drm/i915: Update base driver to 20160725
[dragonfly.git] / sys / dev / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 /* Rough estimate of the typical request size, performing a flush,
38  * set-context and then emitting the batch.
39  */
40 #define LEGACY_REQUEST_SIZE 200
41
42 int __intel_ring_space(int head, int tail, int size)
43 {
44         int space = head - tail;
45         if (space <= 0)
46                 space += size;
47         return space - I915_RING_FREE_SPACE;
48 }
49
50 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
51 {
52         if (ringbuf->last_retired_head != -1) {
53                 ringbuf->head = ringbuf->last_retired_head;
54                 ringbuf->last_retired_head = -1;
55         }
56
57         ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
58                                             ringbuf->tail, ringbuf->size);
59 }
60
61 static void __intel_ring_advance(struct intel_engine_cs *engine)
62 {
63         struct intel_ringbuffer *ringbuf = engine->buffer;
64         ringbuf->tail &= ringbuf->size - 1;
65         engine->write_tail(engine, ringbuf->tail);
66 }
67
68 static int
69 gen2_render_ring_flush(struct drm_i915_gem_request *req,
70                        u32      invalidate_domains,
71                        u32      flush_domains)
72 {
73         struct intel_engine_cs *engine = req->engine;
74         u32 cmd;
75         int ret;
76
77         cmd = MI_FLUSH;
78         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
79                 cmd |= MI_NO_WRITE_FLUSH;
80
81         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
82                 cmd |= MI_READ_FLUSH;
83
84         ret = intel_ring_begin(req, 2);
85         if (ret)
86                 return ret;
87
88         intel_ring_emit(engine, cmd);
89         intel_ring_emit(engine, MI_NOOP);
90         intel_ring_advance(engine);
91
92         return 0;
93 }
94
95 static int
96 gen4_render_ring_flush(struct drm_i915_gem_request *req,
97                        u32      invalidate_domains,
98                        u32      flush_domains)
99 {
100         struct intel_engine_cs *engine = req->engine;
101         u32 cmd;
102         int ret;
103
104         /*
105          * read/write caches:
106          *
107          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
108          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
109          * also flushed at 2d versus 3d pipeline switches.
110          *
111          * read-only caches:
112          *
113          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
114          * MI_READ_FLUSH is set, and is always flushed on 965.
115          *
116          * I915_GEM_DOMAIN_COMMAND may not exist?
117          *
118          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
119          * invalidated when MI_EXE_FLUSH is set.
120          *
121          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
122          * invalidated with every MI_FLUSH.
123          *
124          * TLBs:
125          *
126          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
127          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
128          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
129          * are flushed at any MI_FLUSH.
130          */
131
132         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
133         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
134                 cmd &= ~MI_NO_WRITE_FLUSH;
135         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
136                 cmd |= MI_EXE_FLUSH;
137
138         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
139             (IS_G4X(req->i915) || IS_GEN5(req->i915)))
140                 cmd |= MI_INVALIDATE_ISP;
141
142         ret = intel_ring_begin(req, 2);
143         if (ret)
144                 return ret;
145
146         intel_ring_emit(engine, cmd);
147         intel_ring_emit(engine, MI_NOOP);
148         intel_ring_advance(engine);
149
150         return 0;
151 }
152
153 /**
154  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
155  * implementing two workarounds on gen6.  From section 1.4.7.1
156  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
157  *
158  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
159  * produced by non-pipelined state commands), software needs to first
160  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
161  * 0.
162  *
163  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
164  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
165  *
166  * And the workaround for these two requires this workaround first:
167  *
168  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
169  * BEFORE the pipe-control with a post-sync op and no write-cache
170  * flushes.
171  *
172  * And this last workaround is tricky because of the requirements on
173  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
174  * volume 2 part 1:
175  *
176  *     "1 of the following must also be set:
177  *      - Render Target Cache Flush Enable ([12] of DW1)
178  *      - Depth Cache Flush Enable ([0] of DW1)
179  *      - Stall at Pixel Scoreboard ([1] of DW1)
180  *      - Depth Stall ([13] of DW1)
181  *      - Post-Sync Operation ([13] of DW1)
182  *      - Notify Enable ([8] of DW1)"
183  *
184  * The cache flushes require the workaround flush that triggered this
185  * one, so we can't use it.  Depth stall would trigger the same.
186  * Post-sync nonzero is what triggered this second workaround, so we
187  * can't use that one either.  Notify enable is IRQs, which aren't
188  * really our business.  That leaves only stall at scoreboard.
189  */
190 static int
191 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
192 {
193         struct intel_engine_cs *engine = req->engine;
194         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
195         int ret;
196
197         ret = intel_ring_begin(req, 6);
198         if (ret)
199                 return ret;
200
201         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
202         intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
203                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
204         intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
205         intel_ring_emit(engine, 0); /* low dword */
206         intel_ring_emit(engine, 0); /* high dword */
207         intel_ring_emit(engine, MI_NOOP);
208         intel_ring_advance(engine);
209
210         ret = intel_ring_begin(req, 6);
211         if (ret)
212                 return ret;
213
214         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
215         intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
216         intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
217         intel_ring_emit(engine, 0);
218         intel_ring_emit(engine, 0);
219         intel_ring_emit(engine, MI_NOOP);
220         intel_ring_advance(engine);
221
222         return 0;
223 }
224
225 static int
226 gen6_render_ring_flush(struct drm_i915_gem_request *req,
227                        u32 invalidate_domains, u32 flush_domains)
228 {
229         struct intel_engine_cs *engine = req->engine;
230         u32 flags = 0;
231         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
232         int ret;
233
234         /* Force SNB workarounds for PIPE_CONTROL flushes */
235         ret = intel_emit_post_sync_nonzero_flush(req);
236         if (ret)
237                 return ret;
238
239         /* Just flush everything.  Experiments have shown that reducing the
240          * number of bits based on the write domains has little performance
241          * impact.
242          */
243         if (flush_domains) {
244                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
245                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
246                 /*
247                  * Ensure that any following seqno writes only happen
248                  * when the render cache is indeed flushed.
249                  */
250                 flags |= PIPE_CONTROL_CS_STALL;
251         }
252         if (invalidate_domains) {
253                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
254                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
255                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
256                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
257                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
258                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
259                 /*
260                  * TLB invalidate requires a post-sync write.
261                  */
262                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
263         }
264
265         ret = intel_ring_begin(req, 4);
266         if (ret)
267                 return ret;
268
269         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
270         intel_ring_emit(engine, flags);
271         intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
272         intel_ring_emit(engine, 0);
273         intel_ring_advance(engine);
274
275         return 0;
276 }
277
278 static int
279 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
280 {
281         struct intel_engine_cs *engine = req->engine;
282         int ret;
283
284         ret = intel_ring_begin(req, 4);
285         if (ret)
286                 return ret;
287
288         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
289         intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
290                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
291         intel_ring_emit(engine, 0);
292         intel_ring_emit(engine, 0);
293         intel_ring_advance(engine);
294
295         return 0;
296 }
297
298 static int
299 gen7_render_ring_flush(struct drm_i915_gem_request *req,
300                        u32 invalidate_domains, u32 flush_domains)
301 {
302         struct intel_engine_cs *engine = req->engine;
303         u32 flags = 0;
304         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
305         int ret;
306
307         /*
308          * Ensure that any following seqno writes only happen when the render
309          * cache is indeed flushed.
310          *
311          * Workaround: 4th PIPE_CONTROL command (except the ones with only
312          * read-cache invalidate bits set) must have the CS_STALL bit set. We
313          * don't try to be clever and just set it unconditionally.
314          */
315         flags |= PIPE_CONTROL_CS_STALL;
316
317         /* Just flush everything.  Experiments have shown that reducing the
318          * number of bits based on the write domains has little performance
319          * impact.
320          */
321         if (flush_domains) {
322                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
323                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
324                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
325                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
326         }
327         if (invalidate_domains) {
328                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
329                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
330                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
331                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
332                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
333                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
334                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
335                 /*
336                  * TLB invalidate requires a post-sync write.
337                  */
338                 flags |= PIPE_CONTROL_QW_WRITE;
339                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
340
341                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
342
343                 /* Workaround: we must issue a pipe_control with CS-stall bit
344                  * set before a pipe_control command that has the state cache
345                  * invalidate bit set. */
346                 gen7_render_ring_cs_stall_wa(req);
347         }
348
349         ret = intel_ring_begin(req, 4);
350         if (ret)
351                 return ret;
352
353         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
354         intel_ring_emit(engine, flags);
355         intel_ring_emit(engine, scratch_addr);
356         intel_ring_emit(engine, 0);
357         intel_ring_advance(engine);
358
359         return 0;
360 }
361
362 static int
363 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
364                        u32 flags, u32 scratch_addr)
365 {
366         struct intel_engine_cs *engine = req->engine;
367         int ret;
368
369         ret = intel_ring_begin(req, 6);
370         if (ret)
371                 return ret;
372
373         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
374         intel_ring_emit(engine, flags);
375         intel_ring_emit(engine, scratch_addr);
376         intel_ring_emit(engine, 0);
377         intel_ring_emit(engine, 0);
378         intel_ring_emit(engine, 0);
379         intel_ring_advance(engine);
380
381         return 0;
382 }
383
384 static int
385 gen8_render_ring_flush(struct drm_i915_gem_request *req,
386                        u32 invalidate_domains, u32 flush_domains)
387 {
388         u32 flags = 0;
389         u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
390         int ret;
391
392         flags |= PIPE_CONTROL_CS_STALL;
393
394         if (flush_domains) {
395                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
396                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
397                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
398                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
399         }
400         if (invalidate_domains) {
401                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
402                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
403                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
404                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
405                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
406                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
407                 flags |= PIPE_CONTROL_QW_WRITE;
408                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
409
410                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
411                 ret = gen8_emit_pipe_control(req,
412                                              PIPE_CONTROL_CS_STALL |
413                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
414                                              0);
415                 if (ret)
416                         return ret;
417         }
418
419         return gen8_emit_pipe_control(req, flags, scratch_addr);
420 }
421
422 static void ring_write_tail(struct intel_engine_cs *engine,
423                             u32 value)
424 {
425         struct drm_i915_private *dev_priv = engine->i915;
426         I915_WRITE_TAIL(engine, value);
427 }
428
429 u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
430 {
431         struct drm_i915_private *dev_priv = engine->i915;
432         u64 acthd;
433
434         if (INTEL_GEN(dev_priv) >= 8)
435                 acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
436                                          RING_ACTHD_UDW(engine->mmio_base));
437         else if (INTEL_GEN(dev_priv) >= 4)
438                 acthd = I915_READ(RING_ACTHD(engine->mmio_base));
439         else
440                 acthd = I915_READ(ACTHD);
441
442         return acthd;
443 }
444
445 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
446 {
447         struct drm_i915_private *dev_priv = engine->i915;
448         u32 addr;
449
450         addr = dev_priv->status_page_dmah->busaddr;
451         if (INTEL_GEN(dev_priv) >= 4)
452                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
453         I915_WRITE(HWS_PGA, addr);
454 }
455
456 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
457 {
458         struct drm_i915_private *dev_priv = engine->i915;
459         i915_reg_t mmio;
460
461         /* The ring status page addresses are no longer next to the rest of
462          * the ring registers as of gen7.
