Merge branch 'vendor/OPENSSL'
[dragonfly.git] / sys / dev / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define CTX_LRI_HEADER_0                0x01
160 #define CTX_CONTEXT_CONTROL             0x02
161 #define CTX_RING_HEAD                   0x04
162 #define CTX_RING_TAIL                   0x06
163 #define CTX_RING_BUFFER_START           0x08
164 #define CTX_RING_BUFFER_CONTROL         0x0a
165 #define CTX_BB_HEAD_U                   0x0c
166 #define CTX_BB_HEAD_L                   0x0e
167 #define CTX_BB_STATE                    0x10
168 #define CTX_SECOND_BB_HEAD_U            0x12
169 #define CTX_SECOND_BB_HEAD_L            0x14
170 #define CTX_SECOND_BB_STATE             0x16
171 #define CTX_BB_PER_CTX_PTR              0x18
172 #define CTX_RCS_INDIRECT_CTX            0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
174 #define CTX_LRI_HEADER_1                0x21
175 #define CTX_CTX_TIMESTAMP               0x22
176 #define CTX_PDP3_UDW                    0x24
177 #define CTX_PDP3_LDW                    0x26
178 #define CTX_PDP2_UDW                    0x28
179 #define CTX_PDP2_LDW                    0x2a
180 #define CTX_PDP1_UDW                    0x2c
181 #define CTX_PDP1_LDW                    0x2e
182 #define CTX_PDP0_UDW                    0x30
183 #define CTX_PDP0_LDW                    0x32
184 #define CTX_LRI_HEADER_2                0x41
185 #define CTX_R_PWR_CLK_STATE             0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
195         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
196         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 }
199
200 #define ASSIGN_CTX_PML4(ppgtt, reg_state) { \
201         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
202         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203 }
204
205 enum {
206         ADVANCED_CONTEXT = 0,
207         LEGACY_32B_CONTEXT,
208         ADVANCED_AD_CONTEXT,
209         LEGACY_64B_CONTEXT
210 };
211 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
212 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
213                 LEGACY_64B_CONTEXT :\
214                 LEGACY_32B_CONTEXT)
215 enum {
216         FAULT_AND_HANG = 0,
217         FAULT_AND_HALT, /* Debug only */
218         FAULT_AND_STREAM,
219         FAULT_AND_CONTINUE /* Unsupported */
220 };
221 #define GEN8_CTX_ID_SHIFT 32
222 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
223
224 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
225 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
226                 struct drm_i915_gem_object *default_ctx_obj);
227
228
229 /**
230  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
231  * @dev: DRM device.
232  * @enable_execlists: value of i915.enable_execlists module parameter.
233  *
234  * Only certain platforms support Execlists (the prerequisites being
235  * support for Logical Ring Contexts and Aliasing PPGTT or better).
236  *
237  * Return: 1 if Execlists is supported and has to be enabled.
238  */
239 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
240 {
241         WARN_ON(i915.enable_ppgtt == -1);
242
243         /* On platforms with execlist available, vGPU will only
244          * support execlist mode, no ring buffer mode.
245          */
246         if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
247                 return 1;
248
249         if (INTEL_INFO(dev)->gen >= 9)
250                 return 1;
251
252         if (enable_execlists == 0)
253                 return 0;
254
255         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
256             i915.use_mmio_flip >= 0)
257                 return 1;
258
259         return 0;
260 }
261
262 /**
263  * intel_execlists_ctx_id() - get the Execlists Context ID
264  * @ctx_obj: Logical Ring Context backing object.
265  *
266  * Do not confuse with ctx->id! Unfortunately we have a name overload
267  * here: the old context ID we pass to userspace as a handler so that
268  * they can refer to a context, and the new context ID we pass to the
269  * ELSP so that the GPU can inform us of the context status via
270  * interrupts.
271  *
272  * Return: 20-bits globally unique context ID.
273  */
274 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
275 {
276         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
277                         LRC_PPHWSP_PN * PAGE_SIZE;
278
279         /* LRCA is required to be 4K aligned so the more significant 20 bits
280          * are globally unique */
281         return lrca >> 12;
282 }
283
284 static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
285 {
286         struct drm_device *dev = ring->dev;
287
288         return ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
289                 (IS_BROXTON(dev) && INTEL_REVID(dev) == BXT_REVID_A0)) &&
290                (ring->id == VCS || ring->id == VCS2);
291 }
292
293 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
294                                      struct intel_engine_cs *ring)
295 {
296         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
297         uint64_t desc;
298         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
299                         LRC_PPHWSP_PN * PAGE_SIZE;
300
301         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
302
303         desc = GEN8_CTX_VALID;
304         desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
305         if (IS_GEN8(ctx_obj->base.dev))
306                 desc |= GEN8_CTX_L3LLC_COHERENT;
307         desc |= GEN8_CTX_PRIVILEGE;
308         desc |= lrca;
309         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
310
311         /* TODO: WaDisableLiteRestore when we start using semaphore
312          * signalling between Command Streamers */
313         /* desc |= GEN8_CTX_FORCE_RESTORE; */
314
315         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
316         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
317         if (disable_lite_restore_wa(ring))
318                 desc |= GEN8_CTX_FORCE_RESTORE;
319
320         return desc;
321 }
322
323 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
324                                  struct drm_i915_gem_request *rq1)
325 {
326
327         struct intel_engine_cs *ring = rq0->ring;
328         struct drm_device *dev = ring->dev;
329         struct drm_i915_private *dev_priv = dev->dev_private;
330         uint64_t desc[2];
331
332         if (rq1) {
333                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
334                 rq1->elsp_submitted++;
335         } else {
336                 desc[1] = 0;
337         }
338
339         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
340         rq0->elsp_submitted++;
341
342         /* You must always write both descriptors in the order below. */
343         lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
344         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
345         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
346         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
347
348         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
349         /* The context is automatically loaded after the following */
350         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
351
352         /* ELSP is a wo register, use another nearby reg for posting */
353         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
354         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
355         lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
356 }
357
358 static int execlists_update_context(struct drm_i915_gem_request *rq)
359 {
360         struct intel_engine_cs *ring = rq->ring;
361         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
362         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
363         struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
364         struct vm_page *page;
365         uint32_t *reg_state;
366
367         BUG_ON(!ctx_obj);
368         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
369         WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
370
371         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
372         reg_state = kmap_atomic(page);
373
374         reg_state[CTX_RING_TAIL+1] = rq->tail;
375         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
376
377         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
378                 /* True 32b PPGTT with dynamic page allocation: update PDP
379                  * registers and point the unallocated PDPs to scratch page.
380                  * PML4 is allocated during ppgtt init, so this is not needed
381                  * in 48-bit mode.
382                  */
383                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
384                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
385                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
386                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
387         }
388
389         kunmap_atomic(reg_state);
390
391         return 0;
392 }
393
394 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
395                                       struct drm_i915_gem_request *rq1)
396 {
397         execlists_update_context(rq0);
398
399         if (rq1)
400                 execlists_update_context(rq1);
401
402         execlists_elsp_write(rq0, rq1);
403 }
404
405 static void execlists_context_unqueue(struct intel_engine_cs *ring)
406 {
407         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
408         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
409
410         assert_spin_locked(&ring->execlist_lock);
411
412         /*
413          * If irqs are not active generate a warning as batches that finish
414          * without the irqs may get lost and a GPU Hang may occur.
415          */
416         WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
417
418         if (list_empty(&ring->execlist_queue))
419                 return;
420
421         /* Try to read in pairs */
422         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
423                                  execlist_link) {
424                 if (!req0) {
425                         req0 = cursor;
426                 } else if (req0->ctx == cursor->ctx) {
427                         /* Same ctx: ignore first request, as second request
428                          * will update tail past first request's workload */
429                         cursor->elsp_submitted = req0->elsp_submitted;
430                         list_del(&req0->execlist_link);
431                         list_add_tail(&req0->execlist_link,
432                                 &ring->execlist_retired_req_list);
433                         req0 = cursor;
434                 } else {
435                         req1 = cursor;
436                         break;
437                 }
438         }
439
440         if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
441                 /*
442                  * WaIdleLiteRestore: make sure we never cause a lite
443                  * restore with HEAD==TAIL
444                  */
445                 if (req0->elsp_submitted) {
446                         /*
447                          * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
448                          * as we resubmit the request. See gen8_emit_request()
449                          * for where we prepare the padding after the end of the
450                          * request.
