/md_var.h> /* cpu_* */
46 #include <machine/pmap_inval.h> /* pmap_inval_smp() */
47 #include <machine/segments.h>
48 #include <machine/smp.h> /* smp_active_mask */
49 #include <machine/specialreg.h>
50
51 #include <dev/virtual/nvmm/nvmm_compat.h>
52 #include <dev/virtual/nvmm/nvmm.h>
53 #include <dev/virtual/nvmm/nvmm_internal.h>
54 #include <dev/virtual/nvmm/x86/nvmm_x86.h>
55
56 int _vmx_vmxon(paddr_t *pa);
57 int _vmx_vmxoff(void);
58 int vmx_vmlaunch(uint64_t *gprs);
59 int vmx_vmresume(uint64_t *gprs);
60 void vmx_resume_rip(void);
61
62 #define vmx_vmxon(a) \
63         if (__predict_false(_vmx_vmxon(a) != 0)) { \
64                 panic("%s: VMXON failed", __func__); \
65         }
66 #define vmx_vmxoff() \
67         if (__predict_false(_vmx_vmxoff() != 0)) { \
68                 panic("%s: VMXOFF failed", __func__); \
69         }
70
71 struct ept_desc {
72         uint64_t eptp;
73         uint64_t mbz;
74 } __packed;
75
76 struct vpid_desc {
77         uint64_t vpid;
78         uint64_t addr;
79 } __packed;
80
81 static inline void
82 vmx_invept(uint64_t op, struct ept_desc *desc)
83 {
84         asm volatile (
85                 "invept         %[desc],%[op];"
86                 "jz             vmx_insn_failvalid;"
87                 "jc             vmx_insn_failinvalid;"
88                 :
89                 : [desc] "m" (*desc), [op] "r" (op)
90                 : "memory", "cc"
91         );
92 }
93
94 static inline void
95 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
96 {
97         asm volatile (
98                 "invvpid        %[desc],%[op];"
99                 "jz             vmx_insn_failvalid;"
100                 "jc             vmx_insn_failinvalid;"
101                 :
102                 : [desc] "m" (*desc), [op] "r" (op)
103                 : "memory", "cc"
104         );
105 }
106
107 static inline uint64_t
108 vmx_vmread(uint64_t field)
109 {
110         uint64_t value;
111
112         asm volatile (
113                 "vmread         %[field],%[value];"
114                 "jz             vmx_insn_failvalid;"
115                 "jc             vmx_insn_failinvalid;"
116                 : [value] "=r" (value)
117                 : [field] "r" (field)
118                 : "cc"
119         );
120
121         return value;
122 }
123
124 static inline void
125 vmx_vmwrite(uint64_t field, uint64_t value)
126 {
127         asm volatile (
128                 "vmwrite        %[value],%[field];"
129                 "jz             vmx_insn_failvalid;"
130                 "jc             vmx_insn_failinvalid;"
131                 :
132                 : [field] "r" (field), [value] "r" (value)
133                 : "cc"
134         );
135 }
136
137 #ifdef DIAGNOSTIC
138 static inline paddr_t
139 vmx_vmptrst(void)
140 {
141         paddr_t pa;
142
143         asm volatile (
144                 "vmptrst        %[pa];"
145                 :
146                 : [pa] "m" (*(paddr_t *)&pa)
147                 : "memory"
148         );
149
150         return pa;
151 }
152 #endif
153
154 static inline void
155 vmx_vmptrld(paddr_t *pa)
156 {
157         asm volatile (
158                 "vmptrld        %[pa];"
159                 "jz             vmx_insn_failvalid;"
160                 "jc             vmx_insn_failinvalid;"
161                 :
162                 : [pa] "m" (*pa)
163                 : "memory", "cc"
164         );
165 }
166
167 static inline void
168 vmx_vmclear(paddr_t *pa)
169 {
170         asm volatile (
171                 "vmclear        %[pa];"
172                 "jz             vmx_insn_failvalid;"
173                 "jc             vmx_insn_failinvalid;"
174                 :
175                 : [pa] "m" (*pa)
176                 : "memory", "cc"
177         );
178 }
179
180 static inline void
181 vmx_cli(void)
182 {
183         asm volatile ("cli" ::: "memory");
184 }
185
186 static inline void
187 vmx_sti(void)
188 {
189         asm volatile ("sti" ::: "memory");
190 }
191
192 #define MSR_IA32_FEATURE_CONTROL        0x003A
193 #define         IA32_FEATURE_CONTROL_LOCK       __BIT(0)
194 #define         IA32_FEATURE_CONTROL_IN_SMX     __BIT(1)
195 #define         IA32_FEATURE_CONTROL_OUT_SMX    __BIT(2)
196
197 #define MSR_IA32_VMX_BASIC              0x0480
198 #define         IA32_VMX_BASIC_IDENT            __BITS(30,0)
199 #define         IA32_VMX_BASIC_DATA_SIZE        __BITS(44,32)
200 #define         IA32_VMX_BASIC_MEM_WIDTH        __BIT(48)
201 #define         IA32_VMX_BASIC_DUAL             __BIT(49)
202 #define         IA32_VMX_BASIC_MEM_TYPE         __BITS(53,50)
203 #define                 MEM_TYPE_UC             0
204 #define                 MEM_TYPE_WB             6
205 #define         IA32_VMX_BASIC_IO_REPORT        __BIT(54)
206 #define         IA32_VMX_BASIC_TRUE_CTLS        __BIT(55)
207
208 #define MSR_IA32_VMX_PINBASED_CTLS              0x0481
209 #define MSR_IA32_VMX_PROCBASED_CTLS             0x0482
210 #define MSR_IA32_VMX_EXIT_CTLS                  0x0483
211 #define MSR_IA32_VMX_ENTRY_CTLS                 0x0484
212 #define MSR_IA32_VMX_PROCBASED_CTLS2            0x048B
213
214 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS         0x048D
215 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS        0x048E
216 #define MSR_IA32_VMX_TRUE_EXIT_CTLS             0x048F
217 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS            0x0490
218
219 #define MSR_IA32_VMX_CR0_FIXED0                 0x0486
220 #define MSR_IA32_VMX_CR0_FIXED1                 0x0487
221 #define MSR_IA32_VMX_CR4_FIXED0                 0x0488
222 #define MSR_IA32_VMX_CR4_FIXED1                 0x0489
223
224 #define MSR_IA32_VMX_EPT_VPID_CAP       0x048C
225 #define         IA32_VMX_EPT_VPID_XO                    __BIT(0)
226 #define         IA32_VMX_EPT_VPID_WALKLENGTH_4          __BIT(6)
227 #define         IA32_VMX_EPT_VPID_UC                    __BIT(8)
228 #define         IA32_VMX_EPT_VPID_WB                    __BIT(14)
229 #define         IA32_VMX_EPT_VPID_2MB                   __BIT(16)
230 #define         IA32_VMX_EPT_VPID_1GB                   __BIT(17)
231 #define         IA32_VMX_EPT_VPID_INVEPT                __BIT(20)
232 #define         IA32_VMX_EPT_VPID_FLAGS_AD              __BIT(21)
233 #define         IA32_VMX_EPT_VPID_ADVANCED_VMEXIT_INFO  __BIT(22)
234 #define         IA32_VMX_EPT_VPID_SHSTK                 __BIT(23)
235 #define         IA32_VMX_EPT_VPID_INVEPT_CONTEXT        __BIT(25)
236 #define         IA32_VMX_EPT_VPID_INVEPT_ALL            __BIT(26)
237 #define         IA32_VMX_EPT_VPID_INVVPID               __BIT(32)
238 #define         IA32_VMX_EPT_VPID_INVVPID_ADDR          __BIT(40)
239 #define         IA32_VMX_EPT_VPID_INVVPID_CONTEXT       __BIT(41)
240 #define         IA32_VMX_EPT_VPID_INVVPID_ALL           __BIT(42)
241 #define         IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG   __BIT(43)
242
243 /* -------------------------------------------------------------------------- */
244
245 /* 16-bit control fields */
246 #define VMCS_VPID                               0x00000000
247 #define VMCS_PIR_VECTOR                         0x00000002
248 #define VMCS_EPTP_INDEX                         0x00000004
249 /* 16-bit guest-state fields */
250 #define VMCS_GUEST_ES_SELECTOR                  0x00000800
251 #define VMCS_GUEST_CS_SELECTOR                  0x00000802
252 #define VMCS_GUEST_SS_SELECTOR                  0x00000804
253 #define VMCS_GUEST_DS_SELECTOR                  0x00000806
254 #define VMCS_GUEST_FS_SELECTOR                  0x00000808
255 #define VMCS_GUEST_GS_SELECTOR                  0x0000080A
256 #define VMCS_GUEST_LDTR_SELECTOR                0x0000080C
257 #define VMCS_GUEST_TR_SELECTOR                  0x0000080E
258 #define VMCS_GUEST_INTR_STATUS                  0x00000810
259 #define VMCS_PML_INDEX                          0x00000812
260 /* 16-bit host-state fields */
261 #define VMCS_HOST_ES_SELECTOR                   0x00000C00
262 #define VMCS_HOST_CS_SELECTOR                   0x00000C02
263 #define VMCS_HOST_SS_SELECTOR                   0x00000C04
264 #define VMCS_HOST_DS_SELECTOR                   0x00000C06
265 #define VMCS_HOST_FS_SELECTOR                   0x00000C08
266 #define VMCS_HOST_GS_SELECTOR                   0x00000C0A
267 #define VMCS_HOST_TR_SELECTOR                   0x00000C0C
268 /* 64-bit control fields */
269 #define VMCS_IO_BITMAP_A                        0x00002000
270 #define VMCS_IO_BITMAP_B                        0x00002002
271 #define VMCS_MSR_BITMAP                         0x00002004
272 #define VMCS_EXIT_MSR_STORE_ADDRESS             0x00002006
273 #define VMCS_EXIT_MSR_LOAD_ADDRESS              0x00002008
274 #define VMCS_ENTRY_MSR_LOAD_ADDRESS             0x0000200A
275 #define VMCS_EXECUTIVE_VMCS                     0x0000200C
276 #define VMCS_PML_ADDRESS                        0x0000200E
277 #define VMCS_TSC_OFFSET                         0x00002010
278 #define VMCS_VIRTUAL_APIC                       0x00002012
279 #define VMCS_APIC_ACCESS                        0x00002014
280 #define VMCS_PIR_DESC                           0x00002016
281 #define VMCS_VM_CONTROL                         0x00002018
282 #define VMCS_EPTP                               0x0000201A
283 #define         EPTP_TYPE                       __BITS(2,0)
284 #define                 EPTP_TYPE_UC            0
285 #define                 EPTP_TYPE_WB            6
286 #define         EPTP_WALKLEN                    __BITS(5,3)
287 #define         EPTP_FLAGS_AD                   __BIT(6)
288 #define         EPTP_SSS                        __BIT(7)
289 #define         EPTP_PHYSADDR                   __BITS(63,12)
290 #define VMCS_EOI_EXIT0                          0x0000201C
291 #define VMCS_EOI_EXIT1                          0x0000201E
292 #define VMCS_EOI_EXIT2                          0x00002020
293 #define VMCS_EOI_EXIT3                          0x00002022
294 #define VMCS_EPTP_LIST                          0x00002024
295 #define VMCS_VMREAD_BITMAP                      0x00002026
296 #define VMCS_VMWRITE_BITMAP                     0x00002028
297 #define VMCS_VIRTUAL_EXCEPTION                  0x0000202A
298 #define VMCS_XSS_EXIT_BITMAP                    0x0000202C
299 #define VMCS_ENCLS_EXIT_BITMAP                  0x0000202E
300 #define VMCS_SUBPAGE_PERM_TABLE_PTR             0x00002030
301 #define VMCS_TSC_MULTIPLIER                     0x00002032
302 #define VMCS_ENCLV_EXIT_BITMAP                  0x00002036
303 /* 64-bit read-only fields */
304 #define VMCS_GUEST_PHYSICAL_ADDRESS             0x00002400
305 /* 64-bit guest-state fields */
306 #define VMCS_LINK_POINTER                       0x00002800
307 #define VMCS_GUEST_IA32_DEBUGCTL                0x00002802
308 #define VMCS_GUEST_IA32_PAT                     0x00002804
309 #define VMCS_GUEST_IA32_EFER                    0x00002806
310 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL        0x00002808
311 #define VMCS_GUEST_PDPTE0                       0x0000280A
312 #define VMCS_GUEST_PDPTE1                       0x0000280C
313 #define VMCS_GUEST_PDPTE2                       0x0000280E
314 #define VMCS_GUEST_PDPTE3                       0x00002810
315 #define VMCS_GUEST_BNDCFGS                      0x00002812
316 #define VMCS_GUEST_RTIT_CTL                     0x00002814
317 #define VMCS_GUEST_PKRS                         0x00002818
318 /* 64-bit host-state fields */
319 #define VMCS_HOST_IA32_PAT                      0x00002C00
320 #define VMCS_HOST_IA32_EFER                     0x00002C02
321 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL         0x00002C04
322 #define VMCS_HOST_IA32_PKRS                     0x00002C06
323 /* 32-bit control fields */
324 #define VMCS_PINBASED_CTLS                      0x00004000
325 #define         PIN_CTLS_INT_EXITING            __BIT(0)
326 #define         PIN_CTLS_NMI_EXITING            __BIT(3)
327 #define         PIN_CTLS_VIRTUAL_NMIS           __BIT(5)
328 #define         PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
329 #define         PIN_CTLS_PROCESS_POSTED_INTS    __BIT(7)
330 #define VMCS_PROCBASED_CTLS                     0x00004002
331 #define         PROC_CTLS_INT_WINDOW_EXITING    __BIT(2)
332 #define         PROC_CTLS_USE_TSC_OFFSETTING    __BIT(3)
333 #define         PROC_CTLS_HLT_EXITING           __BIT(7)
334 #define         PROC_CTLS_INVLPG_EXITING        __BIT(9)
335 #define         PROC_CTLS_MWAIT_EXITING         __BIT(10)
336 #define         PROC_CTLS_RDPMC_EXITING         __BIT(11)
337 #define         PROC_CTLS_RDTSC_EXITING         __BIT(12)
338 #define         PROC_CTLS_RCR3_EXITING          __BIT(15)
339 #define         PROC_CTLS_LCR3_EXITING          __BIT(16)
340 #define         PROC_CTLS_RCR8_EXITING          __BIT(19)
341 #define         PROC_CTLS_LCR8_EXITING          __BIT(20)
342 #define         PROC_CTLS_USE_TPR_SHADOW        __BIT(21)
343 #define         PROC_CTLS_NMI_WINDOW_EXITING    __BIT(22)
344 #define         PROC_CTLS_DR_EXITING            __BIT(23)
345 #define         PROC_CTLS_UNCOND_IO_EXITING     __BIT(24)
346 #define         PROC_CTLS_USE_IO_BITMAPS        __BIT(25)
347 #define         PROC_CTLS_MONITOR_TRAP_FLAG     __BIT(27)
348 #define         PROC_CTLS_USE_MSR_BITMAPS       __BIT(28)
349 #define         PROC_CTLS_MONITOR_EXITING       __BIT(29)
350 #define         PROC_CTLS_PAUSE_EXITING         __BIT(30)
351 #define         PROC_CTLS_ACTIVATE_CTLS2        __BIT(31)
352 #define VMCS_EXCEPTION_BITMAP                   0x00004004
353 #define VMCS_PF_ERROR_MASK                      0x00004006
354 #define VMCS_PF_ERROR_MATCH                     0x00004008
355 #define VMCS_CR3_TARGET_COUNT                   0x0000400A
356 #define VMCS_EXIT_CTLS                          0x0000400C
357 #define         EXIT_CTLS_SAVE_DEBUG_CONTROLS   __BIT(2)
358 #define         EXIT_CTLS_HOST_LONG_MODE        __BIT(9)
359 #define         EXIT_CTLS_LOAD_PERFGLOBALCTRL   __BIT(12)
360 #define         EXIT_CTLS_ACK_INTERRUPT         __BIT(15)
361 #define         EXIT_CTLS_SAVE_PAT              __BIT(18)
