drm/i915: Update to Linux 4.7.10
[dragonfly.git] / sys / dev / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33
34 #include <linux/bitmap.h>
35
36 #include <sys/mplock2.h>
37
38 /**
39  * DOC: Global GTT views
40  *
41  * Background and previous state
42  *
43  * Historically objects could exists (be bound) in global GTT space only as
44  * singular instances with a view representing all of the object's backing pages
45  * in a linear fashion. This view will be called a normal view.
46  *
47  * To support multiple views of the same object, where the number of mapped
48  * pages is not equal to the backing store, or where the layout of the pages
49  * is not linear, concept of a GGTT view was added.
50  *
51  * One example of an alternative view is a stereo display driven by a single
52  * image. In this case we would have a framebuffer looking like this
53  * (2x2 pages):
54  *
55  *    12
56  *    34
57  *
58  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
59  * rendering. In contrast, fed to the display engine would be an alternative
60  * view which could look something like this:
61  *
62  *   1212
63  *   3434
64  *
65  * In this example both the size and layout of pages in the alternative view is
66  * different from the normal view.
67  *
68  * Implementation and usage
69  *
70  * GGTT views are implemented using VMAs and are distinguished via enum
71  * i915_ggtt_view_type and struct i915_ggtt_view.
72  *
73  * A new flavour of core GEM functions which work with GGTT bound objects were
74  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
75  * renaming  in large amounts of code. They take the struct i915_ggtt_view
76  * parameter encapsulating all metadata required to implement a view.
77  *
78  * As a helper for callers which are only interested in the normal view,
79  * globally const i915_ggtt_view_normal singleton instance exists. All old core
80  * GEM API functions, the ones not taking the view parameter, are operating on,
81  * or with the normal GGTT view.
82  *
83  * Code wanting to add or use a new GGTT view needs to:
84  *
85  * 1. Add a new enum with a suitable name.
86  * 2. Extend the metadata in the i915_ggtt_view structure if required.
87  * 3. Add support to i915_get_vma_pages().
88  *
89  * New views are required to build a scatter-gather table from within the
90  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
91  * exists for the lifetime of an VMA.
92  *
93  * Core API is designed to have copy semantics which means that passed in
94  * struct i915_ggtt_view does not need to be persistent (left around after
95  * calling the core API functions).
96  *
97  */
98
99 static int
100 i915_get_ggtt_vma_pages(struct i915_vma *vma);
101
102 const struct i915_ggtt_view i915_ggtt_view_normal = {
103         .type = I915_GGTT_VIEW_NORMAL,
104 };
105 const struct i915_ggtt_view i915_ggtt_view_rotated = {
106         .type = I915_GGTT_VIEW_ROTATED,
107 };
108
109 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
110 {
111         bool has_aliasing_ppgtt;
112         bool has_full_ppgtt;
113         bool has_full_48bit_ppgtt;
114
115         has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
116         has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
117         has_full_48bit_ppgtt = IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9;
118
119         if (intel_vgpu_active(dev))
120                 has_full_ppgtt = false; /* emulation is too hard */
121
122         /*
123          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
124          * execlists, the sole mechanism available to submit work.
125          */
126         if (INTEL_INFO(dev)->gen < 9 &&
127             (enable_ppgtt == 0 || !has_aliasing_ppgtt))
128                 return 0;
129
130         if (enable_ppgtt == 1)
131                 return 1;
132
133         if (enable_ppgtt == 2 && has_full_ppgtt)
134                 return 2;
135
136         if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
137                 return 3;
138
139 #ifdef CONFIG_INTEL_IOMMU
140         /* Disable ppgtt on SNB if VT-d is on. */
141         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
142                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
143                 return 0;
144         }
145 #endif
146
147         /* Early VLV doesn't have this */
148         if (IS_VALLEYVIEW(dev) && dev->pdev->revision < 0xb) {
149                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
150                 return 0;
151         }
152
153         if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
154                 return has_full_48bit_ppgtt ? 3 : 2;
155         else
156                 return has_aliasing_ppgtt ? 1 : 0;
157 }
158
159 static int ppgtt_bind_vma(struct i915_vma *vma,
160                           enum i915_cache_level cache_level,
161                           u32 unused)
162 {
163         u32 pte_flags = 0;
164
165         /* Currently applicable only to VLV */
166         if (vma->obj->gt_ro)
167                 pte_flags |= PTE_READ_ONLY;
168
169         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
170                                 cache_level, pte_flags);
171
172         return 0;
173 }
174
175 static void ppgtt_unbind_vma(struct i915_vma *vma)
176 {
177         vma->vm->clear_range(vma->vm,
178                              vma->node.start,
179                              vma->obj->base.size,
180                              true);
181 }
182
183 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
184                                   enum i915_cache_level level,
185                                   bool valid)
186 {
187         gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
188         pte |= addr;
189
190         switch (level) {
191         case I915_CACHE_NONE:
192                 pte |= PPAT_UNCACHED_INDEX;
193                 break;
194         case I915_CACHE_WT:
195                 pte |= PPAT_DISPLAY_ELLC_INDEX;
196                 break;
197         default:
198                 pte |= PPAT_CACHED_INDEX;
199                 break;
200         }
201
202         return pte;
203 }
204
205 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
206                                   const enum i915_cache_level level)
207 {
208         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
209         pde |= addr;
210         if (level != I915_CACHE_NONE)
211                 pde |= PPAT_CACHED_PDE_INDEX;
212         else
213                 pde |= PPAT_UNCACHED_INDEX;
214         return pde;
215 }
216
217 #define gen8_pdpe_encode gen8_pde_encode
218 #define gen8_pml4e_encode gen8_pde_encode
219
220 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
221                                  enum i915_cache_level level,
222                                  bool valid, u32 unused)
223 {
224         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
225         pte |= GEN6_PTE_ADDR_ENCODE(addr);
226
227         switch (level) {
228         case I915_CACHE_L3_LLC:
229         case I915_CACHE_LLC:
230                 pte |= GEN6_PTE_CACHE_LLC;
231                 break;
232         case I915_CACHE_NONE:
233                 pte |= GEN6_PTE_UNCACHED;
234                 break;
235         default:
236                 MISSING_CASE(level);
237         }
238
239         return pte;
240 }
241
242 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
243                                  enum i915_cache_level level,
244                                  bool valid, u32 unused)
245 {
246         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
247         pte |= GEN6_PTE_ADDR_ENCODE(addr);
248
249         switch (level) {
250         case I915_CACHE_L3_LLC:
251                 pte |= GEN7_PTE_CACHE_L3_LLC;
252                 break;
253         case I915_CACHE_LLC:
254                 pte |= GEN6_PTE_CACHE_LLC;
255                 break;
256         case I915_CACHE_NONE:
257                 pte |= GEN6_PTE_UNCACHED;
258                 break;
259         default:
260                 MISSING_CASE(level);
261         }
262
263         return pte;
264 }
265
266 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
267                                  enum i915_cache_level level,
268                                  bool valid, u32 flags)
269 {
270         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
271         pte |= GEN6_PTE_ADDR_ENCODE(addr);
272
273         if (!(flags & PTE_READ_ONLY))
274                 pte |= BYT_PTE_WRITEABLE;
275
276         if (level != I915_CACHE_NONE)
277                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
278
279         return pte;
280 }
281
282 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
283                                  enum i915_cache_level level,
284                                  bool valid, u32 unused)
285 {
286         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
287         pte |= HSW_PTE_ADDR_ENCODE(addr);
288
289         if (level != I915_CACHE_NONE)
290                 pte |= HSW_WB_LLC_AGE3;
291
292         return pte;
293 }
294
295 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
296                                   enum i915_cache_level level,
297                                   bool valid, u32 unused)
298 {
299         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
300         pte |= HSW_PTE_ADDR_ENCODE(addr);
301
302         switch (level) {
303         case I915_CACHE_NONE:
304                 break;
305         case I915_CACHE_WT:
306                 pte |= HSW_WT_ELLC_LLC_AGE3;
307                 break;
308         default:
309                 pte |= HSW_WB_ELLC_LLC_AGE3;
310                 break;
311         }
312
313         return pte;
314 }
315
316 static int __setup_page_dma(struct drm_device *dev,
317                             struct i915_page_dma *p, gfp_t flags)
318 {
319         struct device *device = &dev->pdev->dev;
320
321         p->page = alloc_page(flags);
322         if (!p->page)
323                 return -ENOMEM;
324
325         p->daddr = dma_map_page(device,
326                                 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
327
328         if (dma_mapping_error(device, p->daddr)) {
329                 __free_page(p->page);
330                 return -EINVAL;
331         }
332
333         return 0;
334 }
335
336 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
337 {
338         return __setup_page_dma(dev, p, GFP_KERNEL);
339 }
340
341 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
342 {
343         if (WARN_ON(!p->page))
344                 return;
345
346         dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
347         __free_page(p->page);
348         memset(p, 0, sizeof(*p));
349 }
350
351 static void *kmap_page_dma(struct i915_page_dma *p)
352 {
353         return kmap_atomic(p->page);
354 }
355
356 /* We use the flushing unmap only with ppgtt structures:
357  * page directories, page tables and scratch pages.
358  */
359 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
360 {
361         /* There are only few exceptions for gen >=6. chv and bxt.
362          * And we are not sure about the latter so play safe for now.
363          */
364         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
365                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
366
367         kunmap_atomic(vaddr);
368 }
369
370 #define kmap_px(px) kmap_page_dma(px_base(px))
371 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
372
373 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
374 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
375 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
376 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
377
378 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
379                           const uint64_t val)
380 {
381         int i;
382         uint64_t * const vaddr = kmap_page_dma(p);
383
384         for (i = 0; i < 512; i++)
385                 vaddr[i] = val;
386
387         kunmap_page_dma(dev, vaddr);
388 }
389
390 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
391                              const uint32_t val32)
392 {
393         uint64_t v = val32;
394
395         v = v << 32 | val32;
396
397         fill_page_dma(dev, p, v);
398 }
399
400 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
401 {
402         struct i915_page_scratch *sp;
403         int ret;
404
405         sp = kzalloc(sizeof(*sp), GFP_KERNEL);
406         if (sp == NULL)
407                 return ERR_PTR(-ENOMEM);
408
409         ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
410         if (ret) {
411                 kfree(sp);
412                 return ERR_PTR(ret);
413         }
414
415         set_pages_uc(px_page(sp), 1);
416
417         return sp;
418 }
419
420 static void free_scratch_page(struct drm_device *dev,
421                               struct i915_page_scratch *sp)
422 {
423         set_pages_wb(px_page(sp), 1);
424
425         cleanup_px(dev, sp);
426         kfree(sp);
427 }
428
429 static struct i915_page_table *alloc_pt(struct drm_device *dev)
430 {
431         struct i915_page_table *pt;
432         const size_t count = INTEL_INFO(dev)->gen >= 8 ?
