Merge branch 'vendor/LIBARCHIVE'
[dragonfly.git] / sys / dev / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define CTX_LRI_HEADER_0                0x01
160 #define CTX_CONTEXT_CONTROL             0x02
161 #define CTX_RING_HEAD                   0x04
162 #define CTX_RING_TAIL                   0x06
163 #define CTX_RING_BUFFER_START           0x08
164 #define CTX_RING_BUFFER_CONTROL         0x0a
165 #define CTX_BB_HEAD_U                   0x0c
166 #define CTX_BB_HEAD_L                   0x0e
167 #define CTX_BB_STATE                    0x10
168 #define CTX_SECOND_BB_HEAD_U            0x12
169 #define CTX_SECOND_BB_HEAD_L            0x14
170 #define CTX_SECOND_BB_STATE             0x16
171 #define CTX_BB_PER_CTX_PTR              0x18
172 #define CTX_RCS_INDIRECT_CTX            0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
174 #define CTX_LRI_HEADER_1                0x21
175 #define CTX_CTX_TIMESTAMP               0x22
176 #define CTX_PDP3_UDW                    0x24
177 #define CTX_PDP3_LDW                    0x26
178 #define CTX_PDP2_UDW                    0x28
179 #define CTX_PDP2_LDW                    0x2a
180 #define CTX_PDP1_UDW                    0x2c
181 #define CTX_PDP1_LDW                    0x2e
182 #define CTX_PDP0_UDW                    0x30
183 #define CTX_PDP0_LDW                    0x32
184 #define CTX_LRI_HEADER_2                0x41
185 #define CTX_R_PWR_CLK_STATE             0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
195         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
196         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 }
199
200 enum {
201         ADVANCED_CONTEXT = 0,
202         LEGACY_CONTEXT,
203         ADVANCED_AD_CONTEXT,
204         LEGACY_64B_CONTEXT
205 };
206 #define GEN8_CTX_MODE_SHIFT 3
207 enum {
208         FAULT_AND_HANG = 0,
209         FAULT_AND_HALT, /* Debug only */
210         FAULT_AND_STREAM,
211         FAULT_AND_CONTINUE /* Unsupported */
212 };
213 #define GEN8_CTX_ID_SHIFT 32
214 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
215
216 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
217
218 /**
219  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
220  * @dev: DRM device.
221  * @enable_execlists: value of i915.enable_execlists module parameter.
222  *
223  * Only certain platforms support Execlists (the prerequisites being
224  * support for Logical Ring Contexts and Aliasing PPGTT or better).
225  *
226  * Return: 1 if Execlists is supported and has to be enabled.
227  */
228 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
229 {
230         WARN_ON(i915.enable_ppgtt == -1);
231
232         if (INTEL_INFO(dev)->gen >= 9)
233                 return 1;
234
235         if (enable_execlists == 0)
236                 return 0;
237
238         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
239             i915.use_mmio_flip >= 0)
240                 return 1;
241
242         return 0;
243 }
244
245 /**
246  * intel_execlists_ctx_id() - get the Execlists Context ID
247  * @ctx_obj: Logical Ring Context backing object.
248  *
249  * Do not confuse with ctx->id! Unfortunately we have a name overload
250  * here: the old context ID we pass to userspace as a handler so that
251  * they can refer to a context, and the new context ID we pass to the
252  * ELSP so that the GPU can inform us of the context status via
253  * interrupts.
254  *
255  * Return: 20-bits globally unique context ID.
256  */
257 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
258 {
259         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
260
261         /* LRCA is required to be 4K aligned so the more significant 20 bits
262          * are globally unique */
263         return lrca >> 12;
264 }
265
266 static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_request *rq)
267 {
268         struct intel_engine_cs *ring = rq->ring;
269         struct drm_device *dev = ring->dev;
270         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
271         uint64_t desc;
272         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
273
274         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
275
276         desc = GEN8_CTX_VALID;
277         desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
278         if (IS_GEN8(ctx_obj->base.dev))
279                 desc |= GEN8_CTX_L3LLC_COHERENT;
280         desc |= GEN8_CTX_PRIVILEGE;
281         desc |= lrca;
282         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
283
284         /* TODO: WaDisableLiteRestore when we start using semaphore
285          * signalling between Command Streamers */
286         /* desc |= GEN8_CTX_FORCE_RESTORE; */
287
288         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
289         if (IS_GEN9(dev) &&
290             INTEL_REVID(dev) <= SKL_REVID_B0 &&
291             (ring->id == BCS || ring->id == VCS ||
292             ring->id == VECS || ring->id == VCS2))
293                 desc |= GEN8_CTX_FORCE_RESTORE;
294
295         return desc;
296 }
297
298 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
299                                  struct drm_i915_gem_request *rq1)
300 {
301
302         struct intel_engine_cs *ring = rq0->ring;
303         struct drm_device *dev = ring->dev;
304         struct drm_i915_private *dev_priv = dev->dev_private;
305         uint64_t desc[2];
306
307         if (rq1) {
308                 desc[1] = execlists_ctx_descriptor(rq1);
309                 rq1->elsp_submitted++;
310         } else {
311                 desc[1] = 0;
312         }
313
314         desc[0] = execlists_ctx_descriptor(rq0);
315         rq0->elsp_submitted++;
316
317         /* You must always write both descriptors in the order below. */
318         lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
319         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
320         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
321         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
322
323         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
324         /* The context is automatically loaded after the following */
325         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
326
327         /* ELSP is a wo register, use another nearby reg for posting */
328         POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
329         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
330         lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
331 }
332
333 static int execlists_update_context(struct drm_i915_gem_request *rq)
334 {
335         struct intel_engine_cs *ring = rq->ring;
336         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
337         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
338         struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
339         struct vm_page *page;
340         uint32_t *reg_state;
341
342         BUG_ON(!ctx_obj);
343         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
344         WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
345
346         page = i915_gem_object_get_page(ctx_obj, 1);
347         reg_state = kmap_atomic(page);
348
349         reg_state[CTX_RING_TAIL+1] = rq->tail;
350         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
351
352         /* True PPGTT with dynamic page allocation: update PDP registers and
353          * point the unallocated PDPs to the scratch page
354          */
355         if (ppgtt) {
356                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
357                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
358                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
359                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
360         }
361
362         kunmap_atomic(reg_state);
363
364         return 0;
365 }
366
367 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
368                                       struct drm_i915_gem_request *rq1)
369 {
370         execlists_update_context(rq0);
371
372         if (rq1)
373                 execlists_update_context(rq1);
374
375         execlists_elsp_write(rq0, rq1);
376 }
377
378 static void execlists_context_unqueue(struct intel_engine_cs *ring)
379 {
380         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
381         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
382
383         assert_spin_locked(&ring->execlist_lock);
384
385         /*
386          * If irqs are not active generate a warning as batches that finish
387          * without the irqs may get lost and a GPU Hang may occur.
