a29aa5dbfe3692dad75b228c0e209c7d42f1bb9e
[dragonfly.git] / sys / dev / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33
34 #include <linux/bitmap.h>
35
36 /**
37  * DOC: Global GTT views
38  *
39  * Background and previous state
40  *
41  * Historically objects could exists (be bound) in global GTT space only as
42  * singular instances with a view representing all of the object's backing pages
43  * in a linear fashion. This view will be called a normal view.
44  *
45  * To support multiple views of the same object, where the number of mapped
46  * pages is not equal to the backing store, or where the layout of the pages
47  * is not linear, concept of a GGTT view was added.
48  *
49  * One example of an alternative view is a stereo display driven by a single
50  * image. In this case we would have a framebuffer looking like this
51  * (2x2 pages):
52  *
53  *    12
54  *    34
55  *
56  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
57  * rendering. In contrast, fed to the display engine would be an alternative
58  * view which could look something like this:
59  *
60  *   1212
61  *   3434
62  *
63  * In this example both the size and layout of pages in the alternative view is
64  * different from the normal view.
65  *
66  * Implementation and usage
67  *
68  * GGTT views are implemented using VMAs and are distinguished via enum
69  * i915_ggtt_view_type and struct i915_ggtt_view.
70  *
71  * A new flavour of core GEM functions which work with GGTT bound objects were
72  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
73  * renaming  in large amounts of code. They take the struct i915_ggtt_view
74  * parameter encapsulating all metadata required to implement a view.
75  *
76  * As a helper for callers which are only interested in the normal view,
77  * globally const i915_ggtt_view_normal singleton instance exists. All old core
78  * GEM API functions, the ones not taking the view parameter, are operating on,
79  * or with the normal GGTT view.
80  *
81  * Code wanting to add or use a new GGTT view needs to:
82  *
83  * 1. Add a new enum with a suitable name.
84  * 2. Extend the metadata in the i915_ggtt_view structure if required.
85  * 3. Add support to i915_get_vma_pages().
86  *
87  * New views are required to build a scatter-gather table from within the
88  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
89  * exists for the lifetime of an VMA.
90  *
91  * Core API is designed to have copy semantics which means that passed in
92  * struct i915_ggtt_view does not need to be persistent (left around after
93  * calling the core API functions).
94  *
95  */
96
97 static int
98 i915_get_ggtt_vma_pages(struct i915_vma *vma);
99
100 const struct i915_ggtt_view i915_ggtt_view_normal;
101 const struct i915_ggtt_view i915_ggtt_view_rotated = {
102         .type = I915_GGTT_VIEW_ROTATED
103 };
104
105 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
106 {
107         bool has_aliasing_ppgtt;
108         bool has_full_ppgtt;
109
110         has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
111         has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
112
113         if (intel_vgpu_active(dev))
114                 has_full_ppgtt = false; /* emulation is too hard */
115
116         /*
117          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
118          * execlists, the sole mechanism available to submit work.
119          */
120         if (INTEL_INFO(dev)->gen < 9 &&
121             (enable_ppgtt == 0 || !has_aliasing_ppgtt))
122                 return 0;
123
124         if (enable_ppgtt == 1)
125                 return 1;
126
127         if (enable_ppgtt == 2 && has_full_ppgtt)
128                 return 2;
129
130 #ifdef CONFIG_INTEL_IOMMU
131         /* Disable ppgtt on SNB if VT-d is on. */
132         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
133                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
134                 return 0;
135         }
136 #endif
137
138         /* Early VLV doesn't have this */
139         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
140             dev->pdev->revision < 0xb) {
141                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
142                 return 0;
143         }
144
145         if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
146                 return 2;
147         else
148                 return has_aliasing_ppgtt ? 1 : 0;
149 }
150
151 static int ppgtt_bind_vma(struct i915_vma *vma,
152                           enum i915_cache_level cache_level,
153                           u32 unused)
154 {
155         u32 pte_flags = 0;
156
157         /* Currently applicable only to VLV */
158         if (vma->obj->gt_ro)
159                 pte_flags |= PTE_READ_ONLY;
160
161         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
162                                 cache_level, pte_flags);
163
164         return 0;
165 }
166
167 static void ppgtt_unbind_vma(struct i915_vma *vma)
168 {
169         vma->vm->clear_range(vma->vm,
170                              vma->node.start,
171                              vma->obj->base.size,
172                              true);
173 }
174
175 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
176                                   enum i915_cache_level level,
177                                   bool valid)
178 {
179         gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
180         pte |= addr;
181
182         switch (level) {
183         case I915_CACHE_NONE:
184                 pte |= PPAT_UNCACHED_INDEX;
185                 break;
186         case I915_CACHE_WT:
187                 pte |= PPAT_DISPLAY_ELLC_INDEX;
188                 break;
189         default:
190                 pte |= PPAT_CACHED_INDEX;
191                 break;
192         }
193
194         return pte;
195 }
196
197 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
198                                   const enum i915_cache_level level)
199 {
200         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
201         pde |= addr;
202         if (level != I915_CACHE_NONE)
203                 pde |= PPAT_CACHED_PDE_INDEX;
204         else
205                 pde |= PPAT_UNCACHED_INDEX;
206         return pde;
207 }
208
209 #define gen8_pdpe_encode gen8_pde_encode
210 #define gen8_pml4e_encode gen8_pde_encode
211
212 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
213                                  enum i915_cache_level level,
214                                  bool valid, u32 unused)
215 {
216         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
217         pte |= GEN6_PTE_ADDR_ENCODE(addr);
218
219         switch (level) {
220         case I915_CACHE_L3_LLC:
221         case I915_CACHE_LLC:
222                 pte |= GEN6_PTE_CACHE_LLC;
223                 break;
224         case I915_CACHE_NONE:
225                 pte |= GEN6_PTE_UNCACHED;
226                 break;
227         default:
228                 MISSING_CASE(level);
229         }
230
231         return pte;
232 }
233
234 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
235                                  enum i915_cache_level level,
236                                  bool valid, u32 unused)
237 {
238         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
239         pte |= GEN6_PTE_ADDR_ENCODE(addr);
240
241         switch (level) {
242         case I915_CACHE_L3_LLC:
243                 pte |= GEN7_PTE_CACHE_L3_LLC;
244                 break;
245         case I915_CACHE_LLC:
246                 pte |= GEN6_PTE_CACHE_LLC;
247                 break;
248         case I915_CACHE_NONE:
249                 pte |= GEN6_PTE_UNCACHED;
250                 break;
251         default:
252                 MISSING_CASE(level);
253         }
254
255         return pte;
256 }
257
258 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
259                                  enum i915_cache_level level,
260                                  bool valid, u32 flags)
261 {
262         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
263         pte |= GEN6_PTE_ADDR_ENCODE(addr);
264
265         if (!(flags & PTE_READ_ONLY))
266                 pte |= BYT_PTE_WRITEABLE;
267
268         if (level != I915_CACHE_NONE)
269                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
270
271         return pte;
272 }
273
274 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
275                                  enum i915_cache_level level,
276                                  bool valid, u32 unused)
277 {
278         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
279         pte |= HSW_PTE_ADDR_ENCODE(addr);
280
281         if (level != I915_CACHE_NONE)
282                 pte |= HSW_WB_LLC_AGE3;
283
284         return pte;
285 }
286
287 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
288                                   enum i915_cache_level level,
289                                   bool valid, u32 unused)
290 {
291         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
292         pte |= HSW_PTE_ADDR_ENCODE(addr);
293
294         switch (level) {
295         case I915_CACHE_NONE:
296                 break;
297         case I915_CACHE_WT:
298                 pte |= HSW_WT_ELLC_LLC_AGE3;
299                 break;
300         default:
301                 pte |= HSW_WB_ELLC_LLC_AGE3;
302                 break;
303         }
304
305         return pte;
306 }
307
308 static int __setup_page_dma(struct drm_device *dev,
309                             struct i915_page_dma *p, gfp_t flags)
310 {
311         struct device *device = dev->pdev->dev;
312
313         p->page = alloc_page(flags);
314         if (!p->page)
315                 return -ENOMEM;
316
317         p->daddr = dma_map_page(device,
318                                 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
319
320         if (dma_mapping_error(device, p->daddr)) {
321                 __free_page(p->page);
322                 return -EINVAL;
323         }
324
325         return 0;
326 }
327
328 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
329 {
330         return __setup_page_dma(dev, p, GFP_KERNEL);
331 }
332
333 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
334 {
335         if (WARN_ON(!p->page))
336                 return;
337
338         dma_unmap_page(dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
339         __free_page(p->page);
340         memset(p, 0, sizeof(*p));
341 }
342
343 static void *kmap_page_dma(struct i915_page_dma *p)
344 {
345         return kmap_atomic(p->page);
346 }
347
348 /* We use the flushing unmap only with ppgtt structures:
349  * page directories, page tables and scratch pages.
350  */
351 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
352 {
353         /* There are only few exceptions for gen >=6. chv and bxt.
354          * And we are not sure about the latter so play safe for now.
355          */
356         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
357                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
358
359         kunmap_atomic(vaddr);
360 }
361
362 #define kmap_px(px) kmap_page_dma(px_base(px))
363 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
364
365 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
366 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
367 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
368 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
369
370 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
371                           const uint64_t val)
372 {
373         int i;
374         uint64_t * const vaddr = kmap_page_dma(p);
375
376         for (i = 0; i < 512; i++)
377                 vaddr[i] = val;
378
379         kunmap_page_dma(dev, vaddr);
380 }
381
382 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
383                              const uint32_t val32)
384 {
385         uint64_t v = val32;
386
387         v = v << 32 | val32;
388
389         fill_page_dma(dev, p, v);
390 }
391
392 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
393 {
394         struct i915_page_scratch *sp;
395         int ret;
396
397         sp = kzalloc(sizeof(*sp), GFP_KERNEL);
398         if (sp == NULL)
399                 return ERR_PTR(-ENOMEM);
400
401         ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
402         if (ret) {
403                 kfree(sp);
404                 return ERR_PTR(ret);
405         }
406
407         set_pages_uc(px_page(sp), 1);
408
409         return sp;
410 }
411
412 static void free_scratch_page(struct drm_device *dev,
413                               struct i915_page_scratch *sp)
414 {
415         set_pages_wb(px_page(sp), 1);
416
417         cleanup_px(dev, sp);
418         kfree(sp);
419 }
420
421 static struct i915_page_table *alloc_pt(struct drm_device *dev)
422 {
423         struct i915_page_table *pt;
424         const size_t count = INTEL_INFO(dev)->gen >= 8 ?
