kernel - Numerous VM MPSAFE fixes
[dragonfly.git] / sys / vm / vm_pageout.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
67  */
68
69 /*
70  *      The proverbial page-out daemon.
71  */
72
73 #include "opt_vm.h"
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/kernel.h>
77 #include <sys/proc.h>
78 #include <sys/kthread.h>
79 #include <sys/resourcevar.h>
80 #include <sys/signalvar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sysctl.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <sys/lock.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_extern.h>
95
96 #include <sys/thread2.h>
97 #include <vm/vm_page2.h>
98
99 /*
100  * System initialization
101  */
102
103 /* the kernel process "vm_pageout"*/
104 static int vm_pageout_clean (vm_page_t);
105 static int vm_pageout_scan (int pass);
106 static int vm_pageout_free_page_calc (vm_size_t count);
107 struct thread *pagethread;
108
109 #if !defined(NO_SWAPPING)
110 /* the kernel process "vm_daemon"*/
111 static void vm_daemon (void);
112 static struct   thread *vmthread;
113
114 static struct kproc_desc vm_kp = {
115         "vmdaemon",
116         vm_daemon,
117         &vmthread
118 };
119 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
120 #endif
121
122
123 int vm_pages_needed=0;          /* Event on which pageout daemon sleeps */
124 int vm_pageout_deficit=0;       /* Estimated number of pages deficit */
125 int vm_pageout_pages_needed=0;  /* flag saying that the pageout daemon needs pages */
126
127 #if !defined(NO_SWAPPING)
128 static int vm_pageout_req_swapout;      /* XXX */
129 static int vm_daemon_needed;
130 #endif
131 static int vm_max_launder = 32;
132 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
133 static int vm_pageout_full_stats_interval = 0;
134 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
135 static int defer_swap_pageouts=0;
136 static int disable_swap_pageouts=0;
137
138 #if defined(NO_SWAPPING)
139 static int vm_swap_enabled=0;
140 static int vm_swap_idle_enabled=0;
141 #else
142 static int vm_swap_enabled=1;
143 static int vm_swap_idle_enabled=0;
144 #endif
145
146 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
147         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
148
149 SYSCTL_INT(_vm, OID_AUTO, max_launder,
150         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
151
152 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
153         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
154
155 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
156         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
157
158 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
159         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
160
161 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
162         CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
163
164 #if defined(NO_SWAPPING)
165 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
166         CTLFLAG_RD, &vm_swap_enabled, 0, "");
167 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
168         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
169 #else
170 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
171         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
172 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
173         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
174 #endif
175
176 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
177         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
178
179 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
180         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
181
182 static int pageout_lock_miss;
183 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
184         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
185
186 int vm_load;
187 SYSCTL_INT(_vm, OID_AUTO, vm_load,
188         CTLFLAG_RD, &vm_load, 0, "load on the VM system");
189 int vm_load_enable = 1;
190 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
191         CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
192 #ifdef INVARIANTS
193 int vm_load_debug;
194 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
195         CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
196 #endif
197
198 #define VM_PAGEOUT_PAGE_COUNT 16
199 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
200
201 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
202
203 #if !defined(NO_SWAPPING)
204 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
205 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
206 static freeer_fcn_t vm_pageout_object_deactivate_pages;
207 static void vm_req_vmdaemon (void);
208 #endif
209 static void vm_pageout_page_stats(void);
210
211 /*
212  * Update vm_load to slow down faulting processes.
213  *
214  * SMP races ok.
215  * No requirements.
216  */
217 void
218 vm_fault_ratecheck(void)
219 {
220         if (vm_pages_needed) {
221                 if (vm_load < 1000)
222                         ++vm_load;
223         } else {
224                 if (vm_load > 0)
225                         --vm_load;
226         }
227 }
228
229 /*
230  * vm_pageout_clean:
231  *
232  * Clean the page and remove it from the laundry.  The page must not be
233  * busy on-call.
234  * 
235  * We set the busy bit to cause potential page faults on this page to
236  * block.  Note the careful timing, however, the busy bit isn't set till
237  * late and we cannot do anything that will mess with the page.
238  *
239  * The caller must hold vm_token.
240  */
241 static int
242 vm_pageout_clean(vm_page_t m)
243 {
244         vm_object_t object;
245         vm_page_t mc[2*vm_pageout_page_count];
246         int pageout_count;
247         int ib, is, page_base;
248         vm_pindex_t pindex = m->pindex;
249
250         object = m->object;
251
252         /*
253          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
254          * with the new swapper, but we could have serious problems paging
255          * out other object types if there is insufficient memory.  
256          *
257          * Unfortunately, checking free memory here is far too late, so the
258          * check has been moved up a procedural level.
259          */
260
261         /*
262          * Don't mess with the page if it's busy, held, or special
263          */
264         if ((m->hold_count != 0) ||
265             ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
266                 return 0;
267         }
268
269         mc[vm_pageout_page_count] = m;
270         pageout_count = 1;
271         page_base = vm_pageout_page_count;
272         ib = 1;
273         is = 1;
274
275         /*
276          * Scan object for clusterable pages.
277          *
278          * We can cluster ONLY if: ->> the page is NOT
279          * clean, wired, busy, held, or mapped into a
280          * buffer, and one of the following:
281          * 1) The page is inactive, or a seldom used
282          *    active page.
283          * -or-
284          * 2) we force the issue.
285          *
286          * During heavy mmap/modification loads the pageout
287          * daemon can really fragment the underlying file
288          * due to flushing pages out of order and not trying
289          * align the clusters (which leave sporatic out-of-order
290          * holes).  To solve this problem we do the reverse scan
291          * first and attempt to align our cluster, then do a 
292          * forward scan if room remains.
293          */
294
295         vm_object_hold(object);
296 more:
297         while (ib && pageout_count < vm_pageout_page_count) {
298                 vm_page_t p;
299
300                 if (ib > pindex) {
301                         ib = 0;
302                         break;
303                 }
304
305                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
306                         ib = 0;
307                         break;
308                 }
309                 if (((p->queue - p->pc) == PQ_CACHE) ||
310                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
311                         ib = 0;
312                         break;
313                 }
314                 vm_page_test_dirty(p);
315                 if ((p->dirty & p->valid) == 0 ||
316                     p->queue != PQ_INACTIVE ||
317                     p->wire_count != 0 ||       /* may be held by buf cache */
318                     p->hold_count != 0) {       /* may be undergoing I/O */
319                         ib = 0;
320                         break;
321                 }
322                 mc[--page_base] = p;
323                 ++pageout_count;
324                 ++ib;
325                 /*
326                  * alignment boundry, stop here and switch directions.  Do
327                  * not clear ib.