362 #define         EXIT_CTLS_LOAD_PAT              __BIT(19)
363 #define         EXIT_CTLS_SAVE_EFER             __BIT(20)
364 #define         EXIT_CTLS_LOAD_EFER             __BIT(21)
365 #define         EXIT_CTLS_SAVE_PREEMPT_TIMER    __BIT(22)
366 #define         EXIT_CTLS_CLEAR_BNDCFGS         __BIT(23)
367 #define         EXIT_CTLS_CONCEAL_PT            __BIT(24)
368 #define         EXIT_CTLS_CLEAR_RTIT_CTL        __BIT(25)
369 #define         EXIT_CTLS_LOAD_CET              __BIT(28)
370 #define         EXIT_CTLS_LOAD_PKRS             __BIT(29)
371 #define VMCS_EXIT_MSR_STORE_COUNT               0x0000400E
372 #define VMCS_EXIT_MSR_LOAD_COUNT                0x00004010
373 #define VMCS_ENTRY_CTLS                         0x00004012
374 #define         ENTRY_CTLS_LOAD_DEBUG_CONTROLS  __BIT(2)
375 #define         ENTRY_CTLS_LONG_MODE            __BIT(9)
376 #define         ENTRY_CTLS_SMM                  __BIT(10)
377 #define         ENTRY_CTLS_DISABLE_DUAL         __BIT(11)
378 #define         ENTRY_CTLS_LOAD_PERFGLOBALCTRL  __BIT(13)
379 #define         ENTRY_CTLS_LOAD_PAT             __BIT(14)
380 #define         ENTRY_CTLS_LOAD_EFER            __BIT(15)
381 #define         ENTRY_CTLS_LOAD_BNDCFGS         __BIT(16)
382 #define         ENTRY_CTLS_CONCEAL_PT           __BIT(17)
383 #define         ENTRY_CTLS_LOAD_RTIT_CTL        __BIT(18)
384 #define         ENTRY_CTLS_LOAD_CET             __BIT(20)
385 #define         ENTRY_CTLS_LOAD_PKRS            __BIT(22)
386 #define VMCS_ENTRY_MSR_LOAD_COUNT               0x00004014
387 #define VMCS_ENTRY_INTR_INFO                    0x00004016
388 #define         INTR_INFO_VECTOR                __BITS(7,0)
389 #define         INTR_INFO_TYPE                  __BITS(10,8)
390 #define                 INTR_TYPE_EXT_INT       0
391 #define                 INTR_TYPE_NMI           2
392 #define                 INTR_TYPE_HW_EXC        3
393 #define                 INTR_TYPE_SW_INT        4
394 #define                 INTR_TYPE_PRIV_SW_EXC   5
395 #define                 INTR_TYPE_SW_EXC        6
396 #define                 INTR_TYPE_OTHER         7
397 #define         INTR_INFO_ERROR                 __BIT(11)
398 #define         INTR_INFO_VALID                 __BIT(31)
399 #define VMCS_ENTRY_EXCEPTION_ERROR              0x00004018
400 #define VMCS_ENTRY_INSTRUCTION_LENGTH           0x0000401A
401 #define VMCS_TPR_THRESHOLD                      0x0000401C
402 #define VMCS_PROCBASED_CTLS2                    0x0000401E
403 #define         PROC_CTLS2_VIRT_APIC_ACCESSES   __BIT(0)
404 #define         PROC_CTLS2_ENABLE_EPT           __BIT(1)
405 #define         PROC_CTLS2_DESC_TABLE_EXITING   __BIT(2)
406 #define         PROC_CTLS2_ENABLE_RDTSCP        __BIT(3)
407 #define         PROC_CTLS2_VIRT_X2APIC          __BIT(4)
408 #define         PROC_CTLS2_ENABLE_VPID          __BIT(5)
409 #define         PROC_CTLS2_WBINVD_EXITING       __BIT(6)
410 #define         PROC_CTLS2_UNRESTRICTED_GUEST   __BIT(7)
411 #define         PROC_CTLS2_APIC_REG_VIRT        __BIT(8)
412 #define         PROC_CTLS2_VIRT_INT_DELIVERY    __BIT(9)
413 #define         PROC_CTLS2_PAUSE_LOOP_EXITING   __BIT(10)
414 #define         PROC_CTLS2_RDRAND_EXITING       __BIT(11)
415 #define         PROC_CTLS2_INVPCID_ENABLE       __BIT(12)
416 #define         PROC_CTLS2_VMFUNC_ENABLE        __BIT(13)
417 #define         PROC_CTLS2_VMCS_SHADOWING       __BIT(14)
418 #define         PROC_CTLS2_ENCLS_EXITING        __BIT(15)
419 #define         PROC_CTLS2_RDSEED_EXITING       __BIT(16)
420 #define         PROC_CTLS2_PML_ENABLE           __BIT(17)
421 #define         PROC_CTLS2_EPT_VIOLATION        __BIT(18)
422 #define         PROC_CTLS2_CONCEAL_VMX_FROM_PT  __BIT(19)
423 #define         PROC_CTLS2_XSAVES_ENABLE        __BIT(20)
424 #define         PROC_CTLS2_MODE_BASED_EXEC_EPT  __BIT(22)
425 #define         PROC_CTLS2_SUBPAGE_PERMISSIONS  __BIT(23)
426 #define         PROC_CTLS2_PT_USES_GPA          __BIT(24)
427 #define         PROC_CTLS2_USE_TSC_SCALING      __BIT(25)
428 #define         PROC_CTLS2_WAIT_PAUSE_ENABLE    __BIT(26)
429 #define         PROC_CTLS2_ENCLV_EXITING        __BIT(28)
430 #define VMCS_PLE_GAP                            0x00004020
431 #define VMCS_PLE_WINDOW                         0x00004022
432 /* 32-bit read-only data fields */
433 #define VMCS_INSTRUCTION_ERROR                  0x00004400
434 #define VMCS_EXIT_REASON                        0x00004402
435 #define VMCS_EXIT_INTR_INFO                     0x00004404
436 #define VMCS_EXIT_INTR_ERRCODE                  0x00004406
437 #define VMCS_IDT_VECTORING_INFO                 0x00004408
438 #define VMCS_IDT_VECTORING_ERROR                0x0000440A
439 #define VMCS_EXIT_INSTRUCTION_LENGTH            0x0000440C
440 #define VMCS_EXIT_INSTRUCTION_INFO              0x0000440E
441 /* 32-bit guest-state fields */
442 #define VMCS_GUEST_ES_LIMIT                     0x00004800
443 #define VMCS_GUEST_CS_LIMIT                     0x00004802
444 #define VMCS_GUEST_SS_LIMIT                     0x00004804
445 #define VMCS_GUEST_DS_LIMIT                     0x00004806
446 #define VMCS_GUEST_FS_LIMIT                     0x00004808
447 #define VMCS_GUEST_GS_LIMIT                     0x0000480A
448 #define VMCS_GUEST_LDTR_LIMIT                   0x0000480C
449 #define VMCS_GUEST_TR_LIMIT                     0x0000480E
450 #define VMCS_GUEST_GDTR_LIMIT                   0x00004810
451 #define VMCS_GUEST_IDTR_LIMIT                   0x00004812
452 #define VMCS_GUEST_ES_ACCESS_RIGHTS             0x00004814
453 #define VMCS_GUEST_CS_ACCESS_RIGHTS             0x00004816
454 #define VMCS_GUEST_SS_ACCESS_RIGHTS             0x00004818
455 #define VMCS_GUEST_DS_ACCESS_RIGHTS             0x0000481A
456 #define VMCS_GUEST_FS_ACCESS_RIGHTS             0x0000481C
457 #define VMCS_GUEST_GS_ACCESS_RIGHTS             0x0000481E
458 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS           0x00004820
459 #define VMCS_GUEST_TR_ACCESS_RIGHTS             0x00004822
460 #define VMCS_GUEST_INTERRUPTIBILITY             0x00004824
461 #define         INT_STATE_STI                   __BIT(0)
462 #define         INT_STATE_MOVSS                 __BIT(1)
463 #define         INT_STATE_SMI                   __BIT(2)
464 #define         INT_STATE_NMI                   __BIT(3)
465 #define         INT_STATE_ENCLAVE               __BIT(4)
466 #define VMCS_GUEST_ACTIVITY                     0x00004826
467 #define VMCS_GUEST_SMBASE                       0x00004828
468 #define VMCS_GUEST_IA32_SYSENTER_CS             0x0000482A
469 #define VMCS_PREEMPTION_TIMER_VALUE             0x0000482E
470 /* 32-bit host state fields */
471 #define VMCS_HOST_IA32_SYSENTER_CS              0x00004C00
472 /* Natural-Width control fields */
473 #define VMCS_CR0_MASK                           0x00006000
474 #define VMCS_CR4_MASK                           0x00006002
475 #define VMCS_CR0_SHADOW                         0x00006004
476 #define VMCS_CR4_SHADOW                         0x00006006
477 #define VMCS_CR3_TARGET0                        0x00006008
478 #define VMCS_CR3_TARGET1                        0x0000600A
479 #define VMCS_CR3_TARGET2                        0x0000600C
480 #define VMCS_CR3_TARGET3                        0x0000600E
481 /* Natural-Width read-only fields */
482 #define VMCS_EXIT_QUALIFICATION                 0x00006400
483 #define VMCS_IO_RCX                             0x00006402
484 #define VMCS_IO_RSI                             0x00006404
485 #define VMCS_IO_RDI                             0x00006406
486 #define VMCS_IO_RIP                             0x00006408
487 #define VMCS_GUEST_LINEAR_ADDRESS               0x0000640A
488 /* Natural-Width guest-state fields */
489 #define VMCS_GUEST_CR0                          0x00006800
490 #define VMCS_GUEST_CR3                          0x00006802
491 #define VMCS_GUEST_CR4                          0x00006804
492 #define VMCS_GUEST_ES_BASE                      0x00006806
493 #define VMCS_GUEST_CS_BASE                      0x00006808
494 #define VMCS_GUEST_SS_BASE                      0x0000680A
495 #define VMCS_GUEST_DS_BASE                      0x0000680C
496 #define VMCS_GUEST_FS_BASE                      0x0000680E
497 #define VMCS_GUEST_GS_BASE                      0x00006810
498 #define VMCS_GUEST_LDTR_BASE                    0x00006812
499 #define VMCS_GUEST_TR_BASE                      0x00006814
500 #define VMCS_GUEST_GDTR_BASE                    0x00006816
501 #define VMCS_GUEST_IDTR_BASE                    0x00006818
502 #define VMCS_GUEST_DR7                          0x0000681A
503 #define VMCS_GUEST_RSP                          0x0000681C
504 #define VMCS_GUEST_RIP                          0x0000681E
505 #define VMCS_GUEST_RFLAGS                       0x00006820
506 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS       0x00006822
507 #define VMCS_GUEST_IA32_SYSENTER_ESP            0x00006824
508 #define VMCS_GUEST_IA32_SYSENTER_EIP            0x00006826
509 #define VMCS_GUEST_IA32_S_CET                   0x00006828
510 #define VMCS_GUEST_SSP                          0x0000682A
511 #define VMCS_GUEST_IA32_INTR_SSP_TABLE          0x0000682C
512 /* Natural-Width host-state fields */
513 #define VMCS_HOST_CR0                           0x00006C00
514 #define VMCS_HOST_CR3                           0x00006C02
515 #define VMCS_HOST_CR4                           0x00006C04
516 #define VMCS_HOST_FS_BASE                       0x00006C06
517 #define VMCS_HOST_GS_BASE                       0x00006C08
518 #define VMCS_HOST_TR_BASE                       0x00006C0A
519 #define VMCS_HOST_GDTR_BASE                     0x00006C0C
520 #define VMCS_HOST_IDTR_BASE                     0x00006C0E
521 #define VMCS_HOST_IA32_SYSENTER_ESP             0x00006C10
522 #define VMCS_HOST_IA32_SYSENTER_EIP             0x00006C12
523 #define VMCS_HOST_RSP                           0x00006C14
524 #define VMCS_HOST_RIP                           0x00006C16
525 #define VMCS_HOST_IA32_S_CET                    0x00006C18
526 #define VMCS_HOST_SSP                           0x00006C1A
527 #define VMCS_HOST_IA32_INTR_SSP_TABLE           0x00006C1C
528
529 /* VMX basic exit reasons. */
530 #define VMCS_EXITCODE_EXC_NMI                   0
531 #define VMCS_EXITCODE_EXT_INT                   1
532 #define VMCS_EXITCODE_SHUTDOWN                  2
533 #define VMCS_EXITCODE_INIT                      3
534 #define VMCS_EXITCODE_SIPI                      4
535 #define VMCS_EXITCODE_SMI                       5
536 #define VMCS_EXITCODE_OTHER_SMI                 6
537 #define VMCS_EXITCODE_INT_WINDOW                7
538 #define VMCS_EXITCODE_NMI_WINDOW                8
539 #define VMCS_EXITCODE_TASK_SWITCH               9
540 #define VMCS_EXITCODE_CPUID                     10
541 #define VMCS_EXITCODE_GETSEC                    11
542 #define VMCS_EXITCODE_HLT                       12
543 #define VMCS_EXITCODE_INVD                      13
544 #define VMCS_EXITCODE_INVLPG                    14
545 #define VMCS_EXITCODE_RDPMC                     15
546 #define VMCS_EXITCODE_RDTSC                     16
547 #define VMCS_EXITCODE_RSM                       17
548 #define VMCS_EXITCODE_VMCALL                    18
549 #define VMCS_EXITCODE_VMCLEAR                   19
550 #define VMCS_EXITCODE_VMLAUNCH                  20
551 #define VMCS_EXITCODE_VMPTRLD                   21
552 #define VMCS_EXITCODE_VMPTRST                   22
553 #define VMCS_EXITCODE_VMREAD                    23
554 #define VMCS_EXITCODE_VMRESUME                  24
555 #define VMCS_EXITCODE_VMWRITE                   25
556 #define VMCS_EXITCODE_VMXOFF                    26
557 #define VMCS_EXITCODE_VMXON                     27
558 #define VMCS_EXITCODE_CR                        28
559 #define VMCS_EXITCODE_DR                        29
560 #define VMCS_EXITCODE_IO                        30
561 #define VMCS_EXITCODE_RDMSR                     31
562 #define VMCS_EXITCODE_WRMSR                     32
563 #define VMCS_EXITCODE_FAIL_GUEST_INVALID        33
564 #define VMCS_EXITCODE_FAIL_MSR_INVALID          34
565 #define VMCS_EXITCODE_MWAIT                     36
566 #define VMCS_EXITCODE_TRAP_FLAG                 37
567 #define VMCS_EXITCODE_MONITOR                   39
568 #define VMCS_EXITCODE_PAUSE                     40
569 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK        41
570 #define VMCS_EXITCODE_TPR_BELOW                 43
571 #define VMCS_EXITCODE_APIC_ACCESS               44
572 #define VMCS_EXITCODE_VEOI                      45
573 #define VMCS_EXITCODE_GDTR_IDTR                 46
574 #define VMCS_EXITCODE_LDTR_TR                   47
575 #define VMCS_EXITCODE_EPT_VIOLATION             48
576 #define VMCS_EXITCODE_EPT_MISCONFIG             49
577 #define VMCS_EXITCODE_INVEPT                    50
578 #define VMCS_EXITCODE_RDTSCP                    51
579 #define VMCS_EXITCODE_PREEMPT_TIMEOUT           52
580 #define VMCS_EXITCODE_INVVPID                   53
581 #define VMCS_EXITCODE_WBINVD                    54
582 #define VMCS_EXITCODE_XSETBV                    55
583 #define VMCS_EXITCODE_APIC_WRITE                56
584 #define VMCS_EXITCODE_RDRAND                    57
585 #define VMCS_EXITCODE_INVPCID                   58
586 #define VMCS_EXITCODE_VMFUNC                    59
587 #define VMCS_EXITCODE_ENCLS                     60
588 #define VMCS_EXITCODE_RDSEED                    61
589 #define VMCS_EXITCODE_PAGE_LOG_FULL             62
590 #define VMCS_EXITCODE_XSAVES                    63
591 #define VMCS_EXITCODE_XRSTORS                   64
592 #define VMCS_EXITCODE_SPP                       66
593 #define VMCS_EXITCODE_UMWAIT                    67
594 #define VMCS_EXITCODE_TPAUSE                    68
595
596 /* -------------------------------------------------------------------------- */
597
598 static void vmx_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
599 static void vmx_vcpu_state_commit(struct nvmm_cpu *);
600
601 /*
602  * These host values are static, they do not change at runtime and are the same
603  * on all CPUs. We save them here because they are not saved in the VMCS.