433                 GEN8_PTES : GEN6_PTES;
434         int ret = -ENOMEM;
435
436         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
437         if (!pt)
438                 return ERR_PTR(-ENOMEM);
439
440         pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
441                                 GFP_KERNEL);
442
443         if (!pt->used_ptes)
444                 goto fail_bitmap;
445
446         ret = setup_px(dev, pt);
447         if (ret)
448                 goto fail_page_m;
449
450         return pt;
451
452 fail_page_m:
453         kfree(pt->used_ptes);
454 fail_bitmap:
455         kfree(pt);
456
457         return ERR_PTR(ret);
458 }
459
460 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
461 {
462         cleanup_px(dev, pt);
463         kfree(pt->used_ptes);
464         kfree(pt);
465 }
466
467 static void gen8_initialize_pt(struct i915_address_space *vm,
468                                struct i915_page_table *pt)
469 {
470         gen8_pte_t scratch_pte;
471
472         scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
473                                       I915_CACHE_LLC, true);
474
475         fill_px(vm->dev, pt, scratch_pte);
476 }
477
478 static void gen6_initialize_pt(struct i915_address_space *vm,
479                                struct i915_page_table *pt)
480 {
481         gen6_pte_t scratch_pte;
482
483         WARN_ON(px_dma(vm->scratch_page) == 0);
484
485         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
486                                      I915_CACHE_LLC, true, 0);
487
488         fill32_px(vm->dev, pt, scratch_pte);
489 }
490
491 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
492 {
493         struct i915_page_directory *pd;
494         int ret = -ENOMEM;
495
496         pd = kzalloc(sizeof(*pd), GFP_KERNEL);
497         if (!pd)
498                 return ERR_PTR(-ENOMEM);
499
500         pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
501                                 sizeof(*pd->used_pdes), GFP_KERNEL);
502         if (!pd->used_pdes)
503                 goto fail_bitmap;
504
505         ret = setup_px(dev, pd);
506         if (ret)
507                 goto fail_page_m;
508
509         return pd;
510
511 fail_page_m:
512         kfree(pd->used_pdes);
513 fail_bitmap:
514         kfree(pd);
515
516         return ERR_PTR(ret);
517 }
518
519 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
520 {
521         if (px_page(pd)) {
522                 cleanup_px(dev, pd);
523                 kfree(pd->used_pdes);
524                 kfree(pd);
525         }
526 }
527
528 static void gen8_initialize_pd(struct i915_address_space *vm,
529                                struct i915_page_directory *pd)
530 {
531         gen8_pde_t scratch_pde;
532
533         scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
534
535         fill_px(vm->dev, pd, scratch_pde);
536 }
537
538 static int __pdp_init(struct drm_device *dev,
539                       struct i915_page_directory_pointer *pdp)
540 {
541         size_t pdpes = I915_PDPES_PER_PDP(dev);
542
543         pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
544                                   sizeof(unsigned long),
545                                   GFP_KERNEL);
546         if (!pdp->used_pdpes)
547                 return -ENOMEM;
548
549         pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
550                                       GFP_KERNEL);
551         if (!pdp->page_directory) {
552                 kfree(pdp->used_pdpes);
553                 /* the PDP might be the statically allocated top level. Keep it
554                  * as clean as possible */
555                 pdp->used_pdpes = NULL;
556                 return -ENOMEM;
557         }
558
559         return 0;
560 }
561
562 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
563 {
564         kfree(pdp->used_pdpes);
565         kfree(pdp->page_directory);
566         pdp->page_directory = NULL;
567 }
568
569 static struct
570 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
571 {
572         struct i915_page_directory_pointer *pdp;
573         int ret = -ENOMEM;
574
575         WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
576
577         pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
578         if (!pdp)
579                 return ERR_PTR(-ENOMEM);
580
581         ret = __pdp_init(dev, pdp);
582         if (ret)
583                 goto fail_bitmap;
584
585         ret = setup_px(dev, pdp);
586         if (ret)
587                 goto fail_page_m;
588
589         return pdp;
590
591 fail_page_m:
592         __pdp_fini(pdp);
593 fail_bitmap:
594         kfree(pdp);
595
596         return ERR_PTR(ret);
597 }
598
599 static void free_pdp(struct drm_device *dev,
600                      struct i915_page_directory_pointer *pdp)
601 {
602         __pdp_fini(pdp);
603         if (USES_FULL_48BIT_PPGTT(dev)) {
604                 cleanup_px(dev, pdp);
605                 kfree(pdp);
606         }
607 }
608
609 static void gen8_initialize_pdp(struct i915_address_space *vm,
610                                 struct i915_page_directory_pointer *pdp)
611 {
612         gen8_ppgtt_pdpe_t scratch_pdpe;
613
614         scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
615
616         fill_px(vm->dev, pdp, scratch_pdpe);
617 }
618
619 static void gen8_initialize_pml4(struct i915_address_space *vm,
620                                  struct i915_pml4 *pml4)
621 {
622         gen8_ppgtt_pml4e_t scratch_pml4e;
623
624         scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
625                                           I915_CACHE_LLC);
626
627         fill_px(vm->dev, pml4, scratch_pml4e);
628 }
629
630 static void
631 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
632                           struct i915_page_directory_pointer *pdp,
633                           struct i915_page_directory *pd,
634                           int index)
635 {
636         gen8_ppgtt_pdpe_t *page_directorypo;
637
638         if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
639                 return;
640
641         page_directorypo = kmap_px(pdp);
642         page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
643         kunmap_px(ppgtt, page_directorypo);
644 }
645
646 static void
647 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
648                                   struct i915_pml4 *pml4,
649                                   struct i915_page_directory_pointer *pdp,
650                                   int index)
651 {
652         gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
653
654         WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
655         pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
656         kunmap_px(ppgtt, pagemap);
657 }
658
659 /* Broadwell Page Directory Pointer Descriptors */
660 static int gen8_write_pdp(struct drm_i915_gem_request *req,
661                           unsigned entry,
662                           dma_addr_t addr)
663 {
664         struct intel_engine_cs *engine = req->engine;
665         int ret;
666
667         BUG_ON(entry >= 4);
668
669         ret = intel_ring_begin(req, 6);
670         if (ret)
671                 return ret;
672
673         intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
674         intel_ring_emit_reg(engine, GEN8_RING_PDP_UDW(engine, entry));
675         intel_ring_emit(engine, upper_32_bits(addr));
676         intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
677         intel_ring_emit_reg(engine, GEN8_RING_PDP_LDW(engine, entry));
678         intel_ring_emit(engine, lower_32_bits(addr));
679         intel_ring_advance(engine);
680
681         return 0;
682 }
683
684 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
685                                  struct drm_i915_gem_request *req)
686 {
687         int i, ret;
688
689         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
690                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
691
692                 ret = gen8_write_pdp(req, i, pd_daddr);
693                 if (ret)
694                         return ret;
695         }
696
697         return 0;
698 }
699
700 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
701                               struct drm_i915_gem_request *req)
702 {
703         return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
704 }
705
706 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
707                                        struct i915_page_directory_pointer *pdp,
708                                        uint64_t start,
709                                        uint64_t length,
710                                        gen8_pte_t scratch_pte)
711 {
712         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
713         gen8_pte_t *pt_vaddr;
714         unsigned pdpe = gen8_pdpe_index(start);
715         unsigned pde = gen8_pde_index(start);
716         unsigned pte = gen8_pte_index(start);
717         unsigned num_entries = length >> PAGE_SHIFT;
718         unsigned last_pte, i;
719
720         if (WARN_ON(!pdp))
721                 return;
722
723         while (num_entries) {
724                 struct i915_page_directory *pd;
725                 struct i915_page_table *pt;
726
727                 if (WARN_ON(!pdp->page_directory[pdpe]))
728                         break;
729
730                 pd = pdp->page_directory[pdpe];
731
732                 if (WARN_ON(!pd->page_table[pde]))
733                         break;
734
735                 pt = pd->page_table[pde];
736
737                 if (WARN_ON(!px_page(pt)))
738                         break;
739
740                 last_pte = pte + num_entries;
741                 if (last_pte > GEN8_PTES)
742                         last_pte = GEN8_PTES;
743
744                 pt_vaddr = kmap_px(pt);
745
746                 for (i = pte; i < last_pte; i++) {
747                         pt_vaddr[i] = scratch_pte;
748                         num_entries--;
749                 }
750
751                 kunmap_px(ppgtt, pt_vaddr);
752
753                 pte = 0;
754                 if (++pde == I915_PDES) {
755                         if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
756                                 break;
757                         pde = 0;
758                 }
759         }
760 }
761
762 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
763                                    uint64_t start,
764                                    uint64_t length,
765                                    bool use_scratch)
766 {
767         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
768         gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
769                                                  I915_CACHE_LLC, use_scratch);
770
771         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
772                 gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
773                                            scratch_pte);
774         } else {
775                 uint64_t pml4e;
776                 struct i915_page_directory_pointer *pdp;
777
778                 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
779                         gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
780                                                    scratch_pte);
781                 }
782         }
783 }
784
785 static void
786 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
787                               struct i915_page_directory_pointer *pdp,
788                               struct sg_page_iter *sg_iter,
789                               uint64_t start,
790                               enum i915_cache_level cache_level)
791 {
792         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
793         gen8_pte_t *pt_vaddr;
794         unsigned pdpe = gen8_pdpe_index(start);
795         unsigned pde = gen8_pde_index(start);
796         unsigned pte = gen8_pte_index(start);
797
798         pt_vaddr = NULL;
799
800         while (__sg_page_iter_next(sg_iter)) {
801                 if (pt_vaddr == NULL) {
802                         struct i915_page_directory *pd = pdp->page_directory[pdpe];
803                         struct i915_page_table *pt = pd->page_table[pde];
804                         pt_vaddr = kmap_px(pt);
805                 }
806
807                 pt_vaddr[pte] =
808                         gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
809                                         cache_level, true);
810                 if (++pte == GEN8_PTES) {
811                         kunmap_px(ppgtt, pt_vaddr);
812                         pt_vaddr = NULL;
813                         if (++pde == I915_PDES) {
814                                 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
815                                         break;
816                                 pde = 0;
817                         }
818                         pte = 0;
819                 }
820         }
821
822         if (pt_vaddr)
823                 kunmap_px(ppgtt, pt_vaddr);
824 }
825
826 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
827                                       struct sg_table *pages,
828                                       uint64_t start,
829                                       enum i915_cache_level cache_level,
830                                       u32 unused)
831 {
832         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
833         struct sg_page_iter sg_iter;
834
835         __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
836
837         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
838                 gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
839                                               cache_level);
840         } else {
841                 struct i915_page_directory_pointer *pdp;
842                 uint64_t pml4e;
843                 uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
844
845                 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
846                         gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
847                                                       start, cache_level);
848                 }
849         }
850 }
851
852 static void gen8_free_page_tables(struct drm_device *dev,
853                                   struct i915_page_directory *pd)
854 {
855         int i;
856
857         if (!px_page(pd))
858                 return;
859
860         for_each_set_bit(i, pd->used_pdes, I915_PDES) {
861                 if (WARN_ON(!pd->page_table[i]))
862                         continue;
863
864                 free_pt(dev, pd->page_table[i]);
865                 pd->page_table[i] = NULL;
866         }
867 }
868
869 static int gen8_init_scratch(struct i915_address_space *vm)
870 {
871         struct drm_device *dev = vm->dev;
872
873         vm->scratch_page = alloc_scratch_page(dev);
874         if (IS_ERR(vm->scratch_page))
875                 return PTR_ERR(vm->scratch_page);
876
877         vm->scratch_pt = alloc_pt(dev);
878         if (IS_ERR(vm->scratch_pt)) {
879                 free_scratch_page(dev, vm->scratch_page);
880                 return PTR_ERR(vm->scratch_pt);
881         }
882
883         vm->scratch_pd = alloc_pd(dev);
884         if (IS_ERR(vm->scratch_pd)) {
885                 free_pt(dev, vm->scratch_pt);
886                 free_scratch_page(dev, vm->scratch_page);
887                 return PTR_ERR(vm->scratch_pd);
888         }
889
890         if (USES_FULL_48BIT_PPGTT(dev)) {
891                 vm->scratch_pdp = alloc_pdp(dev);
892                 if (IS_ERR(vm->scratch_pdp)) {
893                         free_pd(dev, vm->scratch_pd);
894                         free_pt(dev, vm->scratch_pt);
895                         free_scratch_page(dev, vm->scratch_page);
896                         return PTR_ERR(vm->scratch_pdp);
897                 }
898         }
899
900         gen8_initialize_pt(vm, vm->scratch_pt);
901         gen8_initialize_pd(vm, vm->scratch_pd);
902         if (USES_FULL_48BIT_PPGTT(dev))
903                 gen8_initialize_pdp(vm, vm->scratch_pdp);
904
905         return 0;
906 }
907
908 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
909 {
910         enum vgt_g2v_type msg;
911         struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
912         int i;
913
914         if (USES_FULL_48BIT_PPGTT(dev_priv)) {
915                 u64 daddr = px_dma(&ppgtt->pml4);
916
917                 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
918                 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
919
920                 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
921                                 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
922         } else {
923                 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
924                         u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
925
926                         I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
927                         I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
928                 }
929
930                 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
931                                 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
932         }
933
934         I915_WRITE(vgtif_reg(g2v_notify), msg);
935
936         return 0;
937 }
938
939 static void gen8_free_scratch(struct i915_address_space *vm)
940 {
941         struct drm_device *dev = vm->dev;
942
943         if (USES_FULL_48BIT_PPGTT(dev))
944                 free_pdp(dev, vm->scratch_pdp);
945         free_pd(dev, vm->scratch_pd);
946         free_pt(dev, vm->scratch_pt);
947         free_scratch_page(dev, vm->scratch_page);
948 }
949
950 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
951                                     struct i915_page_directory_pointer *pdp)
952 {
953         int i;
954
955         for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
956                 if (WARN_ON(!pdp->page_directory[i]))
957                         continue;
958
959                 gen8_free_page_tables(dev, pdp->page_directory[i]);
960                 free_pd(dev, pdp->page_directory[i]);
961         }
962
963         free_pdp(dev, pdp);
964 }
965
966 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
967 {
968         int i;
969
970         for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
971                 if (WARN_ON(!ppgtt->pml4.pdps[i]))
972                         continue;
973
974                 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
975         }
976
977         cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
978 }
979
980 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
981 {
982         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
983
984         if (intel_vgpu_active(vm->dev))
985                 gen8_ppgtt_notify_vgt(ppgtt, false);
986
987         if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
988                 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
989         else
990                 gen8_ppgtt_cleanup_4lvl(ppgtt);
991
992         gen8_free_scratch(vm);
993 }
994
995 /**
996  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
997  * @vm: Master vm structure.
998  * @pd: Page directory for this address range.
999  * @start:      Starting virtual address to begin allocations.
1000  * @length:     Size of the allocations.
1001  * @new_pts:    Bitmap set by function with new allocations. Likely used by the
1002  *              caller to free on error.
1003  *
1004  * Allocate the required number of page tables. Extremely similar to
1005  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1006  * the page directory boundary (instead of the page directory pointer). That
1007  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1008  * possible, and likely that the caller will need to use multiple calls of this
1009  * function to achieve the appropriate allocation.
1010  *
1011  * Return: 0 if success; negative error code otherwise.
1012  */
1013 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1014                                      struct i915_page_directory *pd,
1015                                      uint64_t start,
1016                                      uint64_t length,
1017                                      unsigned long *new_pts)
1018 {
1019         struct drm_device *dev = vm->dev;
1020         struct i915_page_table *pt;
1021         uint32_t pde;
1022
1023         gen8_for_each_pde(pt, pd, start, length, pde) {
1024                 /* Don't reallocate page tables */
1025                 if (test_bit(pde, pd->used_pdes)) {
1026                         /* Scratch is never allocated this way */
1027                         WARN_ON(pt == vm->scratch_pt);
1028                         continue;
1029                 }
1030
1031                 pt = alloc_pt(dev);
1032                 if (IS_ERR(pt))
1033                         goto unwind_out;
1034
1035                 gen8_initialize_pt(vm, pt);
1036                 pd->page_table[pde] = pt;
1037                 __set_bit(pde, new_pts);
1038                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1039         }
1040
1041         return 0;
1042
1043 unwind_out:
1044         for_each_set_bit(pde, new_pts, I915_PDES)
1045                 free_pt(dev, pd->page_table[pde]);
1046
1047         return -ENOMEM;
1048 }
1049
1050 /**
1051  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1052  * @vm: Master vm structure.