451                          */
452                         struct intel_ringbuffer *ringbuf;
453
454                         ringbuf = req0->ctx->engine[ring->id].ringbuf;
455                         req0->tail += 8;
456                         req0->tail &= ringbuf->size - 1;
457                 }
458         }
459
460         WARN_ON(req1 && req1->elsp_submitted);
461
462         execlists_submit_requests(req0, req1);
463 }
464
465 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
466                                            u32 request_id)
467 {
468         struct drm_i915_gem_request *head_req;
469
470         assert_spin_locked(&ring->execlist_lock);
471
472         head_req = list_first_entry_or_null(&ring->execlist_queue,
473                                             struct drm_i915_gem_request,
474                                             execlist_link);
475
476         if (head_req != NULL) {
477                 struct drm_i915_gem_object *ctx_obj =
478                                 head_req->ctx->engine[ring->id].state;
479                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
480                         WARN(head_req->elsp_submitted == 0,
481                              "Never submitted head request\n");
482
483                         if (--head_req->elsp_submitted <= 0) {
484                                 list_del(&head_req->execlist_link);
485                                 list_add_tail(&head_req->execlist_link,
486                                         &ring->execlist_retired_req_list);
487                                 return true;
488                         }
489                 }
490         }
491
492         return false;
493 }
494
495 /**
496  * intel_lrc_irq_handler() - handle Context Switch interrupts
497  * @ring: Engine Command Streamer to handle.
498  *
499  * Check the unread Context Status Buffers and manage the submission of new
500  * contexts to the ELSP accordingly.
501  */
502 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
503 {
504         struct drm_i915_private *dev_priv = ring->dev->dev_private;
505         u32 status_pointer;
506         u8 read_pointer;
507         u8 write_pointer;
508         u32 status = 0;
509         u32 status_id;
510         u32 submit_contexts = 0;
511
512         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
513
514         read_pointer = ring->next_context_status_buffer;
515         write_pointer = status_pointer & GEN8_CSB_PTR_MASK;
516         if (read_pointer > write_pointer)
517                 write_pointer += GEN8_CSB_ENTRIES;
518
519         lockmgr(&ring->execlist_lock, LK_EXCLUSIVE);
520
521         while (read_pointer < write_pointer) {
522                 read_pointer++;
523                 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer % GEN8_CSB_ENTRIES));
524                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer % GEN8_CSB_ENTRIES));
525
526                 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
527                         continue;
528
529                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
530                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
531                                 if (execlists_check_remove_request(ring, status_id))
532                                         WARN(1, "Lite Restored request removed from queue\n");
533                         } else
534                                 WARN(1, "Preemption without Lite Restore\n");
535                 }
536
537                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
538                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
539                         if (execlists_check_remove_request(ring, status_id))
540                                 submit_contexts++;
541                 }
542         }
543
544         if (disable_lite_restore_wa(ring)) {
545                 /* Prevent a ctx to preempt itself */
546                 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
547                     (submit_contexts != 0))
548                         execlists_context_unqueue(ring);
549         } else if (submit_contexts != 0) {
550                 execlists_context_unqueue(ring);
551         }
552
553         lockmgr(&ring->execlist_lock, LK_RELEASE);
554
555         WARN(submit_contexts > 2, "More than two context complete events?\n");
556         ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
557
558         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
559                    _MASKED_FIELD(GEN8_CSB_PTR_MASK << 8,
560                                  ((u32)ring->next_context_status_buffer &
561                                   GEN8_CSB_PTR_MASK) << 8));
562 }
563
564 static int execlists_context_queue(struct drm_i915_gem_request *request)
565 {
566         struct intel_engine_cs *ring = request->ring;
567         struct drm_i915_gem_request *cursor;
568         int num_elements = 0;
569
570         if (request->ctx != ring->default_context)
571                 intel_lr_context_pin(request);
572
573         i915_gem_request_reference(request);
574
575         spin_lock_irq(&ring->execlist_lock);
576
577         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
578                 if (++num_elements > 2)
579                         break;
580
581         if (num_elements > 2) {
582                 struct drm_i915_gem_request *tail_req;
583
584                 tail_req = list_last_entry(&ring->execlist_queue,
585                                            struct drm_i915_gem_request,
586                                            execlist_link);
587
588                 if (request->ctx == tail_req->ctx) {
589                         WARN(tail_req->elsp_submitted != 0,
590                                 "More than 2 already-submitted reqs queued\n");
591                         list_del(&tail_req->execlist_link);
592                         list_add_tail(&tail_req->execlist_link,
593                                 &ring->execlist_retired_req_list);
594                 }
595         }
596
597         list_add_tail(&request->execlist_link, &ring->execlist_queue);
598         if (num_elements == 0)
599                 execlists_context_unqueue(ring);
600
601         spin_unlock_irq(&ring->execlist_lock);
602
603         return 0;
604 }
605
606 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
607 {
608         struct intel_engine_cs *ring = req->ring;
609         uint32_t flush_domains;
610         int ret;
611
612         flush_domains = 0;
613         if (ring->gpu_caches_dirty)
614                 flush_domains = I915_GEM_GPU_DOMAINS;
615
616         ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
617         if (ret)
618                 return ret;
619
620         ring->gpu_caches_dirty = false;
621         return 0;
622 }
623
624 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
625                                  struct list_head *vmas)
626 {
627         const unsigned other_rings = ~intel_ring_flag(req->ring);
628         struct i915_vma *vma;
629         uint32_t flush_domains = 0;
630         bool flush_chipset = false;
631         int ret;
632
633         list_for_each_entry(vma, vmas, exec_list) {
634                 struct drm_i915_gem_object *obj = vma->obj;
635
636                 if (obj->active & other_rings) {
637                         ret = i915_gem_object_sync(obj, req->ring, &req);
638                         if (ret)
639                                 return ret;
640                 }
641
642                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
643                         flush_chipset |= i915_gem_clflush_object(obj, false);
644
645                 flush_domains |= obj->base.write_domain;
646         }
647
648         if (flush_domains & I915_GEM_DOMAIN_GTT)
649                 wmb();
650
651         /* Unconditionally invalidate gpu caches and ensure that we do flush
652          * any residual writes from the previous batch.
653          */
654         return logical_ring_invalidate_all_caches(req);
655 }
656
657 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
658 {
659         int ret;
660
661         request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
662
663         if (request->ctx != request->ring->default_context) {
664                 ret = intel_lr_context_pin(request);
665                 if (ret)
666                         return ret;
667         }
668
669         return 0;
670 }
671
672 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
673                                        int bytes)
674 {
675         struct intel_ringbuffer *ringbuf = req->ringbuf;
676         struct intel_engine_cs *ring = req->ring;
677         struct drm_i915_gem_request *target;
678         unsigned space;
679         int ret;
680
681         if (intel_ring_space(ringbuf) >= bytes)
682                 return 0;
683
684         /* The whole point of reserving space is to not wait! */
685         WARN_ON(ringbuf->reserved_in_use);
686
687         list_for_each_entry(target, &ring->request_list, list) {
688                 /*
689                  * The request queue is per-engine, so can contain requests
690                  * from multiple ringbuffers. Here, we must ignore any that
691                  * aren't from the ringbuffer we're considering.
692                  */
693                 if (target->ringbuf != ringbuf)
694                         continue;
695
696                 /* Would completion of this request free enough space? */
697                 space = __intel_ring_space(target->postfix, ringbuf->tail,
698                                            ringbuf->size);
699                 if (space >= bytes)
700                         break;
701         }
702
703         if (WARN_ON(&target->list == &ring->request_list))
704                 return -ENOSPC;
705
706         ret = i915_wait_request(target);
707         if (ret)
708                 return ret;
709
710         ringbuf->space = space;
711         return 0;
712 }
713
714 /*
715  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
716  * @request: Request to advance the logical ringbuffer of.
717  *
718  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
719  * really happens during submission is that the context and current tail will be placed
720  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
721  * point, the tail *inside* the context is updated and the ELSP written to.
722  */
723 static void
724 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
725 {
726         struct intel_engine_cs *ring = request->ring;
727
728         intel_logical_ring_advance(request->ringbuf);
729
730         request->tail = request->ringbuf->tail;
731
732         if (intel_ring_stopped(ring))
733                 return;
734
735 #if 0
736         if (dev_priv->guc.execbuf_client)
737                 i915_guc_submit(dev_priv->guc.execbuf_client, request);
738         else
739 #endif
740                 execlists_context_queue(request);
741 }
742
743 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
744 {
745         uint32_t __iomem *virt;
746         int rem = ringbuf->size - ringbuf->tail;
747
748         virt = (uint32_t *)(ringbuf->virtual_start + ringbuf->tail);
749         rem /= 4;
750         while (rem--)
751                 iowrite32(MI_NOOP, virt++);
752
753         ringbuf->tail = 0;
754         intel_ring_update_space(ringbuf);
755 }
756
757 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
758 {
759         struct intel_ringbuffer *ringbuf = req->ringbuf;
760         int remain_usable = ringbuf->effective_size - ringbuf->tail;
761         int remain_actual = ringbuf->size - ringbuf->tail;
762         int ret, total_bytes, wait_bytes = 0;
763         bool need_wrap = false;
764
765         if (ringbuf->reserved_in_use)
766                 total_bytes = bytes;
767         else
768                 total_bytes = bytes + ringbuf->reserved_size;
769
770         if (unlikely(bytes > remain_usable)) {
771                 /*
772                  * Not enough space for the basic request. So need to flush
773                  * out the remainder and then wait for base + reserved.