604  */
605 static struct {
606         uint64_t xcr0;
607         uint64_t star;
608         uint64_t lstar;
609         uint64_t cstar;
610         uint64_t sfmask;
611 } vmx_global_hstate __cacheline_aligned;
612
613 #define VMX_MSRLIST_STAR                0
614 #define VMX_MSRLIST_LSTAR               1
615 #define VMX_MSRLIST_CSTAR               2
616 #define VMX_MSRLIST_SFMASK              3
617 #define VMX_MSRLIST_KERNELGSBASE        4
618 #define VMX_MSRLIST_EXIT_NMSR           5
619 #define VMX_MSRLIST_L1DFLUSH            5
620
621 /* On entry, we may do +1 to include L1DFLUSH. */
622 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
623
624 struct vmxon {
625         uint32_t ident;
626 #define VMXON_IDENT_REVISION    __BITS(30,0)
627
628         uint8_t data[PAGE_SIZE - 4];
629 } __packed;
630
631 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
632
633 struct vmxoncpu {
634         vaddr_t va;
635         paddr_t pa;
636 };
637
638 static struct vmxoncpu vmxoncpu[MAXCPUS];
639
640 struct vmcs {
641         uint32_t ident;
642 #define VMCS_IDENT_REVISION     __BITS(30,0)
643 #define VMCS_IDENT_SHADOW       __BIT(31)
644
645         uint32_t abort;
646         uint8_t data[PAGE_SIZE - 8];
647 } __packed;
648
649 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
650
651 struct msr_entry {
652         uint32_t msr;
653         uint32_t rsvd;
654         uint64_t val;
655 } __packed;
656
657 #define VPID_MAX        0xFFFF
658
659 /* Make sure we never run out of VPIDs. */
660 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
661
662 static uint64_t vmx_tlb_flush_op __read_mostly;
663 static uint64_t vmx_ept_flush_op __read_mostly;
664 static uint64_t vmx_eptp_type __read_mostly;
665
666 static uint64_t vmx_pinbased_ctls __read_mostly;
667 static uint64_t vmx_procbased_ctls __read_mostly;
668 static uint64_t vmx_procbased_ctls2 __read_mostly;
669 static uint64_t vmx_entry_ctls __read_mostly;
670 static uint64_t vmx_exit_ctls __read_mostly;
671
672 static uint64_t vmx_cr0_fixed0 __read_mostly;
673 static uint64_t vmx_cr0_fixed1 __read_mostly;
674 static uint64_t vmx_cr4_fixed0 __read_mostly;
675 static uint64_t vmx_cr4_fixed1 __read_mostly;
676
677 static bool pmap_ept_has_ad;
678 static int vmx_change_cpu_count;
679
680 #define VMX_PINBASED_CTLS_ONE   \
681         (PIN_CTLS_INT_EXITING| \
682          PIN_CTLS_NMI_EXITING| \
683          PIN_CTLS_VIRTUAL_NMIS)
684
685 #define VMX_PINBASED_CTLS_ZERO  0
686
687 #define VMX_PROCBASED_CTLS_ONE  \
688         (PROC_CTLS_USE_TSC_OFFSETTING| \
689          PROC_CTLS_HLT_EXITING| \
690          PROC_CTLS_MWAIT_EXITING | \
691          PROC_CTLS_RDPMC_EXITING | \
692          PROC_CTLS_RCR8_EXITING | \
693          PROC_CTLS_LCR8_EXITING | \
694          PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
695          PROC_CTLS_USE_MSR_BITMAPS | \
696          PROC_CTLS_MONITOR_EXITING | \
697          PROC_CTLS_ACTIVATE_CTLS2)
698
699 #define VMX_PROCBASED_CTLS_ZERO \
700         (PROC_CTLS_RCR3_EXITING| \
701          PROC_CTLS_LCR3_EXITING)
702
703 #define VMX_PROCBASED_CTLS2_ONE \
704         (PROC_CTLS2_ENABLE_EPT| \
705          PROC_CTLS2_ENABLE_VPID| \
706          PROC_CTLS2_UNRESTRICTED_GUEST)
707
708 #define VMX_PROCBASED_CTLS2_ZERO        0
709
710 #define VMX_ENTRY_CTLS_ONE      \
711         (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
712          ENTRY_CTLS_LOAD_EFER| \
713          ENTRY_CTLS_LOAD_PAT)
714
715 #define VMX_ENTRY_CTLS_ZERO     \
716         (ENTRY_CTLS_SMM| \
717          ENTRY_CTLS_DISABLE_DUAL)
718
719 #define VMX_EXIT_CTLS_ONE       \
720         (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
721          EXIT_CTLS_HOST_LONG_MODE| \
722          EXIT_CTLS_SAVE_PAT| \
723          EXIT_CTLS_LOAD_PAT| \
724          EXIT_CTLS_SAVE_EFER| \
725          EXIT_CTLS_LOAD_EFER)
726
727 #define VMX_EXIT_CTLS_ZERO      0
728
729 static uint8_t *vmx_asidmap __read_mostly;
730 static uint32_t vmx_maxasid __read_mostly;
731 static kmutex_t vmx_asidlock __cacheline_aligned;
732
733 #define VMX_XCR0_MASK_DEFAULT   (XCR0_X87|XCR0_SSE)
734 static uint64_t vmx_xcr0_mask __read_mostly;
735
736 #define VMX_NCPUIDS     32
737
738 #define VMCS_NPAGES     1
739 #define VMCS_SIZE       (VMCS_NPAGES * PAGE_SIZE)
740
741 #define MSRBM_NPAGES    1
742 #define MSRBM_SIZE      (MSRBM_NPAGES * PAGE_SIZE)
743
744 #define CR0_STATIC_MASK \
745         (CR0_ET | CR0_NW | CR0_CD)
746
747 #define CR4_VALID \
748         (CR4_VME |                      \
749          CR4_PVI |                      \
750          CR4_TSD |                      \
751          CR4_DE |                       \
752          CR4_PSE |                      \
753          CR4_PAE |                      \
754          CR4_MCE |                      \
755          CR4_PGE |                      \
756          CR4_PCE |                      \
757          CR4_OSFXSR |                   \
758          CR4_OSXMMEXCPT |               \
759          CR4_UMIP |                     \
760          /* CR4_LA57 excluded */        \
761          /* CR4_VMXE excluded */        \
762          /* CR4_SMXE excluded */        \
763          CR4_FSGSBASE |                 \
764          CR4_PCIDE |                    \
765          CR4_OSXSAVE |                  \
766          CR4_SMEP |                     \
767          CR4_SMAP                       \
768          /* CR4_PKE excluded */         \
769          /* CR4_CET excluded */         \
770          /* CR4_PKS excluded */)
771 #define CR4_INVALID \
772         (0xFFFFFFFFFFFFFFFFULL & ~CR4_VALID)
773
774 #define EFER_TLB_FLUSH \
775         (EFER_NXE|EFER_LMA|EFER_LME)
776 #define CR0_TLB_FLUSH \
777         (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
778 #define CR4_TLB_FLUSH \
779         (CR4_PSE|CR4_PAE|CR4_PGE|CR4_PCIDE|CR4_SMEP)
780
781 /* -------------------------------------------------------------------------- */
782
783 struct vmx_machdata {
784         volatile uint64_t mach_htlb_gen;
785 };
786
787 static const size_t vmx_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
788         [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
789             sizeof(struct nvmm_vcpu_conf_cpuid),
790         [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
791             sizeof(struct nvmm_vcpu_conf_tpr)
792 };
793
794 struct vmx_cpudata {
795         /* General. */
796         uint64_t asid;
797         bool gtlb_want_flush;
798         bool gtsc_want_update;
799         uint64_t vcpu_htlb_gen;
800         cpumask_t htlb_want_flush;
801
802         /* VMCS. */
803         struct vmcs *vmcs;
804         paddr_t vmcs_pa;
805         size_t vmcs_refcnt;
806         int vmcs_cpu; /* 'struct cpu_info *vmcs_ci' in NetBSD */
807         bool vmcs_launched;
808
809         /* MSR bitmap. */
810         uint8_t *msrbm;
811         paddr_t msrbm_pa;
812
813         /* Percpu host state, absent from VMCS. */
814         struct {
815                 uint64_t kernelgsbase;
816 #ifdef __DragonFly__
817                 mcontext_t hmctx;  /* TODO: remove this like NetBSD */
818 #endif
819         } hstate;
820
821         /* Intr state. */
822         bool int_window_exit;
823         bool nmi_window_exit;
824         bool evt_pending;
825
826         /* Guest state. */
827         struct msr_entry *gmsr;
828         paddr_t gmsr_pa;
829         uint64_t gmsr_misc_enable;
830         uint64_t gcr2;
831         uint64_t gcr8;
832         uint64_t gxcr0;
833         uint64_t gprs[NVMM_X64_NGPR];
834         uint64_t drs[NVMM_X64_NDR];
835         uint64_t gtsc_offset;
836         uint64_t gtsc_match;
837         union savefpu gfpu __aligned(64);
838
839         /* VCPU configuration. */
840         bool cpuidpresent[VMX_NCPUIDS];
841         struct nvmm_vcpu_conf_cpuid cpuid[VMX_NCPUIDS];
842         struct nvmm_vcpu_conf_tpr tpr;
843 };
844
845 static const struct {
846         uint64_t selector;
847         uint64_t attrib;
848         uint64_t limit;
849         uint64_t base;
850 } vmx_guest_segs[NVMM_X64_NSEG] = {
851         [NVMM_X64_SEG_ES] = {
852                 VMCS_GUEST_ES_SELECTOR,
853                 VMCS_GUEST_ES_ACCESS_RIGHTS,
854                 VMCS_GUEST_ES_LIMIT,
855                 VMCS_GUEST_ES_BASE
856         },
857         [NVMM_X64_SEG_CS] = {
858                 VMCS_GUEST_CS_SELECTOR,
859                 VMCS_GUEST_CS_ACCESS_RIGHTS,
860                 VMCS_GUEST_CS_LIMIT,
861                 VMCS_GUEST_CS_BASE
862         },
863         [NVMM_X64_SEG_SS] = {
864                 VMCS_GUEST_SS_SELECTOR,
865                 VMCS_GUEST_SS_ACCESS_RIGHTS,
866                 VMCS_GUEST_SS_LIMIT,
867                 VMCS_GUEST_SS_BASE
868         },
869         [NVMM_X64_SEG_DS] = {
870                 VMCS_GUEST_DS_SELECTOR,
871                 VMCS_GUEST_DS_ACCESS_RIGHTS,
872                 VMCS_GUEST_DS_LIMIT,
873                 VMCS_GUEST_DS_BASE
874         },
875         [NVMM_X64_SEG_FS] = {
876                 VMCS_GUEST_FS_SELECTOR,
877                 VMCS_GUEST_FS_ACCESS_RIGHTS,
878                 VMCS_GUEST_FS_LIMIT,
879                 VMCS_GUEST_FS_BASE
880         },
881         [NVMM_X64_SEG_GS] = {
882                 VMCS_GUEST_GS_SELECTOR,
883                 VMCS_GUEST_GS_ACCESS_RIGHTS,
884                 VMCS_GUEST_GS_LIMIT,
885                 VMCS_GUEST_GS_BASE
886         },
887         [NVMM_X64_SEG_GDT] = {
888                 0, /* doesn't exist */
889                 0, /* doesn't exist */
890                 VMCS_GUEST_GDTR_LIMIT,
891                 VMCS_GUEST_GDTR_BASE
892         },
893         [NVMM_X64_SEG_IDT] = {
894                 0, /* doesn't exist */
895                 0, /* doesn't exist */
896                 VMCS_GUEST_IDTR_LIMIT,
897                 VMCS_GUEST_IDTR_BASE
898         },
899         [NVMM_X64_SEG_LDT] = {
900                 VMCS_GUEST_LDTR_SELECTOR,
901                 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
902                 VMCS_GUEST_LDTR_LIMIT,
903                 VMCS_GUEST_LDTR_BASE
904         },
905         [NVMM_X64_SEG_TR] = {
906                 VMCS_GUEST_TR_SELECTOR,
907                 VMCS_GUEST_TR_ACCESS_RIGHTS,
908                 VMCS_GUEST_TR_LIMIT,
909                 VMCS_GUEST_TR_BASE
910         }
911 };
912
913 /* -------------------------------------------------------------------------- */
914
915 static uint64_t
916 vmx_get_revision(void)
917 {
918         uint64_t msr;
919
920         msr = rdmsr(MSR_IA32_VMX_BASIC);
921         msr &= IA32_VMX_BASIC_IDENT;
922
923         return msr;
924 }
925
926 static void
927 vmx_vmclear_ipi(void *arg1)
928 {
929         paddr_t vmcs_pa = (paddr_t)arg1;
930         vmx_vmclear(&vmcs_pa);
931 }
932
933 static void
934 vmx_vmclear_remote(struct globaldata *ci, paddr_t vmcs_pa)
935 {
936 #ifdef __NetBSD__
937         uint64_t xc;
938         int bound;
939
940         KASSERT(kpreempt_disabled());
941
942         bound = curlwp_bind();
943         kpreempt_enable();
944
945         xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
946         xc_wait(xc);
947
948         kpreempt_disable();
949         curlwp_bindx(bound);
950
951 #else /* DragonFly */
952         int seq;
953
954         /*
955          * No need to bind the thread, because any normal kernel thread will
956          * not migrate to another CPU or be preempted (except by an interrupt
957          * thread).
958          */
959         seq = lwkt_send_ipiq(ci, vmx_vmclear_ipi, (void *)vmcs_pa);
960         /* Must wait for completion, otherwise VMCS would be wrong on CPU
961          * and cause panics. */
962         lwkt_wait_ipiq(ci, seq);
963 #endif /* __NetBSD__ */
964 }
965
966 static void
967 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
968 {
969         struct vmx_cpudata *cpudata = vcpu->cpudata;
970         struct globaldata *vmcs_ci;
971         int vmcs_cpu;
972
973         cpudata->vmcs_refcnt++;
974         if (cpudata->vmcs_refcnt > 1) {
975                 KASSERT(kpreempt_disabled());
976                 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
977                 return;
978         }
979
980         vmcs_cpu = cpudata->vmcs_cpu;
981         cpudata->vmcs_cpu = -2; /* clobber */
982
983         kpreempt_disable();
984
985         if (vmcs_cpu == -1) {
986                 /* This VMCS is loaded for the first time. */
987                 vmx_vmclear(&cpudata->vmcs_pa);
988                 cpudata->vmcs_launched = false;
989         } else if (vmcs_cpu != mycpuid) {
990                 /* This VMCS is active on a remote CPU. */
991                 vmcs_ci = globaldata_find(vmcs_cpu);
992                 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
993                 cpudata->vmcs_launched = false;
994         } else {
995                 /* This VMCS is active on curcpu, nothing to do. */
996         }
997
998         vmx_vmptrld(&cpudata->vmcs_pa);
999 }
1000
1001 static void
1002 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
1003 {
1004         struct vmx_cpudata *cpudata = vcpu->cpudata;
1005
1006         KASSERT(kpreempt_disabled());
1007         KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
1008         KASSERT(cpudata->vmcs_refcnt > 0);
1009         cpudata->vmcs_refcnt--;
1010
1011         if (cpudata->vmcs_refcnt > 0) {
1012                 return;
1013         }
1014
1015         cpudata->vmcs_cpu = mycpuid;
1016         kpreempt_enable();
1017 }
1018
1019 static void
1020 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
1021 {
1022         struct vmx_cpudata *cpudata = vcpu->cpudata;
1023
1024         KASSERT(kpreempt_disabled());
1025         KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
1026         KASSERT(cpudata->vmcs_refcnt == 1);
1027         cpudata->vmcs_refcnt--;
1028
1029         vmx_vmclear(&cpudata->vmcs_pa);
1030         kpreempt_enable();
1031 }
1032
1033 /* -------------------------------------------------------------------------- */
1034
1035 static void
1036 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
1037 {
1038         struct vmx_cpudata *cpudata = vcpu->cpudata;
1039         uint64_t ctls1;
1040
1041         ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
1042
1043         if (nmi) {
1044                 // XXX INT_STATE_NMI?