328                  */
329                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
330                         break;
331         }
332
333         while (pageout_count < vm_pageout_page_count && 
334             pindex + is < object->size) {
335                 vm_page_t p;
336
337                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
338                         break;
339                 if (((p->queue - p->pc) == PQ_CACHE) ||
340                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
341                         break;
342                 }
343                 vm_page_test_dirty(p);
344                 if ((p->dirty & p->valid) == 0 ||
345                     p->queue != PQ_INACTIVE ||
346                     p->wire_count != 0 ||       /* may be held by buf cache */
347                     p->hold_count != 0) {       /* may be undergoing I/O */
348                         break;
349                 }
350                 mc[page_base + pageout_count] = p;
351                 ++pageout_count;
352                 ++is;
353         }
354
355         /*
356          * If we exhausted our forward scan, continue with the reverse scan
357          * when possible, even past a page boundry.  This catches boundry
358          * conditions.
359          */
360         if (ib && pageout_count < vm_pageout_page_count)
361                 goto more;
362
363         vm_object_drop(object);
364
365         /*
366          * we allow reads during pageouts...
367          */
368         return vm_pageout_flush(&mc[page_base], pageout_count, 0);
369 }
370
371 /*
372  * vm_pageout_flush() - launder the given pages
373  *
374  *      The given pages are laundered.  Note that we setup for the start of
375  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
376  *      reference count all in here rather then in the parent.  If we want
377  *      the parent to do more sophisticated things we may have to change
378  *      the ordering.
379  *
380  * The caller must hold vm_token.
381  */
382 int
383 vm_pageout_flush(vm_page_t *mc, int count, int flags)
384 {
385         vm_object_t object;
386         int pageout_status[count];
387         int numpagedout = 0;
388         int i;
389
390         ASSERT_LWKT_TOKEN_HELD(&vm_token);
391
392         /*
393          * Initiate I/O.  Bump the vm_page_t->busy counter.
394          */
395         for (i = 0; i < count; i++) {
396                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
397                 vm_page_io_start(mc[i]);
398         }
399
400         /*
401          * We must make the pages read-only.  This will also force the
402          * modified bit in the related pmaps to be cleared.  The pager
403          * cannot clear the bit for us since the I/O completion code
404          * typically runs from an interrupt.  The act of making the page
405          * read-only handles the case for us.
406          */
407         for (i = 0; i < count; i++) {
408                 vm_page_protect(mc[i], VM_PROT_READ);
409         }
410
411         object = mc[0]->object;
412         vm_object_pip_add(object, count);
413
414         vm_pager_put_pages(object, mc, count,
415             (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
416             pageout_status);
417
418         for (i = 0; i < count; i++) {
419                 vm_page_t mt = mc[i];
420
421                 switch (pageout_status[i]) {
422                 case VM_PAGER_OK:
423                         numpagedout++;
424                         break;
425                 case VM_PAGER_PEND:
426                         numpagedout++;
427                         break;
428                 case VM_PAGER_BAD:
429                         /*
430                          * Page outside of range of object. Right now we
431                          * essentially lose the changes by pretending it
432                          * worked.
433                          */
434                         pmap_clear_modify(mt);
435                         vm_page_undirty(mt);
436                         break;
437                 case VM_PAGER_ERROR:
438                 case VM_PAGER_FAIL:
439                         /*
440                          * A page typically cannot be paged out when we
441                          * have run out of swap.  We leave the page
442                          * marked inactive and will try to page it out
443                          * again later.
444                          *
445                          * Starvation of the active page list is used to
446                          * determine when the system is massively memory
447                          * starved.
448                          */
449                         break;
450                 case VM_PAGER_AGAIN:
451                         break;
452                 }
453
454                 /*
455                  * If the operation is still going, leave the page busy to
456                  * block all other accesses. Also, leave the paging in
457                  * progress indicator set so that we don't attempt an object
458                  * collapse.
459                  *
460                  * For any pages which have completed synchronously, 
461                  * deactivate the page if we are under a severe deficit.
462                  * Do not try to enter them into the cache, though, they
463                  * might still be read-heavy.
464                  */
465                 if (pageout_status[i] != VM_PAGER_PEND) {
466                         if (vm_page_count_severe())
467                                 vm_page_deactivate(mt);
468 #if 0
469                         if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
470                                 vm_page_protect(mt, VM_PROT_READ);
471 #endif
472                         vm_page_io_finish(mt);
473                         vm_object_pip_wakeup(object);
474                 }
475         }
476         return numpagedout;
477 }
478
479 #if !defined(NO_SWAPPING)
480 /*
481  *      vm_pageout_object_deactivate_pages
482  *
483  *      deactivate enough pages to satisfy the inactive target
484  *      requirements or if vm_page_proc_limit is set, then
485  *      deactivate all of the pages in the object and its
486  *      backing_objects.
487  *
488  * The map must be locked.
489  * The caller must hold vm_token.
490  * The caller must hold the vm_object.
491  */
492 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
493
494 static void
495 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
496                                    vm_pindex_t desired, int map_remove_only)
497 {
498         struct rb_vm_page_scan_info info;
499         vm_object_t tmp;
500         int remove_mode;
501
502         while (object) {
503                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
504                         return;
505
506                 vm_object_hold(object);
507
508                 if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS) {
509                         vm_object_drop(object);
510                         return;
511                 }
512                 if (object->paging_in_progress) {
513                         vm_object_drop(object);
514                         return;
515                 }
516
517                 remove_mode = map_remove_only;
518                 if (object->shadow_count > 1)
519                         remove_mode = 1;
520
521                 /*
522                  * scan the objects entire memory queue.  We hold the
523                  * object's token so the scan should not race anything.
524                  */
525                 info.limit = remove_mode;
526                 info.map = map;
527                 info.desired = desired;
528                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
529                                 vm_pageout_object_deactivate_pages_callback,
530                                 &info
531                 );
532                 tmp = object->backing_object;
533                 vm_object_drop(object);
534                 object = tmp;
535         }
536 }
537
538 /*
539  * The caller must hold vm_token.
540  * The caller must hold the vm_object.