425                 GEN8_PTES : GEN6_PTES;
426         int ret = -ENOMEM;
427
428         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
429         if (!pt)
430                 return ERR_PTR(-ENOMEM);
431
432         pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
433                                 GFP_KERNEL);
434
435         if (!pt->used_ptes)
436                 goto fail_bitmap;
437
438         ret = setup_px(dev, pt);
439         if (ret)
440                 goto fail_page_m;
441
442         return pt;
443
444 fail_page_m:
445         kfree(pt->used_ptes);
446 fail_bitmap:
447         kfree(pt);
448
449         return ERR_PTR(ret);
450 }
451
452 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
453 {
454         cleanup_px(dev, pt);
455         kfree(pt->used_ptes);
456         kfree(pt);
457 }
458
459 static void gen8_initialize_pt(struct i915_address_space *vm,
460                                struct i915_page_table *pt)
461 {
462         gen8_pte_t scratch_pte;
463
464         scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
465                                       I915_CACHE_LLC, true);
466
467         fill_px(vm->dev, pt, scratch_pte);
468 }
469
470 static void gen6_initialize_pt(struct i915_address_space *vm,
471                                struct i915_page_table *pt)
472 {
473         gen6_pte_t scratch_pte;
474
475         WARN_ON(px_dma(vm->scratch_page) == 0);
476
477         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
478                                      I915_CACHE_LLC, true, 0);
479
480         fill32_px(vm->dev, pt, scratch_pte);
481 }
482
483 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
484 {
485         struct i915_page_directory *pd;
486         int ret = -ENOMEM;
487
488         pd = kzalloc(sizeof(*pd), GFP_KERNEL);
489         if (!pd)
490                 return ERR_PTR(-ENOMEM);
491
492         pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
493                                 sizeof(*pd->used_pdes), GFP_KERNEL);
494         if (!pd->used_pdes)
495                 goto fail_bitmap;
496
497         ret = setup_px(dev, pd);
498         if (ret)
499                 goto fail_page_m;
500
501         return pd;
502
503 fail_page_m:
504         kfree(pd->used_pdes);
505 fail_bitmap:
506         kfree(pd);
507
508         return ERR_PTR(ret);
509 }
510
511 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
512 {
513         if (px_page(pd)) {
514                 cleanup_px(dev, pd);
515                 kfree(pd->used_pdes);
516                 kfree(pd);
517         }
518 }
519
520 static void gen8_initialize_pd(struct i915_address_space *vm,
521                                struct i915_page_directory *pd)
522 {
523         gen8_pde_t scratch_pde;
524
525         scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
526
527         fill_px(vm->dev, pd, scratch_pde);
528 }
529
530 static int __pdp_init(struct drm_device *dev,
531                       struct i915_page_directory_pointer *pdp)
532 {
533         size_t pdpes = I915_PDPES_PER_PDP(dev);
534
535         pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
536                                   sizeof(unsigned long),
537                                   GFP_KERNEL);
538         if (!pdp->used_pdpes)
539                 return -ENOMEM;
540
541         pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
542                                       GFP_KERNEL);
543         if (!pdp->page_directory) {
544                 kfree(pdp->used_pdpes);
545                 /* the PDP might be the statically allocated top level. Keep it
546                  * as clean as possible */
547                 pdp->used_pdpes = NULL;
548                 return -ENOMEM;
549         }
550
551         return 0;
552 }
553
554 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
555 {
556         kfree(pdp->used_pdpes);
557         kfree(pdp->page_directory);
558         pdp->page_directory = NULL;
559 }
560
561 static struct
562 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
563 {
564         struct i915_page_directory_pointer *pdp;
565         int ret = -ENOMEM;
566
567         WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
568
569         pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
570         if (!pdp)
571                 return ERR_PTR(-ENOMEM);
572
573         ret = __pdp_init(dev, pdp);
574         if (ret)
575                 goto fail_bitmap;
576
577         ret = setup_px(dev, pdp);
578         if (ret)
579                 goto fail_page_m;
580
581         return pdp;
582
583 fail_page_m:
584         __pdp_fini(pdp);
585 fail_bitmap:
586         kfree(pdp);
587
588         return ERR_PTR(ret);
589 }
590
591 static void free_pdp(struct drm_device *dev,
592                      struct i915_page_directory_pointer *pdp)
593 {
594         __pdp_fini(pdp);
595         if (USES_FULL_48BIT_PPGTT(dev)) {
596                 cleanup_px(dev, pdp);
597                 kfree(pdp);
598         }
599 }
600
601 static void gen8_initialize_pdp(struct i915_address_space *vm,
602                                 struct i915_page_directory_pointer *pdp)
603 {
604         gen8_ppgtt_pdpe_t scratch_pdpe;
605
606         scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
607
608         fill_px(vm->dev, pdp, scratch_pdpe);
609 }
610
611 static void gen8_initialize_pml4(struct i915_address_space *vm,
612                                  struct i915_pml4 *pml4)
613 {
614         gen8_ppgtt_pml4e_t scratch_pml4e;
615
616         scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
617                                           I915_CACHE_LLC);
618
619         fill_px(vm->dev, pml4, scratch_pml4e);
620 }
621
622 static void
623 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
624                           struct i915_page_directory_pointer *pdp,
625                           struct i915_page_directory *pd,
626                           int index)
627 {
628         gen8_ppgtt_pdpe_t *page_directorypo;
629
630         if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
631                 return;
632
633         page_directorypo = kmap_px(pdp);
634         page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
635         kunmap_px(ppgtt, page_directorypo);
636 }
637
638 static void
639 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
640                                   struct i915_pml4 *pml4,
641                                   struct i915_page_directory_pointer *pdp,
642                                   int index)
643 {
644         gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
645
646         WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
647         pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
648         kunmap_px(ppgtt, pagemap);
649 }
650
651 /* Broadwell Page Directory Pointer Descriptors */
652 static int gen8_write_pdp(struct drm_i915_gem_request *req,
653                           unsigned entry,
654                           dma_addr_t addr)
655 {
656         struct intel_engine_cs *ring = req->ring;
657         int ret;
658
659         BUG_ON(entry >= 4);
660
661         ret = intel_ring_begin(req, 6);
662         if (ret)
663                 return ret;
664
665         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
666         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
667         intel_ring_emit(ring, upper_32_bits(addr));
668         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
669         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
670         intel_ring_emit(ring, lower_32_bits(addr));
671         intel_ring_advance(ring);
672
673         return 0;
674 }
675
676 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
677                                  struct drm_i915_gem_request *req)
678 {
679         int i, ret;
680
681         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
682                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
683
684                 ret = gen8_write_pdp(req, i, pd_daddr);
685                 if (ret)
686                         return ret;
687         }
688
689         return 0;
690 }
691
692 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
693                               struct drm_i915_gem_request *req)
694 {
695         return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
696 }
697
698 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
699                                        struct i915_page_directory_pointer *pdp,
700                                        uint64_t start,
701                                        uint64_t length,
702                                        gen8_pte_t scratch_pte)
703 {
704         struct i915_hw_ppgtt *ppgtt =
705                 container_of(vm, struct i915_hw_ppgtt, base);
706         gen8_pte_t *pt_vaddr;
707         unsigned pdpe = gen8_pdpe_index(start);
708         unsigned pde = gen8_pde_index(start);
709         unsigned pte = gen8_pte_index(start);
710         unsigned num_entries = length >> PAGE_SHIFT;
711         unsigned last_pte, i;
712
713         if (WARN_ON(!pdp))
714                 return;
715
716         while (num_entries) {
717                 struct i915_page_directory *pd;
718                 struct i915_page_table *pt;
719
720                 if (WARN_ON(!pdp->page_directory[pdpe]))
721                         break;
722
723                 pd = pdp->page_directory[pdpe];
724
725                 if (WARN_ON(!pd->page_table[pde]))
726                         break;
727
728                 pt = pd->page_table[pde];
729
730                 if (WARN_ON(!px_page(pt)))
731                         break;
732
733                 last_pte = pte + num_entries;
734                 if (last_pte > GEN8_PTES)
735                         last_pte = GEN8_PTES;
736
737                 pt_vaddr = kmap_px(pt);
738
739                 for (i = pte; i < last_pte; i++) {
740                         pt_vaddr[i] = scratch_pte;
741                         num_entries--;
742                 }
743
744                 kunmap_px(ppgtt, pt_vaddr);     /* XXX dillon, out of order
745                                                  * patch from linux
746                                                  * 44a71024 12-Apr-2016
747                                                  */
748
749                 pte = 0;
750                 if (++pde == I915_PDES) {
751                         if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
752                                 break;
753                         pde = 0;
754                 }
755         }
756 }
757
758 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
759                                    uint64_t start,
760                                    uint64_t length,
761                                    bool use_scratch)
762 {
763         struct i915_hw_ppgtt *ppgtt =
764                 container_of(vm, struct i915_hw_ppgtt, base);
765         gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
766                                                  I915_CACHE_LLC, use_scratch);
767
768         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
769                 gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
770                                            scratch_pte);
771         } else {
772                 uint64_t templ4, pml4e;
773                 struct i915_page_directory_pointer *pdp;
774
775                 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
776                         gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
777                                                    scratch_pte);
778                 }
779         }
780 }
781
782 static void
783 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
784                               struct i915_page_directory_pointer *pdp,
785                               struct sg_page_iter *sg_iter,
786                               uint64_t start,
787                               enum i915_cache_level cache_level)
788 {
789         struct i915_hw_ppgtt *ppgtt =
790                 container_of(vm, struct i915_hw_ppgtt, base);
791         gen8_pte_t *pt_vaddr;
792         unsigned pdpe = gen8_pdpe_index(start);
793         unsigned pde = gen8_pde_index(start);
794         unsigned pte = gen8_pte_index(start);
795
796         pt_vaddr = NULL;
797
798         while (__sg_page_iter_next(sg_iter)) {
799                 if (pt_vaddr == NULL) {
800                         struct i915_page_directory *pd = pdp->page_directory[pdpe];
801                         while (pd == NULL) {
802                                 kprintf("PD NULL pdp %p pdpe %u\n", pdp, pdpe);
803                                 tsleep(&pd, 0, "froze", hz);
804                         }
805                         struct i915_page_table *pt = pd->page_table[pde];
806                         while (pt == NULL) {
807                                 kprintf("PT NULL pdp %p pdpe %u\n", pd, pde);
808                                 tsleep(&pd, 0, "froze", hz);
809                         }
810
811                         pt_vaddr = kmap_px(pt);
812                 }
813
814                 pt_vaddr[pte] =
815                         gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
816                                         cache_level, true);
817                 if (++pte == GEN8_PTES) {
818                         kunmap_px(ppgtt, pt_vaddr);
819                         pt_vaddr = NULL;
820                         if (++pde == I915_PDES) {
821                                 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
822                                         break;
823                                 pde = 0;
824                         }
825                         pte = 0;
826                 }
827         }
828
829         if (pt_vaddr)
830                 kunmap_px(ppgtt, pt_vaddr);
831 }
832
833 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
834                                       struct sg_table *pages,
835                                       uint64_t start,
836                                       enum i915_cache_level cache_level,
837                                       u32 unused)
838 {
839         struct i915_hw_ppgtt *ppgtt =
840                 container_of(vm, struct i915_hw_ppgtt, base);
841         struct sg_page_iter sg_iter;
842
843         __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
844
845         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
846                 gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
847                                               cache_level);
848         } else {
849                 struct i915_page_directory_pointer *pdp;
850                 uint64_t templ4, pml4e;
851                 uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
852
853                 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
854                         gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
855                                                       start, cache_level);
856                 }
857         }
858 }
859
860 static void gen8_free_page_tables(struct drm_device *dev,
861                                   struct i915_page_directory *pd)
862 {
863         int i;
864
865         if (!px_page(pd))
866                 return;
867
868         for_each_set_bit(i, pd->used_pdes, I915_PDES) {
869                 if (WARN_ON(!pd->page_table[i]))
870                         continue;
871
872                 free_pt(dev, pd->page_table[i]);
873                 pd->page_table[i] = NULL;
874         }
875 }
876
877 static int gen8_init_scratch(struct i915_address_space *vm)
878 {
879         struct drm_device *dev = vm->dev;
880
881         vm->scratch_page = alloc_scratch_page(dev);
882         if (IS_ERR(vm->scratch_page))
883                 return PTR_ERR(vm->scratch_page);
884
885         vm->scratch_pt = alloc_pt(dev);
886         if (IS_ERR(vm->scratch_pt)) {
887                 free_scratch_page(dev, vm->scratch_page);
888                 return PTR_ERR(vm->scratch_pt);
889         }
890
891         vm->scratch_pd = alloc_pd(dev);
892         if (IS_ERR(vm->scratch_pd)) {
893                 free_pt(dev, vm->scratch_pt);
894                 free_scratch_page(dev, vm->scratch_page);
895                 return PTR_ERR(vm->scratch_pd);
896         }
897
898         if (USES_FULL_48BIT_PPGTT(dev)) {
899                 vm->scratch_pdp = alloc_pdp(dev);
900                 if (IS_ERR(vm->scratch_pdp)) {
901                         free_pd(dev, vm->scratch_pd);
902                         free_pt(dev, vm->scratch_pt);
903                         free_scratch_page(dev, vm->scratch_page);
904                         return PTR_ERR(vm->scratch_pdp);
905                 }
906         }
907
908         gen8_initialize_pt(vm, vm->scratch_pt);
909         gen8_initialize_pd(vm, vm->scratch_pd);
910         if (USES_FULL_48BIT_PPGTT(dev))
911                 gen8_initialize_pdp(vm, vm->scratch_pdp);
912
913         return 0;
914 }
915
916 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
917 {
918         enum vgt_g2v_type msg;
919         struct drm_device *dev = ppgtt->base.dev;
920         struct drm_i915_private *dev_priv = dev->dev_private;
921         unsigned int offset = vgtif_reg(pdp0_lo);
922         int i;
923
924         if (USES_FULL_48BIT_PPGTT(dev)) {
925                 u64 daddr = px_dma(&ppgtt->pml4);
926
927                 I915_WRITE(offset, lower_32_bits(daddr));
928                 I915_WRITE(offset + 4, upper_32_bits(daddr));
929
930                 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
931                                 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
932         } else {
933                 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
934                         u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
935
936                         I915_WRITE(offset, lower_32_bits(daddr));
937                         I915_WRITE(offset + 4, upper_32_bits(daddr));
938
939                         offset += 8;
940                 }
941
942                 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
943                                 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
944         }
945
946         I915_WRITE(vgtif_reg(g2v_notify), msg);
947
948         return 0;
949 }
950
951 static void gen8_free_scratch(struct i915_address_space *vm)
952 {
953         struct drm_device *dev = vm->dev;
954
955         if (USES_FULL_48BIT_PPGTT(dev))
956                 free_pdp(dev, vm->scratch_pdp);
957         free_pd(dev, vm->scratch_pd);
958         free_pt(dev, vm->scratch_pt);
959         free_scratch_page(dev, vm->scratch_page);
960 }
961
962 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
963                                     struct i915_page_directory_pointer *pdp)
964 {
965         int i;
966
967         for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
968                 if (WARN_ON(!pdp->page_directory[i]))
969                         continue;
970
971                 gen8_free_page_tables(dev, pdp->page_directory[i]);
972                 free_pd(dev, pdp->page_directory[i]);
973         }
974
975         free_pdp(dev, pdp);
976 }
977
978 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
979 {
980         int i;
981
982         for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
983                 if (WARN_ON(!ppgtt->pml4.pdps[i]))
984                         continue;
985
986                 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
987         }
988
989         cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
990 }
991
992 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
993 {
994         struct i915_hw_ppgtt *ppgtt =
995                 container_of(vm, struct i915_hw_ppgtt, base);
996
997         if (intel_vgpu_active(vm->dev))
998                 gen8_ppgtt_notify_vgt(ppgtt, false);
999
1000         if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
1001                 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
1002         else
1003                 gen8_ppgtt_cleanup_4lvl(ppgtt);
1004
1005         gen8_free_scratch(vm);
1006 }
1007
1008 /**
1009  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1010  * @vm: Master vm structure.