1053  * @pdp:        Page directory pointer for this address range.
1054  * @start:      Starting virtual address to begin allocations.
1055  * @length:     Size of the allocations.
1056  * @new_pds:    Bitmap set by function with new allocations. Likely used by the
1057  *              caller to free on error.
1058  *
1059  * Allocate the required number of page directories starting at the pde index of
1060  * @start, and ending at the pde index @start + @length. This function will skip
1061  * over already allocated page directories within the range, and only allocate
1062  * new ones, setting the appropriate pointer within the pdp as well as the
1063  * correct position in the bitmap @new_pds.
1064  *
1065  * The function will only allocate the pages within the range for a give page
1066  * directory pointer. In other words, if @start + @length straddles a virtually
1067  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1068  * required by the caller, This is not currently possible, and the BUG in the
1069  * code will prevent it.
1070  *
1071  * Return: 0 if success; negative error code otherwise.
1072  */
1073 static int
1074 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1075                                   struct i915_page_directory_pointer *pdp,
1076                                   uint64_t start,
1077                                   uint64_t length,
1078                                   unsigned long *new_pds)
1079 {
1080         struct drm_device *dev = vm->dev;
1081         struct i915_page_directory *pd;
1082         uint32_t pdpe;
1083         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1084
1085         WARN_ON(!bitmap_empty(new_pds, pdpes));
1086
1087         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1088                 if (test_bit(pdpe, pdp->used_pdpes))
1089                         continue;
1090
1091                 pd = alloc_pd(dev);
1092                 if (IS_ERR(pd))
1093                         goto unwind_out;
1094
1095                 gen8_initialize_pd(vm, pd);
1096                 pdp->page_directory[pdpe] = pd;
1097                 __set_bit(pdpe, new_pds);
1098                 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1099         }
1100
1101         return 0;
1102
1103 unwind_out:
1104         for_each_set_bit(pdpe, new_pds, pdpes)
1105                 free_pd(dev, pdp->page_directory[pdpe]);
1106
1107         return -ENOMEM;
1108 }
1109
1110 /**
1111  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1112  * @vm: Master vm structure.
1113  * @pml4:       Page map level 4 for this address range.
1114  * @start:      Starting virtual address to begin allocations.
1115  * @length:     Size of the allocations.
1116  * @new_pdps:   Bitmap set by function with new allocations. Likely used by the
1117  *              caller to free on error.
1118  *
1119  * Allocate the required number of page directory pointers. Extremely similar to
1120  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1121  * The main difference is here we are limited by the pml4 boundary (instead of
1122  * the page directory pointer).
1123  *
1124  * Return: 0 if success; negative error code otherwise.
1125  */
1126 static int
1127 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1128                                   struct i915_pml4 *pml4,
1129                                   uint64_t start,
1130                                   uint64_t length,
1131                                   unsigned long *new_pdps)
1132 {
1133         struct drm_device *dev = vm->dev;
1134         struct i915_page_directory_pointer *pdp;
1135         uint32_t pml4e;
1136
1137         WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1138
1139         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1140                 if (!test_bit(pml4e, pml4->used_pml4es)) {
1141                         pdp = alloc_pdp(dev);
1142                         if (IS_ERR(pdp))
1143                                 goto unwind_out;
1144
1145                         gen8_initialize_pdp(vm, pdp);
1146                         pml4->pdps[pml4e] = pdp;
1147                         __set_bit(pml4e, new_pdps);
1148                         trace_i915_page_directory_pointer_entry_alloc(vm,
1149                                                                       pml4e,
1150                                                                       start,
1151                                                                       GEN8_PML4E_SHIFT);
1152                 }
1153         }
1154
1155         return 0;
1156
1157 unwind_out:
1158         for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1159                 free_pdp(dev, pml4->pdps[pml4e]);
1160
1161         return -ENOMEM;
1162 }
1163
1164 static void
1165 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1166 {
1167         kfree(new_pts);
1168         kfree(new_pds);
1169 }
1170
1171 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1172  * of these are based on the number of PDPEs in the system.
1173  */
1174 static
1175 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1176                                          unsigned long **new_pts,
1177                                          uint32_t pdpes)
1178 {
1179         unsigned long *pds;
1180         unsigned long *pts;
1181
1182         pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1183         if (!pds)
1184                 return -ENOMEM;
1185
1186         pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1187                       GFP_TEMPORARY);
1188         if (!pts)
1189                 goto err_out;
1190
1191         *new_pds = pds;
1192         *new_pts = pts;
1193
1194         return 0;
1195
1196 err_out:
1197         free_gen8_temp_bitmaps(pds, pts);
1198         return -ENOMEM;
1199 }
1200
1201 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1202  * the page table structures, we mark them dirty so that
1203  * context switching/execlist queuing code takes extra steps
1204  * to ensure that tlbs are flushed.
1205  */
1206 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1207 {
1208         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1209 }
1210
1211 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1212                                     struct i915_page_directory_pointer *pdp,
1213                                     uint64_t start,
1214                                     uint64_t length)
1215 {
1216         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1217         unsigned long *new_page_dirs, *new_page_tables;
1218         struct drm_device *dev = vm->dev;
1219         struct i915_page_directory *pd;
1220         const uint64_t orig_start = start;
1221         const uint64_t orig_length = length;
1222         uint32_t pdpe;
1223         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1224         int ret;
1225
1226         /* Wrap is never okay since we can only represent 48b, and we don't
1227          * actually use the other side of the canonical address space.
1228          */
1229         if (WARN_ON(start + length < start))
1230                 return -ENODEV;
1231
1232         if (WARN_ON(start + length > vm->total))
1233                 return -ENODEV;
1234
1235         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1236         if (ret)
1237                 return ret;
1238
1239         /* Do the allocations first so we can easily bail out */
1240         ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1241                                                 new_page_dirs);
1242         if (ret) {
1243                 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1244                 return ret;
1245         }
1246
1247         /* For every page directory referenced, allocate page tables */
1248         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1249                 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1250                                                 new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1251                 if (ret)
1252                         goto err_out;
1253         }
1254
1255         start = orig_start;
1256         length = orig_length;
1257
1258         /* Allocations have completed successfully, so set the bitmaps, and do
1259          * the mappings. */
1260         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1261                 gen8_pde_t *const page_directory = kmap_px(pd);
1262                 struct i915_page_table *pt;
1263                 uint64_t pd_len = length;
1264                 uint64_t pd_start = start;
1265                 uint32_t pde;
1266
1267                 /* Every pd should be allocated, we just did that above. */
1268                 WARN_ON(!pd);
1269
1270                 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1271                         /* Same reasoning as pd */
1272                         WARN_ON(!pt);
1273                         WARN_ON(!pd_len);
1274                         WARN_ON(!gen8_pte_count(pd_start, pd_len));
1275
1276                         /* Set our used ptes within the page table */
1277                         bitmap_set(pt->used_ptes,
1278                                    gen8_pte_index(pd_start),
1279                                    gen8_pte_count(pd_start, pd_len));
1280
1281                         /* Our pde is now pointing to the pagetable, pt */
1282                         __set_bit(pde, pd->used_pdes);
1283
1284                         /* Map the PDE to the page table */
1285                         page_directory[pde] = gen8_pde_encode(px_dma(pt),
1286                                                               I915_CACHE_LLC);
1287                         trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1288                                                         gen8_pte_index(start),
1289                                                         gen8_pte_count(start, length),
1290                                                         GEN8_PTES);
1291
1292                         /* NB: We haven't yet mapped ptes to pages. At this
1293                          * point we're still relying on insert_entries() */
1294                 }
1295
1296                 kunmap_px(ppgtt, page_directory);
1297                 __set_bit(pdpe, pdp->used_pdpes);
1298                 gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1299         }
1300
1301         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1302         mark_tlbs_dirty(ppgtt);
1303         return 0;
1304
1305 err_out:
1306         while (pdpe--) {
1307                 unsigned long temp;
1308
1309                 for_each_set_bit(temp, new_page_tables + pdpe *
1310                                 BITS_TO_LONGS(I915_PDES), I915_PDES)
1311                         free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1312         }
1313
1314         for_each_set_bit(pdpe, new_page_dirs, pdpes)
1315                 free_pd(dev, pdp->page_directory[pdpe]);
1316
1317         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1318         mark_tlbs_dirty(ppgtt);
1319         return ret;
1320 }
1321
1322 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1323                                     struct i915_pml4 *pml4,
1324                                     uint64_t start,
1325                                     uint64_t length)
1326 {
1327         DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1328         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1329         struct i915_page_directory_pointer *pdp;
1330         uint64_t pml4e;
1331         int ret = 0;
1332
1333         /* Do the pml4 allocations first, so we don't need to track the newly
1334          * allocated tables below the pdp */
1335         bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1336
1337         /* The pagedirectory and pagetable allocations are done in the shared 3
1338          * and 4 level code. Just allocate the pdps.
1339          */
1340         ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1341                                                 new_pdps);
1342         if (ret)
1343                 return ret;
1344
1345         WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1346              "The allocation has spanned more than 512GB. "
1347              "It is highly likely this is incorrect.");
1348
1349         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1350                 WARN_ON(!pdp);
1351
1352                 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1353                 if (ret)
1354                         goto err_out;
1355
1356                 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1357         }
1358
1359         bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1360                   GEN8_PML4ES_PER_PML4);
1361
1362         return 0;
1363
1364 err_out:
1365         for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1366                 gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1367
1368         return ret;
1369 }
1370
1371 static int gen8_alloc_va_range(struct i915_address_space *vm,
1372                                uint64_t start, uint64_t length)
1373 {
1374         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1375
1376         if (USES_FULL_48BIT_PPGTT(vm->dev))
1377                 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1378         else
1379                 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1380 }
1381
1382 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1383                           uint64_t start, uint64_t length,
1384                           gen8_pte_t scratch_pte,
1385                           struct seq_file *m)
1386 {
1387         struct i915_page_directory *pd;
1388         uint32_t pdpe;
1389
1390         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1391                 struct i915_page_table *pt;
1392                 uint64_t pd_len = length;
1393                 uint64_t pd_start = start;
1394                 uint32_t pde;
1395
1396                 if (!test_bit(pdpe, pdp->used_pdpes))
1397                         continue;
1398
1399                 seq_printf(m, "\tPDPE #%d\n", pdpe);
1400                 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1401                         uint32_t  pte;
1402                         gen8_pte_t *pt_vaddr;
1403
1404                         if (!test_bit(pde, pd->used_pdes))
1405                                 continue;
1406
1407                         pt_vaddr = kmap_px(pt);
1408                         for (pte = 0; pte < GEN8_PTES; pte += 4) {
1409                                 uint64_t va =
1410                                         (pdpe << GEN8_PDPE_SHIFT) |
1411                                         (pde << GEN8_PDE_SHIFT) |
1412                                         (pte << GEN8_PTE_SHIFT);
1413                                 int i;
1414                                 bool found = false;
1415
1416                                 for (i = 0; i < 4; i++)
1417                                         if (pt_vaddr[pte + i] != scratch_pte)
1418                                                 found = true;
1419                                 if (!found)
1420                                         continue;
1421
1422                                 seq_printf(m, "\t\t0x%lx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1423                                 for (i = 0; i < 4; i++) {
1424                                         if (pt_vaddr[pte + i] != scratch_pte)
1425                                                 seq_printf(m, " %lx", pt_vaddr[pte + i]);
1426                                         else
1427                                                 seq_puts(m, "  SCRATCH ");
1428                                 }
1429                                 seq_puts(m, "\n");
1430                         }
1431                         /* don't use kunmap_px, it could trigger
1432                          * an unnecessary flush.
1433                          */
1434                         kunmap_atomic(pt_vaddr);
1435                 }
1436         }
1437 }
1438
1439 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1440 {
1441         struct i915_address_space *vm = &ppgtt->base;
1442         uint64_t start = ppgtt->base.start;
1443         uint64_t length = ppgtt->base.total;
1444         gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1445                                                  I915_CACHE_LLC, true);
1446
1447         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1448                 gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1449         } else {
1450                 uint64_t pml4e;
1451                 struct i915_pml4 *pml4 = &ppgtt->pml4;
1452                 struct i915_page_directory_pointer *pdp;
1453
1454                 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1455                         if (!test_bit(pml4e, pml4->used_pml4es))
1456                                 continue;
1457
1458                         seq_printf(m, "    PML4E #%lu\n", pml4e);
1459                         gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1460                 }
1461         }
1462 }
1463
1464 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1465 {
1466         unsigned long *new_page_dirs, *new_page_tables;
1467         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1468         int ret;
1469
1470         /* We allocate temp bitmap for page tables for no gain
1471          * but as this is for init only, lets keep the things simple
1472          */
1473         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1474         if (ret)
1475                 return ret;
1476
1477         /* Allocate for all pdps regardless of how the ppgtt
1478          * was defined.