1045                 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
1046                 cpudata->nmi_window_exit = true;
1047         } else {
1048                 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
1049                 cpudata->int_window_exit = true;
1050         }
1051
1052         vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
1053 }
1054
1055 static void
1056 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
1057 {
1058         struct vmx_cpudata *cpudata = vcpu->cpudata;
1059         uint64_t ctls1;
1060
1061         ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
1062
1063         if (nmi) {
1064                 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
1065                 cpudata->nmi_window_exit = false;
1066         } else {
1067                 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
1068                 cpudata->int_window_exit = false;
1069         }
1070
1071         vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
1072 }
1073
1074 static inline bool
1075 vmx_excp_has_rf(uint8_t vector)
1076 {
1077         switch (vector) {
1078         case 1:         /* #DB */
1079         case 4:         /* #OF */
1080         case 8:         /* #DF */
1081         case 18:        /* #MC */
1082                 return false;
1083         default:
1084                 return true;
1085         }
1086 }
1087
1088 static inline int
1089 vmx_excp_has_error(uint8_t vector)
1090 {
1091         switch (vector) {
1092         case 8:         /* #DF */
1093         case 10:        /* #TS */
1094         case 11:        /* #NP */
1095         case 12:        /* #SS */
1096         case 13:        /* #GP */
1097         case 14:        /* #PF */
1098         case 17:        /* #AC */
1099         case 21:        /* #CP */
1100         case 30:        /* #SX */
1101                 return 1;
1102         default:
1103                 return 0;
1104         }
1105 }
1106
1107 static int
1108 vmx_vcpu_inject(struct nvmm_cpu *vcpu)
1109 {
1110         struct nvmm_comm_page *comm = vcpu->comm;
1111         struct vmx_cpudata *cpudata = vcpu->cpudata;
1112         int type = 0, err = 0, ret = EINVAL;
1113         uint64_t rflags, info, error;
1114         u_int evtype;
1115         uint8_t vector;
1116
1117         evtype = comm->event.type;
1118         vector = comm->event.vector;
1119         error = comm->event.u.excp.error;
1120         __insn_barrier();
1121
1122         vmx_vmcs_enter(vcpu);
1123
1124         switch (evtype) {
1125         case NVMM_VCPU_EVENT_EXCP:
1126                 if (vector == 2 || vector >= 32)
1127                         goto out;
1128                 if (vector == 3 || vector == 0)
1129                         goto out;
1130                 if (vmx_excp_has_rf(vector)) {
1131                         rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1132                         vmx_vmwrite(VMCS_GUEST_RFLAGS, rflags | PSL_RF);
1133                 }
1134                 type = INTR_TYPE_HW_EXC;
1135                 err = vmx_excp_has_error(vector);
1136                 break;
1137         case NVMM_VCPU_EVENT_INTR:
1138                 type = INTR_TYPE_EXT_INT;
1139                 if (vector == 2) {
1140                         type = INTR_TYPE_NMI;
1141                         vmx_event_waitexit_enable(vcpu, true);
1142                 }
1143                 err = 0;
1144                 break;
1145         default:
1146                 goto out;
1147         }
1148
1149         info =
1150             __SHIFTIN((uint64_t)vector, INTR_INFO_VECTOR) |
1151             __SHIFTIN((uint64_t)type, INTR_INFO_TYPE) |
1152             __SHIFTIN((uint64_t)err, INTR_INFO_ERROR) |
1153             __SHIFTIN((uint64_t)1, INTR_INFO_VALID);
1154         vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1155         vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, error);
1156
1157         cpudata->evt_pending = true;
1158         ret = 0;
1159
1160 out:
1161         vmx_vmcs_leave(vcpu);
1162         return ret;
1163 }
1164
1165 static void
1166 vmx_inject_ud(struct nvmm_cpu *vcpu)
1167 {
1168         struct nvmm_comm_page *comm = vcpu->comm;
1169         int ret __diagused;
1170
1171         comm->event.type = NVMM_VCPU_EVENT_EXCP;
1172         comm->event.vector = 6;
1173         comm->event.u.excp.error = 0;
1174
1175         ret = vmx_vcpu_inject(vcpu);
1176         KASSERT(ret == 0);
1177 }
1178
1179 static void
1180 vmx_inject_gp(struct nvmm_cpu *vcpu)
1181 {
1182         struct nvmm_comm_page *comm = vcpu->comm;
1183         int ret __diagused;
1184
1185         comm->event.type = NVMM_VCPU_EVENT_EXCP;
1186         comm->event.vector = 13;
1187         comm->event.u.excp.error = 0;
1188
1189         ret = vmx_vcpu_inject(vcpu);
1190         KASSERT(ret == 0);
1191 }
1192
1193 static inline int
1194 vmx_vcpu_event_commit(struct nvmm_cpu *vcpu)
1195 {
1196         if (__predict_true(!vcpu->comm->event_commit)) {
1197                 return 0;
1198         }
1199         vcpu->comm->event_commit = false;
1200         return vmx_vcpu_inject(vcpu);
1201 }
1202
1203 static inline void
1204 vmx_inkernel_advance(void)
1205 {
1206         uint64_t rip, inslen, intstate, rflags;
1207
1208         /*
1209          * Maybe we should also apply single-stepping and debug exceptions.
1210          * Matters for guest-ring3, because it can execute 'cpuid' under a
1211          * debugger.
1212          */
1213
1214         inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1215         rip = vmx_vmread(VMCS_GUEST_RIP);
1216         vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1217
1218         rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1219         vmx_vmwrite(VMCS_GUEST_RFLAGS, rflags & ~PSL_RF);
1220
1221         intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1222         vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1223             intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1224 }
1225
1226 static void
1227 vmx_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1228 {
1229         exit->u.inv.hwcode = code;
1230         exit->reason = NVMM_VCPU_EXIT_INVALID;
1231 }
1232
1233 static void
1234 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1235     struct nvmm_vcpu_exit *exit)
1236 {
1237         uint64_t qual;
1238
1239         qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1240
1241         if ((qual & INTR_INFO_VALID) == 0) {
1242                 goto error;
1243         }
1244         if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1245                 goto error;
1246         }
1247
1248         exit->reason = NVMM_VCPU_EXIT_NONE;
1249         return;
1250
1251 error:
1252         vmx_exit_invalid(exit, VMCS_EXITCODE_EXC_NMI);
1253 }
1254
1255 #define VMX_CPUID_MAX_BASIC             0x16
1256 #define VMX_CPUID_MAX_HYPERVISOR        0x40000000
1257 #define VMX_CPUID_MAX_EXTENDED          0x80000008
1258 static uint32_t vmx_cpuid_max_basic __read_mostly;
1259 static uint32_t vmx_cpuid_max_extended __read_mostly;
1260
1261 static void
1262 vmx_inkernel_exec_cpuid(struct vmx_cpudata *cpudata, uint32_t eax, uint32_t ecx)
1263 {
1264         u_int descs[4];
1265
1266         x86_cpuid2(eax, ecx, descs);
1267         cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1268         cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1269         cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1270         cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1271 }
1272
1273 static void
1274 vmx_inkernel_handle_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1275     uint32_t eax, uint32_t ecx)
1276 {
1277         struct vmx_cpudata *cpudata = vcpu->cpudata;
1278         unsigned int ncpus;
1279         uint32_t clevel;
1280         uint64_t cr4;
1281
1282         if (eax < 0x40000000) {
1283                 if (__predict_false(eax > vmx_cpuid_max_basic)) {
1284                         eax = vmx_cpuid_max_basic;
1285                         vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1286                 }
1287         } else if (eax < 0x80000000) {
1288                 if (__predict_false(eax > VMX_CPUID_MAX_HYPERVISOR)) {
1289                         eax = vmx_cpuid_max_basic;
1290                         vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1291                 }
1292         } else {
1293                 if (__predict_false(eax > vmx_cpuid_max_extended)) {
1294                         eax = vmx_cpuid_max_basic;
1295                         vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1296                 }
1297         }
1298
1299         switch (eax) {
1300         case 0x00000000:
1301                 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_cpuid_max_basic;
1302                 break;
1303         case 0x00000001:
1304                 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1305
1306                 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1307                 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1308                     CPUID_LOCAL_APIC_ID);
1309
1310                 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1311                 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1312                 if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1313                         cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_PCID;
1314                 }
1315
1316                 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1317
1318                 /* CPUID2_OSXSAVE depends on CR4. */
1319                 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1320                 if (!(cr4 & CR4_OSXSAVE)) {
1321                         cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1322                 }
1323                 break;
1324         case 0x00000002:
1325                 break;
1326         case 0x00000003:
1327                 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1328                 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1329                 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1330                 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1331                 break;
1332         case 0x00000004: /* Deterministic Cache Parameters */
1333                 ncpus = atomic_load_acq_int(&mach->ncpus);
1334                 clevel = __SHIFTOUT(cpudata->gprs[NVMM_X64_GPR_RAX],
1335                     CPUID_DCP_CACHELEVEL);
1336
1337                 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_DCP_SHARING;
1338                 if (clevel >= 3) {
1339                         /* L3 and above: all CPUs. */
1340                         cpudata->gprs[NVMM_X64_GPR_RAX] |=
1341                             __SHIFTIN(ncpus - 1, CPUID_DCP_SHARING);
1342                 } else {
1343                         /* L2 and below: one LP per CPU. */
1344                         cpudata->gprs[NVMM_X64_GPR_RAX] |=
1345                             __SHIFTIN(0, CPUID_DCP_SHARING);
1346                 }
1347
1348                 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_DCP_CORE_P_PKG;
1349                 cpudata->gprs[NVMM_X64_GPR_RAX] |=
1350                     __SHIFTIN(ncpus - 1, CPUID_DCP_CORE_P_PKG);
1351                 break;
1352         case 0x00000005: /* MONITOR/MWAIT */
1353         case 0x00000006: /* Thermal and Power Management */
1354                 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1355                 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1356                 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1357                 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1358                 break;
1359         case 0x00000007: /* Structured Extended Feature Flags Enumeration */
1360                 switch (ecx) {
1361                 case 0:
1362                         cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1363                         cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1364                         cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1365                         cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1366                         if (vmx_procbased_ctls2 & PROC_CTLS2_INVPCID_ENABLE) {
1367                                 cpudata->gprs[NVMM_X64_GPR_RBX] |= CPUID_SEF_INVPCID;
1368                         }
1369                         break;
1370                 default:
1371                         cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1372                         cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1373                         cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1374                         cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1375                         break;
1376                 }
1377                 break;
1378         case 0x00000008: /* Empty */
1379         case 0x00000009: /* Direct Cache Access Information */
1380                 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1381                 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1382                 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1383                 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1384                 break;
1385         case 0x0000000A: /* Architectural Performance Monitoring */
1386                 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1387                 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1388                 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1389                 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1390                 break;
1391         case 0x0000000B: /* Extended Topology Enumeration */
1392                 switch (ecx) {
1393                 case 0: /* Threads */
1394                         cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1395                         cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1396                         cpudata->gprs[NVMM_X64_GPR_RCX] =
1397                             __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
1398                             __SHIFTIN(CPUID_TOP_LVLTYPE_SMT, CPUID_TOP_LVLTYPE);
1399                         cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1400                         break;
1401                 case 1: /* Cores */
1402                         ncpus = atomic_load_acq_int(&mach->ncpus);
1403                         cpudata->gprs[NVMM_X64_GPR_RAX] = ilog2(ncpus);
1404                         cpudata->gprs[NVMM_X64_GPR_RBX] = ncpus;
1405                         cpudata->gprs[NVMM_X64_GPR_RCX] =
1406                             __SHIFTIN(ecx, CPUID_TOP_LVLNUM) |
1407                             __SHIFTIN(CPUID_TOP_LVLTYPE_CORE, CPUID_TOP_LVLTYPE);
1408                         cpudata->gprs[NVMM_X64_GPR_RDX] = vcpu->cpuid;
1409                         break;
1410                 default:
1411                         cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1412                         cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1413                         cpudata->gprs[NVMM_X64_GPR_RCX] = 0; /* LVLTYPE_INVAL */
1414                         cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1415                         break;
1416                 }
1417                 break;
1418         case 0x0000000C: /* Empty */
1419                 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1420                 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1421                 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1422                 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1423                 break;
1424         case 0x0000000D: /* Processor Extended State Enumeration */
1425                 if (vmx_xcr0_mask == 0) {
1426                         break;
1427                 }
1428                 switch (ecx) {
1429                 case 0:
1430                         cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1431                         if (cpudata->gxcr0 & XCR0_SSE) {
1432                                 cpudata->gprs[NVMM_X64_GPR_RBX] =
1433                                     sizeof(struct saveymm64);
1434                         } else {
1435                                 cpudata->gprs[NVMM_X64_GPR_RBX] =
1436                                     sizeof(struct save87) + 64; /* XSAVE header */
1437                         }
1438                         cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1439                         cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct saveymm64);
1440                         cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1441                         break;
1442                 case 1:
1443                         cpudata->gprs[NVMM_X64_GPR_RAX] &=
1444                             (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
1445                              CPUID_PES1_XGETBV);
1446                         cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1447                         cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1448                         cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1449                         break;
1450                 default:
1451                         cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1452                         cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1453                         cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1454                         cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1455                         break;
1456                 }
1457                 break;
1458         case 0x0000000E: /* Empty */
1459         case 0x0000000F: /* Intel RDT Monitoring Enumeration */
1460         case 0x00000010: /* Intel RDT Allocation Enumeration */
1461                 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1462                 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1463                 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1464                 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1465                 break;
1466         case 0x00000011: /* Empty */
1467         case 0x00000012: /* Intel SGX Capability Enumeration */
1468         case 0x00000013: /* Empty */
1469         case 0x00000014: /* Intel Processor Trace Enumeration */
1470                 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1471                 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1472                 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1473                 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1474                 break;
1475         case 0x00000015: /* TSC and Nominal Core Crystal Clock Information */
1476         case 0x00000016: /* Processor Frequency Information */
1477                 break;
1478
1479         case 0x40000000: /* Hypervisor Information */
1480                 cpudata->gprs[NVMM_X64_GPR_RAX] = VMX_CPUID_MAX_HYPERVISOR;
1481                 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1482                 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1483                 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1484                 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1485                 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1486                 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1487                 break;
1488
1489         case 0x80000000:
1490                 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_cpuid_max_extended;
1491                 break;
1492         case 0x80000001:
1493                 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1494                 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1495                 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1496                 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1497                 break;
1498         case 0x80000002: /* Processor Brand String */
1499         case 0x80000003: /* Processor Brand String */
1500         case 0x80000004: /* Processor Brand String */
1501         case 0x80000005: /* Reserved Zero */
1502         case 0x80000006: /* Cache Information */
1503                 break;
1504         case 0x80000007: /* TSC Information */
1505                 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000007.eax;
1506                 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000007.ebx;
1507                 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000007.ecx;
1508                 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000007.edx;
1509                 break;
1510         case 0x80000008: /* Address Sizes */
1511                 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000008.eax;
1512                 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000008.ebx;
1513                 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000008.ecx;
1514                 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000008.edx;
1515                 break;
1516
1517         default:
1518                 break;
1519         }
1520 }
1521
1522 static void
1523 vmx_exit_insn(struct nvmm_vcpu_exit *exit, uint64_t reason)
1524 {
1525         uint64_t inslen, rip;
1526
1527         inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1528         rip = vmx_vmread(VMCS_GUEST_RIP);
1529         exit->u.insn.npc = rip + inslen;
1530         exit->reason = reason;
1531 }
1532
1533 static void
1534 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1535     struct nvmm_vcpu_exit *exit)
1536 {
1537         struct vmx_cpudata *cpudata = vcpu->cpudata;
1538         struct nvmm_vcpu_conf_cpuid *cpuid;
1539         uint32_t eax, ecx;
1540         size_t i;
1541
1542         eax = (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1543         ecx = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1544         vmx_inkernel_exec_cpuid(cpudata, eax, ecx);
1545         vmx_inkernel_handle_cpuid(mach, vcpu, eax, ecx);
1546
1547         for (i = 0; i < VMX_NCPUIDS; i++) {
1548                 if (!cpudata->cpuidpresent[i]) {
1549                         continue;
1550                 }
1551                 cpuid = &cpudata->cpuid[i];
1552                 if (cpuid->leaf != eax) {
1553                         continue;
1554                 }
1555
1556                 if (cpuid->exit) {
1557                         vmx_exit_insn(exit, NVMM_VCPU_EXIT_CPUID);
1558                         return;
1559                 }
1560                 KASSERT(cpuid->mask);
1561
1562                 /* del */
1563                 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->u.mask.del.eax;
1564                 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1565                 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1566                 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1567
1568                 /* set */
1569                 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->u.mask.set.eax;
1570                 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1571                 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1572                 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1573
1574                 break;
1575         }
1576
1577         vmx_inkernel_advance();
1578         exit->reason = NVMM_VCPU_EXIT_NONE;
1579 }
1580
1581 static void
1582 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1583     struct nvmm_vcpu_exit *exit)
1584 {
1585         struct vmx_cpudata *cpudata = vcpu->cpudata;
1586         uint64_t rflags;
1587
1588         if (cpudata->int_window_exit) {
1589                 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1590                 if (rflags & PSL_I) {
1591                         vmx_event_waitexit_disable(vcpu, false);
1592                 }
1593         }
1594
1595         vmx_inkernel_advance();
1596         exit->reason = NVMM_VCPU_EXIT_HALTED;
1597 }
1598
1599 #define VMX_QUAL_CR_NUM         __BITS(3,0)
1600 #define VMX_QUAL_CR_TYPE        __BITS(5,4)
1601 #define         CR_TYPE_WRITE   0
1602 #define         CR_TYPE_READ    1
1603 #define         CR_TYPE_CLTS    2
1604 #define         CR_TYPE_LMSW    3
1605 #define VMX_QUAL_CR_LMSW_OPMEM  __BIT(6)
1606 #define VMX_QUAL_CR_GPR         __BITS(11,8)
1607 #define VMX_QUAL_CR_LMSW_SRC    __BIT(31,16)
1608
1609 static inline int
1610 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1611 {
1612         /* Bits set to 1 in fixed0 are fixed to 1. */
1613         if ((crval & fixed0) != fixed0) {
1614                 return -1;
1615         }
1616         /* Bits set to 0 in fixed1 are fixed to 0. */
1617         if (crval & ~fixed1) {
1618                 return -1;
1619         }
1620         return 0;
1621 }
1622
1623 static int
1624 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1625     uint64_t qual)
1626 {
1627         struct vmx_cpudata *cpudata = vcpu->cpudata;
1628         uint64_t type, gpr, oldcr0, realcr0, fakecr0;
1629         uint64_t efer, ctls1;
1630
1631         type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1632         if (type != CR_TYPE_WRITE) {
1633                 return -1;
1634         }
1635
1636         gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1637         KASSERT(gpr < 16);
1638
1639         if (gpr == NVMM_X64_GPR_RSP) {
1640                 fakecr0 = vmx_vmread(VMCS_GUEST_RSP);
1641         } else {
1642                 fakecr0 = cpudata->gprs[gpr];
1643         }
1644
1645         /*
1646          * fakecr0 is the value the guest believes is in %cr0. realcr0 is the
1647          * actual value in %cr0.