388          */
389         WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
390
391         if (list_empty(&ring->execlist_queue))
392                 return;
393
394         /* Try to read in pairs */
395         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
396                                  execlist_link) {
397                 if (!req0) {
398                         req0 = cursor;
399                 } else if (req0->ctx == cursor->ctx) {
400                         /* Same ctx: ignore first request, as second request
401                          * will update tail past first request's workload */
402                         cursor->elsp_submitted = req0->elsp_submitted;
403                         list_del(&req0->execlist_link);
404                         list_add_tail(&req0->execlist_link,
405                                 &ring->execlist_retired_req_list);
406                         req0 = cursor;
407                 } else {
408                         req1 = cursor;
409                         break;
410                 }
411         }
412
413         if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
414                 /*
415                  * WaIdleLiteRestore: make sure we never cause a lite
416                  * restore with HEAD==TAIL
417                  */
418                 if (req0->elsp_submitted) {
419                         /*
420                          * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
421                          * as we resubmit the request. See gen8_emit_request()
422                          * for where we prepare the padding after the end of the
423                          * request.
424                          */
425                         struct intel_ringbuffer *ringbuf;
426
427                         ringbuf = req0->ctx->engine[ring->id].ringbuf;
428                         req0->tail += 8;
429                         req0->tail &= ringbuf->size - 1;
430                 }
431         }
432
433         WARN_ON(req1 && req1->elsp_submitted);
434
435         execlists_submit_requests(req0, req1);
436 }
437
438 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
439                                            u32 request_id)
440 {
441         struct drm_i915_gem_request *head_req;
442
443         assert_spin_locked(&ring->execlist_lock);
444
445         head_req = list_first_entry_or_null(&ring->execlist_queue,
446                                             struct drm_i915_gem_request,
447                                             execlist_link);
448
449         if (head_req != NULL) {
450                 struct drm_i915_gem_object *ctx_obj =
451                                 head_req->ctx->engine[ring->id].state;
452                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
453                         WARN(head_req->elsp_submitted == 0,
454                              "Never submitted head request\n");
455
456                         if (--head_req->elsp_submitted <= 0) {
457                                 list_del(&head_req->execlist_link);
458                                 list_add_tail(&head_req->execlist_link,
459                                         &ring->execlist_retired_req_list);
460                                 return true;
461                         }
462                 }
463         }
464
465         return false;
466 }
467
468 /**
469  * intel_lrc_irq_handler() - handle Context Switch interrupts
470  * @ring: Engine Command Streamer to handle.
471  *
472  * Check the unread Context Status Buffers and manage the submission of new
473  * contexts to the ELSP accordingly.
474  */
475 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
476 {
477         struct drm_i915_private *dev_priv = ring->dev->dev_private;
478         u32 status_pointer;
479         u8 read_pointer;
480         u8 write_pointer;
481         u32 status;
482         u32 status_id;
483         u32 submit_contexts = 0;
484
485         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
486
487         read_pointer = ring->next_context_status_buffer;
488         write_pointer = status_pointer & GEN8_CSB_PTR_MASK;
489         if (read_pointer > write_pointer)
490                 write_pointer += GEN8_CSB_ENTRIES;
491
492         lockmgr(&ring->execlist_lock, LK_EXCLUSIVE);
493
494         while (read_pointer < write_pointer) {
495                 read_pointer++;
496                 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
497                                 (read_pointer % GEN8_CSB_ENTRIES) * 8);
498                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
499                                 (read_pointer % GEN8_CSB_ENTRIES) * 8 + 4);
500
501                 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
502                         continue;
503
504                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
505                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
506                                 if (execlists_check_remove_request(ring, status_id))
507                                         WARN(1, "Lite Restored request removed from queue\n");
508                         } else
509                                 WARN(1, "Preemption without Lite Restore\n");
510                 }
511
512                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
513                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
514                         if (execlists_check_remove_request(ring, status_id))
515                                 submit_contexts++;
516                 }
517         }
518
519         if (submit_contexts != 0)
520                 execlists_context_unqueue(ring);
521
522         lockmgr(&ring->execlist_lock, LK_RELEASE);
523
524         WARN(submit_contexts > 2, "More than two context complete events?\n");
525         ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
526
527         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
528                    _MASKED_FIELD(GEN8_CSB_PTR_MASK << 8,
529                                  ((u32)ring->next_context_status_buffer &
530                                   GEN8_CSB_PTR_MASK) << 8));
531 }
532
533 static int execlists_context_queue(struct drm_i915_gem_request *request)
534 {
535         struct intel_engine_cs *ring = request->ring;
536         struct drm_i915_gem_request *cursor;
537         int num_elements = 0;
538
539         if (request->ctx != ring->default_context)
540                 intel_lr_context_pin(request);
541
542         i915_gem_request_reference(request);
543
544         request->tail = request->ringbuf->tail;
545
546         lockmgr(&ring->execlist_lock, LK_EXCLUSIVE);
547
548         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
549                 if (++num_elements > 2)
550                         break;
551
552         if (num_elements > 2) {
553                 struct drm_i915_gem_request *tail_req;
554
555                 tail_req = list_last_entry(&ring->execlist_queue,
556                                            struct drm_i915_gem_request,
557                                            execlist_link);
558
559                 if (request->ctx == tail_req->ctx) {
560                         WARN(tail_req->elsp_submitted != 0,
561                                 "More than 2 already-submitted reqs queued\n");
562                         list_del(&tail_req->execlist_link);
563                         list_add_tail(&tail_req->execlist_link,
564                                 &ring->execlist_retired_req_list);
565                 }
566         }
567
568         list_add_tail(&request->execlist_link, &ring->execlist_queue);
569         if (num_elements == 0)
570                 execlists_context_unqueue(ring);
571
572         lockmgr(&ring->execlist_lock, LK_RELEASE);
573
574         return 0;
575 }
576
577 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
578 {
579         struct intel_engine_cs *ring = req->ring;
580         uint32_t flush_domains;
581         int ret;
582
583         flush_domains = 0;
584         if (ring->gpu_caches_dirty)
585                 flush_domains = I915_GEM_GPU_DOMAINS;
586
587         ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
588         if (ret)
589                 return ret;
590
591         ring->gpu_caches_dirty = false;
592         return 0;
593 }
594
595 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
596                                  struct list_head *vmas)
597 {
598         const unsigned other_rings = ~intel_ring_flag(req->ring);
599         struct i915_vma *vma;
600         uint32_t flush_domains = 0;
601         bool flush_chipset = false;
602         int ret;
603
604         list_for_each_entry(vma, vmas, exec_list) {
605                 struct drm_i915_gem_object *obj = vma->obj;
606
607                 if (obj->active & other_rings) {
608                         ret = i915_gem_object_sync(obj, req->ring, &req);
609                         if (ret)
610                                 return ret;
611                 }
612
613                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
614                         flush_chipset |= i915_gem_clflush_object(obj, false);
615
616                 flush_domains |= obj->base.write_domain;
617         }
618
619         if (flush_domains & I915_GEM_DOMAIN_GTT)
620                 wmb();
621
622         /* Unconditionally invalidate gpu caches and ensure that we do flush
623          * any residual writes from the previous batch.
