drm/i915: build firmware handling code
[dragonfly.git] / sys / dev / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define CTX_LRI_HEADER_0                0x01
160 #define CTX_CONTEXT_CONTROL             0x02
161 #define CTX_RING_HEAD                   0x04
162 #define CTX_RING_TAIL                   0x06
163 #define CTX_RING_BUFFER_START           0x08
164 #define CTX_RING_BUFFER_CONTROL         0x0a
165 #define CTX_BB_HEAD_U                   0x0c
166 #define CTX_BB_HEAD_L                   0x0e
167 #define CTX_BB_STATE                    0x10
168 #define CTX_SECOND_BB_HEAD_U            0x12
169 #define CTX_SECOND_BB_HEAD_L            0x14
170 #define CTX_SECOND_BB_STATE             0x16
171 #define CTX_BB_PER_CTX_PTR              0x18
172 #define CTX_RCS_INDIRECT_CTX            0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
174 #define CTX_LRI_HEADER_1                0x21
175 #define CTX_CTX_TIMESTAMP               0x22
176 #define CTX_PDP3_UDW                    0x24
177 #define CTX_PDP3_LDW                    0x26
178 #define CTX_PDP2_UDW                    0x28
179 #define CTX_PDP2_LDW                    0x2a
180 #define CTX_PDP1_UDW                    0x2c
181 #define CTX_PDP1_LDW                    0x2e
182 #define CTX_PDP0_UDW                    0x30
183 #define CTX_PDP0_LDW                    0x32
184 #define CTX_LRI_HEADER_2                0x41
185 #define CTX_R_PWR_CLK_STATE             0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
195         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
196         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 }
199
200 #define ASSIGN_CTX_PML4(ppgtt, reg_state) { \
201         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
202         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203 }
204
205 enum {
206         ADVANCED_CONTEXT = 0,
207         LEGACY_32B_CONTEXT,
208         ADVANCED_AD_CONTEXT,
209         LEGACY_64B_CONTEXT
210 };
211 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
212 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
213                 LEGACY_64B_CONTEXT :\
214                 LEGACY_32B_CONTEXT)
215 enum {
216         FAULT_AND_HANG = 0,
217         FAULT_AND_HALT, /* Debug only */
218         FAULT_AND_STREAM,
219         FAULT_AND_CONTINUE /* Unsupported */
220 };
221 #define GEN8_CTX_ID_SHIFT 32
222 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
223
224 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
225 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
226                 struct drm_i915_gem_object *default_ctx_obj);
227
228
229 /**
230  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
231  * @dev: DRM device.
232  * @enable_execlists: value of i915.enable_execlists module parameter.
233  *
234  * Only certain platforms support Execlists (the prerequisites being
235  * support for Logical Ring Contexts and Aliasing PPGTT or better).
236  *
237  * Return: 1 if Execlists is supported and has to be enabled.
238  */
239 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
240 {
241         WARN_ON(i915.enable_ppgtt == -1);
242
243         /* On platforms with execlist available, vGPU will only
244          * support execlist mode, no ring buffer mode.
245          */
246         if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
247                 return 1;
248
249         if (INTEL_INFO(dev)->gen >= 9)
250                 return 1;
251
252         if (enable_execlists == 0)
253                 return 0;
254
255         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
256             i915.use_mmio_flip >= 0)
257                 return 1;
258
259         return 0;
260 }
261
262 /**
263  * intel_execlists_ctx_id() - get the Execlists Context ID
264  * @ctx_obj: Logical Ring Context backing object.
265  *
266  * Do not confuse with ctx->id! Unfortunately we have a name overload
267  * here: the old context ID we pass to userspace as a handler so that
268  * they can refer to a context, and the new context ID we pass to the
269  * ELSP so that the GPU can inform us of the context status via
270  * interrupts.
271  *
272  * Return: 20-bits globally unique context ID.
273  */
274 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
275 {
276         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
277                         LRC_PPHWSP_PN * PAGE_SIZE;
278
279         /* LRCA is required to be 4K aligned so the more significant 20 bits
280          * are globally unique */
281         return lrca >> 12;
282 }
283
284 static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
285 {
286         struct drm_device *dev = ring->dev;
287
288         return ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
289                 (IS_BROXTON(dev) && INTEL_REVID(dev) == BXT_REVID_A0)) &&
290                (ring->id == VCS || ring->id == VCS2);
291 }
292
293 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
294                                      struct intel_engine_cs *ring)
295 {
296         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
297         uint64_t desc;
298         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
299                         LRC_PPHWSP_PN * PAGE_SIZE;
300
301         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
302
303         desc = GEN8_CTX_VALID;
304         desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
305         if (IS_GEN8(ctx_obj->base.dev))
306                 desc |= GEN8_CTX_L3LLC_COHERENT;
307         desc |= GEN8_CTX_PRIVILEGE;
308         desc |= lrca;
309         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
310
311         /* TODO: WaDisableLiteRestore when we start using semaphore
312          * signalling between Command Streamers */
313         /* desc |= GEN8_CTX_FORCE_RESTORE; */
314
315         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
316         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
317         if (disable_lite_restore_wa(ring))
318                 desc |= GEN8_CTX_FORCE_RESTORE;
319
320         return desc;
321 }
322
323 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
324                                  struct drm_i915_gem_request *rq1)
325 {
326
327         struct intel_engine_cs *ring = rq0->ring;
328         struct drm_device *dev = ring->dev;
329         struct drm_i915_private *dev_priv = dev->dev_private;
330         uint64_t desc[2];
331
332         if (rq1) {
333                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
334                 rq1->elsp_submitted++;
335         } else {
336                 desc[1] = 0;
337         }
338
339         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
340         rq0->elsp_submitted++;
341
342         /* You must always write both descriptors in the order below. */
343         lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
344         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
345         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
346         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
347
348         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
349         /* The context is automatically loaded after the following */
350         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
351
352         /* ELSP is a wo register, use another nearby reg for posting */
353         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
354         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
355         lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
356 }
357
358 static int execlists_update_context(struct drm_i915_gem_request *rq)
359 {
360         struct intel_engine_cs *ring = rq->ring;
361         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
362         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
363         struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
364         struct vm_page *page;
365         uint32_t *reg_state;
366
367         BUG_ON(!ctx_obj);
368         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
369         WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
370
371         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
372         reg_state = kmap_atomic(page);
373
374         reg_state[CTX_RING_TAIL+1] = rq->tail;
375         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
376
377         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
378                 /* True 32b PPGTT with dynamic page allocation: update PDP
379                  * registers and point the unallocated PDPs to scratch page.
380                  * PML4 is allocated during ppgtt init, so this is not needed
381                  * in 48-bit mode.
382                  */
383                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
384                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
385                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
386                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
387         }
388
389         kunmap_atomic(reg_state);
390
391         return 0;
392 }
393
394 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
395                                       struct drm_i915_gem_request *rq1)
396 {
397         execlists_update_context(rq0);
398
399         if (rq1)
400                 execlists_update_context(rq1);
401
402         execlists_elsp_write(rq0, rq1);
403 }
404
405 static void execlists_context_unqueue(struct intel_engine_cs *ring)
406 {
407         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
408         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
409
410         assert_spin_locked(&ring->execlist_lock);
411
412         /*
413          * If irqs are not active generate a warning as batches that finish
414          * without the irqs may get lost and a GPU Hang may occur.
415          */
416         WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
417
418         if (list_empty(&ring->execlist_queue))
419                 return;
420
421         /* Try to read in pairs */
422         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
423                                  execlist_link) {
424                 if (!req0) {
425                         req0 = cursor;
426                 } else if (req0->ctx == cursor->ctx) {
427                         /* Same ctx: ignore first request, as second request
428                          * will update tail past first request's workload */
429                         cursor->elsp_submitted = req0->elsp_submitted;
430                         list_del(&req0->execlist_link);
431                         list_add_tail(&req0->execlist_link,
432                                 &ring->execlist_retired_req_list);
433                         req0 = cursor;
434                 } else {
435                         req1 = cursor;
436                         break;
437                 }
438         }
439
440         if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
441                 /*
442                  * WaIdleLiteRestore: make sure we never cause a lite
443                  * restore with HEAD==TAIL
444                  */
445                 if (req0->elsp_submitted) {
446                         /*
447                          * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
448                          * as we resubmit the request. See gen8_emit_request()
449                          * for where we prepare the padding after the end of the
450                          * request.