541  */
542 static int
543 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
544 {
545         struct rb_vm_page_scan_info *info = data;
546         int actcount;
547
548         if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
549                 return(-1);
550         }
551         mycpu->gd_cnt.v_pdpages++;
552         if (p->wire_count != 0 || p->hold_count != 0 || p->busy != 0 ||
553             (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
554             !pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
555                 return(0);
556         }
557
558         actcount = pmap_ts_referenced(p);
559         if (actcount) {
560                 vm_page_flag_set(p, PG_REFERENCED);
561         } else if (p->flags & PG_REFERENCED) {
562                 actcount = 1;
563         }
564
565         if ((p->queue != PQ_ACTIVE) &&
566                 (p->flags & PG_REFERENCED)) {
567                 vm_page_activate(p);
568                 p->act_count += actcount;
569                 vm_page_flag_clear(p, PG_REFERENCED);
570         } else if (p->queue == PQ_ACTIVE) {
571                 if ((p->flags & PG_REFERENCED) == 0) {
572                         p->act_count -= min(p->act_count, ACT_DECLINE);
573                         if (!info->limit && (vm_pageout_algorithm || (p->act_count == 0))) {
574                                 vm_page_busy(p);
575                                 vm_page_protect(p, VM_PROT_NONE);
576                                 vm_page_deactivate(p);
577                                 vm_page_wakeup(p);
578                         } else {
579                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
580                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
581                         }
582                 } else {
583                         vm_page_activate(p);
584                         vm_page_flag_clear(p, PG_REFERENCED);
585                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
586                                 p->act_count += ACT_ADVANCE;
587                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
588                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
589                 }
590         } else if (p->queue == PQ_INACTIVE) {
591                 vm_page_busy(p);
592                 vm_page_protect(p, VM_PROT_NONE);
593                 vm_page_wakeup(p);
594         }
595         return(0);
596 }
597
598 /*
599  * Deactivate some number of pages in a map, try to do it fairly, but
600  * that is really hard to do.
601  *
602  * The caller must hold vm_token.
603  */
604 static void
605 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
606 {
607         vm_map_entry_t tmpe;
608         vm_object_t obj, bigobj;
609         int nothingwired;
610
611         if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
612                 return;
613         }
614
615         bigobj = NULL;
616         nothingwired = TRUE;
617
618         /*
619          * first, search out the biggest object, and try to free pages from
620          * that.
621          */
622         tmpe = map->header.next;
623         while (tmpe != &map->header) {
624                 switch(tmpe->maptype) {
625                 case VM_MAPTYPE_NORMAL:
626                 case VM_MAPTYPE_VPAGETABLE:
627                         obj = tmpe->object.vm_object;
628                         if ((obj != NULL) && (obj->shadow_count <= 1) &&
629                                 ((bigobj == NULL) ||
630                                  (bigobj->resident_page_count < obj->resident_page_count))) {
631                                 bigobj = obj;
632                         }
633                         break;
634                 default:
635                         break;
636                 }
637                 if (tmpe->wired_count > 0)
638                         nothingwired = FALSE;
639                 tmpe = tmpe->next;
640         }
641
642         if (bigobj) 
643                 vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
644
645         /*
646          * Next, hunt around for other pages to deactivate.  We actually
647          * do this search sort of wrong -- .text first is not the best idea.
648          */
649         tmpe = map->header.next;
650         while (tmpe != &map->header) {
651                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
652                         break;
653                 switch(tmpe->maptype) {
654                 case VM_MAPTYPE_NORMAL:
655                 case VM_MAPTYPE_VPAGETABLE:
656                         obj = tmpe->object.vm_object;
657                         if (obj) 
658                                 vm_pageout_object_deactivate_pages(map, obj, desired, 0);
659                         break;
660                 default:
661                         break;
662                 }
663                 tmpe = tmpe->next;
664         };
665
666         /*
667          * Remove all mappings if a process is swapped out, this will free page
668          * table pages.
669          */
670         if (desired == 0 && nothingwired)
671                 pmap_remove(vm_map_pmap(map),
672                             VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
673         vm_map_unlock(map);
674 }
675 #endif
676
677 /*
678  * Called when the pageout scan wants to free a page.  We no longer
679  * try to cycle the vm_object here with a reference & dealloc, which can
680  * cause a non-trivial object collapse in a critical path.
681  *
682  * It is unclear why we cycled the ref_count in the past, perhaps to try
683  * to optimize shadow chain collapses but I don't quite see why it would
684  * be necessary.  An OBJ_DEAD object should terminate any and all vm_pages
685  * synchronously and not have to be kicked-start.
686  *
687  * The caller must hold vm_token.
688  */
689 static void
690 vm_pageout_page_free(vm_page_t m) 
691 {
692         vm_page_busy(m);
693         vm_page_protect(m, VM_PROT_NONE);
694         vm_page_free(m);
695 }
696
697 /*
698  * vm_pageout_scan does the dirty work for the pageout daemon.
699  */
700 struct vm_pageout_scan_info {
701         struct proc *bigproc;
702         vm_offset_t bigsize;
703 };
704
705 static int vm_pageout_scan_callback(struct proc *p, void *data);
706
707 /*
708  * The caller must hold vm_token.
709  */
710 static int
711 vm_pageout_scan(int pass)
712 {
713         struct vm_pageout_scan_info info;
714         vm_page_t m, next;
715         struct vm_page marker;
716         struct vnode *vpfailed;         /* warning, allowed to be stale */
717         int maxscan, pcount;
718         int recycle_count;
719         int inactive_shortage, active_shortage;
720         int inactive_original_shortage;
721         vm_object_t object;
722         int actcount;
723         int vnodes_skipped = 0;
724         int maxlaunder;
725
726         /*
727          * Do whatever cleanup that the pmap code can.
728          */
729         pmap_collect();
730
731         /*
732          * Calculate our target for the number of free+cache pages we
733          * want to get to.  This is higher then the number that causes
734          * allocations to stall (severe) in order to provide hysteresis,
735          * and if we don't make it all the way but get to the minimum
736          * we're happy.
737          */
738         inactive_shortage = vm_paging_target() + vm_pageout_deficit;
739         inactive_original_shortage = inactive_shortage;
740         vm_pageout_deficit = 0;
741
742         /*
743          * Initialize our marker
744          */
745         bzero(&marker, sizeof(marker));
746         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
747         marker.queue = PQ_INACTIVE;
748         marker.wire_count = 1;
749
750         /*
751          * Start scanning the inactive queue for pages we can move to the
752          * cache or free.  The scan will stop when the target is reached or
753          * we have scanned the entire inactive queue.  Note that m->act_count
754          * is not used to form decisions for the inactive queue, only for the
755          * active queue.
756          *
757          * maxlaunder limits the number of dirty pages we flush per scan.
758          * For most systems a smaller value (16 or 32) is more robust under
759          * extreme memory and disk pressure because any unnecessary writes
760          * to disk can result in extreme performance degredation.  However,
761          * systems with excessive dirty pages (especially when MAP_NOSYNC is
762          * used) will die horribly with limited laundering.  If the pageout
763          * daemon cannot clean enough pages in the first pass, we let it go
764          * all out in succeeding passes.
765          */
766         if ((maxlaunder = vm_max_launder) <= 1)
767                 maxlaunder = 1;
768         if (pass)
769                 maxlaunder = 10000;
770
771         /*
772          * We will generally be in a critical section throughout the 
773          * scan, but we can release it temporarily when we are sitting on a
774          * non-busy page without fear.  this is required to prevent an
775          * interrupt from unbusying or freeing a page prior to our busy
776          * check, leaving us on the wrong queue or checking the wrong
777          * page.