774                  */
775                 wait_bytes = remain_actual + total_bytes;
776                 need_wrap = true;
777         } else {
778                 if (unlikely(total_bytes > remain_usable)) {
779                         /*
780                          * The base request will fit but the reserved space
781                          * falls off the end. So only need to to wait for the
782                          * reserved size after flushing out the remainder.
783                          */
784                         wait_bytes = remain_actual + ringbuf->reserved_size;
785                         need_wrap = true;
786                 } else if (total_bytes > ringbuf->space) {
787                         /* No wrapping required, just waiting. */
788                         wait_bytes = total_bytes;
789                 }
790         }
791
792         if (wait_bytes) {
793                 ret = logical_ring_wait_for_space(req, wait_bytes);
794                 if (unlikely(ret))
795                         return ret;
796
797                 if (need_wrap)
798                         __wrap_ring_buffer(ringbuf);
799         }
800
801         return 0;
802 }
803
804 /**
805  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
806  *
807  * @req: The request to start some new work for
808  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
809  *
810  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
811  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
812  * and also preallocates a request (every workload submission is still mediated through
813  * requests, same as it did with legacy ringbuffer submission).
814  *
815  * Return: non-zero if the ringbuffer is not ready to be written to.
816  */
817 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
818 {
819         struct drm_i915_private *dev_priv;
820         int ret;
821
822         WARN_ON(req == NULL);
823         dev_priv = req->ring->dev->dev_private;
824
825         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
826                                    dev_priv->mm.interruptible);
827         if (ret)
828                 return ret;
829
830         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
831         if (ret)
832                 return ret;
833
834         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
835         return 0;
836 }
837
838 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
839 {
840         /*
841          * The first call merely notes the reserve request and is common for
842          * all back ends. The subsequent localised _begin() call actually
843          * ensures that the reservation is available. Without the begin, if
844          * the request creator immediately submitted the request without
845          * adding any commands to it then there might not actually be
846          * sufficient room for the submission commands.
847          */
848         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
849
850         return intel_logical_ring_begin(request, 0);
851 }
852
853 /**
854  * execlists_submission() - submit a batchbuffer for execution, Execlists style
855  * @dev: DRM device.
856  * @file: DRM file.
857  * @ring: Engine Command Streamer to submit to.
858  * @ctx: Context to employ for this submission.
859  * @args: execbuffer call arguments.
860  * @vmas: list of vmas.
861  * @batch_obj: the batchbuffer to submit.
862  * @exec_start: batchbuffer start virtual address pointer.
863  * @dispatch_flags: translated execbuffer call flags.
864  *
865  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
866  * away the submission details of the execbuffer ioctl call.
867  *
868  * Return: non-zero if the submission fails.
869  */
870 int intel_execlists_submission(struct i915_execbuffer_params *params,
871                                struct drm_i915_gem_execbuffer2 *args,
872                                struct list_head *vmas)
873 {
874         struct drm_device       *dev = params->dev;
875         struct intel_engine_cs  *ring = params->ring;
876         struct drm_i915_private *dev_priv = dev->dev_private;
877         struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
878         u64 exec_start;
879         int instp_mode;
880         u32 instp_mask;
881         int ret;
882
883         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
884         instp_mask = I915_EXEC_CONSTANTS_MASK;
885         switch (instp_mode) {
886         case I915_EXEC_CONSTANTS_REL_GENERAL:
887         case I915_EXEC_CONSTANTS_ABSOLUTE:
888         case I915_EXEC_CONSTANTS_REL_SURFACE:
889                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
890                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
891                         return -EINVAL;
892                 }
893
894                 if (instp_mode != dev_priv->relative_constants_mode) {
895                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
896                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
897                                 return -EINVAL;
898                         }
899
900                         /* The HW changed the meaning on this bit on gen6 */
901                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
902                 }
903                 break;
904         default:
905                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
906                 return -EINVAL;
907         }
908
909         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
910                 DRM_DEBUG("sol reset is gen7 only\n");
911                 return -EINVAL;
912         }
913
914         ret = execlists_move_to_gpu(params->request, vmas);
915         if (ret)
916                 return ret;
917
918         if (ring == &dev_priv->ring[RCS] &&
919             instp_mode != dev_priv->relative_constants_mode) {
920                 ret = intel_logical_ring_begin(params->request, 4);
921                 if (ret)
922                         return ret;
923
924                 intel_logical_ring_emit(ringbuf, MI_NOOP);
925                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
926                 intel_logical_ring_emit(ringbuf, INSTPM);
927                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
928                 intel_logical_ring_advance(ringbuf);
929
930                 dev_priv->relative_constants_mode = instp_mode;
931         }
932
933         exec_start = params->batch_obj_vm_offset +
934                      args->batch_start_offset;
935
936         ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
937         if (ret)
938                 return ret;
939
940         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
941
942         i915_gem_execbuffer_move_to_active(vmas, params->request);
943         i915_gem_execbuffer_retire_commands(params);
944
945         return 0;
946 }
947
948 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
949 {
950         struct drm_i915_gem_request *req, *tmp;
951         struct list_head retired_list;
952
953         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
954         if (list_empty(&ring->execlist_retired_req_list))
955                 return;
956
957         INIT_LIST_HEAD(&retired_list);
958         spin_lock_irq(&ring->execlist_lock);
959         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
960         spin_unlock_irq(&ring->execlist_lock);
961
962         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
963                 struct intel_context *ctx = req->ctx;
964                 struct drm_i915_gem_object *ctx_obj =
965                                 ctx->engine[ring->id].state;
966
967                 if (ctx_obj && (ctx != ring->default_context))
968                         intel_lr_context_unpin(req);
969                 list_del(&req->execlist_link);
970                 i915_gem_request_unreference(req);
971         }
972 }
973
974 void intel_logical_ring_stop(struct intel_engine_cs *ring)
975 {
976         struct drm_i915_private *dev_priv = ring->dev->dev_private;
977         int ret;
978
979         if (!intel_ring_initialized(ring))
980                 return;
981
982         ret = intel_ring_idle(ring);
983         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
984                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
985                           ring->name, ret);
986
987         /* TODO: Is this correct with Execlists enabled? */
988         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
989         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
990                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
991                 return;
992         }
993         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
994 }
995
996 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
997 {
998         struct intel_engine_cs *ring = req->ring;
999         int ret;
1000
1001         if (!ring->gpu_caches_dirty)
1002                 return 0;
1003
1004         ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1005         if (ret)
1006                 return ret;
1007
1008         ring->gpu_caches_dirty = false;
1009         return 0;
1010 }
1011
1012 static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1013                 struct drm_i915_gem_object *ctx_obj,
1014                 struct intel_ringbuffer *ringbuf)
1015 {
1016         struct drm_device *dev = ring->dev;
1017         struct drm_i915_private *dev_priv = dev->dev_private;
1018         int ret = 0;
1019
1020         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1021         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1022                         PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1023         if (ret)
1024                 return ret;
1025
1026         ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1027         if (ret)
1028                 goto unpin_ctx_obj;
1029
1030         ctx_obj->dirty = true;
1031
1032         /* Invalidate GuC TLB. */
1033         if (i915.enable_guc_submission)
1034                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1035
1036         return ret;
1037
1038 unpin_ctx_obj:
1039         i915_gem_object_ggtt_unpin(ctx_obj);
1040
1041         return ret;
1042 }
1043
1044 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1045 {
1046         int ret = 0;
1047         struct intel_engine_cs *ring = rq->ring;
1048         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1049         struct intel_ringbuffer *ringbuf = rq->ringbuf;
1050
1051         if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1052                 ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
1053                 if (ret)
1054                         goto reset_pin_count;
1055         }
1056         return ret;
1057
1058 reset_pin_count:
1059         rq->ctx->engine[ring->id].pin_count = 0;
1060         return ret;
1061 }
1062
1063 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1064 {
1065         struct intel_engine_cs *ring = rq->ring;
1066         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1067         struct intel_ringbuffer *ringbuf = rq->ringbuf;
1068
1069         if (ctx_obj) {
1070                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1071                 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1072                         intel_unpin_ringbuffer_obj(ringbuf);
1073                         i915_gem_object_ggtt_unpin(ctx_obj);
1074                 }
1075         }
1076 }
1077
1078 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1079 {
1080         int ret, i;
1081         struct intel_engine_cs *ring = req->ring;
1082         struct intel_ringbuffer *ringbuf = req->ringbuf;
1083         struct drm_device *dev = ring->dev;
1084         struct drm_i915_private *dev_priv = dev->dev_private;
1085         struct i915_workarounds *w = &dev_priv->workarounds;
1086
1087         if (WARN_ON_ONCE(w->count == 0))
1088                 return 0;
1089
1090         ring->gpu_caches_dirty = true;
1091         ret = logical_ring_flush_all_caches(req);
1092         if (ret)
1093                 return ret;
1094
1095         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1096         if (ret)
1097                 return ret;
1098
1099         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1100         for (i = 0; i < w->count; i++) {
1101                 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1102                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1103         }
1104         intel_logical_ring_emit(ringbuf, MI_NOOP);
1105
1106         intel_logical_ring_advance(ringbuf);
1107
1108         ring->gpu_caches_dirty = true;
1109         ret = logical_ring_flush_all_caches(req);
1110         if (ret)
1111                 return ret;
1112
1113         return 0;
1114 }
1115
1116 #define wa_ctx_emit(batch, index, cmd)                                  \
1117         do {                                                            \
1118                 int __index = (index)++;                                \
1119                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1120                         return -ENOSPC;                                 \
1121                 }                                                       \
1122                 batch[__index] = (cmd);                                 \
1123         } while (0)
1124
1125
1126 /*
1127  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1128  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1129  * but there is a slight complication as this is applied in WA batch where the
1130  * values are only initialized once so we cannot take register value at the
1131  * beginning and reuse it further; hence we save its value to memory, upload a
1132  * constant value with bit21 set and then we restore it back with the saved value.