451                          */
452                         struct intel_ringbuffer *ringbuf;
453
454                         ringbuf = req0->ctx->engine[ring->id].ringbuf;
455                         req0->tail += 8;
456                         req0->tail &= ringbuf->size - 1;
457                 }
458         }
459
460         WARN_ON(req1 && req1->elsp_submitted);
461
462         execlists_submit_requests(req0, req1);
463 }
464
465 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
466                                            u32 request_id)
467 {
468         struct drm_i915_gem_request *head_req;
469
470         assert_spin_locked(&ring->execlist_lock);
471
472         head_req = list_first_entry_or_null(&ring->execlist_queue,
473                                             struct drm_i915_gem_request,
474                                             execlist_link);
475
476         if (head_req != NULL) {
477                 struct drm_i915_gem_object *ctx_obj =
478                                 head_req->ctx->engine[ring->id].state;
479                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
480                         WARN(head_req->elsp_submitted == 0,
481                              "Never submitted head request\n");
482
483                         if (--head_req->elsp_submitted <= 0) {
484                                 list_del(&head_req->execlist_link);
485                                 list_add_tail(&head_req->execlist_link,
486                                         &ring->execlist_retired_req_list);
487                                 return true;
488                         }
489                 }
490         }
491
492         return false;
493 }
494
495 /**
496  * intel_lrc_irq_handler() - handle Context Switch interrupts
497  * @ring: Engine Command Streamer to handle.
498  *
499  * Check the unread Context Status Buffers and manage the submission of new
500  * contexts to the ELSP accordingly.
501  */
502 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
503 {
504         struct drm_i915_private *dev_priv = ring->dev->dev_private;
505         u32 status_pointer;
506         u8 read_pointer;
507         u8 write_pointer;
508         u32 status = 0;
509         u32 status_id;
510         u32 submit_contexts = 0;
511
512         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
513
514         read_pointer = ring->next_context_status_buffer;
515         write_pointer = status_pointer & GEN8_CSB_PTR_MASK;
516         if (read_pointer > write_pointer)
517                 write_pointer += GEN8_CSB_ENTRIES;
518
519         lockmgr(&ring->execlist_lock, LK_EXCLUSIVE);
520
521         while (read_pointer < write_pointer) {
522                 read_pointer++;
523                 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer % GEN8_CSB_ENTRIES));
524                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer % GEN8_CSB_ENTRIES));
525
526                 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
527                         continue;
528
529                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
530                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
531                                 if (execlists_check_remove_request(ring, status_id))
532                                         WARN(1, "Lite Restored request removed from queue\n");
533                         } else
534                                 WARN(1, "Preemption without Lite Restore\n");
535                 }
536
537                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
538                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
539                         if (execlists_check_remove_request(ring, status_id))
540                                 submit_contexts++;
541                 }
542         }
543
544         if (disable_lite_restore_wa(ring)) {
545                 /* Prevent a ctx to preempt itself */
546                 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
547                     (submit_contexts != 0))
548                         execlists_context_unqueue(ring);
549         } else if (submit_contexts != 0) {
550                 execlists_context_unqueue(ring);
551         }
552
553         lockmgr(&ring->execlist_lock, LK_RELEASE);
554
555         WARN(submit_contexts > 2, "More than two context complete events?\n");
556         ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
557
558         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
559                    _MASKED_FIELD(GEN8_CSB_PTR_MASK << 8,
560                                  ((u32)ring->next_context_status_buffer &
561                                   GEN8_CSB_PTR_MASK) << 8));
562 }
563
564 static int execlists_context_queue(struct drm_i915_gem_request *request)
565 {
566         struct intel_engine_cs *ring = request->ring;
567         struct drm_i915_gem_request *cursor;
568         int num_elements = 0;
569
570         if (request->ctx != ring->default_context)
571                 intel_lr_context_pin(request);
572
573         i915_gem_request_reference(request);
574
575         spin_lock_irq(&ring->execlist_lock);
576
577         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
578                 if (++num_elements > 2)
579                         break;
580
581         if (num_elements > 2) {
582                 struct drm_i915_gem_request *tail_req;
583
584                 tail_req = list_last_entry(&ring->execlist_queue,
585                                            struct drm_i915_gem_request,
586                                            execlist_link);
587
588                 if (request->ctx == tail_req->ctx) {
589                         WARN(tail_req->elsp_submitted != 0,
590                                 "More than 2 already-submitted reqs queued\n");
591                         list_del(&tail_req->execlist_link);
592                         list_add_tail(&tail_req->execlist_link,
593                                 &ring->execlist_retired_req_list);
594                 }
595         }
596
597         list_add_tail(&request->execlist_link, &ring->execlist_queue);
598         if (num_elements == 0)
599                 execlists_context_unqueue(ring);
600
601         spin_unlock_irq(&ring->execlist_lock);
602
603         return 0;
604 }
605
606 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
607 {
608         struct intel_engine_cs *ring = req->ring;
609         uint32_t flush_domains;
610         int ret;
611
612         flush_domains = 0;
613         if (ring->gpu_caches_dirty)
614                 flush_domains = I915_GEM_GPU_DOMAINS;
615
616         ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
617         if (ret)
618                 return ret;
619
620         ring->gpu_caches_dirty = false;
621         return 0;
622 }
623
624 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
625                                  struct list_head *vmas)
626 {
627         const unsigned other_rings = ~intel_ring_flag(req->ring);
628         struct i915_vma *vma;
629         uint32_t flush_domains = 0;
630         bool flush_chipset = false;
631         int ret;
632
633         list_for_each_entry(vma, vmas, exec_list) {
634                 struct drm_i915_gem_object *obj = vma->obj;
635
636                 if (obj->active & other_rings) {
637                         ret = i915_gem_object_sync(obj, req->ring, &req);
638                         if (ret)
639                                 return ret;
640                 }
641
642                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
643                         flush_chipset |= i915_gem_clflush_object(obj, false);
644
645                 flush_domains |= obj->base.write_domain;
646         }
647
648         if (flush_domains & I915_GEM_DOMAIN_GTT)
649                 wmb();
650
651         /* Unconditionally invalidate gpu caches and ensure that we do flush
652          * any residual writes from the previous batch.
653          */
654         return logical_ring_invalidate_all_caches(req);
655 }
656
657 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
658 {
659         int ret;
660
661         request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
662
663         if (request->ctx != request->ring->default_context) {
664                 ret = intel_lr_context_pin(request);
665                 if (ret)
666                         return ret;
667         }
668
669         return 0;
670 }
671
672 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
673                                        int bytes)
674 {
675         struct intel_ringbuffer *ringbuf = req->ringbuf;
676         struct intel_engine_cs *ring = req->ring;
677         struct drm_i915_gem_request *target;
678         unsigned space;
679         int ret;
680
681         if (intel_ring_space(ringbuf) >= bytes)
682                 return 0;
683
684         /* The whole point of reserving space is to not wait! */
685         WARN_ON(ringbuf->reserved_in_use);
686
687         list_for_each_entry(target, &ring->request_list, list) {
688                 /*
689                  * The request queue is per-engine, so can contain requests
690                  * from multiple ringbuffers. Here, we must ignore any that
691                  * aren't from the ringbuffer we're considering.
692                  */
693                 if (target->ringbuf != ringbuf)
694                         continue;
695
696                 /* Would completion of this request free enough space? */
697                 space = __intel_ring_space(target->postfix, ringbuf->tail,
698                                            ringbuf->size);
699                 if (space >= bytes)
700                         break;
701         }
702
703         if (WARN_ON(&target->list == &ring->request_list))
704                 return -ENOSPC;
705
706         ret = i915_wait_request(target);
707         if (ret)
708                 return ret;
709
710         ringbuf->space = space;
711         return 0;
712 }
713
714 /*
715  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
716  * @request: Request to advance the logical ringbuffer of.
717  *
718  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
719  * really happens during submission is that the context and current tail will be placed
720  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
721  * point, the tail *inside* the context is updated and the ELSP written to.
722  */
723 static void
724 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
725 {
726         struct intel_engine_cs *ring = request->ring;
727         struct drm_i915_private *dev_priv = request->i915;
728
729         intel_logical_ring_advance(request->ringbuf);
730
731         request->tail = request->ringbuf->tail;
732
733         if (intel_ring_stopped(ring))
734                 return;
735
736         if (dev_priv->guc.execbuf_client)
737                 i915_guc_submit(dev_priv->guc.execbuf_client, request);
738         else
739                 execlists_context_queue(request);
740 }
741
742 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
743 {
744         uint32_t __iomem *virt;
745         int rem = ringbuf->size - ringbuf->tail;
746
747         virt = (uint32_t *)(ringbuf->virtual_start + ringbuf->tail);
748         rem /= 4;
749         while (rem--)
750                 iowrite32(MI_NOOP, virt++);
751
752         ringbuf->tail = 0;
753         intel_ring_update_space(ringbuf);
754 }
755
756 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
757 {
758         struct intel_ringbuffer *ringbuf = req->ringbuf;
759         int remain_usable = ringbuf->effective_size - ringbuf->tail;
760         int remain_actual = ringbuf->size - ringbuf->tail;
761         int ret, total_bytes, wait_bytes = 0;
762         bool need_wrap = false;
763
764         if (ringbuf->reserved_in_use)
765                 total_bytes = bytes;
766         else
767                 total_bytes = bytes + ringbuf->reserved_size;
768
769         if (unlikely(bytes > remain_usable)) {
770                 /*
771                  * Not enough space for the basic request. So need to flush
772                  * out the remainder and then wait for base + reserved.
