lwp: Add two syscalls to set/get lwp's CPU affinity mask.
[dragonfly.git] / sys / kern / lwkt_thread.c
1 /*
2  * Copyright (c) 2003-2011 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread 
39  * scheduling is queued via (async) IPIs.
40  */
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/spinlock.h>
54 #include <sys/ktr.h>
55
56 #include <sys/thread2.h>
57 #include <sys/spinlock2.h>
58 #include <sys/mplock2.h>
59
60 #include <sys/dsched.h>
61
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_pager.h>
69 #include <vm/vm_extern.h>
70
71 #include <machine/stdarg.h>
72 #include <machine/smp.h>
73 #include <machine/clock.h>
74
75 #ifdef _KERNEL_VIRTUAL
76 #include <pthread.h>
77 #endif
78
79 #define LOOPMASK
80
81 #if !defined(KTR_CTXSW)
82 #define KTR_CTXSW KTR_ALL
83 #endif
84 KTR_INFO_MASTER(ctxsw);
85 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
86 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
87 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
88 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
89
90 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
91
92 #ifdef  INVARIANTS
93 static int panic_on_cscount = 0;
94 #endif
95 static int64_t switch_count = 0;
96 static int64_t preempt_hit = 0;
97 static int64_t preempt_miss = 0;
98 static int64_t preempt_weird = 0;
99 static int lwkt_use_spin_port;
100 static struct objcache *thread_cache;
101 int cpu_mwait_spin = 0;
102
103 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
104 static void lwkt_setcpu_remote(void *arg);
105
106 /*
107  * We can make all thread ports use the spin backend instead of the thread
108  * backend.  This should only be set to debug the spin backend.
109  */
110 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
111
112 #ifdef  INVARIANTS
113 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
114     "Panic if attempting to switch lwkt's while mastering cpusync");
115 #endif
116 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
117     "Number of switched threads");
118 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, 
119     "Successful preemption events");
120 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, 
121     "Failed preemption events");
122 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
123     "Number of preempted threads.");
124 static int fairq_enable = 0;
125 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
126         &fairq_enable, 0, "Turn on fairq priority accumulators");
127 static int fairq_bypass = -1;
128 SYSCTL_INT(_lwkt, OID_AUTO, fairq_bypass, CTLFLAG_RW,
129         &fairq_bypass, 0, "Allow fairq to bypass td on token failure");
130 extern int lwkt_sched_debug;
131 int lwkt_sched_debug = 0;
132 SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
133         &lwkt_sched_debug, 0, "Scheduler debug");
134 static u_int lwkt_spin_loops = 10;
135 SYSCTL_UINT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
136         &lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
137 static int preempt_enable = 1;
138 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
139         &preempt_enable, 0, "Enable preemption");
140 static int lwkt_cache_threads = 0;
141 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
142         &lwkt_cache_threads, 0, "thread+kstack cache");
143
144 /*
145  * These helper procedures handle the runq, they can only be called from
146  * within a critical section.
147  *
148  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
149  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
150  * instead of 'mycpu' when referencing the globaldata structure.   Once
151  * SMP live enqueuing and dequeueing only occurs on the current cpu.
152  */
153 static __inline
154 void
155 _lwkt_dequeue(thread_t td)
156 {
157     if (td->td_flags & TDF_RUNQ) {
158         struct globaldata *gd = td->td_gd;
159
160         td->td_flags &= ~TDF_RUNQ;
161         TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
162         --gd->gd_tdrunqcount;
163         if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
164                 atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
165     }
166 }
167
168 /*
169  * Priority enqueue.
170  *
171  * There are a limited number of lwkt threads runnable since user
172  * processes only schedule one at a time per cpu.  However, there can
173  * be many user processes in kernel mode exiting from a tsleep() which
174  * become runnable.
175  *
176  * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
177  *       will ignore user priority.  This is to ensure that user threads in
178  *       kernel mode get cpu at some point regardless of what the user
179  *       scheduler thinks.
180  */
181 static __inline
182 void
183 _lwkt_enqueue(thread_t td)
184 {
185     thread_t xtd;
186
187     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
188         struct globaldata *gd = td->td_gd;
189
190         td->td_flags |= TDF_RUNQ;
191         xtd = TAILQ_FIRST(&gd->gd_tdrunq);
192         if (xtd == NULL) {
193             TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
194             atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
195         } else {
196             /*
197              * NOTE: td_upri - higher numbers more desireable, same sense
198              *       as td_pri (typically reversed from lwp_upri).
199              *
200              *       In the equal priority case we want the best selection
201              *       at the beginning so the less desireable selections know
202              *       that they have to setrunqueue/go-to-another-cpu, even
203              *       though it means switching back to the 'best' selection.
204              *       This also avoids degenerate situations when many threads
205              *       are runnable or waking up at the same time.
206              *
207              *       If upri matches exactly place at end/round-robin.
208              */
209             while (xtd &&
210                    (xtd->td_pri >= td->td_pri ||
211                     (xtd->td_pri == td->td_pri &&
212                      xtd->td_upri >= td->td_upri))) {
213                 xtd = TAILQ_NEXT(xtd, td_threadq);
214             }
215             if (xtd)
216                 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
217             else
218                 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
219         }
220         ++gd->gd_tdrunqcount;
221
222         /*
223          * Request a LWKT reschedule if we are now at the head of the queue.
224          */
225         if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
226             need_lwkt_resched();
227     }
228 }
229
230 static boolean_t
231 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
232 {
233         struct thread *td = (struct thread *)obj;
234
235         td->td_kstack = NULL;
236         td->td_kstack_size = 0;
237         td->td_flags = TDF_ALLOCATED_THREAD;
238         td->td_mpflags = 0;
239         return (1);
240 }
241
242 static void
243 _lwkt_thread_dtor(void *obj, void *privdata)
244 {
245         struct thread *td = (struct thread *)obj;
246
247         KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
248             ("_lwkt_thread_dtor: not allocated from objcache"));
249         KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
250                 td->td_kstack_size > 0,
251             ("_lwkt_thread_dtor: corrupted stack"));
252         kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
253         td->td_kstack = NULL;
254         td->td_flags = 0;
255 }
256
257 /*
258  * Initialize the lwkt s/system.
259  *
260  * Nominally cache up to 32 thread + kstack structures.  Cache more on
261  * systems with a lot of cpu cores.