1479          */
1480         ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1481                                                 0, 1ULL << 32,
1482                                                 new_page_dirs);
1483         if (!ret)
1484                 *ppgtt->pdp.used_pdpes = *new_page_dirs;
1485
1486         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1487
1488         return ret;
1489 }
1490
1491 /*
1492  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1493  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1494  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1495  * space.
1496  *
1497  */
1498 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1499 {
1500         int ret;
1501
1502         ret = gen8_init_scratch(&ppgtt->base);
1503         if (ret)
1504                 return ret;
1505
1506         ppgtt->base.start = 0;
1507         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1508         ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1509         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1510         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1511         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1512         ppgtt->base.bind_vma = ppgtt_bind_vma;
1513         ppgtt->debug_dump = gen8_dump_ppgtt;
1514
1515         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1516                 ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1517                 if (ret)
1518                         goto free_scratch;
1519
1520                 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1521
1522                 ppgtt->base.total = 1ULL << 48;
1523                 ppgtt->switch_mm = gen8_48b_mm_switch;
1524         } else {
1525                 ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1526                 if (ret)
1527                         goto free_scratch;
1528
1529                 ppgtt->base.total = 1ULL << 32;
1530                 ppgtt->switch_mm = gen8_legacy_mm_switch;
1531                 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1532                                                               0, 0,
1533                                                               GEN8_PML4E_SHIFT);
1534
1535                 if (intel_vgpu_active(ppgtt->base.dev)) {
1536                         ret = gen8_preallocate_top_level_pdps(ppgtt);
1537                         if (ret)
1538                                 goto free_scratch;
1539                 }
1540         }
1541
1542         if (intel_vgpu_active(ppgtt->base.dev))
1543                 gen8_ppgtt_notify_vgt(ppgtt, true);
1544
1545         return 0;
1546
1547 free_scratch:
1548         gen8_free_scratch(&ppgtt->base);
1549         return ret;
1550 }
1551
1552 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1553 {
1554         struct i915_address_space *vm = &ppgtt->base;
1555         struct i915_page_table *unused;
1556         gen6_pte_t scratch_pte;
1557         uint32_t pd_entry;
1558         uint32_t  pte, pde, temp;
1559         uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1560
1561         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1562                                      I915_CACHE_LLC, true, 0);
1563
1564         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1565                 u32 expected;
1566                 gen6_pte_t *pt_vaddr;
1567                 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1568                 pd_entry = readl(ppgtt->pd_addr + pde);
1569                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1570
1571                 if (pd_entry != expected)
1572                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1573                                    pde,
1574                                    pd_entry,
1575                                    expected);
1576                 seq_printf(m, "\tPDE: %x\n", pd_entry);
1577
1578                 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1579
1580                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1581                         unsigned long va =
1582                                 (pde * PAGE_SIZE * GEN6_PTES) +
1583                                 (pte * PAGE_SIZE);
1584                         int i;
1585                         bool found = false;
1586                         for (i = 0; i < 4; i++)
1587                                 if (pt_vaddr[pte + i] != scratch_pte)
1588                                         found = true;
1589                         if (!found)
1590                                 continue;
1591
1592                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1593                         for (i = 0; i < 4; i++) {
1594                                 if (pt_vaddr[pte + i] != scratch_pte)
1595                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
1596                                 else
1597                                         seq_puts(m, "  SCRATCH ");
1598                         }
1599                         seq_puts(m, "\n");
1600                 }
1601                 kunmap_px(ppgtt, pt_vaddr);
1602         }
1603 }
1604
1605 /* Write pde (index) from the page directory @pd to the page table @pt */
1606 static void gen6_write_pde(struct i915_page_directory *pd,
1607                             const int pde, struct i915_page_table *pt)
1608 {
1609         /* Caller needs to make sure the write completes if necessary */
1610         struct i915_hw_ppgtt *ppgtt =
1611                 container_of(pd, struct i915_hw_ppgtt, pd);
1612         u32 pd_entry;
1613
1614         pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1615         pd_entry |= GEN6_PDE_VALID;
1616
1617         writel(pd_entry, ppgtt->pd_addr + pde);
1618 }
1619
1620 /* Write all the page tables found in the ppgtt structure to incrementing page
1621  * directories. */
1622 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1623                                   struct i915_page_directory *pd,
1624                                   uint32_t start, uint32_t length)
1625 {
1626         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1627         struct i915_page_table *pt;
1628         uint32_t pde, temp;
1629
1630         gen6_for_each_pde(pt, pd, start, length, temp, pde)
1631                 gen6_write_pde(pd, pde, pt);
1632
1633         /* Make sure write is complete before other code can use this page
1634          * table. Also require for WC mapped PTEs */
1635         readl(ggtt->gsm);
1636 }
1637
1638 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1639 {
1640         BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1641
1642         return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1643 }
1644
1645 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1646                          struct drm_i915_gem_request *req)
1647 {
1648         struct intel_engine_cs *engine = req->engine;
1649         int ret;
1650
1651         /* NB: TLBs must be flushed and invalidated before a switch */
1652         ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1653         if (ret)
1654                 return ret;
1655
1656         ret = intel_ring_begin(req, 6);
1657         if (ret)
1658                 return ret;
1659
1660         intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1661         intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1662         intel_ring_emit(engine, PP_DIR_DCLV_2G);
1663         intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1664         intel_ring_emit(engine, get_pd_offset(ppgtt));
1665         intel_ring_emit(engine, MI_NOOP);
1666         intel_ring_advance(engine);
1667
1668         return 0;
1669 }
1670
1671 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1672                           struct drm_i915_gem_request *req)
1673 {
1674         struct intel_engine_cs *engine = req->engine;
1675         struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1676
1677         I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1678         I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1679         return 0;
1680 }
1681
1682 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1683                           struct drm_i915_gem_request *req)
1684 {
1685         struct intel_engine_cs *engine = req->engine;
1686         int ret;
1687
1688         /* NB: TLBs must be flushed and invalidated before a switch */
1689         ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1690         if (ret)
1691                 return ret;
1692
1693         ret = intel_ring_begin(req, 6);
1694         if (ret)
1695                 return ret;
1696
1697         intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(2));
1698         intel_ring_emit_reg(engine, RING_PP_DIR_DCLV(engine));
1699         intel_ring_emit(engine, PP_DIR_DCLV_2G);
1700         intel_ring_emit_reg(engine, RING_PP_DIR_BASE(engine));
1701         intel_ring_emit(engine, get_pd_offset(ppgtt));
1702         intel_ring_emit(engine, MI_NOOP);
1703         intel_ring_advance(engine);
1704
1705         /* XXX: RCS is the only one to auto invalidate the TLBs? */
1706         if (engine->id != RCS) {
1707                 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1708                 if (ret)
1709                         return ret;
1710         }
1711
1712         return 0;
1713 }
1714
1715 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1716                           struct drm_i915_gem_request *req)
1717 {
1718         struct intel_engine_cs *engine = req->engine;
1719         struct drm_device *dev = ppgtt->base.dev;
1720         struct drm_i915_private *dev_priv = dev->dev_private;
1721
1722
1723         I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1724         I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1725
1726         POSTING_READ(RING_PP_DIR_DCLV(engine));
1727
1728         return 0;
1729 }
1730
1731 static void gen8_ppgtt_enable(struct drm_device *dev)
1732 {
1733         struct drm_i915_private *dev_priv = dev->dev_private;
1734         struct intel_engine_cs *engine;
1735
1736         for_each_engine(engine, dev_priv) {
1737                 u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1738                 I915_WRITE(RING_MODE_GEN7(engine),
1739                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1740         }
1741 }
1742
1743 static void gen7_ppgtt_enable(struct drm_device *dev)
1744 {
1745         struct drm_i915_private *dev_priv = dev->dev_private;
1746         struct intel_engine_cs *engine;
1747         uint32_t ecochk, ecobits;
1748
1749         ecobits = I915_READ(GAC_ECO_BITS);
1750         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1751
1752         ecochk = I915_READ(GAM_ECOCHK);
1753         if (IS_HASWELL(dev)) {
1754                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1755         } else {
1756                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1757                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1758         }
1759         I915_WRITE(GAM_ECOCHK, ecochk);
1760
1761         for_each_engine(engine, dev_priv) {
1762                 /* GFX_MODE is per-ring on gen7+ */
1763                 I915_WRITE(RING_MODE_GEN7(engine),
1764                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1765         }
1766 }
1767
1768 static void gen6_ppgtt_enable(struct drm_device *dev)
1769 {
1770         struct drm_i915_private *dev_priv = dev->dev_private;
1771         uint32_t ecochk, gab_ctl, ecobits;
1772
1773         ecobits = I915_READ(GAC_ECO_BITS);
1774         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1775                    ECOBITS_PPGTT_CACHE64B);
1776
1777         gab_ctl = I915_READ(GAB_CTL);
1778         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1779
1780         ecochk = I915_READ(GAM_ECOCHK);
1781         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1782
1783         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1784 }
1785
1786 /* PPGTT support for Sandybdrige/Gen6 and later */
1787 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1788                                    uint64_t start,
1789                                    uint64_t length,
1790                                    bool use_scratch)
1791 {
1792         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1793         gen6_pte_t *pt_vaddr, scratch_pte;
1794         unsigned first_entry = start >> PAGE_SHIFT;
1795         unsigned num_entries = length >> PAGE_SHIFT;
1796         unsigned act_pt = first_entry / GEN6_PTES;
1797         unsigned first_pte = first_entry % GEN6_PTES;
1798         unsigned last_pte, i;
1799
1800         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1801                                      I915_CACHE_LLC, true, 0);
1802
1803         while (num_entries) {
1804                 last_pte = first_pte + num_entries;
1805                 if (last_pte > GEN6_PTES)
1806                         last_pte = GEN6_PTES;
1807
1808                 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1809
1810                 for (i = first_pte; i < last_pte; i++)
1811                         pt_vaddr[i] = scratch_pte;
1812
1813                 kunmap_px(ppgtt, pt_vaddr);
1814
1815                 num_entries -= last_pte - first_pte;
1816                 first_pte = 0;
1817                 act_pt++;
1818         }
1819 }
1820
1821 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1822                                       struct sg_table *pages,
1823                                       uint64_t start,
1824                                       enum i915_cache_level cache_level, u32 flags)
1825 {
1826         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1827         gen6_pte_t *pt_vaddr;
1828         unsigned first_entry = start >> PAGE_SHIFT;
1829         unsigned act_pt = first_entry / GEN6_PTES;
1830         unsigned act_pte = first_entry % GEN6_PTES;
1831         struct sg_page_iter sg_iter;
1832
1833         pt_vaddr = NULL;
1834         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1835                 if (pt_vaddr == NULL)
1836                         pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1837
1838                 pt_vaddr[act_pte] =
1839                         vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1840                                        cache_level, true, flags);
1841
1842                 if (++act_pte == GEN6_PTES) {
1843                         kunmap_px(ppgtt, pt_vaddr);
1844                         pt_vaddr = NULL;
1845                         act_pt++;
1846                         act_pte = 0;
1847                 }
1848         }
1849         if (pt_vaddr)
1850                 kunmap_px(ppgtt, pt_vaddr);
1851 }
1852
1853 static int gen6_alloc_va_range(struct i915_address_space *vm,
1854                                uint64_t start_in, uint64_t length_in)
1855 {
1856         DECLARE_BITMAP(new_page_tables, I915_PDES);
1857         struct drm_device *dev = vm->dev;
1858         struct drm_i915_private *dev_priv = to_i915(dev);
1859         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1860         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1861         struct i915_page_table *pt;
1862         uint32_t start, length, start_save, length_save;
1863         uint32_t pde, temp;
1864         int ret;
1865
1866         if (WARN_ON(start_in + length_in > ppgtt->base.total))
1867                 return -ENODEV;
1868
1869         start = start_save = start_in;
1870         length = length_save = length_in;
1871
1872         bitmap_zero(new_page_tables, I915_PDES);
1873
1874         /* The allocation is done in two stages so that we can bail out with
1875          * minimal amount of pain. The first stage finds new page tables that
1876          * need allocation. The second stage marks use ptes within the page
1877          * tables.