773                  */
774                 wait_bytes = remain_actual + total_bytes;
775                 need_wrap = true;
776         } else {
777                 if (unlikely(total_bytes > remain_usable)) {
778                         /*
779                          * The base request will fit but the reserved space
780                          * falls off the end. So only need to to wait for the
781                          * reserved size after flushing out the remainder.
782                          */
783                         wait_bytes = remain_actual + ringbuf->reserved_size;
784                         need_wrap = true;
785                 } else if (total_bytes > ringbuf->space) {
786                         /* No wrapping required, just waiting. */
787                         wait_bytes = total_bytes;
788                 }
789         }
790
791         if (wait_bytes) {
792                 ret = logical_ring_wait_for_space(req, wait_bytes);
793                 if (unlikely(ret))
794                         return ret;
795
796                 if (need_wrap)
797                         __wrap_ring_buffer(ringbuf);
798         }
799
800         return 0;
801 }
802
803 /**
804  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
805  *
806  * @req: The request to start some new work for
807  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
808  *
809  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
810  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
811  * and also preallocates a request (every workload submission is still mediated through
812  * requests, same as it did with legacy ringbuffer submission).
813  *
814  * Return: non-zero if the ringbuffer is not ready to be written to.
815  */
816 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
817 {
818         struct drm_i915_private *dev_priv;
819         int ret;
820
821         WARN_ON(req == NULL);
822         dev_priv = req->ring->dev->dev_private;
823
824         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
825                                    dev_priv->mm.interruptible);
826         if (ret)
827                 return ret;
828
829         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
830         if (ret)
831                 return ret;
832
833         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
834         return 0;
835 }
836
837 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
838 {
839         /*
840          * The first call merely notes the reserve request and is common for
841          * all back ends. The subsequent localised _begin() call actually
842          * ensures that the reservation is available. Without the begin, if
843          * the request creator immediately submitted the request without
844          * adding any commands to it then there might not actually be
845          * sufficient room for the submission commands.
846          */
847         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
848
849         return intel_logical_ring_begin(request, 0);
850 }
851
852 /**
853  * execlists_submission() - submit a batchbuffer for execution, Execlists style
854  * @dev: DRM device.
855  * @file: DRM file.
856  * @ring: Engine Command Streamer to submit to.
857  * @ctx: Context to employ for this submission.
858  * @args: execbuffer call arguments.
859  * @vmas: list of vmas.
860  * @batch_obj: the batchbuffer to submit.
861  * @exec_start: batchbuffer start virtual address pointer.
862  * @dispatch_flags: translated execbuffer call flags.
863  *
864  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
865  * away the submission details of the execbuffer ioctl call.
866  *
867  * Return: non-zero if the submission fails.
868  */
869 int intel_execlists_submission(struct i915_execbuffer_params *params,
870                                struct drm_i915_gem_execbuffer2 *args,
871                                struct list_head *vmas)
872 {
873         struct drm_device       *dev = params->dev;
874         struct intel_engine_cs  *ring = params->ring;
875         struct drm_i915_private *dev_priv = dev->dev_private;
876         struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
877         u64 exec_start;
878         int instp_mode;
879         u32 instp_mask;
880         int ret;
881
882         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
883         instp_mask = I915_EXEC_CONSTANTS_MASK;
884         switch (instp_mode) {
885         case I915_EXEC_CONSTANTS_REL_GENERAL:
886         case I915_EXEC_CONSTANTS_ABSOLUTE:
887         case I915_EXEC_CONSTANTS_REL_SURFACE:
888                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
889                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
890                         return -EINVAL;
891                 }
892
893                 if (instp_mode != dev_priv->relative_constants_mode) {
894                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
895                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
896                                 return -EINVAL;
897                         }
898
899                         /* The HW changed the meaning on this bit on gen6 */
900                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
901                 }
902                 break;
903         default:
904                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
905                 return -EINVAL;
906         }
907
908         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
909                 DRM_DEBUG("sol reset is gen7 only\n");
910                 return -EINVAL;
911         }
912
913         ret = execlists_move_to_gpu(params->request, vmas);
914         if (ret)
915                 return ret;
916
917         if (ring == &dev_priv->ring[RCS] &&
918             instp_mode != dev_priv->relative_constants_mode) {
919                 ret = intel_logical_ring_begin(params->request, 4);
920                 if (ret)
921                         return ret;
922
923                 intel_logical_ring_emit(ringbuf, MI_NOOP);
924                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
925                 intel_logical_ring_emit(ringbuf, INSTPM);
926                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
927                 intel_logical_ring_advance(ringbuf);
928
929                 dev_priv->relative_constants_mode = instp_mode;
930         }
931
932         exec_start = params->batch_obj_vm_offset +
933                      args->batch_start_offset;
934
935         ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
936         if (ret)
937                 return ret;
938
939         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
940
941         i915_gem_execbuffer_move_to_active(vmas, params->request);
942         i915_gem_execbuffer_retire_commands(params);
943
944         return 0;
945 }
946
947 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
948 {
949         struct drm_i915_gem_request *req, *tmp;
950         struct list_head retired_list;
951
952         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
953         if (list_empty(&ring->execlist_retired_req_list))
954                 return;
955
956         INIT_LIST_HEAD(&retired_list);
957         spin_lock_irq(&ring->execlist_lock);
958         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
959         spin_unlock_irq(&ring->execlist_lock);
960
961         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
962                 struct intel_context *ctx = req->ctx;
963                 struct drm_i915_gem_object *ctx_obj =
964                                 ctx->engine[ring->id].state;
965
966                 if (ctx_obj && (ctx != ring->default_context))
967                         intel_lr_context_unpin(req);
968                 list_del(&req->execlist_link);
969                 i915_gem_request_unreference(req);
970         }
971 }
972
973 void intel_logical_ring_stop(struct intel_engine_cs *ring)
974 {
975         struct drm_i915_private *dev_priv = ring->dev->dev_private;
976         int ret;
977
978         if (!intel_ring_initialized(ring))
979                 return;
980
981         ret = intel_ring_idle(ring);
982         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
983                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
984                           ring->name, ret);
985
986         /* TODO: Is this correct with Execlists enabled? */
987         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
988         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
989                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
990                 return;
991         }
992         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
993 }
994
995 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
996 {
997         struct intel_engine_cs *ring = req->ring;
998         int ret;
999
1000         if (!ring->gpu_caches_dirty)
1001                 return 0;
1002
1003         ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1004         if (ret)
1005                 return ret;
1006
1007         ring->gpu_caches_dirty = false;
1008         return 0;
1009 }
1010
1011 static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1012                 struct drm_i915_gem_object *ctx_obj,
1013                 struct intel_ringbuffer *ringbuf)
1014 {
1015         struct drm_device *dev = ring->dev;
1016         struct drm_i915_private *dev_priv = dev->dev_private;
1017         int ret = 0;
1018
1019         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1020         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1021                         PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1022         if (ret)
1023                 return ret;
1024
1025         ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1026         if (ret)
1027                 goto unpin_ctx_obj;
1028
1029         ctx_obj->dirty = true;
1030
1031         /* Invalidate GuC TLB. */
1032         if (i915.enable_guc_submission)
1033                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1034
1035         return ret;
1036
1037 unpin_ctx_obj:
1038         i915_gem_object_ggtt_unpin(ctx_obj);
1039
1040         return ret;
1041 }
1042
1043 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1044 {
1045         int ret = 0;
1046         struct intel_engine_cs *ring = rq->ring;
1047         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1048         struct intel_ringbuffer *ringbuf = rq->ringbuf;
1049
1050         if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1051                 ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
1052                 if (ret)
1053                         goto reset_pin_count;
1054         }
1055         return ret;
1056
1057 reset_pin_count:
1058         rq->ctx->engine[ring->id].pin_count = 0;
1059         return ret;
1060 }
1061
1062 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1063 {
1064         struct intel_engine_cs *ring = rq->ring;
1065         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1066         struct intel_ringbuffer *ringbuf = rq->ringbuf;
1067
1068         if (ctx_obj) {
1069                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1070                 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1071                         intel_unpin_ringbuffer_obj(ringbuf);
1072                         i915_gem_object_ggtt_unpin(ctx_obj);
1073                 }
1074         }
1075 }
1076
1077 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1078 {
1079         int ret, i;
1080         struct intel_engine_cs *ring = req->ring;
1081         struct intel_ringbuffer *ringbuf = req->ringbuf;
1082         struct drm_device *dev = ring->dev;
1083         struct drm_i915_private *dev_priv = dev->dev_private;
1084         struct i915_workarounds *w = &dev_priv->workarounds;
1085
1086         if (WARN_ON_ONCE(w->count == 0))
1087                 return 0;
1088
1089         ring->gpu_caches_dirty = true;
1090         ret = logical_ring_flush_all_caches(req);
1091         if (ret)
1092                 return ret;
1093
1094         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1095         if (ret)
1096                 return ret;
1097
1098         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1099         for (i = 0; i < w->count; i++) {
1100                 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1101                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1102         }
1103         intel_logical_ring_emit(ringbuf, MI_NOOP);
1104
1105         intel_logical_ring_advance(ringbuf);
1106
1107         ring->gpu_caches_dirty = true;
1108         ret = logical_ring_flush_all_caches(req);
1109         if (ret)
1110                 return ret;
1111
1112         return 0;
1113 }
1114
1115 #define wa_ctx_emit(batch, index, cmd)                                  \
1116         do {                                                            \
1117                 int __index = (index)++;                                \
1118                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1119                         return -ENOSPC;                                 \
1120                 }                                                       \
1121                 batch[__index] = (cmd);                                 \
1122         } while (0)
1123
1124
1125 /*
1126  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1127  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1128  * but there is a slight complication as this is applied in WA batch where the
1129  * values are only initialized once so we cannot take register value at the
1130  * beginning and reuse it further; hence we save its value to memory, upload a
1131  * constant value with bit21 set and then we restore it back with the saved value.