624          */
625         return logical_ring_invalidate_all_caches(req);
626 }
627
628 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
629 {
630         int ret;
631
632         request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
633
634         if (request->ctx != request->ring->default_context) {
635                 ret = intel_lr_context_pin(request);
636                 if (ret)
637                         return ret;
638         }
639
640         return 0;
641 }
642
643 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
644                                        int bytes)
645 {
646         struct intel_ringbuffer *ringbuf = req->ringbuf;
647         struct intel_engine_cs *ring = req->ring;
648         struct drm_i915_gem_request *target;
649         unsigned space;
650         int ret;
651
652         if (intel_ring_space(ringbuf) >= bytes)
653                 return 0;
654
655         /* The whole point of reserving space is to not wait! */
656         WARN_ON(ringbuf->reserved_in_use);
657
658         list_for_each_entry(target, &ring->request_list, list) {
659                 /*
660                  * The request queue is per-engine, so can contain requests
661                  * from multiple ringbuffers. Here, we must ignore any that
662                  * aren't from the ringbuffer we're considering.
663                  */
664                 if (target->ringbuf != ringbuf)
665                         continue;
666
667                 /* Would completion of this request free enough space? */
668                 space = __intel_ring_space(target->postfix, ringbuf->tail,
669                                            ringbuf->size);
670                 if (space >= bytes)
671                         break;
672         }
673
674         if (WARN_ON(&target->list == &ring->request_list))
675                 return -ENOSPC;
676
677         ret = i915_wait_request(target);
678         if (ret)
679                 return ret;
680
681         ringbuf->space = space;
682         return 0;
683 }
684
685 /*
686  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
687  * @request: Request to advance the logical ringbuffer of.
688  *
689  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
690  * really happens during submission is that the context and current tail will be placed
691  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
692  * point, the tail *inside* the context is updated and the ELSP written to.
693  */
694 static void
695 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
696 {
697         struct intel_engine_cs *ring = request->ring;
698
699         intel_logical_ring_advance(request->ringbuf);
700
701         if (intel_ring_stopped(ring))
702                 return;
703
704         execlists_context_queue(request);
705 }
706
707 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
708 {
709         uint32_t __iomem *virt;
710         int rem = ringbuf->size - ringbuf->tail;
711
712         virt = (uint32_t *)(ringbuf->virtual_start + ringbuf->tail);
713         rem /= 4;
714         while (rem--)
715                 iowrite32(MI_NOOP, virt++);
716
717         ringbuf->tail = 0;
718         intel_ring_update_space(ringbuf);
719 }
720
721 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
722 {
723         struct intel_ringbuffer *ringbuf = req->ringbuf;
724         int remain_usable = ringbuf->effective_size - ringbuf->tail;
725         int remain_actual = ringbuf->size - ringbuf->tail;
726         int ret, total_bytes, wait_bytes = 0;
727         bool need_wrap = false;
728
729         if (ringbuf->reserved_in_use)
730                 total_bytes = bytes;
731         else
732                 total_bytes = bytes + ringbuf->reserved_size;
733
734         if (unlikely(bytes > remain_usable)) {
735                 /*
736                  * Not enough space for the basic request. So need to flush
737                  * out the remainder and then wait for base + reserved.
738                  */
739                 wait_bytes = remain_actual + total_bytes;
740                 need_wrap = true;
741         } else {
742                 if (unlikely(total_bytes > remain_usable)) {
743                         /*
744                          * The base request will fit but the reserved space
745                          * falls off the end. So only need to to wait for the
746                          * reserved size after flushing out the remainder.
747                          */
748                         wait_bytes = remain_actual + ringbuf->reserved_size;
749                         need_wrap = true;
750                 } else if (total_bytes > ringbuf->space) {
751                         /* No wrapping required, just waiting. */
752                         wait_bytes = total_bytes;
753                 }
754         }
755
756         if (wait_bytes) {
757                 ret = logical_ring_wait_for_space(req, wait_bytes);
758                 if (unlikely(ret))
759                         return ret;
760
761                 if (need_wrap)
762                         __wrap_ring_buffer(ringbuf);
763         }
764
765         return 0;
766 }
767
768 /**
769  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
770  *
771  * @request: The request to start some new work for
772  * @ctx: Logical ring context whose ringbuffer is being prepared.
773  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
774  *
775  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
776  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
777  * and also preallocates a request (every workload submission is still mediated through
778  * requests, same as it did with legacy ringbuffer submission).
779  *
780  * Return: non-zero if the ringbuffer is not ready to be written to.
781  */
782 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
783 {
784         struct drm_i915_private *dev_priv;
785         int ret;
786
787         WARN_ON(req == NULL);
788         dev_priv = req->ring->dev->dev_private;
789
790         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
791                                    dev_priv->mm.interruptible);
792         if (ret)
793                 return ret;
794
795         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
796         if (ret)
797                 return ret;
798
799         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
800         return 0;
801 }
802
803 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
804 {
805         /*
806          * The first call merely notes the reserve request and is common for
807          * all back ends. The subsequent localised _begin() call actually
808          * ensures that the reservation is available. Without the begin, if
809          * the request creator immediately submitted the request without
810          * adding any commands to it then there might not actually be
811          * sufficient room for the submission commands.
812          */
813         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
814
815         return intel_logical_ring_begin(request, 0);
816 }
817
818 /**
819  * execlists_submission() - submit a batchbuffer for execution, Execlists style
820  * @dev: DRM device.
821  * @file: DRM file.
822  * @ring: Engine Command Streamer to submit to.
823  * @ctx: Context to employ for this submission.
824  * @args: execbuffer call arguments.
825  * @vmas: list of vmas.
826  * @batch_obj: the batchbuffer to submit.
827  * @exec_start: batchbuffer start virtual address pointer.
828  * @dispatch_flags: translated execbuffer call flags.
829  *
830  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
831  * away the submission details of the execbuffer ioctl call.
832  *
833  * Return: non-zero if the submission fails.