262  */
263 static void
264 lwkt_init(void)
265 {
266     TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
267     if (lwkt_cache_threads == 0) {
268         lwkt_cache_threads = ncpus * 4;
269         if (lwkt_cache_threads < 32)
270             lwkt_cache_threads = 32;
271     }
272     thread_cache = objcache_create_mbacked(
273                                 M_THREAD, sizeof(struct thread),
274                                 0, lwkt_cache_threads,
275                                 _lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
276 }
277 SYSINIT(lwkt_init, SI_BOOT2_LWKT_INIT, SI_ORDER_FIRST, lwkt_init, NULL);
278
279 /*
280  * Schedule a thread to run.  As the current thread we can always safely
281  * schedule ourselves, and a shortcut procedure is provided for that
282  * function.
283  *
284  * (non-blocking, self contained on a per cpu basis)
285  */
286 void
287 lwkt_schedule_self(thread_t td)
288 {
289     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
290     crit_enter_quick(td);
291     KASSERT(td != &td->td_gd->gd_idlethread,
292             ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
293     KKASSERT(td->td_lwp == NULL ||
294              (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
295     _lwkt_enqueue(td);
296     crit_exit_quick(td);
297 }
298
299 /*
300  * Deschedule a thread.
301  *
302  * (non-blocking, self contained on a per cpu basis)
303  */
304 void
305 lwkt_deschedule_self(thread_t td)
306 {
307     crit_enter_quick(td);
308     _lwkt_dequeue(td);
309     crit_exit_quick(td);
310 }
311
312 /*
313  * LWKTs operate on a per-cpu basis
314  *
315  * WARNING!  Called from early boot, 'mycpu' may not work yet.
316  */
317 void
318 lwkt_gdinit(struct globaldata *gd)
319 {
320     TAILQ_INIT(&gd->gd_tdrunq);
321     TAILQ_INIT(&gd->gd_tdallq);
322 }
323
324 /*
325  * Create a new thread.  The thread must be associated with a process context
326  * or LWKT start address before it can be scheduled.  If the target cpu is
327  * -1 the thread will be created on the current cpu.
328  *
329  * If you intend to create a thread without a process context this function
330  * does everything except load the startup and switcher function.
331  */
332 thread_t
333 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
334 {
335     static int cpu_rotator;
336     globaldata_t gd = mycpu;
337     void *stack;
338
339     /*
340      * If static thread storage is not supplied allocate a thread.  Reuse
341      * a cached free thread if possible.  gd_freetd is used to keep an exiting
342      * thread intact through the exit.
343      */
344     if (td == NULL) {
345         crit_enter_gd(gd);
346         if ((td = gd->gd_freetd) != NULL) {
347             KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
348                                       TDF_RUNQ)) == 0);
349             gd->gd_freetd = NULL;
350         } else {
351             td = objcache_get(thread_cache, M_WAITOK);
352             KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
353                                       TDF_RUNQ)) == 0);
354         }
355         crit_exit_gd(gd);
356         KASSERT((td->td_flags &
357                  (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
358                  TDF_ALLOCATED_THREAD,
359                 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
360         flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
361     }
362
363     /*
364      * Try to reuse cached stack.
365      */
366     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
367         if (flags & TDF_ALLOCATED_STACK) {
368             kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
369             stack = NULL;
370         }
371     }
372     if (stack == NULL) {
373         if (cpu < 0)
374                 stack = (void *)kmem_alloc_stack(&kernel_map, stksize, 0);
375         else
376                 stack = (void *)kmem_alloc_stack(&kernel_map, stksize,
377                                                  KM_CPU(cpu));
378         flags |= TDF_ALLOCATED_STACK;
379     }
380     if (cpu < 0) {
381         cpu = ++cpu_rotator;
382         cpu_ccfence();
383         cpu %= ncpus;
384     }
385     lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
386     return(td);
387 }
388
389 /*
390  * Initialize a preexisting thread structure.  This function is used by
391  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
392  *
393  * All threads start out in a critical section at a priority of
394  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
395  * appropriate.  This function may send an IPI message when the 
396  * requested cpu is not the current cpu and consequently gd_tdallq may
397  * not be initialized synchronously from the point of view of the originating
398  * cpu.
399  *
400  * NOTE! we have to be careful in regards to creating threads for other cpus
401  * if SMP has not yet been activated.
402  */
403 static void
404 lwkt_init_thread_remote(void *arg)
405 {
406     thread_t td = arg;
407
408     /*
409      * Protected by critical section held by IPI dispatch
410      */
411     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
412 }
413
414 /*
415  * lwkt core thread structural initialization.
416  *
417  * NOTE: All threads are initialized as mpsafe threads.
418  */
419 void
420 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
421                 struct globaldata *gd)
422 {
423     globaldata_t mygd = mycpu;
424
425     bzero(td, sizeof(struct thread));
426     td->td_kstack = stack;
427     td->td_kstack_size = stksize;
428     td->td_flags = flags;
429     td->td_mpflags = 0;
430     td->td_type = TD_TYPE_GENERIC;
431     td->td_gd = gd;
432     td->td_pri = TDPRI_KERN_DAEMON;
433     td->td_critcount = 1;
434     td->td_toks_have = NULL;
435     td->td_toks_stop = &td->td_toks_base;
436     if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT)) {
437         lwkt_initport_spin(&td->td_msgport, td,
438             (flags & TDF_FIXEDCPU) ? TRUE : FALSE);
439     } else {
440         lwkt_initport_thread(&td->td_msgport, td);
441     }
442     pmap_init_thread(td);
443     /*
444      * Normally initializing a thread for a remote cpu requires sending an
445      * IPI.  However, the idlethread is setup before the other cpus are
446      * activated so we have to treat it as a special case.  XXX manipulation
447      * of gd_tdallq requires the BGL.
448      */
449     if (gd == mygd || td == &gd->gd_idlethread) {
450         crit_enter_gd(mygd);
451         TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
452         crit_exit_gd(mygd);
453     } else {
454         lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
455     }
456     dsched_enter_thread(td);
457 }
458
459 void
460 lwkt_set_comm(thread_t td, const char *ctl, ...)
461 {
462     __va_list va;
463
464     __va_start(va, ctl);
465     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
466     __va_end(va);
467     KTR_LOG(ctxsw_newtd, td, td->td_comm);
468 }
469
470 /*
471  * Prevent the thread from getting destroyed.  Note that unlike PHOLD/PRELE
472  * this does not prevent the thread from migrating to another cpu so the
473  * gd_tdallq state is not protected by this.