463          */
464         if (IS_GEN7(dev_priv)) {
465                 switch (engine->id) {
466                 case RCS:
467                         mmio = RENDER_HWS_PGA_GEN7;
468                         break;
469                 case BCS:
470                         mmio = BLT_HWS_PGA_GEN7;
471                         break;
472                 /*
473                  * VCS2 actually doesn't exist on Gen7. Only shut up
474                  * gcc switch check warning
475                  */
476                 case VCS2:
477                 case VCS:
478                         mmio = BSD_HWS_PGA_GEN7;
479                         break;
480                 case VECS:
481                         mmio = VEBOX_HWS_PGA_GEN7;
482                         break;
483                 }
484         } else if (IS_GEN6(dev_priv)) {
485                 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
486         } else {
487                 /* XXX: gen8 returns to sanity */
488                 mmio = RING_HWS_PGA(engine->mmio_base);
489         }
490
491         I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
492         POSTING_READ(mmio);
493
494         /*
495          * Flush the TLB for this page
496          *
497          * FIXME: These two bits have disappeared on gen8, so a question
498          * arises: do we still need this and if so how should we go about
499          * invalidating the TLB?
500          */
501         if (IS_GEN(dev_priv, 6, 7)) {
502                 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
503
504                 /* ring should be idle before issuing a sync flush*/
505                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
506
507                 I915_WRITE(reg,
508                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
509                                               INSTPM_SYNC_FLUSH));
510                 if (intel_wait_for_register(dev_priv,
511                                             reg, INSTPM_SYNC_FLUSH, 0,
512                                             1000))
513                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
514                                   engine->name);
515         }
516 }
517
518 static bool stop_ring(struct intel_engine_cs *engine)
519 {
520         struct drm_i915_private *dev_priv = engine->i915;
521
522         if (!IS_GEN2(dev_priv)) {
523                 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
524                 if (intel_wait_for_register(dev_priv,
525                                             RING_MI_MODE(engine->mmio_base),
526                                             MODE_IDLE,
527                                             MODE_IDLE,
528                                             1000)) {
529                         DRM_ERROR("%s : timed out trying to stop ring\n",
530                                   engine->name);
531                         /* Sometimes we observe that the idle flag is not
532                          * set even though the ring is empty. So double
533                          * check before giving up.
534                          */
535                         if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
536                                 return false;
537                 }
538         }
539
540         I915_WRITE_CTL(engine, 0);
541         I915_WRITE_HEAD(engine, 0);
542         engine->write_tail(engine, 0);
543
544         if (!IS_GEN2(dev_priv)) {
545                 (void)I915_READ_CTL(engine);
546                 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
547         }
548
549         return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
550 }
551
552 static int init_ring_common(struct intel_engine_cs *engine)
553 {
554         struct drm_i915_private *dev_priv = engine->i915;
555         struct intel_ringbuffer *ringbuf = engine->buffer;
556         struct drm_i915_gem_object *obj = ringbuf->obj;
557         int ret = 0;
558
559         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
560
561         if (!stop_ring(engine)) {
562                 /* G45 ring initialization often fails to reset head to zero */
563                 DRM_DEBUG_KMS("%s head not reset to zero "
564                               "ctl %08x head %08x tail %08x start %08x\n",
565                               engine->name,
566                               I915_READ_CTL(engine),
567                               I915_READ_HEAD(engine),
568                               I915_READ_TAIL(engine),
569                               I915_READ_START(engine));
570
571                 if (!stop_ring(engine)) {
572                         DRM_ERROR("failed to set %s head to zero "
573                                   "ctl %08x head %08x tail %08x start %08x\n",
574                                   engine->name,
575                                   I915_READ_CTL(engine),
576                                   I915_READ_HEAD(engine),
577                                   I915_READ_TAIL(engine),
578                                   I915_READ_START(engine));
579                         ret = -EIO;
580                         goto out;
581                 }
582         }
583
584         if (I915_NEED_GFX_HWS(dev_priv))
585                 intel_ring_setup_status_page(engine);
586         else
587                 ring_setup_phys_status_page(engine);
588
589         /* Enforce ordering by reading HEAD register back */
590         I915_READ_HEAD(engine);
591
592         /* Initialize the ring. This must happen _after_ we've cleared the ring
593          * registers with the above sequence (the readback of the HEAD registers
594          * also enforces ordering), otherwise the hw might lose the new ring
595          * register values. */
596         I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
597
598         /* WaClearRingBufHeadRegAtInit:ctg,elk */
599         if (I915_READ_HEAD(engine))
600                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
601                           engine->name, I915_READ_HEAD(engine));
602         I915_WRITE_HEAD(engine, 0);
603         (void)I915_READ_HEAD(engine);
604
605         I915_WRITE_CTL(engine,
606                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
607                         | RING_VALID);
608
609         /* If the head is still not zero, the ring is dead */
610         if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
611                      I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
612                      (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
613                 DRM_ERROR("%s initialization failed "
614                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
615                           engine->name,
616                           I915_READ_CTL(engine),
617                           I915_READ_CTL(engine) & RING_VALID,
618                           I915_READ_HEAD(engine), I915_READ_TAIL(engine),
619                           I915_READ_START(engine),
620                           (unsigned long)i915_gem_obj_ggtt_offset(obj));
621                 ret = -EIO;
622                 goto out;
623         }
624
625         ringbuf->last_retired_head = -1;
626         ringbuf->head = I915_READ_HEAD(engine);
627         ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
628         intel_ring_update_space(ringbuf);
629
630         intel_engine_init_hangcheck(engine);
631
632 out:
633         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
634
635         return ret;
636 }
637
638 void intel_fini_pipe_control(struct intel_engine_cs *engine)
639 {
640         if (engine->scratch.obj == NULL)
641                 return;
642
643         i915_gem_object_ggtt_unpin(engine->scratch.obj);
644         i915_gem_object_put(engine->scratch.obj);
645         engine->scratch.obj = NULL;
646 }
647
648 int intel_init_pipe_control(struct intel_engine_cs *engine, int size)
649 {
650         struct drm_i915_gem_object *obj;
651         int ret;
652
653         WARN_ON(engine->scratch.obj);
654
655         obj = i915_gem_object_create_stolen(&engine->i915->drm, size);
656         if (!obj)
657                 obj = i915_gem_object_create(&engine->i915->drm, size);
658         if (IS_ERR(obj)) {
659                 DRM_ERROR("Failed to allocate scratch page\n");
660                 ret = PTR_ERR(obj);
661                 goto err;
662         }
663
664         ret = i915_gem_obj_ggtt_pin(obj, 4096, PIN_HIGH);
665         if (ret)
666                 goto err_unref;
667
668         engine->scratch.obj = obj;
669         engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
670         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
671                          engine->name, engine->scratch.gtt_offset);
672         return 0;
673
674 err_unref:
675         i915_gem_object_put(engine->scratch.obj);
676 err:
677         return ret;
678 }
679
680 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
681 {
682         struct intel_engine_cs *engine = req->engine;
683         struct i915_workarounds *w = &req->i915->workarounds;
684         int ret, i;
685
686         if (w->count == 0)
687                 return 0;
688
689         engine->gpu_caches_dirty = true;
690         ret = intel_ring_flush_all_caches(req);
691         if (ret)
692                 return ret;
693
694         ret = intel_ring_begin(req, (w->count * 2 + 2));
695         if (ret)
696                 return ret;
697
698         intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
699         for (i = 0; i < w->count; i++) {
700                 intel_ring_emit_reg(engine, w->reg[i].addr);
701                 intel_ring_emit(engine, w->reg[i].value);
702         }
703         intel_ring_emit(engine, MI_NOOP);
704
705         intel_ring_advance(engine);
706
707         engine->gpu_caches_dirty = true;
708         ret = intel_ring_flush_all_caches(req);
709         if (ret)
710                 return ret;
711
712         DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
713
714         return 0;
715 }
716
717 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
718 {
719         int ret;
720
721         ret = intel_ring_workarounds_emit(req);
722         if (ret != 0)
723                 return ret;
724
725         ret = i915_gem_render_state_init(req);
726         if (ret)
727                 return ret;
728
729         return 0;
730 }
731
732 static int wa_add(struct drm_i915_private *dev_priv,
733                   i915_reg_t addr,
734                   const u32 mask, const u32 val)
735 {
736         const u32 idx = dev_priv->workarounds.count;
737
738         if (WARN_ON(idx >= I915_MAX_WA_REGS))
739                 return -ENOSPC;
740
741         dev_priv->workarounds.reg[idx].addr = addr;
742         dev_priv->workarounds.reg[idx].value = val;
743         dev_priv->workarounds.reg[idx].mask = mask;
744
745         dev_priv->workarounds.count++;
746
747         return 0;
748 }
749
750 #define WA_REG(addr, mask, val) do { \
751                 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
752                 if (r) \
753                         return r; \
754         } while (0)
755
756 #define WA_SET_BIT_MASKED(addr, mask) \
757         WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
758
759 #define WA_CLR_BIT_MASKED(addr, mask) \
760         WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
761
762 #define WA_SET_FIELD_MASKED(addr, mask, value) \
763         WA_REG(addr, mask, _MASKED_FIELD(mask, value))
764
765 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
766 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
767
768 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
769
770 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
771                                  i915_reg_t reg)
772 {
773         struct drm_i915_private *dev_priv = engine->i915;
774         struct i915_workarounds *wa = &dev_priv->workarounds;
775         const uint32_t index = wa->hw_whitelist_count[engine->id];
776
777         if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
778                 return -EINVAL;
779
780         WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
781                  i915_mmio_reg_offset(reg));
782         wa->hw_whitelist_count[engine->id]++;
783
784         return 0;
785 }
786
787 static int gen8_init_workarounds(struct intel_engine_cs *engine)
788 {
789         struct drm_i915_private *dev_priv = engine->i915;
790
791         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
792
793         /* WaDisableAsyncFlipPerfMode:bdw,chv */
794         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
795
796         /* WaDisablePartialInstShootdown:bdw,chv */
797         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
798                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
799
800         /* Use Force Non-Coherent whenever executing a 3D context. This is a
801          * workaround for for a possible hang in the unlikely event a TLB
802          * invalidation occurs during a PSD flush.
803          */
804         /* WaForceEnableNonCoherent:bdw,chv */
805         /* WaHdcDisableFetchWhenMasked:bdw,chv */
806         WA_SET_BIT_MASKED(HDC_CHICKEN0,
807                           HDC_DONOT_FETCH_MEM_WHEN_MASKED |
808                           HDC_FORCE_NON_COHERENT);
809
810         /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
811          * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
812          *  polygons in the same 8x4 pixel/sample area to be processed without
813          *  stalling waiting for the earlier ones to write to Hierarchical Z
814          *  buffer."
815          *
816          * This optimization is off by default for BDW and CHV; turn it on.
817          */
818         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
819
820         /* Wa4x4STCOptimizationDisable:bdw,chv */
821         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
822
823         /*
824          * BSpec recommends 8x4 when MSAA is used,
825          * however in practice 16x4 seems fastest.