1133  * To simplify the WA, a constant value is formed by using the default value
1134  * of this register. This shouldn't be a problem because we are only modifying
1135  * it for a short period and this batch in non-premptible. We can ofcourse
1136  * use additional instructions that read the actual value of the register
1137  * at that time and set our bit of interest but it makes the WA complicated.
1138  *
1139  * This WA is also required for Gen9 so extracting as a function avoids
1140  * code duplication.
1141  */
1142 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1143                                                 uint32_t *const batch,
1144                                                 uint32_t index)
1145 {
1146         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1147
1148         /*
1149          * WaDisableLSQCROPERFforOCL:skl
1150          * This WA is implemented in skl_init_clock_gating() but since
1151          * this batch updates GEN8_L3SQCREG4 with default value we need to
1152          * set this bit here to retain the WA during flush.
1153          */
1154         if (IS_SKYLAKE(ring->dev) && INTEL_REVID(ring->dev) <= SKL_REVID_E0)
1155                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1156
1157         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1158                                    MI_SRM_LRM_GLOBAL_GTT));
1159         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1160         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1161         wa_ctx_emit(batch, index, 0);
1162
1163         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1164         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1165         wa_ctx_emit(batch, index, l3sqc4_flush);
1166
1167         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1168         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1169                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1170         wa_ctx_emit(batch, index, 0);
1171         wa_ctx_emit(batch, index, 0);
1172         wa_ctx_emit(batch, index, 0);
1173         wa_ctx_emit(batch, index, 0);
1174
1175         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1176                                    MI_SRM_LRM_GLOBAL_GTT));
1177         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1178         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1179         wa_ctx_emit(batch, index, 0);
1180
1181         return index;
1182 }
1183
1184 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1185                                     uint32_t offset,
1186                                     uint32_t start_alignment)
1187 {
1188         return wa_ctx->offset = ALIGN(offset, start_alignment);
1189 }
1190
1191 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1192                              uint32_t offset,
1193                              uint32_t size_alignment)
1194 {
1195         wa_ctx->size = offset - wa_ctx->offset;
1196
1197         WARN(wa_ctx->size % size_alignment,
1198              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1199              wa_ctx->size, size_alignment);
1200         return 0;
1201 }
1202
1203 /**
1204  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1205  *
1206  * @ring: only applicable for RCS
1207  * @wa_ctx: structure representing wa_ctx
1208  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1209  *    with the offset value received as input.
1210  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1211  * @batch: page in which WA are loaded
1212  * @offset: This field specifies the start of the batch, it should be
1213  *  cache-aligned otherwise it is adjusted accordingly.
1214  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1215  *  initialized at the beginning and shared across all contexts but this field
1216  *  helps us to have multiple batches at different offsets and select them based
1217  *  on a criteria. At the moment this batch always start at the beginning of the page
1218  *  and at this point we don't have multiple wa_ctx batch buffers.
1219  *
1220  *  The number of WA applied are not known at the beginning; we use this field
1221  *  to return the no of DWORDS written.
1222  *
1223  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1224  *  so it adds NOOPs as padding to make it cacheline aligned.
1225  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1226  *  makes a complete batch buffer.
1227  *
1228  * Return: non-zero if we exceed the PAGE_SIZE limit.
1229  */
1230
1231 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1232                                     struct i915_wa_ctx_bb *wa_ctx,
1233                                     uint32_t *const batch,
1234                                     uint32_t *offset)
1235 {
1236         uint32_t scratch_addr;
1237         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1238
1239         /* WaDisableCtxRestoreArbitration:bdw,chv */
1240         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1241
1242         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1243         if (IS_BROADWELL(ring->dev)) {
1244                 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1245                 if (rc < 0)
1246                         return rc;
1247                 index = rc;
1248         }
1249
1250         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1251         /* Actual scratch location is at 128 bytes offset */
1252         scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1253
1254         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1255         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1256                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1257                                    PIPE_CONTROL_CS_STALL |
1258                                    PIPE_CONTROL_QW_WRITE));
1259         wa_ctx_emit(batch, index, scratch_addr);
1260         wa_ctx_emit(batch, index, 0);
1261         wa_ctx_emit(batch, index, 0);
1262         wa_ctx_emit(batch, index, 0);
1263
1264         /* Pad to end of cacheline */
1265         while (index % CACHELINE_DWORDS)
1266                 wa_ctx_emit(batch, index, MI_NOOP);
1267
1268         /*
1269          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1270          * execution depends on the length specified in terms of cache lines
1271          * in the register CTX_RCS_INDIRECT_CTX
1272          */
1273
1274         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1275 }
1276
1277 /**
1278  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1279  *
1280  * @ring: only applicable for RCS
1281  * @wa_ctx: structure representing wa_ctx
1282  *  offset: specifies start of the batch, should be cache-aligned.
1283  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1284  * @batch: page in which WA are loaded
1285  * @offset: This field specifies the start of this batch.
1286  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1287  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1288  *
1289  *   The number of DWORDS written are returned using this field.