1648          *
1649          * In fakecr0 we must force CR0_ET to 1.
1650          *
1651          * In realcr0 we must force CR0_NW and CR0_CD to 0, and CR0_ET and
1652          * CR0_NE to 1.
1653          */
1654         fakecr0 |= CR0_ET;
1655         realcr0 = (fakecr0 & ~CR0_STATIC_MASK) | CR0_ET | CR0_NE;
1656
1657         if (vmx_check_cr(realcr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1658                 return -1;
1659         }
1660
1661         /*
1662          * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1663          * from CR3.
1664          */
1665
1666         if (realcr0 & CR0_PG) {
1667                 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1668                 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1669                 if (efer & EFER_LME) {
1670                         ctls1 |= ENTRY_CTLS_LONG_MODE;
1671                         efer |= EFER_LMA;
1672                 } else {
1673                         ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1674                         efer &= ~EFER_LMA;
1675                 }
1676                 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1677                 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1678         }
1679
1680         oldcr0 = (vmx_vmread(VMCS_CR0_SHADOW) & CR0_STATIC_MASK) |
1681             (vmx_vmread(VMCS_GUEST_CR0) & ~CR0_STATIC_MASK);
1682         if ((oldcr0 ^ fakecr0) & CR0_TLB_FLUSH) {
1683                 cpudata->gtlb_want_flush = true;
1684         }
1685
1686         vmx_vmwrite(VMCS_CR0_SHADOW, fakecr0);
1687         vmx_vmwrite(VMCS_GUEST_CR0, realcr0);
1688         vmx_inkernel_advance();
1689         return 0;
1690 }
1691
1692 static int
1693 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1694     uint64_t qual)
1695 {
1696         struct vmx_cpudata *cpudata = vcpu->cpudata;
1697         uint64_t type, gpr, oldcr4, cr4;
1698
1699         type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1700         if (type != CR_TYPE_WRITE) {
1701                 return -1;
1702         }
1703
1704         gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1705         KASSERT(gpr < 16);
1706
1707         if (gpr == NVMM_X64_GPR_RSP) {
1708                 gpr = vmx_vmread(VMCS_GUEST_RSP);
1709         } else {
1710                 gpr = cpudata->gprs[gpr];
1711         }
1712
1713         if (gpr & CR4_INVALID) {
1714                 return -1;
1715         }
1716         cr4 = gpr | CR4_VMXE;
1717         if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1718                 return -1;
1719         }
1720
1721         oldcr4 = vmx_vmread(VMCS_GUEST_CR4);
1722         if ((oldcr4 ^ gpr) & CR4_TLB_FLUSH) {
1723                 cpudata->gtlb_want_flush = true;
1724         }
1725
1726         vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1727         vmx_inkernel_advance();
1728         return 0;
1729 }
1730
1731 static int
1732 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1733     uint64_t qual, struct nvmm_vcpu_exit *exit)
1734 {
1735         struct vmx_cpudata *cpudata = vcpu->cpudata;
1736         uint64_t type, gpr;
1737         bool write;
1738
1739         type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1740         if (type == CR_TYPE_WRITE) {
1741                 write = true;
1742         } else if (type == CR_TYPE_READ) {
1743                 write = false;
1744         } else {
1745                 return -1;
1746         }
1747
1748         gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1749         KASSERT(gpr < 16);
1750
1751         if (write) {
1752                 if (gpr == NVMM_X64_GPR_RSP) {
1753                         cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1754                 } else {
1755                         cpudata->gcr8 = cpudata->gprs[gpr];
1756                 }
1757                 if (cpudata->tpr.exit_changed) {
1758                         exit->reason = NVMM_VCPU_EXIT_TPR_CHANGED;
1759                 }
1760         } else {
1761                 if (gpr == NVMM_X64_GPR_RSP) {
1762                         vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1763                 } else {
1764                         cpudata->gprs[gpr] = cpudata->gcr8;
1765                 }
1766         }
1767
1768         vmx_inkernel_advance();
1769         return 0;
1770 }
1771
1772 static void
1773 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1774     struct nvmm_vcpu_exit *exit)
1775 {
1776         uint64_t qual;
1777         int ret;
1778
1779         exit->reason = NVMM_VCPU_EXIT_NONE;
1780
1781         qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1782
1783         switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1784         case 0:
1785                 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1786                 break;
1787         case 4:
1788                 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1789                 break;
1790         case 8:
1791                 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual, exit);
1792                 break;
1793         default:
1794                 ret = -1;
1795                 break;
1796         }
1797
1798         if (ret == -1) {
1799                 vmx_inject_gp(vcpu);
1800         }
1801 }
1802
1803 #define VMX_QUAL_IO_SIZE        __BITS(2,0)
1804 #define         IO_SIZE_8       0
1805 #define         IO_SIZE_16      1
1806 #define         IO_SIZE_32      3
1807 #define VMX_QUAL_IO_IN          __BIT(3)
1808 #define VMX_QUAL_IO_STR         __BIT(4)
1809 #define VMX_QUAL_IO_REP         __BIT(5)
1810 #define VMX_QUAL_IO_DX          __BIT(6)
1811 #define VMX_QUAL_IO_PORT        __BITS(31,16)
1812
1813 #define VMX_INFO_IO_ADRSIZE     __BITS(9,7)
1814 #define         IO_ADRSIZE_16   0
1815 #define         IO_ADRSIZE_32   1
1816 #define         IO_ADRSIZE_64   2
1817 #define VMX_INFO_IO_SEG         __BITS(17,15)
1818
1819 static void
1820 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1821     struct nvmm_vcpu_exit *exit)
1822 {
1823         uint64_t qual, info, inslen, rip;
1824
1825         qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1826         info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1827
1828         exit->reason = NVMM_VCPU_EXIT_IO;
1829
1830         exit->u.io.in = (qual & VMX_QUAL_IO_IN) != 0;
1831         exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1832
1833         KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1834         exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1835
1836         if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1837                 exit->u.io.address_size = 8;
1838         } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1839                 exit->u.io.address_size = 4;
1840         } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1841                 exit->u.io.address_size = 2;
1842         }
1843
1844         if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1845                 exit->u.io.operand_size = 4;
1846         } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1847                 exit->u.io.operand_size = 2;
1848         } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1849                 exit->u.io.operand_size = 1;
1850         }
1851
1852         exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1853         exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1854
1855         if (exit->u.io.in && exit->u.io.str) {
1856                 exit->u.io.seg = NVMM_X64_SEG_ES;
1857         }
1858
1859         inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1860         rip = vmx_vmread(VMCS_GUEST_RIP);
1861         exit->u.io.npc = rip + inslen;
1862
1863         vmx_vcpu_state_provide(vcpu,
1864             NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1865             NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1866 }
1867
1868 static const uint64_t msr_ignore_list[] = {
1869         MSR_BIOS_SIGN,
1870         MSR_IA32_PLATFORM_ID
1871 };
1872
1873 static bool
1874 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1875     struct nvmm_vcpu_exit *exit)
1876 {
1877         struct vmx_cpudata *cpudata = vcpu->cpudata;
1878         uint64_t val;
1879         size_t i;
1880
1881         if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1882                 if (exit->u.rdmsr.msr == MSR_CR_PAT) {
1883                         val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1884                         cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1885                         cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1886                         goto handled;
1887                 }
1888                 if (exit->u.rdmsr.msr == MSR_MISC_ENABLE) {
1889                         val = cpudata->gmsr_misc_enable;
1890                         cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1891                         cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1892                         goto handled;
1893                 }
1894                 if (exit->u.rdmsr.msr == MSR_IA32_ARCH_CAPABILITIES) {
1895                         u_int descs[4];
1896                         if (cpuid_level < 7) {
1897                                 goto error;
1898                         }
1899                         x86_cpuid(7, descs);
1900                         if (!(descs[3] & CPUID_SEF_ARCH_CAP)) {
1901                                 goto error;
1902                         }
1903                         val = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
1904                         val &= (IA32_ARCH_RDCL_NO |
1905                             IA32_ARCH_SSB_NO |
1906                             IA32_ARCH_MDS_NO |
1907                             IA32_ARCH_TAA_NO);
1908                         cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1909                         cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1910                         goto handled;
1911                 }
1912                 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1913                         if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1914                                 continue;
1915                         val = 0;
1916                         cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1917                         cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1918                         goto handled;
1919                 }
1920         } else {
1921                 /* All bets are off if MSR_TSC is actually written to. */
1922                 if (exit->u.wrmsr.msr == MSR_TSC) {
1923                         cpudata->gtsc_offset = exit->u.wrmsr.val - rdtsc();
1924                         cpudata->gtsc_want_update = true;
1925                         goto handled;
1926                 }
1927                 if (exit->u.wrmsr.msr == MSR_CR_PAT) {
1928                         val = exit->u.wrmsr.val;
1929                         if (__predict_false(!nvmm_x86_pat_validate(val))) {
1930                                 goto error;
1931                         }
1932                         vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1933                         goto handled;
1934                 }
1935                 if (exit->u.wrmsr.msr == MSR_MISC_ENABLE) {
1936                         /* Don't care. */
1937                         goto handled;
1938                 }
1939                 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1940                         if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1941                                 continue;
1942                         goto handled;
1943                 }
1944         }
1945
1946         return false;
1947
1948 handled:
1949         vmx_inkernel_advance();
1950         return true;
1951
1952 error:
1953         vmx_inject_gp(vcpu);
1954         return true;
1955 }
1956
1957 static void
1958 vmx_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1959     struct nvmm_vcpu_exit *exit)
1960 {
1961         struct vmx_cpudata *cpudata = vcpu->cpudata;
1962         uint64_t inslen, rip;
1963
1964         exit->reason = NVMM_VCPU_EXIT_RDMSR;
1965         exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1966
1967         if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1968                 exit->reason = NVMM_VCPU_EXIT_NONE;
1969                 return;
1970         }
1971
1972         inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1973         rip = vmx_vmread(VMCS_GUEST_RIP);
1974         exit->u.rdmsr.npc = rip + inslen;
1975
1976         vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1977 }
1978
1979 static void
1980 vmx_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1981     struct nvmm_vcpu_exit *exit)
1982 {
1983         struct vmx_cpudata *cpudata = vcpu->cpudata;
1984         uint64_t rdx, rax, inslen, rip;
1985
1986         rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1987         rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1988
1989         exit->reason = NVMM_VCPU_EXIT_WRMSR;
1990         exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1991         exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1992
1993         if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1994                 exit->reason = NVMM_VCPU_EXIT_NONE;
1995                 return;
1996         }
1997
1998         inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1999         rip = vmx_vmread(VMCS_GUEST_RIP);
2000         exit->u.wrmsr.npc = rip + inslen;
2001
2002         vmx_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
2003 }
2004
2005 static void
2006 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
2007     struct nvmm_vcpu_exit *exit)
2008 {
2009         struct vmx_cpudata *cpudata = vcpu->cpudata;
2010         uint64_t val;
2011
2012         exit->reason = NVMM_VCPU_EXIT_NONE;
2013
2014         val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
2015             (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
2016
2017         if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
2018                 goto error;
2019         } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
2020                 goto error;
2021         } else if (__predict_false((val & XCR0_X87) == 0)) {
2022                 goto error;
2023         }
2024
2025         cpudata->gxcr0 = val;
2026
2027         vmx_inkernel_advance();
2028         return;
2029
2030 error:
2031         vmx_inject_gp(vcpu);
2032 }
2033
2034 #define VMX_EPT_VIOLATION_READ          __BIT(0)
2035 #define VMX_EPT_VIOLATION_WRITE         __BIT(1)
2036 #define VMX_EPT_VIOLATION_EXECUTE       __BIT(2)
2037
2038 static void
2039 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
2040     struct nvmm_vcpu_exit *exit)
2041 {
2042         uint64_t perm;
2043         gpaddr_t gpa;
2044
2045         gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
2046
2047         exit->reason = NVMM_VCPU_EXIT_MEMORY;
2048         perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
2049         if (perm & VMX_EPT_VIOLATION_WRITE)
2050                 exit->u.mem.prot = PROT_WRITE;
2051         else if (perm & VMX_EPT_VIOLATION_EXECUTE)
2052                 exit->u.mem.prot = PROT_EXEC;
2053         else
2054                 exit->u.mem.prot = PROT_READ;
2055         exit->u.mem.gpa = gpa;
2056         exit->u.mem.inst_len = 0;
2057
2058         vmx_vcpu_state_provide(vcpu,
2059             NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
2060             NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
2061 }
2062
2063 /* -------------------------------------------------------------------------- */
2064
2065 static void
2066 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
2067 {
2068         struct vmx_cpudata *cpudata = vcpu->cpudata;
2069
2070 #ifdef __NetBSD__
2071         fpu_kern_enter();
2072         fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask, true);
2073 #else /* DragonFly */
2074         /*
2075          * NOTE: Host FPU state depends on whether the user program used the
2076          *       FPU or not.  Need to use npxpush()/npxpop() to handle this.