834  */
835 int intel_execlists_submission(struct i915_execbuffer_params *params,
836                                struct drm_i915_gem_execbuffer2 *args,
837                                struct list_head *vmas)
838 {
839         struct drm_device       *dev = params->dev;
840         struct intel_engine_cs  *ring = params->ring;
841         struct drm_i915_private *dev_priv = dev->dev_private;
842         struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
843         u64 exec_start;
844         int instp_mode;
845         u32 instp_mask;
846         int ret;
847
848         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
849         instp_mask = I915_EXEC_CONSTANTS_MASK;
850         switch (instp_mode) {
851         case I915_EXEC_CONSTANTS_REL_GENERAL:
852         case I915_EXEC_CONSTANTS_ABSOLUTE:
853         case I915_EXEC_CONSTANTS_REL_SURFACE:
854                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
855                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
856                         return -EINVAL;
857                 }
858
859                 if (instp_mode != dev_priv->relative_constants_mode) {
860                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
861                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
862                                 return -EINVAL;
863                         }
864
865                         /* The HW changed the meaning on this bit on gen6 */
866                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
867                 }
868                 break;
869         default:
870                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
871                 return -EINVAL;
872         }
873
874         if (args->num_cliprects != 0) {
875                 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
876                 return -EINVAL;
877         } else {
878                 if (args->DR4 == 0xffffffff) {
879                         DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
880                         args->DR4 = 0;
881                 }
882
883                 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
884                         DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
885                         return -EINVAL;
886                 }
887         }
888
889         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
890                 DRM_DEBUG("sol reset is gen7 only\n");
891                 return -EINVAL;
892         }
893
894         ret = execlists_move_to_gpu(params->request, vmas);
895         if (ret)
896                 return ret;
897
898         if (ring == &dev_priv->ring[RCS] &&
899             instp_mode != dev_priv->relative_constants_mode) {
900                 ret = intel_logical_ring_begin(params->request, 4);
901                 if (ret)
902                         return ret;
903
904                 intel_logical_ring_emit(ringbuf, MI_NOOP);
905                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
906                 intel_logical_ring_emit(ringbuf, INSTPM);
907                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
908                 intel_logical_ring_advance(ringbuf);
909
910                 dev_priv->relative_constants_mode = instp_mode;
911         }
912
913         exec_start = params->batch_obj_vm_offset +
914                      args->batch_start_offset;
915
916         ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
917         if (ret)
918                 return ret;
919
920         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
921
922         i915_gem_execbuffer_move_to_active(vmas, params->request);
923         i915_gem_execbuffer_retire_commands(params);
924
925         return 0;
926 }
927
928 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
929 {
930         struct drm_i915_gem_request *req, *tmp;
931         struct list_head retired_list;
932
933         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
934         if (list_empty(&ring->execlist_retired_req_list))
935                 return;
936
937         INIT_LIST_HEAD(&retired_list);
938         lockmgr(&ring->execlist_lock, LK_EXCLUSIVE);
939         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
940         lockmgr(&ring->execlist_lock, LK_RELEASE);
941
942         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
943                 struct intel_context *ctx = req->ctx;
944                 struct drm_i915_gem_object *ctx_obj =
945                                 ctx->engine[ring->id].state;
946
947                 if (ctx_obj && (ctx != ring->default_context))
948                         intel_lr_context_unpin(req);
949                 list_del(&req->execlist_link);
950                 i915_gem_request_unreference(req);
951         }
952 }
953
954 void intel_logical_ring_stop(struct intel_engine_cs *ring)
955 {
956         struct drm_i915_private *dev_priv = ring->dev->dev_private;
957         int ret;
958
959         if (!intel_ring_initialized(ring))
960                 return;
961
962         ret = intel_ring_idle(ring);
963         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
964                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
965                           ring->name, ret);
966
967         /* TODO: Is this correct with Execlists enabled? */
968         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
969         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
970                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
971                 return;
972         }
973         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
974 }
975
976 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
977 {
978         struct intel_engine_cs *ring = req->ring;
979         int ret;
980
981         if (!ring->gpu_caches_dirty)
982                 return 0;
983
984         ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
985         if (ret)
986                 return ret;
987
988         ring->gpu_caches_dirty = false;
989         return 0;
990 }
991
992 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
993 {
994         struct intel_engine_cs *ring = rq->ring;
995         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
996         struct intel_ringbuffer *ringbuf = rq->ringbuf;
997         int ret = 0;
998
999         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1000         if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1001                 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1002                                 GEN8_LR_CONTEXT_ALIGN, 0);
1003                 if (ret)
1004                         goto reset_pin_count;
1005
1006                 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1007                 if (ret)
1008                         goto unpin_ctx_obj;
1009
1010                 ctx_obj->dirty = true;
1011         }
1012
1013         return ret;
1014
1015 unpin_ctx_obj:
1016         i915_gem_object_ggtt_unpin(ctx_obj);
1017 reset_pin_count:
1018         rq->ctx->engine[ring->id].pin_count = 0;
1019
1020         return ret;
1021 }
1022
1023 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1024 {
1025         struct intel_engine_cs *ring = rq->ring;
1026         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1027         struct intel_ringbuffer *ringbuf = rq->ringbuf;
1028
1029         if (ctx_obj) {
1030                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1031                 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1032                         intel_unpin_ringbuffer_obj(ringbuf);
1033                         i915_gem_object_ggtt_unpin(ctx_obj);
1034                 }
1035         }
1036 }
1037
1038 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1039 {
1040         int ret, i;
1041         struct intel_engine_cs *ring = req->ring;
1042         struct intel_ringbuffer *ringbuf = req->ringbuf;
1043         struct drm_device *dev = ring->dev;
1044         struct drm_i915_private *dev_priv = dev->dev_private;
1045         struct i915_workarounds *w = &dev_priv->workarounds;
1046
1047         if (WARN_ON_ONCE(w->count == 0))
1048                 return 0;
1049
1050         ring->gpu_caches_dirty = true;
1051         ret = logical_ring_flush_all_caches(req);
1052         if (ret)
1053                 return ret;
1054
1055         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1056         if (ret)
1057                 return ret;
1058
1059         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1060         for (i = 0; i < w->count; i++) {
1061                 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1062                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1063         }
1064         intel_logical_ring_emit(ringbuf, MI_NOOP);
1065
1066         intel_logical_ring_advance(ringbuf);
1067
1068         ring->gpu_caches_dirty = true;
1069         ret = logical_ring_flush_all_caches(req);
1070         if (ret)
1071                 return ret;
1072
1073         return 0;
1074 }
1075
1076 #define wa_ctx_emit(batch, index, cmd)                                  \
1077         do {                                                            \
1078                 int __index = (index)++;                                \
1079                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1080                         return -ENOSPC;                                 \
1081                 }                                                       \
1082                 batch[__index] = (cmd);                                 \
1083         } while (0)
1084
1085
1086 /*
1087  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1088  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1089  * but there is a slight complication as this is applied in WA batch where the
1090  * values are only initialized once so we cannot take register value at the
1091  * beginning and reuse it further; hence we save its value to memory, upload a
1092  * constant value with bit21 set and then we restore it back with the saved value.
1093  * To simplify the WA, a constant value is formed by using the default value
1094  * of this register. This shouldn't be a problem because we are only modifying
1095  * it for a short period and this batch in non-premptible. We can ofcourse
1096  * use additional instructions that read the actual value of the register
1097  * at that time and set our bit of interest but it makes the WA complicated.
1098  *
1099  * This WA is also required for Gen9 so extracting as a function avoids
1100  * code duplication.
1101  */
1102 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1103                                                 uint32_t *const batch,
1104                                                 uint32_t index)
1105 {
1106         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1107
1108         /*
1109          * WaDisableLSQCROPERFforOCL:skl
1110          * This WA is implemented in skl_init_clock_gating() but since
1111          * this batch updates GEN8_L3SQCREG4 with default value we need to
1112          * set this bit here to retain the WA during flush.