1290  *
1291  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1292  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1293  */
1294 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1295                                struct i915_wa_ctx_bb *wa_ctx,
1296                                uint32_t *const batch,
1297                                uint32_t *offset)
1298 {
1299         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1300
1301         /* WaDisableCtxRestoreArbitration:bdw,chv */
1302         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1303
1304         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1305
1306         return wa_ctx_end(wa_ctx, *offset = index, 1);
1307 }
1308
1309 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1310                                     struct i915_wa_ctx_bb *wa_ctx,
1311                                     uint32_t *const batch,
1312                                     uint32_t *offset)
1313 {
1314         int ret;
1315         struct drm_device *dev = ring->dev;
1316         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1317
1318         /* WaDisableCtxRestoreArbitration:skl,bxt */
1319         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1320             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1321                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1322
1323         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1324         ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1325         if (ret < 0)
1326                 return ret;
1327         index = ret;
1328
1329         /* Pad to end of cacheline */
1330         while (index % CACHELINE_DWORDS)
1331                 wa_ctx_emit(batch, index, MI_NOOP);
1332
1333         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1334 }
1335
1336 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1337                                struct i915_wa_ctx_bb *wa_ctx,
1338                                uint32_t *const batch,
1339                                uint32_t *offset)
1340 {
1341         struct drm_device *dev = ring->dev;
1342         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1343
1344         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1345         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_B0)) ||
1346             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0))) {
1347                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1348                 wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1349                 wa_ctx_emit(batch, index,
1350                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1351                 wa_ctx_emit(batch, index, MI_NOOP);
1352         }
1353
1354         /* WaDisableCtxRestoreArbitration:skl,bxt */
1355         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1356             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1357                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1358
1359         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1360
1361         return wa_ctx_end(wa_ctx, *offset = index, 1);
1362 }
1363
1364 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1365 {
1366         int ret;
1367
1368         ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1369         if (!ring->wa_ctx.obj) {
1370                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1371                 return -ENOMEM;
1372         }
1373
1374         ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1375         if (ret) {
1376                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1377                                  ret);
1378                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1379                 return ret;
1380         }
1381
1382         return 0;
1383 }
1384
1385 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1386 {
1387         if (ring->wa_ctx.obj) {
1388                 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1389                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1390                 ring->wa_ctx.obj = NULL;
1391         }
1392 }
1393
1394 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1395 {
1396         int ret;
1397         uint32_t *batch;
1398         uint32_t offset;
1399         struct vm_page *page;
1400         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1401
1402         WARN_ON(ring->id != RCS);
1403
1404         /* update this when WA for higher Gen are added */
1405         if (INTEL_INFO(ring->dev)->gen > 9) {
1406                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1407                           INTEL_INFO(ring->dev)->gen);
1408                 return 0;
1409         }
1410
1411         /* some WA perform writes to scratch page, ensure it is valid */
1412         if (ring->scratch.obj == NULL) {
1413                 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1414                 return -EINVAL;
1415         }
1416
1417         ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1418         if (ret) {
1419                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1420                 return ret;
1421         }
1422
1423         page = i915_gem_object_get_page(wa_ctx->obj, 0);
1424         batch = kmap_atomic(page);
1425         offset = 0;
1426
1427         if (INTEL_INFO(ring->dev)->gen == 8) {
1428                 ret = gen8_init_indirectctx_bb(ring,
1429                                                &wa_ctx->indirect_ctx,
1430                                                batch,
1431                                                &offset);
1432                 if (ret)
1433                         goto out;
1434
1435                 ret = gen8_init_perctx_bb(ring,
1436                                           &wa_ctx->per_ctx,
1437                                           batch,
1438                                           &offset);
1439                 if (ret)
1440                         goto out;
1441         } else if (INTEL_INFO(ring->dev)->gen == 9) {
1442                 ret = gen9_init_indirectctx_bb(ring,
1443                                                &wa_ctx->indirect_ctx,
1444                                                batch,
1445                                                &offset);
1446                 if (ret)
1447                         goto out;
1448
1449                 ret = gen9_init_perctx_bb(ring,
1450                                           &wa_ctx->per_ctx,
1451                                           batch,
1452                                           &offset);
1453                 if (ret)
1454                         goto out;
1455         }
1456
1457 out:
1458         kunmap_atomic(batch);
1459         if (ret)
1460                 lrc_destroy_wa_ctx_obj(ring);
1461
1462         return ret;
1463 }
1464
1465 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1466 {
1467         struct drm_device *dev = ring->dev;
1468         struct drm_i915_private *dev_priv = dev->dev_private;
1469         u8 next_context_status_buffer_hw;
1470
1471         lrc_setup_hardware_status_page(ring,
1472                                 ring->default_context->engine[ring->id].state);
1473
1474         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1475         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1476
1477         if (ring->status_page.obj) {
1478                 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1479                            (u32)ring->status_page.gfx_addr);
1480                 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1481         }
1482
1483         I915_WRITE(RING_MODE_GEN7(ring),
1484                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1485                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1486         POSTING_READ(RING_MODE_GEN7(ring));
1487
1488         /*
1489          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1490          * zero, we need to read the write pointer from hardware and use its
1491          * value because "this register is power context save restored".
1492          * Effectively, these states have been observed:
1493          *
1494          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1495          * BDW  | CSB regs not reset       | CSB regs reset       |
1496          * CHT  | CSB regs not reset       | CSB regs not reset   |
1497          */
1498         next_context_status_buffer_hw = (I915_READ(RING_CONTEXT_STATUS_PTR(ring))
1499                                                    & GEN8_CSB_PTR_MASK);
1500
1501         /*
1502          * When the CSB registers are reset (also after power-up / gpu reset),
1503          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1504          * this special case, so the first element read is CSB[0].
1505          */
1506         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1507                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1508
1509         ring->next_context_status_buffer = next_context_status_buffer_hw;
1510         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1511
1512         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1513
1514         return 0;
1515 }
1516
1517 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1518 {
1519         struct drm_device *dev = ring->dev;
1520         struct drm_i915_private *dev_priv = dev->dev_private;
1521         int ret;
1522
1523         ret = gen8_init_common_ring(ring);
1524         if (ret)
1525                 return ret;
1526
1527         /* We need to disable the AsyncFlip performance optimisations in order
1528          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1529          * programmed to '1' on all products.
1530          *
1531          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1532          */
1533         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1534
1535         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1536
1537         return init_workarounds_ring(ring);
1538 }
1539
1540 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1541 {
1542         int ret;
1543
1544         ret = gen8_init_common_ring(ring);
1545         if (ret)
1546                 return ret;
1547
1548         return init_workarounds_ring(ring);
1549 }
1550
1551 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1552 {
1553         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1554         struct intel_engine_cs *ring = req->ring;
1555         struct intel_ringbuffer *ringbuf = req->ringbuf;
1556         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1557         int i, ret;
1558
1559         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1560         if (ret)
1561                 return ret;
1562
1563         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1564         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1565                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1566
1567                 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1568                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1569                 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1570                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1571         }
1572
1573         intel_logical_ring_emit(ringbuf, MI_NOOP);
1574         intel_logical_ring_advance(ringbuf);
1575
1576         return 0;
1577 }
1578
1579 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1580                               u64 offset, unsigned dispatch_flags)
1581 {
1582         struct intel_ringbuffer *ringbuf = req->ringbuf;
1583         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1584         int ret;
1585
1586         /* Don't rely in hw updating PDPs, specially in lite-restore.
1587          * Ideally, we should set Force PD Restore in ctx descriptor,
1588          * but we can't. Force Restore would be a second option, but
1589          * it is unsafe in case of lite-restore (because the ctx is
1590          * not idle). PML4 is allocated during ppgtt init so this is
1591          * not needed in 48-bit.*/
1592         if (req->ctx->ppgtt &&
1593             (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1594                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1595                     !intel_vgpu_active(req->i915->dev)) {
1596                         ret = intel_logical_ring_emit_pdps(req);
1597                         if (ret)
1598                                 return ret;
1599                 }
1600
1601                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1602         }
1603
1604         ret = intel_logical_ring_begin(req, 4);
1605         if (ret)
1606                 return ret;
1607
1608         /* FIXME(BDW): Address space and security selectors. */
1609         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1610                                 (ppgtt<<8) |
1611                                 (dispatch_flags & I915_DISPATCH_RS ?
1612                                  MI_BATCH_RESOURCE_STREAMER : 0));
1613         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1614         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1615         intel_logical_ring_emit(ringbuf, MI_NOOP);
1616         intel_logical_ring_advance(ringbuf);
1617
1618         return 0;
1619 }
1620
1621 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1622 {
1623         struct drm_device *dev = ring->dev;
1624         struct drm_i915_private *dev_priv = dev->dev_private;
1625         unsigned long flags;
1626
1627         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1628                 return false;
1629
1630         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1631         if (ring->irq_refcount++ == 0) {
1632                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1633                 POSTING_READ(RING_IMR(ring->mmio_base));
1634         }
1635         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1636
1637         return true;
1638 }
1639
1640 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1641 {
1642         struct drm_device *dev = ring->dev;
1643         struct drm_i915_private *dev_priv = dev->dev_private;
1644         unsigned long flags;
1645
1646         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1647         if (--ring->irq_refcount == 0) {
1648                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1649                 POSTING_READ(RING_IMR(ring->mmio_base));
1650         }
1651         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1652 }
1653
1654 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1655                            u32 invalidate_domains,
1656                            u32 unused)
1657 {
1658         struct intel_ringbuffer *ringbuf = request->ringbuf;
1659         struct intel_engine_cs *ring = ringbuf->ring;
1660         struct drm_device *dev = ring->dev;
1661         struct drm_i915_private *dev_priv = dev->dev_private;
1662         uint32_t cmd;
1663         int ret;
1664
1665         ret = intel_logical_ring_begin(request, 4);
1666         if (ret)
1667                 return ret;
1668
1669         cmd = MI_FLUSH_DW + 1;
1670
1671         /* We always require a command barrier so that subsequent
1672          * commands, such as breadcrumb interrupts, are strictly ordered
1673          * wrt the contents of the write cache being flushed to memory
1674          * (and thus being coherent from the CPU).