474  */
475 void
476 lwkt_hold(thread_t td)
477 {
478     atomic_add_int(&td->td_refs, 1);
479 }
480
481 void
482 lwkt_rele(thread_t td)
483 {
484     KKASSERT(td->td_refs > 0);
485     atomic_add_int(&td->td_refs, -1);
486 }
487
488 void
489 lwkt_free_thread(thread_t td)
490 {
491     KKASSERT(td->td_refs == 0);
492     KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
493                               TDF_RUNQ | TDF_TSLEEPQ)) == 0);
494     if (td->td_flags & TDF_ALLOCATED_THREAD) {
495         objcache_put(thread_cache, td);
496     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
497         /* client-allocated struct with internally allocated stack */
498         KASSERT(td->td_kstack && td->td_kstack_size > 0,
499             ("lwkt_free_thread: corrupted stack"));
500         kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
501         td->td_kstack = NULL;
502         td->td_kstack_size = 0;
503     }
504
505     KTR_LOG(ctxsw_deadtd, td);
506 }
507
508
509 /*
510  * Switch to the next runnable lwkt.  If no LWKTs are runnable then 
511  * switch to the idlethread.  Switching must occur within a critical
512  * section to avoid races with the scheduling queue.
513  *
514  * We always have full control over our cpu's run queue.  Other cpus
515  * that wish to manipulate our queue must use the cpu_*msg() calls to
516  * talk to our cpu, so a critical section is all that is needed and
517  * the result is very, very fast thread switching.
518  *
519  * The LWKT scheduler uses a fixed priority model and round-robins at
520  * each priority level.  User process scheduling is a totally
521  * different beast and LWKT priorities should not be confused with
522  * user process priorities.
523  *
524  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
525  * is not called by the current thread in the preemption case, only when
526  * the preempting thread blocks (in order to return to the original thread).
527  *
528  * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
529  * migration and tsleep deschedule the current lwkt thread and call
530  * lwkt_switch().  In particular, the target cpu of the migration fully
531  * expects the thread to become non-runnable and can deadlock against
532  * cpusync operations if we run any IPIs prior to switching the thread out.
533  *
534  * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
535  * THE CURRENT THREAD HAS BEEN DESCHEDULED!
536  */
537 void
538 lwkt_switch(void)
539 {
540     globaldata_t gd = mycpu;
541     thread_t td = gd->gd_curthread;
542     thread_t ntd;
543     int upri;
544 #ifdef LOOPMASK
545     uint64_t tsc_base = rdtsc();
546 #endif
547
548     KKASSERT(gd->gd_processing_ipiq == 0);
549     KKASSERT(td->td_flags & TDF_RUNNING);
550
551     /*
552      * Switching from within a 'fast' (non thread switched) interrupt or IPI
553      * is illegal.  However, we may have to do it anyway if we hit a fatal
554      * kernel trap or we have paniced.
555      *
556      * If this case occurs save and restore the interrupt nesting level.
557      */
558     if (gd->gd_intr_nesting_level) {
559         int savegdnest;
560         int savegdtrap;
561
562         if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
563             panic("lwkt_switch: Attempt to switch from a "
564                   "fast interrupt, ipi, or hard code section, "
565                   "td %p\n",
566                   td);
567         } else {
568             savegdnest = gd->gd_intr_nesting_level;
569             savegdtrap = gd->gd_trap_nesting_level;
570             gd->gd_intr_nesting_level = 0;
571             gd->gd_trap_nesting_level = 0;
572             if ((td->td_flags & TDF_PANICWARN) == 0) {
573                 td->td_flags |= TDF_PANICWARN;
574                 kprintf("Warning: thread switch from interrupt, IPI, "
575                         "or hard code section.\n"
576                         "thread %p (%s)\n", td, td->td_comm);
577                 print_backtrace(-1);
578             }
579             lwkt_switch();
580             gd->gd_intr_nesting_level = savegdnest;
581             gd->gd_trap_nesting_level = savegdtrap;
582             return;
583         }
584     }
585
586     /*
587      * Release our current user process designation if we are blocking
588      * or if a user reschedule was requested.
589      *
590      * NOTE: This function is NOT called if we are switching into or
591      *       returning from a preemption.
592      *
593      * NOTE: Releasing our current user process designation may cause
594      *       it to be assigned to another thread, which in turn will
595      *       cause us to block in the usched acquire code when we attempt
596      *       to return to userland.
597      *
598      * NOTE: On SMP systems this can be very nasty when heavy token
599      *       contention is present so we want to be careful not to
600      *       release the designation gratuitously.
601      */
602     if (td->td_release &&
603         (user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
604             td->td_release(td);
605     }
606
607     /*
608      * Release all tokens.  Once we do this we must remain in the critical
609      * section and cannot run IPIs or other interrupts until we switch away
610      * because they may implode if they try to get a token using our thread
611      * context.
612      */
613     crit_enter_gd(gd);
614     if (TD_TOKS_HELD(td))
615             lwkt_relalltokens(td);
616
617     /*
618      * We had better not be holding any spin locks, but don't get into an
619      * endless panic loop.
620      */
621     KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
622             ("lwkt_switch: still holding %d exclusive spinlocks!",
623              gd->gd_spinlocks));
624
625 #ifdef  INVARIANTS
626     if (td->td_cscount) {
627         kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
628                 td);
629         if (panic_on_cscount)
630             panic("switching while mastering cpusync");
631     }
632 #endif
633
634     /*
635      * If we had preempted another thread on this cpu, resume the preempted
636      * thread.  This occurs transparently, whether the preempted thread
637      * was scheduled or not (it may have been preempted after descheduling
638      * itself).
639      *
640      * We have to setup the MP lock for the original thread after backing
641      * out the adjustment that was made to curthread when the original
642      * was preempted.
643      */
644     if ((ntd = td->td_preempted) != NULL) {
645         KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
646         ntd->td_flags |= TDF_PREEMPT_DONE;
647         ntd->td_contended = 0;          /* reset contended */
648
649         /*
650          * The interrupt may have woken a thread up, we need to properly
651          * set the reschedule flag if the originally interrupted thread is
652          * at a lower priority.
653          *
654          * The interrupt may not have descheduled.
655          */
656         if (TAILQ_FIRST(&gd->gd_tdrunq) != ntd)
657             need_lwkt_resched();
658         goto havethread_preempted;
659     }
660
661     /*
662      * Figure out switch target.  If we cannot switch to our desired target
663      * look for a thread that we can switch to.
664      *
665      * NOTE! The limited spin loop and related parameters are extremely
666      *       important for system performance, particularly for pipes and
667      *       concurrent conflicting VM faults.