778          */
779 rescan0:
780         vpfailed = NULL;
781         maxscan = vmstats.v_inactive_count;
782         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
783              m != NULL && maxscan-- > 0 && inactive_shortage > 0;
784              m = next
785          ) {
786                 mycpu->gd_cnt.v_pdpages++;
787
788                 /*
789                  * It's easier for some of the conditions below to just loop
790                  * and catch queue changes here rather then check everywhere
791                  * else.
792                  */
793                 if (m->queue != PQ_INACTIVE)
794                         goto rescan0;
795                 next = TAILQ_NEXT(m, pageq);
796
797                 /*
798                  * skip marker pages
799                  */
800                 if (m->flags & PG_MARKER)
801                         continue;
802
803                 /*
804                  * A held page may be undergoing I/O, so skip it.
805                  */
806                 if (m->hold_count) {
807                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
808                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
809                         ++vm_swapcache_inactive_heuristic;
810                         continue;
811                 }
812
813                 /*
814                  * Dont mess with busy pages, keep in the front of the
815                  * queue, most likely are being paged out.
816                  */
817                 if (m->busy || (m->flags & PG_BUSY)) {
818                         continue;
819                 }
820
821                 if (m->object->ref_count == 0) {
822                         /*
823                          * If the object is not being used, we ignore previous 
824                          * references.
825                          */
826                         vm_page_flag_clear(m, PG_REFERENCED);
827                         pmap_clear_reference(m);
828
829                 } else if (((m->flags & PG_REFERENCED) == 0) &&
830                             (actcount = pmap_ts_referenced(m))) {
831                         /*
832                          * Otherwise, if the page has been referenced while 
833                          * in the inactive queue, we bump the "activation
834                          * count" upwards, making it less likely that the
835                          * page will be added back to the inactive queue
836                          * prematurely again.  Here we check the page tables
837                          * (or emulated bits, if any), given the upper level
838                          * VM system not knowing anything about existing 
839                          * references.
840                          */
841                         vm_page_activate(m);
842                         m->act_count += (actcount + ACT_ADVANCE);
843                         continue;
844                 }
845
846                 /*
847                  * If the upper level VM system knows about any page 
848                  * references, we activate the page.  We also set the 
849                  * "activation count" higher than normal so that we will less 
850                  * likely place pages back onto the inactive queue again.
851                  */
852                 if ((m->flags & PG_REFERENCED) != 0) {
853                         vm_page_flag_clear(m, PG_REFERENCED);
854                         actcount = pmap_ts_referenced(m);
855                         vm_page_activate(m);
856                         m->act_count += (actcount + ACT_ADVANCE + 1);
857                         continue;
858                 }
859
860                 /*
861                  * If the upper level VM system doesn't know anything about 
862                  * the page being dirty, we have to check for it again.  As 
863                  * far as the VM code knows, any partially dirty pages are 
864                  * fully dirty.
865                  *
866                  * Pages marked PG_WRITEABLE may be mapped into the user
867                  * address space of a process running on another cpu.  A
868                  * user process (without holding the MP lock) running on
869                  * another cpu may be able to touch the page while we are
870                  * trying to remove it.  vm_page_cache() will handle this
871                  * case for us.
872                  */
873                 if (m->dirty == 0) {
874                         vm_page_test_dirty(m);
875                 } else {
876                         vm_page_dirty(m);
877                 }
878
879                 if (m->valid == 0) {
880                         /*
881                          * Invalid pages can be easily freed
882                          */
883                         vm_pageout_page_free(m);
884                         mycpu->gd_cnt.v_dfree++;
885                         --inactive_shortage;
886                 } else if (m->dirty == 0) {
887                         /*
888                          * Clean pages can be placed onto the cache queue.
889                          * This effectively frees them.
890                          */
891                         vm_page_busy(m);
892                         vm_page_cache(m);
893                         --inactive_shortage;
894                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
895                         /*
896                          * Dirty pages need to be paged out, but flushing
897                          * a page is extremely expensive verses freeing
898                          * a clean page.  Rather then artificially limiting
899                          * the number of pages we can flush, we instead give
900                          * dirty pages extra priority on the inactive queue
901                          * by forcing them to be cycled through the queue
902                          * twice before being flushed, after which the 
903                          * (now clean) page will cycle through once more
904                          * before being freed.  This significantly extends
905                          * the thrash point for a heavily loaded machine.
906                          */
907                         vm_page_flag_set(m, PG_WINATCFLS);
908                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
909                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
910                         ++vm_swapcache_inactive_heuristic;
911                 } else if (maxlaunder > 0) {
912                         /*
913                          * We always want to try to flush some dirty pages if
914                          * we encounter them, to keep the system stable.
915                          * Normally this number is small, but under extreme
916                          * pressure where there are insufficient clean pages
917                          * on the inactive queue, we may have to go all out.
918                          */
919                         int swap_pageouts_ok;
920                         struct vnode *vp = NULL;
921
922                         object = m->object;
923
924                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
925                                 swap_pageouts_ok = 1;
926                         } else {
927                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
928                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
929                                 vm_page_count_min(0));
930                                                                                 
931                         }
932
933                         /*
934                          * We don't bother paging objects that are "dead".  
935                          * Those objects are in a "rundown" state.
936                          */
937                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
938                                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
939                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
940                                 ++vm_swapcache_inactive_heuristic;
941                                 continue;
942                         }
943
944                         /*
945                          * The object is already known NOT to be dead.   It
946                          * is possible for the vget() to block the whole
947                          * pageout daemon, but the new low-memory handling
948                          * code should prevent it.
949                          *
950                          * The previous code skipped locked vnodes and, worse,
951                          * reordered pages in the queue.  This results in
952                          * completely non-deterministic operation because,
953                          * quite often, a vm_fault has initiated an I/O and
954                          * is holding a locked vnode at just the point where
955                          * the pageout daemon is woken up.
956                          *
957                          * We can't wait forever for the vnode lock, we might
958                          * deadlock due to a vn_read() getting stuck in
959                          * vm_wait while holding this vnode.  We skip the 
960                          * vnode if we can't get it in a reasonable amount
961                          * of time.
962                          *
963                          * vpfailed is used to (try to) avoid the case where
964                          * a large number of pages are associated with a
965                          * locked vnode, which could cause the pageout daemon
966                          * to stall for an excessive amount of time.
967                          */
968                         if (object->type == OBJT_VNODE) {
969                                 int flags;
970
971                                 vp = object->handle;
972                                 flags = LK_EXCLUSIVE | LK_NOOBJ;
973                                 if (vp == vpfailed)
974                                         flags |= LK_NOWAIT;
975                                 else
976                                         flags |= LK_TIMELOCK;
977                                 if (vget(vp, flags) != 0) {
978                                         vpfailed = vp;
979                                         ++pageout_lock_miss;
980                                         if (object->flags & OBJ_MIGHTBEDIRTY)
981                                                     vnodes_skipped++;
982                                         continue;
983                                 }
984
985                                 /*
986                                  * The page might have been moved to another
987                                  * queue during potential blocking in vget()
988                                  * above.  The page might have been freed and
989                                  * reused for another vnode.  The object might
990                                  * have been reused for another vnode.