1011  * @pd: Page directory for this address range.
1012  * @start:      Starting virtual address to begin allocations.
1013  * @length:     Size of the allocations.
1014  * @new_pts:    Bitmap set by function with new allocations. Likely used by the
1015  *              caller to free on error.
1016  *
1017  * Allocate the required number of page tables. Extremely similar to
1018  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1019  * the page directory boundary (instead of the page directory pointer). That
1020  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1021  * possible, and likely that the caller will need to use multiple calls of this
1022  * function to achieve the appropriate allocation.
1023  *
1024  * Return: 0 if success; negative error code otherwise.
1025  */
1026 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1027                                      struct i915_page_directory *pd,
1028                                      uint64_t start,
1029                                      uint64_t length,
1030                                      unsigned long *new_pts)
1031 {
1032         struct drm_device *dev = vm->dev;
1033         struct i915_page_table *pt;
1034         uint64_t temp;
1035         uint32_t pde;
1036
1037         gen8_for_each_pde(pt, pd, start, length, temp, pde) {
1038                 /* Don't reallocate page tables */
1039                 if (test_bit(pde, pd->used_pdes)) {
1040                         /* Scratch is never allocated this way */
1041                         WARN_ON(pt == vm->scratch_pt);
1042                         continue;
1043                 }
1044
1045                 pt = alloc_pt(dev);
1046                 if (IS_ERR(pt))
1047                         goto unwind_out;
1048
1049                 gen8_initialize_pt(vm, pt);
1050                 pd->page_table[pde] = pt;
1051                 __set_bit(pde, new_pts);
1052                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1053         }
1054
1055         return 0;
1056
1057 unwind_out:
1058         for_each_set_bit(pde, new_pts, I915_PDES)
1059                 free_pt(dev, pd->page_table[pde]);
1060
1061         return -ENOMEM;
1062 }
1063
1064 /**
1065  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1066  * @vm: Master vm structure.
1067  * @pdp:        Page directory pointer for this address range.
1068  * @start:      Starting virtual address to begin allocations.
1069  * @length:     Size of the allocations.
1070  * @new_pds:    Bitmap set by function with new allocations. Likely used by the
1071  *              caller to free on error.
1072  *
1073  * Allocate the required number of page directories starting at the pde index of
1074  * @start, and ending at the pde index @start + @length. This function will skip
1075  * over already allocated page directories within the range, and only allocate
1076  * new ones, setting the appropriate pointer within the pdp as well as the
1077  * correct position in the bitmap @new_pds.
1078  *
1079  * The function will only allocate the pages within the range for a give page
1080  * directory pointer. In other words, if @start + @length straddles a virtually
1081  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1082  * required by the caller, This is not currently possible, and the BUG in the
1083  * code will prevent it.
1084  *
1085  * Return: 0 if success; negative error code otherwise.
1086  */
1087 static int
1088 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1089                                   struct i915_page_directory_pointer *pdp,
1090                                   uint64_t start,
1091                                   uint64_t length,
1092                                   unsigned long *new_pds)
1093 {
1094         struct drm_device *dev = vm->dev;
1095         struct i915_page_directory *pd;
1096         uint64_t temp;
1097         uint32_t pdpe;
1098         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1099
1100         WARN_ON(!bitmap_empty(new_pds, pdpes));
1101
1102         gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1103                 if (test_bit(pdpe, pdp->used_pdpes))
1104                         continue;
1105
1106                 pd = alloc_pd(dev);
1107                 if (IS_ERR(pd))
1108                         goto unwind_out;
1109
1110                 gen8_initialize_pd(vm, pd);
1111                 pdp->page_directory[pdpe] = pd;
1112                 __set_bit(pdpe, new_pds);
1113                 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1114         }
1115
1116         return 0;
1117
1118 unwind_out:
1119         for_each_set_bit(pdpe, new_pds, pdpes)
1120                 free_pd(dev, pdp->page_directory[pdpe]);
1121
1122         return -ENOMEM;
1123 }
1124
1125 /**
1126  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1127  * @vm: Master vm structure.
1128  * @pml4:       Page map level 4 for this address range.
1129  * @start:      Starting virtual address to begin allocations.
1130  * @length:     Size of the allocations.
1131  * @new_pdps:   Bitmap set by function with new allocations. Likely used by the
1132  *              caller to free on error.
1133  *
1134  * Allocate the required number of page directory pointers. Extremely similar to
1135  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1136  * The main difference is here we are limited by the pml4 boundary (instead of
1137  * the page directory pointer).
1138  *
1139  * Return: 0 if success; negative error code otherwise.
1140  */
1141 static int
1142 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1143                                   struct i915_pml4 *pml4,
1144                                   uint64_t start,
1145                                   uint64_t length,
1146                                   unsigned long *new_pdps)
1147 {
1148         struct drm_device *dev = vm->dev;
1149         struct i915_page_directory_pointer *pdp;
1150         uint64_t temp;
1151         uint32_t pml4e;
1152
1153         WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1154
1155         gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
1156                 if (!test_bit(pml4e, pml4->used_pml4es)) {
1157                         pdp = alloc_pdp(dev);
1158                         if (IS_ERR(pdp))
1159                                 goto unwind_out;
1160
1161                         gen8_initialize_pdp(vm, pdp);
1162                         pml4->pdps[pml4e] = pdp;
1163                         __set_bit(pml4e, new_pdps);
1164                         trace_i915_page_directory_pointer_entry_alloc(vm,
1165                                                                       pml4e,
1166                                                                       start,
1167                                                                       GEN8_PML4E_SHIFT);
1168                 }
1169         }
1170
1171         return 0;
1172
1173 unwind_out:
1174         for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1175                 free_pdp(dev, pml4->pdps[pml4e]);
1176
1177         return -ENOMEM;
1178 }
1179
1180 static void
1181 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1182 {
1183         kfree(new_pts);
1184         kfree(new_pds);
1185 }
1186
1187 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1188  * of these are based on the number of PDPEs in the system.
1189  */
1190 static
1191 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1192                                          unsigned long **new_pts,
1193                                          uint32_t pdpes)
1194 {
1195         unsigned long *pds;
1196         unsigned long *pts;
1197
1198         pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1199         if (!pds)
1200                 return -ENOMEM;
1201
1202         pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1203                       GFP_TEMPORARY);
1204         if (!pts)
1205                 goto err_out;
1206
1207         *new_pds = pds;
1208         *new_pts = pts;
1209
1210         return 0;
1211
1212 err_out:
1213         free_gen8_temp_bitmaps(pds, pts);
1214         return -ENOMEM;
1215 }
1216
1217 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1218  * the page table structures, we mark them dirty so that
1219  * context switching/execlist queuing code takes extra steps
1220  * to ensure that tlbs are flushed.
1221  */
1222 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1223 {
1224         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1225 }
1226
1227 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1228                                     struct i915_page_directory_pointer *pdp,
1229                                     uint64_t start,
1230                                     uint64_t length)
1231 {
1232         struct i915_hw_ppgtt *ppgtt =
1233                 container_of(vm, struct i915_hw_ppgtt, base);
1234         unsigned long *new_page_dirs, *new_page_tables;
1235         struct drm_device *dev = vm->dev;
1236         struct i915_page_directory *pd;
1237         const uint64_t orig_start = start;
1238         const uint64_t orig_length = length;
1239         uint64_t temp;
1240         uint32_t pdpe;
1241         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1242         int ret;
1243
1244         /* Wrap is never okay since we can only represent 48b, and we don't
1245          * actually use the other side of the canonical address space.
1246          */
1247         if (WARN_ON(start + length < start))
1248                 return -ENODEV;
1249
1250         if (WARN_ON(start + length > vm->total))
1251                 return -ENODEV;
1252
1253         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1254         if (ret)
1255                 return ret;
1256
1257         /* Do the allocations first so we can easily bail out */
1258         ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1259                                                 new_page_dirs);
1260         if (ret) {
1261                 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1262                 return ret;
1263         }
1264
1265         /* For every page directory referenced, allocate page tables */
1266         gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1267                 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1268                                                 new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1269                 if (ret)
1270                         goto err_out;
1271         }
1272
1273         start = orig_start;
1274         length = orig_length;
1275
1276         /* Allocations have completed successfully, so set the bitmaps, and do
1277          * the mappings. */
1278         gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1279                 gen8_pde_t *const page_directory = kmap_px(pd);
1280                 struct i915_page_table *pt;
1281                 uint64_t pd_len = length;
1282                 uint64_t pd_start = start;
1283                 uint32_t pde;
1284
1285                 /* Every pd should be allocated, we just did that above. */
1286                 WARN_ON(!pd);
1287
1288                 gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
1289                         /* Same reasoning as pd */
1290                         WARN_ON(!pt);
1291                         if (pt == NULL)         /* XXX dillon hack */
1292                                 continue;       /* XXX dillon hack */
1293                         WARN_ON(!pd_len);
1294                         WARN_ON(!gen8_pte_count(pd_start, pd_len));
1295
1296                         /* Set our used ptes within the page table */
1297                         bitmap_set(pt->used_ptes,
1298                                    gen8_pte_index(pd_start),
1299                                    gen8_pte_count(pd_start, pd_len));
1300
1301                         /* Our pde is now pointing to the pagetable, pt */
1302                         __set_bit(pde, pd->used_pdes);
1303
1304                         /* Map the PDE to the page table */
1305                         page_directory[pde] = gen8_pde_encode(px_dma(pt),
1306                                                               I915_CACHE_LLC);
1307                         trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1308                                                         gen8_pte_index(start),
1309                                                         gen8_pte_count(start, length),
1310                                                         GEN8_PTES);
1311
1312                         /* NB: We haven't yet mapped ptes to pages. At this
1313                          * point we're still relying on insert_entries() */
1314                 }
1315
1316                 kunmap_px(ppgtt, page_directory);
1317                 __set_bit(pdpe, pdp->used_pdpes);
1318                 gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1319         }
1320
1321         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1322         mark_tlbs_dirty(ppgtt);
1323         return 0;
1324
1325 err_out:
1326         while (pdpe--) {
1327                 for_each_set_bit(temp, new_page_tables + pdpe *
1328                                 BITS_TO_LONGS(I915_PDES), I915_PDES)
1329                         free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1330         }
1331
1332         for_each_set_bit(pdpe, new_page_dirs, pdpes)
1333                 free_pd(dev, pdp->page_directory[pdpe]);
1334
1335         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1336         mark_tlbs_dirty(ppgtt);
1337         return ret;
1338 }
1339
1340 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1341                                     struct i915_pml4 *pml4,
1342                                     uint64_t start,
1343                                     uint64_t length)
1344 {
1345         DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1346         struct i915_hw_ppgtt *ppgtt =
1347                         container_of(vm, struct i915_hw_ppgtt, base);
1348         struct i915_page_directory_pointer *pdp;
1349         uint64_t temp, pml4e;
1350         int ret = 0;
1351
1352         /* Do the pml4 allocations first, so we don't need to track the newly
1353          * allocated tables below the pdp */
1354         bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1355
1356         /* The pagedirectory and pagetable allocations are done in the shared 3
1357          * and 4 level code. Just allocate the pdps.
1358          */
1359         ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1360                                                 new_pdps);
1361         if (ret)
1362                 return ret;
1363
1364         WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1365              "The allocation has spanned more than 512GB. "
1366              "It is highly likely this is incorrect.");
1367
1368         gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
1369                 WARN_ON(!pdp);
1370
1371                 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1372                 if (ret)
1373                         goto err_out;
1374
1375                 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1376         }
1377
1378         bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1379                   GEN8_PML4ES_PER_PML4);
1380
1381         return 0;
1382
1383 err_out:
1384         for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1385                 gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1386
1387         return ret;
1388 }
1389
1390 static int gen8_alloc_va_range(struct i915_address_space *vm,
1391                                uint64_t start, uint64_t length)
1392 {
1393         struct i915_hw_ppgtt *ppgtt =
1394                 container_of(vm, struct i915_hw_ppgtt, base);
1395
1396         if (USES_FULL_48BIT_PPGTT(vm->dev))
1397                 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1398         else
1399                 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1400 }
1401
1402 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1403                           uint64_t start, uint64_t length,
1404                           gen8_pte_t scratch_pte,
1405                           struct seq_file *m)
1406 {
1407         struct i915_page_directory *pd;
1408         uint64_t temp;
1409         uint32_t pdpe;
1410
1411         gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1412                 struct i915_page_table *pt;
1413                 uint64_t pd_len = length;
1414                 uint64_t pd_start = start;
1415                 uint32_t pde;
1416
1417                 if (!test_bit(pdpe, pdp->used_pdpes))
1418                         continue;
1419
1420                 seq_printf(m, "\tPDPE #%d\n", pdpe);
1421                 gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
1422                         uint32_t  pte;
1423                         gen8_pte_t *pt_vaddr;
1424
1425                         if (!test_bit(pde, pd->used_pdes))
1426                                 continue;
1427
1428                         pt_vaddr = kmap_px(pt);
1429                         for (pte = 0; pte < GEN8_PTES; pte += 4) {
1430                                 uint64_t va =
1431                                         (pdpe << GEN8_PDPE_SHIFT) |
1432                                         (pde << GEN8_PDE_SHIFT) |
1433                                         (pte << GEN8_PTE_SHIFT);
1434                                 int i;
1435                                 bool found = false;
1436
1437                                 for (i = 0; i < 4; i++)
1438                                         if (pt_vaddr[pte + i] != scratch_pte)
1439                                                 found = true;
1440                                 if (!found)
1441                                         continue;
1442
1443                                 seq_printf(m, "\t\t0x%lx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1444                                 for (i = 0; i < 4; i++) {
1445                                         if (pt_vaddr[pte + i] != scratch_pte)
1446                                                 seq_printf(m, " %lx", pt_vaddr[pte + i]);
1447                                         else
1448                                                 seq_puts(m, "  SCRATCH ");
1449                                 }
1450                                 seq_puts(m, "\n");
1451                         }
1452                         /* don't use kunmap_px, it could trigger
1453                          * an unnecessary flush.