826          *
827          * Note that PS/WM thread counts depend on the WIZ hashing
828          * disable bit, which we don't touch here, but it's good
829          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
830          */
831         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
832                             GEN6_WIZ_HASHING_MASK,
833                             GEN6_WIZ_HASHING_16x4);
834
835         return 0;
836 }
837
838 static int bdw_init_workarounds(struct intel_engine_cs *engine)
839 {
840         struct drm_i915_private *dev_priv = engine->i915;
841         int ret;
842
843         ret = gen8_init_workarounds(engine);
844         if (ret)
845                 return ret;
846
847         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
848         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
849
850         /* WaDisableDopClockGating:bdw */
851         WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
852                           DOP_CLOCK_GATING_DISABLE);
853
854         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
855                           GEN8_SAMPLER_POWER_BYPASS_DIS);
856
857         WA_SET_BIT_MASKED(HDC_CHICKEN0,
858                           /* WaForceContextSaveRestoreNonCoherent:bdw */
859                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
860                           /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
861                           (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
862
863         return 0;
864 }
865
866 static int chv_init_workarounds(struct intel_engine_cs *engine)
867 {
868         struct drm_i915_private *dev_priv = engine->i915;
869         int ret;
870
871         ret = gen8_init_workarounds(engine);
872         if (ret)
873                 return ret;
874
875         /* WaDisableThreadStallDopClockGating:chv */
876         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
877
878         /* Improve HiZ throughput on CHV. */
879         WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
880
881         return 0;
882 }
883
884 static int gen9_init_workarounds(struct intel_engine_cs *engine)
885 {
886         struct drm_i915_private *dev_priv = engine->i915;
887         int ret;
888
889         /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
890         I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
891
892         /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
893         I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
894                    GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
895
896         /* WaDisableKillLogic:bxt,skl,kbl */
897         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
898                    ECOCHK_DIS_TLB);
899
900         /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
901         /* WaDisablePartialInstShootdown:skl,bxt,kbl */
902         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
903                           FLOW_CONTROL_ENABLE |
904                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
905
906         /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
907         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
908                           GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
909
910         /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
911         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
912             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
913                 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
914                                   GEN9_DG_MIRROR_FIX_ENABLE);
915
916         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
917         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
918             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
919                 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
920                                   GEN9_RHWO_OPTIMIZATION_DISABLE);
921                 /*
922                  * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
923                  * but we do that in per ctx batchbuffer as there is an issue
924                  * with this register not getting restored on ctx restore
925                  */
926         }
927
928         /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
929         /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
930         WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
931                           GEN9_ENABLE_YV12_BUGFIX |
932                           GEN9_ENABLE_GPGPU_PREEMPTION);
933
934         /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
935         /* WaDisablePartialResolveInVc:skl,bxt,kbl */
936         WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
937                                          GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
938
939         /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
940         WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
941                           GEN9_CCS_TLB_PREFETCH_ENABLE);
942
943         /* WaDisableMaskBasedCammingInRCC:skl,bxt */
944         if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
945             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
946                 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
947                                   PIXEL_MASK_CAMMING_DISABLE);
948
949         /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
950         WA_SET_BIT_MASKED(HDC_CHICKEN0,
951                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
952                           HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
953
954         /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
955          * both tied to WaForceContextSaveRestoreNonCoherent
956          * in some hsds for skl. We keep the tie for all gen9. The
957          * documentation is a bit hazy and so we want to get common behaviour,
958          * even though there is no clear evidence we would need both on kbl/bxt.
959          * This area has been source of system hangs so we play it safe
960          * and mimic the skl regardless of what bspec says.
961          *
962          * Use Force Non-Coherent whenever executing a 3D context. This
963          * is a workaround for a possible hang in the unlikely event
964          * a TLB invalidation occurs during a PSD flush.
965          */
966
967         /* WaForceEnableNonCoherent:skl,bxt,kbl */
968         WA_SET_BIT_MASKED(HDC_CHICKEN0,
969                           HDC_FORCE_NON_COHERENT);
970
971         /* WaDisableHDCInvalidation:skl,bxt,kbl */
972         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
973                    BDW_DISABLE_HDC_INVALIDATION);
974
975         /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
976         if (IS_SKYLAKE(dev_priv) ||
977             IS_KABYLAKE(dev_priv) ||
978             IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
979                 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
980                                   GEN8_SAMPLER_POWER_BYPASS_DIS);
981
982         /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
983         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
984
985         /* WaOCLCoherentLineFlush:skl,bxt,kbl */
986         I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
987                                     GEN8_LQSC_FLUSH_COHERENT_LINES));
988
989         /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
990         ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
991         if (ret)
992                 return ret;
993
994         /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
995         ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
996         if (ret)
997                 return ret;
998
999         /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
1000         ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1001         if (ret)
1002                 return ret;
1003
1004         return 0;
1005 }
1006
1007 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1008 {
1009         struct drm_i915_private *dev_priv = engine->i915;
1010         u8 vals[3] = { 0, 0, 0 };
1011         unsigned int i;
1012
1013         for (i = 0; i < 3; i++) {
1014                 u8 ss;
1015
1016                 /*
1017                  * Only consider slices where one, and only one, subslice has 7
1018                  * EUs
1019                  */
1020                 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1021                         continue;
1022
1023                 /*
1024                  * subslice_7eu[i] != 0 (because of the check above) and
1025                  * ss_max == 4 (maximum number of subslices possible per slice)
1026                  *
1027                  * ->    0 <= ss <= 3;
1028                  */
1029                 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1030                 vals[i] = 3 - ss;
1031         }
1032
1033         if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1034                 return 0;
1035
1036         /* Tune IZ hashing. See intel_device_info_runtime_init() */
1037         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1038                             GEN9_IZ_HASHING_MASK(2) |
1039                             GEN9_IZ_HASHING_MASK(1) |
1040                             GEN9_IZ_HASHING_MASK(0),
1041                             GEN9_IZ_HASHING(2, vals[2]) |
1042                             GEN9_IZ_HASHING(1, vals[1]) |
1043                             GEN9_IZ_HASHING(0, vals[0]));
1044
1045         return 0;
1046 }
1047
1048 static int skl_init_workarounds(struct intel_engine_cs *engine)
1049 {
1050         struct drm_i915_private *dev_priv = engine->i915;
1051         int ret;
1052
1053         ret = gen9_init_workarounds(engine);
1054         if (ret)
1055                 return ret;
1056
1057         /*
1058          * Actual WA is to disable percontext preemption granularity control
1059          * until D0 which is the default case so this is equivalent to
1060          * !WaDisablePerCtxtPreemptionGranularityControl:skl
1061          */
1062         if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1063                 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1064                            _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1065         }
1066
1067         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1068                 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1069                 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1070                            _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1071         }
1072
1073         /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1074          * involving this register should also be added to WA batch as required.
1075          */
1076         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1077                 /* WaDisableLSQCROPERFforOCL:skl */
1078                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1079                            GEN8_LQSC_RO_PERF_DIS);
1080
1081         /* WaEnableGapsTsvCreditFix:skl */
1082         if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1083                 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1084                                            GEN9_GAPS_TSV_CREDIT_DISABLE));
1085         }
1086
1087         /* WaDisablePowerCompilerClockGating:skl */
1088         if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1089                 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1090                                   BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1091
1092         /* WaBarrierPerformanceFixDisable:skl */
1093         if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1094                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1095                                   HDC_FENCE_DEST_SLM_DISABLE |
1096                                   HDC_BARRIER_PERFORMANCE_DISABLE);
1097
1098         /* WaDisableSbeCacheDispatchPortSharing:skl */
1099         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1100                 WA_SET_BIT_MASKED(
1101                         GEN7_HALF_SLICE_CHICKEN1,
1102                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1103
1104         /* WaDisableGafsUnitClkGating:skl */
1105         WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1106
1107         /* WaInPlaceDecompressionHang:skl */
1108         if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
1109                 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1110                            GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1111
1112         /* WaDisableLSQCROPERFforOCL:skl */
1113         ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1114         if (ret)
1115                 return ret;
1116
1117         return skl_tune_iz_hashing(engine);
1118 }
1119
1120 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1121 {
1122         struct drm_i915_private *dev_priv = engine->i915;
1123         int ret;
1124
1125         ret = gen9_init_workarounds(engine);
1126         if (ret)
1127                 return ret;
1128
1129         /* WaStoreMultiplePTEenable:bxt */
1130         /* This is a requirement according to Hardware specification */
1131         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1132                 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1133
1134         /* WaSetClckGatingDisableMedia:bxt */
1135         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1136                 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1137                                             ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1138         }
1139
1140         /* WaDisableThreadStallDopClockGating:bxt */
1141         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1142                           STALL_DOP_GATING_DISABLE);
1143
1144         /* WaDisablePooledEuLoadBalancingFix:bxt */
1145         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
1146                 WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
1147                                   GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
1148         }
1149
1150         /* WaDisableSbeCacheDispatchPortSharing:bxt */
1151         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1152                 WA_SET_BIT_MASKED(
1153                         GEN7_HALF_SLICE_CHICKEN1,
1154                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1155         }
1156
1157         /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1158         /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1159         /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1160         /* WaDisableLSQCROPERFforOCL:bxt */
1161         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1162                 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1163                 if (ret)
1164                         return ret;
1165
1166                 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1167                 if (ret)
1168                         return ret;
1169         }
1170
1171         /* WaProgramL3SqcReg1DefaultForPerf:bxt */
1172         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1173                 I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1174                                            L3_HIGH_PRIO_CREDITS(2));
1175
1176         /* WaToEnableHwFixForPushConstHWBug:bxt */
1177         if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1178                 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1179                                   GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1180
1181         /* WaInPlaceDecompressionHang:bxt */
1182         if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1183                 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1184                            GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1185
1186         return 0;
1187 }
1188
1189 static int kbl_init_workarounds(struct intel_engine_cs *engine)
1190 {
1191         struct drm_i915_private *dev_priv = engine->i915;
1192         int ret;
1193
1194         ret = gen9_init_workarounds(engine);
1195         if (ret)
1196                 return ret;
1197
1198         /* WaEnableGapsTsvCreditFix:kbl */
1199         I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1200                                    GEN9_GAPS_TSV_CREDIT_DISABLE));
1201
1202         /* WaDisableDynamicCreditSharing:kbl */
1203         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1204                 WA_SET_BIT(GAMT_CHKN_BIT_REG,
1205                            GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1206
1207         /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1208         if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1209                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1210                                   HDC_FENCE_DEST_SLM_DISABLE);
1211
1212         /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1213          * involving this register should also be added to WA batch as required.