1132  * To simplify the WA, a constant value is formed by using the default value
1133  * of this register. This shouldn't be a problem because we are only modifying
1134  * it for a short period and this batch in non-premptible. We can ofcourse
1135  * use additional instructions that read the actual value of the register
1136  * at that time and set our bit of interest but it makes the WA complicated.
1137  *
1138  * This WA is also required for Gen9 so extracting as a function avoids
1139  * code duplication.
1140  */
1141 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1142                                                 uint32_t *const batch,
1143                                                 uint32_t index)
1144 {
1145         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1146
1147         /*
1148          * WaDisableLSQCROPERFforOCL:skl
1149          * This WA is implemented in skl_init_clock_gating() but since
1150          * this batch updates GEN8_L3SQCREG4 with default value we need to
1151          * set this bit here to retain the WA during flush.
1152          */
1153         if (IS_SKYLAKE(ring->dev) && INTEL_REVID(ring->dev) <= SKL_REVID_E0)
1154                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1155
1156         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1157                                    MI_SRM_LRM_GLOBAL_GTT));
1158         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1159         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1160         wa_ctx_emit(batch, index, 0);
1161
1162         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1163         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1164         wa_ctx_emit(batch, index, l3sqc4_flush);
1165
1166         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1167         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1168                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1169         wa_ctx_emit(batch, index, 0);
1170         wa_ctx_emit(batch, index, 0);
1171         wa_ctx_emit(batch, index, 0);
1172         wa_ctx_emit(batch, index, 0);
1173
1174         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1175                                    MI_SRM_LRM_GLOBAL_GTT));
1176         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1177         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1178         wa_ctx_emit(batch, index, 0);
1179
1180         return index;
1181 }
1182
1183 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1184                                     uint32_t offset,
1185                                     uint32_t start_alignment)
1186 {
1187         return wa_ctx->offset = ALIGN(offset, start_alignment);
1188 }
1189
1190 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1191                              uint32_t offset,
1192                              uint32_t size_alignment)
1193 {
1194         wa_ctx->size = offset - wa_ctx->offset;
1195
1196         WARN(wa_ctx->size % size_alignment,
1197              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1198              wa_ctx->size, size_alignment);
1199         return 0;
1200 }
1201
1202 /**
1203  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1204  *
1205  * @ring: only applicable for RCS
1206  * @wa_ctx: structure representing wa_ctx
1207  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1208  *    with the offset value received as input.
1209  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1210  * @batch: page in which WA are loaded
1211  * @offset: This field specifies the start of the batch, it should be
1212  *  cache-aligned otherwise it is adjusted accordingly.
1213  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1214  *  initialized at the beginning and shared across all contexts but this field
1215  *  helps us to have multiple batches at different offsets and select them based
1216  *  on a criteria. At the moment this batch always start at the beginning of the page
1217  *  and at this point we don't have multiple wa_ctx batch buffers.
1218  *
1219  *  The number of WA applied are not known at the beginning; we use this field
1220  *  to return the no of DWORDS written.
1221  *
1222  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1223  *  so it adds NOOPs as padding to make it cacheline aligned.
1224  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1225  *  makes a complete batch buffer.
1226  *
1227  * Return: non-zero if we exceed the PAGE_SIZE limit.
1228  */
1229
1230 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1231                                     struct i915_wa_ctx_bb *wa_ctx,
1232                                     uint32_t *const batch,
1233                                     uint32_t *offset)
1234 {
1235         uint32_t scratch_addr;
1236         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1237
1238         /* WaDisableCtxRestoreArbitration:bdw,chv */
1239         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1240
1241         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1242         if (IS_BROADWELL(ring->dev)) {
1243                 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1244                 if (rc < 0)
1245                         return rc;
1246                 index = rc;
1247         }
1248
1249         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1250         /* Actual scratch location is at 128 bytes offset */
1251         scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1252
1253         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1254         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1255                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1256                                    PIPE_CONTROL_CS_STALL |
1257                                    PIPE_CONTROL_QW_WRITE));
1258         wa_ctx_emit(batch, index, scratch_addr);
1259         wa_ctx_emit(batch, index, 0);
1260         wa_ctx_emit(batch, index, 0);
1261         wa_ctx_emit(batch, index, 0);
1262
1263         /* Pad to end of cacheline */
1264         while (index % CACHELINE_DWORDS)
1265                 wa_ctx_emit(batch, index, MI_NOOP);
1266
1267         /*
1268          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1269          * execution depends on the length specified in terms of cache lines
1270          * in the register CTX_RCS_INDIRECT_CTX
1271          */
1272
1273         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1274 }
1275
1276 /**
1277  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1278  *
1279  * @ring: only applicable for RCS
1280  * @wa_ctx: structure representing wa_ctx
1281  *  offset: specifies start of the batch, should be cache-aligned.
1282  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1283  * @batch: page in which WA are loaded
1284  * @offset: This field specifies the start of this batch.
1285  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1286  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1287  *
1288  *   The number of DWORDS written are returned using this field.