1454                          */
1455                         kunmap_atomic(pt_vaddr);
1456                 }
1457         }
1458 }
1459
1460 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1461 {
1462         struct i915_address_space *vm = &ppgtt->base;
1463         uint64_t start = ppgtt->base.start;
1464         uint64_t length = ppgtt->base.total;
1465         gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1466                                                  I915_CACHE_LLC, true);
1467
1468         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1469                 gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1470         } else {
1471                 uint64_t templ4, pml4e;
1472                 struct i915_pml4 *pml4 = &ppgtt->pml4;
1473                 struct i915_page_directory_pointer *pdp;
1474
1475                 gen8_for_each_pml4e(pdp, pml4, start, length, templ4, pml4e) {
1476                         if (!test_bit(pml4e, pml4->used_pml4es))
1477                                 continue;
1478
1479                         seq_printf(m, "    PML4E #%lu\n", pml4e);
1480                         gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1481                 }
1482         }
1483 }
1484
1485 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1486 {
1487         unsigned long *new_page_dirs, *new_page_tables;
1488         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1489         int ret;
1490
1491         /* We allocate temp bitmap for page tables for no gain
1492          * but as this is for init only, lets keep the things simple
1493          */
1494         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1495         if (ret)
1496                 return ret;
1497
1498         /* Allocate for all pdps regardless of how the ppgtt
1499          * was defined.
1500          */
1501         ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1502                                                 0, 1ULL << 32,
1503                                                 new_page_dirs);
1504         if (!ret)
1505                 *ppgtt->pdp.used_pdpes = *new_page_dirs;
1506
1507         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1508
1509         return ret;
1510 }
1511
1512 /*
1513  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1514  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1515  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1516  * space.
1517  *
1518  */
1519 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1520 {
1521         int ret;
1522
1523         ret = gen8_init_scratch(&ppgtt->base);
1524         if (ret)
1525                 return ret;
1526
1527         ppgtt->base.start = 0;
1528         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1529         ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1530         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1531         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1532         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1533         ppgtt->base.bind_vma = ppgtt_bind_vma;
1534         ppgtt->debug_dump = gen8_dump_ppgtt;
1535
1536         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1537                 ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1538                 if (ret)
1539                         goto free_scratch;
1540
1541                 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1542
1543                 ppgtt->base.total = 1ULL << 48;
1544                 ppgtt->switch_mm = gen8_48b_mm_switch;
1545         } else {
1546                 ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1547                 if (ret)
1548                         goto free_scratch;
1549
1550                 ppgtt->base.total = 1ULL << 32;
1551                 ppgtt->switch_mm = gen8_legacy_mm_switch;
1552                 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1553                                                               0, 0,
1554                                                               GEN8_PML4E_SHIFT);
1555
1556                 if (intel_vgpu_active(ppgtt->base.dev)) {
1557                         ret = gen8_preallocate_top_level_pdps(ppgtt);
1558                         if (ret)
1559                                 goto free_scratch;
1560                 }
1561         }
1562
1563         if (intel_vgpu_active(ppgtt->base.dev))
1564                 gen8_ppgtt_notify_vgt(ppgtt, true);
1565
1566         return 0;
1567
1568 free_scratch:
1569         gen8_free_scratch(&ppgtt->base);
1570         return ret;
1571 }
1572
1573 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1574 {
1575         struct i915_address_space *vm = &ppgtt->base;
1576         struct i915_page_table *unused;
1577         gen6_pte_t scratch_pte;
1578         uint32_t pd_entry;
1579         uint32_t  pte, pde, temp;
1580         uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1581
1582         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1583                                      I915_CACHE_LLC, true, 0);
1584
1585         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1586                 u32 expected;
1587                 gen6_pte_t *pt_vaddr;
1588                 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1589                 pd_entry = readl(ppgtt->pd_addr + pde);
1590                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1591
1592                 if (pd_entry != expected)
1593                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1594                                    pde,
1595                                    pd_entry,
1596                                    expected);
1597                 seq_printf(m, "\tPDE: %x\n", pd_entry);
1598
1599                 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1600
1601                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1602                         unsigned long va =
1603                                 (pde * PAGE_SIZE * GEN6_PTES) +
1604                                 (pte * PAGE_SIZE);
1605                         int i;
1606                         bool found = false;
1607                         for (i = 0; i < 4; i++)
1608                                 if (pt_vaddr[pte + i] != scratch_pte)
1609                                         found = true;
1610                         if (!found)
1611                                 continue;
1612
1613                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1614                         for (i = 0; i < 4; i++) {
1615                                 if (pt_vaddr[pte + i] != scratch_pte)
1616                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
1617                                 else
1618                                         seq_puts(m, "  SCRATCH ");
1619                         }
1620                         seq_puts(m, "\n");
1621                 }
1622                 kunmap_px(ppgtt, pt_vaddr);
1623         }
1624 }
1625
1626 /* Write pde (index) from the page directory @pd to the page table @pt */
1627 static void gen6_write_pde(struct i915_page_directory *pd,
1628                             const int pde, struct i915_page_table *pt)
1629 {
1630         /* Caller needs to make sure the write completes if necessary */
1631         struct i915_hw_ppgtt *ppgtt =
1632                 container_of(pd, struct i915_hw_ppgtt, pd);
1633         u32 pd_entry;
1634
1635         pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1636         pd_entry |= GEN6_PDE_VALID;
1637
1638         writel(pd_entry, ppgtt->pd_addr + pde);
1639 }
1640
1641 /* Write all the page tables found in the ppgtt structure to incrementing page
1642  * directories. */
1643 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1644                                   struct i915_page_directory *pd,
1645                                   uint32_t start, uint32_t length)
1646 {
1647         struct i915_page_table *pt;
1648         uint32_t pde, temp;
1649
1650         gen6_for_each_pde(pt, pd, start, length, temp, pde)
1651                 gen6_write_pde(pd, pde, pt);
1652
1653         /* Make sure write is complete before other code can use this page
1654          * table. Also require for WC mapped PTEs */
1655         readl(dev_priv->gtt.gsm);
1656 }
1657
1658 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1659 {
1660         BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1661
1662         return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1663 }
1664
1665 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1666                          struct drm_i915_gem_request *req)
1667 {
1668         struct intel_engine_cs *ring = req->ring;
1669         int ret;
1670
1671         /* NB: TLBs must be flushed and invalidated before a switch */
1672         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1673         if (ret)
1674                 return ret;
1675
1676         ret = intel_ring_begin(req, 6);
1677         if (ret)
1678                 return ret;
1679
1680         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1681         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1682         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1683         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1684         intel_ring_emit(ring, get_pd_offset(ppgtt));
1685         intel_ring_emit(ring, MI_NOOP);
1686         intel_ring_advance(ring);
1687
1688         return 0;
1689 }
1690
1691 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1692                           struct drm_i915_gem_request *req)
1693 {
1694         struct intel_engine_cs *ring = req->ring;
1695         struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1696
1697         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1698         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1699         return 0;
1700 }
1701
1702 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1703                           struct drm_i915_gem_request *req)
1704 {
1705         struct intel_engine_cs *ring = req->ring;
1706         int ret;
1707
1708         /* NB: TLBs must be flushed and invalidated before a switch */
1709         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1710         if (ret)
1711                 return ret;
1712
1713         ret = intel_ring_begin(req, 6);
1714         if (ret)
1715                 return ret;
1716
1717         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1718         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1719         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1720         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1721         intel_ring_emit(ring, get_pd_offset(ppgtt));
1722         intel_ring_emit(ring, MI_NOOP);
1723         intel_ring_advance(ring);
1724
1725         /* XXX: RCS is the only one to auto invalidate the TLBs? */
1726         if (ring->id != RCS) {
1727                 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1728                 if (ret)
1729                         return ret;
1730         }
1731
1732         return 0;
1733 }
1734
1735 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1736                           struct drm_i915_gem_request *req)
1737 {
1738         struct intel_engine_cs *ring = req->ring;
1739         struct drm_device *dev = ppgtt->base.dev;
1740         struct drm_i915_private *dev_priv = dev->dev_private;
1741
1742
1743         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1744         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1745
1746         POSTING_READ(RING_PP_DIR_DCLV(ring));
1747
1748         return 0;
1749 }
1750
1751 static void gen8_ppgtt_enable(struct drm_device *dev)
1752 {
1753         struct drm_i915_private *dev_priv = dev->dev_private;
1754         struct intel_engine_cs *ring;
1755         int j;
1756
1757         for_each_ring(ring, dev_priv, j) {
1758                 u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1759                 I915_WRITE(RING_MODE_GEN7(ring),
1760                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1761         }
1762 }
1763
1764 static void gen7_ppgtt_enable(struct drm_device *dev)
1765 {
1766         struct drm_i915_private *dev_priv = dev->dev_private;
1767         struct intel_engine_cs *ring;
1768         uint32_t ecochk, ecobits;
1769         int i;
1770
1771         ecobits = I915_READ(GAC_ECO_BITS);
1772         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1773
1774         ecochk = I915_READ(GAM_ECOCHK);
1775         if (IS_HASWELL(dev)) {
1776                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1777         } else {
1778                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1779                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1780         }
1781         I915_WRITE(GAM_ECOCHK, ecochk);
1782
1783         for_each_ring(ring, dev_priv, i) {
1784                 /* GFX_MODE is per-ring on gen7+ */
1785                 I915_WRITE(RING_MODE_GEN7(ring),
1786                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1787         }
1788 }
1789
1790 static void gen6_ppgtt_enable(struct drm_device *dev)
1791 {
1792         struct drm_i915_private *dev_priv = dev->dev_private;
1793         uint32_t ecochk, gab_ctl, ecobits;
1794
1795         ecobits = I915_READ(GAC_ECO_BITS);
1796         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1797                    ECOBITS_PPGTT_CACHE64B);
1798
1799         gab_ctl = I915_READ(GAB_CTL);
1800         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1801
1802         ecochk = I915_READ(GAM_ECOCHK);
1803         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1804
1805         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1806 }
1807
1808 /* PPGTT support for Sandybdrige/Gen6 and later */
1809 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1810                                    uint64_t start,
1811                                    uint64_t length,
1812                                    bool use_scratch)
1813 {
1814         struct i915_hw_ppgtt *ppgtt =
1815                 container_of(vm, struct i915_hw_ppgtt, base);
1816         gen6_pte_t *pt_vaddr, scratch_pte;
1817         unsigned first_entry = start >> PAGE_SHIFT;
1818         unsigned num_entries = length >> PAGE_SHIFT;
1819         unsigned act_pt = first_entry / GEN6_PTES;
1820         unsigned first_pte = first_entry % GEN6_PTES;
1821         unsigned last_pte, i;
1822
1823         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1824                                      I915_CACHE_LLC, true, 0);
1825
1826         while (num_entries) {
1827                 last_pte = first_pte + num_entries;
1828                 if (last_pte > GEN6_PTES)
1829                         last_pte = GEN6_PTES;
1830
1831                 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1832
1833                 for (i = first_pte; i < last_pte; i++)
1834                         pt_vaddr[i] = scratch_pte;
1835
1836                 kunmap_px(ppgtt, pt_vaddr);
1837
1838                 num_entries -= last_pte - first_pte;
1839                 first_pte = 0;
1840                 act_pt++;
1841         }
1842 }
1843
1844 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1845                                       struct sg_table *pages,
1846                                       uint64_t start,
1847                                       enum i915_cache_level cache_level, u32 flags)
1848 {
1849         struct i915_hw_ppgtt *ppgtt =
1850                 container_of(vm, struct i915_hw_ppgtt, base);
1851         gen6_pte_t *pt_vaddr;
1852         unsigned first_entry = start >> PAGE_SHIFT;
1853         unsigned act_pt = first_entry / GEN6_PTES;
1854         unsigned act_pte = first_entry % GEN6_PTES;
1855         struct sg_page_iter sg_iter;
1856
1857         pt_vaddr = NULL;
1858         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1859                 if (pt_vaddr == NULL)
1860                         pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1861
1862                 pt_vaddr[act_pte] =
1863                         vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1864                                        cache_level, true, flags);
1865
1866                 if (++act_pte == GEN6_PTES) {
1867                         kunmap_px(ppgtt, pt_vaddr);
1868                         pt_vaddr = NULL;
1869                         act_pt++;
1870                         act_pte = 0;
1871                 }
1872         }
1873         if (pt_vaddr)
1874                 kunmap_px(ppgtt, pt_vaddr);
1875 }
1876
1877 static int gen6_alloc_va_range(struct i915_address_space *vm,
1878                                uint64_t start_in, uint64_t length_in)
1879 {
1880         DECLARE_BITMAP(new_page_tables, I915_PDES);
1881         struct drm_device *dev = vm->dev;
1882         struct drm_i915_private *dev_priv = dev->dev_private;
1883         struct i915_hw_ppgtt *ppgtt =
1884                                 container_of(vm, struct i915_hw_ppgtt, base);
1885         struct i915_page_table *pt;
1886         uint32_t start, length, start_save, length_save;
1887         uint32_t pde, temp;
1888         int ret;
1889
1890         if (WARN_ON(start_in + length_in > ppgtt->base.total))
1891                 return -ENODEV;
1892
1893         start = start_save = start_in;
1894         length = length_save = length_in;
1895
1896         bitmap_zero(new_page_tables, I915_PDES);
1897
1898         /* The allocation is done in two stages so that we can bail out with
1899          * minimal amount of pain. The first stage finds new page tables that
1900          * need allocation. The second stage marks use ptes within the page
1901          * tables.