1675          */
1676         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1677
1678         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1679                 cmd |= MI_INVALIDATE_TLB;
1680                 if (ring == &dev_priv->ring[VCS])
1681                         cmd |= MI_INVALIDATE_BSD;
1682         }
1683
1684         intel_logical_ring_emit(ringbuf, cmd);
1685         intel_logical_ring_emit(ringbuf,
1686                                 I915_GEM_HWS_SCRATCH_ADDR |
1687                                 MI_FLUSH_DW_USE_GTT);
1688         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1689         intel_logical_ring_emit(ringbuf, 0); /* value */
1690         intel_logical_ring_advance(ringbuf);
1691
1692         return 0;
1693 }
1694
1695 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1696                                   u32 invalidate_domains,
1697                                   u32 flush_domains)
1698 {
1699         struct intel_ringbuffer *ringbuf = request->ringbuf;
1700         struct intel_engine_cs *ring = ringbuf->ring;
1701         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1702         bool vf_flush_wa;
1703         u32 flags = 0;
1704         int ret;
1705
1706         flags |= PIPE_CONTROL_CS_STALL;
1707
1708         if (flush_domains) {
1709                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1710                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1711                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1712         }
1713
1714         if (invalidate_domains) {
1715                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1716                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1717                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1718                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1719                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1720                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1721                 flags |= PIPE_CONTROL_QW_WRITE;
1722                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1723         }
1724
1725         /*
1726          * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1727          * control.
1728          */
1729         vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1730                       flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1731
1732         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1733         if (ret)
1734                 return ret;
1735
1736         if (vf_flush_wa) {
1737                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1738                 intel_logical_ring_emit(ringbuf, 0);
1739                 intel_logical_ring_emit(ringbuf, 0);
1740                 intel_logical_ring_emit(ringbuf, 0);
1741                 intel_logical_ring_emit(ringbuf, 0);
1742                 intel_logical_ring_emit(ringbuf, 0);
1743         }
1744
1745         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1746         intel_logical_ring_emit(ringbuf, flags);
1747         intel_logical_ring_emit(ringbuf, scratch_addr);
1748         intel_logical_ring_emit(ringbuf, 0);
1749         intel_logical_ring_emit(ringbuf, 0);
1750         intel_logical_ring_emit(ringbuf, 0);
1751         intel_logical_ring_advance(ringbuf);
1752
1753         return 0;
1754 }
1755
1756 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1757 {
1758         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1759 }
1760
1761 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1762 {
1763         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1764 }
1765
1766 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1767 {
1768
1769         /*
1770          * On BXT A steppings there is a HW coherency issue whereby the
1771          * MI_STORE_DATA_IMM storing the completed request's seqno
1772          * occasionally doesn't invalidate the CPU cache. Work around this by
1773          * clflushing the corresponding cacheline whenever the caller wants
1774          * the coherency to be guaranteed. Note that this cacheline is known
1775          * to be clean at this point, since we only write it in
1776          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1777          * this clflush in practice becomes an invalidate operation.
1778          */
1779
1780         if (!lazy_coherency)
1781                 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1782
1783         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1784 }
1785
1786 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1787 {
1788         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1789
1790         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1791         intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1792 }
1793
1794 static int gen8_emit_request(struct drm_i915_gem_request *request)
1795 {
1796         struct intel_ringbuffer *ringbuf = request->ringbuf;
1797         struct intel_engine_cs *ring = ringbuf->ring;
1798         u32 cmd;
1799         int ret;
1800
1801         /*
1802          * Reserve space for 2 NOOPs at the end of each request to be
1803          * used as a workaround for not being allowed to do lite
1804          * restore with HEAD==TAIL (WaIdleLiteRestore).
1805          */
1806         ret = intel_logical_ring_begin(request, 8);
1807         if (ret)
1808                 return ret;
1809
1810         cmd = MI_STORE_DWORD_IMM_GEN4;
1811         cmd |= MI_GLOBAL_GTT;
1812
1813         intel_logical_ring_emit(ringbuf, cmd);
1814         intel_logical_ring_emit(ringbuf,
1815                                 (ring->status_page.gfx_addr +
1816                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1817         intel_logical_ring_emit(ringbuf, 0);
1818         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1819         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1820         intel_logical_ring_emit(ringbuf, MI_NOOP);
1821         intel_logical_ring_advance_and_submit(request);
1822
1823         /*
1824          * Here we add two extra NOOPs as padding to avoid
1825          * lite restore of a context with HEAD==TAIL.
1826          */
1827         intel_logical_ring_emit(ringbuf, MI_NOOP);
1828         intel_logical_ring_emit(ringbuf, MI_NOOP);
1829         intel_logical_ring_advance(ringbuf);
1830
1831         return 0;
1832 }
1833
1834 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1835 {
1836         struct render_state so;
1837         int ret;
1838
1839         ret = i915_gem_render_state_prepare(req->ring, &so);
1840         if (ret)
1841                 return ret;
1842
1843         if (so.rodata == NULL)
1844                 return 0;
1845
1846         ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1847                                        I915_DISPATCH_SECURE);
1848         if (ret)
1849                 goto out;
1850
1851         ret = req->ring->emit_bb_start(req,
1852                                        (so.ggtt_offset + so.aux_batch_offset),
1853                                        I915_DISPATCH_SECURE);
1854         if (ret)
1855                 goto out;
1856
1857         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1858
1859 out:
1860         i915_gem_render_state_fini(&so);
1861         return ret;
1862 }
1863
1864 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1865 {
1866         int ret;
1867
1868         ret = intel_logical_ring_workarounds_emit(req);
1869         if (ret)
1870                 return ret;
1871
1872         ret = intel_rcs_context_init_mocs(req);
1873         /*
1874          * Failing to program the MOCS is non-fatal.The system will not
1875          * run at peak performance. So generate an error and carry on.
1876          */
1877         if (ret)
1878                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1879
1880         return intel_lr_context_render_state_init(req);
1881 }
1882
1883 /**
1884  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1885  *
1886  * @ring: Engine Command Streamer.
1887  *
1888  */
1889 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1890 {
1891         struct drm_i915_private *dev_priv;
1892
1893         if (!intel_ring_initialized(ring))
1894                 return;
1895
1896         dev_priv = ring->dev->dev_private;
1897
1898         intel_logical_ring_stop(ring);
1899         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1900
1901         if (ring->cleanup)
1902                 ring->cleanup(ring);
1903
1904         i915_cmd_parser_fini_ring(ring);
1905         i915_gem_batch_pool_fini(&ring->batch_pool);
1906
1907         if (ring->status_page.obj) {
1908                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1909                 ring->status_page.obj = NULL;
1910         }
1911
1912         lrc_destroy_wa_ctx_obj(ring);
1913 }
1914
1915 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1916 {
1917         int ret;
1918
1919         /* Intentionally left blank. */
1920         ring->buffer = NULL;
1921
1922         ring->dev = dev;
1923         INIT_LIST_HEAD(&ring->active_list);
1924         INIT_LIST_HEAD(&ring->request_list);
1925         i915_gem_batch_pool_init(dev, &ring->batch_pool);
1926         init_waitqueue_head(&ring->irq_queue);
1927
1928         INIT_LIST_HEAD(&ring->execlist_queue);
1929         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1930         lockinit(&ring->execlist_lock, "i915el", 0, LK_CANRECURSE);
1931
1932         ret = i915_cmd_parser_init_ring(ring);
1933         if (ret)
1934                 return ret;
1935
1936         ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
1937         if (ret)
1938                 return ret;
1939
1940         /* As this is the default context, always pin it */
1941         ret = intel_lr_context_do_pin(
1942                         ring,
1943                         ring->default_context->engine[ring->id].state,
1944                         ring->default_context->engine[ring->id].ringbuf);
1945         if (ret) {
1946                 DRM_ERROR(
1947                         "Failed to pin and map ringbuffer %s: %d\n",
1948                         ring->name, ret);
1949                 return ret;
1950         }
1951
1952         return ret;
1953 }
1954
1955 static int logical_render_ring_init(struct drm_device *dev)
1956 {
1957         struct drm_i915_private *dev_priv = dev->dev_private;
1958         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1959         int ret;
1960
1961         ring->name = "render ring";
1962         ring->id = RCS;
1963         ring->mmio_base = RENDER_RING_BASE;
1964         ring->irq_enable_mask =
1965                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1966         ring->irq_keep_mask =
1967                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1968         if (HAS_L3_DPF(dev))
1969                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1970
1971         if (INTEL_INFO(dev)->gen >= 9)
1972                 ring->init_hw = gen9_init_render_ring;
1973         else
1974                 ring->init_hw = gen8_init_render_ring;
1975         ring->init_context = gen8_init_rcs_context;
1976         ring->cleanup = intel_fini_pipe_control;
1977         if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
1978                 ring->get_seqno = bxt_a_get_seqno;
1979                 ring->set_seqno = bxt_a_set_seqno;
1980         } else {
1981                 ring->get_seqno = gen8_get_seqno;
1982                 ring->set_seqno = gen8_set_seqno;
1983         }
1984         ring->emit_request = gen8_emit_request;
1985         ring->emit_flush = gen8_emit_flush_render;
1986         ring->irq_get = gen8_logical_ring_get_irq;