1289  *
1290  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1291  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1292  */
1293 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1294                                struct i915_wa_ctx_bb *wa_ctx,
1295                                uint32_t *const batch,
1296                                uint32_t *offset)
1297 {
1298         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1299
1300         /* WaDisableCtxRestoreArbitration:bdw,chv */
1301         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1302
1303         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1304
1305         return wa_ctx_end(wa_ctx, *offset = index, 1);
1306 }
1307
1308 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1309                                     struct i915_wa_ctx_bb *wa_ctx,
1310                                     uint32_t *const batch,
1311                                     uint32_t *offset)
1312 {
1313         int ret;
1314         struct drm_device *dev = ring->dev;
1315         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1316
1317         /* WaDisableCtxRestoreArbitration:skl,bxt */
1318         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1319             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1320                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1321
1322         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1323         ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1324         if (ret < 0)
1325                 return ret;
1326         index = ret;
1327
1328         /* Pad to end of cacheline */
1329         while (index % CACHELINE_DWORDS)
1330                 wa_ctx_emit(batch, index, MI_NOOP);
1331
1332         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1333 }
1334
1335 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1336                                struct i915_wa_ctx_bb *wa_ctx,
1337                                uint32_t *const batch,
1338                                uint32_t *offset)
1339 {
1340         struct drm_device *dev = ring->dev;
1341         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1342
1343         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1344         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_B0)) ||
1345             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0))) {
1346                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1347                 wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1348                 wa_ctx_emit(batch, index,
1349                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1350                 wa_ctx_emit(batch, index, MI_NOOP);
1351         }
1352
1353         /* WaDisableCtxRestoreArbitration:skl,bxt */
1354         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1355             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1356                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1357
1358         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1359
1360         return wa_ctx_end(wa_ctx, *offset = index, 1);
1361 }
1362
1363 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1364 {
1365         int ret;
1366
1367         ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1368         if (!ring->wa_ctx.obj) {
1369                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1370                 return -ENOMEM;
1371         }
1372
1373         ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1374         if (ret) {
1375                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1376                                  ret);
1377                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1378                 return ret;
1379         }
1380
1381         return 0;
1382 }
1383
1384 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1385 {
1386         if (ring->wa_ctx.obj) {
1387                 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1388                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1389                 ring->wa_ctx.obj = NULL;
1390         }
1391 }
1392
1393 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1394 {
1395         int ret;
1396         uint32_t *batch;
1397         uint32_t offset;
1398         struct vm_page *page;
1399         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1400
1401         WARN_ON(ring->id != RCS);
1402
1403         /* update this when WA for higher Gen are added */
1404         if (INTEL_INFO(ring->dev)->gen > 9) {
1405                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1406                           INTEL_INFO(ring->dev)->gen);
1407                 return 0;
1408         }
1409
1410         /* some WA perform writes to scratch page, ensure it is valid */
1411         if (ring->scratch.obj == NULL) {
1412                 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1413                 return -EINVAL;
1414         }
1415
1416         ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1417         if (ret) {
1418                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1419                 return ret;
1420         }
1421
1422         page = i915_gem_object_get_page(wa_ctx->obj, 0);
1423         batch = kmap_atomic(page);
1424         offset = 0;
1425
1426         if (INTEL_INFO(ring->dev)->gen == 8) {
1427                 ret = gen8_init_indirectctx_bb(ring,
1428                                                &wa_ctx->indirect_ctx,
1429                                                batch,
1430                                                &offset);
1431                 if (ret)
1432                         goto out;
1433
1434                 ret = gen8_init_perctx_bb(ring,
1435                                           &wa_ctx->per_ctx,
1436                                           batch,
1437                                           &offset);
1438                 if (ret)
1439                         goto out;
1440         } else if (INTEL_INFO(ring->dev)->gen == 9) {
1441                 ret = gen9_init_indirectctx_bb(ring,
1442                                                &wa_ctx->indirect_ctx,
1443                                                batch,
1444                                                &offset);
1445                 if (ret)
1446                         goto out;
1447
1448                 ret = gen9_init_perctx_bb(ring,
1449                                           &wa_ctx->per_ctx,
1450                                           batch,
1451                                           &offset);
1452                 if (ret)
1453                         goto out;
1454         }
1455
1456 out:
1457         kunmap_atomic(batch);
1458         if (ret)
1459                 lrc_destroy_wa_ctx_obj(ring);
1460
1461         return ret;
1462 }
1463
1464 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1465 {
1466         struct drm_device *dev = ring->dev;
1467         struct drm_i915_private *dev_priv = dev->dev_private;
1468         u8 next_context_status_buffer_hw;
1469
1470         lrc_setup_hardware_status_page(ring,
1471                                 ring->default_context->engine[ring->id].state);
1472
1473         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1474         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1475
1476         if (ring->status_page.obj) {
1477                 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1478                            (u32)ring->status_page.gfx_addr);
1479                 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1480         }
1481
1482         I915_WRITE(RING_MODE_GEN7(ring),
1483                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1484                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1485         POSTING_READ(RING_MODE_GEN7(ring));
1486
1487         /*
1488          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1489          * zero, we need to read the write pointer from hardware and use its
1490          * value because "this register is power context save restored".
1491          * Effectively, these states have been observed:
1492          *
1493          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1494          * BDW  | CSB regs not reset       | CSB regs reset       |
1495          * CHT  | CSB regs not reset       | CSB regs not reset   |
1496          */
1497         next_context_status_buffer_hw = (I915_READ(RING_CONTEXT_STATUS_PTR(ring))
1498                                                    & GEN8_CSB_PTR_MASK);
1499
1500         /*
1501          * When the CSB registers are reset (also after power-up / gpu reset),
1502          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1503          * this special case, so the first element read is CSB[0].
1504          */
1505         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1506                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1507
1508         ring->next_context_status_buffer = next_context_status_buffer_hw;
1509         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1510
1511         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1512
1513         return 0;
1514 }
1515
1516 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1517 {
1518         struct drm_device *dev = ring->dev;
1519         struct drm_i915_private *dev_priv = dev->dev_private;
1520         int ret;
1521
1522         ret = gen8_init_common_ring(ring);
1523         if (ret)
1524                 return ret;
1525
1526         /* We need to disable the AsyncFlip performance optimisations in order
1527          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1528          * programmed to '1' on all products.
1529          *
1530          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1531          */
1532         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1533
1534         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1535
1536         return init_workarounds_ring(ring);
1537 }
1538
1539 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1540 {
1541         int ret;
1542
1543         ret = gen8_init_common_ring(ring);
1544         if (ret)
1545                 return ret;
1546
1547         return init_workarounds_ring(ring);
1548 }
1549
1550 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1551 {
1552         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1553         struct intel_engine_cs *ring = req->ring;
1554         struct intel_ringbuffer *ringbuf = req->ringbuf;
1555         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1556         int i, ret;
1557
1558         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1559         if (ret)
1560                 return ret;
1561
1562         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1563         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1564                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1565
1566                 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1567                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1568                 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1569                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1570         }
1571
1572         intel_logical_ring_emit(ringbuf, MI_NOOP);
1573         intel_logical_ring_advance(ringbuf);
1574
1575         return 0;
1576 }
1577
1578 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1579                               u64 offset, unsigned dispatch_flags)
1580 {
1581         struct intel_ringbuffer *ringbuf = req->ringbuf;
1582         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1583         int ret;
1584
1585         /* Don't rely in hw updating PDPs, specially in lite-restore.
1586          * Ideally, we should set Force PD Restore in ctx descriptor,
1587          * but we can't. Force Restore would be a second option, but
1588          * it is unsafe in case of lite-restore (because the ctx is
1589          * not idle). PML4 is allocated during ppgtt init so this is
1590          * not needed in 48-bit.*/
1591         if (req->ctx->ppgtt &&
1592             (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1593                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1594                     !intel_vgpu_active(req->i915->dev)) {
1595                         ret = intel_logical_ring_emit_pdps(req);
1596                         if (ret)
1597                                 return ret;
1598                 }
1599
1600                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1601         }
1602
1603         ret = intel_logical_ring_begin(req, 4);
1604         if (ret)
1605                 return ret;
1606
1607         /* FIXME(BDW): Address space and security selectors. */
1608         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1609                                 (ppgtt<<8) |
1610                                 (dispatch_flags & I915_DISPATCH_RS ?
1611                                  MI_BATCH_RESOURCE_STREAMER : 0));
1612         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1613         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1614         intel_logical_ring_emit(ringbuf, MI_NOOP);
1615         intel_logical_ring_advance(ringbuf);
1616
1617         return 0;
1618 }
1619
1620 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1621 {
1622         struct drm_device *dev = ring->dev;
1623         struct drm_i915_private *dev_priv = dev->dev_private;
1624         unsigned long flags;
1625
1626         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1627                 return false;
1628
1629         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1630         if (ring->irq_refcount++ == 0) {
1631                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1632                 POSTING_READ(RING_IMR(ring->mmio_base));
1633         }
1634         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1635
1636         return true;
1637 }
1638
1639 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1640 {
1641         struct drm_device *dev = ring->dev;
1642         struct drm_i915_private *dev_priv = dev->dev_private;
1643         unsigned long flags;
1644
1645         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1646         if (--ring->irq_refcount == 0) {
1647                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1648                 POSTING_READ(RING_IMR(ring->mmio_base));
1649         }
1650         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1651 }
1652
1653 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1654                            u32 invalidate_domains,
1655                            u32 unused)
1656 {
1657         struct intel_ringbuffer *ringbuf = request->ringbuf;
1658         struct intel_engine_cs *ring = ringbuf->ring;
1659         struct drm_device *dev = ring->dev;
1660         struct drm_i915_private *dev_priv = dev->dev_private;
1661         uint32_t cmd;
1662         int ret;
1663
1664         ret = intel_logical_ring_begin(request, 4);
1665         if (ret)
1666                 return ret;
1667
1668         cmd = MI_FLUSH_DW + 1;
1669
1670         /* We always require a command barrier so that subsequent
1671          * commands, such as breadcrumb interrupts, are strictly ordered
1672          * wrt the contents of the write cache being flushed to memory
1673          * (and thus being coherent from the CPU).