991                                  */
992                                 if (m->queue != PQ_INACTIVE ||
993                                     m->object != object ||
994                                     object->handle != vp) {
995                                         if (object->flags & OBJ_MIGHTBEDIRTY)
996                                                 vnodes_skipped++;
997                                         vput(vp);
998                                         continue;
999                                 }
1000         
1001                                 /*
1002                                  * The page may have been busied during the
1003                                  * blocking in vput();  We don't move the
1004                                  * page back onto the end of the queue so that
1005                                  * statistics are more correct if we don't.
1006                                  */
1007                                 if (m->busy || (m->flags & PG_BUSY)) {
1008                                         vput(vp);
1009                                         continue;
1010                                 }
1011
1012                                 /*
1013                                  * If the page has become held it might
1014                                  * be undergoing I/O, so skip it
1015                                  */
1016                                 if (m->hold_count) {
1017                                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1018                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1019                                         ++vm_swapcache_inactive_heuristic;
1020                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1021                                                 vnodes_skipped++;
1022                                         vput(vp);
1023                                         continue;
1024                                 }
1025                         }
1026
1027                         /*
1028                          * If a page is dirty, then it is either being washed
1029                          * (but not yet cleaned) or it is still in the
1030                          * laundry.  If it is still in the laundry, then we
1031                          * start the cleaning operation. 
1032                          *
1033                          * This operation may cluster, invalidating the 'next'
1034                          * pointer.  To prevent an inordinate number of
1035                          * restarts we use our marker to remember our place.
1036                          *
1037                          * decrement inactive_shortage on success to account
1038                          * for the (future) cleaned page.  Otherwise we
1039                          * could wind up laundering or cleaning too many
1040                          * pages.
1041                          */
1042                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
1043                         if (vm_pageout_clean(m) != 0) {
1044                                 --inactive_shortage;
1045                                 --maxlaunder;
1046                         }
1047                         next = TAILQ_NEXT(&marker, pageq);
1048                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1049                         if (vp != NULL)
1050                                 vput(vp);
1051                 }
1052         }
1053
1054         /*
1055          * We want to move pages from the active queue to the inactive
1056          * queue to get the inactive queue to the inactive target.  If
1057          * we still have a page shortage from above we try to directly free
1058          * clean pages instead of moving them.
1059          *
1060          * If we do still have a shortage we keep track of the number of
1061          * pages we free or cache (recycle_count) as a measure of thrashing
1062          * between the active and inactive queues.
1063          *
1064          * If we were able to completely satisfy the free+cache targets
1065          * from the inactive pool we limit the number of pages we move
1066          * from the active pool to the inactive pool to 2x the pages we
1067          * had removed from the inactive pool (with a minimum of 1/5 the
1068          * inactive target).  If we were not able to completely satisfy
1069          * the free+cache targets we go for the whole target aggressively.
1070          *
1071          * NOTE: Both variables can end up negative.
1072          * NOTE: We are still in a critical section.
1073          */
1074         active_shortage = vmstats.v_inactive_target - vmstats.v_inactive_count;
1075         if (inactive_original_shortage < vmstats.v_inactive_target / 10)
1076                 inactive_original_shortage = vmstats.v_inactive_target / 10;
1077         if (inactive_shortage <= 0 &&
1078             active_shortage > inactive_original_shortage * 2) {
1079                 active_shortage = inactive_original_shortage * 2;
1080         }
1081
1082         pcount = vmstats.v_active_count;
1083         recycle_count = 0;
1084         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1085
1086         while ((m != NULL) && (pcount-- > 0) &&
1087                (inactive_shortage > 0 || active_shortage > 0)
1088         ) {
1089                 /*
1090                  * If the page was ripped out from under us, just stop.
1091                  */
1092                 if (m->queue != PQ_ACTIVE)
1093                         break;
1094                 next = TAILQ_NEXT(m, pageq);
1095
1096                 /*
1097                  * Don't deactivate pages that are busy.
1098                  */
1099                 if ((m->busy != 0) ||
1100                     (m->flags & PG_BUSY) ||
1101                     (m->hold_count != 0)) {
1102                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1103                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1104                         m = next;
1105                         continue;
1106                 }
1107
1108                 /*
1109                  * The count for pagedaemon pages is done after checking the
1110                  * page for eligibility...
1111                  */
1112                 mycpu->gd_cnt.v_pdpages++;
1113
1114                 /*
1115                  * Check to see "how much" the page has been used and clear
1116                  * the tracking access bits.  If the object has no references
1117                  * don't bother paying the expense.
1118                  */
1119                 actcount = 0;
1120                 if (m->object->ref_count != 0) {
1121                         if (m->flags & PG_REFERENCED)
1122                                 ++actcount;
1123                         actcount += pmap_ts_referenced(m);
1124                         if (actcount) {
1125                                 m->act_count += ACT_ADVANCE + actcount;
1126                                 if (m->act_count > ACT_MAX)
1127                                         m->act_count = ACT_MAX;
1128                         }
1129                 }
1130                 vm_page_flag_clear(m, PG_REFERENCED);
1131
1132                 /*
1133                  * actcount is only valid if the object ref_count is non-zero.
1134                  */
1135                 if (actcount && m->object->ref_count != 0) {
1136                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1137                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1138                 } else {
1139                         m->act_count -= min(m->act_count, ACT_DECLINE);
1140                         if (vm_pageout_algorithm ||
1141                             m->object->ref_count == 0 ||
1142                             m->act_count < pass + 1
1143                         ) {
1144                                 /*
1145                                  * Deactivate the page.  If we had a
1146                                  * shortage from our inactive scan try to
1147                                  * free (cache) the page instead.
1148                                  *
1149                                  * Don't just blindly cache the page if
1150                                  * we do not have a shortage from the
1151                                  * inactive scan, that could lead to
1152                                  * gigabytes being moved.
1153                                  */
1154                                 --active_shortage;
1155                                 if (inactive_shortage > 0 ||
1156                                     m->object->ref_count == 0) {
1157                                         if (inactive_shortage > 0)
1158                                                 ++recycle_count;
1159                                         vm_page_busy(m);
1160                                         vm_page_protect(m, VM_PROT_NONE);
1161                                         if (m->dirty == 0 &&
1162                                             inactive_shortage > 0) {
1163                                                 --inactive_shortage;
1164                                                 vm_page_cache(m);
1165                                         } else {
1166                                                 vm_page_deactivate(m);
1167                                                 vm_page_wakeup(m);
1168                                         }
1169                                 } else {
1170                                         vm_page_deactivate(m);
1171                                 }
1172                         } else {
1173                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1174                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1175                         }
1176                 }
1177                 m = next;
1178         }
1179
1180         /*
1181          * The number of actually free pages can drop down to v_free_reserved,
1182          * we try to build the free count back above v_free_min.  Note that
1183          * vm_paging_needed() also returns TRUE if v_free_count is not at
1184          * least v_free_min so that is the minimum we must build the free
1185          * count to.