1113          */
1114         if (IS_SKYLAKE(ring->dev) && INTEL_REVID(ring->dev) <= SKL_REVID_E0)
1115                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1116
1117         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8(1) |
1118                                    MI_SRM_LRM_GLOBAL_GTT));
1119         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1120         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1121         wa_ctx_emit(batch, index, 0);
1122
1123         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1124         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1125         wa_ctx_emit(batch, index, l3sqc4_flush);
1126
1127         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1128         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1129                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1130         wa_ctx_emit(batch, index, 0);
1131         wa_ctx_emit(batch, index, 0);
1132         wa_ctx_emit(batch, index, 0);
1133         wa_ctx_emit(batch, index, 0);
1134
1135         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8(1) |
1136                                    MI_SRM_LRM_GLOBAL_GTT));
1137         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1138         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1139         wa_ctx_emit(batch, index, 0);
1140
1141         return index;
1142 }
1143
1144 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1145                                     uint32_t offset,
1146                                     uint32_t start_alignment)
1147 {
1148         return wa_ctx->offset = ALIGN(offset, start_alignment);
1149 }
1150
1151 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1152                              uint32_t offset,
1153                              uint32_t size_alignment)
1154 {
1155         wa_ctx->size = offset - wa_ctx->offset;
1156
1157         WARN(wa_ctx->size % size_alignment,
1158              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1159              wa_ctx->size, size_alignment);
1160         return 0;
1161 }
1162
1163 /**
1164  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1165  *
1166  * @ring: only applicable for RCS
1167  * @wa_ctx: structure representing wa_ctx
1168  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1169  *    with the offset value received as input.
1170  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1171  * @batch: page in which WA are loaded
1172  * @offset: This field specifies the start of the batch, it should be
1173  *  cache-aligned otherwise it is adjusted accordingly.
1174  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1175  *  initialized at the beginning and shared across all contexts but this field
1176  *  helps us to have multiple batches at different offsets and select them based
1177  *  on a criteria. At the moment this batch always start at the beginning of the page
1178  *  and at this point we don't have multiple wa_ctx batch buffers.
1179  *
1180  *  The number of WA applied are not known at the beginning; we use this field
1181  *  to return the no of DWORDS written.
1182  *
1183  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1184  *  so it adds NOOPs as padding to make it cacheline aligned.
1185  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1186  *  makes a complete batch buffer.
1187  *
1188  * Return: non-zero if we exceed the PAGE_SIZE limit.
1189  */
1190
1191 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1192                                     struct i915_wa_ctx_bb *wa_ctx,
1193                                     uint32_t *const batch,
1194                                     uint32_t *offset)
1195 {
1196         uint32_t scratch_addr;
1197         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1198
1199         /* WaDisableCtxRestoreArbitration:bdw,chv */
1200         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1201
1202         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1203         if (IS_BROADWELL(ring->dev)) {
1204                 index = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1205                 if (index < 0)
1206                         return index;
1207         }
1208
1209         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1210         /* Actual scratch location is at 128 bytes offset */
1211         scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1212
1213         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1214         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1215                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1216                                    PIPE_CONTROL_CS_STALL |
1217                                    PIPE_CONTROL_QW_WRITE));
1218         wa_ctx_emit(batch, index, scratch_addr);
1219         wa_ctx_emit(batch, index, 0);
1220         wa_ctx_emit(batch, index, 0);
1221         wa_ctx_emit(batch, index, 0);
1222
1223         /* Pad to end of cacheline */
1224         while (index % CACHELINE_DWORDS)
1225                 wa_ctx_emit(batch, index, MI_NOOP);
1226
1227         /*
1228          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1229          * execution depends on the length specified in terms of cache lines
1230          * in the register CTX_RCS_INDIRECT_CTX
1231          */
1232
1233         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1234 }
1235
1236 /**
1237  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1238  *
1239  * @ring: only applicable for RCS
1240  * @wa_ctx: structure representing wa_ctx
1241  *  offset: specifies start of the batch, should be cache-aligned.
1242  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1243  * @batch: page in which WA are loaded
1244  * @offset: This field specifies the start of this batch.
1245  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1246  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1247  *
1248  *   The number of DWORDS written are returned using this field.
1249  *
1250  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1251  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1252  */
1253 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1254                                struct i915_wa_ctx_bb *wa_ctx,
1255                                uint32_t *const batch,
1256                                uint32_t *offset)
1257 {
1258         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1259
1260         /* WaDisableCtxRestoreArbitration:bdw,chv */
1261         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1262
1263         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1264
1265         return wa_ctx_end(wa_ctx, *offset = index, 1);
1266 }
1267
1268 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1269                                     struct i915_wa_ctx_bb *wa_ctx,
1270                                     uint32_t *const batch,
1271                                     uint32_t *offset)
1272 {
1273         int ret;
1274         struct drm_device *dev = ring->dev;
1275         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1276
1277         /* WaDisableCtxRestoreArbitration:skl,bxt */
1278         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1279             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1280                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1281
1282         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1283         ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1284         if (ret < 0)
1285                 return ret;
1286         index = ret;
1287
1288         /* Pad to end of cacheline */
1289         while (index % CACHELINE_DWORDS)
1290                 wa_ctx_emit(batch, index, MI_NOOP);
1291
1292         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1293 }
1294
1295 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1296                                struct i915_wa_ctx_bb *wa_ctx,
1297                                uint32_t *const batch,
1298                                uint32_t *offset)
1299 {
1300         struct drm_device *dev = ring->dev;
1301         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1302
1303         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1304         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_B0)) ||
1305             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0))) {
1306                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1307                 wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1308                 wa_ctx_emit(batch, index,
1309                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1310                 wa_ctx_emit(batch, index, MI_NOOP);
1311         }
1312
1313         /* WaDisableCtxRestoreArbitration:skl,bxt */
1314         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1315             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1316                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1317
1318         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1319
1320         return wa_ctx_end(wa_ctx, *offset = index, 1);
1321 }
1322
1323 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1324 {
1325         int ret;
1326
1327         ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1328         if (!ring->wa_ctx.obj) {
1329                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1330                 return -ENOMEM;
1331         }
1332
1333         ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1334         if (ret) {
1335                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1336                                  ret);
1337                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1338                 return ret;
1339         }
1340
1341         return 0;
1342 }
1343
1344 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1345 {
1346         if (ring->wa_ctx.obj) {
1347                 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1348                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1349                 ring->wa_ctx.obj = NULL;
1350         }
1351 }
1352
1353 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1354 {
1355         int ret;
1356         uint32_t *batch;
1357         uint32_t offset;
1358         struct vm_page *page;
1359         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1360
1361         WARN_ON(ring->id != RCS);
1362
1363         /* update this when WA for higher Gen are added */
1364         if (INTEL_INFO(ring->dev)->gen > 9) {
1365                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1366                           INTEL_INFO(ring->dev)->gen);
1367                 return 0;
1368         }
1369
1370         /* some WA perform writes to scratch page, ensure it is valid */
1371         if (ring->scratch.obj == NULL) {
1372                 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1373                 return -EINVAL;
1374         }
1375
1376         ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1377         if (ret) {
1378                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1379                 return ret;
1380         }
1381
1382         page = i915_gem_object_get_page(wa_ctx->obj, 0);
1383         batch = kmap_atomic(page);
1384         offset = 0;
1385
1386         if (INTEL_INFO(ring->dev)->gen == 8) {
1387                 ret = gen8_init_indirectctx_bb(ring,
1388                                                &wa_ctx->indirect_ctx,
1389                                                batch,
1390                                                &offset);
1391                 if (ret)
1392                         goto out;
1393
1394                 ret = gen8_init_perctx_bb(ring,
1395                                           &wa_ctx->per_ctx,
1396                                           batch,
1397                                           &offset);
1398                 if (ret)
1399                         goto out;
1400         } else if (INTEL_INFO(ring->dev)->gen == 9) {
1401                 ret = gen9_init_indirectctx_bb(ring,
1402                                                &wa_ctx->indirect_ctx,
1403                                                batch,
1404                                                &offset);
1405                 if (ret)
1406                         goto out;
1407
1408                 ret = gen9_init_perctx_bb(ring,
1409                                           &wa_ctx->per_ctx,
1410                                           batch,
1411                                           &offset);
1412                 if (ret)
1413                         goto out;
1414         }
1415
1416 out:
1417         kunmap_atomic(batch);
1418         if (ret)
1419                 lrc_destroy_wa_ctx_obj(ring);
1420
1421         return ret;
1422 }
1423
1424 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1425 {
1426         struct drm_device *dev = ring->dev;
1427         struct drm_i915_private *dev_priv = dev->dev_private;
1428         u8 next_context_status_buffer_hw;
1429
1430         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1431         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1432
1433         if (ring->status_page.obj) {
1434                 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1435                            (u32)ring->status_page.gfx_addr);
1436                 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1437         }
1438
1439         I915_WRITE(RING_MODE_GEN7(ring),
1440                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1441                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1442         POSTING_READ(RING_MODE_GEN7(ring));
1443
1444         /*
1445          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1446          * zero, we need to read the write pointer from hardware and use its
1447          * value because "this register is power context save restored".