1214          */
1215         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1216                 /* WaDisableLSQCROPERFforOCL:kbl */
1217                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1218                            GEN8_LQSC_RO_PERF_DIS);
1219
1220         /* WaToEnableHwFixForPushConstHWBug:kbl */
1221         if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1222                 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1223                                   GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1224
1225         /* WaDisableGafsUnitClkGating:kbl */
1226         WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1227
1228         /* WaDisableSbeCacheDispatchPortSharing:kbl */
1229         WA_SET_BIT_MASKED(
1230                 GEN7_HALF_SLICE_CHICKEN1,
1231                 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1232
1233         /* WaInPlaceDecompressionHang:kbl */
1234         WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1235                    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1236
1237         /* WaDisableLSQCROPERFforOCL:kbl */
1238         ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1239         if (ret)
1240                 return ret;
1241
1242         return 0;
1243 }
1244
1245 int init_workarounds_ring(struct intel_engine_cs *engine)
1246 {
1247         struct drm_i915_private *dev_priv = engine->i915;
1248
1249         WARN_ON(engine->id != RCS);
1250
1251         dev_priv->workarounds.count = 0;
1252         dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1253
1254         if (IS_BROADWELL(dev_priv))
1255                 return bdw_init_workarounds(engine);
1256
1257         if (IS_CHERRYVIEW(dev_priv))
1258                 return chv_init_workarounds(engine);
1259
1260         if (IS_SKYLAKE(dev_priv))
1261                 return skl_init_workarounds(engine);
1262
1263         if (IS_BROXTON(dev_priv))
1264                 return bxt_init_workarounds(engine);
1265
1266         if (IS_KABYLAKE(dev_priv))
1267                 return kbl_init_workarounds(engine);
1268
1269         return 0;
1270 }
1271
1272 static int init_render_ring(struct intel_engine_cs *engine)
1273 {
1274         struct drm_i915_private *dev_priv = engine->i915;
1275         int ret = init_ring_common(engine);
1276         if (ret)
1277                 return ret;
1278
1279         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1280         if (IS_GEN(dev_priv, 4, 6))
1281                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1282
1283         /* We need to disable the AsyncFlip performance optimisations in order
1284          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1285          * programmed to '1' on all products.
1286          *
1287          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1288          */
1289         if (IS_GEN(dev_priv, 6, 7))
1290                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1291
1292         /* Required for the hardware to program scanline values for waiting */
1293         /* WaEnableFlushTlbInvalidationMode:snb */
1294         if (IS_GEN6(dev_priv))
1295                 I915_WRITE(GFX_MODE,
1296                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1297
1298         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1299         if (IS_GEN7(dev_priv))
1300                 I915_WRITE(GFX_MODE_GEN7,
1301                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1302                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1303
1304         if (IS_GEN6(dev_priv)) {
1305                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1306                  * "If this bit is set, STCunit will have LRA as replacement
1307                  *  policy. [...] This bit must be reset.  LRA replacement
1308                  *  policy is not supported."
1309                  */
1310                 I915_WRITE(CACHE_MODE_0,
1311                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1312         }
1313
1314         if (IS_GEN(dev_priv, 6, 7))
1315                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1316
1317         if (INTEL_INFO(dev_priv)->gen >= 6)
1318                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1319
1320         return init_workarounds_ring(engine);
1321 }
1322
1323 static void render_ring_cleanup(struct intel_engine_cs *engine)
1324 {
1325         struct drm_i915_private *dev_priv = engine->i915;
1326
1327         if (dev_priv->semaphore_obj) {
1328                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1329                 i915_gem_object_put(dev_priv->semaphore_obj);
1330                 dev_priv->semaphore_obj = NULL;
1331         }
1332
1333         intel_fini_pipe_control(engine);
1334 }
1335
1336 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1337                            unsigned int num_dwords)
1338 {
1339 #define MBOX_UPDATE_DWORDS 8
1340         struct intel_engine_cs *signaller = signaller_req->engine;
1341         struct drm_i915_private *dev_priv = signaller_req->i915;
1342         struct intel_engine_cs *waiter;
1343         enum intel_engine_id id;
1344         int ret, num_rings;
1345
1346         num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1347         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1348 #undef MBOX_UPDATE_DWORDS
1349
1350         ret = intel_ring_begin(signaller_req, num_dwords);
1351         if (ret)
1352                 return ret;
1353
1354         for_each_engine_id(waiter, dev_priv, id) {
1355                 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1356                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1357                         continue;
1358
1359                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1360                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1361                                            PIPE_CONTROL_QW_WRITE |
1362                                            PIPE_CONTROL_CS_STALL);
1363                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1364                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1365                 intel_ring_emit(signaller, signaller_req->fence.seqno);
1366                 intel_ring_emit(signaller, 0);
1367                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1368                                            MI_SEMAPHORE_TARGET(waiter->hw_id));
1369                 intel_ring_emit(signaller, 0);
1370         }
1371
1372         return 0;
1373 }
1374
1375 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1376                            unsigned int num_dwords)
1377 {
1378 #define MBOX_UPDATE_DWORDS 6
1379         struct intel_engine_cs *signaller = signaller_req->engine;
1380         struct drm_i915_private *dev_priv = signaller_req->i915;
1381         struct intel_engine_cs *waiter;
1382         enum intel_engine_id id;
1383         int ret, num_rings;
1384
1385         num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1386         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1387 #undef MBOX_UPDATE_DWORDS
1388
1389         ret = intel_ring_begin(signaller_req, num_dwords);
1390         if (ret)
1391                 return ret;
1392
1393         for_each_engine_id(waiter, dev_priv, id) {
1394                 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1395                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1396                         continue;
1397
1398                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1399                                            MI_FLUSH_DW_OP_STOREDW);
1400                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1401                                            MI_FLUSH_DW_USE_GTT);
1402                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1403                 intel_ring_emit(signaller, signaller_req->fence.seqno);
1404                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1405                                            MI_SEMAPHORE_TARGET(waiter->hw_id));
1406                 intel_ring_emit(signaller, 0);
1407         }
1408
1409         return 0;
1410 }
1411
1412 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1413                        unsigned int num_dwords)
1414 {
1415         struct intel_engine_cs *signaller = signaller_req->engine;
1416         struct drm_i915_private *dev_priv = signaller_req->i915;
1417         struct intel_engine_cs *useless;
1418         enum intel_engine_id id;
1419         int ret, num_rings;
1420
1421 #define MBOX_UPDATE_DWORDS 3
1422         num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1423         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1424 #undef MBOX_UPDATE_DWORDS
1425
1426         ret = intel_ring_begin(signaller_req, num_dwords);
1427         if (ret)
1428                 return ret;
1429
1430         for_each_engine_id(useless, dev_priv, id) {
1431                 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1432
1433                 if (i915_mmio_reg_valid(mbox_reg)) {
1434                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1435                         intel_ring_emit_reg(signaller, mbox_reg);
1436                         intel_ring_emit(signaller, signaller_req->fence.seqno);
1437                 }
1438         }
1439
1440         /* If num_dwords was rounded, make sure the tail pointer is correct */
1441         if (num_rings % 2 == 0)
1442                 intel_ring_emit(signaller, MI_NOOP);
1443
1444         return 0;
1445 }
1446
1447 /**
1448  * gen6_add_request - Update the semaphore mailbox registers
1449  *
1450  * @request - request to write to the ring
1451  *
1452  * Update the mailbox registers in the *other* rings with the current seqno.
1453  * This acts like a signal in the canonical semaphore.
1454  */
1455 static int
1456 gen6_add_request(struct drm_i915_gem_request *req)
1457 {
1458         struct intel_engine_cs *engine = req->engine;
1459         int ret;
1460
1461         if (engine->semaphore.signal)
1462                 ret = engine->semaphore.signal(req, 4);
1463         else
1464                 ret = intel_ring_begin(req, 4);
1465
1466         if (ret)
1467                 return ret;
1468
1469         intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1470         intel_ring_emit(engine,
1471                         I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1472         intel_ring_emit(engine, req->fence.seqno);
1473         intel_ring_emit(engine, MI_USER_INTERRUPT);
1474         __intel_ring_advance(engine);
1475
1476         return 0;
1477 }
1478
1479 static int
1480 gen8_render_add_request(struct drm_i915_gem_request *req)
1481 {
1482         struct intel_engine_cs *engine = req->engine;
1483         int ret;
1484
1485         if (engine->semaphore.signal)
1486                 ret = engine->semaphore.signal(req, 8);
1487         else
1488                 ret = intel_ring_begin(req, 8);
1489         if (ret)
1490                 return ret;
1491
1492         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
1493         intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
1494                                  PIPE_CONTROL_CS_STALL |
1495                                  PIPE_CONTROL_QW_WRITE));
1496         intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
1497         intel_ring_emit(engine, 0);
1498         intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1499         /* We're thrashing one dword of HWS. */
1500         intel_ring_emit(engine, 0);
1501         intel_ring_emit(engine, MI_USER_INTERRUPT);
1502         intel_ring_emit(engine, MI_NOOP);
1503         __intel_ring_advance(engine);
1504
1505         return 0;
1506 }
1507
1508 static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
1509                                               u32 seqno)
1510 {
1511         return dev_priv->last_seqno < seqno;
1512 }
1513
1514 /**
1515  * intel_ring_sync - sync the waiter to the signaller on seqno
1516  *
1517  * @waiter - ring that is waiting
1518  * @signaller - ring which has, or will signal
1519  * @seqno - seqno which the waiter will block on
1520  */
1521
1522 static int
1523 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1524                struct intel_engine_cs *signaller,
1525                u32 seqno)
1526 {
1527         struct intel_engine_cs *waiter = waiter_req->engine;
1528         struct drm_i915_private *dev_priv = waiter_req->i915;
1529         u64 offset = GEN8_WAIT_OFFSET(waiter, signaller->id);
1530         struct i915_hw_ppgtt *ppgtt;
1531         int ret;
1532
1533         ret = intel_ring_begin(waiter_req, 4);
1534         if (ret)
1535                 return ret;
1536
1537         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1538                                 MI_SEMAPHORE_GLOBAL_GTT |
1539                                 MI_SEMAPHORE_SAD_GTE_SDD);
1540         intel_ring_emit(waiter, seqno);
1541         intel_ring_emit(waiter, lower_32_bits(offset));
1542         intel_ring_emit(waiter, upper_32_bits(offset));
1543         intel_ring_advance(waiter);
1544
1545         /* When the !RCS engines idle waiting upon a semaphore, they lose their
1546          * pagetables and we must reload them before executing the batch.
1547          * We do this on the i915_switch_context() following the wait and
1548          * before the dispatch.
1549          */
1550         ppgtt = waiter_req->ctx->ppgtt;
1551         if (ppgtt && waiter_req->engine->id != RCS)
1552                 ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
1553         return 0;
1554 }
1555
1556 static int
1557 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1558                struct intel_engine_cs *signaller,
1559                u32 seqno)
1560 {
1561         struct intel_engine_cs *waiter = waiter_req->engine;
1562         u32 dw1 = MI_SEMAPHORE_MBOX |
1563                   MI_SEMAPHORE_COMPARE |
1564                   MI_SEMAPHORE_REGISTER;
1565         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1566         int ret;
1567
1568         /* Throughout all of the GEM code, seqno passed implies our current
1569          * seqno is >= the last seqno executed. However for hardware the
1570          * comparison is strictly greater than.
1571          */
1572         seqno -= 1;
1573
1574         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1575
1576         ret = intel_ring_begin(waiter_req, 4);
1577         if (ret)
1578                 return ret;
1579
1580         /* If seqno wrap happened, omit the wait with no-ops */
1581         if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
1582                 intel_ring_emit(waiter, dw1 | wait_mbox);
1583                 intel_ring_emit(waiter, seqno);
1584                 intel_ring_emit(waiter, 0);
1585                 intel_ring_emit(waiter, MI_NOOP);
1586         } else {
1587                 intel_ring_emit(waiter, MI_NOOP);
1588                 intel_ring_emit(waiter, MI_NOOP);
1589                 intel_ring_emit(waiter, MI_NOOP);
1590                 intel_ring_emit(waiter, MI_NOOP);
1591         }
1592         intel_ring_advance(waiter);
1593
1594         return 0;
1595 }
1596
1597 static void
1598 gen5_seqno_barrier(struct intel_engine_cs *engine)
1599 {
1600         /* MI_STORE are internally buffered by the GPU and not flushed
1601          * either by MI_FLUSH or SyncFlush or any other combination of
1602          * MI commands.