668      */
669     clear_lwkt_resched();
670     ntd = TAILQ_FIRST(&gd->gd_tdrunq);
671
672     if (ntd) {
673         do {
674             if (TD_TOKS_NOT_HELD(ntd) ||
675                 lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops)))
676             {
677                 goto havethread;
678             }
679             ++gd->gd_cnt.v_lock_colls;
680             ++ntd->td_contended;        /* overflow ok */
681 #ifdef LOOPMASK
682             if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
683                     kprintf("lwkt_switch: excessive contended %d "
684                             "thread %p\n", ntd->td_contended, ntd);
685                     tsc_base = rdtsc();
686             }
687 #endif
688         } while (ntd->td_contended < (lwkt_spin_loops >> 1));
689         upri = ntd->td_upri;
690
691         /*
692          * Bleh, the thread we wanted to switch to has a contended token.
693          * See if we can switch to another thread.
694          *
695          * We generally don't want to do this because it represents a
696          * priority inversion.  Do not allow the case if the thread
697          * is returning to userland (not a kernel thread) AND the thread
698          * has a lower upri.
699          */
700         while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
701             if (ntd->td_pri < TDPRI_KERN_LPSCHED && upri > ntd->td_upri)
702                 break;
703             upri = ntd->td_upri;
704
705             /*
706              * Try this one.
707              */
708             if (TD_TOKS_NOT_HELD(ntd) ||
709                 lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops))) {
710                     goto havethread;
711             }
712             ++ntd->td_contended;        /* overflow ok */
713             ++gd->gd_cnt.v_lock_colls;
714         }
715
716         /*
717          * Fall through, switch to idle thread to get us out of the current
718          * context.  Since we were contended, prevent HLT by flagging a
719          * LWKT reschedule.
720          */
721         need_lwkt_resched();
722     }
723
724     /*
725      * We either contended on ntd or the runq is empty.  We must switch
726      * through the idle thread to get out of the current context.
727      */
728     ntd = &gd->gd_idlethread;
729     if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
730         ASSERT_NO_TOKENS_HELD(ntd);
731     cpu_time.cp_msg[0] = 0;
732     goto haveidle;
733
734 havethread:
735     /*
736      * Clear gd_idle_repeat when doing a normal switch to a non-idle
737      * thread.
738      */
739     ntd->td_wmesg = NULL;
740     ntd->td_contended = 0;      /* reset once scheduled */
741     ++gd->gd_cnt.v_swtch;
742     gd->gd_idle_repeat = 0;
743
744 havethread_preempted:
745     /*
746      * If the new target does not need the MP lock and we are holding it,
747      * release the MP lock.  If the new target requires the MP lock we have
748      * already acquired it for the target.
749      */
750     ;
751 haveidle:
752     KASSERT(ntd->td_critcount,
753             ("priority problem in lwkt_switch %d %d",
754             td->td_critcount, ntd->td_critcount));
755
756     if (td != ntd) {
757         /*
758          * Execute the actual thread switch operation.  This function
759          * returns to the current thread and returns the previous thread
760          * (which may be different from the thread we switched to).
761          *
762          * We are responsible for marking ntd as TDF_RUNNING.
763          */
764         KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
765         ++switch_count;
766         KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
767         ntd->td_flags |= TDF_RUNNING;
768         lwkt_switch_return(td->td_switch(ntd));
769         /* ntd invalid, td_switch() can return a different thread_t */
770     }
771
772     /*
773      * catch-all.  XXX is this strictly needed?
774      */
775     splz_check();
776
777     /* NOTE: current cpu may have changed after switch */
778     crit_exit_quick(td);
779 }
780
781 /*
782  * Called by assembly in the td_switch (thread restore path) for thread
783  * bootstrap cases which do not 'return' to lwkt_switch().
784  */
785 void
786 lwkt_switch_return(thread_t otd)
787 {
788         globaldata_t rgd;
789 #ifdef LOOPMASK
790         uint64_t tsc_base = rdtsc();
791 #endif
792         int exiting;
793
794         exiting = otd->td_flags & TDF_EXITING;
795         cpu_ccfence();
796
797         /*
798          * Check if otd was migrating.  Now that we are on ntd we can finish
799          * up the migration.  This is a bit messy but it is the only place
800          * where td is known to be fully descheduled.
801          *
802          * We can only activate the migration if otd was migrating but not
803          * held on the cpu due to a preemption chain.  We still have to
804          * clear TDF_RUNNING on the old thread either way.
805          *
806          * We are responsible for clearing the previously running thread's
807          * TDF_RUNNING.
808          */
809         if ((rgd = otd->td_migrate_gd) != NULL &&
810             (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
811                 KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
812                          (TDF_MIGRATING | TDF_RUNNING));
813                 otd->td_migrate_gd = NULL;
814                 otd->td_flags &= ~TDF_RUNNING;
815                 lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
816         } else {
817                 otd->td_flags &= ~TDF_RUNNING;
818         }
819
820         /*
821          * Final exit validations (see lwp_wait()).  Note that otd becomes
822          * invalid the *instant* we set TDF_MP_EXITSIG.
823          *
824          * Use the EXITING status loaded from before we clear TDF_RUNNING,
825          * because if it is not set otd becomes invalid the instant we clear
826          * TDF_RUNNING on it (otherwise, if the system is fast enough, we
827          * might 'steal' TDF_EXITING from another switch-return!).
828          */
829         while (exiting) {
830                 u_int mpflags;
831
832                 mpflags = otd->td_mpflags;
833                 cpu_ccfence();
834
835                 if (mpflags & TDF_MP_EXITWAIT) {
836                         if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
837                                               mpflags | TDF_MP_EXITSIG)) {
838                                 wakeup(otd);
839                                 break;
840                         }
841                 } else {
842                         if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
843                                               mpflags | TDF_MP_EXITSIG)) {
844                                 wakeup(otd);
845                                 break;
846                         }
847                 }
848
849 #ifdef LOOPMASK
850                 if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
851                         kprintf("lwkt_switch_return: excessive TDF_EXITING "
852                                 "thread %p\n", otd);
853                         tsc_base = rdtsc();
854                 }
855 #endif
856         }
857 }
858
859 /*
860  * Request that the target thread preempt the current thread.  Preemption
861  * can only occur if our only critical section is the one that we were called
862  * with, the relative priority of the target thread is higher, and the target
863  * thread holds no tokens.  This also only works if we are not holding any
864  * spinlocks (obviously).
865  *
866  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
867  * this is called via lwkt_schedule() through the td_preemptable callback.
868  * critcount is the managed critical priority that we should ignore in order
869  * to determine whether preemption is possible (aka usually just the crit
870  * priority of lwkt_schedule() itself).