1987         ring->irq_put = gen8_logical_ring_put_irq;
1988         ring->emit_bb_start = gen8_emit_bb_start;
1989
1990         ring->dev = dev;
1991
1992         ret = intel_init_pipe_control(ring);
1993         if (ret)
1994                 return ret;
1995
1996         ret = intel_init_workaround_bb(ring);
1997         if (ret) {
1998                 /*
1999                  * We continue even if we fail to initialize WA batch
2000                  * because we only expect rare glitches but nothing
2001                  * critical to prevent us from using GPU
2002                  */
2003                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2004                           ret);
2005         }
2006
2007         ret = logical_ring_init(dev, ring);
2008         if (ret) {
2009                 lrc_destroy_wa_ctx_obj(ring);
2010         }
2011
2012         return ret;
2013 }
2014
2015 static int logical_bsd_ring_init(struct drm_device *dev)
2016 {
2017         struct drm_i915_private *dev_priv = dev->dev_private;
2018         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2019
2020         ring->name = "bsd ring";
2021         ring->id = VCS;
2022         ring->mmio_base = GEN6_BSD_RING_BASE;
2023         ring->irq_enable_mask =
2024                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2025         ring->irq_keep_mask =
2026                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2027
2028         ring->init_hw = gen8_init_common_ring;
2029         if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2030                 ring->get_seqno = bxt_a_get_seqno;
2031                 ring->set_seqno = bxt_a_set_seqno;
2032         } else {
2033                 ring->get_seqno = gen8_get_seqno;
2034                 ring->set_seqno = gen8_set_seqno;
2035         }
2036         ring->emit_request = gen8_emit_request;
2037         ring->emit_flush = gen8_emit_flush;
2038         ring->irq_get = gen8_logical_ring_get_irq;
2039         ring->irq_put = gen8_logical_ring_put_irq;
2040         ring->emit_bb_start = gen8_emit_bb_start;
2041
2042         return logical_ring_init(dev, ring);
2043 }
2044
2045 static int logical_bsd2_ring_init(struct drm_device *dev)
2046 {
2047         struct drm_i915_private *dev_priv = dev->dev_private;
2048         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2049
2050         ring->name = "bds2 ring";
2051         ring->id = VCS2;
2052         ring->mmio_base = GEN8_BSD2_RING_BASE;
2053         ring->irq_enable_mask =
2054                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2055         ring->irq_keep_mask =
2056                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2057
2058         ring->init_hw = gen8_init_common_ring;
2059         ring->get_seqno = gen8_get_seqno;
2060         ring->set_seqno = gen8_set_seqno;
2061         ring->emit_request = gen8_emit_request;
2062         ring->emit_flush = gen8_emit_flush;
2063         ring->irq_get = gen8_logical_ring_get_irq;
2064         ring->irq_put = gen8_logical_ring_put_irq;
2065         ring->emit_bb_start = gen8_emit_bb_start;
2066
2067         return logical_ring_init(dev, ring);
2068 }
2069
2070 static int logical_blt_ring_init(struct drm_device *dev)
2071 {
2072         struct drm_i915_private *dev_priv = dev->dev_private;
2073         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2074
2075         ring->name = "blitter ring";
2076         ring->id = BCS;
2077         ring->mmio_base = BLT_RING_BASE;
2078         ring->irq_enable_mask =
2079                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2080         ring->irq_keep_mask =
2081                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2082
2083         ring->init_hw = gen8_init_common_ring;
2084         if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2085                 ring->get_seqno = bxt_a_get_seqno;
2086                 ring->set_seqno = bxt_a_set_seqno;
2087         } else {
2088                 ring->get_seqno = gen8_get_seqno;
2089                 ring->set_seqno = gen8_set_seqno;
2090         }
2091         ring->emit_request = gen8_emit_request;
2092         ring->emit_flush = gen8_emit_flush;
2093         ring->irq_get = gen8_logical_ring_get_irq;
2094         ring->irq_put = gen8_logical_ring_put_irq;
2095         ring->emit_bb_start = gen8_emit_bb_start;
2096
2097         return logical_ring_init(dev, ring);
2098 }
2099
2100 static int logical_vebox_ring_init(struct drm_device *dev)
2101 {
2102         struct drm_i915_private *dev_priv = dev->dev_private;
2103         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2104
2105         ring->name = "video enhancement ring";
2106         ring->id = VECS;
2107         ring->mmio_base = VEBOX_RING_BASE;
2108         ring->irq_enable_mask =
2109                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2110         ring->irq_keep_mask =
2111                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2112
2113         ring->init_hw = gen8_init_common_ring;
2114         if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2115                 ring->get_seqno = bxt_a_get_seqno;
2116                 ring->set_seqno = bxt_a_set_seqno;
2117         } else {
2118                 ring->get_seqno = gen8_get_seqno;
2119                 ring->set_seqno = gen8_set_seqno;
2120         }
2121         ring->emit_request = gen8_emit_request;
2122         ring->emit_flush = gen8_emit_flush;
2123         ring->irq_get = gen8_logical_ring_get_irq;
2124         ring->irq_put = gen8_logical_ring_put_irq;
2125         ring->emit_bb_start = gen8_emit_bb_start;
2126
2127         return logical_ring_init(dev, ring);
2128 }
2129
2130 /**
2131  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2132  * @dev: DRM device.
2133  *
2134  * This function inits the engines for an Execlists submission style (the equivalent in the
2135  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2136  * those engines that are present in the hardware.
2137  *
2138  * Return: non-zero if the initialization failed.
2139  */
2140 int intel_logical_rings_init(struct drm_device *dev)
2141 {
2142         struct drm_i915_private *dev_priv = dev->dev_private;
2143         int ret;
2144
2145         ret = logical_render_ring_init(dev);
2146         if (ret)
2147                 return ret;
2148
2149         if (HAS_BSD(dev)) {
2150                 ret = logical_bsd_ring_init(dev);
2151                 if (ret)
2152                         goto cleanup_render_ring;
2153         }
2154
2155         if (HAS_BLT(dev)) {
2156                 ret = logical_blt_ring_init(dev);
2157                 if (ret)
2158                         goto cleanup_bsd_ring;
2159         }
2160
2161         if (HAS_VEBOX(dev)) {
2162                 ret = logical_vebox_ring_init(dev);
2163                 if (ret)
2164                         goto cleanup_blt_ring;
2165         }
2166
2167         if (HAS_BSD2(dev)) {
2168                 ret = logical_bsd2_ring_init(dev);
2169                 if (ret)
2170                         goto cleanup_vebox_ring;
2171         }
2172
2173         return 0;
2174
2175 cleanup_vebox_ring:
2176         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2177 cleanup_blt_ring:
2178         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2179 cleanup_bsd_ring:
2180         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2181 cleanup_render_ring:
2182         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2183
2184         return ret;
2185 }
2186
2187 static u32
2188 make_rpcs(struct drm_device *dev)
2189 {
2190         u32 rpcs = 0;
2191
2192         /*
2193          * No explicit RPCS request is needed to ensure full
2194          * slice/subslice/EU enablement prior to Gen9.
2195         */
2196         if (INTEL_INFO(dev)->gen < 9)
2197                 return 0;
2198
2199         /*
2200          * Starting in Gen9, render power gating can leave
2201          * slice/subslice/EU in a partially enabled state. We
2202          * must make an explicit request through RPCS for full
2203          * enablement.
2204         */
2205         if (INTEL_INFO(dev)->has_slice_pg) {
2206                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2207                 rpcs |= INTEL_INFO(dev)->slice_total <<
2208                         GEN8_RPCS_S_CNT_SHIFT;
2209                 rpcs |= GEN8_RPCS_ENABLE;
2210         }
2211
2212         if (INTEL_INFO(dev)->has_subslice_pg) {
2213                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2214                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2215                         GEN8_RPCS_SS_CNT_SHIFT;
2216                 rpcs |= GEN8_RPCS_ENABLE;
2217         }
2218
2219         if (INTEL_INFO(dev)->has_eu_pg) {
2220                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2221                         GEN8_RPCS_EU_MIN_SHIFT;
2222                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2223                         GEN8_RPCS_EU_MAX_SHIFT;
2224                 rpcs |= GEN8_RPCS_ENABLE;
2225         }
2226
2227         return rpcs;
2228 }
2229
2230 static int
2231 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2232                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2233 {
2234         struct drm_device *dev = ring->dev;
2235         struct drm_i915_private *dev_priv = dev->dev_private;
2236         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2237         struct vm_page *page;
2238         uint32_t *reg_state;
2239         int ret;
2240
2241         if (!ppgtt)
2242                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2243
2244         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2245         if (ret) {
2246                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2247                 return ret;
2248         }
2249
2250         ret = i915_gem_object_get_pages(ctx_obj);
2251         if (ret) {
2252                 DRM_DEBUG_DRIVER("Could not get object pages\n");
2253                 return ret;
2254         }
2255
2256         i915_gem_object_pin_pages(ctx_obj);
2257
2258         /* The second page of the context object contains some fields which must
2259          * be set up prior to the first execution. */
2260         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2261         reg_state = kmap_atomic(page);
2262
2263         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2264          * commands followed by (reg, value) pairs. The values we are setting here are
2265          * only for the first context restore: on a subsequent save, the GPU will
2266          * recreate this batchbuffer with new values (including all the missing
2267          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2268         if (ring->id == RCS)
2269                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2270         else
2271                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2272         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2273         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2274         reg_state[CTX_CONTEXT_CONTROL+1] =
2275                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2276                                    CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2277                                    CTX_CTRL_RS_CTX_ENABLE);
2278         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2279         reg_state[CTX_RING_HEAD+1] = 0;
2280         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2281         reg_state[CTX_RING_TAIL+1] = 0;
2282         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
2283         /* Ring buffer start address is not known until the buffer is pinned.