1448          * Effectively, these states have been observed:
1449          *
1450          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1451          * BDW  | CSB regs not reset       | CSB regs reset       |
1452          * CHT  | CSB regs not reset       | CSB regs not reset   |
1453          */
1454         next_context_status_buffer_hw = (I915_READ(RING_CONTEXT_STATUS_PTR(ring))
1455                                                    & GEN8_CSB_PTR_MASK);
1456
1457         /*
1458          * When the CSB registers are reset (also after power-up / gpu reset),
1459          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1460          * this special case, so the first element read is CSB[0].
1461          */
1462         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1463                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1464
1465         ring->next_context_status_buffer = next_context_status_buffer_hw;
1466         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1467
1468         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1469
1470         return 0;
1471 }
1472
1473 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1474 {
1475         struct drm_device *dev = ring->dev;
1476         struct drm_i915_private *dev_priv = dev->dev_private;
1477         int ret;
1478
1479         ret = gen8_init_common_ring(ring);
1480         if (ret)
1481                 return ret;
1482
1483         /* We need to disable the AsyncFlip performance optimisations in order
1484          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1485          * programmed to '1' on all products.
1486          *
1487          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1488          */
1489         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1490
1491         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1492
1493         return init_workarounds_ring(ring);
1494 }
1495
1496 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1497 {
1498         int ret;
1499
1500         ret = gen8_init_common_ring(ring);
1501         if (ret)
1502                 return ret;
1503
1504         return init_workarounds_ring(ring);
1505 }
1506
1507 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1508 {
1509         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1510         struct intel_engine_cs *ring = req->ring;
1511         struct intel_ringbuffer *ringbuf = req->ringbuf;
1512         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1513         int i, ret;
1514
1515         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1516         if (ret)
1517                 return ret;
1518
1519         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1520         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1521                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1522
1523                 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1524                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1525                 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1526                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1527         }
1528
1529         intel_logical_ring_emit(ringbuf, MI_NOOP);
1530         intel_logical_ring_advance(ringbuf);
1531
1532         return 0;
1533 }
1534
1535 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1536                               u64 offset, unsigned dispatch_flags)
1537 {
1538         struct intel_ringbuffer *ringbuf = req->ringbuf;
1539         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1540         int ret;
1541
1542         /* Don't rely in hw updating PDPs, specially in lite-restore.
1543          * Ideally, we should set Force PD Restore in ctx descriptor,
1544          * but we can't. Force Restore would be a second option, but
1545          * it is unsafe in case of lite-restore (because the ctx is
1546          * not idle). */
1547         if (req->ctx->ppgtt &&
1548             (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1549                 ret = intel_logical_ring_emit_pdps(req);
1550                 if (ret)
1551                         return ret;
1552
1553                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1554         }
1555
1556         ret = intel_logical_ring_begin(req, 4);
1557         if (ret)
1558                 return ret;
1559
1560         /* FIXME(BDW): Address space and security selectors. */
1561         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1562                                 (ppgtt<<8) |
1563                                 (dispatch_flags & I915_DISPATCH_RS ?
1564                                  MI_BATCH_RESOURCE_STREAMER : 0));
1565         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1566         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1567         intel_logical_ring_emit(ringbuf, MI_NOOP);
1568         intel_logical_ring_advance(ringbuf);
1569
1570         return 0;
1571 }
1572
1573 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1574 {
1575         struct drm_device *dev = ring->dev;
1576         struct drm_i915_private *dev_priv = dev->dev_private;
1577
1578         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1579                 return false;
1580
1581         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1582         if (ring->irq_refcount++ == 0) {
1583                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1584                 POSTING_READ(RING_IMR(ring->mmio_base));
1585         }
1586         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1587
1588         return true;
1589 }
1590
1591 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1592 {
1593         struct drm_device *dev = ring->dev;
1594         struct drm_i915_private *dev_priv = dev->dev_private;
1595
1596         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1597         if (--ring->irq_refcount == 0) {
1598                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1599                 POSTING_READ(RING_IMR(ring->mmio_base));
1600         }
1601         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1602 }
1603
1604 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1605                            u32 invalidate_domains,
1606                            u32 unused)
1607 {
1608         struct intel_ringbuffer *ringbuf = request->ringbuf;
1609         struct intel_engine_cs *ring = ringbuf->ring;
1610         struct drm_device *dev = ring->dev;
1611         struct drm_i915_private *dev_priv = dev->dev_private;
1612         uint32_t cmd;
1613         int ret;
1614
1615         ret = intel_logical_ring_begin(request, 4);
1616         if (ret)
1617                 return ret;
1618
1619         cmd = MI_FLUSH_DW + 1;
1620
1621         /* We always require a command barrier so that subsequent
1622          * commands, such as breadcrumb interrupts, are strictly ordered
1623          * wrt the contents of the write cache being flushed to memory
1624          * (and thus being coherent from the CPU).