1674          */
1675         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1676
1677         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1678                 cmd |= MI_INVALIDATE_TLB;
1679                 if (ring == &dev_priv->ring[VCS])
1680                         cmd |= MI_INVALIDATE_BSD;
1681         }
1682
1683         intel_logical_ring_emit(ringbuf, cmd);
1684         intel_logical_ring_emit(ringbuf,
1685                                 I915_GEM_HWS_SCRATCH_ADDR |
1686                                 MI_FLUSH_DW_USE_GTT);
1687         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1688         intel_logical_ring_emit(ringbuf, 0); /* value */
1689         intel_logical_ring_advance(ringbuf);
1690
1691         return 0;
1692 }
1693
1694 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1695                                   u32 invalidate_domains,
1696                                   u32 flush_domains)
1697 {
1698         struct intel_ringbuffer *ringbuf = request->ringbuf;
1699         struct intel_engine_cs *ring = ringbuf->ring;
1700         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1701         bool vf_flush_wa;
1702         u32 flags = 0;
1703         int ret;
1704
1705         flags |= PIPE_CONTROL_CS_STALL;
1706
1707         if (flush_domains) {
1708                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1709                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1710                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1711         }
1712
1713         if (invalidate_domains) {
1714                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1715                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1716                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1717                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1718                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1719                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1720                 flags |= PIPE_CONTROL_QW_WRITE;
1721                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1722         }
1723
1724         /*
1725          * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1726          * control.
1727          */
1728         vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1729                       flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1730
1731         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1732         if (ret)
1733                 return ret;
1734
1735         if (vf_flush_wa) {
1736                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1737                 intel_logical_ring_emit(ringbuf, 0);
1738                 intel_logical_ring_emit(ringbuf, 0);
1739                 intel_logical_ring_emit(ringbuf, 0);
1740                 intel_logical_ring_emit(ringbuf, 0);
1741                 intel_logical_ring_emit(ringbuf, 0);
1742         }
1743
1744         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1745         intel_logical_ring_emit(ringbuf, flags);
1746         intel_logical_ring_emit(ringbuf, scratch_addr);
1747         intel_logical_ring_emit(ringbuf, 0);
1748         intel_logical_ring_emit(ringbuf, 0);
1749         intel_logical_ring_emit(ringbuf, 0);
1750         intel_logical_ring_advance(ringbuf);
1751
1752         return 0;
1753 }
1754
1755 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1756 {
1757         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1758 }
1759
1760 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1761 {
1762         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1763 }
1764
1765 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1766 {
1767
1768         /*
1769          * On BXT A steppings there is a HW coherency issue whereby the
1770          * MI_STORE_DATA_IMM storing the completed request's seqno
1771          * occasionally doesn't invalidate the CPU cache. Work around this by
1772          * clflushing the corresponding cacheline whenever the caller wants
1773          * the coherency to be guaranteed. Note that this cacheline is known
1774          * to be clean at this point, since we only write it in
1775          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1776          * this clflush in practice becomes an invalidate operation.
1777          */
1778
1779         if (!lazy_coherency)
1780                 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1781
1782         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1783 }
1784
1785 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1786 {
1787         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1788
1789         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1790         intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1791 }
1792
1793 static int gen8_emit_request(struct drm_i915_gem_request *request)
1794 {
1795         struct intel_ringbuffer *ringbuf = request->ringbuf;
1796         struct intel_engine_cs *ring = ringbuf->ring;
1797         u32 cmd;
1798         int ret;
1799
1800         /*
1801          * Reserve space for 2 NOOPs at the end of each request to be
1802          * used as a workaround for not being allowed to do lite
1803          * restore with HEAD==TAIL (WaIdleLiteRestore).
1804          */
1805         ret = intel_logical_ring_begin(request, 8);
1806         if (ret)
1807                 return ret;
1808
1809         cmd = MI_STORE_DWORD_IMM_GEN4;
1810         cmd |= MI_GLOBAL_GTT;
1811
1812         intel_logical_ring_emit(ringbuf, cmd);
1813         intel_logical_ring_emit(ringbuf,
1814                                 (ring->status_page.gfx_addr +
1815                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1816         intel_logical_ring_emit(ringbuf, 0);
1817         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1818         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1819         intel_logical_ring_emit(ringbuf, MI_NOOP);
1820         intel_logical_ring_advance_and_submit(request);
1821
1822         /*
1823          * Here we add two extra NOOPs as padding to avoid
1824          * lite restore of a context with HEAD==TAIL.
1825          */
1826         intel_logical_ring_emit(ringbuf, MI_NOOP);
1827         intel_logical_ring_emit(ringbuf, MI_NOOP);
1828         intel_logical_ring_advance(ringbuf);
1829
1830         return 0;
1831 }
1832
1833 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1834 {
1835         struct render_state so;
1836         int ret;
1837
1838         ret = i915_gem_render_state_prepare(req->ring, &so);
1839         if (ret)
1840                 return ret;
1841
1842         if (so.rodata == NULL)
1843                 return 0;
1844
1845         ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1846                                        I915_DISPATCH_SECURE);
1847         if (ret)
1848                 goto out;
1849
1850         ret = req->ring->emit_bb_start(req,
1851                                        (so.ggtt_offset + so.aux_batch_offset),
1852                                        I915_DISPATCH_SECURE);
1853         if (ret)
1854                 goto out;
1855
1856         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1857
1858 out:
1859         i915_gem_render_state_fini(&so);
1860         return ret;
1861 }
1862
1863 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1864 {
1865         int ret;
1866
1867         ret = intel_logical_ring_workarounds_emit(req);
1868         if (ret)
1869                 return ret;
1870
1871         ret = intel_rcs_context_init_mocs(req);
1872         /*
1873          * Failing to program the MOCS is non-fatal.The system will not
1874          * run at peak performance. So generate an error and carry on.
1875          */
1876         if (ret)
1877                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1878
1879         return intel_lr_context_render_state_init(req);
1880 }
1881
1882 /**
1883  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1884  *
1885  * @ring: Engine Command Streamer.
1886  *
1887  */
1888 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1889 {
1890         struct drm_i915_private *dev_priv;
1891
1892         if (!intel_ring_initialized(ring))
1893                 return;
1894
1895         dev_priv = ring->dev->dev_private;
1896
1897         intel_logical_ring_stop(ring);
1898         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1899
1900         if (ring->cleanup)
1901                 ring->cleanup(ring);
1902
1903         i915_cmd_parser_fini_ring(ring);
1904         i915_gem_batch_pool_fini(&ring->batch_pool);
1905
1906         if (ring->status_page.obj) {
1907                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1908                 ring->status_page.obj = NULL;
1909         }
1910
1911         lrc_destroy_wa_ctx_obj(ring);
1912 }
1913
1914 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1915 {
1916         int ret;
1917
1918         /* Intentionally left blank. */
1919         ring->buffer = NULL;
1920
1921         ring->dev = dev;
1922         INIT_LIST_HEAD(&ring->active_list);
1923         INIT_LIST_HEAD(&ring->request_list);
1924         i915_gem_batch_pool_init(dev, &ring->batch_pool);
1925         init_waitqueue_head(&ring->irq_queue);
1926
1927         INIT_LIST_HEAD(&ring->execlist_queue);
1928         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1929         lockinit(&ring->execlist_lock, "i915el", 0, LK_CANRECURSE);
1930
1931         ret = i915_cmd_parser_init_ring(ring);
1932         if (ret)
1933                 return ret;
1934
1935         ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
1936         if (ret)
1937                 return ret;
1938
1939         /* As this is the default context, always pin it */
1940         ret = intel_lr_context_do_pin(
1941                         ring,
1942                         ring->default_context->engine[ring->id].state,
1943                         ring->default_context->engine[ring->id].ringbuf);
1944         if (ret) {
1945                 DRM_ERROR(
1946                         "Failed to pin and map ringbuffer %s: %d\n",
1947                         ring->name, ret);
1948                 return ret;
1949         }
1950
1951         return ret;
1952 }
1953
1954 static int logical_render_ring_init(struct drm_device *dev)
1955 {
1956         struct drm_i915_private *dev_priv = dev->dev_private;
1957         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1958         int ret;
1959
1960         ring->name = "render ring";
1961         ring->id = RCS;
1962         ring->mmio_base = RENDER_RING_BASE;
1963         ring->irq_enable_mask =
1964                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1965         ring->irq_keep_mask =
1966                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1967         if (HAS_L3_DPF(dev))
1968                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1969
1970         if (INTEL_INFO(dev)->gen >= 9)
1971                 ring->init_hw = gen9_init_render_ring;
1972         else
1973                 ring->init_hw = gen8_init_render_ring;
1974         ring->init_context = gen8_init_rcs_context;
1975         ring->cleanup = intel_fini_pipe_control;
1976         if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
1977                 ring->get_seqno = bxt_a_get_seqno;
1978                 ring->set_seqno = bxt_a_set_seqno;
1979         } else {
1980                 ring->get_seqno = gen8_get_seqno;
1981                 ring->set_seqno = gen8_set_seqno;
1982         }
1983         ring->emit_request = gen8_emit_request;
1984         ring->emit_flush = gen8_emit_flush_render;
1985         ring->irq_get = gen8_logical_ring_get_irq;