2077          */
2078         npxpush(&cpudata->hstate.hmctx);
2079         clts();
2080         fpurstor(&cpudata->gfpu, vmx_xcr0_mask);
2081 #endif
2082
2083         if (vmx_xcr0_mask != 0) {
2084                 wrxcr(0, cpudata->gxcr0);
2085         }
2086 }
2087
2088 static void
2089 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
2090 {
2091         struct vmx_cpudata *cpudata = vcpu->cpudata;
2092
2093         if (vmx_xcr0_mask != 0) {
2094                 wrxcr(0, vmx_global_hstate.xcr0);
2095         }
2096
2097 #ifdef __NetBSD__
2098         fpu_area_save(&cpudata->gfpu, svm_xcr0_mask, true);
2099         fpu_kern_leave();
2100 #else /* DragonFly */
2101         fpusave(&cpudata->gfpu, vmx_xcr0_mask);
2102         stts();
2103         npxpop(&cpudata->hstate.hmctx);
2104 #endif
2105 }
2106
2107 static void
2108 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
2109 {
2110         struct vmx_cpudata *cpudata = vcpu->cpudata;
2111
2112         x86_dbregs_save(curlwp);
2113
2114         ldr7(0);
2115
2116         ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
2117         ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
2118         ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
2119         ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
2120         ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
2121 }
2122
2123 static void
2124 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
2125 {
2126         struct vmx_cpudata *cpudata = vcpu->cpudata;
2127
2128         cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
2129         cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
2130         cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
2131         cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
2132         cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
2133
2134         x86_dbregs_restore(curlwp);
2135 }
2136
2137 static void
2138 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
2139 {
2140         struct vmx_cpudata *cpudata = vcpu->cpudata;
2141
2142         /* This gets restored automatically by the CPU. */
2143 #ifdef __NetBSD__
2144         vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)curcpu()->ci_idtvec.iv_idt);
2145 #else /* DragonFly */
2146         vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)r_idt_arr[mycpuid].rd_base);
2147 #endif
2148         vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
2149         vmx_vmwrite(VMCS_HOST_CR3, rcr3());
2150         vmx_vmwrite(VMCS_HOST_CR4, rcr4());
2151
2152         /* Save the percpu host state. */
2153         cpudata->hstate.kernelgsbase = rdmsr(MSR_KERNELGSBASE);
2154 }
2155
2156 static void
2157 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
2158 {
2159         struct vmx_cpudata *cpudata = vcpu->cpudata;
2160
2161         /* Restore the global host state. */
2162         wrmsr(MSR_STAR, vmx_global_hstate.star);
2163         wrmsr(MSR_LSTAR, vmx_global_hstate.lstar);
2164         wrmsr(MSR_CSTAR, vmx_global_hstate.cstar);
2165         wrmsr(MSR_SFMASK, vmx_global_hstate.sfmask);
2166
2167         /* Restore the percpu host state. */
2168         wrmsr(MSR_KERNELGSBASE, cpudata->hstate.kernelgsbase);
2169 }
2170
2171 /* -------------------------------------------------------------------------- */
2172
2173 #define VMX_INVVPID_ADDRESS             0
2174 #define VMX_INVVPID_CONTEXT             1
2175 #define VMX_INVVPID_ALL                 2
2176 #define VMX_INVVPID_CONTEXT_NOGLOBAL    3
2177
2178 #define VMX_INVEPT_CONTEXT              1
2179 #define VMX_INVEPT_ALL                  2
2180
2181 static inline void
2182 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
2183 {
2184         struct vmx_cpudata *cpudata = vcpu->cpudata;
2185
2186         if (vcpu->hcpu_last != hcpu) {
2187                 cpudata->gtlb_want_flush = true;
2188         }
2189 }
2190
2191 static inline void
2192 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
2193 {
2194         struct vmx_cpudata *cpudata = vcpu->cpudata;
2195         struct ept_desc ept_desc;
2196
2197         if (__predict_true(!CPUMASK_TESTBIT(cpudata->htlb_want_flush, hcpu))) {
2198                 return;
2199         }
2200
2201         ept_desc.eptp = vmx_vmread(VMCS_EPTP);
2202         ept_desc.mbz = 0;
2203         vmx_invept(vmx_ept_flush_op, &ept_desc);
2204         ATOMIC_CPUMASK_NANDBIT(cpudata->htlb_want_flush, hcpu);
2205 }
2206
2207 static inline uint64_t
2208 vmx_htlb_flush(struct nvmm_machine *mach, struct vmx_cpudata *cpudata)
2209 {
2210         struct ept_desc ept_desc;
2211         uint64_t machgen;
2212
2213         clear_xinvltlb();
2214         machgen = mach->vm->vm_pmap.pm_invgen;
2215         if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
2216                 return machgen;
2217         }
2218
2219         ATOMIC_CPUMASK_ORMASK(cpudata->htlb_want_flush, smp_active_mask);
2220
2221         ept_desc.eptp = vmx_vmread(VMCS_EPTP);
2222         ept_desc.mbz = 0;
2223         vmx_invept(vmx_ept_flush_op, &ept_desc);
2224
2225         return machgen;
2226 }
2227
2228 static inline void
2229 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
2230 {
2231         cpudata->vcpu_htlb_gen = machgen;
2232         ATOMIC_CPUMASK_NANDBIT(cpudata->htlb_want_flush, mycpuid);
2233 }
2234
2235 static inline void
2236 vmx_exit_evt(struct vmx_cpudata *cpudata)
2237 {
2238         uint64_t info, err, inslen;
2239
2240         cpudata->evt_pending = false;
2241
2242         info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
2243         if (__predict_true((info & INTR_INFO_VALID) == 0)) {
2244                 return;
2245         }
2246         err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
2247
2248         vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
2249         vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
2250
2251         switch (__SHIFTOUT(info, INTR_INFO_TYPE)) {
2252         case INTR_TYPE_SW_INT:
2253         case INTR_TYPE_PRIV_SW_EXC:
2254         case INTR_TYPE_SW_EXC:
2255                 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
2256                 vmx_vmwrite(VMCS_ENTRY_INSTRUCTION_LENGTH, inslen);
2257         }
2258
2259         cpudata->evt_pending = true;
2260 }
2261
2262 static int
2263 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
2264     struct nvmm_vcpu_exit *exit)
2265 {
2266         struct nvmm_comm_page *comm = vcpu->comm;
2267         struct vmx_cpudata *cpudata = vcpu->cpudata;
2268         struct vpid_desc vpid_desc;
2269         struct globaldata *gd;
2270         uint64_t exitcode;
2271         uint64_t intstate;
2272         uint64_t machgen;
2273         int hcpu, ret;
2274         bool launched;
2275
2276         vmx_vmcs_enter(vcpu);
2277
2278         vmx_vcpu_state_commit(vcpu);
2279         comm->state_cached = 0;
2280
2281         if (__predict_false(vmx_vcpu_event_commit(vcpu) != 0)) {
2282                 vmx_vmcs_leave(vcpu);
2283                 return EINVAL;
2284         }
2285
2286         gd = mycpu;
2287         hcpu = gd->gd_cpuid;
2288         launched = cpudata->vmcs_launched;
2289
2290         vmx_gtlb_catchup(vcpu, hcpu);
2291         vmx_htlb_catchup(vcpu, hcpu);
2292
2293         if (vcpu->hcpu_last != hcpu) {
2294 #ifdef __NetBSD__
2295                 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
2296                 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
2297                 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
2298 #else /* DragonFly */
2299                 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, GSEL(GPROC0_SEL, SEL_KPL));
2300                 vmx_vmwrite(VMCS_HOST_TR_BASE,
2301                     (uint64_t)&gd->gd_prvspace->common_tss);
2302                 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)&gdt[hcpu * NGDT]);
2303 #endif /* __NetBSD__ */
2304                 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
2305                 cpudata->gtsc_want_update = true;
2306                 vcpu->hcpu_last = hcpu;
2307
2308 #ifdef __DragonFly__
2309                 /*
2310                  * XXX: We aren't tracking overloaded CPUs (multiple vCPUs
2311                  *      scheduled on the same physical CPU) yet so there are
2312                  *      currently no calls to pmap_del_cpu().
2313                  */
2314                 pmap_add_cpu(mach->vm, hcpu);
2315 #endif
2316         }
2317
2318         vmx_vcpu_guest_dbregs_enter(vcpu);
2319         vmx_vcpu_guest_misc_enter(vcpu);
2320
2321         while (1) {
2322                 if (cpudata->gtlb_want_flush) {
2323                         vpid_desc.vpid = cpudata->asid;
2324                         vpid_desc.addr = 0;
2325                         vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
2326                         cpudata->gtlb_want_flush = false;
2327                 }
2328
2329                 if (__predict_false(cpudata->gtsc_want_update)) {
2330                         vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc_offset);
2331                         cpudata->gtsc_want_update = false;
2332                 }
2333
2334                 vmx_cli();
2335                 vmx_vcpu_guest_fpu_enter(vcpu);
2336                 machgen = vmx_htlb_flush(mach, cpudata);
2337
2338 #ifdef __DragonFly__
2339                 /*
2340                  * Check for pending host events (e.g., interrupt, AST)
2341                  * to make the state safe to VM Entry.
2342                  */
2343                 if (__predict_false(gd->gd_reqflags & RQF_HVM_MASK)) {
2344                         /* INVEPT executed, so ack hTLB flush. */
2345                         vmx_htlb_flush_ack(cpudata, machgen);
2346                         vmx_vcpu_guest_fpu_leave(vcpu);
2347                         vmx_sti();
2348                         exit->reason = NVMM_VCPU_EXIT_NONE;
2349                         break;
2350                 }
2351 #endif
2352
2353                 lcr2(cpudata->gcr2);
2354                 if (launched) {
2355                         ret = vmx_vmresume(cpudata->gprs);
2356                 } else {
2357                         ret = vmx_vmlaunch(cpudata->gprs);
2358                 }
2359                 cpudata->gcr2 = rcr2();
2360                 vmx_htlb_flush_ack(cpudata, machgen);
2361                 vmx_vcpu_guest_fpu_leave(vcpu);
2362                 vmx_sti();
2363
2364                 if (__predict_false(ret != 0)) {
2365                         vmx_exit_invalid(exit, -1);
2366                         break;
2367                 }
2368                 vmx_exit_evt(cpudata);
2369
2370                 launched = true;
2371
2372                 exitcode = vmx_vmread(VMCS_EXIT_REASON);
2373                 exitcode &= __BITS(15,0);
2374
2375                 switch (exitcode) {
2376                 case VMCS_EXITCODE_EXC_NMI:
2377                         vmx_exit_exc_nmi(mach, vcpu, exit);
2378                         break;
2379                 case VMCS_EXITCODE_EXT_INT:
2380                         exit->reason = NVMM_VCPU_EXIT_NONE;
2381                         break;
2382                 case VMCS_EXITCODE_CPUID:
2383                         vmx_exit_cpuid(mach, vcpu, exit);
2384                         break;
2385                 case VMCS_EXITCODE_HLT:
2386                         vmx_exit_hlt(mach, vcpu, exit);
2387                         break;
2388                 case VMCS_EXITCODE_CR:
2389                         vmx_exit_cr(mach, vcpu, exit);
2390                         break;
2391                 case VMCS_EXITCODE_IO:
2392                         vmx_exit_io(mach, vcpu, exit);
2393                         break;
2394                 case VMCS_EXITCODE_RDMSR:
2395                         vmx_exit_rdmsr(mach, vcpu, exit);
2396                         break;
2397                 case VMCS_EXITCODE_WRMSR:
2398                         vmx_exit_wrmsr(mach, vcpu, exit);
2399                         break;
2400                 case VMCS_EXITCODE_SHUTDOWN:
2401                         exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
2402                         break;
2403                 case VMCS_EXITCODE_MONITOR:
2404                         vmx_exit_insn(exit, NVMM_VCPU_EXIT_MONITOR);
2405                         break;
2406                 case VMCS_EXITCODE_MWAIT:
2407                         vmx_exit_insn(exit, NVMM_VCPU_EXIT_MWAIT);
2408                         break;
2409                 case VMCS_EXITCODE_XSETBV:
2410                         vmx_exit_xsetbv(mach, vcpu, exit);
2411                         break;
2412                 case VMCS_EXITCODE_RDPMC:
2413                 case VMCS_EXITCODE_RDTSCP:
2414                 case VMCS_EXITCODE_INVVPID:
2415                 case VMCS_EXITCODE_INVEPT:
2416                 case VMCS_EXITCODE_VMCALL:
2417                 case VMCS_EXITCODE_VMCLEAR:
2418                 case VMCS_EXITCODE_VMLAUNCH:
2419                 case VMCS_EXITCODE_VMPTRLD:
2420                 case VMCS_EXITCODE_VMPTRST:
2421                 case VMCS_EXITCODE_VMREAD:
2422                 case VMCS_EXITCODE_VMRESUME:
2423                 case VMCS_EXITCODE_VMWRITE:
2424                 case VMCS_EXITCODE_VMXOFF:
2425                 case VMCS_EXITCODE_VMXON:
2426                         vmx_inject_ud(vcpu);
2427                         exit->reason = NVMM_VCPU_EXIT_NONE;
2428                         break;
2429                 case VMCS_EXITCODE_EPT_VIOLATION:
2430                         vmx_exit_epf(mach, vcpu, exit);
2431                         break;
2432                 case VMCS_EXITCODE_INT_WINDOW:
2433                         vmx_event_waitexit_disable(vcpu, false);
2434                         exit->reason = NVMM_VCPU_EXIT_INT_READY;
2435                         break;
2436                 case VMCS_EXITCODE_NMI_WINDOW:
2437                         vmx_event_waitexit_disable(vcpu, true);
2438                         exit->reason = NVMM_VCPU_EXIT_NMI_READY;
2439                         break;
2440                 default:
2441                         vmx_exit_invalid(exit, exitcode);
2442                         break;
2443                 }
2444
2445                 /* If no reason to return to userland, keep rolling. */
2446                 if (nvmm_return_needed()) {
2447                         break;
2448                 }
2449                 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
2450                         break;
2451                 }
2452         }
2453
2454         cpudata->vmcs_launched = launched;
2455
2456         vmx_vcpu_guest_misc_leave(vcpu);
2457         vmx_vcpu_guest_dbregs_leave(vcpu);
2458
2459         exit->exitstate.rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
2460         exit->exitstate.cr8 = cpudata->gcr8;
2461         intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2462         exit->exitstate.int_shadow =
2463             (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2464         exit->exitstate.int_window_exiting = cpudata->int_window_exit;
2465         exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
2466         exit->exitstate.evt_pending = cpudata->evt_pending;
2467
2468         vmx_vmcs_leave(vcpu);
2469
2470         return 0;
2471 }
2472
2473 /* -------------------------------------------------------------------------- */
2474
2475 static int
2476 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2477 {
2478 #ifdef __NetBSD__
2479         struct pglist pglist;
2480         paddr_t _pa;
2481         vaddr_t _va;
2482         size_t i;
2483         int ret;
2484
2485         ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2486             &pglist, 1, 0);
2487         if (ret != 0)
2488                 return ENOMEM;
2489         _pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
2490         _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2491             UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2492         if (_va == 0)
2493                 goto error;
2494
2495         for (i = 0; i < npages; i++) {
2496                 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2497                     VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2498         }
2499         pmap_update(pmap_kernel());
2500
2501         memset((void *)_va, 0, npages * PAGE_SIZE);
2502
2503         *pa = _pa;
2504         *va = _va;
2505         return 0;
2506
2507 error:
2508         for (i = 0; i < npages; i++) {
2509                 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2510         }
2511         return ENOMEM;
2512
2513 #else /* DragonFly */
2514         void *addr;
2515
2516         addr = contigmalloc(npages * PAGE_SIZE, M_NVMM, M_WAITOK | M_ZERO,
2517             0, ~0UL, PAGE_SIZE, 0);
2518         if (addr == NULL)
2519                 return ENOMEM;
2520
2521         *va = (vaddr_t)addr;
2522         *pa = vtophys(addr);
2523         return 0;
2524 #endif /* __NetBSD__ */
2525 }
2526
2527 static void
2528 vmx_memfree(paddr_t pa __unused, vaddr_t va, size_t npages)
2529 {
2530 #ifdef __NetBSD__
2531         size_t i;
2532
2533         pmap_kremove(va, npages * PAGE_SIZE);
2534         pmap_update(pmap_kernel());
2535         uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2536         for (i = 0; i < npages; i++) {
2537                 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2538         }
2539 #else /* DragonFly */
2540         contigfree((void *)va, npages * PAGE_SIZE, M_NVMM);
2541 #endif /* __NetBSD__ */
2542 }
2543
2544 /* -------------------------------------------------------------------------- */
2545
2546 static void
2547 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2548 {
2549         uint64_t byte;
2550         uint8_t bitoff;
2551
2552         if (msr < 0x00002000) {
2553                 /* Range 1 */
2554                 byte = ((msr - 0x00000000) / 8) + 0;
2555         } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2556                 /* Range 2 */
2557                 byte = ((msr - 0xC0000000) / 8) + 1024;
2558         } else {
2559                 panic("%s: wrong range", __func__);
2560         }
2561
2562         bitoff = (msr & 0x7);
2563
2564         if (read) {
2565                 bitmap[byte] &= ~__BIT(bitoff);
2566         }
2567         if (write) {
2568                 bitmap[2048 + byte] &= ~__BIT(bitoff);
2569         }
2570 }
2571
2572 #define VMX_SEG_ATTRIB_TYPE             __BITS(3,0)
2573 #define VMX_SEG_ATTRIB_S                __BIT(4)
2574 #define VMX_SEG_ATTRIB_DPL              __BITS(6,5)
2575 #define VMX_SEG_ATTRIB_P                __BIT(7)
2576 #define VMX_SEG_ATTRIB_AVL              __BIT(12)
2577 #define VMX_SEG_ATTRIB_L                __BIT(13)
2578 #define VMX_SEG_ATTRIB_DEF              __BIT(14)
2579 #define VMX_SEG_ATTRIB_G                __BIT(15)
2580 #define VMX_SEG_ATTRIB_UNUSABLE         __BIT(16)
2581
2582 static void
2583 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2584 {
2585         uint64_t attrib;
2586
2587         attrib =
2588             __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2589             __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2590             __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2591             __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2592             __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2593             __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2594             __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2595             __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2596             (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2597
2598         if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2599                 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2600                 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2601         }
2602         vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2603         vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2604 }
2605
2606 static void
2607 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2608 {
2609         uint64_t selector = 0, attrib = 0, base, limit;
2610
2611         if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2612                 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2613                 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2614         }
2615         limit = vmx_vmread(vmx_guest_segs[idx].limit);
2616         base = vmx_vmread(vmx_guest_segs[idx].base);
2617
2618         segs[idx].selector = selector;
2619         segs[idx].limit = limit;
2620         segs[idx].base = base;
2621         segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2622         segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2623         segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2624         segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2625         segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2626         segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2627         segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2628         segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2629         if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2630                 segs[idx].attrib.p = 0;
2631         }
2632 }
2633
2634 static inline bool
2635 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2636 {
2637         uint64_t cr0, cr3, cr4, efer;
2638
2639         if (flags & NVMM_X64_STATE_CRS) {
2640                 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2641                 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2642                         return true;
2643                 }
2644                 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2645                 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2646                         return true;
2647                 }
2648                 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2649                 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2650                         return true;
2651                 }
2652         }
2653
2654         if (flags & NVMM_X64_STATE_MSRS) {
2655                 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2656                 if ((efer ^
2657                      state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2658                         return true;
2659                 }
2660         }
2661
2662         return false;
2663 }
2664
2665 static void
2666 vmx_vcpu_setstate(struct nvmm_cpu *vcpu)
2667 {
2668         struct nvmm_comm_page *comm = vcpu->comm;
2669         const struct nvmm_x64_state *state = &comm->state;
2670         struct vmx_cpudata *cpudata = vcpu->cpudata;
2671         union savefpu *fpustate;
2672         uint64_t ctls1, intstate;
2673         uint64_t flags;
2674
2675         flags = comm->state_wanted;
2676
2677         vmx_vmcs_enter(vcpu);
2678
2679         if (vmx_state_tlb_flush(state, flags)) {
2680                 cpudata->gtlb_want_flush = true;
2681         }
2682
2683         if (flags & NVMM_X64_STATE_SEGS) {
2684                 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2685                 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2686                 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2687                 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2688                 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2689                 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2690                 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2691                 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2692                 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2693                 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2694         }
2695
2696         CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2697         if (flags & NVMM_X64_STATE_GPRS) {
2698                 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2699
2700                 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2701                 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2702                 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2703         }
2704
2705         if (flags & NVMM_X64_STATE_CRS) {
2706                 /*
2707                  * CR0_ET must be 1 both in the shadow and the real register.
2708                  * CR0_NE must be 1 in the real register.
2709                  * CR0_NW and CR0_CD must be 0 in the real register.
