Merge branch 'vendor/DHCPCD'
[dragonfly.git] / contrib / gcc-8.0 / gcc / basic-block.h
1 /* Define control flow data structures for the CFG.
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19
20 #ifndef GCC_BASIC_BLOCK_H
21 #define GCC_BASIC_BLOCK_H
22
23 #include <profile-count.h>
24
25 /* Control flow edge information.  */
26 struct GTY((user)) edge_def {
27   /* The two blocks at the ends of the edge.  */
28   basic_block src;
29   basic_block dest;
30
31   /* Instructions queued on the edge.  */
32   union edge_def_insns {
33     gimple_seq g;
34     rtx_insn *r;
35   } insns;
36
37   /* Auxiliary info specific to a pass.  */
38   PTR aux;
39
40   /* Location of any goto implicit in the edge.  */
41   location_t goto_locus;
42
43   /* The index number corresponding to this edge in the edge vector
44      dest->preds.  */
45   unsigned int dest_idx;
46
47   int flags;                    /* see cfg-flags.def */
48   profile_probability probability;
49
50   /* Return count of edge E.  */
51   inline profile_count count () const;
52 };
53
54 /* Masks for edge.flags.  */
55 #define DEF_EDGE_FLAG(NAME,IDX) EDGE_##NAME = 1 << IDX ,
56 enum cfg_edge_flags {
57 #include "cfg-flags.def"
58   LAST_CFG_EDGE_FLAG            /* this is only used for EDGE_ALL_FLAGS */
59 };
60 #undef DEF_EDGE_FLAG
61
62 /* Bit mask for all edge flags.  */
63 #define EDGE_ALL_FLAGS          ((LAST_CFG_EDGE_FLAG - 1) * 2 - 1)
64
65 /* The following four flags all indicate something special about an edge.
66    Test the edge flags on EDGE_COMPLEX to detect all forms of "strange"
67    control flow transfers.  */
68 #define EDGE_COMPLEX \
69   (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_PRESERVE)
70
71 struct GTY(()) rtl_bb_info {
72   /* The first insn of the block is embedded into bb->il.x.  */
73   /* The last insn of the block.  */
74   rtx_insn *end_;
75
76   /* In CFGlayout mode points to insn notes/jumptables to be placed just before
77      and after the block.   */
78   rtx_insn *header_;
79   rtx_insn *footer_;
80 };
81
82 struct GTY(()) gimple_bb_info {
83   /* Sequence of statements in this block.  */
84   gimple_seq seq;
85
86   /* PHI nodes for this block.  */
87   gimple_seq phi_nodes;
88 };
89
90 /* A basic block is a sequence of instructions with only one entry and
91    only one exit.  If any one of the instructions are executed, they
92    will all be executed, and in sequence from first to last.
93
94    There may be COND_EXEC instructions in the basic block.  The
95    COND_EXEC *instructions* will be executed -- but if the condition
96    is false the conditionally executed *expressions* will of course
97    not be executed.  We don't consider the conditionally executed
98    expression (which might have side-effects) to be in a separate
99    basic block because the program counter will always be at the same
100    location after the COND_EXEC instruction, regardless of whether the
101    condition is true or not.
102
103    Basic blocks need not start with a label nor end with a jump insn.
104    For example, a previous basic block may just "conditionally fall"
105    into the succeeding basic block, and the last basic block need not
106    end with a jump insn.  Block 0 is a descendant of the entry block.
107
108    A basic block beginning with two labels cannot have notes between
109    the labels.