1902          */
1903         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1904                 if (pt != vm->scratch_pt) {
1905                         WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1906                         continue;
1907                 }
1908
1909                 /* We've already allocated a page table */
1910                 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1911
1912                 pt = alloc_pt(dev);
1913                 if (IS_ERR(pt)) {
1914                         ret = PTR_ERR(pt);
1915                         goto unwind_out;
1916                 }
1917
1918                 gen6_initialize_pt(vm, pt);
1919
1920                 ppgtt->pd.page_table[pde] = pt;
1921                 __set_bit(pde, new_page_tables);
1922                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1923         }
1924
1925         start = start_save;
1926         length = length_save;
1927
1928         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1929                 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1930
1931                 bitmap_zero(tmp_bitmap, GEN6_PTES);
1932                 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1933                            gen6_pte_count(start, length));
1934
1935                 if (__test_and_clear_bit(pde, new_page_tables))
1936                         gen6_write_pde(&ppgtt->pd, pde, pt);
1937
1938                 trace_i915_page_table_entry_map(vm, pde, pt,
1939                                          gen6_pte_index(start),
1940                                          gen6_pte_count(start, length),
1941                                          GEN6_PTES);
1942                 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1943                                 GEN6_PTES);
1944         }
1945
1946         WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1947
1948         /* Make sure write is complete before other code can use this page
1949          * table. Also require for WC mapped PTEs */
1950         readl(dev_priv->gtt.gsm);
1951
1952         mark_tlbs_dirty(ppgtt);
1953         return 0;
1954
1955 unwind_out:
1956         for_each_set_bit(pde, new_page_tables, I915_PDES) {
1957                 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1958
1959                 ppgtt->pd.page_table[pde] = vm->scratch_pt;
1960                 free_pt(vm->dev, pt);
1961         }
1962
1963         mark_tlbs_dirty(ppgtt);
1964         return ret;
1965 }
1966
1967 static int gen6_init_scratch(struct i915_address_space *vm)
1968 {
1969         struct drm_device *dev = vm->dev;
1970
1971         vm->scratch_page = alloc_scratch_page(dev);
1972         if (IS_ERR(vm->scratch_page))
1973                 return PTR_ERR(vm->scratch_page);
1974
1975         vm->scratch_pt = alloc_pt(dev);
1976         if (IS_ERR(vm->scratch_pt)) {
1977                 free_scratch_page(dev, vm->scratch_page);
1978                 return PTR_ERR(vm->scratch_pt);
1979         }
1980
1981         gen6_initialize_pt(vm, vm->scratch_pt);
1982
1983         return 0;
1984 }
1985
1986 static void gen6_free_scratch(struct i915_address_space *vm)
1987 {
1988         struct drm_device *dev = vm->dev;
1989
1990         free_pt(dev, vm->scratch_pt);
1991         free_scratch_page(dev, vm->scratch_page);
1992 }
1993
1994 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1995 {
1996         struct i915_hw_ppgtt *ppgtt =
1997                 container_of(vm, struct i915_hw_ppgtt, base);
1998         struct i915_page_table *pt;
1999         uint32_t pde;
2000
2001         drm_mm_remove_node(&ppgtt->node);
2002
2003         gen6_for_all_pdes(pt, ppgtt, pde) {
2004                 if (pt != vm->scratch_pt)
2005                         free_pt(ppgtt->base.dev, pt);
2006         }
2007
2008         gen6_free_scratch(vm);
2009 }
2010
2011 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
2012 {
2013         struct i915_address_space *vm = &ppgtt->base;
2014         struct drm_device *dev = ppgtt->base.dev;
2015         struct drm_i915_private *dev_priv = dev->dev_private;
2016         bool retried = false;
2017         int ret;
2018
2019         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2020          * allocator works in address space sizes, so it's multiplied by page
2021          * size. We allocate at the top of the GTT to avoid fragmentation.
2022          */
2023         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
2024
2025         ret = gen6_init_scratch(vm);
2026         if (ret)
2027                 return ret;
2028
2029 alloc:
2030         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
2031                                                   &ppgtt->node, GEN6_PD_SIZE,
2032                                                   GEN6_PD_ALIGN, 0,
2033                                                   0, dev_priv->gtt.base.total,
2034                                                   DRM_MM_TOPDOWN);
2035         if (ret == -ENOSPC && !retried) {
2036                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
2037                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
2038                                                I915_CACHE_NONE,
2039                                                0, dev_priv->gtt.base.total,
2040                                                0);
2041                 if (ret)
2042                         goto err_out;
2043
2044                 retried = true;
2045                 goto alloc;
2046         }
2047
2048         if (ret)
2049                 goto err_out;
2050
2051
2052         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
2053                 DRM_DEBUG("Forced to use aperture for PDEs\n");
2054
2055         return 0;
2056
2057 err_out:
2058         gen6_free_scratch(vm);
2059         return ret;
2060 }
2061
2062 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2063 {
2064         return gen6_ppgtt_allocate_page_directories(ppgtt);
2065 }
2066
2067 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2068                                   uint64_t start, uint64_t length)
2069 {
2070         struct i915_page_table *unused;
2071         uint32_t pde, temp;
2072
2073         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
2074                 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2075 }
2076
2077 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2078 {
2079         struct drm_device *dev = ppgtt->base.dev;
2080         struct drm_i915_private *dev_priv = dev->dev_private;
2081         int ret;
2082
2083         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
2084         if (IS_GEN6(dev)) {
2085                 ppgtt->switch_mm = gen6_mm_switch;
2086         } else if (IS_HASWELL(dev)) {
2087                 ppgtt->switch_mm = hsw_mm_switch;
2088         } else if (IS_GEN7(dev)) {
2089                 ppgtt->switch_mm = gen7_mm_switch;
2090         } else
2091                 BUG();
2092
2093         if (intel_vgpu_active(dev))
2094                 ppgtt->switch_mm = vgpu_mm_switch;
2095
2096         ret = gen6_ppgtt_alloc(ppgtt);
2097         if (ret)
2098                 return ret;
2099
2100         ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2101         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2102         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2103         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2104         ppgtt->base.bind_vma = ppgtt_bind_vma;
2105         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2106         ppgtt->base.start = 0;
2107         ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2108         ppgtt->debug_dump = gen6_dump_ppgtt;
2109
2110         ppgtt->pd.base.ggtt_offset =
2111                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2112
2113         ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
2114                 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2115
2116         gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2117
2118         gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2119
2120         DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
2121                          ppgtt->node.size >> 20,
2122                          ppgtt->node.start / PAGE_SIZE);
2123
2124         DRM_DEBUG("Adding PPGTT at offset %x\n",
2125                   ppgtt->pd.base.ggtt_offset << 10);
2126
2127         return 0;
2128 }
2129
2130 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2131 {
2132         ppgtt->base.dev = dev;
2133
2134         if (INTEL_INFO(dev)->gen < 8)
2135                 return gen6_ppgtt_init(ppgtt);
2136         else
2137                 return gen8_ppgtt_init(ppgtt);
2138 }
2139
2140 static void i915_address_space_init(struct i915_address_space *vm,
2141                                     struct drm_i915_private *dev_priv)
2142 {
2143         drm_mm_init(&vm->mm, vm->start, vm->total);
2144         vm->dev = dev_priv->dev;
2145         INIT_LIST_HEAD(&vm->active_list);
2146         INIT_LIST_HEAD(&vm->inactive_list);
2147         list_add_tail(&vm->global_link, &dev_priv->vm_list);
2148 }
2149
2150 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2151 {
2152         struct drm_i915_private *dev_priv = dev->dev_private;
2153         int ret = 0;
2154
2155         ret = __hw_ppgtt_init(dev, ppgtt);
2156         if (ret == 0) {
2157                 kref_init(&ppgtt->ref);
2158                 i915_address_space_init(&ppgtt->base, dev_priv);
2159         }
2160
2161         return ret;
2162 }
2163
2164 int i915_ppgtt_init_hw(struct drm_device *dev)
2165 {
2166         /* In the case of execlists, PPGTT is enabled by the context descriptor
2167          * and the PDPs are contained within the context itself.  We don't
2168          * need to do anything here. */
2169         if (i915.enable_execlists)
2170                 return 0;
2171
2172         if (!USES_PPGTT(dev))
2173                 return 0;
2174
2175         if (IS_GEN6(dev))
2176                 gen6_ppgtt_enable(dev);
2177         else if (IS_GEN7(dev))
2178                 gen7_ppgtt_enable(dev);
2179         else if (INTEL_INFO(dev)->gen >= 8)
2180                 gen8_ppgtt_enable(dev);
2181         else
2182                 MISSING_CASE(INTEL_INFO(dev)->gen);
2183
2184         return 0;
2185 }
2186
2187 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
2188 {
2189         struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
2190         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2191
2192         if (i915.enable_execlists)
2193                 return 0;
2194
2195         if (!ppgtt)
2196                 return 0;
2197
2198         return ppgtt->switch_mm(ppgtt, req);
2199 }
2200
2201 struct i915_hw_ppgtt *
2202 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2203 {
2204         struct i915_hw_ppgtt *ppgtt;
2205         int ret;
2206
2207         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2208         if (!ppgtt)
2209                 return ERR_PTR(-ENOMEM);
2210
2211         ret = i915_ppgtt_init(dev, ppgtt);
2212         if (ret) {
2213                 kfree(ppgtt);
2214                 return ERR_PTR(ret);
2215         }
2216
2217         ppgtt->file_priv = fpriv;
2218
2219         trace_i915_ppgtt_create(&ppgtt->base);
2220
2221         return ppgtt;
2222 }
2223
2224 void  i915_ppgtt_release(struct kref *kref)
2225 {
2226         struct i915_hw_ppgtt *ppgtt =
2227                 container_of(kref, struct i915_hw_ppgtt, ref);
2228
2229         trace_i915_ppgtt_release(&ppgtt->base);
2230
2231         /* vmas should already be unbound */
2232         WARN_ON(!list_empty(&ppgtt->base.active_list));
2233         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2234
2235         list_del(&ppgtt->base.global_link);
2236         drm_mm_takedown(&ppgtt->base.mm);
2237
2238         ppgtt->base.cleanup(&ppgtt->base);
2239         kfree(ppgtt);
2240 }
2241
2242 extern int intel_iommu_gfx_mapped;
2243 /* Certain Gen5 chipsets require require idling the GPU before
2244  * unmapping anything from the GTT when VT-d is enabled.
2245  */
2246 static bool needs_idle_maps(struct drm_device *dev)
2247 {
2248 #ifdef CONFIG_INTEL_IOMMU
2249         /* Query intel_iommu to see if we need the workaround. Presumably that
2250          * was loaded first.
2251          */
2252         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2253                 return true;
2254 #endif
2255         return false;
2256 }
2257
2258 static bool do_idling(struct drm_i915_private *dev_priv)
2259 {
2260         bool ret = dev_priv->mm.interruptible;
2261
2262         if (unlikely(dev_priv->gtt.do_idle_maps)) {
2263                 dev_priv->mm.interruptible = false;
2264                 if (i915_gpu_idle(dev_priv->dev)) {
2265                         DRM_ERROR("Couldn't idle GPU\n");
2266                         /* Wait a bit, in hopes it avoids the hang */
2267                         udelay(10);
2268                 }
2269         }
2270
2271         return ret;
2272 }
2273
2274 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2275 {
2276         if (unlikely(dev_priv->gtt.do_idle_maps))
2277                 dev_priv->mm.interruptible = interruptible;
2278 }
2279
2280 void i915_check_and_clear_faults(struct drm_device *dev)
2281 {
2282         struct drm_i915_private *dev_priv = dev->dev_private;
2283         struct intel_engine_cs *ring;
2284         int i;
2285
2286         if (INTEL_INFO(dev)->gen < 6)
2287                 return;
2288
2289         for_each_ring(ring, dev_priv, i) {
2290                 u32 fault_reg;
2291                 fault_reg = I915_READ(RING_FAULT_REG(ring));
2292                 if (fault_reg & RING_FAULT_VALID) {
2293 #if 0
2294                         DRM_DEBUG_DRIVER("Unexpected fault\n"
2295                                          "\tAddr: 0x%08lx\n"
2296                                          "\tAddress space: %s\n"
2297                                          "\tSource ID: %d\n"
2298                                          "\tType: %d\n",
2299                                          fault_reg & PAGE_MASK,
2300                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2301                                          RING_FAULT_SRCID(fault_reg),
2302                                          RING_FAULT_FAULT_TYPE(fault_reg));
2303 #endif
2304                         I915_WRITE(RING_FAULT_REG(ring),
2305                                    fault_reg & ~RING_FAULT_VALID);
2306                 }
2307         }
2308         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
2309 }
2310
2311 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2312 {
2313         if (INTEL_INFO(dev_priv->dev)->gen < 6) {
2314                 intel_gtt_chipset_flush();
2315         } else {
2316                 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2317                 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2318         }
2319 }
2320
2321 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2322 {
2323         struct drm_i915_private *dev_priv = dev->dev_private;
2324
2325         /* Don't bother messing with faults pre GEN6 as we have little
2326          * documentation supporting that it's a good idea.