2710                  */
2711                 vmx_vmwrite(VMCS_CR0_SHADOW,
2712                     (state->crs[NVMM_X64_CR_CR0] & CR0_STATIC_MASK) |
2713                     CR0_ET);
2714                 vmx_vmwrite(VMCS_GUEST_CR0,
2715                     (state->crs[NVMM_X64_CR_CR0] & ~CR0_STATIC_MASK) |
2716                     CR0_ET | CR0_NE);
2717
2718                 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2719
2720                 /* XXX We are not handling PDPTE here. */
2721                 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]);
2722
2723                 /* CR4_VMXE is mandatory. */
2724                 vmx_vmwrite(VMCS_GUEST_CR4,
2725                     (state->crs[NVMM_X64_CR_CR4] & CR4_VALID) | CR4_VMXE);
2726
2727                 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2728
2729                 if (vmx_xcr0_mask != 0) {
2730                         /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2731                         cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2732                         cpudata->gxcr0 &= vmx_xcr0_mask;
2733                         cpudata->gxcr0 |= XCR0_X87;
2734                 }
2735         }
2736
2737         CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2738         if (flags & NVMM_X64_STATE_DRS) {
2739                 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2740
2741                 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2742                 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2743         }
2744
2745         if (flags & NVMM_X64_STATE_MSRS) {
2746                 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2747                     state->msrs[NVMM_X64_MSR_STAR];
2748                 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2749                     state->msrs[NVMM_X64_MSR_LSTAR];
2750                 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2751                     state->msrs[NVMM_X64_MSR_CSTAR];
2752                 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2753                     state->msrs[NVMM_X64_MSR_SFMASK];
2754                 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2755                     state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2756
2757                 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2758                     state->msrs[NVMM_X64_MSR_EFER]);
2759                 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2760                     state->msrs[NVMM_X64_MSR_PAT]);
2761                 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2762                     state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2763                 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2764                     state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2765                 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2766                     state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2767
2768                 /*
2769                  * QEMU or whatever... probably did NOT want to set the TSC,
2770                  * because doing so would destroy tsc mp-synchronization
2771                  * across logical cpus.  Try to figure out what qemu meant
2772                  * to do.
2773                  *
2774                  * If writing the last TSC value we reported via getstate,
2775                  * assume that the hypervisor does not want to write to the
2776                  * TSC.
2777                  *
2778                  * QEMU appears to issue a setstate with the value 0 after
2779                  * a 'reboot', so for now also ignore this case.
2780                  */
2781                 if (state->msrs[NVMM_X64_MSR_TSC] != cpudata->gtsc_match &&
2782                     state->msrs[NVMM_X64_MSR_TSC] != 0) {
2783                         cpudata->gtsc_offset =
2784                             state->msrs[NVMM_X64_MSR_TSC] - rdtsc();
2785                         cpudata->gtsc_want_update = true;
2786                 }
2787
2788                 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2789                 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2790                 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2791                         ctls1 |= ENTRY_CTLS_LONG_MODE;
2792                 } else {
2793                         ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2794                 }
2795                 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2796         }
2797
2798         if (flags & NVMM_X64_STATE_INTR) {
2799                 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2800                 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2801                 if (state->intr.int_shadow) {
2802                         intstate |= INT_STATE_MOVSS;
2803                 }
2804                 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2805
2806                 if (state->intr.int_window_exiting) {
2807                         vmx_event_waitexit_enable(vcpu, false);
2808                 } else {
2809                         vmx_event_waitexit_disable(vcpu, false);
2810                 }
2811
2812                 if (state->intr.nmi_window_exiting) {
2813                         vmx_event_waitexit_enable(vcpu, true);
2814                 } else {
2815                         vmx_event_waitexit_disable(vcpu, true);
2816                 }
2817         }
2818
2819         CTASSERT(sizeof(cpudata->gfpu) == sizeof(state->fpu));
2820         if (flags & NVMM_X64_STATE_FPU) {
2821                 memcpy(&cpudata->gfpu, &state->fpu, sizeof(state->fpu));
2822
2823                 fpustate = &cpudata->gfpu;
2824                 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2825                 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2826
2827                 if (vmx_xcr0_mask != 0) {
2828                         /* Reset XSTATE_BV, to force a reload. */
2829                         cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2830                 }
2831         }
2832
2833         vmx_vmcs_leave(vcpu);
2834
2835         comm->state_wanted = 0;
2836         comm->state_cached |= flags;
2837 }
2838
2839 static void
2840 vmx_vcpu_getstate(struct nvmm_cpu *vcpu)
2841 {
2842         struct nvmm_comm_page *comm = vcpu->comm;
2843         struct nvmm_x64_state *state = &comm->state;
2844         struct vmx_cpudata *cpudata = vcpu->cpudata;
2845         uint64_t intstate, flags;
2846
2847         flags = comm->state_wanted;
2848
2849         vmx_vmcs_enter(vcpu);
2850
2851         if (flags & NVMM_X64_STATE_SEGS) {
2852                 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2853                 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2854                 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2855                 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2856                 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2857                 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2858                 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2859                 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2860                 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2861                 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2862         }
2863
2864         CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2865         if (flags & NVMM_X64_STATE_GPRS) {
2866                 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2867
2868                 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2869                 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2870                 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2871         }
2872
2873         if (flags & NVMM_X64_STATE_CRS) {
2874                 state->crs[NVMM_X64_CR_CR0] =
2875                     (vmx_vmread(VMCS_CR0_SHADOW) & CR0_STATIC_MASK) |
2876                     (vmx_vmread(VMCS_GUEST_CR0) & ~CR0_STATIC_MASK);
2877                 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2878                 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2879                 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2880                 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2881                 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2882
2883                 /* Hide VMXE. */
2884                 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2885         }
2886
2887         CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2888         if (flags & NVMM_X64_STATE_DRS) {
2889                 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2890
2891                 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2892         }
2893
2894         if (flags & NVMM_X64_STATE_MSRS) {
2895                 state->msrs[NVMM_X64_MSR_STAR] =
2896                     cpudata->gmsr[VMX_MSRLIST_STAR].val;
2897                 state->msrs[NVMM_X64_MSR_LSTAR] =
2898                     cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2899                 state->msrs[NVMM_X64_MSR_CSTAR] =
2900                     cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2901                 state->msrs[NVMM_X64_MSR_SFMASK] =
2902                     cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2903                 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2904                     cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2905                 state->msrs[NVMM_X64_MSR_EFER] =
2906                     vmx_vmread(VMCS_GUEST_IA32_EFER);
2907                 state->msrs[NVMM_X64_MSR_PAT] =
2908                     vmx_vmread(VMCS_GUEST_IA32_PAT);
2909                 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2910                     vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2911                 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2912                     vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2913                 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2914                     vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2915                 state->msrs[NVMM_X64_MSR_TSC] = rdtsc() + cpudata->gtsc_offset;
2916
2917                 /* Save reported TSC value for later setstate hack. */
2918                 cpudata->gtsc_match = state->msrs[NVMM_X64_MSR_TSC];
2919         }
2920
2921         if (flags & NVMM_X64_STATE_INTR) {
2922                 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2923                 state->intr.int_shadow =
2924                     (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2925                 state->intr.int_window_exiting = cpudata->int_window_exit;
2926                 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2927                 state->intr.evt_pending = cpudata->evt_pending;
2928         }
2929
2930         CTASSERT(sizeof(cpudata->gfpu) == sizeof(state->fpu));
2931         if (flags & NVMM_X64_STATE_FPU) {
2932                 memcpy(&state->fpu, &cpudata->gfpu, sizeof(state->fpu));
2933         }
2934
2935         vmx_vmcs_leave(vcpu);
2936
2937         comm->state_wanted = 0;
2938         comm->state_cached |= flags;
2939 }
2940
2941 static void
2942 vmx_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2943 {
2944         vcpu->comm->state_wanted = flags;
2945         vmx_vcpu_getstate(vcpu);
2946 }
2947
2948 static void
2949 vmx_vcpu_state_commit(struct nvmm_cpu *vcpu)
2950 {
2951         vcpu->comm->state_wanted = vcpu->comm->state_commit;
2952         vcpu->comm->state_commit = 0;
2953         vmx_vcpu_setstate(vcpu);
2954 }
2955
2956 /* -------------------------------------------------------------------------- */
2957
2958 static void
2959 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2960 {
2961         struct vmx_cpudata *cpudata = vcpu->cpudata;
2962         size_t i, oct, bit;
2963
2964         mutex_enter(&vmx_asidlock);
2965
2966         for (i = 0; i < vmx_maxasid; i++) {
2967                 oct = i / 8;
2968                 bit = i % 8;
2969
2970                 if (vmx_asidmap[oct] & __BIT(bit)) {
2971                         continue;
2972                 }
2973
2974                 cpudata->asid = i;
2975
2976                 vmx_asidmap[oct] |= __BIT(bit);
2977                 vmx_vmwrite(VMCS_VPID, i);
2978                 mutex_exit(&vmx_asidlock);
2979                 return;
2980         }
2981
2982         mutex_exit(&vmx_asidlock);
2983
2984         panic("%s: impossible", __func__);
2985 }
2986
2987 static void
2988 vmx_asid_free(struct nvmm_cpu *vcpu)
2989 {
2990         size_t oct, bit;
2991         uint64_t asid;
2992
2993         asid = vmx_vmread(VMCS_VPID);
2994
2995         oct = asid / 8;
2996         bit = asid % 8;
2997
2998         mutex_enter(&vmx_asidlock);
2999         vmx_asidmap[oct] &= ~__BIT(bit);
3000         mutex_exit(&vmx_asidlock);
3001 }
3002
3003 static void
3004 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
3005 {
3006         struct vmx_cpudata *cpudata = vcpu->cpudata;
3007         struct vmcs *vmcs = cpudata->vmcs;
3008         struct msr_entry *gmsr = cpudata->gmsr;
3009         uint64_t rev, eptp;
3010
3011         rev = vmx_get_revision();
3012
3013         memset(vmcs, 0, VMCS_SIZE);
3014         vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
3015         vmcs->abort = 0;
3016
3017         vmx_vmcs_enter(vcpu);
3018
3019         /* No link pointer. */
3020         vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
3021
3022         /* Install the CTLSs. */
3023         vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
3024         vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
3025         vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
3026         vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
3027         vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
3028
3029         /* Allow direct access to certain MSRs. */
3030         memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
3031         vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
3032         vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
3033         vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
3034         vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
3035         vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
3036         vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
3037         vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
3038         vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
3039         vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
3040         vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
3041         vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
3042         vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
3043         vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
3044
3045         /*
3046          * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
3047          * includes the L1D_FLUSH MSR, to mitigate L1TF.
3048          */
3049         gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
3050         gmsr[VMX_MSRLIST_STAR].val = 0;
3051         gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
3052         gmsr[VMX_MSRLIST_LSTAR].val = 0;
3053         gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
3054         gmsr[VMX_MSRLIST_CSTAR].val = 0;
3055         gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
3056         gmsr[VMX_MSRLIST_SFMASK].val = 0;
3057         gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
3058         gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
3059         gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
3060         gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
3061         vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
3062         vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
3063         vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
3064         vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
3065
3066         /* Set the CR0 mask. Any change of these bits causes a VMEXIT. */
3067         vmx_vmwrite(VMCS_CR0_MASK, CR0_STATIC_MASK);
3068
3069         /* Force unsupported CR4 fields to zero. */
3070         vmx_vmwrite(VMCS_CR4_MASK, CR4_INVALID);
3071         vmx_vmwrite(VMCS_CR4_SHADOW, 0);
3072
3073         /* Set the Host state for resuming. */
3074         vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)vmx_resume_rip);
3075         vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
3076         vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
3077         vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
3078         vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
3079         vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
3080         vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
3081         vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
3082         vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
3083         vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
3084         vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
3085         vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
3086         vmx_vmwrite(VMCS_HOST_CR0, rcr0() & ~CR0_TS);
3087
3088         /* Generate ASID. */
3089         vmx_asid_alloc(vcpu);
3090
3091         /* Enable Extended Paging, 4-Level. */
3092         eptp =
3093             __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
3094             __SHIFTIN(4-1, EPTP_WALKLEN) |
3095             (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
3096             vtophys(vmspace_pmap(mach->vm)->pm_pml4);
3097         vmx_vmwrite(VMCS_EPTP, eptp);
3098
3099         /* Init IA32_MISC_ENABLE. */
3100         cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
3101         cpudata->gmsr_misc_enable &=
3102             ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
3103         cpudata->gmsr_misc_enable |=
3104             (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
3105
3106         /* Init XSAVE header. */
3107         cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
3108         cpudata->gfpu.xsh_xcomp_bv = 0;
3109
3110         /* Install the RESET state. */
3111         memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
3112             sizeof(nvmm_x86_reset_state));
3113         vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
3114         vcpu->comm->state_cached = 0;
3115         vmx_vcpu_setstate(vcpu);
3116
3117         vmx_vmcs_leave(vcpu);
3118 }
3119
3120 static int
3121 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
3122 {
3123         struct vmx_cpudata *cpudata;
3124         int error;
3125
3126         /* Allocate the VMX cpudata. */
3127         cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
3128             roundup(sizeof(*cpudata), PAGE_SIZE), 0,
3129             UVM_KMF_WIRED|UVM_KMF_ZERO);
3130         if (cpudata == NULL)
3131                 return ENOMEM;
3132
3133         cpudata->vmcs_cpu = -1;
3134         vcpu->cpudata = cpudata;
3135
3136         /* VMCS */
3137         error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
3138             VMCS_NPAGES);
3139         if (error)
3140                 goto error;
3141
3142         /* MSR Bitmap */
3143         error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
3144             MSRBM_NPAGES);
3145         if (error)
3146                 goto error;
3147
3148         /* Guest MSR List */
3149         error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
3150         if (error)
3151                 goto error;
3152
3153         CPUMASK_ASSZERO(cpudata->htlb_want_flush);
3154
3155         /* Init the VCPU info. */
3156         vmx_vcpu_init(mach, vcpu);
3157
3158         return 0;
3159
3160 error:
3161         if (cpudata->vmcs_pa) {
3162                 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
3163                     VMCS_NPAGES);
3164         }
3165         if (cpudata->msrbm_pa) {
3166                 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
3167                     MSRBM_NPAGES);
3168         }
3169         if (cpudata->gmsr_pa) {
3170                 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
3171         }
3172         uvm_km_free(kernel_map, (vaddr_t)cpudata,
3173             roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
3174         return error;
3175 }
3176
3177 static void
3178 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
3179 {
3180         struct vmx_cpudata *cpudata = vcpu->cpudata;
3181
3182         vmx_vmcs_enter(vcpu);
3183         vmx_asid_free(vcpu);
3184         vmx_vmcs_destroy(vcpu);
3185
3186 #ifdef __NetBSD__
3187         kcpuset_destroy(cpudata->htlb_want_flush);
3188 #endif
3189
3190         vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
3191         vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