110
111    Data for jump tables are stored in jump_insns that occur in no
112    basic block even though these insns can follow or precede insns in
113    basic blocks.  */
114
115 /* Basic block information indexed by block number.  */
116 struct GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb"))) basic_block_def {
117   /* The edges into and out of the block.  */
118   vec<edge, va_gc> *preds;
119   vec<edge, va_gc> *succs;
120
121   /* Auxiliary info specific to a pass.  */
122   PTR GTY ((skip (""))) aux;
123
124   /* Innermost loop containing the block.  */
125   struct loop *loop_father;
126
127   /* The dominance and postdominance information node.  */
128   struct et_node * GTY ((skip (""))) dom[2];
129
130   /* Previous and next blocks in the chain.  */
131   basic_block prev_bb;
132   basic_block next_bb;
133
134   union basic_block_il_dependent {
135       struct gimple_bb_info GTY ((tag ("0"))) gimple;
136       struct {
137         rtx_insn *head_;
138         struct rtl_bb_info * rtl;
139       } GTY ((tag ("1"))) x;
140     } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
141
142   /* Various flags.  See cfg-flags.def.  */
143   int flags;
144
145   /* The index of this block.  */
146   int index;
147
148   /* Expected number of executions: calculated in profile.c.  */
149   profile_count count;
150
151   /* The discriminator for this block.  The discriminator distinguishes
152      among several basic blocks that share a common locus, allowing for
153      more accurate sample-based profiling.  */
154   int discriminator;
155 };
156
157 /* This ensures that struct gimple_bb_info is smaller than
158    struct rtl_bb_info, so that inlining the former into basic_block_def
159    is the better choice.  */
160 typedef int __assert_gimple_bb_smaller_rtl_bb
161               [(int) sizeof (struct rtl_bb_info)
162                - (int) sizeof (struct gimple_bb_info)];
163
164
165 #define BB_FREQ_MAX 10000
166
167 /* Masks for basic_block.flags.  */
168 #define DEF_BASIC_BLOCK_FLAG(NAME,IDX) BB_##NAME = 1 << IDX ,
169 enum cfg_bb_flags
170 {
171 #include "cfg-flags.def"
172   LAST_CFG_BB_FLAG              /* this is only used for BB_ALL_FLAGS */
173 };
174 #undef DEF_BASIC_BLOCK_FLAG
175
176 /* Bit mask for all basic block flags.  */
177 #define BB_ALL_FLAGS            ((LAST_CFG_BB_FLAG - 1) * 2 - 1)
178
179 /* Bit mask for all basic block flags that must be preserved.  These are
180    the bit masks that are *not* cleared by clear_bb_flags.  */
181 #define BB_FLAGS_TO_PRESERVE                                    \
182   (BB_DISABLE_SCHEDULE | BB_RTL | BB_NON_LOCAL_GOTO_TARGET      \
183    | BB_HOT_PARTITION | BB_COLD_PARTITION)
184
185 /* Dummy bitmask for convenience in the hot/cold partitioning code.  */
186 #define BB_UNPARTITIONED        0
187
188 /* Partitions, to be used when partitioning hot and cold basic blocks into
189    separate sections.  */
190 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
191 #define BB_SET_PARTITION(bb, part) do {                                 \
192   basic_block bb_ = (bb);                                               \
193   bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION))    \
194                 | (part));                                              \
195 } while (0)
