Initial import from FreeBSD RELENG_4:
[dragonfly.git] / lib / msun / src / s_expm1.c
1 /* @(#)s_expm1.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12
13 #ifndef lint
14 static char rcsid[] = "$FreeBSD: src/lib/msun/src/s_expm1.c,v 1.5 1999/08/28 00:06:47 peter Exp $";
15 #endif
16
17 /* expm1(x)
18  * Returns exp(x)-1, the exponential of x minus 1.
19  *
20  * Method
21  *   1. Argument reduction:
22  *      Given x, find r and integer k such that
23  *
24  *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
25  *
26  *      Here a correction term c will be computed to compensate
27  *      the error in r when rounded to a floating-point number.
28  *
29  *   2. Approximating expm1(r) by a special rational function on
30  *      the interval [0,0.34658]:
31  *      Since
32  *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
33  *      we define R1(r*r) by
34  *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
35  *      That is,
36  *          R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
37  *                   = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
38  *                   = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
39  *      We use a special Reme algorithm on [0,0.347] to generate
40  *      a polynomial of degree 5 in r*r to approximate R1. The
41  *      maximum error of this polynomial approximation is bounded
42  *      by 2**-61. In other words,
43  *          R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
44  *      where   Q1  =  -1.6666666666666567384E-2,
45  *              Q2  =   3.9682539681370365873E-4,
46  *              Q3  =  -9.9206344733435987357E-6,
47  *              Q4  =   2.5051361420808517002E-7,
48  *              Q5  =  -6.2843505682382617102E-9;
49  *      (where z=r*r, and the values of Q1 to Q5 are listed below)
50  *      with error bounded by
51  *          |                  5           |     -61
52  *          | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
53  *          |                              |
54  *
55  *      expm1(r) = exp(r)-1 is then computed by the following
56  *      specific way which minimize the accumulation rounding error:
57  *                             2     3
58  *                            r     r    [ 3 - (R1 + R1*r/2)  ]
59  *            expm1(r) = r + --- + --- * [--------------------]
60  *                            2     2    [ 6 - r*(3 - R1*r/2) ]
61  *
62  *      To compensate the error in the argument reduction, we use
63  *              expm1(r+c) = expm1(r) + c + expm1(r)*c
64  *                         ~ expm1(r) + c + r*c
65  *      Thus c+r*c will be added in as the correction terms for
66  *      expm1(r+c). Now rearrange the term to avoid optimization
67  *      screw up:
68  *                      (      2                                    2 )
69  *                      ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
70  *       expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
71  *                      ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
72  *                      (                                             )
73  *
74  *                 = r - E
75  *   3. Scale back to obtain expm1(x):
76  *      From step 1, we have
77  *         expm1(x) = either 2^k*[expm1(r)+1] - 1
78  *                  = or     2^k*[expm1(r) + (1-2^-k)]
79  *   4. Implementation notes:
80  *      (A). To save one multiplication, we scale the coefficient Qi
81  *           to Qi*2^i, and replace z by (x^2)/2.
82  *      (B). To achieve maximum accuracy, we compute expm1(x) by
83  *        (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
84  *        (ii)  if k=0, return r-E
85  *        (iii) if k=-1, return 0.5*(r-E)-0.5
86  *        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E)
87  *                     else          return  1.0+2.0*(r-E);
88  *        (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
89  *        (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
90  *        (vii) return 2^k(1-((E+2^-k)-r))
91  *
92  * Special cases:
93  *      expm1(INF) is INF, expm1(NaN) is NaN;
94  *      expm1(-INF) is -1, and
95  *      for finite argument, only expm1(0)=0 is exact.
96  *
97  * Accuracy:
98  *      according to an error analysis, the error is always less than
99  *      1 ulp (unit in the last place).
100  *
101  * Misc. info.