871  *
872  * Preemption is typically limited to interrupt threads.
873  *
874  * Operation works in a fairly straight-forward manner.  The normal
875  * scheduling code is bypassed and we switch directly to the target
876  * thread.  When the target thread attempts to block or switch away
877  * code at the base of lwkt_switch() will switch directly back to our
878  * thread.  Our thread is able to retain whatever tokens it holds and
879  * if the target needs one of them the target will switch back to us
880  * and reschedule itself normally.
881  */
882 void
883 lwkt_preempt(thread_t ntd, int critcount)
884 {
885     struct globaldata *gd = mycpu;
886     thread_t xtd;
887     thread_t td;
888     int save_gd_intr_nesting_level;
889
890     /*
891      * The caller has put us in a critical section.  We can only preempt
892      * if the caller of the caller was not in a critical section (basically
893      * a local interrupt), as determined by the 'critcount' parameter.  We
894      * also can't preempt if the caller is holding any spinlocks (even if
895      * he isn't in a critical section).  This also handles the tokens test.
896      *
897      * YYY The target thread must be in a critical section (else it must
898      * inherit our critical section?  I dunno yet).
899      */
900     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
901
902     td = gd->gd_curthread;
903     if (preempt_enable == 0) {
904         ++preempt_miss;
905         return;
906     }
907     if (ntd->td_pri <= td->td_pri) {
908         ++preempt_miss;
909         return;
910     }
911     if (td->td_critcount > critcount) {
912         ++preempt_miss;
913         return;
914     }
915     if (td->td_cscount) {
916         ++preempt_miss;
917         return;
918     }
919     if (ntd->td_gd != gd) {
920         ++preempt_miss;
921         return;
922     }
923
924     /*
925      * We don't have to check spinlocks here as they will also bump
926      * td_critcount.
927      *
928      * Do not try to preempt if the target thread is holding any tokens.
929      * We could try to acquire the tokens but this case is so rare there
930      * is no need to support it.
931      */
932     KKASSERT(gd->gd_spinlocks == 0);
933
934     if (TD_TOKS_HELD(ntd)) {
935         ++preempt_miss;
936         return;
937     }
938     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
939         ++preempt_weird;
940         return;
941     }
942     if (ntd->td_preempted) {
943         ++preempt_hit;
944         return;
945     }
946     KKASSERT(gd->gd_processing_ipiq == 0);
947
948     /*
949      * Since we are able to preempt the current thread, there is no need to
950      * call need_lwkt_resched().
951      *
952      * We must temporarily clear gd_intr_nesting_level around the switch
953      * since switchouts from the target thread are allowed (they will just
954      * return to our thread), and since the target thread has its own stack.
955      *
956      * A preemption must switch back to the original thread, assert the
957      * case.
958      */
959     ++preempt_hit;
960     ntd->td_preempted = td;
961     td->td_flags |= TDF_PREEMPT_LOCK;
962     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
963     save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
964     gd->gd_intr_nesting_level = 0;
965
966     KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
967     ntd->td_flags |= TDF_RUNNING;
968     xtd = td->td_switch(ntd);
969     KKASSERT(xtd == ntd);
970     lwkt_switch_return(xtd);
971     gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
972
973     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
974     ntd->td_preempted = NULL;
975     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
976 }
977
978 /*
979  * Conditionally call splz() if gd_reqflags indicates work is pending.
980  * This will work inside a critical section but not inside a hard code
981  * section.
982  *
983  * (self contained on a per cpu basis)
984  */
985 void
986 splz_check(void)
987 {
988     globaldata_t gd = mycpu;
989     thread_t td = gd->gd_curthread;
990
991     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
992         gd->gd_intr_nesting_level == 0 &&
993         td->td_nest_count < 2)
994     {
995         splz();
996     }
997 }
998
999 /*
1000  * This version is integrated into crit_exit, reqflags has already
1001  * been tested but td_critcount has not.
1002  *
1003  * We only want to execute the splz() on the 1->0 transition of
1004  * critcount and not in a hard code section or if too deeply nested.
1005  *
1006  * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
1007  */
1008 void
1009 lwkt_maybe_splz(thread_t td)
1010 {
1011     globaldata_t gd = td->td_gd;
1012
1013     if (td->td_critcount == 0 &&
1014         gd->gd_intr_nesting_level == 0 &&
1015         td->td_nest_count < 2)
1016     {
1017         splz();
1018     }
1019 }
1020
1021 /*
1022  * Drivers which set up processing co-threads can call this function to
1023  * run the co-thread at a higher priority and to allow it to preempt
1024  * normal threads.
1025  */
1026 void
1027 lwkt_set_interrupt_support_thread(void)
1028 {
1029         thread_t td = curthread;
1030
1031         lwkt_setpri_self(TDPRI_INT_SUPPORT);
1032         td->td_flags |= TDF_INTTHREAD;
1033         td->td_preemptable = lwkt_preempt;
1034 }
1035
1036
1037 /*
1038  * This function is used to negotiate a passive release of the current
1039  * process/lwp designation with the user scheduler, allowing the user
1040  * scheduler to schedule another user thread.  The related kernel thread
1041  * (curthread) continues running in the released state.
1042  */
1043 void
1044 lwkt_passive_release(struct thread *td)
1045 {
1046     struct lwp *lp = td->td_lwp;
1047
1048     td->td_release = NULL;
1049     lwkt_setpri_self(TDPRI_KERN_USER);
1050
1051     lp->lwp_proc->p_usched->release_curproc(lp);
1052 }
1053
1054
1055 /*
1056  * This implements a LWKT yield, allowing a kernel thread to yield to other
1057  * kernel threads at the same or higher priority.  This function can be
1058  * called in a tight loop and will typically only yield once per tick.
1059  *
1060  * Most kernel threads run at the same priority in order to allow equal
1061  * sharing.
1062  *
1063  * (self contained on a per cpu basis)
1064  */
1065 void
1066 lwkt_yield(void)
1067 {
1068     globaldata_t gd = mycpu;
1069     thread_t td = gd->gd_curthread;
1070
1071     /*
1072      * Should never be called with spinlocks held but there is a path
1073      * via ACPI where it might happen.
1074      */
1075     if (gd->gd_spinlocks)
1076         return;
1077
1078     /*
1079      * Safe to call splz if we are not too-heavily nested.
1080      */
1081     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1082         splz();
1083
1084     /*
1085      * Caller allows switching
1086      */
1087     if (lwkt_resched_wanted()) {
1088         lwkt_schedule_self(curthread);
1089         lwkt_switch();
1090     }
1091 }
1092
1093 /*
1094  * The quick version processes pending interrupts and higher-priority
1095  * LWKT threads but will not round-robin same-priority LWKT threads.