196
197 #define BB_COPY_PARTITION(dstbb, srcbb) \
198   BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
199
200 /* Defines for accessing the fields of the CFG structure for function FN.  */
201 #define ENTRY_BLOCK_PTR_FOR_FN(FN)           ((FN)->cfg->x_entry_block_ptr)
202 #define EXIT_BLOCK_PTR_FOR_FN(FN)            ((FN)->cfg->x_exit_block_ptr)
203 #define basic_block_info_for_fn(FN)          ((FN)->cfg->x_basic_block_info)
204 #define n_basic_blocks_for_fn(FN)            ((FN)->cfg->x_n_basic_blocks)
205 #define n_edges_for_fn(FN)                   ((FN)->cfg->x_n_edges)
206 #define last_basic_block_for_fn(FN)          ((FN)->cfg->x_last_basic_block)
207 #define label_to_block_map_for_fn(FN)        ((FN)->cfg->x_label_to_block_map)
208 #define profile_status_for_fn(FN)            ((FN)->cfg->x_profile_status)
209
210 #define BASIC_BLOCK_FOR_FN(FN,N) \
211   ((*basic_block_info_for_fn (FN))[(N)])
212 #define SET_BASIC_BLOCK_FOR_FN(FN,N,BB) \
213   ((*basic_block_info_for_fn (FN))[(N)] = (BB))
214
215 /* For iterating over basic blocks.  */
216 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
217   for (BB = FROM; BB != TO; BB = BB->DIR)
218
219 #define FOR_EACH_BB_FN(BB, FN) \
220   FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
221
222 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
223   FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
224
225 /* For iterating over insns in basic block.  */
226 #define FOR_BB_INSNS(BB, INSN)                  \
227   for ((INSN) = BB_HEAD (BB);                   \
228        (INSN) && (INSN) != NEXT_INSN (BB_END (BB));     \
229        (INSN) = NEXT_INSN (INSN))
230
231 /* For iterating over insns in basic block when we might remove the
232    current insn.  */
233 #define FOR_BB_INSNS_SAFE(BB, INSN, CURR)                       \
234   for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL;       \
235        (INSN) && (INSN) != NEXT_INSN (BB_END (BB));     \
236        (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
237
238 #define FOR_BB_INSNS_REVERSE(BB, INSN)          \
239   for ((INSN) = BB_END (BB);                    \
240        (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB));    \
241        (INSN) = PREV_INSN (INSN))
242
243 #define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR)       \
244   for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL;        \
245        (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB));    \
246        (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
247
248 /* Cycles through _all_ basic blocks, even the fake ones (entry and
249    exit block).  */
250
251 #define FOR_ALL_BB_FN(BB, FN) \
252   for (BB = ENTRY_BLOCK_PTR_FOR_FN (FN); BB; BB = BB->next_bb)
253
254 \f
255 /* Stuff for recording basic block info.  */
256
257 /* For now, these will be functions (so that they can include checked casts
258    to rtx_insn.   Once the underlying fields are converted from rtx
259    to rtx_insn, these can be converted back to macros.  */
260
261 #define BB_HEAD(B)      (B)->il.x.head_
262 #define BB_END(B)       (B)->il.x.rtl->end_
263 #define BB_HEADER(B)    (B)->il.x.rtl->header_
264 #define BB_FOOTER(B)    (B)->il.x.rtl->footer_
265
266 /* Special block numbers [markers] for entry and exit.