102  *      For IEEE double
103  *          if x >  7.09782712893383973096e+02 then expm1(x) overflow
104  *
105  * Constants:
106  * The hexadecimal values are the intended ones for the following
107  * constants. The decimal values may be used, provided that the
108  * compiler will convert from decimal to binary accurately enough
109  * to produce the hexadecimal values shown.
110  */
111
112 #include "math.h"
113 #include "math_private.h"
114
115 #ifdef __STDC__
116 static const double
117 #else
118 static double
119 #endif
120 one             = 1.0,
121 huge            = 1.0e+300,
122 tiny            = 1.0e-300,
123 o_threshold     = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
124 ln2_hi          = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
125 ln2_lo          = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
126 invln2          = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
127         /* scaled coefficients related to expm1 */
128 Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
129 Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
130 Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
131 Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
132 Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
133
134 #ifdef __STDC__
135         double expm1(double x)
136 #else
137         double expm1(x)
138         double x;
139 #endif
140 {
141         double y,hi,lo,c,t,e,hxs,hfx,r1;
142         int32_t k,xsb;
143         u_int32_t hx;
144
145         GET_HIGH_WORD(hx,x);
146         xsb = hx&0x80000000;            /* sign bit of x */
147         if(xsb==0) y=x; else y= -x;     /* y = |x| */
148         hx &= 0x7fffffff;               /* high word of |x| */
149
150     /* filter out huge and non-finite argument */
151         if(hx >= 0x4043687A) {                  /* if |x|>=56*ln2 */
152             if(hx >= 0x40862E42) {              /* if |x|>=709.78... */
153                 if(hx>=0x7ff00000) {
154                     u_int32_t low;
155                     GET_LOW_WORD(low,x);
156                     if(((hx&0xfffff)|low)!=0)
157                          return x+x;     /* NaN */
158                     else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
159                 }
160                 if(x > o_threshold) return huge*huge; /* overflow */
161             }
162             if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
163                 if(x+tiny<0.0)          /* raise inexact */
164                 return tiny-one;        /* return -1 */
165             }
166         }
167
168     /* argument reduction */
169         if(hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */
170             if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
171                 if(xsb==0)
172                     {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
173                 else
174                     {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
175             } else {
176                 k  = invln2*x+((xsb==0)?0.5:-0.5);
177                 t  = k;
178                 hi = x - t*ln2_hi;      /* t*ln2_hi is exact here */
179                 lo = t*ln2_lo;
180             }
181             x  = hi - lo;
182             c  = (hi-x)-lo;
183         }
184         else if(hx < 0x3c900000) {      /* when |x|<2**-54, return x */
185             t = huge+x; /* return x with inexact flags when x!=0 */
186             return x - (t-(huge+x));
187         }
188         else k = 0;
189
190     /* x is now in primary range */
191         hfx = 0.5*x;
192         hxs = x*hfx;
193         r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
194         t  = 3.0-r1*hfx;
195         e  = hxs*((r1-t)/(6.0 - x*t));
196         if(k==0) return x - (x*e-hxs);          /* c is 0 */
197         else {
198             e  = (x*(e-c)-c);
199             e -= hxs;
200             if(k== -1) return 0.5*(x-e)-0.5;
201             if(k==1)
202                 if(x < -0.25) return -2.0*(e-(x+0.5));
203                 else          return  one+2.0*(x-e);
204             if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
205                 u_int32_t high;
206                 y = one-(e-x);
207                 GET_HIGH_WORD(high,y);
208                 SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
209                 return y-one;
210             }
211             t = one;
212             if(k<20) {
213                 u_int32_t high;
214                 SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
215                 y = t-(e-x);
216                 GET_HIGH_WORD(high,y);
217                 SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
218            } else {
219                 u_int32_t high;
220                 SET_HIGH_WORD(t,((0x3ff-k)<<20));       /* 2^-k */
221                 y = x-(e+t);
222                 y += one;
223                 GET_HIGH_WORD(high,y);
224                 SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
225             }
226         }
227         return y;
228 }