1878          */
1879         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1880                 if (pt != vm->scratch_pt) {
1881                         WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1882                         continue;
1883                 }
1884
1885                 /* We've already allocated a page table */
1886                 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1887
1888                 pt = alloc_pt(dev);
1889                 if (IS_ERR(pt)) {
1890                         ret = PTR_ERR(pt);
1891                         goto unwind_out;
1892                 }
1893
1894                 gen6_initialize_pt(vm, pt);
1895
1896                 ppgtt->pd.page_table[pde] = pt;
1897                 __set_bit(pde, new_page_tables);
1898                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1899         }
1900
1901         start = start_save;
1902         length = length_save;
1903
1904         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1905                 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1906
1907                 bitmap_zero(tmp_bitmap, GEN6_PTES);
1908                 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1909                            gen6_pte_count(start, length));
1910
1911                 if (__test_and_clear_bit(pde, new_page_tables))
1912                         gen6_write_pde(&ppgtt->pd, pde, pt);
1913
1914                 trace_i915_page_table_entry_map(vm, pde, pt,
1915                                          gen6_pte_index(start),
1916                                          gen6_pte_count(start, length),
1917                                          GEN6_PTES);
1918                 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1919                                 GEN6_PTES);
1920         }
1921
1922         WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1923
1924         /* Make sure write is complete before other code can use this page
1925          * table. Also require for WC mapped PTEs */
1926         readl(ggtt->gsm);
1927
1928         mark_tlbs_dirty(ppgtt);
1929         return 0;
1930
1931 unwind_out:
1932         for_each_set_bit(pde, new_page_tables, I915_PDES) {
1933                 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1934
1935                 ppgtt->pd.page_table[pde] = vm->scratch_pt;
1936                 free_pt(vm->dev, pt);
1937         }
1938
1939         mark_tlbs_dirty(ppgtt);
1940         return ret;
1941 }
1942
1943 static int gen6_init_scratch(struct i915_address_space *vm)
1944 {
1945         struct drm_device *dev = vm->dev;
1946
1947         vm->scratch_page = alloc_scratch_page(dev);
1948         if (IS_ERR(vm->scratch_page))
1949                 return PTR_ERR(vm->scratch_page);
1950
1951         vm->scratch_pt = alloc_pt(dev);
1952         if (IS_ERR(vm->scratch_pt)) {
1953                 free_scratch_page(dev, vm->scratch_page);
1954                 return PTR_ERR(vm->scratch_pt);
1955         }
1956
1957         gen6_initialize_pt(vm, vm->scratch_pt);
1958
1959         return 0;
1960 }
1961
1962 static void gen6_free_scratch(struct i915_address_space *vm)
1963 {
1964         struct drm_device *dev = vm->dev;
1965
1966         free_pt(dev, vm->scratch_pt);
1967         free_scratch_page(dev, vm->scratch_page);
1968 }
1969
1970 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1971 {
1972         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1973         struct i915_page_table *pt;
1974         uint32_t pde;
1975
1976         drm_mm_remove_node(&ppgtt->node);
1977
1978         gen6_for_all_pdes(pt, ppgtt, pde) {
1979                 if (pt != vm->scratch_pt)
1980                         free_pt(ppgtt->base.dev, pt);
1981         }
1982
1983         gen6_free_scratch(vm);
1984 }
1985
1986 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1987 {
1988         struct i915_address_space *vm = &ppgtt->base;
1989         struct drm_device *dev = ppgtt->base.dev;
1990         struct drm_i915_private *dev_priv = to_i915(dev);
1991         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1992         bool retried = false;
1993         int ret;
1994
1995         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1996          * allocator works in address space sizes, so it's multiplied by page
1997          * size. We allocate at the top of the GTT to avoid fragmentation.
1998          */
1999         BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2000
2001         ret = gen6_init_scratch(vm);
2002         if (ret)
2003                 return ret;
2004
2005 alloc:
2006         ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2007                                                   &ppgtt->node, GEN6_PD_SIZE,
2008                                                   GEN6_PD_ALIGN, 0,
2009                                                   0, ggtt->base.total,
2010                                                   DRM_MM_TOPDOWN);
2011         if (ret == -ENOSPC && !retried) {
2012                 ret = i915_gem_evict_something(dev, &ggtt->base,
2013                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
2014                                                I915_CACHE_NONE,
2015                                                0, ggtt->base.total,
2016                                                0);
2017                 if (ret)
2018                         goto err_out;
2019
2020                 retried = true;
2021                 goto alloc;
2022         }
2023
2024         if (ret)
2025                 goto err_out;
2026
2027
2028         if (ppgtt->node.start < ggtt->mappable_end)
2029                 DRM_DEBUG("Forced to use aperture for PDEs\n");
2030
2031         return 0;
2032
2033 err_out:
2034         gen6_free_scratch(vm);
2035         return ret;
2036 }
2037
2038 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2039 {
2040         return gen6_ppgtt_allocate_page_directories(ppgtt);
2041 }
2042
2043 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2044                                   uint64_t start, uint64_t length)
2045 {
2046         struct i915_page_table *unused;
2047         uint32_t pde, temp;
2048
2049         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
2050                 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2051 }
2052
2053 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2054 {
2055         struct drm_device *dev = ppgtt->base.dev;
2056         struct drm_i915_private *dev_priv = to_i915(dev);
2057         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2058         int ret;
2059
2060         ppgtt->base.pte_encode = ggtt->base.pte_encode;
2061         if (IS_GEN6(dev)) {
2062                 ppgtt->switch_mm = gen6_mm_switch;
2063         } else if (IS_HASWELL(dev)) {
2064                 ppgtt->switch_mm = hsw_mm_switch;
2065         } else if (IS_GEN7(dev)) {
2066                 ppgtt->switch_mm = gen7_mm_switch;
2067         } else
2068                 BUG();
2069
2070         if (intel_vgpu_active(dev))
2071                 ppgtt->switch_mm = vgpu_mm_switch;
2072
2073         ret = gen6_ppgtt_alloc(ppgtt);
2074         if (ret)
2075                 return ret;
2076
2077         ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2078         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2079         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2080         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2081         ppgtt->base.bind_vma = ppgtt_bind_vma;
2082         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2083         ppgtt->base.start = 0;
2084         ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2085         ppgtt->debug_dump = gen6_dump_ppgtt;
2086
2087         ppgtt->pd.base.ggtt_offset =
2088                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2089
2090         ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2091                 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2092
2093         gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2094
2095         gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2096
2097         DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2098                          ppgtt->node.size >> 20,
2099                          ppgtt->node.start / PAGE_SIZE);
2100
2101         DRM_DEBUG("Adding PPGTT at offset %x\n",
2102                   ppgtt->pd.base.ggtt_offset << 10);
2103
2104         return 0;
2105 }
2106
2107 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2108 {
2109         ppgtt->base.dev = dev;
2110
2111         if (INTEL_INFO(dev)->gen < 8)
2112                 return gen6_ppgtt_init(ppgtt);
2113         else
2114                 return gen8_ppgtt_init(ppgtt);
2115 }
2116
2117 static void i915_address_space_init(struct i915_address_space *vm,
2118                                     struct drm_i915_private *dev_priv)
2119 {
2120         drm_mm_init(&vm->mm, vm->start, vm->total);
2121         vm->dev = dev_priv->dev;
2122         INIT_LIST_HEAD(&vm->active_list);
2123         INIT_LIST_HEAD(&vm->inactive_list);
2124         list_add_tail(&vm->global_link, &dev_priv->vm_list);
2125 }
2126
2127 static void gtt_write_workarounds(struct drm_device *dev)
2128 {
2129         struct drm_i915_private *dev_priv = dev->dev_private;
2130
2131         /* This function is for gtt related workarounds. This function is
2132          * called on driver load and after a GPU reset, so you can place
2133          * workarounds here even if they get overwritten by GPU reset.
2134          */
2135         /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2136         if (IS_BROADWELL(dev))
2137                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2138         else if (IS_CHERRYVIEW(dev))
2139                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2140         else if (IS_SKYLAKE(dev))
2141                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2142         else if (IS_BROXTON(dev))
2143                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2144 }
2145
2146 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2147 {
2148         struct drm_i915_private *dev_priv = dev->dev_private;
2149         int ret = 0;
2150
2151         ret = __hw_ppgtt_init(dev, ppgtt);
2152         if (ret == 0) {
2153                 kref_init(&ppgtt->ref);
2154                 i915_address_space_init(&ppgtt->base, dev_priv);
2155         }
2156
2157         return ret;
2158 }
2159
2160 int i915_ppgtt_init_hw(struct drm_device *dev)
2161 {
2162         gtt_write_workarounds(dev);
2163
2164         /* In the case of execlists, PPGTT is enabled by the context descriptor
2165          * and the PDPs are contained within the context itself.  We don't
2166          * need to do anything here. */
2167         if (i915.enable_execlists)
2168                 return 0;
2169
2170         if (!USES_PPGTT(dev))
2171                 return 0;
2172
2173         if (IS_GEN6(dev))
2174                 gen6_ppgtt_enable(dev);
2175         else if (IS_GEN7(dev))
2176                 gen7_ppgtt_enable(dev);
2177         else if (INTEL_INFO(dev)->gen >= 8)
2178                 gen8_ppgtt_enable(dev);
2179         else
2180                 MISSING_CASE(INTEL_INFO(dev)->gen);
2181
2182         return 0;
2183 }
2184
2185 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
2186 {
2187         struct drm_i915_private *dev_priv = req->i915;
2188         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2189
2190         if (i915.enable_execlists)
2191                 return 0;
2192
2193         if (!ppgtt)
2194                 return 0;
2195
2196         return ppgtt->switch_mm(ppgtt, req);
2197 }
2198
2199 struct i915_hw_ppgtt *
2200 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2201 {
2202         struct i915_hw_ppgtt *ppgtt;
2203         int ret;
2204
2205         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2206         if (!ppgtt)
2207                 return ERR_PTR(-ENOMEM);
2208
2209         ret = i915_ppgtt_init(dev, ppgtt);
2210         if (ret) {
2211                 kfree(ppgtt);
2212                 return ERR_PTR(ret);
2213         }
2214
2215         ppgtt->file_priv = fpriv;
2216
2217         trace_i915_ppgtt_create(&ppgtt->base);
2218
2219         return ppgtt;
2220 }
2221
2222 void  i915_ppgtt_release(struct kref *kref)
2223 {
2224         struct i915_hw_ppgtt *ppgtt =
2225                 container_of(kref, struct i915_hw_ppgtt, ref);
2226
2227         trace_i915_ppgtt_release(&ppgtt->base);
2228
2229         /* vmas should already be unbound */
2230         WARN_ON(!list_empty(&ppgtt->base.active_list));
2231         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2232
2233         list_del(&ppgtt->base.global_link);
2234         drm_mm_takedown(&ppgtt->base.mm);
2235
2236         ppgtt->base.cleanup(&ppgtt->base);
2237         kfree(ppgtt);
2238 }
2239
2240 extern int intel_iommu_gfx_mapped;
2241 /* Certain Gen5 chipsets require require idling the GPU before
2242  * unmapping anything from the GTT when VT-d is enabled.
2243  */
2244 static bool needs_idle_maps(struct drm_device *dev)
2245 {
2246 #ifdef CONFIG_INTEL_IOMMU
2247         /* Query intel_iommu to see if we need the workaround. Presumably that
2248          * was loaded first.
2249          */
2250         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2251                 return true;
2252 #endif
2253         return false;
2254 }
2255
2256 static bool do_idling(struct drm_i915_private *dev_priv)
2257 {
2258         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2259         bool ret = dev_priv->mm.interruptible;
2260
2261         if (unlikely(ggtt->do_idle_maps)) {
2262                 dev_priv->mm.interruptible = false;
2263                 if (i915_gpu_idle(dev_priv->dev)) {
2264                         DRM_ERROR("Couldn't idle GPU\n");
2265                         /* Wait a bit, in hopes it avoids the hang */
2266                         udelay(10);
2267                 }
2268         }
2269
2270         return ret;
2271 }
2272
2273 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2274 {
2275         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2276
2277         if (unlikely(ggtt->do_idle_maps))
2278                 dev_priv->mm.interruptible = interruptible;
2279 }
2280
2281 void i915_check_and_clear_faults(struct drm_device *dev)
2282 {
2283         struct drm_i915_private *dev_priv = dev->dev_private;
2284         struct intel_engine_cs *engine;
2285
2286         if (INTEL_INFO(dev)->gen < 6)
2287                 return;
2288
2289         for_each_engine(engine, dev_priv) {
2290                 u32 fault_reg;
2291                 fault_reg = I915_READ(RING_FAULT_REG(engine));
2292                 if (fault_reg & RING_FAULT_VALID) {
2293 #if 0
2294                         DRM_DEBUG_DRIVER("Unexpected fault\n"
2295                                          "\tAddr: 0x%08lx\n"
2296                                          "\tAddress space: %s\n"
2297                                          "\tSource ID: %d\n"
2298                                          "\tType: %d\n",
2299                                          fault_reg & PAGE_MASK,
2300                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2301                                          RING_FAULT_SRCID(fault_reg),
2302                                          RING_FAULT_FAULT_TYPE(fault_reg));
2303 #endif
2304                         I915_WRITE(RING_FAULT_REG(engine),
2305                                    fault_reg & ~RING_FAULT_VALID);
2306                 }
2307         }
2308         POSTING_READ(RING_FAULT_REG(&dev_priv->engine[RCS]));
2309 }
2310
2311 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2312 {
2313         if (INTEL_INFO(dev_priv)->gen < 6) {
2314                 intel_gtt_chipset_flush();
2315         } else {
2316                 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2317                 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2318         }
2319 }
2320
2321 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2322 {
2323         struct drm_i915_private *dev_priv = to_i915(dev);
2324         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2325
2326         /* Don't bother messing with faults pre GEN6 as we have little
2327          * documentation supporting that it's a good idea.
2328          */
2329         if (INTEL_INFO(dev)->gen < 6)
2330                 return;
2331
2332         i915_check_and_clear_faults(dev);
2333
2334         ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
2335                              true);
2336
2337         i915_ggtt_flush(dev_priv);
2338 }
2339
2340 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2341 {
2342         if (!dma_map_sg(&obj->base.dev->pdev->dev,
2343                         obj->pages->sgl, obj->pages->nents,
2344                         PCI_DMA_BIDIRECTIONAL))
2345                 return -ENOSPC;
2346
2347         return 0;
2348 }
2349
2350 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2351 {
2352 #ifdef writeq
2353         writeq(pte, addr);
2354 #else
2355         iowrite32((u32)pte, addr);
2356         iowrite32(pte >> 32, addr + 4);
2357 #endif
2358 }
2359
2360 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2361                                      struct sg_table *st,
2362                                      uint64_t start,
2363                                      enum i915_cache_level level, u32 unused)
2364 {
2365         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2366         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2367         unsigned first_entry = start >> PAGE_SHIFT;
2368         gen8_pte_t __iomem *gtt_entries =
2369                 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2370         int i = 0;
2371         struct sg_page_iter sg_iter;
2372         dma_addr_t addr = 0; /* shut up gcc */
2373         int rpm_atomic_seq;
2374
2375         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2376
2377         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2378                 addr = sg_dma_address(sg_iter.sg) +
2379                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
2380                 gen8_set_pte(&gtt_entries[i],
2381                              gen8_pte_encode(addr, level, true));
2382                 i++;
2383         }
2384
2385         /*
2386          * XXX: This serves as a posting read to make sure that the PTE has
2387          * actually been updated. There is some concern that even though
2388          * registers and PTEs are within the same BAR that they are potentially
2389          * of NUMA access patterns. Therefore, even with the way we assume
2390          * hardware should work, we must keep this posting read for paranoia.