3192         vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
3193         uvm_km_free(kernel_map, (vaddr_t)cpudata,
3194             roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
3195 }
3196
3197 /* -------------------------------------------------------------------------- */
3198
3199 static int
3200 vmx_vcpu_configure_cpuid(struct vmx_cpudata *cpudata, void *data)
3201 {
3202         struct nvmm_vcpu_conf_cpuid *cpuid = data;
3203         size_t i;
3204
3205         if (__predict_false(cpuid->mask && cpuid->exit)) {
3206                 return EINVAL;
3207         }
3208         if (__predict_false(cpuid->mask &&
3209             ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
3210              (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
3211              (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
3212              (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
3213                 return EINVAL;
3214         }
3215
3216         /* If unset, delete, to restore the default behavior. */
3217         if (!cpuid->mask && !cpuid->exit) {
3218                 for (i = 0; i < VMX_NCPUIDS; i++) {
3219                         if (!cpudata->cpuidpresent[i]) {
3220                                 continue;
3221                         }
3222                         if (cpudata->cpuid[i].leaf == cpuid->leaf) {
3223                                 cpudata->cpuidpresent[i] = false;
3224                         }
3225                 }
3226                 return 0;
3227         }
3228
3229         /* If already here, replace. */
3230         for (i = 0; i < VMX_NCPUIDS; i++) {
3231                 if (!cpudata->cpuidpresent[i]) {
3232                         continue;
3233                 }
3234                 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
3235                         memcpy(&cpudata->cpuid[i], cpuid,
3236                             sizeof(struct nvmm_vcpu_conf_cpuid));
3237                         return 0;
3238                 }
3239         }
3240
3241         /* Not here, insert. */
3242         for (i = 0; i < VMX_NCPUIDS; i++) {
3243                 if (!cpudata->cpuidpresent[i]) {
3244                         cpudata->cpuidpresent[i] = true;
3245                         memcpy(&cpudata->cpuid[i], cpuid,
3246                             sizeof(struct nvmm_vcpu_conf_cpuid));
3247                         return 0;
3248                 }
3249         }
3250
3251         return ENOBUFS;
3252 }
3253
3254 static int
3255 vmx_vcpu_configure_tpr(struct vmx_cpudata *cpudata, void *data)
3256 {
3257         struct nvmm_vcpu_conf_tpr *tpr = data;
3258
3259         memcpy(&cpudata->tpr, tpr, sizeof(*tpr));
3260         return 0;
3261 }
3262
3263 static int
3264 vmx_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
3265 {
3266         struct vmx_cpudata *cpudata = vcpu->cpudata;
3267
3268         switch (op) {
3269         case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
3270                 return vmx_vcpu_configure_cpuid(cpudata, data);
3271         case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR):
3272                 return vmx_vcpu_configure_tpr(cpudata, data);
3273         default:
3274                 return EINVAL;
3275         }
3276 }
3277
3278 /* -------------------------------------------------------------------------- */
3279
3280 #ifdef __NetBSD__
3281 static void
3282 vmx_tlb_flush(struct pmap *pm)
3283 {
3284         struct nvmm_machine *mach = pm->pm_data;
3285         struct vmx_machdata *machdata = mach->machdata;
3286
3287         atomic_inc_64(&machdata->mach_htlb_gen);
3288
3289         /* Generates IPIs, which cause #VMEXITs. */
3290         pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
3291 }
3292 #endif /* __NetBSD__ */
3293
3294 static void
3295 vmx_machine_create(struct nvmm_machine *mach)
3296 {
3297         struct pmap *pmap = vmspace_pmap(mach->vm);
3298         struct vmx_machdata *machdata;
3299
3300         /* Convert to EPT. */
3301         pmap_ept_transform(pmap, pmap_ept_has_ad ? 0 : PMAP_EMULATE_AD_BITS);
3302
3303 #ifdef __NetBSD__
3304         /* Fill in pmap info. */
3305         pmap->pm_data = (void *)mach;
3306         pmap->pm_tlb_flush = vmx_tlb_flush;
3307 #endif /* __NetBSD__ */
3308
3309         machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
3310         mach->machdata = machdata;
3311
3312         /* Start with an hTLB flush everywhere. */
3313         machdata->mach_htlb_gen = 1;
3314 }
3315
3316 static void
3317 vmx_machine_destroy(struct nvmm_machine *mach)
3318 {
3319         struct vmx_machdata *machdata = mach->machdata;
3320
3321         kmem_free(machdata, sizeof(struct vmx_machdata));
3322 }
3323
3324 static int
3325 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
3326 {
3327         panic("%s: impossible", __func__);
3328 }
3329
3330 /* -------------------------------------------------------------------------- */
3331
3332 #define CTLS_ONE_ALLOWED(msrval, bitoff) \
3333         ((msrval & __BIT(32 + bitoff)) != 0)
3334 #define CTLS_ZERO_ALLOWED(msrval, bitoff) \
3335         ((msrval & __BIT(bitoff)) == 0)
3336
3337 static int
3338 vmx_check_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls, uint64_t set_one)
3339 {
3340         uint64_t basic, val, true_val;
3341         bool has_true;
3342         size_t i;
3343
3344         basic = rdmsr(MSR_IA32_VMX_BASIC);
3345         has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3346
3347         val = rdmsr(msr_ctls);
3348         if (has_true) {
3349                 true_val = rdmsr(msr_true_ctls);
3350         } else {
3351                 true_val = val;
3352         }
3353
3354         for (i = 0; i < 32; i++) {
3355                 if (!(set_one & __BIT(i))) {
3356                         continue;
3357                 }
3358                 if (!CTLS_ONE_ALLOWED(true_val, i)) {
3359                         return -1;
3360                 }
3361         }
3362
3363         return 0;
3364 }
3365
3366 static int
3367 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
3368     uint64_t set_one, uint64_t set_zero, uint64_t *res)
3369 {
3370         uint64_t basic, val, true_val;
3371         bool one_allowed, zero_allowed, has_true;
3372         size_t i;
3373
3374         basic = rdmsr(MSR_IA32_VMX_BASIC);
3375         has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
3376
3377         val = rdmsr(msr_ctls);
3378         if (has_true) {
3379                 true_val = rdmsr(msr_true_ctls);
3380         } else {
3381                 true_val = val;
3382         }
3383
3384         for (i = 0; i < 32; i++) {
3385                 one_allowed = CTLS_ONE_ALLOWED(true_val, i);
3386                 zero_allowed = CTLS_ZERO_ALLOWED(true_val, i);
3387
3388                 if (zero_allowed && !one_allowed) {
3389                         if (set_one & __BIT(i))
3390                                 return -1;
3391                         *res &= ~__BIT(i);
3392                 } else if (one_allowed && !zero_allowed) {
3393                         if (set_zero & __BIT(i))
3394                                 return -1;
3395                         *res |= __BIT(i);
3396                 } else {
3397                         if (set_zero & __BIT(i)) {
3398                                 *res &= ~__BIT(i);
3399                         } else if (set_one & __BIT(i)) {
3400                                 *res |= __BIT(i);
3401                         } else if (!has_true) {
3402                                 *res &= ~__BIT(i);
3403                         } else if (CTLS_ZERO_ALLOWED(val, i)) {
3404                                 *res &= ~__BIT(i);
3405                         } else if (CTLS_ONE_ALLOWED(val, i)) {
3406                                 *res |= __BIT(i);
3407                         } else {
3408                                 return -1;
3409                         }
3410                 }
3411         }
3412
3413         return 0;
3414 }
3415
3416 static bool
3417 vmx_ident(void)
3418 {
3419         uint64_t msr;
3420         int ret;
3421
3422         if (!(cpu_feature2 & CPUID2_VMX)) {
3423                 return false;
3424         }
3425
3426         msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
3427         if ((msr & IA32_FEATURE_CONTROL_LOCK) != 0 &&
3428             (msr & IA32_FEATURE_CONTROL_OUT_SMX) == 0) {
3429                 printf("NVMM: VMX disabled in BIOS\n");
3430                 return false;
3431         }
3432
3433         msr = rdmsr(MSR_IA32_VMX_BASIC);
3434         if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
3435                 printf("NVMM: I/O reporting not supported\n");
3436                 return false;
3437         }
3438         if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
3439                 printf("NVMM: WB memory not supported\n");
3440                 return false;
3441         }
3442
3443         /* PG and PE are reported, even if Unrestricted Guests is supported. */
3444         vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
3445         vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
3446         ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
3447         if (ret == -1) {
3448                 printf("NVMM: CR0 requirements not satisfied\n");
3449                 return false;
3450         }
3451
3452         vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
3453         vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
3454         ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
3455         if (ret == -1) {
3456                 printf("NVMM: CR4 requirements not satisfied\n");
3457                 return false;
3458         }
3459
3460         /* Init the CTLSs right now, and check for errors. */
3461         ret = vmx_init_ctls(
3462             MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3463             VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
3464             &vmx_pinbased_ctls);
3465         if (ret == -1) {
3466                 printf("NVMM: pin-based-ctls requirements not satisfied\n");
3467                 return false;
3468         }
3469         ret = vmx_init_ctls(
3470             MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3471             VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
3472             &vmx_procbased_ctls);
3473         if (ret == -1) {
3474                 printf("NVMM: proc-based-ctls requirements not satisfied\n");
3475                 return false;
3476         }
3477         ret = vmx_init_ctls(
3478             MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3479             VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
3480             &vmx_procbased_ctls2);
3481         if (ret == -1) {
3482                 printf("NVMM: proc-based-ctls2 requirements not satisfied\n");
3483                 return false;
3484         }
3485         ret = vmx_check_ctls(
3486             MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
3487             PROC_CTLS2_INVPCID_ENABLE);
3488         if (ret != -1) {
3489                 vmx_procbased_ctls2 |= PROC_CTLS2_INVPCID_ENABLE;
3490         }
3491         ret = vmx_init_ctls(
3492             MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3493             VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
3494             &vmx_entry_ctls);
3495         if (ret == -1) {
3496                 printf("NVMM: entry-ctls requirements not satisfied\n");
3497                 return false;
3498         }
3499         ret = vmx_init_ctls(
3500             MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3501             VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
3502             &vmx_exit_ctls);
3503         if (ret == -1) {
3504                 printf("NVMM: exit-ctls requirements not satisfied\n");
3505                 return false;
3506         }
3507
3508         msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3509         if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
3510                 printf("NVMM: 4-level page tree not supported\n");
3511                 return false;
3512         }
3513         if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
3514                 printf("NVMM: INVEPT not supported\n");
3515                 return false;
3516         }
3517         if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
3518                 printf("NVMM: INVVPID not supported\n");
3519                 return false;
3520         }
3521         if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
3522                 pmap_ept_has_ad = true;
3523         } else {
3524                 pmap_ept_has_ad = false;
3525         }
3526         if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
3527                 printf("NVMM: EPT UC/WB memory types not supported\n");
3528                 return false;
3529         }
3530
3531         return true;
3532 }
3533
3534 static void
3535 vmx_init_asid(uint32_t maxasid)
3536 {
3537         size_t allocsz;
3538
3539         mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
3540
3541         vmx_maxasid = maxasid;
3542         allocsz = roundup(maxasid, 8) / 8;
3543         vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
3544
3545         /* ASID 0 is reserved for the host. */
3546         vmx_asidmap[0] |= __BIT(0);
3547 }
3548
3549 static void
3550 vmx_change_cpu(void *arg1)
3551 {
3552         bool enable = arg1 != NULL;
3553         uint64_t msr, cr4;
3554
3555         if (enable) {
3556                 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
3557                 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
3558                         /* Lock now, with VMX-outside-SMX enabled. */
3559                         wrmsr(MSR_IA32_FEATURE_CONTROL, msr |
3560                             IA32_FEATURE_CONTROL_LOCK |
3561                             IA32_FEATURE_CONTROL_OUT_SMX);
3562                 }
3563         }
3564
3565         if (!enable) {
3566                 vmx_vmxoff();
3567         }
3568
3569         cr4 = rcr4();
3570         if (enable) {
3571                 cr4 |= CR4_VMXE;
3572         } else {
3573                 cr4 &= ~CR4_VMXE;
3574         }
3575         lcr4(cr4);
3576
3577         if (enable) {
3578                 vmx_vmxon(&vmxoncpu[mycpuid].pa);
3579         }
3580
3581 #ifdef __DragonFly__
3582         if (atomic_fetchadd_int(&vmx_change_cpu_count, -1) == 1)
3583                 wakeup(&vmx_change_cpu_count);
3584 #endif /* __DragonFly__ */
3585 }
3586
3587 static void
3588 vmx_init_l1tf(void)
3589 {
3590         u_int descs[4];
3591         uint64_t msr;
3592
3593         if (cpuid_level < 7) {
3594                 return;
3595         }
3596
3597         x86_cpuid(7, descs);
3598
3599         if (descs[3] & CPUID_SEF_ARCH_CAP) {
3600                 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
3601                 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
3602                         /* No mitigation needed. */
3603                         return;
3604                 }
3605         }
3606
3607         if (descs[3] & CPUID_SEF_L1D_FLUSH) {
3608                 /* Enable hardware mitigation. */
3609                 vmx_msrlist_entry_nmsr += 1;
3610         }
3611 }
3612
3613 static void
3614 vmx_init(void)
3615 {
3616         uint64_t msr;
3617         struct vmxon *vmxon;
3618         uint32_t revision;
3619         u_int descs[4];
3620         paddr_t pa;
3621         vaddr_t va;
3622         int i, error;
3623
3624         /* Init the ASID bitmap (VPID). */
3625         vmx_init_asid(VPID_MAX);
3626
3627         /* Init the XCR0 mask. */
3628         vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3629
3630         /* Init the max basic CPUID leaf. */
3631         vmx_cpuid_max_basic = uimin(cpuid_level, VMX_CPUID_MAX_BASIC);
3632
3633         /* Init the max extended CPUID leaf. */
3634         x86_cpuid(0x80000000, descs);
3635         vmx_cpuid_max_extended = uimin(descs[0], VMX_CPUID_MAX_EXTENDED);
3636
3637         /* Init the TLB flush op, the EPT flush op and the EPTP type. */
3638         msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3639         if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3640                 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3641         } else {
3642                 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3643         }
3644         if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3645                 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3646         } else {
3647                 vmx_ept_flush_op = VMX_INVEPT_ALL;
3648         }
3649         if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3650                 vmx_eptp_type = EPTP_TYPE_WB;
3651         } else {
3652                 vmx_eptp_type = EPTP_TYPE_UC;
3653         }
3654
3655         /* Init the L1TF mitigation. */
3656         vmx_init_l1tf();
3657
3658         /* Init the global host state. */
3659         if (vmx_xcr0_mask != 0) {
3660                 vmx_global_hstate.xcr0 = rdxcr(0);
3661         }
3662         vmx_global_hstate.star = rdmsr(MSR_STAR);
3663         vmx_global_hstate.lstar = rdmsr(MSR_LSTAR);
3664         vmx_global_hstate.cstar = rdmsr(MSR_CSTAR);
3665         vmx_global_hstate.sfmask = rdmsr(MSR_SFMASK);
3666
3667         memset(vmxoncpu, 0, sizeof(vmxoncpu));
3668         revision = vmx_get_revision();
3669
3670         for (i = 0; i < ncpus; i++) {
3671                 error = vmx_memalloc(&pa, &va, 1);
3672                 if (error) {
3673                         panic("%s: out of memory", __func__);
3674                 }
3675                 vmxoncpu[i].pa = pa;
3676                 vmxoncpu[i].va = va;
3677
3678                 vmxon = (struct vmxon *)vmxoncpu[i].va;
3679                 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3680         }
3681
3682 #ifdef __NetBSD__
3683         uint64_t xc;
3684         xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3685         xc_wait(xc);
3686 #else /* DragonFly */
3687         atomic_swap_int(&vmx_change_cpu_count, ncpus);
3688         lwkt_send_ipiq_mask(smp_active_mask, vmx_change_cpu, (void *)true);
3689         do {
3690                 cpu_ccfence();
3691                 tsleep_interlock(&vmx_change_cpu_count, 0);
3692                 if (vmx_change_cpu_count)
3693                         tsleep(&vmx_change_cpu_count, PINTERLOCKED, "vmx", hz);
3694         } while (vmx_change_cpu_count != 0);
3695 #endif /* __NetBSD__ */
3696 }
3697
3698 static void
3699 vmx_fini_asid(void)
3700 {
3701         size_t allocsz;
3702
3703         allocsz = roundup(vmx_maxasid, 8) / 8;
3704         kmem_free(vmx_asidmap, allocsz);
3705
3706         mutex_destroy(&vmx_asidlock);
3707 }
3708
3709 static void
3710 vmx_fini(void)
3711 {
3712         size_t i;
3713
3714 #ifdef __NetBSD__
3715         uint64_t xc;
3716         xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3717         xc_wait(xc);
3718 #else /* DragonFly */
3719         atomic_swap_int(&vmx_change_cpu_count, ncpus);
3720         lwkt_send_ipiq_mask(smp_active_mask, vmx_change_cpu, (void *)false);
3721         do {
3722                 cpu_ccfence();
3723                 tsleep_interlock(&vmx_change_cpu_count, 0);
3724                 if (vmx_change_cpu_count)
3725                         tsleep(&vmx_change_cpu_count, PINTERLOCKED, "vmx", hz);
3726         } while (vmx_change_cpu_count != 0);
3727 #endif /* __NetBSD__ */
3728
3729         for (i = 0; i < MAXCPUS; i++) {
3730                 if (vmxoncpu[i].pa != 0)
3731                         vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3732         }
3733
3734         vmx_fini_asid();
3735 }
3736
3737 static void
3738 vmx_capability(struct nvmm_capability *cap)
3739 {
3740         cap->arch.mach_conf_support = 0;
3741         cap->arch.vcpu_conf_support =
3742             NVMM_CAP_ARCH_VCPU_CONF_CPUID |
3743             NVMM_CAP_ARCH_VCPU_CONF_TPR;
3744         cap->arch.xcr0_mask = vmx_xcr0_mask;
3745         cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3746         cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3747 }
3748
3749 const struct nvmm_impl nvmm_x86_vmx = {
3750         .name = "x86-vmx",
3751         .ident = vmx_ident,
3752         .init = vmx_init,
3753         .fini = vmx_fini,
3754         .capability = vmx_capability,
3755         .mach_conf_max = NVMM_X86_MACH_NCONF,
3756         .mach_conf_sizes = NULL,
3757         .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
3758         .vcpu_conf_sizes = vmx_vcpu_conf_sizes,
3759         .state_size = sizeof(struct nvmm_x64_state),
3760         .machine_create = vmx_machine_create,
3761         .machine_destroy = vmx_machine_destroy,
3762         .machine_configure = vmx_machine_configure,
3763         .vcpu_create = vmx_vcpu_create,
3764         .vcpu_destroy = vmx_vcpu_destroy,
3765         .vcpu_configure = vmx_vcpu_configure,
3766         .vcpu_setstate = vmx_vcpu_setstate,
3767         .vcpu_getstate = vmx_vcpu_getstate,
3768         .vcpu_inject = vmx_vcpu_inject,
3769         .vcpu_run = vmx_vcpu_run
3770 };