1986         ring->irq_put = gen8_logical_ring_put_irq;
1987         ring->emit_bb_start = gen8_emit_bb_start;
1988
1989         ring->dev = dev;
1990
1991         ret = intel_init_pipe_control(ring);
1992         if (ret)
1993                 return ret;
1994
1995         ret = intel_init_workaround_bb(ring);
1996         if (ret) {
1997                 /*
1998                  * We continue even if we fail to initialize WA batch
1999                  * because we only expect rare glitches but nothing
2000                  * critical to prevent us from using GPU
2001                  */
2002                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2003                           ret);
2004         }
2005
2006         ret = logical_ring_init(dev, ring);
2007         if (ret) {
2008                 lrc_destroy_wa_ctx_obj(ring);
2009         }
2010
2011         return ret;
2012 }
2013
2014 static int logical_bsd_ring_init(struct drm_device *dev)
2015 {
2016         struct drm_i915_private *dev_priv = dev->dev_private;
2017         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2018
2019         ring->name = "bsd ring";
2020         ring->id = VCS;
2021         ring->mmio_base = GEN6_BSD_RING_BASE;
2022         ring->irq_enable_mask =
2023                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2024         ring->irq_keep_mask =
2025                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2026
2027         ring->init_hw = gen8_init_common_ring;
2028         if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2029                 ring->get_seqno = bxt_a_get_seqno;
2030                 ring->set_seqno = bxt_a_set_seqno;
2031         } else {
2032                 ring->get_seqno = gen8_get_seqno;
2033                 ring->set_seqno = gen8_set_seqno;
2034         }
2035         ring->emit_request = gen8_emit_request;
2036         ring->emit_flush = gen8_emit_flush;
2037         ring->irq_get = gen8_logical_ring_get_irq;
2038         ring->irq_put = gen8_logical_ring_put_irq;
2039         ring->emit_bb_start = gen8_emit_bb_start;
2040
2041         return logical_ring_init(dev, ring);
2042 }
2043
2044 static int logical_bsd2_ring_init(struct drm_device *dev)
2045 {
2046         struct drm_i915_private *dev_priv = dev->dev_private;
2047         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2048
2049         ring->name = "bds2 ring";
2050         ring->id = VCS2;
2051         ring->mmio_base = GEN8_BSD2_RING_BASE;
2052         ring->irq_enable_mask =
2053                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2054         ring->irq_keep_mask =
2055                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2056
2057         ring->init_hw = gen8_init_common_ring;
2058         ring->get_seqno = gen8_get_seqno;
2059         ring->set_seqno = gen8_set_seqno;
2060         ring->emit_request = gen8_emit_request;
2061         ring->emit_flush = gen8_emit_flush;
2062         ring->irq_get = gen8_logical_ring_get_irq;
2063         ring->irq_put = gen8_logical_ring_put_irq;
2064         ring->emit_bb_start = gen8_emit_bb_start;
2065
2066         return logical_ring_init(dev, ring);
2067 }
2068
2069 static int logical_blt_ring_init(struct drm_device *dev)
2070 {
2071         struct drm_i915_private *dev_priv = dev->dev_private;
2072         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2073
2074         ring->name = "blitter ring";
2075         ring->id = BCS;
2076         ring->mmio_base = BLT_RING_BASE;
2077         ring->irq_enable_mask =
2078                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2079         ring->irq_keep_mask =
2080                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2081
2082         ring->init_hw = gen8_init_common_ring;
2083         if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2084                 ring->get_seqno = bxt_a_get_seqno;
2085                 ring->set_seqno = bxt_a_set_seqno;
2086         } else {
2087                 ring->get_seqno = gen8_get_seqno;
2088                 ring->set_seqno = gen8_set_seqno;
2089         }
2090         ring->emit_request = gen8_emit_request;
2091         ring->emit_flush = gen8_emit_flush;
2092         ring->irq_get = gen8_logical_ring_get_irq;
2093         ring->irq_put = gen8_logical_ring_put_irq;
2094         ring->emit_bb_start = gen8_emit_bb_start;
2095
2096         return logical_ring_init(dev, ring);
2097 }
2098
2099 static int logical_vebox_ring_init(struct drm_device *dev)
2100 {
2101         struct drm_i915_private *dev_priv = dev->dev_private;
2102         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2103
2104         ring->name = "video enhancement ring";
2105         ring->id = VECS;
2106         ring->mmio_base = VEBOX_RING_BASE;
2107         ring->irq_enable_mask =
2108                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2109         ring->irq_keep_mask =
2110                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2111
2112         ring->init_hw = gen8_init_common_ring;
2113         if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2114                 ring->get_seqno = bxt_a_get_seqno;
2115                 ring->set_seqno = bxt_a_set_seqno;
2116         } else {
2117                 ring->get_seqno = gen8_get_seqno;
2118                 ring->set_seqno = gen8_set_seqno;
2119         }
2120         ring->emit_request = gen8_emit_request;
2121         ring->emit_flush = gen8_emit_flush;
2122         ring->irq_get = gen8_logical_ring_get_irq;
2123         ring->irq_put = gen8_logical_ring_put_irq;
2124         ring->emit_bb_start = gen8_emit_bb_start;
2125
2126         return logical_ring_init(dev, ring);
2127 }
2128
2129 /**
2130  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2131  * @dev: DRM device.
2132  *
2133  * This function inits the engines for an Execlists submission style (the equivalent in the
2134  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2135  * those engines that are present in the hardware.
2136  *
2137  * Return: non-zero if the initialization failed.
2138  */
2139 int intel_logical_rings_init(struct drm_device *dev)
2140 {
2141         struct drm_i915_private *dev_priv = dev->dev_private;
2142         int ret;
2143
2144         ret = logical_render_ring_init(dev);
2145         if (ret)
2146                 return ret;
2147
2148         if (HAS_BSD(dev)) {
2149                 ret = logical_bsd_ring_init(dev);
2150                 if (ret)
2151                         goto cleanup_render_ring;
2152         }
2153
2154         if (HAS_BLT(dev)) {
2155                 ret = logical_blt_ring_init(dev);
2156                 if (ret)
2157                         goto cleanup_bsd_ring;
2158         }
2159
2160         if (HAS_VEBOX(dev)) {
2161                 ret = logical_vebox_ring_init(dev);
2162                 if (ret)
2163                         goto cleanup_blt_ring;
2164         }
2165
2166         if (HAS_BSD2(dev)) {
2167                 ret = logical_bsd2_ring_init(dev);
2168                 if (ret)
2169                         goto cleanup_vebox_ring;
2170         }
2171
2172         return 0;
2173
2174 cleanup_vebox_ring:
2175         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2176 cleanup_blt_ring:
2177         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2178 cleanup_bsd_ring:
2179         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2180 cleanup_render_ring:
2181         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2182
2183         return ret;
2184 }
2185
2186 static u32
2187 make_rpcs(struct drm_device *dev)
2188 {
2189         u32 rpcs = 0;
2190
2191         /*
2192          * No explicit RPCS request is needed to ensure full
2193          * slice/subslice/EU enablement prior to Gen9.
2194         */
2195         if (INTEL_INFO(dev)->gen < 9)
2196                 return 0;
2197
2198         /*
2199          * Starting in Gen9, render power gating can leave
2200          * slice/subslice/EU in a partially enabled state. We
2201          * must make an explicit request through RPCS for full
2202          * enablement.
2203         */
2204         if (INTEL_INFO(dev)->has_slice_pg) {
2205                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2206                 rpcs |= INTEL_INFO(dev)->slice_total <<
2207                         GEN8_RPCS_S_CNT_SHIFT;
2208                 rpcs |= GEN8_RPCS_ENABLE;
2209         }
2210
2211         if (INTEL_INFO(dev)->has_subslice_pg) {
2212                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2213                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2214                         GEN8_RPCS_SS_CNT_SHIFT;
2215                 rpcs |= GEN8_RPCS_ENABLE;
2216         }
2217
2218         if (INTEL_INFO(dev)->has_eu_pg) {
2219                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2220                         GEN8_RPCS_EU_MIN_SHIFT;
2221                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2222                         GEN8_RPCS_EU_MAX_SHIFT;
2223                 rpcs |= GEN8_RPCS_ENABLE;
2224         }
2225
2226         return rpcs;
2227 }
2228
2229 static int
2230 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2231                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2232 {
2233         struct drm_device *dev = ring->dev;
2234         struct drm_i915_private *dev_priv = dev->dev_private;
2235         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2236         struct vm_page *page;
2237         uint32_t *reg_state;
2238         int ret;
2239
2240         if (!ppgtt)
2241                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2242
2243         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2244         if (ret) {
2245                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2246                 return ret;
2247         }
2248
2249         ret = i915_gem_object_get_pages(ctx_obj);
2250         if (ret) {
2251                 DRM_DEBUG_DRIVER("Could not get object pages\n");
2252                 return ret;
2253         }
2254
2255         i915_gem_object_pin_pages(ctx_obj);
2256
2257         /* The second page of the context object contains some fields which must
2258          * be set up prior to the first execution. */
2259         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2260         reg_state = kmap_atomic(page);
2261
2262         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2263          * commands followed by (reg, value) pairs. The values we are setting here are
2264          * only for the first context restore: on a subsequent save, the GPU will
2265          * recreate this batchbuffer with new values (including all the missing
2266          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2267         if (ring->id == RCS)
2268                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2269         else
2270                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2271         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2272         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2273         reg_state[CTX_CONTEXT_CONTROL+1] =
2274                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2275                                    CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2276                                    CTX_CTRL_RS_CTX_ENABLE);
2277         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2278         reg_state[CTX_RING_HEAD+1] = 0;
2279         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2280         reg_state[CTX_RING_TAIL+1] = 0;
2281         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
2282         /* Ring buffer start address is not known until the buffer is pinned.