2327          */
2328         if (INTEL_INFO(dev)->gen < 6)
2329                 return;
2330
2331         i915_check_and_clear_faults(dev);
2332
2333         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2334                                        dev_priv->gtt.base.start,
2335                                        dev_priv->gtt.base.total,
2336                                        true);
2337
2338         i915_ggtt_flush(dev_priv);
2339 }
2340
2341 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2342 {
2343         if (!dma_map_sg(obj->base.dev->pdev->dev,
2344                         obj->pages->sgl, obj->pages->nents,
2345                         PCI_DMA_BIDIRECTIONAL))
2346                 return -ENOSPC;
2347
2348         return 0;
2349 }
2350
2351 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2352 {
2353 #ifdef writeq
2354         writeq(pte, addr);
2355 #else
2356         iowrite32((u32)pte, addr);
2357         iowrite32(pte >> 32, addr + 4);
2358 #endif
2359 }
2360
2361 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2362                                      struct sg_table *st,
2363                                      uint64_t start,
2364                                      enum i915_cache_level level, u32 unused)
2365 {
2366         struct drm_i915_private *dev_priv = vm->dev->dev_private;
2367         unsigned first_entry = start >> PAGE_SHIFT;
2368         gen8_pte_t __iomem *gtt_entries =
2369                 (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2370         int i = 0;
2371         struct sg_page_iter sg_iter;
2372         dma_addr_t addr = 0; /* shut up gcc */
2373
2374         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2375                 addr = sg_dma_address(sg_iter.sg) +
2376                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
2377                 gen8_set_pte(&gtt_entries[i],
2378                              gen8_pte_encode(addr, level, true));
2379                 i++;
2380         }
2381
2382         /*
2383          * XXX: This serves as a posting read to make sure that the PTE has
2384          * actually been updated. There is some concern that even though
2385          * registers and PTEs are within the same BAR that they are potentially
2386          * of NUMA access patterns. Therefore, even with the way we assume
2387          * hardware should work, we must keep this posting read for paranoia.
2388          */
2389         if (i != 0)
2390                 WARN_ON(readq(&gtt_entries[i-1])
2391                         != gen8_pte_encode(addr, level, true));
2392
2393         /* This next bit makes the above posting read even more important. We
2394          * want to flush the TLBs only after we're certain all the PTE updates
2395          * have finished.
2396          */
2397         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2398         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2399 }
2400
2401 /*
2402  * Binds an object into the global gtt with the specified cache level. The object
2403  * will be accessible to the GPU via commands whose operands reference offsets
2404  * within the global GTT as well as accessible by the GPU through the GMADR
2405  * mapped BAR (dev_priv->mm.gtt->gtt).
2406  */
2407 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2408                                      struct sg_table *st,
2409                                      uint64_t start,
2410                                      enum i915_cache_level level, u32 flags)
2411 {
2412         struct drm_i915_private *dev_priv = vm->dev->dev_private;
2413         unsigned first_entry = start >> PAGE_SHIFT;
2414         gen6_pte_t __iomem *gtt_entries =
2415                 (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2416         int i = 0;
2417         struct sg_page_iter sg_iter;
2418         dma_addr_t addr = 0;
2419
2420         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2421                 addr = sg_page_iter_dma_address(&sg_iter);
2422                 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
2423                 i++;
2424         }
2425
2426         /* XXX: This serves as a posting read to make sure that the PTE has
2427          * actually been updated. There is some concern that even though
2428          * registers and PTEs are within the same BAR that they are potentially
2429          * of NUMA access patterns. Therefore, even with the way we assume
2430          * hardware should work, we must keep this posting read for paranoia.
2431          */
2432         if (i != 0) {
2433                 unsigned long gtt = readl(&gtt_entries[i-1]);
2434                 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
2435         }
2436
2437         /* This next bit makes the above posting read even more important. We
2438          * want to flush the TLBs only after we're certain all the PTE updates
2439          * have finished.
2440          */
2441         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2442         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2443 }
2444
2445 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2446                                   uint64_t start,
2447                                   uint64_t length,
2448                                   bool use_scratch)
2449 {
2450         struct drm_i915_private *dev_priv = vm->dev->dev_private;
2451         unsigned first_entry = start >> PAGE_SHIFT;
2452         unsigned num_entries = length >> PAGE_SHIFT;
2453         gen8_pte_t scratch_pte, __iomem *gtt_base =
2454                 (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2455         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2456         int i;
2457
2458         if (WARN(num_entries > max_entries,
2459                  "First entry = %d; Num entries = %d (max=%d)\n",
2460                  first_entry, num_entries, max_entries))
2461                 num_entries = max_entries;
2462
2463         scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2464                                       I915_CACHE_LLC,
2465                                       use_scratch);
2466         for (i = 0; i < num_entries; i++)
2467                 gen8_set_pte(&gtt_base[i], scratch_pte);
2468         readl(gtt_base);
2469 }
2470
2471 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2472                                   uint64_t start,
2473                                   uint64_t length,
2474                                   bool use_scratch)
2475 {
2476         struct drm_i915_private *dev_priv = vm->dev->dev_private;
2477         unsigned first_entry = start >> PAGE_SHIFT;
2478         unsigned num_entries = length >> PAGE_SHIFT;
2479         gen6_pte_t scratch_pte, __iomem *gtt_base =
2480                 (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2481         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2482         int i;
2483
2484         if (WARN(num_entries > max_entries,
2485                  "First entry = %d; Num entries = %d (max=%d)\n",
2486                  first_entry, num_entries, max_entries))
2487                 num_entries = max_entries;
2488
2489         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2490                                      I915_CACHE_LLC, use_scratch, 0);
2491
2492         for (i = 0; i < num_entries; i++)
2493                 iowrite32(scratch_pte, &gtt_base[i]);
2494         readl(gtt_base);
2495 }
2496
2497 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2498                                      struct sg_table *pages,
2499                                      uint64_t start,
2500                                      enum i915_cache_level cache_level, u32 unused)
2501 {
2502         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2503                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2504
2505         intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2506
2507 }
2508
2509 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2510                                   uint64_t start,
2511                                   uint64_t length,
2512                                   bool unused)
2513 {
2514         unsigned first_entry = start >> PAGE_SHIFT;
2515         unsigned num_entries = length >> PAGE_SHIFT;
2516         intel_gtt_clear_range(first_entry, num_entries);
2517 }
2518
2519 static int ggtt_bind_vma(struct i915_vma *vma,
2520                          enum i915_cache_level cache_level,
2521                          u32 flags)
2522 {
2523         struct drm_i915_gem_object *obj = vma->obj;
2524         u32 pte_flags = 0;
2525         int ret;
2526
2527         ret = i915_get_ggtt_vma_pages(vma);
2528         if (ret)
2529                 return ret;
2530
2531         /* Currently applicable only to VLV */
2532         if (obj->gt_ro)
2533                 pte_flags |= PTE_READ_ONLY;
2534
2535         vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2536                                 vma->node.start,
2537                                 cache_level, pte_flags);
2538
2539         /*
2540          * Without aliasing PPGTT there's no difference between
2541          * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2542          * upgrade to both bound if we bind either to avoid double-binding.
2543          */
2544         vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2545
2546         return 0;
2547 }
2548
2549 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2550                                  enum i915_cache_level cache_level,
2551                                  u32 flags)
2552 {
2553         struct drm_device *dev = vma->vm->dev;
2554         struct drm_i915_private *dev_priv = dev->dev_private;
2555         struct drm_i915_gem_object *obj = vma->obj;
2556         struct sg_table *pages = obj->pages;
2557         u32 pte_flags = 0;
2558         int ret;
2559
2560         ret = i915_get_ggtt_vma_pages(vma);
2561         if (ret)
2562                 return ret;
2563         pages = vma->ggtt_view.pages;
2564
2565         /* Currently applicable only to VLV */
2566         if (obj->gt_ro)
2567                 pte_flags |= PTE_READ_ONLY;
2568
2569
2570         if (flags & GLOBAL_BIND) {
2571                 vma->vm->insert_entries(vma->vm, pages,
2572                                         vma->node.start,
2573                                         cache_level, pte_flags);
2574         }
2575
2576         if (flags & LOCAL_BIND) {
2577                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2578                 appgtt->base.insert_entries(&appgtt->base, pages,
2579                                             vma->node.start,
2580                                             cache_level, pte_flags);
2581         }
2582
2583         return 0;
2584 }
2585
2586 static void ggtt_unbind_vma(struct i915_vma *vma)
2587 {
2588         struct drm_device *dev = vma->vm->dev;
2589         struct drm_i915_private *dev_priv = dev->dev_private;
2590         struct drm_i915_gem_object *obj = vma->obj;
2591         const uint64_t size = min_t(uint64_t,
2592                                     obj->base.size,
2593                                     vma->node.size);
2594
2595         if (vma->bound & GLOBAL_BIND) {
2596                 vma->vm->clear_range(vma->vm,
2597                                      vma->node.start,
2598                                      size,
2599                                      true);
2600         }
2601
2602         if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2603                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2604
2605                 appgtt->base.clear_range(&appgtt->base,
2606                                          vma->node.start,
2607                                          size,
2608                                          true);
2609         }
2610 }
2611
2612 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2613 {
2614         struct drm_device *dev = obj->base.dev;
2615         struct drm_i915_private *dev_priv = dev->dev_private;
2616         bool interruptible;
2617
2618         interruptible = do_idling(dev_priv);
2619
2620         dma_unmap_sg(dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2621                      PCI_DMA_BIDIRECTIONAL);
2622
2623         undo_idling(dev_priv, interruptible);
2624 }
2625
2626 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2627                                   unsigned long color,
2628                                   u64 *start,
2629                                   u64 *end)
2630 {
2631         if (node->color != color)
2632                 *start += 4096;
2633
2634         if (!list_empty(&node->node_list)) {
2635                 node = list_entry(node->node_list.next,
2636                                   struct drm_mm_node,
2637                                   node_list);
2638                 if (node->allocated && node->color != color)
2639                         *end -= 4096;
2640         }
2641 }
2642
2643 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2644                                      u64 start,
2645                                      u64 mappable_end,
2646                                      u64 end)
2647 {
2648         /* Let GEM Manage all of the aperture.
2649          *
2650          * However, leave one page at the end still bound to the scratch page.
2651          * There are a number of places where the hardware apparently prefetches
2652          * past the end of the object, and we've seen multiple hangs with the
2653          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2654          * aperture.  One page should be enough to keep any prefetching inside
2655          * of the aperture.