1096  *
1097  * When called while attempting to return to userland the only same-pri
1098  * threads are the ones which have already tried to become the current
1099  * user process.
1100  */
1101 void
1102 lwkt_yield_quick(void)
1103 {
1104     globaldata_t gd = mycpu;
1105     thread_t td = gd->gd_curthread;
1106
1107     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1108         splz();
1109     if (lwkt_resched_wanted()) {
1110         crit_enter();
1111         if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1112             clear_lwkt_resched();
1113         } else {
1114             lwkt_schedule_self(curthread);
1115             lwkt_switch();
1116         }
1117         crit_exit();
1118     }
1119 }
1120
1121 /*
1122  * This yield is designed for kernel threads with a user context.
1123  *
1124  * The kernel acting on behalf of the user is potentially cpu-bound,
1125  * this function will efficiently allow other threads to run and also
1126  * switch to other processes by releasing.
1127  *
1128  * The lwkt_user_yield() function is designed to have very low overhead
1129  * if no yield is determined to be needed.
1130  */
1131 void
1132 lwkt_user_yield(void)
1133 {
1134     globaldata_t gd = mycpu;
1135     thread_t td = gd->gd_curthread;
1136
1137     /*
1138      * Should never be called with spinlocks held but there is a path
1139      * via ACPI where it might happen.
1140      */
1141     if (gd->gd_spinlocks)
1142         return;
1143
1144     /*
1145      * Always run any pending interrupts in case we are in a critical
1146      * section.
1147      */
1148     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1149         splz();
1150
1151     /*
1152      * Switch (which forces a release) if another kernel thread needs
1153      * the cpu, if userland wants us to resched, or if our kernel
1154      * quantum has run out.
1155      */
1156     if (lwkt_resched_wanted() ||
1157         user_resched_wanted())
1158     {
1159         lwkt_switch();
1160     }
1161
1162 #if 0
1163     /*
1164      * Reacquire the current process if we are released.
1165      *
1166      * XXX not implemented atm.  The kernel may be holding locks and such,
1167      *     so we want the thread to continue to receive cpu.
1168      */
1169     if (td->td_release == NULL && lp) {
1170         lp->lwp_proc->p_usched->acquire_curproc(lp);
1171         td->td_release = lwkt_passive_release;
1172         lwkt_setpri_self(TDPRI_USER_NORM);
1173     }
1174 #endif
1175 }
1176
1177 /*
1178  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1179  * deal with threads that might be blocked on a wait queue.
1180  *
1181  * We have a little helper inline function which does additional work after
1182  * the thread has been enqueued, including dealing with preemption and
1183  * setting need_lwkt_resched() (which prevents the kernel from returning
1184  * to userland until it has processed higher priority threads).
1185  *
1186  * It is possible for this routine to be called after a failed _enqueue
1187  * (due to the target thread migrating, sleeping, or otherwise blocked).
1188  * We have to check that the thread is actually on the run queue!
1189  */
1190 static __inline
1191 void
1192 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1193 {
1194     if (ntd->td_flags & TDF_RUNQ) {
1195         if (ntd->td_preemptable) {
1196             ntd->td_preemptable(ntd, ccount);   /* YYY +token */
1197         }
1198     }
1199 }
1200
1201 static __inline
1202 void
1203 _lwkt_schedule(thread_t td)
1204 {
1205     globaldata_t mygd = mycpu;
1206
1207     KASSERT(td != &td->td_gd->gd_idlethread,
1208             ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1209     KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1210     crit_enter_gd(mygd);
1211     KKASSERT(td->td_lwp == NULL ||
1212              (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1213
1214     if (td == mygd->gd_curthread) {
1215         _lwkt_enqueue(td);
1216     } else {
1217         /*
1218          * If we own the thread, there is no race (since we are in a
1219          * critical section).  If we do not own the thread there might
1220          * be a race but the target cpu will deal with it.
1221          */
1222         if (td->td_gd == mygd) {
1223             _lwkt_enqueue(td);
1224             _lwkt_schedule_post(mygd, td, 1);
1225         } else {
1226             lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1227         }
1228     }
1229     crit_exit_gd(mygd);
1230 }
1231
1232 void
1233 lwkt_schedule(thread_t td)
1234 {
1235     _lwkt_schedule(td);
1236 }
1237
1238 void
1239 lwkt_schedule_noresched(thread_t td)    /* XXX not impl */
1240 {
1241     _lwkt_schedule(td);
1242 }
1243
1244 /*
1245  * When scheduled remotely if frame != NULL the IPIQ is being
1246  * run via doreti or an interrupt then preemption can be allowed.
1247  *
1248  * To allow preemption we have to drop the critical section so only
1249  * one is present in _lwkt_schedule_post.
1250  */
1251 static void
1252 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1253 {
1254     thread_t td = curthread;
1255     thread_t ntd = arg;
1256
1257     if (frame && ntd->td_preemptable) {
1258         crit_exit_noyield(td);
1259         _lwkt_schedule(ntd);
1260         crit_enter_quick(td);
1261     } else {
1262         _lwkt_schedule(ntd);
1263     }
1264 }
1265
1266 /*
1267  * Thread migration using a 'Pull' method.  The thread may or may not be
1268  * the current thread.  It MUST be descheduled and in a stable state.
1269  * lwkt_giveaway() must be called on the cpu owning the thread.
1270  *
1271  * At any point after lwkt_giveaway() is called, the target cpu may
1272  * 'pull' the thread by calling lwkt_acquire().
1273  *
1274  * We have to make sure the thread is not sitting on a per-cpu tsleep
1275  * queue or it will blow up when it moves to another cpu.
1276  *
1277  * MPSAFE - must be called under very specific conditions.