1186          *
1187          * We use a slightly higher target to improve hysteresis,
1188          * ((v_free_target + v_free_min) / 2).  Since v_free_target
1189          * is usually the same as v_cache_min this maintains about
1190          * half the pages in the free queue as are in the cache queue,
1191          * providing pretty good pipelining for pageout operation.
1192          *
1193          * The system operator can manipulate vm.v_cache_min and
1194          * vm.v_free_target to tune the pageout demon.  Be sure
1195          * to keep vm.v_free_min < vm.v_free_target.
1196          *
1197          * Note that the original paging target is to get at least
1198          * (free_min + cache_min) into (free + cache).  The slightly
1199          * higher target will shift additional pages from cache to free
1200          * without effecting the original paging target in order to
1201          * maintain better hysteresis and not have the free count always
1202          * be dead-on v_free_min.
1203          *
1204          * NOTE: we are still in a critical section.
1205          *
1206          * Pages moved from PQ_CACHE to totally free are not counted in the
1207          * pages_freed counter.
1208          */
1209         while (vmstats.v_free_count <
1210                (vmstats.v_free_min + vmstats.v_free_target) / 2) {
1211                 /*
1212                  *
1213                  */
1214                 static int cache_rover = 0;
1215                 m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1216                 if (m == NULL)
1217                         break;
1218                 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || 
1219                     m->busy || 
1220                     m->hold_count || 
1221                     m->wire_count) {
1222 #ifdef INVARIANTS
1223                         kprintf("Warning: busy page %p found in cache\n", m);
1224 #endif
1225                         vm_page_deactivate(m);
1226                         continue;
1227                 }
1228                 KKASSERT((m->flags & PG_MAPPED) == 0);
1229                 KKASSERT(m->dirty == 0);
1230                 cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1231                 vm_pageout_page_free(m);
1232                 mycpu->gd_cnt.v_dfree++;
1233         }
1234
1235 #if !defined(NO_SWAPPING)
1236         /*
1237          * Idle process swapout -- run once per second.
1238          */
1239         if (vm_swap_idle_enabled) {
1240                 static long lsec;
1241                 if (time_second != lsec) {
1242                         vm_pageout_req_swapout |= VM_SWAP_IDLE;
1243                         vm_req_vmdaemon();
1244                         lsec = time_second;
1245                 }
1246         }
1247 #endif
1248                 
1249         /*
1250          * If we didn't get enough free pages, and we have skipped a vnode
1251          * in a writeable object, wakeup the sync daemon.  And kick swapout
1252          * if we did not get enough free pages.
1253          */
1254         if (vm_paging_target() > 0) {
1255                 if (vnodes_skipped && vm_page_count_min(0))
1256                         speedup_syncer();
1257 #if !defined(NO_SWAPPING)
1258                 if (vm_swap_enabled && vm_page_count_target()) {
1259                         vm_req_vmdaemon();
1260                         vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1261                 }
1262 #endif
1263         }
1264
1265         /*
1266          * Handle catastrophic conditions.  Under good conditions we should
1267          * be at the target, well beyond our minimum.  If we could not even
1268          * reach our minimum the system is under heavy stress.
1269          *
1270          * Determine whether we have run out of memory.  This occurs when
1271          * swap_pager_full is TRUE and the only pages left in the page
1272          * queues are dirty.  We will still likely have page shortages.
1273          *
1274          * - swap_pager_full is set if insufficient swap was
1275          *   available to satisfy a requested pageout.
1276          *
1277          * - the inactive queue is bloated (4 x size of active queue),
1278          *   meaning it is unable to get rid of dirty pages and.
1279          *
1280          * - vm_page_count_min() without counting pages recycled from the
1281          *   active queue (recycle_count) means we could not recover
1282          *   enough pages to meet bare minimum needs.  This test only
1283          *   works if the inactive queue is bloated.
1284          *
1285          * - due to a positive inactive_shortage we shifted the remaining
1286          *   dirty pages from the active queue to the inactive queue
1287          *   trying to find clean ones to free.
1288          */
1289         if (swap_pager_full && vm_page_count_min(recycle_count))
1290                 kprintf("Warning: system low on memory+swap!\n");
1291         if (swap_pager_full && vm_page_count_min(recycle_count) &&
1292             vmstats.v_inactive_count > vmstats.v_active_count * 4 &&
1293             inactive_shortage > 0) {
1294                 /*
1295                  * Kill something.
1296                  */
1297                 info.bigproc = NULL;
1298                 info.bigsize = 0;
1299                 allproc_scan(vm_pageout_scan_callback, &info);
1300                 if (info.bigproc != NULL) {
1301                         killproc(info.bigproc, "out of swap space");
1302                         info.bigproc->p_nice = PRIO_MIN;
1303                         info.bigproc->p_usched->resetpriority(
1304                                 FIRST_LWP_IN_PROC(info.bigproc));
1305                         wakeup(&vmstats.v_free_count);
1306                         PRELE(info.bigproc);
1307                 }
1308         }
1309         return(inactive_shortage);
1310 }
1311
1312 /*
1313  * The caller must hold vm_token and proc_token.
1314  */
1315 static int
1316 vm_pageout_scan_callback(struct proc *p, void *data)
1317 {
1318         struct vm_pageout_scan_info *info = data;
1319         vm_offset_t size;
1320
1321         /*
1322          * Never kill system processes or init.  If we have configured swap
1323          * then try to avoid killing low-numbered pids.
1324          */
1325         if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1326             ((p->p_pid < 48) && (vm_swap_size != 0))) {
1327                 return (0);
1328         }
1329
1330         /*
1331          * if the process is in a non-running type state,
1332          * don't touch it.
1333          */
1334         if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1335                 return (0);
1336
1337         /*
1338          * Get the approximate process size.  Note that anonymous pages
1339          * with backing swap will be counted twice, but there should not
1340          * be too many such pages due to the stress the VM system is
1341          * under at this point.
1342          */
1343         size = vmspace_anonymous_count(p->p_vmspace) +
1344                 vmspace_swap_count(p->p_vmspace);
1345
1346         /*
1347          * If the this process is bigger than the biggest one
1348          * remember it.
1349          */
1350         if (info->bigsize < size) {
1351                 if (info->bigproc)
1352                         PRELE(info->bigproc);
1353                 PHOLD(p);
1354                 info->bigproc = p;
1355                 info->bigsize = size;
1356         }
1357         return(0);
1358 }
1359
1360 /*
1361  * This routine tries to maintain the pseudo LRU active queue,
1362  * so that during long periods of time where there is no paging,
1363  * that some statistic accumulation still occurs.  This code
1364  * helps the situation where paging just starts to occur.