1603          *
1604          * "Only the submission of the store operation is guaranteed.
1605          * The write result will be complete (coherent) some time later
1606          * (this is practically a finite period but there is no guaranteed
1607          * latency)."
1608          *
1609          * Empirically, we observe that we need a delay of at least 75us to
1610          * be sure that the seqno write is visible by the CPU.
1611          */
1612         usleep_range(125, 250);
1613 }
1614
1615 static void
1616 gen6_seqno_barrier(struct intel_engine_cs *engine)
1617 {
1618         struct drm_i915_private *dev_priv = engine->i915;
1619
1620         /* Workaround to force correct ordering between irq and seqno writes on
1621          * ivb (and maybe also on snb) by reading from a CS register (like
1622          * ACTHD) before reading the status page.
1623          *
1624          * Note that this effectively stalls the read by the time it takes to
1625          * do a memory transaction, which more or less ensures that the write
1626          * from the GPU has sufficient time to invalidate the CPU cacheline.
1627          * Alternatively we could delay the interrupt from the CS ring to give
1628          * the write time to land, but that would incur a delay after every
1629          * batch i.e. much more frequent than a delay when waiting for the
1630          * interrupt (with the same net latency).
1631          *
1632          * Also note that to prevent whole machine hangs on gen7, we have to
1633          * take the spinlock to guard against concurrent cacheline access.
1634          */
1635         spin_lock_irq(&dev_priv->uncore.lock);
1636         POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1637         spin_unlock_irq(&dev_priv->uncore.lock);
1638 }
1639
1640 static void
1641 gen5_irq_enable(struct intel_engine_cs *engine)
1642 {
1643         gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1644 }
1645
1646 static void
1647 gen5_irq_disable(struct intel_engine_cs *engine)
1648 {
1649         gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1650 }
1651
1652 static void
1653 i9xx_irq_enable(struct intel_engine_cs *engine)
1654 {
1655         struct drm_i915_private *dev_priv = engine->i915;
1656
1657         dev_priv->irq_mask &= ~engine->irq_enable_mask;
1658         I915_WRITE(IMR, dev_priv->irq_mask);
1659         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1660 }
1661
1662 static void
1663 i9xx_irq_disable(struct intel_engine_cs *engine)
1664 {
1665         struct drm_i915_private *dev_priv = engine->i915;
1666
1667         dev_priv->irq_mask |= engine->irq_enable_mask;
1668         I915_WRITE(IMR, dev_priv->irq_mask);
1669 }
1670
1671 static void
1672 i8xx_irq_enable(struct intel_engine_cs *engine)
1673 {
1674         struct drm_i915_private *dev_priv = engine->i915;
1675
1676         dev_priv->irq_mask &= ~engine->irq_enable_mask;
1677         I915_WRITE16(IMR, dev_priv->irq_mask);
1678         POSTING_READ16(RING_IMR(engine->mmio_base));
1679 }
1680
1681 static void
1682 i8xx_irq_disable(struct intel_engine_cs *engine)
1683 {
1684         struct drm_i915_private *dev_priv = engine->i915;
1685
1686         dev_priv->irq_mask |= engine->irq_enable_mask;
1687         I915_WRITE16(IMR, dev_priv->irq_mask);
1688 }
1689
1690 static int
1691 bsd_ring_flush(struct drm_i915_gem_request *req,
1692                u32     invalidate_domains,
1693                u32     flush_domains)
1694 {
1695         struct intel_engine_cs *engine = req->engine;
1696         int ret;
1697
1698         ret = intel_ring_begin(req, 2);
1699         if (ret)
1700                 return ret;
1701
1702         intel_ring_emit(engine, MI_FLUSH);
1703         intel_ring_emit(engine, MI_NOOP);
1704         intel_ring_advance(engine);
1705         return 0;
1706 }
1707
1708 static int
1709 i9xx_add_request(struct drm_i915_gem_request *req)
1710 {
1711         struct intel_engine_cs *engine = req->engine;
1712         int ret;
1713
1714         ret = intel_ring_begin(req, 4);
1715         if (ret)
1716                 return ret;
1717
1718         intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1719         intel_ring_emit(engine,
1720                         I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1721         intel_ring_emit(engine, req->fence.seqno);
1722         intel_ring_emit(engine, MI_USER_INTERRUPT);
1723         __intel_ring_advance(engine);
1724
1725         return 0;
1726 }
1727
1728 static void
1729 gen6_irq_enable(struct intel_engine_cs *engine)
1730 {
1731         struct drm_i915_private *dev_priv = engine->i915;
1732
1733         I915_WRITE_IMR(engine,
1734                        ~(engine->irq_enable_mask |
1735                          engine->irq_keep_mask));
1736         gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1737 }
1738
1739 static void
1740 gen6_irq_disable(struct intel_engine_cs *engine)
1741 {
1742         struct drm_i915_private *dev_priv = engine->i915;
1743
1744         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1745         gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1746 }
1747
1748 static void
1749 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1750 {
1751         struct drm_i915_private *dev_priv = engine->i915;
1752
1753         I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1754         gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
1755 }
1756
1757 static void
1758 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1759 {
1760         struct drm_i915_private *dev_priv = engine->i915;
1761
1762         I915_WRITE_IMR(engine, ~0);
1763         gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
1764 }
1765
1766 static void
1767 gen8_irq_enable(struct intel_engine_cs *engine)
1768 {
1769         struct drm_i915_private *dev_priv = engine->i915;
1770
1771         I915_WRITE_IMR(engine,
1772                        ~(engine->irq_enable_mask |
1773                          engine->irq_keep_mask));
1774         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1775 }
1776
1777 static void
1778 gen8_irq_disable(struct intel_engine_cs *engine)
1779 {
1780         struct drm_i915_private *dev_priv = engine->i915;
1781
1782         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1783 }
1784
1785 static int
1786 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1787                          u64 offset, u32 length,
1788                          unsigned dispatch_flags)
1789 {
1790         struct intel_engine_cs *engine = req->engine;
1791         int ret;
1792
1793         ret = intel_ring_begin(req, 2);
1794         if (ret)
1795                 return ret;
1796
1797         intel_ring_emit(engine,
1798                         MI_BATCH_BUFFER_START |
1799                         MI_BATCH_GTT |
1800                         (dispatch_flags & I915_DISPATCH_SECURE ?
1801                          0 : MI_BATCH_NON_SECURE_I965));
1802         intel_ring_emit(engine, offset);
1803         intel_ring_advance(engine);
1804
1805         return 0;
1806 }
1807
1808 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1809 #define I830_BATCH_LIMIT (256*1024)
1810 #define I830_TLB_ENTRIES (2)
1811 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1812 static int
1813 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1814                          u64 offset, u32 len,
1815                          unsigned dispatch_flags)
1816 {
1817         struct intel_engine_cs *engine = req->engine;
1818         u32 cs_offset = engine->scratch.gtt_offset;
1819         int ret;
1820
1821         ret = intel_ring_begin(req, 6);
1822         if (ret)
1823                 return ret;
1824
1825         /* Evict the invalid PTE TLBs */
1826         intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1827         intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1828         intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1829         intel_ring_emit(engine, cs_offset);
1830         intel_ring_emit(engine, 0xdeadbeef);
1831         intel_ring_emit(engine, MI_NOOP);
1832         intel_ring_advance(engine);
1833
1834         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1835                 if (len > I830_BATCH_LIMIT)
1836                         return -ENOSPC;
1837
1838                 ret = intel_ring_begin(req, 6 + 2);
1839                 if (ret)
1840                         return ret;
1841
1842                 /* Blit the batch (which has now all relocs applied) to the
1843                  * stable batch scratch bo area (so that the CS never
1844                  * stumbles over its tlb invalidation bug) ...
1845                  */
1846                 intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1847                 intel_ring_emit(engine,
1848                                 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1849                 intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1850                 intel_ring_emit(engine, cs_offset);
1851                 intel_ring_emit(engine, 4096);
1852                 intel_ring_emit(engine, offset);
1853
1854                 intel_ring_emit(engine, MI_FLUSH);
1855                 intel_ring_emit(engine, MI_NOOP);
1856                 intel_ring_advance(engine);
1857
1858                 /* ... and execute it. */
1859                 offset = cs_offset;
1860         }
1861
1862         ret = intel_ring_begin(req, 2);
1863         if (ret)
1864                 return ret;
1865
1866         intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1867         intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1868                                           0 : MI_BATCH_NON_SECURE));
1869         intel_ring_advance(engine);
1870
1871         return 0;
1872 }
1873
1874 static int
1875 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1876                          u64 offset, u32 len,
1877                          unsigned dispatch_flags)
1878 {
1879         struct intel_engine_cs *engine = req->engine;
1880         int ret;
1881
1882         ret = intel_ring_begin(req, 2);
1883         if (ret)
1884                 return ret;
1885
1886         intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1887         intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1888                                           0 : MI_BATCH_NON_SECURE));
1889         intel_ring_advance(engine);
1890
1891         return 0;
1892 }
1893
1894 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1895 {
1896         struct drm_i915_private *dev_priv = engine->i915;
1897
1898         if (!dev_priv->status_page_dmah)
1899                 return;
1900
1901         drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1902         engine->status_page.page_addr = NULL;
1903 }
1904
1905 static void cleanup_status_page(struct intel_engine_cs *engine)
1906 {
1907         struct drm_i915_gem_object *obj;
1908
1909         obj = engine->status_page.obj;
1910         if (obj == NULL)
1911                 return;
1912
1913         kunmap(sg_page(obj->pages->sgl));
1914         i915_gem_object_ggtt_unpin(obj);
1915         i915_gem_object_put(obj);
1916         engine->status_page.obj = NULL;
1917 }
1918
1919 static int init_status_page(struct intel_engine_cs *engine)
1920 {
1921         struct drm_i915_gem_object *obj = engine->status_page.obj;
1922
1923         if (obj == NULL) {
1924                 unsigned flags;
1925                 int ret;
1926
1927                 obj = i915_gem_object_create(&engine->i915->drm, 4096);
1928                 if (IS_ERR(obj)) {
1929                         DRM_ERROR("Failed to allocate status page\n");
1930                         return PTR_ERR(obj);
1931                 }
1932
1933                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1934                 if (ret)
1935                         goto err_unref;
1936
1937                 flags = 0;
1938                 if (!HAS_LLC(engine->i915))
1939                         /* On g33, we cannot place HWS above 256MiB, so
1940                          * restrict its pinning to the low mappable arena.
1941                          * Though this restriction is not documented for
1942                          * gen4, gen5, or byt, they also behave similarly
1943                          * and hang if the HWS is placed at the top of the
1944                          * GTT. To generalise, it appears that all !llc
1945                          * platforms have issues with us placing the HWS
1946                          * above the mappable region (even though we never
1947                          * actualy map it).