2284          * It is written to the context image in execlists_update_context()
2285          */
2286         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2287         reg_state[CTX_RING_BUFFER_CONTROL+1] =
2288                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2289         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2290         reg_state[CTX_BB_HEAD_U+1] = 0;
2291         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2292         reg_state[CTX_BB_HEAD_L+1] = 0;
2293         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2294         reg_state[CTX_BB_STATE+1] = (1<<5);
2295         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2296         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2297         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2298         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2299         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2300         reg_state[CTX_SECOND_BB_STATE+1] = 0;
2301         if (ring->id == RCS) {
2302                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2303                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2304                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2305                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2306                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2307                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2308                 if (ring->wa_ctx.obj) {
2309                         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2310                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2311
2312                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2313                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2314                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2315
2316                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2317                                 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2318
2319                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2320                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2321                                 0x01;
2322                 }
2323         }
2324         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2325         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2326         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2327         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2328         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2329         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2330         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2331         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2332         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2333         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2334         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2335         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2336
2337         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2338                 /* 64b PPGTT (48bit canonical)
2339                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2340                  * other PDP Descriptors are ignored.
2341                  */
2342                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2343         } else {
2344                 /* 32b PPGTT
2345                  * PDP*_DESCRIPTOR contains the base address of space supported.
2346                  * With dynamic page allocation, PDPs may not be allocated at
2347                  * this point. Point the unallocated PDPs to the scratch page
2348                  */
2349                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2350                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2351                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2352                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2353         }
2354
2355         if (ring->id == RCS) {
2356                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2357                 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2358                 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2359         }
2360
2361         kunmap_atomic(reg_state);
2362
2363         ctx_obj->dirty = 1;
2364         set_page_dirty(page);
2365         i915_gem_object_unpin_pages(ctx_obj);
2366
2367         return 0;
2368 }
2369
2370 /**
2371  * intel_lr_context_free() - free the LRC specific bits of a context
2372  * @ctx: the LR context to free.
2373  *
2374  * The real context freeing is done in i915_gem_context_free: this only
2375  * takes care of the bits that are LRC related: the per-engine backing
2376  * objects and the logical ringbuffer.
2377  */
2378 void intel_lr_context_free(struct intel_context *ctx)
2379 {
2380         int i;
2381
2382         for (i = 0; i < I915_NUM_RINGS; i++) {
2383                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2384
2385                 if (ctx_obj) {
2386                         struct intel_ringbuffer *ringbuf =
2387                                         ctx->engine[i].ringbuf;
2388                         struct intel_engine_cs *ring = ringbuf->ring;
2389
2390                         if (ctx == ring->default_context) {
2391                                 intel_unpin_ringbuffer_obj(ringbuf);
2392                                 i915_gem_object_ggtt_unpin(ctx_obj);
2393                         }
2394                         WARN_ON(ctx->engine[ring->id].pin_count);
2395                         intel_ringbuffer_free(ringbuf);
2396                         drm_gem_object_unreference(&ctx_obj->base);
2397                 }
2398         }
2399 }
2400
2401 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2402 {
2403         int ret = 0;
2404
2405         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2406
2407         switch (ring->id) {
2408         case RCS:
2409                 if (INTEL_INFO(ring->dev)->gen >= 9)
2410                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2411                 else
2412                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2413                 break;
2414         case VCS:
2415         case BCS:
2416         case VECS:
2417         case VCS2:
2418                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2419                 break;
2420         }
2421
2422         return ret;
2423 }
2424
2425 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2426                 struct drm_i915_gem_object *default_ctx_obj)
2427 {
2428         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2429         struct vm_page *page;
2430
2431         /* The HWSP is part of the default context object in LRC mode. */
2432         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2433                         + LRC_PPHWSP_PN * PAGE_SIZE;
2434         page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2435         ring->status_page.page_addr = kmap(page);
2436         ring->status_page.obj = default_ctx_obj;
2437
2438         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2439                         (u32)ring->status_page.gfx_addr);
2440         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2441 }
2442
2443 /**
2444  * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2445  * @ctx: LR context to create.
2446  * @ring: engine to be used with the context.
2447  *
2448  * This function can be called more than once, with different engines, if we plan
2449  * to use the context with them. The context backing objects and the ringbuffers
2450  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2451  * the creation is a deferred call: it's better to make sure first that we need to use
2452  * a given ring with the context.
2453  *
2454  * Return: non-zero on error.
2455  */
2456
2457 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2458                                      struct intel_engine_cs *ring)
2459 {
2460         struct drm_device *dev = ring->dev;
2461         struct drm_i915_gem_object *ctx_obj;
2462         uint32_t context_size;
2463         struct intel_ringbuffer *ringbuf;
2464         int ret;
2465
2466         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2467         WARN_ON(ctx->engine[ring->id].state);
2468
2469         context_size = round_up(get_lr_context_size(ring), 4096);
2470
2471         /* One extra page as the sharing data between driver and GuC */
2472         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2473
2474         ctx_obj = i915_gem_alloc_object(dev, context_size);
2475         if (!ctx_obj) {
2476                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2477                 return -ENOMEM;
2478         }
2479
2480         ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2481         if (IS_ERR(ringbuf)) {
2482                 ret = PTR_ERR(ringbuf);
2483                 goto error_deref_obj;
2484         }
2485
2486         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2487         if (ret) {
2488                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2489                 goto error_ringbuf;
2490         }
2491
2492         ctx->engine[ring->id].ringbuf = ringbuf;
2493         ctx->engine[ring->id].state = ctx_obj;
2494
2495         if (ctx != ring->default_context && ring->init_context) {
2496                 struct drm_i915_gem_request *req;
2497
2498                 ret = i915_gem_request_alloc(ring,
2499                         ctx, &req);
2500                 if (ret) {
2501                         DRM_ERROR("ring create req: %d\n",
2502                                 ret);
2503                         goto error_ringbuf;
2504                 }
2505
2506                 ret = ring->init_context(req);
2507                 if (ret) {
2508                         DRM_ERROR("ring init context: %d\n",
2509                                 ret);
2510                         i915_gem_request_cancel(req);
2511                         goto error_ringbuf;
2512                 }
2513                 i915_add_request_no_flush(req);
2514         }
2515         return 0;
2516
2517 error_ringbuf:
2518         intel_ringbuffer_free(ringbuf);
2519 error_deref_obj:
2520         drm_gem_object_unreference(&ctx_obj->base);
2521         ctx->engine[ring->id].ringbuf = NULL;
2522         ctx->engine[ring->id].state = NULL;
2523         return ret;
2524 }
2525
2526 void intel_lr_context_reset(struct drm_device *dev,
2527                         struct intel_context *ctx)
2528 {
2529         struct drm_i915_private *dev_priv = dev->dev_private;
2530         struct intel_engine_cs *ring;
2531         int i;
2532
2533         for_each_ring(ring, dev_priv, i) {
2534                 struct drm_i915_gem_object *ctx_obj =
2535                                 ctx->engine[ring->id].state;
2536                 struct intel_ringbuffer *ringbuf =
2537                                 ctx->engine[ring->id].ringbuf;
2538                 uint32_t *reg_state;
2539                 struct vm_page *page;
2540
2541                 if (!ctx_obj)
2542                         continue;
2543
2544                 if (i915_gem_object_get_pages(ctx_obj)) {
2545                         WARN(1, "Failed get_pages for context obj\n");
2546                         continue;
2547                 }
2548                 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2549                 reg_state = kmap_atomic(page);
2550
2551                 reg_state[CTX_RING_HEAD+1] = 0;
2552                 reg_state[CTX_RING_TAIL+1] = 0;
2553
2554                 kunmap_atomic(reg_state);
2555
2556                 ringbuf->head = 0;
2557                 ringbuf->tail = 0;
2558         }
2559 }