2283          * It is written to the context image in execlists_update_context()
2284          */
2285         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2286         reg_state[CTX_RING_BUFFER_CONTROL+1] =
2287                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2288         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2289         reg_state[CTX_BB_HEAD_U+1] = 0;
2290         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2291         reg_state[CTX_BB_HEAD_L+1] = 0;
2292         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2293         reg_state[CTX_BB_STATE+1] = (1<<5);
2294         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2295         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2296         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2297         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2298         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2299         reg_state[CTX_SECOND_BB_STATE+1] = 0;
2300         if (ring->id == RCS) {
2301                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2302                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2303                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2304                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2305                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2306                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2307                 if (ring->wa_ctx.obj) {
2308                         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2309                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2310
2311                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2312                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2313                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2314
2315                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2316                                 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2317
2318                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2319                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2320                                 0x01;
2321                 }
2322         }
2323         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2324         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2325         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2326         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2327         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2328         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2329         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2330         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2331         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2332         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2333         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2334         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2335
2336         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2337                 /* 64b PPGTT (48bit canonical)
2338                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2339                  * other PDP Descriptors are ignored.
2340                  */
2341                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2342         } else {
2343                 /* 32b PPGTT
2344                  * PDP*_DESCRIPTOR contains the base address of space supported.
2345                  * With dynamic page allocation, PDPs may not be allocated at
2346                  * this point. Point the unallocated PDPs to the scratch page
2347                  */
2348                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2349                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2350                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2351                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2352         }
2353
2354         if (ring->id == RCS) {
2355                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2356                 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2357                 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2358         }
2359
2360         kunmap_atomic(reg_state);
2361
2362         ctx_obj->dirty = 1;
2363         set_page_dirty(page);
2364         i915_gem_object_unpin_pages(ctx_obj);
2365
2366         return 0;
2367 }
2368
2369 /**
2370  * intel_lr_context_free() - free the LRC specific bits of a context
2371  * @ctx: the LR context to free.
2372  *
2373  * The real context freeing is done in i915_gem_context_free: this only
2374  * takes care of the bits that are LRC related: the per-engine backing
2375  * objects and the logical ringbuffer.
2376  */
2377 void intel_lr_context_free(struct intel_context *ctx)
2378 {
2379         int i;
2380
2381         for (i = 0; i < I915_NUM_RINGS; i++) {
2382                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2383
2384                 if (ctx_obj) {
2385                         struct intel_ringbuffer *ringbuf =
2386                                         ctx->engine[i].ringbuf;
2387                         struct intel_engine_cs *ring = ringbuf->ring;
2388
2389                         if (ctx == ring->default_context) {
2390                                 intel_unpin_ringbuffer_obj(ringbuf);
2391                                 i915_gem_object_ggtt_unpin(ctx_obj);
2392                         }
2393                         WARN_ON(ctx->engine[ring->id].pin_count);
2394                         intel_ringbuffer_free(ringbuf);
2395                         drm_gem_object_unreference(&ctx_obj->base);
2396                 }
2397         }
2398 }
2399
2400 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2401 {
2402         int ret = 0;
2403
2404         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2405
2406         switch (ring->id) {
2407         case RCS:
2408                 if (INTEL_INFO(ring->dev)->gen >= 9)
2409                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2410                 else
2411                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2412                 break;
2413         case VCS:
2414         case BCS:
2415         case VECS:
2416         case VCS2:
2417                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2418                 break;
2419         }
2420
2421         return ret;
2422 }
2423
2424 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2425                 struct drm_i915_gem_object *default_ctx_obj)
2426 {
2427         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2428         struct vm_page *page;
2429
2430         /* The HWSP is part of the default context object in LRC mode. */
2431         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2432                         + LRC_PPHWSP_PN * PAGE_SIZE;
2433         page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2434         ring->status_page.page_addr = kmap(page);
2435         ring->status_page.obj = default_ctx_obj;
2436
2437         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2438                         (u32)ring->status_page.gfx_addr);
2439         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2440 }
2441
2442 /**
2443  * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2444  * @ctx: LR context to create.
2445  * @ring: engine to be used with the context.
2446  *
2447  * This function can be called more than once, with different engines, if we plan
2448  * to use the context with them. The context backing objects and the ringbuffers
2449  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2450  * the creation is a deferred call: it's better to make sure first that we need to use
2451  * a given ring with the context.
2452  *
2453  * Return: non-zero on error.
2454  */
2455
2456 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2457                                      struct intel_engine_cs *ring)
2458 {
2459         struct drm_device *dev = ring->dev;
2460         struct drm_i915_gem_object *ctx_obj;
2461         uint32_t context_size;
2462         struct intel_ringbuffer *ringbuf;
2463         int ret;
2464
2465         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2466         WARN_ON(ctx->engine[ring->id].state);
2467
2468         context_size = round_up(get_lr_context_size(ring), 4096);
2469
2470         /* One extra page as the sharing data between driver and GuC */
2471         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2472
2473         ctx_obj = i915_gem_alloc_object(dev, context_size);
2474         if (!ctx_obj) {
2475                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2476                 return -ENOMEM;
2477         }
2478
2479         ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2480         if (IS_ERR(ringbuf)) {
2481                 ret = PTR_ERR(ringbuf);
2482                 goto error_deref_obj;
2483         }
2484
2485         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2486         if (ret) {
2487                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2488                 goto error_ringbuf;
2489         }
2490
2491         ctx->engine[ring->id].ringbuf = ringbuf;
2492         ctx->engine[ring->id].state = ctx_obj;
2493
2494         if (ctx != ring->default_context && ring->init_context) {
2495                 struct drm_i915_gem_request *req;
2496
2497                 ret = i915_gem_request_alloc(ring,
2498                         ctx, &req);
2499                 if (ret) {
2500                         DRM_ERROR("ring create req: %d\n",
2501                                 ret);
2502                         goto error_ringbuf;
2503                 }
2504
2505                 ret = ring->init_context(req);
2506                 if (ret) {
2507                         DRM_ERROR("ring init context: %d\n",
2508                                 ret);
2509                         i915_gem_request_cancel(req);
2510                         goto error_ringbuf;
2511                 }
2512                 i915_add_request_no_flush(req);
2513         }
2514         return 0;
2515
2516 error_ringbuf:
2517         intel_ringbuffer_free(ringbuf);
2518 error_deref_obj:
2519         drm_gem_object_unreference(&ctx_obj->base);
2520         ctx->engine[ring->id].ringbuf = NULL;
2521         ctx->engine[ring->id].state = NULL;
2522         return ret;
2523 }
2524
2525 void intel_lr_context_reset(struct drm_device *dev,
2526                         struct intel_context *ctx)
2527 {
2528         struct drm_i915_private *dev_priv = dev->dev_private;
2529         struct intel_engine_cs *ring;
2530         int i;
2531
2532         for_each_ring(ring, dev_priv, i) {
2533                 struct drm_i915_gem_object *ctx_obj =
2534                                 ctx->engine[ring->id].state;
2535                 struct intel_ringbuffer *ringbuf =
2536                                 ctx->engine[ring->id].ringbuf;
2537                 uint32_t *reg_state;
2538                 struct vm_page *page;
2539
2540                 if (!ctx_obj)
2541                         continue;
2542
2543                 if (i915_gem_object_get_pages(ctx_obj)) {
2544                         WARN(1, "Failed get_pages for context obj\n");
2545                         continue;
2546                 }
2547                 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2548                 reg_state = kmap_atomic(page);
2549
2550                 reg_state[CTX_RING_HEAD+1] = 0;
2551                 reg_state[CTX_RING_TAIL+1] = 0;
2552
2553                 kunmap_atomic(reg_state);
2554
2555                 ringbuf->head = 0;
2556                 ringbuf->tail = 0;
2557         }
2558 }