1948                          */
1949                         flags |= PIN_MAPPABLE;
1950                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1951                 if (ret) {
1952 err_unref:
1953                         i915_gem_object_put(obj);
1954                         return ret;
1955                 }
1956
1957                 engine->status_page.obj = obj;
1958         }
1959
1960         engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1961         engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1962         memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1963
1964         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1965                         engine->name, engine->status_page.gfx_addr);
1966
1967         return 0;
1968 }
1969
1970 static int init_phys_status_page(struct intel_engine_cs *engine)
1971 {
1972         struct drm_i915_private *dev_priv = engine->i915;
1973
1974         if (!dev_priv->status_page_dmah) {
1975                 dev_priv->status_page_dmah =
1976                         drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1977                 if (!dev_priv->status_page_dmah)
1978                         return -ENOMEM;
1979         }
1980
1981         engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1982         memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1983
1984         return 0;
1985 }
1986
1987 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1988 {
1989         GEM_BUG_ON(!ringbuf->vma);
1990         GEM_BUG_ON(!ringbuf->vaddr);
1991
1992         if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
1993                 i915_gem_object_unpin_map(ringbuf->obj);
1994         else
1995                 i915_vma_unpin_iomap(ringbuf->vma);
1996         ringbuf->vaddr = NULL;
1997
1998         i915_gem_object_ggtt_unpin(ringbuf->obj);
1999         ringbuf->vma = NULL;
2000 }
2001
2002 int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
2003                                      struct intel_ringbuffer *ringbuf)
2004 {
2005         struct drm_i915_gem_object *obj = ringbuf->obj;
2006         /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2007         unsigned flags = PIN_OFFSET_BIAS | 4096;
2008         void *addr;
2009         int ret;
2010
2011         if (HAS_LLC(dev_priv) && !obj->stolen) {
2012                 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2013                 if (ret)
2014                         return ret;
2015
2016                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2017                 if (ret)
2018                         goto err_unpin;
2019
2020                 addr = i915_gem_object_pin_map(obj);
2021                 if (IS_ERR(addr)) {
2022                         ret = PTR_ERR(addr);
2023                         goto err_unpin;
2024                 }
2025         } else {
2026                 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2027                                             flags | PIN_MAPPABLE);
2028                 if (ret)
2029                         return ret;
2030
2031                 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2032                 if (ret)
2033                         goto err_unpin;
2034
2035                 /* Access through the GTT requires the device to be awake. */
2036                 assert_rpm_wakelock_held(dev_priv);
2037
2038                 addr = (void __force *)
2039                         i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
2040                 if (IS_ERR(addr)) {
2041                         ret = PTR_ERR(addr);
2042                         goto err_unpin;
2043                 }
2044         }
2045
2046         ringbuf->vaddr = addr;
2047         ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2048         return 0;
2049
2050 err_unpin:
2051         i915_gem_object_ggtt_unpin(obj);
2052         return ret;
2053 }
2054
2055 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2056 {
2057         i915_gem_object_put(ringbuf->obj);
2058         ringbuf->obj = NULL;
2059 }
2060
2061 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2062                                       struct intel_ringbuffer *ringbuf)
2063 {
2064         struct drm_i915_gem_object *obj;
2065
2066         obj = NULL;
2067         if (!HAS_LLC(dev))
2068                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2069         if (obj == NULL)
2070                 obj = i915_gem_object_create(dev, ringbuf->size);
2071         if (IS_ERR(obj))
2072                 return PTR_ERR(obj);
2073
2074         /* mark ring buffers as read-only from GPU side by default */
2075         obj->gt_ro = 1;
2076
2077         ringbuf->obj = obj;
2078
2079         return 0;
2080 }
2081
2082 struct intel_ringbuffer *
2083 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2084 {
2085         struct intel_ringbuffer *ring;
2086         int ret;
2087
2088         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2089         if (ring == NULL) {
2090                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2091                                  engine->name);
2092                 return ERR_PTR(-ENOMEM);
2093         }
2094
2095         ring->engine = engine;
2096         list_add(&ring->link, &engine->buffers);
2097
2098         ring->size = size;
2099         /* Workaround an erratum on the i830 which causes a hang if
2100          * the TAIL pointer points to within the last 2 cachelines
2101          * of the buffer.
2102          */
2103         ring->effective_size = size;
2104         if (IS_I830(engine->i915) || IS_845G(engine->i915))
2105                 ring->effective_size -= 2 * CACHELINE_BYTES;
2106
2107         ring->last_retired_head = -1;
2108         intel_ring_update_space(ring);
2109
2110         ret = intel_alloc_ringbuffer_obj(&engine->i915->drm, ring);
2111         if (ret) {
2112                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2113                                  engine->name, ret);
2114                 list_del(&ring->link);
2115                 kfree(ring);
2116                 return ERR_PTR(ret);
2117         }
2118
2119         return ring;
2120 }
2121
2122 void
2123 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2124 {
2125         intel_destroy_ringbuffer_obj(ring);
2126         list_del(&ring->link);
2127         kfree(ring);
2128 }
2129
2130 static int intel_ring_context_pin(struct i915_gem_context *ctx,
2131                                   struct intel_engine_cs *engine)
2132 {
2133         struct intel_context *ce = &ctx->engine[engine->id];
2134         int ret;
2135
2136         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2137
2138         if (ce->pin_count++)
2139                 return 0;
2140
2141         if (ce->state) {
2142                 ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
2143                 if (ret)
2144                         goto error;
2145         }
2146
2147         /* The kernel context is only used as a placeholder for flushing the
2148          * active context. It is never used for submitting user rendering and
2149          * as such never requires the golden render context, and so we can skip
2150          * emitting it when we switch to the kernel context. This is required
2151          * as during eviction we cannot allocate and pin the renderstate in
2152          * order to initialise the context.
2153          */
2154         if (ctx == ctx->i915->kernel_context)
2155                 ce->initialised = true;
2156
2157         i915_gem_context_get(ctx);
2158         return 0;
2159
2160 error:
2161         ce->pin_count = 0;
2162         return ret;
2163 }
2164
2165 static void intel_ring_context_unpin(struct i915_gem_context *ctx,
2166                                      struct intel_engine_cs *engine)
2167 {
2168         struct intel_context *ce = &ctx->engine[engine->id];
2169
2170         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2171
2172         if (--ce->pin_count)
2173                 return;
2174
2175         if (ce->state)
2176                 i915_gem_object_ggtt_unpin(ce->state);
2177
2178         i915_gem_context_put(ctx);
2179 }
2180
2181 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2182 {
2183         struct drm_i915_private *dev_priv = engine->i915;
2184         struct intel_ringbuffer *ringbuf;
2185         int ret;
2186
2187         WARN_ON(engine->buffer);
2188
2189         intel_engine_setup_common(engine);
2190
2191         memset(engine->semaphore.sync_seqno, 0,
2192                sizeof(engine->semaphore.sync_seqno));
2193
2194         ret = intel_engine_init_common(engine);
2195         if (ret)
2196                 goto error;
2197
2198         /* We may need to do things with the shrinker which
2199          * require us to immediately switch back to the default
2200          * context. This can cause a problem as pinning the
2201          * default context also requires GTT space which may not
2202          * be available. To avoid this we always pin the default
2203          * context.
2204          */
2205         ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
2206         if (ret)
2207                 goto error;
2208
2209         ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2210         if (IS_ERR(ringbuf)) {
2211                 ret = PTR_ERR(ringbuf);
2212                 goto error;
2213         }
2214         engine->buffer = ringbuf;
2215
2216         if (I915_NEED_GFX_HWS(dev_priv)) {
2217                 ret = init_status_page(engine);
2218                 if (ret)
2219                         goto error;
2220         } else {
2221                 WARN_ON(engine->id != RCS);
2222                 ret = init_phys_status_page(engine);
2223                 if (ret)
2224                         goto error;
2225         }
2226
2227         ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
2228         if (ret) {
2229                 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2230                                 engine->name, ret);
2231                 intel_destroy_ringbuffer_obj(ringbuf);
2232                 goto error;
2233         }
2234
2235         return 0;
2236
2237 error:
2238         intel_cleanup_engine(engine);
2239         return ret;
2240 }
2241
2242 void intel_cleanup_engine(struct intel_engine_cs *engine)
2243 {
2244         struct drm_i915_private *dev_priv;
2245
2246         if (!intel_engine_initialized(engine))
2247                 return;
2248
2249         dev_priv = engine->i915;
2250
2251         if (engine->buffer) {
2252                 intel_stop_engine(engine);
2253                 WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2254
2255                 intel_unpin_ringbuffer_obj(engine->buffer);
2256                 intel_ringbuffer_free(engine->buffer);
2257                 engine->buffer = NULL;
2258         }
2259
2260         if (engine->cleanup)
2261                 engine->cleanup(engine);
2262
2263         if (I915_NEED_GFX_HWS(dev_priv)) {
2264                 cleanup_status_page(engine);
2265         } else {
2266                 WARN_ON(engine->id != RCS);
2267                 cleanup_phys_status_page(engine);
2268         }
2269
2270         i915_cmd_parser_fini_ring(engine);
2271         i915_gem_batch_pool_fini(&engine->batch_pool);
2272         intel_engine_fini_breadcrumbs(engine);
2273
2274         intel_ring_context_unpin(dev_priv->kernel_context, engine);
2275
2276         engine->i915 = NULL;
2277 }
2278
2279 int intel_engine_idle(struct intel_engine_cs *engine)
2280 {
2281         struct drm_i915_gem_request *req;
2282
2283         /* Wait upon the last request to be completed */
2284         if (list_empty(&engine->request_list))
2285                 return 0;
2286
2287         req = list_entry(engine->request_list.prev,
2288                          struct drm_i915_gem_request,
2289                          list);
2290
2291         /* Make sure we do not trigger any retires */
2292         return __i915_wait_request(req,
2293                                    req->i915->mm.interruptible,
2294                                    NULL, NULL);
2295 }
2296
2297 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2298 {
2299         int ret;
2300
2301         /* Flush enough space to reduce the likelihood of waiting after
2302          * we start building the request - in which case we will just
2303          * have to repeat work.
2304          */
2305         request->reserved_space += LEGACY_REQUEST_SIZE;
2306
2307         request->ringbuf = request->engine->buffer;
2308
2309         ret = intel_ring_begin(request, 0);
2310         if (ret)
2311                 return ret;
2312
2313         request->reserved_space -= LEGACY_REQUEST_SIZE;
2314         return 0;
2315 }
2316
2317 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2318 {
2319         struct intel_ringbuffer *ringbuf = req->ringbuf;
2320         struct intel_engine_cs *engine = req->engine;
2321         struct drm_i915_gem_request *target;
2322
2323         intel_ring_update_space(ringbuf);
2324         if (ringbuf->space >= bytes)
2325                 return 0;
2326
2327         /*
2328          * Space is reserved in the ringbuffer for finalising the request,
2329          * as that cannot be allowed to fail. During request finalisation,
2330          * reserved_space is set to 0 to stop the overallocation and the
2331          * assumption is that then we never need to wait (which has the
2332          * risk of failing with EINTR).
2333          *
2334          * See also i915_gem_request_alloc() and i915_add_request().