267    Neither of them is supposed to hold actual statements.  */
268 #define ENTRY_BLOCK (0)
269 #define EXIT_BLOCK (1)
270
271 /* The two blocks that are always in the cfg.  */
272 #define NUM_FIXED_BLOCKS (2)
273
274 /* This is the value which indicates no edge is present.  */
275 #define EDGE_INDEX_NO_EDGE      -1
276
277 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
278    if there is no edge between the 2 basic blocks.  */
279 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
280
281 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
282    block which is either the pred or succ end of the indexed edge.  */
283 #define INDEX_EDGE_PRED_BB(el, index)   ((el)->index_to_edge[(index)]->src)
284 #define INDEX_EDGE_SUCC_BB(el, index)   ((el)->index_to_edge[(index)]->dest)
285
286 /* INDEX_EDGE returns a pointer to the edge.  */
287 #define INDEX_EDGE(el, index)           ((el)->index_to_edge[(index)])
288
289 /* Number of edges in the compressed edge list.  */
290 #define NUM_EDGES(el)                   ((el)->num_edges)
291
292 /* BB is assumed to contain conditional jump.  Return the fallthru edge.  */
293 #define FALLTHRU_EDGE(bb)               (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
294                                          ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
295
296 /* BB is assumed to contain conditional jump.  Return the branch edge.  */
297 #define BRANCH_EDGE(bb)                 (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
298                                          ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
299
300 /* Return expected execution frequency of the edge E.  */
301 #define EDGE_FREQUENCY(e)               e->count ().to_frequency (cfun)
302
303 /* Compute a scale factor (or probability) suitable for scaling of
304    gcov_type values via apply_probability() and apply_scale().  */
305 #define GCOV_COMPUTE_SCALE(num,den) \
306   ((den) ? RDIV ((num) * REG_BR_PROB_BASE, (den)) : REG_BR_PROB_BASE)
307
308 /* Return nonzero if edge is critical.  */
309 #define EDGE_CRITICAL_P(e)              (EDGE_COUNT ((e)->src->succs) >= 2 \
310                                          && EDGE_COUNT ((e)->dest->preds) >= 2)
311
312 #define EDGE_COUNT(ev)                  vec_safe_length (ev)
313 #define EDGE_I(ev,i)                    (*ev)[(i)]
314 #define EDGE_PRED(bb,i)                 (*(bb)->preds)[(i)]
315 #define EDGE_SUCC(bb,i)                 (*(bb)->succs)[(i)]
316
317 /* Returns true if BB has precisely one successor.  */
318
319 static inline bool
320 single_succ_p (const_basic_block bb)
321 {
322   return EDGE_COUNT (bb->succs) == 1;
323 }
324
325 /* Returns true if BB has precisely one predecessor.  */
326
327 static inline bool
328 single_pred_p (const_basic_block bb)
329 {
330   return EDGE_COUNT (bb->preds) == 1;
331 }
332
333 /* Returns the single successor edge of basic block BB.  Aborts if
334    BB does not have exactly one successor.  */
335
336 static inline edge
337 single_succ_edge (const_basic_block bb)
338 {
339   gcc_checking_assert (single_succ_p (bb));
340   return EDGE_SUCC (bb, 0);
341 }
342
343 /* Returns the single predecessor edge of basic block BB.  Aborts
344    if BB does not have exactly one predecessor.  */
345
346 static inline edge
347 single_pred_edge (const_basic_block bb)
348 {
349   gcc_checking_assert (single_pred_p (bb));
350   return EDGE_PRED (bb, 0);
351 }
352
353 /* Returns the single successor block of basic block BB.  Aborts
354    if BB does not have exactly one successor.  */
355
356 static inline basic_block
357 single_succ (const_basic_block bb)
358 {
359   return single_succ_edge (bb)->dest;
360 }
361
362 /* Returns the single predecessor block of basic block BB.  Aborts
363    if BB does not have exactly one predecessor.*/
364
365 static inline basic_block
366 single_pred (const_basic_block bb)
367 {
368   return single_pred_edge (bb)->src;
369 }
370
371 /* Iterator object for edges.  */
372
373 struct edge_iterator {
374   unsigned index;
375   vec<edge, va_gc> **container;
376 };
377
378 static inline vec<edge, va_gc> *
379 ei_container (edge_iterator i)
380 {
381   gcc_checking_assert (i.container);
382   return *i.container;
383 }
384
385 #define ei_start(iter) ei_start_1 (&(iter))
386 #define ei_last(iter) ei_last_1 (&(iter))
387
388 /* Return an iterator pointing to the start of an edge vector.  */
389 static inline edge_iterator
390 ei_start_1 (vec<edge, va_gc> **ev)
391 {
392   edge_iterator i;
393
394   i.index = 0;
395   i.container = ev;
396
397   return i;
398 }
399
400 /* Return an iterator pointing to the last element of an edge
401    vector.  */
402 static inline edge_iterator
403 ei_last_1 (vec<edge, va_gc> **ev)
404 {
405   edge_iterator i;
406
407   i.index = EDGE_COUNT (*ev) - 1;
408   i.container = ev;
409
410   return i;
411 }
412
413 /* Is the iterator `i' at the end of the sequence?  */
414 static inline bool
415 ei_end_p (edge_iterator i)
416 {
417   return (i.index == EDGE_COUNT (ei_container (i)));
418 }
419
420 /* Is the iterator `i' at one position before the end of the
421    sequence?  */
422 static inline bool
423 ei_one_before_end_p (edge_iterator i)
424 {
425   return (i.index + 1 == EDGE_COUNT (ei_container (i)));
426 }
427
428 /* Advance the iterator to the next element.  */
429 static inline void
430 ei_next (edge_iterator *i)
431 {
432   gcc_checking_assert (i->index < EDGE_COUNT (ei_container (*i)));
433   i->index++;
434 }
435
436 /* Move the iterator to the previous element.  */
437 static inline void
438 ei_prev (edge_iterator *i)
439 {
440   gcc_checking_assert (i->index > 0);
441   i->index--;
442 }
443
444 /* Return the edge pointed to by the iterator `i'.  */
445 static inline edge
446 ei_edge (edge_iterator i)
447 {
448   return EDGE_I (ei_container (i), i.index);
449 }
450
451 /* Return an edge pointed to by the iterator.  Do it safely so that
452    NULL is returned when the iterator is pointing at the end of the
453    sequence.  */
454 static inline edge
455 ei_safe_edge (edge_iterator i)
456 {
457   return !ei_end_p (i) ? ei_edge (i) : NULL;
458 }
459
460 /* Return 1 if we should continue to iterate.  Return 0 otherwise.