1365  *
1366  * The caller must hold vm_token.
1367  */
1368 static void
1369 vm_pageout_page_stats(void)
1370 {
1371         vm_page_t m,next;
1372         int pcount,tpcount;             /* Number of pages to check */
1373         static int fullintervalcount = 0;
1374         int page_shortage;
1375
1376         page_shortage = 
1377             (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1378             (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1379
1380         if (page_shortage <= 0)
1381                 return;
1382
1383         pcount = vmstats.v_active_count;
1384         fullintervalcount += vm_pageout_stats_interval;
1385         if (fullintervalcount < vm_pageout_full_stats_interval) {
1386                 tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1387                 if (pcount > tpcount)
1388                         pcount = tpcount;
1389         } else {
1390                 fullintervalcount = 0;
1391         }
1392
1393         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1394         while ((m != NULL) && (pcount-- > 0)) {
1395                 int actcount;
1396
1397                 if (m->queue != PQ_ACTIVE) {
1398                         break;
1399                 }
1400
1401                 next = TAILQ_NEXT(m, pageq);
1402                 /*
1403                  * Don't deactivate pages that are busy.
1404                  */
1405                 if ((m->busy != 0) ||
1406                     (m->flags & PG_BUSY) ||
1407                     (m->hold_count != 0)) {
1408                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1409                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1410                         m = next;
1411                         continue;
1412                 }
1413
1414                 actcount = 0;
1415                 if (m->flags & PG_REFERENCED) {
1416                         vm_page_flag_clear(m, PG_REFERENCED);
1417                         actcount += 1;
1418                 }
1419
1420                 actcount += pmap_ts_referenced(m);
1421                 if (actcount) {
1422                         m->act_count += ACT_ADVANCE + actcount;
1423                         if (m->act_count > ACT_MAX)
1424                                 m->act_count = ACT_MAX;
1425                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1426                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1427                 } else {
1428                         if (m->act_count == 0) {
1429                                 /*
1430                                  * We turn off page access, so that we have
1431                                  * more accurate RSS stats.  We don't do this
1432                                  * in the normal page deactivation when the
1433                                  * system is loaded VM wise, because the
1434                                  * cost of the large number of page protect
1435                                  * operations would be higher than the value
1436                                  * of doing the operation.
1437                                  */
1438                                 vm_page_busy(m);
1439                                 vm_page_protect(m, VM_PROT_NONE);
1440                                 vm_page_deactivate(m);
1441                                 vm_page_wakeup(m);
1442                         } else {
1443                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1444                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1445                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1446                         }
1447                 }
1448
1449                 m = next;
1450         }
1451 }
1452
1453 /*
1454  * The caller must hold vm_token.
1455  */
1456 static int
1457 vm_pageout_free_page_calc(vm_size_t count)
1458 {
1459         if (count < vmstats.v_page_count)
1460                  return 0;
1461         /*
1462          * free_reserved needs to include enough for the largest swap pager
1463          * structures plus enough for any pv_entry structs when paging.
1464          */
1465         if (vmstats.v_page_count > 1024)
1466                 vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1467         else
1468                 vmstats.v_free_min = 4;
1469         vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1470                 vmstats.v_interrupt_free_min;
1471         vmstats.v_free_reserved = vm_pageout_page_count +
1472                 vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1473         vmstats.v_free_severe = vmstats.v_free_min / 2;
1474         vmstats.v_free_min += vmstats.v_free_reserved;
1475         vmstats.v_free_severe += vmstats.v_free_reserved;
1476         return 1;
1477 }
1478
1479
1480 /*
1481  * vm_pageout is the high level pageout daemon.
1482  *
1483  * No requirements.
1484  */
1485 static void
1486 vm_pageout_thread(void)
1487 {
1488         int pass;
1489         int inactive_shortage;
1490
1491         /*
1492          * Permanently hold vm_token.
1493          */
1494         lwkt_gettoken(&vm_token);
1495
1496         /*
1497          * Initialize some paging parameters.
1498          */
1499         curthread->td_flags |= TDF_SYSTHREAD;
1500
1501         vmstats.v_interrupt_free_min = 2;
1502         if (vmstats.v_page_count < 2000)
1503                 vm_pageout_page_count = 8;
1504
1505         vm_pageout_free_page_calc(vmstats.v_page_count);
1506
1507         /*
1508          * v_free_target and v_cache_min control pageout hysteresis.  Note
1509          * that these are more a measure of the VM cache queue hysteresis
1510          * then the VM free queue.  Specifically, v_free_target is the
1511          * high water mark (free+cache pages).
1512          *
1513          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1514          * low water mark, while v_free_min is the stop.  v_cache_min must
1515          * be big enough to handle memory needs while the pageout daemon
1516          * is signalled and run to free more pages.
1517          */
1518         if (vmstats.v_free_count > 6144)
1519                 vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1520         else
1521                 vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1522
1523         /*
1524          * NOTE: With the new buffer cache b_act_count we want the default
1525          *       inactive target to be a percentage of available memory.
1526          *
1527          *       The inactive target essentially determines the minimum
1528          *       number of 'temporary' pages capable of caching one-time-use
1529          *       files when the VM system is otherwise full of pages
1530          *       belonging to multi-time-use files or active program data.
1531          *
1532          * NOTE: The inactive target is aggressively persued only if the
1533          *       inactive queue becomes too small.  If the inactive queue
1534          *       is large enough to satisfy page movement to free+cache
1535          *       then it is repopulated more slowly from the active queue.
1536          *       This allows a general inactive_target default to be set.
1537          *
1538          *       There is an issue here for processes which sit mostly idle
1539          *       'overnight', such as sshd, tcsh, and X.  Any movement from
1540          *       the active queue will eventually cause such pages to
1541          *       recycle eventually causing a lot of paging in the morning.
1542          *       To reduce the incidence of this pages cycled out of the
1543          *       buffer cache are moved directly to the inactive queue if
1544          *       they were only used once or twice.
1545          *
1546          *       The vfs.vm_cycle_point sysctl can be used to adjust this.
1547          *       Increasing the value (up to 64) increases the number of
1548          *       buffer recyclements which go directly to the inactive queue.
1549          */
1550         if (vmstats.v_free_count > 2048) {
1551                 vmstats.v_cache_min = vmstats.v_free_target;
1552                 vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1553         } else {
1554                 vmstats.v_cache_min = 0;
1555                 vmstats.v_cache_max = 0;
1556         }
1557         vmstats.v_inactive_target = vmstats.v_free_count / 4;
1558
1559         /* XXX does not really belong here */
1560         if (vm_page_max_wired == 0)
1561                 vm_page_max_wired = vmstats.v_free_count / 3;
1562
1563         if (vm_pageout_stats_max == 0)
1564                 vm_pageout_stats_max = vmstats.v_free_target;
1565
1566         /*
1567          * Set interval in seconds for stats scan.