2335          */
2336         GEM_BUG_ON(!req->reserved_space);
2337
2338         list_for_each_entry(target, &engine->request_list, list) {
2339                 unsigned space;
2340
2341                 /*
2342                  * The request queue is per-engine, so can contain requests
2343                  * from multiple ringbuffers. Here, we must ignore any that
2344                  * aren't from the ringbuffer we're considering.
2345                  */
2346                 if (target->ringbuf != ringbuf)
2347                         continue;
2348
2349                 /* Would completion of this request free enough space? */
2350                 space = __intel_ring_space(target->postfix, ringbuf->tail,
2351                                            ringbuf->size);
2352                 if (space >= bytes)
2353                         break;
2354         }
2355
2356         if (WARN_ON(&target->list == &engine->request_list))
2357                 return -ENOSPC;
2358
2359         return i915_wait_request(target);
2360 }
2361
2362 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2363 {
2364         struct intel_ringbuffer *ringbuf = req->ringbuf;
2365         int remain_actual = ringbuf->size - ringbuf->tail;
2366         int remain_usable = ringbuf->effective_size - ringbuf->tail;
2367         int bytes = num_dwords * sizeof(u32);
2368         int total_bytes, wait_bytes;
2369         bool need_wrap = false;
2370
2371         total_bytes = bytes + req->reserved_space;
2372
2373         if (unlikely(bytes > remain_usable)) {
2374                 /*
2375                  * Not enough space for the basic request. So need to flush
2376                  * out the remainder and then wait for base + reserved.
2377                  */
2378                 wait_bytes = remain_actual + total_bytes;
2379                 need_wrap = true;
2380         } else if (unlikely(total_bytes > remain_usable)) {
2381                 /*
2382                  * The base request will fit but the reserved space
2383                  * falls off the end. So we don't need an immediate wrap
2384                  * and only need to effectively wait for the reserved
2385                  * size space from the start of ringbuffer.
2386                  */
2387                 wait_bytes = remain_actual + req->reserved_space;
2388         } else {
2389                 /* No wrapping required, just waiting. */
2390                 wait_bytes = total_bytes;
2391         }
2392
2393         if (wait_bytes > ringbuf->space) {
2394                 int ret = wait_for_space(req, wait_bytes);
2395                 if (unlikely(ret))
2396                         return ret;
2397
2398                 intel_ring_update_space(ringbuf);
2399                 if (unlikely(ringbuf->space < wait_bytes))
2400                         return -EAGAIN;
2401         }
2402
2403         if (unlikely(need_wrap)) {
2404                 GEM_BUG_ON(remain_actual > ringbuf->space);
2405                 GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
2406
2407                 /* Fill the tail with MI_NOOP */
2408                 memset(ringbuf->vaddr + ringbuf->tail, 0, remain_actual);
2409                 ringbuf->tail = 0;
2410                 ringbuf->space -= remain_actual;
2411         }
2412
2413         ringbuf->space -= bytes;
2414         GEM_BUG_ON(ringbuf->space < 0);
2415         return 0;
2416 }
2417
2418 /* Align the ring tail to a cacheline boundary */
2419 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2420 {
2421         struct intel_engine_cs *engine = req->engine;
2422         int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2423         int ret;
2424
2425         if (num_dwords == 0)
2426                 return 0;
2427
2428         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2429         ret = intel_ring_begin(req, num_dwords);
2430         if (ret)
2431                 return ret;
2432
2433         while (num_dwords--)
2434                 intel_ring_emit(engine, MI_NOOP);
2435
2436         intel_ring_advance(engine);
2437
2438         return 0;
2439 }
2440
2441 void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2442 {
2443         struct drm_i915_private *dev_priv = engine->i915;
2444
2445         /* Our semaphore implementation is strictly monotonic (i.e. we proceed
2446          * so long as the semaphore value in the register/page is greater
2447          * than the sync value), so whenever we reset the seqno,
2448          * so long as we reset the tracking semaphore value to 0, it will
2449          * always be before the next request's seqno. If we don't reset
2450          * the semaphore value, then when the seqno moves backwards all
2451          * future waits will complete instantly (causing rendering corruption).
2452          */
2453         if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
2454                 I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
2455                 I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2456                 if (HAS_VEBOX(dev_priv))
2457                         I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2458         }
2459         if (dev_priv->semaphore_obj) {
2460                 struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
2461                 struct page *page = i915_gem_object_get_dirty_page(obj, 0);
2462                 void *semaphores = kmap(page);
2463                 memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
2464                        0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
2465                 kunmap(page);
2466         }
2467         memset(engine->semaphore.sync_seqno, 0,
2468                sizeof(engine->semaphore.sync_seqno));
2469
2470         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
2471         if (engine->irq_seqno_barrier)
2472                 engine->irq_seqno_barrier(engine);
2473         engine->last_submitted_seqno = seqno;
2474
2475         engine->hangcheck.seqno = seqno;
2476
2477         /* After manually advancing the seqno, fake the interrupt in case
2478          * there are any waiters for that seqno.
2479          */
2480         rcu_read_lock();
2481         intel_engine_wakeup(engine);
2482         rcu_read_unlock();
2483 }
2484
2485 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2486                                      u32 value)
2487 {
2488         struct drm_i915_private *dev_priv = engine->i915;
2489
2490         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2491
2492        /* Every tail move must follow the sequence below */
2493
2494         /* Disable notification that the ring is IDLE. The GT
2495          * will then assume that it is busy and bring it out of rc6.
2496          */
2497         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2498                       _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2499
2500         /* Clear the context id. Here be magic! */
2501         I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2502
2503         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2504         if (intel_wait_for_register_fw(dev_priv,
2505                                        GEN6_BSD_SLEEP_PSMI_CONTROL,
2506                                        GEN6_BSD_SLEEP_INDICATOR,
2507                                        0,
2508                                        50))
2509                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2510
2511         /* Now that the ring is fully powered up, update the tail */
2512         I915_WRITE_FW(RING_TAIL(engine->mmio_base), value);
2513         POSTING_READ_FW(RING_TAIL(engine->mmio_base));
2514
2515         /* Let the ring send IDLE messages to the GT again,
2516          * and so let it sleep to conserve power when idle.
2517          */
2518         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2519                       _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2520
2521         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2522 }
2523
2524 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2525                                u32 invalidate, u32 flush)
2526 {
2527         struct intel_engine_cs *engine = req->engine;
2528         uint32_t cmd;
2529         int ret;
2530
2531         ret = intel_ring_begin(req, 4);
2532         if (ret)
2533                 return ret;
2534
2535         cmd = MI_FLUSH_DW;
2536         if (INTEL_GEN(req->i915) >= 8)
2537                 cmd += 1;
2538
2539         /* We always require a command barrier so that subsequent
2540          * commands, such as breadcrumb interrupts, are strictly ordered
2541          * wrt the contents of the write cache being flushed to memory
2542          * (and thus being coherent from the CPU).
2543          */
2544         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2545
2546         /*
2547          * Bspec vol 1c.5 - video engine command streamer:
2548          * "If ENABLED, all TLBs will be invalidated once the flush
2549          * operation is complete. This bit is only valid when the
2550          * Post-Sync Operation field is a value of 1h or 3h."
2551          */
2552         if (invalidate & I915_GEM_GPU_DOMAINS)
2553                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2554
2555         intel_ring_emit(engine, cmd);
2556         intel_ring_emit(engine,
2557                         I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2558         if (INTEL_GEN(req->i915) >= 8) {
2559                 intel_ring_emit(engine, 0); /* upper addr */
2560                 intel_ring_emit(engine, 0); /* value */
2561         } else  {
2562                 intel_ring_emit(engine, 0);
2563                 intel_ring_emit(engine, MI_NOOP);
2564         }
2565         intel_ring_advance(engine);
2566         return 0;
2567 }
2568
2569 static int
2570 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2571                               u64 offset, u32 len,
2572                               unsigned dispatch_flags)
2573 {
2574         struct intel_engine_cs *engine = req->engine;
2575         bool ppgtt = USES_PPGTT(engine->dev) &&
2576                         !(dispatch_flags & I915_DISPATCH_SECURE);
2577         int ret;
2578
2579         ret = intel_ring_begin(req, 4);
2580         if (ret)
2581                 return ret;
2582
2583         /* FIXME(BDW): Address space and security selectors. */
2584         intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2585                         (dispatch_flags & I915_DISPATCH_RS ?
2586                          MI_BATCH_RESOURCE_STREAMER : 0));
2587         intel_ring_emit(engine, lower_32_bits(offset));
2588         intel_ring_emit(engine, upper_32_bits(offset));
2589         intel_ring_emit(engine, MI_NOOP);
2590         intel_ring_advance(engine);
2591
2592         return 0;
2593 }
2594
2595 static int
2596 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2597                              u64 offset, u32 len,
2598                              unsigned dispatch_flags)
2599 {
2600         struct intel_engine_cs *engine = req->engine;
2601         int ret;
2602
2603         ret = intel_ring_begin(req, 2);
2604         if (ret)
2605                 return ret;
2606
2607         intel_ring_emit(engine,
2608                         MI_BATCH_BUFFER_START |
2609                         (dispatch_flags & I915_DISPATCH_SECURE ?
2610                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2611                         (dispatch_flags & I915_DISPATCH_RS ?
2612                          MI_BATCH_RESOURCE_STREAMER : 0));
2613         /* bit0-7 is the length on GEN6+ */
2614         intel_ring_emit(engine, offset);
2615         intel_ring_advance(engine);
2616
2617         return 0;
2618 }
2619
2620 static int
2621 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2622                               u64 offset, u32 len,
2623                               unsigned dispatch_flags)
2624 {
2625         struct intel_engine_cs *engine = req->engine;
2626         int ret;
2627
2628         ret = intel_ring_begin(req, 2);
2629         if (ret)
2630                 return ret;
2631
2632         intel_ring_emit(engine,
2633                         MI_BATCH_BUFFER_START |
2634                         (dispatch_flags & I915_DISPATCH_SECURE ?
2635                          0 : MI_BATCH_NON_SECURE_I965));
2636         /* bit0-7 is the length on GEN6+ */
2637         intel_ring_emit(engine, offset);
2638         intel_ring_advance(engine);
2639
2640         return 0;
2641 }
2642
2643 /* Blitter support (SandyBridge+) */
2644
2645 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2646                            u32 invalidate, u32 flush)
2647 {
2648         struct intel_engine_cs *engine = req->engine;
2649         uint32_t cmd;
2650         int ret;
2651
2652         ret = intel_ring_begin(req, 4);
2653         if (ret)
2654                 return ret;
2655
2656         cmd = MI_FLUSH_DW;
2657         if (INTEL_GEN(req->i915) >= 8)
2658                 cmd += 1;
2659
2660         /* We always require a command barrier so that subsequent
2661          * commands, such as breadcrumb interrupts, are strictly ordered
2662          * wrt the contents of the write cache being flushed to memory
2663          * (and thus being coherent from the CPU).
2664          */
2665         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2666
2667         /*
2668          * Bspec vol 1c.3 - blitter engine command streamer:
2669          * "If ENABLED, all TLBs will be invalidated once the flush
2670          * operation is complete. This bit is only valid when the
2671          * Post-Sync Operation field is a value of 1h or 3h."