2391          */
2392         if (i != 0)
2393                 WARN_ON(readq(&gtt_entries[i-1])
2394                         != gen8_pte_encode(addr, level, true));
2395
2396         /* This next bit makes the above posting read even more important. We
2397          * want to flush the TLBs only after we're certain all the PTE updates
2398          * have finished.
2399          */
2400         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2401         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2402
2403         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2404 }
2405
2406 struct insert_entries {
2407         struct i915_address_space *vm;
2408         struct sg_table *st;
2409         uint64_t start;
2410         enum i915_cache_level level;
2411         u32 flags;
2412 };
2413
2414 static int gen8_ggtt_insert_entries__cb(void *_arg)
2415 {
2416         struct insert_entries *arg = _arg;
2417         gen8_ggtt_insert_entries(arg->vm, arg->st,
2418                                  arg->start, arg->level, arg->flags);
2419         return 0;
2420 }
2421
2422 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2423                                           struct sg_table *st,
2424                                           uint64_t start,
2425                                           enum i915_cache_level level,
2426                                           u32 flags)
2427 {
2428         struct insert_entries arg = { vm, st, start, level, flags };
2429 #ifndef __DragonFly__
2430         stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2431 #else
2432         /* XXX: is this enough ?
2433          * See Linux commit 5bab6f60cb4d1417ad7c599166bcfec87529c1a2 */
2434         get_mplock();
2435         gen8_ggtt_insert_entries__cb(&arg);
2436         rel_mplock();
2437 #endif
2438 }
2439
2440 /*
2441  * Binds an object into the global gtt with the specified cache level. The object
2442  * will be accessible to the GPU via commands whose operands reference offsets
2443  * within the global GTT as well as accessible by the GPU through the GMADR
2444  * mapped BAR (dev_priv->mm.gtt->gtt).
2445  */
2446 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2447                                      struct sg_table *st,
2448                                      uint64_t start,
2449                                      enum i915_cache_level level, u32 flags)
2450 {
2451         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2452         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2453         unsigned first_entry = start >> PAGE_SHIFT;
2454         gen6_pte_t __iomem *gtt_entries =
2455                 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2456         int i = 0;
2457         struct sg_page_iter sg_iter;
2458         dma_addr_t addr = 0;
2459         int rpm_atomic_seq;
2460
2461         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2462
2463         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2464                 addr = sg_page_iter_dma_address(&sg_iter);
2465                 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
2466                 i++;
2467         }
2468
2469         /* XXX: This serves as a posting read to make sure that the PTE has
2470          * actually been updated. There is some concern that even though
2471          * registers and PTEs are within the same BAR that they are potentially
2472          * of NUMA access patterns. Therefore, even with the way we assume
2473          * hardware should work, we must keep this posting read for paranoia.
2474          */
2475         if (i != 0) {
2476                 unsigned long gtt = readl(&gtt_entries[i-1]);
2477                 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
2478         }
2479
2480         /* This next bit makes the above posting read even more important. We
2481          * want to flush the TLBs only after we're certain all the PTE updates
2482          * have finished.
2483          */
2484         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2485         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2486
2487         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2488 }
2489
2490 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2491                                   uint64_t start,
2492                                   uint64_t length,
2493                                   bool use_scratch)
2494 {
2495         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2496         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2497         unsigned first_entry = start >> PAGE_SHIFT;
2498         unsigned num_entries = length >> PAGE_SHIFT;
2499         gen8_pte_t scratch_pte, __iomem *gtt_base =
2500                 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2501         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2502         int i;
2503         int rpm_atomic_seq;
2504
2505         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2506
2507         if (WARN(num_entries > max_entries,
2508                  "First entry = %d; Num entries = %d (max=%d)\n",
2509                  first_entry, num_entries, max_entries))
2510                 num_entries = max_entries;
2511
2512         scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2513                                       I915_CACHE_LLC,
2514                                       use_scratch);
2515         for (i = 0; i < num_entries; i++)
2516                 gen8_set_pte(&gtt_base[i], scratch_pte);
2517         readl(gtt_base);
2518
2519         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2520 }
2521
2522 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2523                                   uint64_t start,
2524                                   uint64_t length,
2525                                   bool use_scratch)
2526 {
2527         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2528         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2529         unsigned first_entry = start >> PAGE_SHIFT;
2530         unsigned num_entries = length >> PAGE_SHIFT;
2531         gen6_pte_t scratch_pte, __iomem *gtt_base =
2532                 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2533         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2534         int i;
2535         int rpm_atomic_seq;
2536
2537         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2538
2539         if (WARN(num_entries > max_entries,
2540                  "First entry = %d; Num entries = %d (max=%d)\n",
2541                  first_entry, num_entries, max_entries))
2542                 num_entries = max_entries;
2543
2544         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2545                                      I915_CACHE_LLC, use_scratch, 0);
2546
2547         for (i = 0; i < num_entries; i++)
2548                 iowrite32(scratch_pte, &gtt_base[i]);
2549         readl(gtt_base);
2550
2551         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2552 }
2553
2554 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2555                                      struct sg_table *pages,
2556                                      uint64_t start,
2557                                      enum i915_cache_level cache_level, u32 unused)
2558 {
2559         struct drm_i915_private *dev_priv = vm->dev->dev_private;
2560         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2561                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2562         int rpm_atomic_seq;
2563
2564         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2565
2566         intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2567
2568         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2569
2570 }
2571
2572 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2573                                   uint64_t start,
2574                                   uint64_t length,
2575                                   bool unused)
2576 {
2577         struct drm_i915_private *dev_priv = vm->dev->dev_private;
2578         unsigned first_entry = start >> PAGE_SHIFT;
2579         unsigned num_entries = length >> PAGE_SHIFT;
2580         int rpm_atomic_seq;
2581
2582         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2583
2584         intel_gtt_clear_range(first_entry, num_entries);
2585
2586         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2587 }
2588
2589 static int ggtt_bind_vma(struct i915_vma *vma,
2590                          enum i915_cache_level cache_level,
2591                          u32 flags)
2592 {
2593         struct drm_i915_gem_object *obj = vma->obj;
2594         u32 pte_flags = 0;
2595         int ret;
2596
2597         ret = i915_get_ggtt_vma_pages(vma);
2598         if (ret)
2599                 return ret;
2600
2601         /* Currently applicable only to VLV */
2602         if (obj->gt_ro)
2603                 pte_flags |= PTE_READ_ONLY;
2604
2605         vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2606                                 vma->node.start,
2607                                 cache_level, pte_flags);
2608
2609         /*
2610          * Without aliasing PPGTT there's no difference between
2611          * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2612          * upgrade to both bound if we bind either to avoid double-binding.
2613          */
2614         vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2615
2616         return 0;
2617 }
2618
2619 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2620                                  enum i915_cache_level cache_level,
2621                                  u32 flags)
2622 {
2623         u32 pte_flags;
2624         int ret;
2625
2626         ret = i915_get_ggtt_vma_pages(vma);
2627         if (ret)
2628                 return ret;
2629
2630         /* Currently applicable only to VLV */
2631         pte_flags = 0;
2632         if (vma->obj->gt_ro)
2633                 pte_flags |= PTE_READ_ONLY;
2634
2635
2636         if (flags & GLOBAL_BIND) {
2637                 vma->vm->insert_entries(vma->vm,
2638                                         vma->ggtt_view.pages,
2639                                         vma->node.start,
2640                                         cache_level, pte_flags);
2641         }
2642
2643         if (flags & LOCAL_BIND) {
2644                 struct i915_hw_ppgtt *appgtt =
2645                         to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2646                 appgtt->base.insert_entries(&appgtt->base,
2647                                             vma->ggtt_view.pages,
2648                                             vma->node.start,
2649                                             cache_level, pte_flags);
2650         }
2651
2652         return 0;
2653 }
2654
2655 static void ggtt_unbind_vma(struct i915_vma *vma)
2656 {
2657         struct drm_device *dev = vma->vm->dev;
2658         struct drm_i915_private *dev_priv = dev->dev_private;
2659         struct drm_i915_gem_object *obj = vma->obj;
2660         const uint64_t size = min_t(uint64_t,
2661                                     obj->base.size,
2662                                     vma->node.size);
2663
2664         if (vma->bound & GLOBAL_BIND) {
2665                 vma->vm->clear_range(vma->vm,
2666                                      vma->node.start,
2667                                      size,
2668                                      true);
2669         }
2670
2671         if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2672                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2673
2674                 appgtt->base.clear_range(&appgtt->base,
2675                                          vma->node.start,
2676                                          size,
2677                                          true);
2678         }
2679 }
2680
2681 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2682 {
2683         struct drm_device *dev = obj->base.dev;
2684         struct drm_i915_private *dev_priv = dev->dev_private;
2685         bool interruptible;
2686
2687         interruptible = do_idling(dev_priv);
2688
2689         dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2690                      PCI_DMA_BIDIRECTIONAL);
2691
2692         undo_idling(dev_priv, interruptible);
2693 }
2694
2695 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2696                                   unsigned long color,
2697                                   u64 *start,
2698                                   u64 *end)
2699 {
2700         if (node->color != color)
2701                 *start += 4096;
2702
2703         if (!list_empty(&node->node_list)) {
2704                 node = list_entry(node->node_list.next,
2705                                   struct drm_mm_node,
2706                                   node_list);
2707                 if (node->allocated && node->color != color)
2708                         *end -= 4096;
2709         }
2710 }
2711
2712 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2713                                      u64 start,
2714                                      u64 mappable_end,
2715                                      u64 end)
2716 {
2717         /* Let GEM Manage all of the aperture.
2718          *
2719          * However, leave one page at the end still bound to the scratch page.
2720          * There are a number of places where the hardware apparently prefetches
2721          * past the end of the object, and we've seen multiple hangs with the
2722          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2723          * aperture.  One page should be enough to keep any prefetching inside
2724          * of the aperture.