1568          */
1569         if (vm_pageout_stats_interval == 0)
1570                 vm_pageout_stats_interval = 5;
1571         if (vm_pageout_full_stats_interval == 0)
1572                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1573         
1574
1575         /*
1576          * Set maximum free per pass
1577          */
1578         if (vm_pageout_stats_free_max == 0)
1579                 vm_pageout_stats_free_max = 5;
1580
1581         swap_pager_swap_init();
1582         pass = 0;
1583
1584         /*
1585          * The pageout daemon is never done, so loop forever.
1586          */
1587         while (TRUE) {
1588                 int error;
1589
1590                 /*
1591                  * Wait for an action request.  If we timeout check to
1592                  * see if paging is needed (in case the normal wakeup
1593                  * code raced us).
1594                  */
1595                 if (vm_pages_needed == 0) {
1596                         error = tsleep(&vm_pages_needed,
1597                                        0, "psleep",
1598                                        vm_pageout_stats_interval * hz);
1599                         if (error &&
1600                             vm_paging_needed() == 0 &&
1601                             vm_pages_needed == 0) {
1602                                 vm_pageout_page_stats();
1603                                 continue;
1604                         }
1605                         vm_pages_needed = 1;
1606                 }
1607
1608                 mycpu->gd_cnt.v_pdwakeups++;
1609
1610                 /*
1611                  * Scan for pageout.  Try to avoid thrashing the system
1612                  * with activity.
1613                  */
1614                 inactive_shortage = vm_pageout_scan(pass);
1615                 if (inactive_shortage > 0) {
1616                         ++pass;
1617                         if (swap_pager_full) {
1618                                 /*
1619                                  * Running out of memory, catastrophic back-off
1620                                  * to one-second intervals.
1621                                  */
1622                                 tsleep(&vm_pages_needed, 0, "pdelay", hz);
1623                         } else if (pass < 10 && vm_pages_needed > 1) {
1624                                 /*
1625                                  * Normal operation, additional processes
1626                                  * have already kicked us.  Retry immediately.
1627                                  */
1628                         } else if (pass < 10) {
1629                                 /*
1630                                  * Normal operation, fewer processes.  Delay
1631                                  * a bit but allow wakeups.
1632                                  */
1633                                 vm_pages_needed = 0;
1634                                 tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1635                                 vm_pages_needed = 1;
1636                         } else {
1637                                 /*
1638                                  * We've taken too many passes, forced delay.
1639                                  */
1640                                 tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1641                         }
1642                 } else {
1643                         /*
1644                          * Interlocked wakeup of waiters (non-optional)
1645                          */
1646                         pass = 0;
1647                         if (vm_pages_needed && !vm_page_count_min(0)) {
1648                                 wakeup(&vmstats.v_free_count);
1649                                 vm_pages_needed = 0;
1650                         }
1651                 }
1652         }
1653 }
1654
1655 static struct kproc_desc page_kp = {
1656         "pagedaemon",
1657         vm_pageout_thread,
1658         &pagethread
1659 };
1660 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
1661
1662
1663 /*
1664  * Called after allocating a page out of the cache or free queue
1665  * to possibly wake the pagedaemon up to replentish our supply.
1666  *
1667  * We try to generate some hysteresis by waking the pagedaemon up
1668  * when our free+cache pages go below the free_min+cache_min level.
1669  * The pagedaemon tries to get the count back up to at least the
1670  * minimum, and through to the target level if possible.
1671  *
1672  * If the pagedaemon is already active bump vm_pages_needed as a hint
1673  * that there are even more requests pending.
1674  *
1675  * SMP races ok?
1676  * No requirements.
1677  */
1678 void
1679 pagedaemon_wakeup(void)
1680 {
1681         if (vm_paging_needed() && curthread != pagethread) {
1682                 if (vm_pages_needed == 0) {
1683                         vm_pages_needed = 1;    /* SMP race ok */
1684                         wakeup(&vm_pages_needed);
1685                 } else if (vm_page_count_min(0)) {
1686                         ++vm_pages_needed;      /* SMP race ok */
1687                 }
1688         }
1689 }
1690
1691 #if !defined(NO_SWAPPING)
1692
1693 /*
1694  * SMP races ok?
1695  * No requirements.
1696  */
1697 static void
1698 vm_req_vmdaemon(void)
1699 {
1700         static int lastrun = 0;
1701
1702         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1703                 wakeup(&vm_daemon_needed);
1704                 lastrun = ticks;
1705         }
1706 }
1707
1708 static int vm_daemon_callback(struct proc *p, void *data __unused);
1709
1710 /*
1711  * No requirements.
1712  */
1713 static void
1714 vm_daemon(void)
1715 {
1716         /*
1717          * Permanently hold vm_token.
1718          */
1719         lwkt_gettoken(&vm_token);
1720
1721         while (TRUE) {
1722                 tsleep(&vm_daemon_needed, 0, "psleep", 0);
1723                 if (vm_pageout_req_swapout) {
1724                         swapout_procs(vm_pageout_req_swapout);
1725                         vm_pageout_req_swapout = 0;
1726                 }
1727                 /*
1728                  * scan the processes for exceeding their rlimits or if
1729                  * process is swapped out -- deactivate pages
1730                  */
1731                 allproc_scan(vm_daemon_callback, NULL);
1732         }
1733 }
1734
1735 /*
1736  * Caller must hold vm_token and proc_token.
1737  */
1738 static int
1739 vm_daemon_callback(struct proc *p, void *data __unused)
1740 {
1741         vm_pindex_t limit, size;
1742
1743         /*
1744          * if this is a system process or if we have already
1745          * looked at this process, skip it.
1746          */
1747         if (p->p_flag & (P_SYSTEM | P_WEXIT))
1748                 return (0);
1749
1750         /*
1751          * if the process is in a non-running type state,
1752          * don't touch it.
1753          */
1754         if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1755                 return (0);
1756
1757         /*
1758          * get a limit
1759          */
1760         limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1761                                 p->p_rlimit[RLIMIT_RSS].rlim_max));
1762
1763         /*
1764          * let processes that are swapped out really be
1765          * swapped out.  Set the limit to nothing to get as
1766          * many pages out to swap as possible.
1767          */
1768         if (p->p_flag & P_SWAPPEDOUT)
1769                 limit = 0;
1770
1771         size = vmspace_resident_count(p->p_vmspace);
1772         if (limit >= 0 && size >= limit) {
1773                 vm_pageout_map_deactivate_pages(
1774                     &p->p_vmspace->vm_map, limit);
1775         }
1776         return (0);
1777 }
1778
1779 #endif