2656          */
2657         struct drm_i915_private *dev_priv = dev->dev_private;
2658         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2659         unsigned long mappable;
2660         int error;
2661         struct drm_mm_node *entry;
2662         struct drm_i915_gem_object *obj;
2663         unsigned long hole_start, hole_end;
2664         int ret;
2665
2666         mappable = min(end, mappable_end) - start;
2667         BUG_ON(mappable_end > end);
2668
2669         ggtt_vm->start = start;
2670
2671         /* Subtract the guard page before address space initialization to
2672          * shrink the range used by drm_mm */
2673         ggtt_vm->total = end - start - PAGE_SIZE;
2674         i915_address_space_init(ggtt_vm, dev_priv);
2675         ggtt_vm->total += PAGE_SIZE;
2676
2677         if (intel_vgpu_active(dev)) {
2678                 ret = intel_vgt_balloon(dev);
2679                 if (ret)
2680                         return ret;
2681         }
2682
2683         if (!HAS_LLC(dev))
2684                 ggtt_vm->mm.color_adjust = i915_gtt_color_adjust;
2685
2686         /* Mark any preallocated objects as occupied */
2687         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2688                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2689
2690                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
2691                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
2692
2693                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2694                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2695                 if (ret) {
2696                         DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2697                         return ret;
2698                 }
2699                 vma->bound |= GLOBAL_BIND;
2700                 __i915_vma_set_map_and_fenceable(vma);
2701                 list_add_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2702         }
2703
2704         /* Clear any non-preallocated blocks */
2705         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2706                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2707                               hole_start, hole_end);
2708                 ggtt_vm->clear_range(ggtt_vm, hole_start,
2709                                      hole_end - hole_start, true);
2710         }
2711
2712 #ifdef __DragonFly__
2713         device_printf(dev->dev,
2714             "taking over the fictitious range 0x%lx-0x%lx\n",
2715             dev_priv->gtt.mappable_base + start, dev_priv->gtt.mappable_base + start + mappable);
2716         error = -vm_phys_fictitious_reg_range(dev_priv->gtt.mappable_base + start,
2717             dev_priv->gtt.mappable_base + start + mappable, VM_MEMATTR_WRITE_COMBINING);
2718 #endif
2719
2720         /* And finally clear the reserved guard page */
2721         ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2722
2723         if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2724                 struct i915_hw_ppgtt *ppgtt;
2725
2726                 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2727                 if (!ppgtt)
2728                         return -ENOMEM;
2729
2730                 ret = __hw_ppgtt_init(dev, ppgtt);
2731                 if (ret) {
2732                         ppgtt->base.cleanup(&ppgtt->base);
2733                         kfree(ppgtt);
2734                         return ret;
2735                 }
2736
2737                 if (ppgtt->base.allocate_va_range)
2738                         ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2739                                                             ppgtt->base.total);
2740                 if (ret) {
2741                         ppgtt->base.cleanup(&ppgtt->base);
2742                         kfree(ppgtt);
2743                         return ret;
2744                 }
2745
2746                 ppgtt->base.clear_range(&ppgtt->base,
2747                                         ppgtt->base.start,
2748                                         ppgtt->base.total,
2749                                         true);
2750
2751                 dev_priv->mm.aliasing_ppgtt = ppgtt;
2752                 WARN_ON(dev_priv->gtt.base.bind_vma != ggtt_bind_vma);
2753                 dev_priv->gtt.base.bind_vma = aliasing_gtt_bind_vma;
2754         }
2755
2756         return 0;
2757 }
2758
2759 void i915_gem_init_global_gtt(struct drm_device *dev)
2760 {
2761         struct drm_i915_private *dev_priv = dev->dev_private;
2762         u64 gtt_size, mappable_size;
2763
2764         gtt_size = dev_priv->gtt.base.total;
2765         mappable_size = dev_priv->gtt.mappable_end;
2766
2767         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2768 }
2769
2770 void i915_global_gtt_cleanup(struct drm_device *dev)
2771 {
2772         struct drm_i915_private *dev_priv = dev->dev_private;
2773         struct i915_address_space *vm = &dev_priv->gtt.base;
2774
2775         if (dev_priv->mm.aliasing_ppgtt) {
2776                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2777
2778                 ppgtt->base.cleanup(&ppgtt->base);
2779         }
2780
2781         if (drm_mm_initialized(&vm->mm)) {
2782                 if (intel_vgpu_active(dev))
2783                         intel_vgt_deballoon();
2784
2785                 drm_mm_takedown(&vm->mm);
2786                 list_del(&vm->global_link);
2787         }
2788
2789         vm->cleanup(vm);
2790 }
2791
2792 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2793 {
2794         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2795         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2796         return snb_gmch_ctl << 20;
2797 }
2798
2799 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2800 {
2801         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2802         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2803         if (bdw_gmch_ctl)
2804                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2805
2806 #ifdef CONFIG_X86_32
2807         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2808         if (bdw_gmch_ctl > 4)
2809                 bdw_gmch_ctl = 4;
2810 #endif
2811
2812         return bdw_gmch_ctl << 20;
2813 }
2814
2815 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2816 {
2817         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2818         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2819
2820         if (gmch_ctrl)
2821                 return 1 << (20 + gmch_ctrl);
2822
2823         return 0;
2824 }
2825
2826 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2827 {
2828         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2829         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2830         return snb_gmch_ctl << 25; /* 32 MB units */
2831 }
2832
2833 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2834 {
2835         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2836         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2837         return bdw_gmch_ctl << 25; /* 32 MB units */
2838 }
2839
2840 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2841 {
2842         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2843         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2844
2845         /*
2846          * 0x0  to 0x10: 32MB increments starting at 0MB
2847          * 0x11 to 0x16: 4MB increments starting at 8MB
2848          * 0x17 to 0x1d: 4MB increments start at 36MB
2849          */
2850         if (gmch_ctrl < 0x11)
2851                 return gmch_ctrl << 25;
2852         else if (gmch_ctrl < 0x17)
2853                 return (gmch_ctrl - 0x11 + 2) << 22;
2854         else
2855                 return (gmch_ctrl - 0x17 + 9) << 22;
2856 }
2857
2858 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2859 {
2860         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2861         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2862
2863         if (gen9_gmch_ctl < 0xf0)
2864                 return gen9_gmch_ctl << 25; /* 32 MB units */
2865         else
2866                 /* 4MB increments starting at 0xf0 for 4MB */
2867                 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2868 }
2869
2870 static int ggtt_probe_common(struct drm_device *dev,
2871                              size_t gtt_size)
2872 {
2873         struct drm_i915_private *dev_priv = dev->dev_private;
2874         struct i915_page_scratch *scratch_page;
2875         phys_addr_t gtt_phys_addr;
2876
2877         /* For Modern GENs the PTEs and register space are split in the BAR */
2878         gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2879                 (pci_resource_len(dev->pdev, 0) / 2);
2880
2881         /*
2882          * On BXT writes larger than 64 bit to the GTT pagetable range will be
2883          * dropped. For WC mappings in general we have 64 byte burst writes
2884          * when the WC buffer is flushed, so we can't use it, but have to
2885          * resort to an uncached mapping. The WC issue is easily caught by the
2886          * readback check when writing GTT PTE entries.
2887          */
2888         if (IS_BROXTON(dev))
2889                 dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2890         else
2891                 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2892         if (!dev_priv->gtt.gsm) {
2893                 DRM_ERROR("Failed to map the gtt page table\n");
2894                 return -ENOMEM;
2895         }
2896
2897         scratch_page = alloc_scratch_page(dev);
2898         if (IS_ERR(scratch_page)) {
2899                 DRM_ERROR("Scratch setup failed\n");
2900                 /* iounmap will also get called at remove, but meh */
2901                 iounmap(dev_priv->gtt.gsm);
2902                 return PTR_ERR(scratch_page);
2903         }
2904
2905         dev_priv->gtt.base.scratch_page = scratch_page;
2906
2907         return 0;
2908 }
2909
2910 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2911  * bits. When using advanced contexts each context stores its own PAT, but
2912  * writing this data shouldn't be harmful even in those cases. */
2913 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2914 {
2915         uint64_t pat;
2916
2917         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2918               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2919               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2920               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2921               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2922               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2923               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2924               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2925
2926         if (!USES_PPGTT(dev_priv->dev))
2927                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2928                  * so RTL will always use the value corresponding to
2929                  * pat_sel = 000".
2930                  * So let's disable cache for GGTT to avoid screen corruptions.
2931                  * MOCS still can be used though.
2932                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2933                  * before this patch, i.e. the same uncached + snooping access
2934                  * like on gen6/7 seems to be in effect.
2935                  * - So this just fixes blitter/render access. Again it looks
2936                  * like it's not just uncached access, but uncached + snooping.
2937                  * So we can still hold onto all our assumptions wrt cpu
2938                  * clflushing on LLC machines.
2939                  */
2940                 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2941
2942         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2943          * write would work. */
2944         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2945         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2946 }
2947
2948 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2949 {
2950         uint64_t pat;
2951
2952         /*
2953          * Map WB on BDW to snooped on CHV.
2954          *
2955          * Only the snoop bit has meaning for CHV, the rest is
2956          * ignored.
2957          *
2958          * The hardware will never snoop for certain types of accesses:
2959          * - CPU GTT (GMADR->GGTT->no snoop->memory)
2960          * - PPGTT page tables
2961          * - some other special cycles
2962          *
2963          * As with BDW, we also need to consider the following for GT accesses:
2964          * "For GGTT, there is NO pat_sel[2:0] from the entry,
2965          * so RTL will always use the value corresponding to
2966          * pat_sel = 000".
2967          * Which means we must set the snoop bit in PAT entry 0
2968          * in order to keep the global status page working.
2969          */
2970         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2971               GEN8_PPAT(1, 0) |
2972               GEN8_PPAT(2, 0) |
2973               GEN8_PPAT(3, 0) |
2974               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2975               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2976               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2977               GEN8_PPAT(7, CHV_PPAT_SNOOP);
2978
2979         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2980         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2981 }
2982
2983 static int gen8_gmch_probe(struct drm_device *dev,
2984                            u64 *gtt_total,
2985                            size_t *stolen,
2986                            phys_addr_t *mappable_base,
2987                            u64 *mappable_end)
2988 {
2989         struct drm_i915_private *dev_priv = dev->dev_private;
2990         u64 gtt_size;
2991         u16 snb_gmch_ctl;
2992         int ret;
2993
2994         /* TODO: We're not aware of mappable constraints on gen8 yet */
2995         *mappable_base = pci_resource_start(dev->pdev, 2);
2996         *mappable_end = pci_resource_len(dev->pdev, 2);
2997
2998 #if 0
2999         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
3000                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
3001 #endif
3002
3003         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3004
3005         if (INTEL_INFO(dev)->gen >= 9) {
3006                 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
3007                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
3008         } else if (IS_CHERRYVIEW(dev)) {
3009                 *stolen = chv_get_stolen_size(snb_gmch_ctl);
3010                 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
3011         } else {
3012                 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
3013                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
3014         }
3015
3016         *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3017
3018         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3019                 chv_setup_private_ppat(dev_priv);
3020         else
3021                 bdw_setup_private_ppat(dev_priv);
3022
3023         ret = ggtt_probe_common(dev, gtt_size);
3024
3025         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
3026         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
3027         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3028         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3029
3030         return ret;
3031 }
3032
3033 static int gen6_gmch_probe(struct drm_device *dev,
3034                            u64 *gtt_total,
3035                            size_t *stolen,
3036                            phys_addr_t *mappable_base,
3037                            u64 *mappable_end)
3038 {
3039         struct drm_i915_private *dev_priv = dev->dev_private;
3040         unsigned int gtt_size;
3041         u16 snb_gmch_ctl;
3042         int ret;
3043
3044         *mappable_base = pci_resource_start(dev->pdev, 2);
3045         *mappable_end = pci_resource_len(dev->pdev, 2);
3046
3047         /* 64/512MB is the current min/max we actually know of, but this is just
3048          * a coarse sanity check.
3049          */
3050         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
3051                 DRM_ERROR("Unknown GMADR size (%lx)\n",
3052                           dev_priv->gtt.mappable_end);
3053                 return -ENXIO;
3054         }
3055
3056 #if 0
3057         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3058                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3059 #endif
3060         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3061
3062         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
3063
3064         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
3065         *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3066
3067         ret = ggtt_probe_common(dev, gtt_size);
3068
3069         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
3070         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
3071         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3072         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3073
3074         return ret;
3075 }
3076
3077 static void gen6_gmch_remove(struct i915_address_space *vm)
3078 {
3079
3080         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
3081
3082         iounmap(gtt->gsm);
3083         free_scratch_page(vm->dev, vm->scratch_page);
3084 }
3085
3086 static int i915_gmch_probe(struct drm_device *dev,
3087                            u64 *gtt_total,
3088                            size_t *stolen,
3089                            phys_addr_t *mappable_base,
3090                            u64 *mappable_end)
3091 {
3092         struct drm_i915_private *dev_priv = dev->dev_private;
3093 #if 0
3094         int ret;
3095
3096         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
3097         if (!ret) {
3098                 DRM_ERROR("failed to set up gmch\n");
3099                 return -EIO;
3100         }
3101 #endif
3102
3103         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
3104
3105         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
3106         dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
3107         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
3108         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3109         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3110
3111         if (unlikely(dev_priv->gtt.do_idle_maps))
3112                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3113
3114         return 0;
3115 }
3116
3117 static void i915_gmch_remove(struct i915_address_space *vm)
3118 {
3119         intel_gmch_remove();
3120 }
3121
3122 int i915_gem_gtt_init(struct drm_device *dev)
3123 {
3124         struct drm_i915_private *dev_priv = dev->dev_private;
3125         struct i915_gtt *gtt = &dev_priv->gtt;
3126         int ret;
3127
3128         if (INTEL_INFO(dev)->gen <= 5) {
3129                 gtt->gtt_probe = i915_gmch_probe;
3130                 gtt->base.cleanup = i915_gmch_remove;
3131         } else if (INTEL_INFO(dev)->gen < 8) {
3132                 gtt->gtt_probe = gen6_gmch_probe;
3133                 gtt->base.cleanup = gen6_gmch_remove;
3134                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
3135                         gtt->base.pte_encode = iris_pte_encode;
3136                 else if (IS_HASWELL(dev))
3137                         gtt->base.pte_encode = hsw_pte_encode;
3138                 else if (IS_VALLEYVIEW(dev))
3139                         gtt->base.pte_encode = byt_pte_encode;
3140                 else if (INTEL_INFO(dev)->gen >= 7)
3141                         gtt->base.pte_encode = ivb_pte_encode;
3142                 else
3143                         gtt->base.pte_encode = snb_pte_encode;
3144         } else {
3145                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
3146                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
3147         }
3148
3149         gtt->base.dev = dev;
3150
3151         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
3152                              &gtt->mappable_base, &gtt->mappable_end);
3153         if (ret)
3154                 return ret;
3155
3156         /* GMADR is the PCI mmio aperture into the global GTT. */
3157         DRM_INFO("Memory usable by graphics device = %luM\n",
3158                  gtt->base.total >> 20);
3159         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
3160         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
3161 #ifdef CONFIG_INTEL_IOMMU
3162         if (intel_iommu_gfx_mapped)
3163                 DRM_INFO("VT-d active for gfx access\n");
3164 #endif
3165         /*
3166          * i915.enable_ppgtt is read-only, so do an early pass to validate the
3167          * user's requested state against the hardware/driver capabilities.  We
3168          * do this now so that we can print out any log messages once rather
3169          * than every time we check intel_enable_ppgtt().