2672          */
2673         if (invalidate & I915_GEM_DOMAIN_RENDER)
2674                 cmd |= MI_INVALIDATE_TLB;
2675         intel_ring_emit(engine, cmd);
2676         intel_ring_emit(engine,
2677                         I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2678         if (INTEL_GEN(req->i915) >= 8) {
2679                 intel_ring_emit(engine, 0); /* upper addr */
2680                 intel_ring_emit(engine, 0); /* value */
2681         } else  {
2682                 intel_ring_emit(engine, 0);
2683                 intel_ring_emit(engine, MI_NOOP);
2684         }
2685         intel_ring_advance(engine);
2686
2687         return 0;
2688 }
2689
2690 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2691                                        struct intel_engine_cs *engine)
2692 {
2693         struct drm_i915_gem_object *obj;
2694         int ret, i;
2695
2696         if (!i915.semaphores)
2697                 return;
2698
2699         if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
2700                 obj = i915_gem_object_create(&dev_priv->drm, 4096);
2701                 if (IS_ERR(obj)) {
2702                         DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2703                         i915.semaphores = 0;
2704                 } else {
2705                         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2706                         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2707                         if (ret != 0) {
2708                                 i915_gem_object_put(obj);
2709                                 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2710                                 i915.semaphores = 0;
2711                         } else {
2712                                 dev_priv->semaphore_obj = obj;
2713                         }
2714                 }
2715         }
2716
2717         if (!i915.semaphores)
2718                 return;
2719
2720         if (INTEL_GEN(dev_priv) >= 8) {
2721                 u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);
2722
2723                 engine->semaphore.sync_to = gen8_ring_sync;
2724                 engine->semaphore.signal = gen8_xcs_signal;
2725
2726                 for (i = 0; i < I915_NUM_ENGINES; i++) {
2727                         u64 ring_offset;
2728
2729                         if (i != engine->id)
2730                                 ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
2731                         else
2732                                 ring_offset = MI_SEMAPHORE_SYNC_INVALID;
2733
2734                         engine->semaphore.signal_ggtt[i] = ring_offset;
2735                 }
2736         } else if (INTEL_GEN(dev_priv) >= 6) {
2737                 engine->semaphore.sync_to = gen6_ring_sync;
2738                 engine->semaphore.signal = gen6_signal;
2739
2740                 /*
2741                  * The current semaphore is only applied on pre-gen8
2742                  * platform.  And there is no VCS2 ring on the pre-gen8
2743                  * platform. So the semaphore between RCS and VCS2 is
2744                  * initialized as INVALID.  Gen8 will initialize the
2745                  * sema between VCS2 and RCS later.
2746                  */
2747                 for (i = 0; i < I915_NUM_ENGINES; i++) {
2748                         static const struct {
2749                                 u32 wait_mbox;
2750                                 i915_reg_t mbox_reg;
2751                         } sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
2752                                 [RCS] = {
2753                                         [VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
2754                                         [BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
2755                                         [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2756                                 },
2757                                 [VCS] = {
2758                                         [RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
2759                                         [BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
2760                                         [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2761                                 },
2762                                 [BCS] = {
2763                                         [RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
2764                                         [VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
2765                                         [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2766                                 },
2767                                 [VECS] = {
2768                                         [RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2769                                         [VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2770                                         [BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2771                                 },
2772                         };
2773                         u32 wait_mbox;
2774                         i915_reg_t mbox_reg;
2775
2776                         if (i == engine->id || i == VCS2) {
2777                                 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2778                                 mbox_reg = GEN6_NOSYNC;
2779                         } else {
2780                                 wait_mbox = sem_data[engine->id][i].wait_mbox;
2781                                 mbox_reg = sem_data[engine->id][i].mbox_reg;
2782                         }
2783
2784                         engine->semaphore.mbox.wait[i] = wait_mbox;
2785                         engine->semaphore.mbox.signal[i] = mbox_reg;
2786                 }
2787         }
2788 }
2789
2790 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2791                                 struct intel_engine_cs *engine)
2792 {
2793         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
2794
2795         if (INTEL_GEN(dev_priv) >= 8) {
2796                 engine->irq_enable = gen8_irq_enable;
2797                 engine->irq_disable = gen8_irq_disable;
2798                 engine->irq_seqno_barrier = gen6_seqno_barrier;
2799         } else if (INTEL_GEN(dev_priv) >= 6) {
2800                 engine->irq_enable = gen6_irq_enable;
2801                 engine->irq_disable = gen6_irq_disable;
2802                 engine->irq_seqno_barrier = gen6_seqno_barrier;
2803         } else if (INTEL_GEN(dev_priv) >= 5) {
2804                 engine->irq_enable = gen5_irq_enable;
2805                 engine->irq_disable = gen5_irq_disable;
2806                 engine->irq_seqno_barrier = gen5_seqno_barrier;
2807         } else if (INTEL_GEN(dev_priv) >= 3) {
2808                 engine->irq_enable = i9xx_irq_enable;
2809                 engine->irq_disable = i9xx_irq_disable;
2810         } else {
2811                 engine->irq_enable = i8xx_irq_enable;
2812                 engine->irq_disable = i8xx_irq_disable;
2813         }
2814 }
2815
2816 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2817                                       struct intel_engine_cs *engine)
2818 {
2819         engine->init_hw = init_ring_common;
2820         engine->write_tail = ring_write_tail;
2821
2822         engine->add_request = i9xx_add_request;
2823         if (INTEL_GEN(dev_priv) >= 6)
2824                 engine->add_request = gen6_add_request;
2825
2826         if (INTEL_GEN(dev_priv) >= 8)
2827                 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2828         else if (INTEL_GEN(dev_priv) >= 6)
2829                 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2830         else if (INTEL_GEN(dev_priv) >= 4)
2831                 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2832         else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2833                 engine->dispatch_execbuffer = i830_dispatch_execbuffer;
2834         else
2835                 engine->dispatch_execbuffer = i915_dispatch_execbuffer;
2836
2837         intel_ring_init_irq(dev_priv, engine);
2838         intel_ring_init_semaphores(dev_priv, engine);
2839 }
2840
2841 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2842 {
2843         struct drm_i915_private *dev_priv = engine->i915;
2844         int ret;
2845
2846         intel_ring_default_vfuncs(dev_priv, engine);
2847
2848         if (HAS_L3_DPF(dev_priv))
2849                 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2850
2851         if (INTEL_GEN(dev_priv) >= 8) {
2852                 engine->init_context = intel_rcs_ctx_init;
2853                 engine->add_request = gen8_render_add_request;
2854                 engine->flush = gen8_render_ring_flush;
2855                 if (i915.semaphores)
2856                         engine->semaphore.signal = gen8_rcs_signal;
2857         } else if (INTEL_GEN(dev_priv) >= 6) {
2858                 engine->init_context = intel_rcs_ctx_init;
2859                 engine->flush = gen7_render_ring_flush;
2860                 if (IS_GEN6(dev_priv))
2861                         engine->flush = gen6_render_ring_flush;
2862         } else if (IS_GEN5(dev_priv)) {
2863                 engine->flush = gen4_render_ring_flush;
2864         } else {
2865                 if (INTEL_GEN(dev_priv) < 4)
2866                         engine->flush = gen2_render_ring_flush;
2867                 else
2868                         engine->flush = gen4_render_ring_flush;
2869                 engine->irq_enable_mask = I915_USER_INTERRUPT;
2870         }
2871
2872         if (IS_HASWELL(dev_priv))
2873                 engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2874
2875         engine->init_hw = init_render_ring;
2876         engine->cleanup = render_ring_cleanup;
2877
2878         ret = intel_init_ring_buffer(engine);
2879         if (ret)
2880                 return ret;
2881
2882         if (INTEL_GEN(dev_priv) >= 6) {
2883                 ret = intel_init_pipe_control(engine, 4096);
2884                 if (ret)
2885                         return ret;
2886         } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2887                 ret = intel_init_pipe_control(engine, I830_WA_SIZE);
2888                 if (ret)
2889                         return ret;
2890         }
2891
2892         return 0;
2893 }
2894
2895 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2896 {
2897         struct drm_i915_private *dev_priv = engine->i915;
2898
2899         intel_ring_default_vfuncs(dev_priv, engine);
2900
2901         if (INTEL_GEN(dev_priv) >= 6) {
2902                 /* gen6 bsd needs a special wa for tail updates */
2903                 if (IS_GEN6(dev_priv))
2904                         engine->write_tail = gen6_bsd_ring_write_tail;
2905                 engine->flush = gen6_bsd_ring_flush;
2906                 if (INTEL_GEN(dev_priv) < 8)
2907                         engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2908         } else {
2909                 engine->mmio_base = BSD_RING_BASE;
2910                 engine->flush = bsd_ring_flush;
2911                 if (IS_GEN5(dev_priv))
2912                         engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2913                 else
2914                         engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2915         }
2916
2917         return intel_init_ring_buffer(engine);
2918 }
2919
2920 /**
2921  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2922  */
2923 int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2924 {
2925         struct drm_i915_private *dev_priv = engine->i915;
2926
2927         intel_ring_default_vfuncs(dev_priv, engine);
2928
2929         engine->flush = gen6_bsd_ring_flush;
2930
2931         return intel_init_ring_buffer(engine);
2932 }
2933
2934 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2935 {
2936         struct drm_i915_private *dev_priv = engine->i915;
2937
2938         intel_ring_default_vfuncs(dev_priv, engine);
2939
2940         engine->flush = gen6_ring_flush;
2941         if (INTEL_GEN(dev_priv) < 8)
2942                 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2943
2944         return intel_init_ring_buffer(engine);
2945 }
2946
2947 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2948 {
2949         struct drm_i915_private *dev_priv = engine->i915;
2950
2951         intel_ring_default_vfuncs(dev_priv, engine);
2952
2953         engine->flush = gen6_ring_flush;
2954
2955         if (INTEL_GEN(dev_priv) < 8) {
2956                 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2957                 engine->irq_enable = hsw_vebox_irq_enable;
2958                 engine->irq_disable = hsw_vebox_irq_disable;
2959         }
2960
2961         return intel_init_ring_buffer(engine);
2962 }
2963
2964 int
2965 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
2966 {
2967         struct intel_engine_cs *engine = req->engine;
2968         int ret;
2969
2970         if (!engine->gpu_caches_dirty)
2971                 return 0;
2972
2973         ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
2974         if (ret)
2975                 return ret;
2976
2977         trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
2978
2979         engine->gpu_caches_dirty = false;
2980         return 0;
2981 }
2982
2983 int
2984 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
2985 {
2986         struct intel_engine_cs *engine = req->engine;
2987         uint32_t flush_domains;
2988         int ret;
2989
2990         flush_domains = 0;
2991         if (engine->gpu_caches_dirty)
2992                 flush_domains = I915_GEM_GPU_DOMAINS;
2993
2994         ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2995         if (ret)
2996                 return ret;
2997
2998         trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2999
3000         engine->gpu_caches_dirty = false;
3001         return 0;
3002 }
3003
3004 void
3005 intel_stop_engine(struct intel_engine_cs *engine)
3006 {
3007         int ret;
3008
3009         if (!intel_engine_initialized(engine))
3010                 return;
3011
3012         ret = intel_engine_idle(engine);
3013         if (ret)
3014                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3015                           engine->name, ret);
3016
3017         stop_ring(engine);
3018 }