1625          */
1626         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1627
1628         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1629                 cmd |= MI_INVALIDATE_TLB;
1630                 if (ring == &dev_priv->ring[VCS])
1631                         cmd |= MI_INVALIDATE_BSD;
1632         }
1633
1634         intel_logical_ring_emit(ringbuf, cmd);
1635         intel_logical_ring_emit(ringbuf,
1636                                 I915_GEM_HWS_SCRATCH_ADDR |
1637                                 MI_FLUSH_DW_USE_GTT);
1638         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1639         intel_logical_ring_emit(ringbuf, 0); /* value */
1640         intel_logical_ring_advance(ringbuf);
1641
1642         return 0;
1643 }
1644
1645 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1646                                   u32 invalidate_domains,
1647                                   u32 flush_domains)
1648 {
1649         struct intel_ringbuffer *ringbuf = request->ringbuf;
1650         struct intel_engine_cs *ring = ringbuf->ring;
1651         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1652         bool vf_flush_wa;
1653         u32 flags = 0;
1654         int ret;
1655
1656         flags |= PIPE_CONTROL_CS_STALL;
1657
1658         if (flush_domains) {
1659                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1660                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1661                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1662         }
1663
1664         if (invalidate_domains) {
1665                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1666                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1667                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1668                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1669                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1670                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1671                 flags |= PIPE_CONTROL_QW_WRITE;
1672                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1673         }
1674
1675         /*
1676          * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1677          * control.
1678          */
1679         vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1680                       flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1681
1682         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1683         if (ret)
1684                 return ret;
1685
1686         if (vf_flush_wa) {
1687                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1688                 intel_logical_ring_emit(ringbuf, 0);
1689                 intel_logical_ring_emit(ringbuf, 0);
1690                 intel_logical_ring_emit(ringbuf, 0);
1691                 intel_logical_ring_emit(ringbuf, 0);
1692                 intel_logical_ring_emit(ringbuf, 0);
1693         }
1694
1695         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1696         intel_logical_ring_emit(ringbuf, flags);
1697         intel_logical_ring_emit(ringbuf, scratch_addr);
1698         intel_logical_ring_emit(ringbuf, 0);
1699         intel_logical_ring_emit(ringbuf, 0);
1700         intel_logical_ring_emit(ringbuf, 0);
1701         intel_logical_ring_advance(ringbuf);
1702
1703         return 0;
1704 }
1705
1706 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1707 {
1708         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1709 }
1710
1711 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1712 {
1713         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1714 }
1715
1716 static int gen8_emit_request(struct drm_i915_gem_request *request)
1717 {
1718         struct intel_ringbuffer *ringbuf = request->ringbuf;
1719         struct intel_engine_cs *ring = ringbuf->ring;
1720         u32 cmd;
1721         int ret;
1722
1723         /*
1724          * Reserve space for 2 NOOPs at the end of each request to be
1725          * used as a workaround for not being allowed to do lite
1726          * restore with HEAD==TAIL (WaIdleLiteRestore).
1727          */
1728         ret = intel_logical_ring_begin(request, 8);
1729         if (ret)
1730                 return ret;
1731
1732         cmd = MI_STORE_DWORD_IMM_GEN4;
1733         cmd |= MI_GLOBAL_GTT;
1734
1735         intel_logical_ring_emit(ringbuf, cmd);
1736         intel_logical_ring_emit(ringbuf,
1737                                 (ring->status_page.gfx_addr +
1738                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1739         intel_logical_ring_emit(ringbuf, 0);
1740         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1741         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1742         intel_logical_ring_emit(ringbuf, MI_NOOP);
1743         intel_logical_ring_advance_and_submit(request);
1744
1745         /*
1746          * Here we add two extra NOOPs as padding to avoid
1747          * lite restore of a context with HEAD==TAIL.
1748          */
1749         intel_logical_ring_emit(ringbuf, MI_NOOP);
1750         intel_logical_ring_emit(ringbuf, MI_NOOP);
1751         intel_logical_ring_advance(ringbuf);
1752
1753         return 0;
1754 }
1755
1756 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1757 {
1758         struct render_state so;
1759         int ret;
1760
1761         ret = i915_gem_render_state_prepare(req->ring, &so);
1762         if (ret)
1763                 return ret;
1764
1765         if (so.rodata == NULL)
1766                 return 0;
1767
1768         ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1769                                        I915_DISPATCH_SECURE);
1770         if (ret)
1771                 goto out;
1772
1773         ret = req->ring->emit_bb_start(req,
1774                                        (so.ggtt_offset + so.aux_batch_offset),
1775                                        I915_DISPATCH_SECURE);
1776         if (ret)
1777                 goto out;
1778
1779         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1780
1781 out:
1782         i915_gem_render_state_fini(&so);
1783         return ret;
1784 }
1785
1786 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1787 {
1788         int ret;
1789
1790         ret = intel_logical_ring_workarounds_emit(req);
1791         if (ret)
1792                 return ret;
1793
1794         ret = intel_rcs_context_init_mocs(req);
1795         /*
1796          * Failing to program the MOCS is non-fatal.The system will not
1797          * run at peak performance. So generate an error and carry on.
1798          */
1799         if (ret)
1800                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1801
1802         return intel_lr_context_render_state_init(req);
1803 }
1804
1805 /**
1806  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1807  *
1808  * @ring: Engine Command Streamer.