2725          */
2726         struct drm_i915_private *dev_priv = to_i915(dev);
2727         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2728         struct drm_mm_node *entry;
2729         struct drm_i915_gem_object *obj;
2730         unsigned long hole_start, hole_end;
2731         int ret;
2732         unsigned long mappable;
2733         int error;
2734
2735         mappable = min(end, mappable_end) - start;
2736         BUG_ON(mappable_end > end);
2737
2738         ggtt->base.start = start;
2739
2740         /* Subtract the guard page before address space initialization to
2741          * shrink the range used by drm_mm */
2742         ggtt->base.total = end - start - PAGE_SIZE;
2743         i915_address_space_init(&ggtt->base, dev_priv);
2744         ggtt->base.total += PAGE_SIZE;
2745
2746         if (intel_vgpu_active(dev)) {
2747                 ret = intel_vgt_balloon(dev);
2748                 if (ret)
2749                         return ret;
2750         }
2751
2752         if (!HAS_LLC(dev))
2753                 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
2754
2755         /* Mark any preallocated objects as occupied */
2756         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2757                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, &ggtt->base);
2758
2759                 DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2760                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
2761
2762                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2763                 ret = drm_mm_reserve_node(&ggtt->base.mm, &vma->node);
2764                 if (ret) {
2765                         DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2766                         return ret;
2767                 }
2768                 vma->bound |= GLOBAL_BIND;
2769                 __i915_vma_set_map_and_fenceable(vma);
2770                 list_add_tail(&vma->vm_link, &ggtt->base.inactive_list);
2771         }
2772
2773         /* Clear any non-preallocated blocks */
2774         drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2775                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2776                               hole_start, hole_end);
2777                 ggtt->base.clear_range(&ggtt->base, hole_start,
2778                                      hole_end - hole_start, true);
2779         }
2780
2781 #ifdef __DragonFly__
2782         device_printf(dev->dev->bsddev,
2783             "taking over the fictitious range 0x%llx-0x%llx\n",
2784             dev_priv->ggtt.mappable_base + start, dev_priv->ggtt.mappable_base + start + mappable);
2785         error = -vm_phys_fictitious_reg_range(dev_priv->ggtt.mappable_base + start,
2786             dev_priv->ggtt.mappable_base + start + mappable, VM_MEMATTR_WRITE_COMBINING);
2787 #endif
2788
2789         /* And finally clear the reserved guard page */
2790         ggtt->base.clear_range(&ggtt->base, end - PAGE_SIZE, PAGE_SIZE, true);
2791
2792         if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2793                 struct i915_hw_ppgtt *ppgtt;
2794
2795                 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2796                 if (!ppgtt)
2797                         return -ENOMEM;
2798
2799                 ret = __hw_ppgtt_init(dev, ppgtt);
2800                 if (ret) {
2801                         ppgtt->base.cleanup(&ppgtt->base);
2802                         kfree(ppgtt);
2803                         return ret;
2804                 }
2805
2806                 if (ppgtt->base.allocate_va_range)
2807                         ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2808                                                             ppgtt->base.total);
2809                 if (ret) {
2810                         ppgtt->base.cleanup(&ppgtt->base);
2811                         kfree(ppgtt);
2812                         return ret;
2813                 }
2814
2815                 ppgtt->base.clear_range(&ppgtt->base,
2816                                         ppgtt->base.start,
2817                                         ppgtt->base.total,
2818                                         true);
2819
2820                 dev_priv->mm.aliasing_ppgtt = ppgtt;
2821                 WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2822                 ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2823         }
2824
2825         return 0;
2826 }
2827
2828 /**
2829  * i915_gem_init_ggtt - Initialize GEM for Global GTT
2830  * @dev: DRM device
2831  */
2832 void i915_gem_init_ggtt(struct drm_device *dev)
2833 {
2834         struct drm_i915_private *dev_priv = to_i915(dev);
2835         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2836
2837         i915_gem_setup_global_gtt(dev, 0, ggtt->mappable_end, ggtt->base.total);
2838 }
2839
2840 /**
2841  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2842  * @dev: DRM device
2843  */
2844 void i915_ggtt_cleanup_hw(struct drm_device *dev)
2845 {
2846         struct drm_i915_private *dev_priv = to_i915(dev);
2847         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2848
2849         if (dev_priv->mm.aliasing_ppgtt) {
2850                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2851
2852                 ppgtt->base.cleanup(&ppgtt->base);
2853                 kfree(ppgtt);
2854         }
2855
2856         i915_gem_cleanup_stolen(dev);
2857
2858         if (drm_mm_initialized(&ggtt->base.mm)) {
2859                 if (intel_vgpu_active(dev))
2860                         intel_vgt_deballoon();
2861
2862                 drm_mm_takedown(&ggtt->base.mm);
2863                 list_del(&ggtt->base.global_link);
2864         }
2865
2866         ggtt->base.cleanup(&ggtt->base);
2867 }
2868
2869 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2870 {
2871         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2872         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2873         return snb_gmch_ctl << 20;
2874 }
2875
2876 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2877 {
2878         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2879         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2880         if (bdw_gmch_ctl)
2881                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2882
2883 #ifdef CONFIG_X86_32
2884         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2885         if (bdw_gmch_ctl > 4)
2886                 bdw_gmch_ctl = 4;
2887 #endif
2888
2889         return bdw_gmch_ctl << 20;
2890 }
2891
2892 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2893 {
2894         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2895         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2896
2897         if (gmch_ctrl)
2898                 return 1 << (20 + gmch_ctrl);
2899
2900         return 0;
2901 }
2902
2903 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2904 {
2905         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2906         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2907         return snb_gmch_ctl << 25; /* 32 MB units */
2908 }
2909
2910 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2911 {
2912         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2913         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2914         return bdw_gmch_ctl << 25; /* 32 MB units */
2915 }
2916
2917 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2918 {
2919         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2920         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2921
2922         /*
2923          * 0x0  to 0x10: 32MB increments starting at 0MB
2924          * 0x11 to 0x16: 4MB increments starting at 8MB
2925          * 0x17 to 0x1d: 4MB increments start at 36MB
2926          */
2927         if (gmch_ctrl < 0x11)
2928                 return gmch_ctrl << 25;
2929         else if (gmch_ctrl < 0x17)
2930                 return (gmch_ctrl - 0x11 + 2) << 22;
2931         else
2932                 return (gmch_ctrl - 0x17 + 9) << 22;
2933 }
2934
2935 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2936 {
2937         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2938         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2939
2940         if (gen9_gmch_ctl < 0xf0)
2941                 return gen9_gmch_ctl << 25; /* 32 MB units */
2942         else
2943                 /* 4MB increments starting at 0xf0 for 4MB */
2944                 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2945 }
2946
2947 static int ggtt_probe_common(struct drm_device *dev,
2948                              size_t gtt_size)
2949 {
2950         struct drm_i915_private *dev_priv = to_i915(dev);
2951         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2952         struct i915_page_scratch *scratch_page;
2953         phys_addr_t ggtt_phys_addr;
2954
2955         /* For Modern GENs the PTEs and register space are split in the BAR */
2956         ggtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2957                          (pci_resource_len(dev->pdev, 0) / 2);
2958
2959         /*
2960          * On BXT writes larger than 64 bit to the GTT pagetable range will be
2961          * dropped. For WC mappings in general we have 64 byte burst writes
2962          * when the WC buffer is flushed, so we can't use it, but have to
2963          * resort to an uncached mapping. The WC issue is easily caught by the
2964          * readback check when writing GTT PTE entries.
2965          */
2966         if (IS_BROXTON(dev))
2967                 ggtt->gsm = ioremap_nocache(ggtt_phys_addr, gtt_size);
2968         else
2969                 ggtt->gsm = ioremap_wc(ggtt_phys_addr, gtt_size);
2970         if (!ggtt->gsm) {
2971                 DRM_ERROR("Failed to map the gtt page table\n");
2972                 return -ENOMEM;
2973         }
2974
2975         scratch_page = alloc_scratch_page(dev);
2976         if (IS_ERR(scratch_page)) {
2977                 DRM_ERROR("Scratch setup failed\n");
2978                 /* iounmap will also get called at remove, but meh */
2979                 iounmap(ggtt->gsm);
2980                 return PTR_ERR(scratch_page);
2981         }
2982
2983         ggtt->base.scratch_page = scratch_page;
2984
2985         return 0;
2986 }
2987
2988 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2989  * bits. When using advanced contexts each context stores its own PAT, but
2990  * writing this data shouldn't be harmful even in those cases. */
2991 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2992 {
2993         uint64_t pat;
2994
2995         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2996               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2997               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2998               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2999               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
3000               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
3001               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
3002               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3003
3004         if (!USES_PPGTT(dev_priv))
3005                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3006                  * so RTL will always use the value corresponding to
3007                  * pat_sel = 000".
3008                  * So let's disable cache for GGTT to avoid screen corruptions.
3009                  * MOCS still can be used though.
3010                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3011                  * before this patch, i.e. the same uncached + snooping access
3012                  * like on gen6/7 seems to be in effect.
3013                  * - So this just fixes blitter/render access. Again it looks
3014                  * like it's not just uncached access, but uncached + snooping.
3015                  * So we can still hold onto all our assumptions wrt cpu
3016                  * clflushing on LLC machines.
3017                  */
3018                 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
3019
3020         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
3021          * write would work. */
3022         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3023         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3024 }
3025
3026 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
3027 {
3028         uint64_t pat;
3029
3030         /*
3031          * Map WB on BDW to snooped on CHV.
3032          *
3033          * Only the snoop bit has meaning for CHV, the rest is
3034          * ignored.
3035          *
3036          * The hardware will never snoop for certain types of accesses:
3037          * - CPU GTT (GMADR->GGTT->no snoop->memory)
3038          * - PPGTT page tables
3039          * - some other special cycles
3040          *
3041          * As with BDW, we also need to consider the following for GT accesses:
3042          * "For GGTT, there is NO pat_sel[2:0] from the entry,
3043          * so RTL will always use the value corresponding to
3044          * pat_sel = 000".
3045          * Which means we must set the snoop bit in PAT entry 0
3046          * in order to keep the global status page working.
3047          */
3048         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3049               GEN8_PPAT(1, 0) |
3050               GEN8_PPAT(2, 0) |
3051               GEN8_PPAT(3, 0) |
3052               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3053               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3054               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3055               GEN8_PPAT(7, CHV_PPAT_SNOOP);
3056
3057         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3058         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3059 }
3060
3061 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3062 {
3063         struct drm_device *dev = ggtt->base.dev;
3064         struct drm_i915_private *dev_priv = to_i915(dev);
3065         u16 snb_gmch_ctl;
3066         int ret;
3067
3068         /* TODO: We're not aware of mappable constraints on gen8 yet */
3069         ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3070         ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3071
3072 #if 0
3073         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
3074                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
3075 #endif
3076
3077         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3078
3079         if (INTEL_INFO(dev)->gen >= 9) {
3080                 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3081                 ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3082         } else if (IS_CHERRYVIEW(dev)) {
3083                 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3084                 ggtt->size = chv_get_total_gtt_size(snb_gmch_ctl);
3085         } else {
3086                 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3087                 ggtt->size = gen8_get_total_gtt_size(snb_gmch_ctl);
3088         }
3089
3090         ggtt->base.total = (ggtt->size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3091
3092         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3093                 chv_setup_private_ppat(dev_priv);
3094         else
3095                 bdw_setup_private_ppat(dev_priv);
3096
3097         ret = ggtt_probe_common(dev, ggtt->size);
3098
3099         ggtt->base.clear_range = gen8_ggtt_clear_range;
3100         if (IS_CHERRYVIEW(dev_priv))
3101                 ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3102         else
3103                 ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3104         ggtt->base.bind_vma = ggtt_bind_vma;
3105         ggtt->base.unbind_vma = ggtt_unbind_vma;
3106
3107         return ret;
3108 }
3109
3110 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3111 {
3112         struct drm_device *dev = ggtt->base.dev;
3113         u16 snb_gmch_ctl;
3114         int ret;
3115
3116         ggtt->mappable_base = pci_resource_start(dev->pdev, 2);
3117         ggtt->mappable_end = pci_resource_len(dev->pdev, 2);
3118
3119         /* 64/512MB is the current min/max we actually know of, but this is just
3120          * a coarse sanity check.
3121          */
3122         if ((ggtt->mappable_end < (64<<20) || (ggtt->mappable_end > (512<<20)))) {
3123                 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3124                 return -ENXIO;
3125         }
3126
3127 #if 0
3128         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3129                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3130 #endif
3131         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3132
3133         ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3134         ggtt->size = gen6_get_total_gtt_size(snb_gmch_ctl);
3135         ggtt->base.total = (ggtt->size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3136
3137         ret = ggtt_probe_common(dev, ggtt->size);
3138
3139         ggtt->base.clear_range = gen6_ggtt_clear_range;
3140         ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3141         ggtt->base.bind_vma = ggtt_bind_vma;
3142         ggtt->base.unbind_vma = ggtt_unbind_vma;
3143
3144         return ret;
3145 }
3146
3147 static void gen6_gmch_remove(struct i915_address_space *vm)
3148 {
3149         struct i915_ggtt *ggtt = container_of(vm, struct i915_ggtt, base);
3150
3151         iounmap(ggtt->gsm);
3152         free_scratch_page(vm->dev, vm->scratch_page);
3153 }
3154
3155 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3156 {
3157         struct drm_device *dev = ggtt->base.dev;
3158         struct drm_i915_private *dev_priv = to_i915(dev);
3159 #if 0
3160         int ret;
3161
3162         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
3163         if (!ret) {
3164                 DRM_ERROR("failed to set up gmch\n");
3165                 return -EIO;
3166         }
3167 #endif
3168
3169         intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3170                       &ggtt->mappable_base, &ggtt->mappable_end);
3171
3172         ggtt->do_idle_maps = needs_idle_maps(dev_priv->dev);
3173         ggtt->base.insert_entries = i915_ggtt_insert_entries;
3174         ggtt->base.clear_range = i915_ggtt_clear_range;
3175         ggtt->base.bind_vma = ggtt_bind_vma;
3176         ggtt->base.unbind_vma = ggtt_unbind_vma;
3177
3178         if (unlikely(ggtt->do_idle_maps))
3179                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3180
3181         return 0;
3182 }
3183
3184 static void i915_gmch_remove(struct i915_address_space *vm)
3185 {
3186         intel_gmch_remove();
3187 }
3188
3189 /**
3190  * i915_ggtt_init_hw - Initialize GGTT hardware
3191  * @dev: DRM device
3192  */
3193 int i915_ggtt_init_hw(struct drm_device *dev)
3194 {
3195         struct drm_i915_private *dev_priv = to_i915(dev);
3196         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3197         int ret;
3198
3199         if (INTEL_INFO(dev)->gen <= 5) {
3200                 ggtt->probe = i915_gmch_probe;
3201                 ggtt->base.cleanup = i915_gmch_remove;
3202         } else if (INTEL_INFO(dev)->gen < 8) {
3203                 ggtt->probe = gen6_gmch_probe;
3204                 ggtt->base.cleanup = gen6_gmch_remove;
3205
3206                 if (HAS_EDRAM(dev))
3207                         ggtt->base.pte_encode = iris_pte_encode;
3208                 else if (IS_HASWELL(dev))
3209                         ggtt->base.pte_encode = hsw_pte_encode;
3210                 else if (IS_VALLEYVIEW(dev))
3211                         ggtt->base.pte_encode = byt_pte_encode;
3212                 else if (INTEL_INFO(dev)->gen >= 7)
3213                         ggtt->base.pte_encode = ivb_pte_encode;
3214                 else
3215                         ggtt->base.pte_encode = snb_pte_encode;
3216         } else {
3217                 ggtt->probe = gen8_gmch_probe;
3218                 ggtt->base.cleanup = gen6_gmch_remove;
3219         }
3220
3221         ggtt->base.dev = dev;
3222         ggtt->base.is_ggtt = true;
3223
3224         ret = ggtt->probe(ggtt);
3225         if (ret)
3226                 return ret;
3227
3228         if ((ggtt->base.total - 1) >> 32) {
3229                 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3230                           "of address space! Found %lldM!\n",
3231                           ggtt->base.total >> 20);
3232                 ggtt->base.total = 1ULL << 32;
3233                 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3234         }
3235
3236         /*
3237          * Initialise stolen early so that we may reserve preallocated
3238          * objects for the BIOS to KMS transition.