461    *Edge P is set to the next edge if we are to continue to iterate
462    and NULL otherwise.  */
463
464 static inline bool
465 ei_cond (edge_iterator ei, edge *p)
466 {
467   if (!ei_end_p (ei))
468     {
469       *p = ei_edge (ei);
470       return 1;
471     }
472   else
473     {
474       *p = NULL;
475       return 0;
476     }
477 }
478
479 /* This macro serves as a convenient way to iterate each edge in a
480    vector of predecessor or successor edges.  It must not be used when
481    an element might be removed during the traversal, otherwise
482    elements will be missed.  Instead, use a for-loop like that shown
483    in the following pseudo-code:
484
485    FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
486      {
487         IF (e != taken_edge)
488           remove_edge (e);
489         ELSE
490           ei_next (&ei);
491      }
492 */
493
494 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC)       \
495   for ((ITER) = ei_start ((EDGE_VEC));          \
496        ei_cond ((ITER), &(EDGE));               \
497        ei_next (&(ITER)))
498
499 #define CLEANUP_EXPENSIVE       1       /* Do relatively expensive optimizations
500                                            except for edge forwarding */
501 #define CLEANUP_CROSSJUMP       2       /* Do crossjumping.  */
502 #define CLEANUP_POST_REGSTACK   4       /* We run after reg-stack and need
503                                            to care REG_DEAD notes.  */
504 #define CLEANUP_THREADING       8       /* Do jump threading.  */
505 #define CLEANUP_NO_INSN_DEL     16      /* Do not try to delete trivially dead
506                                            insns.  */
507 #define CLEANUP_CFGLAYOUT       32      /* Do cleanup in cfglayout mode.  */
508 #define CLEANUP_CFG_CHANGED     64      /* The caller changed the CFG.  */
509 #define CLEANUP_NO_PARTITIONING 128     /* Do not try to fix partitions.  */
510
511 /* Return true if BB is in a transaction.  */
512
513 static inline bool
514 bb_in_transaction (basic_block bb)
515 {
516   return bb->flags & BB_IN_TRANSACTION;
517 }
518
519 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH.  */
520 static inline bool
521 bb_has_eh_pred (basic_block bb)
522 {
523   edge e;
524   edge_iterator ei;
525
526   FOR_EACH_EDGE (e, ei, bb->preds)
527     {
528       if (e->flags & EDGE_EH)
529         return true;
530     }
531   return false;
532 }
533
534 /* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL.  */
535 static inline bool
536 bb_has_abnormal_pred (basic_block bb)
537 {
538   edge e;
539   edge_iterator ei;
540
541   FOR_EACH_EDGE (e, ei, bb->preds)
542     {
543       if (e->flags & EDGE_ABNORMAL)
544         return true;
545     }
546   return false;
547 }
548
549 /* Return the fallthru edge in EDGES if it exists, NULL otherwise.  */
550 static inline edge
551 find_fallthru_edge (vec<edge, va_gc> *edges)
552 {
553   edge e;
554   edge_iterator ei;
555
556   FOR_EACH_EDGE (e, ei, edges)
557     if (e->flags & EDGE_FALLTHRU)
558       break;
559
560   return e;
561 }
562
563 /* Check tha probability is sane.  */
564
565 static inline void
566 check_probability (int prob)
567 {
568   gcc_checking_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
569 }
570
571 /* Given PROB1 and PROB2, return PROB1*PROB2/REG_BR_PROB_BASE. 
572    Used to combine BB probabilities.  */
573
574 static inline int
575 combine_probabilities (int prob1, int prob2)
576 {
577   check_probability (prob1);
578   check_probability (prob2);
579   return RDIV (prob1 * prob2, REG_BR_PROB_BASE);
580 }
581
582 /* Apply scale factor SCALE on frequency or count FREQ. Use this
583    interface when potentially scaling up, so that SCALE is not
584    constrained to be < REG_BR_PROB_BASE.  */
585
586 static inline gcov_type
587 apply_scale (gcov_type freq, gcov_type scale)
588 {
589   return RDIV (freq * scale, REG_BR_PROB_BASE);
590 }
591
592 /* Apply probability PROB on frequency or count FREQ.  */
593
594 static inline gcov_type
595 apply_probability (gcov_type freq, int prob)
596 {
597   check_probability (prob);
598   return apply_scale (freq, prob);
599 }
600
601 /* Return inverse probability for PROB.  */
602
603 static inline int
604 inverse_probability (int prob1)
605 {
606   check_probability (prob1);
607   return REG_BR_PROB_BASE - prob1;
608 }
609
610 /* Return true if BB has at least one abnormal outgoing edge.  */
611
612 static inline bool
613 has_abnormal_or_eh_outgoing_edge_p (basic_block bb)
614 {
615   edge e;
616   edge_iterator ei;
617
618   FOR_EACH_EDGE (e, ei, bb->succs)
619     if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
620       return true;
621
622   return false;
623 }
624
625 /* Return true when one of the predecessor edges of BB is marked with
626    EDGE_ABNORMAL_CALL or EDGE_EH.  */
627
628 static inline bool
629 has_abnormal_call_or_eh_pred_edge_p (basic_block bb)
630 {
631   edge e;
632   edge_iterator ei;
633
634   FOR_EACH_EDGE (e, ei, bb->preds)
635     if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
636       return true;
637
638   return false;
639 }
640
641 /* Return count of edge E.  */
642 inline profile_count edge_def::count () const
643 {
644   return src->count.apply_probability (probability);
645 }
646
647 #endif /* GCC_BASIC_BLOCK_H */