3170          */
3171         i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
3172         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
3173
3174         return 0;
3175 }
3176
3177 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3178 {
3179         struct drm_i915_private *dev_priv = dev->dev_private;
3180         struct drm_i915_gem_object *obj;
3181         struct i915_address_space *vm;
3182         struct i915_vma *vma;
3183         bool flush;
3184
3185         i915_check_and_clear_faults(dev);
3186
3187         /* First fill our portion of the GTT with scratch pages */
3188         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
3189                                        dev_priv->gtt.base.start,
3190                                        dev_priv->gtt.base.total,
3191                                        true);
3192
3193         /* Cache flush objects bound into GGTT and rebind them. */
3194         vm = &dev_priv->gtt.base;
3195         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3196                 flush = false;
3197                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3198                         if (vma->vm != vm)
3199                                 continue;
3200
3201                         WARN_ON(i915_vma_bind(vma, obj->cache_level,
3202                                               PIN_UPDATE));
3203
3204                         flush = true;
3205                 }
3206
3207                 if (flush)
3208                         i915_gem_clflush_object(obj, obj->pin_display);
3209         }
3210
3211         if (INTEL_INFO(dev)->gen >= 8) {
3212                 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3213                         chv_setup_private_ppat(dev_priv);
3214                 else
3215                         bdw_setup_private_ppat(dev_priv);
3216
3217                 return;
3218         }
3219
3220         if (USES_PPGTT(dev)) {
3221                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3222                         /* TODO: Perhaps it shouldn't be gen6 specific */
3223
3224                         struct i915_hw_ppgtt *ppgtt =
3225                                         container_of(vm, struct i915_hw_ppgtt,
3226                                                      base);
3227
3228                         if (i915_is_ggtt(vm))
3229                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
3230
3231                         gen6_write_page_range(dev_priv, &ppgtt->pd,
3232                                               0, ppgtt->base.total);
3233                 }
3234         }
3235
3236         i915_ggtt_flush(dev_priv);
3237 }
3238
3239 static struct i915_vma *
3240 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3241                       struct i915_address_space *vm,
3242                       const struct i915_ggtt_view *ggtt_view)
3243 {
3244         struct i915_vma *vma;
3245
3246         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3247                 return ERR_PTR(-EINVAL);
3248
3249         vma = kzalloc(sizeof(*vma), GFP_KERNEL);
3250         if (vma == NULL)
3251                 return ERR_PTR(-ENOMEM);
3252
3253         INIT_LIST_HEAD(&vma->vma_link);
3254         INIT_LIST_HEAD(&vma->mm_list);
3255         INIT_LIST_HEAD(&vma->exec_list);
3256         vma->vm = vm;
3257         vma->obj = obj;
3258
3259         if (i915_is_ggtt(vm))
3260                 vma->ggtt_view = *ggtt_view;
3261
3262         list_add_tail(&vma->vma_link, &obj->vma_list);
3263         if (!i915_is_ggtt(vm))
3264                 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3265
3266         return vma;
3267 }
3268
3269 struct i915_vma *
3270 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3271                                   struct i915_address_space *vm)
3272 {
3273         struct i915_vma *vma;
3274
3275         vma = i915_gem_obj_to_vma(obj, vm);
3276         if (!vma)
3277                 vma = __i915_gem_vma_create(obj, vm,
3278                                             i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3279
3280         return vma;
3281 }
3282
3283 struct i915_vma *
3284 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3285                                        const struct i915_ggtt_view *view)
3286 {
3287         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
3288         struct i915_vma *vma;
3289
3290         if (WARN_ON(!view))
3291                 return ERR_PTR(-EINVAL);
3292
3293         vma = i915_gem_obj_to_ggtt_view(obj, view);
3294
3295         if (IS_ERR(vma))
3296                 return vma;
3297
3298         if (!vma)
3299                 vma = __i915_gem_vma_create(obj, ggtt, view);
3300
3301         return vma;
3302
3303 }
3304
3305 static struct scatterlist *
3306 rotate_pages(dma_addr_t *in, unsigned int offset,
3307              unsigned int width, unsigned int height,
3308              struct sg_table *st, struct scatterlist *sg)
3309 {
3310         unsigned int column, row;
3311         unsigned int src_idx;
3312
3313         if (!sg) {
3314                 st->nents = 0;
3315                 sg = st->sgl;
3316         }
3317
3318         for (column = 0; column < width; column++) {
3319                 src_idx = width * (height - 1) + column;
3320                 for (row = 0; row < height; row++) {
3321                         st->nents++;
3322                         /* We don't need the pages, but need to initialize
3323                          * the entries so the sg list can be happily traversed.
3324                          * The only thing we need are DMA addresses.
3325                          */
3326                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
3327                         sg_dma_address(sg) = in[offset + src_idx];
3328                         sg_dma_len(sg) = PAGE_SIZE;
3329                         sg = sg_next(sg);
3330                         src_idx -= width;
3331                 }
3332         }
3333
3334         return sg;
3335 }
3336
3337 static struct sg_table *
3338 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
3339                           struct drm_i915_gem_object *obj)
3340 {
3341         struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
3342         unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
3343         unsigned int size_pages_uv;
3344         struct sg_page_iter sg_iter;
3345         unsigned long i;
3346         dma_addr_t *page_addr_list;
3347         struct sg_table *st;
3348         unsigned int uv_start_page;
3349         struct scatterlist *sg;
3350         int ret = -ENOMEM;
3351
3352         /* Allocate a temporary list of source pages for random access. */
3353         page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
3354                                        sizeof(dma_addr_t));
3355         if (!page_addr_list)
3356                 return ERR_PTR(ret);
3357
3358         /* Account for UV plane with NV12. */
3359         if (rot_info->pixel_format == DRM_FORMAT_NV12)
3360                 size_pages_uv = rot_info->size_uv >> PAGE_SHIFT;
3361         else
3362                 size_pages_uv = 0;
3363
3364         /* Allocate target SG list. */
3365         st = kmalloc(sizeof(*st), M_DRM, M_WAITOK);
3366         if (!st)
3367                 goto err_st_alloc;
3368
3369         ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3370         if (ret)
3371                 goto err_sg_alloc;
3372
3373         /* Populate source page list from the object. */
3374         i = 0;
3375         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
3376                 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
3377                 i++;
3378         }
3379
3380         /* Rotate the pages. */
3381         sg = rotate_pages(page_addr_list, 0,
3382                      rot_info->width_pages, rot_info->height_pages,
3383                      st, NULL);
3384
3385         /* Append the UV plane if NV12. */
3386         if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3387                 uv_start_page = size_pages;
3388
3389                 /* Check for tile-row un-alignment. */
3390                 if (offset_in_page(rot_info->uv_offset))
3391                         uv_start_page--;
3392
3393                 rot_info->uv_start_page = uv_start_page;
3394
3395                 rotate_pages(page_addr_list, uv_start_page,
3396                              rot_info->width_pages_uv,
3397                              rot_info->height_pages_uv,
3398                              st, sg);
3399         }
3400
3401         DRM_DEBUG_KMS(
3402                       "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0)).\n",
3403                       obj->base.size, rot_info->pitch, rot_info->height,
3404                       rot_info->pixel_format, rot_info->width_pages,
3405                       rot_info->height_pages, size_pages + size_pages_uv,
3406                       size_pages);
3407
3408         drm_free_large(page_addr_list);
3409
3410         return st;
3411
3412 err_sg_alloc:
3413         kfree(st);
3414 err_st_alloc:
3415         drm_free_large(page_addr_list);
3416
3417         DRM_DEBUG_KMS(
3418                       "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0))\n",
3419                       obj->base.size, ret, rot_info->pitch, rot_info->height,
3420                       rot_info->pixel_format, rot_info->width_pages,
3421                       rot_info->height_pages, size_pages + size_pages_uv,
3422                       size_pages);
3423         return ERR_PTR(ret);
3424 }
3425
3426 static struct sg_table *
3427 intel_partial_pages(const struct i915_ggtt_view *view,
3428                     struct drm_i915_gem_object *obj)
3429 {
3430         struct sg_table *st;
3431         struct scatterlist *sg;
3432         struct sg_page_iter obj_sg_iter;
3433         int ret = -ENOMEM;
3434
3435         st = kmalloc(sizeof(*st), M_DRM, M_WAITOK);
3436         if (!st)
3437                 goto err_st_alloc;
3438
3439         ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3440         if (ret)
3441                 goto err_sg_alloc;
3442
3443         sg = st->sgl;
3444         st->nents = 0;
3445         for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3446                 view->params.partial.offset)
3447         {
3448                 if (st->nents >= view->params.partial.size)
3449                         break;
3450
3451                 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3452                 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3453                 sg_dma_len(sg) = PAGE_SIZE;
3454
3455                 sg = sg_next(sg);
3456                 st->nents++;
3457         }
3458
3459         return st;
3460
3461 err_sg_alloc:
3462         kfree(st);
3463 err_st_alloc:
3464         return ERR_PTR(ret);
3465 }
3466
3467 static int
3468 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3469 {
3470         int ret = 0;
3471
3472         if (vma->ggtt_view.pages)
3473                 return 0;
3474
3475         if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3476                 vma->ggtt_view.pages = vma->obj->pages;
3477         else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3478                 vma->ggtt_view.pages =
3479                         intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
3480         else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3481                 vma->ggtt_view.pages =
3482                         intel_partial_pages(&vma->ggtt_view, vma->obj);
3483         else
3484                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3485                           vma->ggtt_view.type);
3486
3487         if (!vma->ggtt_view.pages) {
3488                 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3489                           vma->ggtt_view.type);
3490                 ret = -EINVAL;
3491         } else if (IS_ERR(vma->ggtt_view.pages)) {
3492                 ret = PTR_ERR(vma->ggtt_view.pages);
3493                 vma->ggtt_view.pages = NULL;
3494                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3495                           vma->ggtt_view.type, ret);
3496         }
3497
3498         return ret;
3499 }
3500
3501 /**
3502  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3503  * @vma: VMA to map
3504  * @cache_level: mapping cache level
3505  * @flags: flags like global or local mapping
3506  *
3507  * DMA addresses are taken from the scatter-gather table of this object (or of
3508  * this VMA in case of non-default GGTT views) and PTE entries set up.
3509  * Note that DMA addresses are also the only part of the SG table we care about.
3510  */
3511 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3512                   u32 flags)
3513 {
3514         int ret;
3515         u32 bind_flags;
3516
3517         if (WARN_ON(flags == 0))
3518                 return -EINVAL;
3519
3520         bind_flags = 0;
3521         if (flags & PIN_GLOBAL)
3522                 bind_flags |= GLOBAL_BIND;
3523         if (flags & PIN_USER)
3524                 bind_flags |= LOCAL_BIND;
3525
3526         if (flags & PIN_UPDATE)
3527                 bind_flags |= vma->bound;
3528         else
3529                 bind_flags &= ~vma->bound;
3530
3531         if (bind_flags == 0)
3532                 return 0;
3533
3534         if (vma->bound == 0 && vma->vm->allocate_va_range) {
3535                 trace_i915_va_alloc(vma->vm,
3536                                     vma->node.start,
3537                                     vma->node.size,
3538                                     VM_TO_TRACE_NAME(vma->vm));
3539
3540                 /* XXX: i915_vma_pin() will fix this +- hack */
3541                 vma->pin_count++;
3542                 ret = vma->vm->allocate_va_range(vma->vm,
3543                                                  vma->node.start,
3544                                                  vma->node.size);
3545                 vma->pin_count--;
3546                 if (ret)
3547                         return ret;
3548         }
3549
3550         ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3551         if (ret)
3552                 return ret;
3553
3554         vma->bound |= bind_flags;
3555
3556         return 0;
3557 }
3558
3559 /**
3560  * i915_ggtt_view_size - Get the size of a GGTT view.
3561  * @obj: Object the view is of.
3562  * @view: The view in question.
3563  *
3564  * @return The size of the GGTT view in bytes.
3565  */
3566 size_t
3567 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3568                     const struct i915_ggtt_view *view)
3569 {
3570         if (view->type == I915_GGTT_VIEW_NORMAL) {
3571                 return obj->base.size;
3572         } else if (view->type == I915_GGTT_VIEW_ROTATED) {
3573                 return view->rotation_info.size;
3574         } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3575                 return view->params.partial.size << PAGE_SHIFT;
3576         } else {
3577                 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3578                 return obj->base.size;
3579         }
3580 }