3239          */
3240         ret = i915_gem_init_stolen(dev);
3241         if (ret)
3242                 goto out_gtt_cleanup;
3243
3244         /* GMADR is the PCI mmio aperture into the global GTT. */
3245         DRM_INFO("Memory usable by graphics device = %lluM\n",
3246                  ggtt->base.total >> 20);
3247         DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3248         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3249 #ifdef CONFIG_INTEL_IOMMU
3250         if (intel_iommu_gfx_mapped)
3251                 DRM_INFO("VT-d active for gfx access\n");
3252 #endif
3253         /*
3254          * i915.enable_ppgtt is read-only, so do an early pass to validate the
3255          * user's requested state against the hardware/driver capabilities.  We
3256          * do this now so that we can print out any log messages once rather
3257          * than every time we check intel_enable_ppgtt().
3258          */
3259         i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
3260         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
3261
3262         return 0;
3263
3264 out_gtt_cleanup:
3265         ggtt->base.cleanup(&ggtt->base);
3266
3267         return ret;
3268 }
3269
3270 int i915_ggtt_enable_hw(struct drm_device *dev)
3271 {
3272         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3273                 return -EIO;
3274
3275         return 0;
3276 }
3277
3278 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3279 {
3280         struct drm_i915_private *dev_priv = to_i915(dev);
3281         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3282         struct drm_i915_gem_object *obj;
3283         struct i915_vma *vma;
3284         bool flush;
3285
3286         i915_check_and_clear_faults(dev);
3287
3288         /* First fill our portion of the GTT with scratch pages */
3289         ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
3290                                true);
3291
3292         /* Cache flush objects bound into GGTT and rebind them. */
3293         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3294                 flush = false;
3295                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3296                         if (vma->vm != &ggtt->base)
3297                                 continue;
3298
3299                         WARN_ON(i915_vma_bind(vma, obj->cache_level,
3300                                               PIN_UPDATE));
3301
3302                         flush = true;
3303                 }
3304
3305                 if (flush)
3306                         i915_gem_clflush_object(obj, obj->pin_display);
3307         }
3308
3309         if (INTEL_INFO(dev)->gen >= 8) {
3310                 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3311                         chv_setup_private_ppat(dev_priv);
3312                 else
3313                         bdw_setup_private_ppat(dev_priv);
3314
3315                 return;
3316         }
3317
3318         if (USES_PPGTT(dev)) {
3319                 struct i915_address_space *vm;
3320
3321                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3322                         /* TODO: Perhaps it shouldn't be gen6 specific */
3323
3324                         struct i915_hw_ppgtt *ppgtt;
3325
3326                         if (vm->is_ggtt)
3327                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
3328                         else
3329                                 ppgtt = i915_vm_to_ppgtt(vm);
3330
3331                         gen6_write_page_range(dev_priv, &ppgtt->pd,
3332                                               0, ppgtt->base.total);
3333                 }
3334         }
3335
3336         i915_ggtt_flush(dev_priv);
3337 }
3338
3339 static struct i915_vma *
3340 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3341                       struct i915_address_space *vm,
3342                       const struct i915_ggtt_view *ggtt_view)
3343 {
3344         struct i915_vma *vma;
3345
3346         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3347                 return ERR_PTR(-EINVAL);
3348
3349         vma = kzalloc(sizeof(*vma), GFP_KERNEL);
3350         if (vma == NULL)
3351                 return ERR_PTR(-ENOMEM);
3352
3353         INIT_LIST_HEAD(&vma->vm_link);
3354         INIT_LIST_HEAD(&vma->obj_link);
3355         INIT_LIST_HEAD(&vma->exec_list);
3356         vma->vm = vm;
3357         vma->obj = obj;
3358         vma->is_ggtt = i915_is_ggtt(vm);
3359
3360         if (i915_is_ggtt(vm))
3361                 vma->ggtt_view = *ggtt_view;
3362         else
3363                 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3364
3365         list_add_tail(&vma->obj_link, &obj->vma_list);
3366
3367         return vma;
3368 }
3369
3370 struct i915_vma *
3371 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3372                                   struct i915_address_space *vm)
3373 {
3374         struct i915_vma *vma;
3375
3376         vma = i915_gem_obj_to_vma(obj, vm);
3377         if (!vma)
3378                 vma = __i915_gem_vma_create(obj, vm,
3379                                             i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3380
3381         return vma;
3382 }
3383
3384 struct i915_vma *
3385 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3386                                        const struct i915_ggtt_view *view)
3387 {
3388         struct drm_device *dev = obj->base.dev;
3389         struct drm_i915_private *dev_priv = to_i915(dev);
3390         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3391         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3392
3393         if (!vma)
3394                 vma = __i915_gem_vma_create(obj, &ggtt->base, view);
3395
3396         return vma;
3397
3398 }
3399
3400 static struct scatterlist *
3401 rotate_pages(const dma_addr_t *in, unsigned int offset,
3402              unsigned int width, unsigned int height,
3403              unsigned int stride,
3404              struct sg_table *st, struct scatterlist *sg)
3405 {
3406         unsigned int column, row;
3407         unsigned int src_idx;
3408
3409         for (column = 0; column < width; column++) {
3410                 src_idx = stride * (height - 1) + column;
3411                 for (row = 0; row < height; row++) {
3412                         st->nents++;
3413                         /* We don't need the pages, but need to initialize
3414                          * the entries so the sg list can be happily traversed.
3415                          * The only thing we need are DMA addresses.
3416                          */
3417                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
3418                         sg_dma_address(sg) = in[offset + src_idx];
3419                         sg_dma_len(sg) = PAGE_SIZE;
3420                         sg = sg_next(sg);
3421                         src_idx -= stride;
3422                 }
3423         }
3424
3425         return sg;
3426 }
3427
3428 static struct sg_table *
3429 intel_rotate_fb_obj_pages(struct intel_rotation_info *rot_info,
3430                           struct drm_i915_gem_object *obj)
3431 {
3432         unsigned int size_pages = rot_info->plane[0].width * rot_info->plane[0].height;
3433         unsigned int size_pages_uv;
3434         struct sg_page_iter sg_iter;
3435         unsigned long i;
3436         dma_addr_t *page_addr_list;
3437         struct sg_table *st;
3438         unsigned int uv_start_page;
3439         struct scatterlist *sg;
3440         int ret = -ENOMEM;
3441
3442         /* Allocate a temporary list of source pages for random access. */
3443         page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
3444                                        sizeof(dma_addr_t));
3445         if (!page_addr_list)
3446                 return ERR_PTR(ret);
3447
3448         /* Account for UV plane with NV12. */
3449         if (rot_info->pixel_format == DRM_FORMAT_NV12)
3450                 size_pages_uv = rot_info->plane[1].width * rot_info->plane[1].height;
3451         else
3452                 size_pages_uv = 0;
3453
3454         /* Allocate target SG list. */
3455         st = kmalloc(sizeof(*st), M_DRM, M_WAITOK);
3456         if (!st)
3457                 goto err_st_alloc;
3458
3459         ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3460         if (ret)
3461                 goto err_sg_alloc;
3462
3463         /* Populate source page list from the object. */
3464         i = 0;
3465         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
3466                 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
3467                 i++;
3468         }
3469
3470         st->nents = 0;
3471         sg = st->sgl;
3472
3473         /* Rotate the pages. */
3474         sg = rotate_pages(page_addr_list, 0,
3475                           rot_info->plane[0].width, rot_info->plane[0].height,
3476                           rot_info->plane[0].width,
3477                           st, sg);
3478
3479         /* Append the UV plane if NV12. */
3480         if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3481                 uv_start_page = size_pages;
3482
3483                 /* Check for tile-row un-alignment. */
3484                 if (offset_in_page(rot_info->uv_offset))
3485                         uv_start_page--;
3486
3487                 rot_info->uv_start_page = uv_start_page;
3488
3489                 sg = rotate_pages(page_addr_list, rot_info->uv_start_page,
3490                                   rot_info->plane[1].width, rot_info->plane[1].height,
3491                                   rot_info->plane[1].width,
3492                                   st, sg);
3493         }
3494
3495         DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages (%u plane 0)).\n",
3496                       obj->base.size, rot_info->plane[0].width,
3497                       rot_info->plane[0].height, size_pages + size_pages_uv,
3498                       size_pages);
3499
3500         drm_free_large(page_addr_list);
3501
3502         return st;
3503
3504 err_sg_alloc:
3505         kfree(st);
3506 err_st_alloc:
3507         drm_free_large(page_addr_list);
3508
3509         DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%d) (%ux%u tiles, %u pages (%u plane 0))\n",
3510                       obj->base.size, ret, rot_info->plane[0].width,
3511                       rot_info->plane[0].height, size_pages + size_pages_uv,
3512                       size_pages);
3513         return ERR_PTR(ret);
3514 }
3515
3516 static struct sg_table *
3517 intel_partial_pages(const struct i915_ggtt_view *view,
3518                     struct drm_i915_gem_object *obj)
3519 {
3520         struct sg_table *st;
3521         struct scatterlist *sg;
3522         struct sg_page_iter obj_sg_iter;
3523         int ret = -ENOMEM;
3524
3525         st = kmalloc(sizeof(*st), M_DRM, M_WAITOK);
3526         if (!st)
3527                 goto err_st_alloc;
3528
3529         ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3530         if (ret)
3531                 goto err_sg_alloc;
3532
3533         sg = st->sgl;
3534         st->nents = 0;
3535         for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3536                 view->params.partial.offset)
3537         {
3538                 if (st->nents >= view->params.partial.size)
3539                         break;
3540
3541                 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3542                 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3543                 sg_dma_len(sg) = PAGE_SIZE;
3544
3545                 sg = sg_next(sg);
3546                 st->nents++;
3547         }
3548
3549         return st;
3550
3551 err_sg_alloc:
3552         kfree(st);
3553 err_st_alloc:
3554         return ERR_PTR(ret);
3555 }
3556
3557 static int
3558 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3559 {
3560         int ret = 0;
3561
3562         if (vma->ggtt_view.pages)
3563                 return 0;
3564
3565         if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3566                 vma->ggtt_view.pages = vma->obj->pages;
3567         else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3568                 vma->ggtt_view.pages =
3569                         intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3570         else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3571                 vma->ggtt_view.pages =
3572                         intel_partial_pages(&vma->ggtt_view, vma->obj);
3573         else
3574                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3575                           vma->ggtt_view.type);
3576
3577         if (!vma->ggtt_view.pages) {
3578                 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3579                           vma->ggtt_view.type);
3580                 ret = -EINVAL;
3581         } else if (IS_ERR(vma->ggtt_view.pages)) {
3582                 ret = PTR_ERR(vma->ggtt_view.pages);
3583                 vma->ggtt_view.pages = NULL;
3584                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3585                           vma->ggtt_view.type, ret);
3586         }
3587
3588         return ret;
3589 }
3590
3591 /**
3592  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3593  * @vma: VMA to map
3594  * @cache_level: mapping cache level
3595  * @flags: flags like global or local mapping
3596  *
3597  * DMA addresses are taken from the scatter-gather table of this object (or of
3598  * this VMA in case of non-default GGTT views) and PTE entries set up.
3599  * Note that DMA addresses are also the only part of the SG table we care about.
3600  */
3601 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3602                   u32 flags)
3603 {
3604         int ret;
3605         u32 bind_flags;
3606
3607         if (WARN_ON(flags == 0))
3608                 return -EINVAL;
3609
3610         bind_flags = 0;
3611         if (flags & PIN_GLOBAL)
3612                 bind_flags |= GLOBAL_BIND;
3613         if (flags & PIN_USER)
3614                 bind_flags |= LOCAL_BIND;
3615
3616         if (flags & PIN_UPDATE)
3617                 bind_flags |= vma->bound;
3618         else
3619                 bind_flags &= ~vma->bound;
3620
3621         if (bind_flags == 0)
3622                 return 0;
3623
3624         if (vma->bound == 0 && vma->vm->allocate_va_range) {
3625                 /* XXX: i915_vma_pin() will fix this +- hack */
3626                 vma->pin_count++;
3627                 trace_i915_va_alloc(vma);
3628                 ret = vma->vm->allocate_va_range(vma->vm,
3629                                                  vma->node.start,
3630                                                  vma->node.size);
3631                 vma->pin_count--;
3632                 if (ret)
3633                         return ret;
3634         }
3635
3636         ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3637         if (ret)
3638                 return ret;
3639
3640         vma->bound |= bind_flags;
3641
3642         return 0;
3643 }
3644
3645 /**
3646  * i915_ggtt_view_size - Get the size of a GGTT view.
3647  * @obj: Object the view is of.
3648  * @view: The view in question.
3649  *
3650  * @return The size of the GGTT view in bytes.
3651  */
3652 size_t
3653 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3654                     const struct i915_ggtt_view *view)
3655 {
3656         if (view->type == I915_GGTT_VIEW_NORMAL) {
3657                 return obj->base.size;
3658         } else if (view->type == I915_GGTT_VIEW_ROTATED) {
3659                 return intel_rotation_info_size(&view->params.rotated) << PAGE_SHIFT;
3660         } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3661                 return view->params.partial.size << PAGE_SHIFT;
3662         } else {
3663                 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3664                 return obj->base.size;
3665         }
3666 }