1278  */
1279 void
1280 lwkt_giveaway(thread_t td)
1281 {
1282     globaldata_t gd = mycpu;
1283
1284     crit_enter_gd(gd);
1285     if (td->td_flags & TDF_TSLEEPQ)
1286         tsleep_remove(td);
1287     KKASSERT(td->td_gd == gd);
1288     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1289     td->td_flags |= TDF_MIGRATING;
1290     crit_exit_gd(gd);
1291 }
1292
1293 void
1294 lwkt_acquire(thread_t td)
1295 {
1296     globaldata_t gd;
1297     globaldata_t mygd;
1298
1299     KKASSERT(td->td_flags & TDF_MIGRATING);
1300     gd = td->td_gd;
1301     mygd = mycpu;
1302     if (gd != mycpu) {
1303 #ifdef LOOPMASK
1304         uint64_t tsc_base = rdtsc();
1305 #endif
1306         cpu_lfence();
1307         KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1308         crit_enter_gd(mygd);
1309         DEBUG_PUSH_INFO("lwkt_acquire");
1310         while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1311             lwkt_process_ipiq();
1312             cpu_lfence();
1313 #ifdef _KERNEL_VIRTUAL
1314             pthread_yield();
1315 #endif
1316 #ifdef LOOPMASK
1317             if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
1318                     kprintf("lwkt_acquire: stuck td %p td->td_flags %08x\n",
1319                             td, td->td_flags);
1320                     tsc_base = rdtsc();
1321             }
1322 #endif
1323         }
1324         DEBUG_POP_INFO();
1325         cpu_mfence();
1326         td->td_gd = mygd;
1327         TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1328         td->td_flags &= ~TDF_MIGRATING;
1329         crit_exit_gd(mygd);
1330     } else {
1331         crit_enter_gd(mygd);
1332         TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1333         td->td_flags &= ~TDF_MIGRATING;
1334         crit_exit_gd(mygd);
1335     }
1336 }
1337
1338 /*
1339  * Generic deschedule.  Descheduling threads other then your own should be
1340  * done only in carefully controlled circumstances.  Descheduling is 
1341  * asynchronous.  
1342  *
1343  * This function may block if the cpu has run out of messages.
1344  */
1345 void
1346 lwkt_deschedule(thread_t td)
1347 {
1348     crit_enter();
1349     if (td == curthread) {
1350         _lwkt_dequeue(td);
1351     } else {
1352         if (td->td_gd == mycpu) {
1353             _lwkt_dequeue(td);
1354         } else {
1355             lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1356         }
1357     }
1358     crit_exit();
1359 }
1360
1361 /*
1362  * Set the target thread's priority.  This routine does not automatically
1363  * switch to a higher priority thread, LWKT threads are not designed for
1364  * continuous priority changes.  Yield if you want to switch.
1365  */
1366 void
1367 lwkt_setpri(thread_t td, int pri)
1368 {
1369     if (td->td_pri != pri) {
1370         KKASSERT(pri >= 0);
1371         crit_enter();
1372         if (td->td_flags & TDF_RUNQ) {
1373             KKASSERT(td->td_gd == mycpu);
1374             _lwkt_dequeue(td);
1375             td->td_pri = pri;
1376             _lwkt_enqueue(td);
1377         } else {
1378             td->td_pri = pri;
1379         }
1380         crit_exit();
1381     }
1382 }
1383
1384 /*
1385  * Set the initial priority for a thread prior to it being scheduled for
1386  * the first time.  The thread MUST NOT be scheduled before or during
1387  * this call.  The thread may be assigned to a cpu other then the current
1388  * cpu.
1389  *
1390  * Typically used after a thread has been created with TDF_STOPPREQ,
1391  * and before the thread is initially scheduled.
1392  */
1393 void
1394 lwkt_setpri_initial(thread_t td, int pri)
1395 {
1396     KKASSERT(pri >= 0);
1397     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1398     td->td_pri = pri;
1399 }
1400
1401 void
1402 lwkt_setpri_self(int pri)
1403 {
1404     thread_t td = curthread;
1405
1406     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1407     crit_enter();
1408     if (td->td_flags & TDF_RUNQ) {
1409         _lwkt_dequeue(td);
1410         td->td_pri = pri;
1411         _lwkt_enqueue(td);
1412     } else {
1413         td->td_pri = pri;
1414     }
1415     crit_exit();
1416 }
1417
1418 /*
1419  * hz tick scheduler clock for LWKT threads
1420  */
1421 void
1422 lwkt_schedulerclock(thread_t td)
1423 {
1424     globaldata_t gd = td->td_gd;
1425     thread_t xtd;
1426
1427     if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1428         /*
1429          * If the current thread is at the head of the runq shift it to the
1430          * end of any equal-priority threads and request a LWKT reschedule
1431          * if it moved.
1432          *
1433          * Ignore upri in this situation.  There will only be one user thread
1434          * in user mode, all others will be user threads running in kernel
1435          * mode and we have to make sure they get some cpu.
1436          */
1437         xtd = TAILQ_NEXT(td, td_threadq);
1438         if (xtd && xtd->td_pri == td->td_pri) {
1439             TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1440             while (xtd && xtd->td_pri == td->td_pri)
1441                 xtd = TAILQ_NEXT(xtd, td_threadq);
1442             if (xtd)
1443                 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1444             else
1445                 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1446             need_lwkt_resched();
1447         }
1448     } else {
1449         /*
1450          * If we scheduled a thread other than the one at the head of the
1451          * queue always request a reschedule every tick.
1452          */
1453         need_lwkt_resched();
1454     }
1455 }
1456
1457 /*
1458  * Migrate the current thread to the specified cpu. 
1459  *
1460  * This is accomplished by descheduling ourselves from the current cpu
1461  * and setting td_migrate_gd.  The lwkt_switch() code will detect that the
1462  * 'old' thread wants to migrate after it has been completely switched out
1463  * and will complete the migration.
1464  *
1465  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1466  *
1467  * We must be sure to release our current process designation (if a user
1468  * process) before clearing out any tsleepq we are on because the release
1469  * code may re-add us.
1470  *
1471  * We must be sure to remove ourselves from the current cpu's tsleepq
1472  * before potentially moving to another queue.  The thread can be on
1473  * a tsleepq due to a left-over tsleep_interlock().
1474  */
1475
1476 void
1477 lwkt_setcpu_self(globaldata_t rgd)
1478 {
1479     thread_t td = curthread;
1480
1481     if (td->td_gd != rgd) {
1482         crit_enter_quick(td);
1483
1484         if (td->td_release)
1485             td->td_release(td);
1486         if (td->td_flags & TDF_TSLEEPQ)
1487             tsleep_remove(td);
1488
1489         /*
1490          * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1491          * trying to deschedule ourselves and switch away, then deschedule
1492          * ourself, remove us from tdallq, and set td_migrate_gd.  Finally,
1493          * call lwkt_switch() to complete the operation.
1494          */
1495         td->td_flags |= TDF_MIGRATING;
1496         lwkt_deschedule_self(td);
1497         TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1498         td->td_migrate_gd = rgd;
1499         lwkt_switch();
1500
1501         /*
1502          * We are now on the target cpu
1503          */
1504         KKASSERT(rgd == mycpu);
1505         TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1506         crit_exit_quick(td);
1507     }
1508 }
1509
1510 void
1511 lwkt_migratecpu(int cpuid)
1512 {
1513         globaldata_t rgd;
1514
1515         rgd = globaldata_find(cpuid);
1516         lwkt_setcpu_self(rgd);
1517 }
1518
1519 /*
1520  * Remote IPI for cpu migration (called while in a critical section so we
1521  * do not have to enter another one).
1522  *
1523  * The thread (td) has already been completely descheduled from the
1524  * originating cpu and we can simply assert the case.  The thread is
1525  * assigned to the new cpu and enqueued.
1526  *
1527  * The thread will re-add itself to tdallq when it resumes execution.
1528  */
1529 static void
1530 lwkt_setcpu_remote(void *arg)
1531 {
1532     thread_t td = arg;
1533     globaldata_t gd = mycpu;
1534
1535     KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1536     td->td_gd = gd;
1537     cpu_mfence();
1538     td->td_flags &= ~TDF_MIGRATING;
1539     KKASSERT(td->td_migrate_gd == NULL);
1540     KKASSERT(td->td_lwp == NULL ||
1541             (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1542     _lwkt_enqueue(td);
1543 }
1544
1545 struct lwp *
1546 lwkt_preempted_proc(void)
1547 {
1548     thread_t td = curthread;
1549     while (td->td_preempted)
1550         td = td->td_preempted;
1551     return(td->td_lwp);
1552 }
1553
1554 /*
1555  * Create a kernel process/thread/whatever.  It shares it's address space
1556  * with proc0 - ie: kernel only.
1557  *
1558  * If the cpu is not specified one will be selected.  In the future
1559  * specifying a cpu of -1 will enable kernel thread migration between
1560  * cpus.
1561  */
1562 int
1563 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1564             thread_t template, int tdflags, int cpu, const char *fmt, ...)
1565 {
1566     thread_t td;
1567     __va_list ap;
1568
1569     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1570                            tdflags);
1571     if (tdp)
1572         *tdp = td;
1573     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1574
1575     /*
1576      * Set up arg0 for 'ps' etc
1577      */
1578     __va_start(ap, fmt);
1579     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1580     __va_end(ap);
1581
1582     /*
1583      * Schedule the thread to run
1584      */
1585     if (td->td_flags & TDF_NOSTART)
1586         td->td_flags &= ~TDF_NOSTART;
1587     else
1588         lwkt_schedule(td);
1589     return 0;
1590 }
1591
1592 /*
1593  * Destroy an LWKT thread.   Warning!  This function is not called when
1594  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1595  * uses a different reaping mechanism.
1596  */
1597 void
1598 lwkt_exit(void)
1599 {
1600     thread_t td = curthread;
1601     thread_t std;
1602     globaldata_t gd;
1603
1604     /*
1605      * Do any cleanup that might block here
1606      */
1607     if (td->td_flags & TDF_VERBOSE)
1608         kprintf("kthread %p %s has exited\n", td, td->td_comm);
1609     biosched_done(td);
1610     dsched_exit_thread(td);
1611
1612     /*
1613      * Get us into a critical section to interlock gd_freetd and loop
1614      * until we can get it freed.
1615      *
1616      * We have to cache the current td in gd_freetd because objcache_put()ing
1617      * it would rip it out from under us while our thread is still active.
1618      *
1619      * We are the current thread so of course our own TDF_RUNNING bit will
1620      * be set, so unlike the lwp reap code we don't wait for it to clear.
1621      */
1622     gd = mycpu;
1623     crit_enter_quick(td);
1624     for (;;) {
1625         if (td->td_refs) {
1626             tsleep(td, 0, "tdreap", 1);
1627             continue;
1628         }
1629         if ((std = gd->gd_freetd) != NULL) {
1630             KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1631             gd->gd_freetd = NULL;
1632             objcache_put(thread_cache, std);
1633             continue;
1634         }
1635         break;
1636     }
1637
1638     /*
1639      * Remove thread resources from kernel lists and deschedule us for
1640      * the last time.  We cannot block after this point or we may end
1641      * up with a stale td on the tsleepq.
1642      *
1643      * None of this may block, the critical section is the only thing
1644      * protecting tdallq and the only thing preventing new lwkt_hold()
1645      * thread refs now.
1646      */
1647     if (td->td_flags & TDF_TSLEEPQ)
1648         tsleep_remove(td);
1649     lwkt_deschedule_self(td);
1650     lwkt_remove_tdallq(td);
1651     KKASSERT(td->td_refs == 0);
1652
1653     /*
1654      * Final cleanup
1655      */
1656     KKASSERT(gd->gd_freetd == NULL);
1657     if (td->td_flags & TDF_ALLOCATED_THREAD)
1658         gd->gd_freetd = td;
1659     cpu_thread_exit();
1660 }
1661
1662 void
1663 lwkt_remove_tdallq(thread_t td)
1664 {
1665     KKASSERT(td->td_gd == mycpu);
1666     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1667 }
1668
1669 /*
1670  * Code reduction and branch prediction improvements.  Call/return
1671  * overhead on modern cpus often degenerates into 0 cycles due to
1672  * the cpu's branch prediction hardware and return pc cache.  We
1673  * can take advantage of this by not inlining medium-complexity
1674  * functions and we can also reduce the branch prediction impact
1675  * by collapsing perfectly predictable branches into a single
1676  * procedure instead of duplicating it.
1677  *
1678  * Is any of this noticeable?  Probably not, so I'll take the
1679  * smaller code size.
1680  */
1681 void
1682 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1683 {
1684     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1685 }
1686
1687 void
1688 crit_panic(void)
1689 {
1690     thread_t td = curthread;
1691     int lcrit = td->td_critcount;
1692
1693     td->td_critcount = 0;
1694     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1695     /* NOT REACHED */
1696 }
1697
1698 /*
1699  * Called from debugger/panic on cpus which have been stopped.  We must still
1700  * process the IPIQ while stopped.
1701  *
1702  * If we are dumping also try to process any pending interrupts.  This may
1703  * or may not work depending on the state of the cpu at the point it was
1704  * stopped.
1705  */
1706 void
1707 lwkt_smp_stopped(void)
1708 {
1709     globaldata_t gd = mycpu;
1710
1711     if (dumping) {
1712         lwkt_process_ipiq();
1713         --gd->gd_intr_nesting_level;
1714         splz();
1715         ++gd->gd_intr_nesting_level;
1716     } else {
1717         lwkt_process_ipiq();
1718     }
1719     cpu_smp_stopped();
1720 }