1809  *
1810  */
1811 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1812 {
1813         struct drm_i915_private *dev_priv;
1814
1815         if (!intel_ring_initialized(ring))
1816                 return;
1817
1818         dev_priv = ring->dev->dev_private;
1819
1820         intel_logical_ring_stop(ring);
1821         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1822
1823         if (ring->cleanup)
1824                 ring->cleanup(ring);
1825
1826         i915_cmd_parser_fini_ring(ring);
1827         i915_gem_batch_pool_fini(&ring->batch_pool);
1828
1829         if (ring->status_page.obj) {
1830                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1831                 ring->status_page.obj = NULL;
1832         }
1833
1834         lrc_destroy_wa_ctx_obj(ring);
1835 }
1836
1837 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1838 {
1839         int ret;
1840
1841         /* Intentionally left blank. */
1842         ring->buffer = NULL;
1843
1844         ring->dev = dev;
1845         INIT_LIST_HEAD(&ring->active_list);
1846         INIT_LIST_HEAD(&ring->request_list);
1847         i915_gem_batch_pool_init(dev, &ring->batch_pool);
1848         init_waitqueue_head(&ring->irq_queue);
1849
1850         INIT_LIST_HEAD(&ring->execlist_queue);
1851         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1852         lockinit(&ring->execlist_lock, "i915el", 0, LK_CANRECURSE);
1853
1854         ret = i915_cmd_parser_init_ring(ring);
1855         if (ret)
1856                 return ret;
1857
1858         ret = intel_lr_context_deferred_create(ring->default_context, ring);
1859
1860         return ret;
1861 }
1862
1863 static int logical_render_ring_init(struct drm_device *dev)
1864 {
1865         struct drm_i915_private *dev_priv = dev->dev_private;
1866         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1867         int ret;
1868
1869         ring->name = "render ring";
1870         ring->id = RCS;
1871         ring->mmio_base = RENDER_RING_BASE;
1872         ring->irq_enable_mask =
1873                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1874         ring->irq_keep_mask =
1875                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1876         if (HAS_L3_DPF(dev))
1877                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1878
1879         if (INTEL_INFO(dev)->gen >= 9)
1880                 ring->init_hw = gen9_init_render_ring;
1881         else
1882                 ring->init_hw = gen8_init_render_ring;
1883         ring->init_context = gen8_init_rcs_context;
1884         ring->cleanup = intel_fini_pipe_control;
1885         ring->get_seqno = gen8_get_seqno;
1886         ring->set_seqno = gen8_set_seqno;
1887         ring->emit_request = gen8_emit_request;
1888         ring->emit_flush = gen8_emit_flush_render;
1889         ring->irq_get = gen8_logical_ring_get_irq;
1890         ring->irq_put = gen8_logical_ring_put_irq;
1891         ring->emit_bb_start = gen8_emit_bb_start;
1892
1893         ring->dev = dev;
1894
1895         ret = intel_init_pipe_control(ring);
1896         if (ret)
1897                 return ret;
1898
1899         ret = intel_init_workaround_bb(ring);
1900         if (ret) {
1901                 /*
1902                  * We continue even if we fail to initialize WA batch
1903                  * because we only expect rare glitches but nothing
1904                  * critical to prevent us from using GPU
1905                  */
1906                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1907                           ret);
1908         }
1909
1910         ret = logical_ring_init(dev, ring);
1911         if (ret) {
1912                 lrc_destroy_wa_ctx_obj(ring);
1913         }
1914
1915         return ret;
1916 }
1917
1918 static int logical_bsd_ring_init(struct drm_device *dev)
1919 {
1920         struct drm_i915_private *dev_priv = dev->dev_private;
1921         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1922
1923         ring->name = "bsd ring";
1924         ring->id = VCS;
1925         ring->mmio_base = GEN6_BSD_RING_BASE;
1926         ring->irq_enable_mask =
1927                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1928         ring->irq_keep_mask =
1929                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1930
1931         ring->init_hw = gen8_init_common_ring;
1932         ring->get_seqno = gen8_get_seqno;
1933         ring->set_seqno = gen8_set_seqno;
1934         ring->emit_request = gen8_emit_request;
1935         ring->emit_flush = gen8_emit_flush;
1936         ring->irq_get = gen8_logical_ring_get_irq;
1937         ring->irq_put = gen8_logical_ring_put_irq;
1938         ring->emit_bb_start = gen8_emit_bb_start;
1939
1940         return logical_ring_init(dev, ring);
1941 }
1942
1943 static int logical_bsd2_ring_init(struct drm_device *dev)
1944 {
1945         struct drm_i915_private *dev_priv = dev->dev_private;
1946         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1947
1948         ring->name = "bds2 ring";
1949         ring->id = VCS2;
1950         ring->mmio_base = GEN8_BSD2_RING_BASE;
1951         ring->irq_enable_mask =
1952                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1953         ring->irq_keep_mask =
1954                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1955
1956         ring->init_hw = gen8_init_common_ring;
1957         ring->get_seqno = gen8_get_seqno;
1958         ring->set_seqno = gen8_set_seqno;
1959         ring->emit_request = gen8_emit_request;
1960         ring->emit_flush = gen8_emit_flush;
1961         ring->irq_get = gen8_logical_ring_get_irq;
1962         ring->irq_put = gen8_logical_ring_put_irq;
1963         ring->emit_bb_start = gen8_emit_bb_start;
1964
1965         return logical_ring_init(dev, ring);
1966 }
1967
1968 static int logical_blt_ring_init(struct drm_device *dev)
1969 {
1970         struct drm_i915_private *dev_priv = dev->dev_private;
1971         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1972
1973         ring->name = "blitter ring";
1974         ring->id = BCS;
1975         ring->mmio_base = BLT_RING_BASE;
1976         ring->irq_enable_mask =
1977                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1978         ring->irq_keep_mask =
1979                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1980
1981         ring->init_hw = gen8_init_common_ring;
1982         ring->get_seqno = gen8_get_seqno;
1983         ring->set_seqno = gen8_set_seqno;
1984         ring->emit_request = gen8_emit_request;
1985         ring->emit_flush = gen8_emit_flush;
1986         ring->irq_get = gen8_logical_ring_get_irq;
1987         ring->irq_put = gen8_logical_ring_put_irq;
1988         ring->emit_bb_start = gen8_emit_bb_start;
1989
1990         return logical_ring_init(dev, ring);
1991 }
1992
1993 static int logical_vebox_ring_init(struct drm_device *dev)
1994 {
1995         struct drm_i915_private *dev_priv = dev->dev_private;
1996         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1997
1998         ring->name = "video enhancement ring";
1999         ring->id = VECS;
2000         ring->mmio_base = VEBOX_RING_BASE;
2001         ring->irq_enable_mask =
2002                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2003         ring->irq_keep_mask =
2004                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2005
2006         ring->init_hw = gen8_init_common_ring;
2007         ring->get_seqno = gen8_get_seqno;
2008         ring->set_seqno = gen8_set_seqno;
2009         ring->emit_request = gen8_emit_request;
2010         ring->emit_flush = gen8_emit_flush;
2011         ring->irq_get = gen8_logical_ring_get_irq;
2012         ring->irq_put = gen8_logical_ring_put_irq;
2013         ring->emit_bb_start = gen8_emit_bb_start;
2014
2015         return logical_ring_init(dev, ring);
2016 }
2017
2018 /**
2019  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2020  * @dev: DRM device.
2021  *
2022  * This function inits the engines for an Execlists submission style (the equivalent in the
2023  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2024  * those engines that are present in the hardware.
2025  *
2026  * Return: non-zero if the initialization failed.
2027  */
2028 int intel_logical_rings_init(struct drm_device *dev)
2029 {
2030         struct drm_i915_private *dev_priv = dev->dev_private;
2031         int ret;
2032
2033         ret = logical_render_ring_init(dev);
2034         if (ret)
2035                 return ret;
2036
2037         if (HAS_BSD(dev)) {
2038                 ret = logical_bsd_ring_init(dev);
2039                 if (ret)
2040                         goto cleanup_render_ring;
2041         }
2042
2043         if (HAS_BLT(dev)) {
2044                 ret = logical_blt_ring_init(dev);
2045                 if (ret)
2046                         goto cleanup_bsd_ring;
2047         }
2048
2049         if (HAS_VEBOX(dev)) {
2050                 ret = logical_vebox_ring_init(dev);
2051                 if (ret)
2052                         goto cleanup_blt_ring;
2053         }
2054
2055         if (HAS_BSD2(dev)) {
2056                 ret = logical_bsd2_ring_init(dev);
2057                 if (ret)
2058                         goto cleanup_vebox_ring;
2059         }
2060
2061         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
2062         if (ret)
2063                 goto cleanup_bsd2_ring;
2064
2065         return 0;
2066
2067 cleanup_bsd2_ring:
2068         intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
2069 cleanup_vebox_ring:
2070         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2071 cleanup_blt_ring:
2072         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2073 cleanup_bsd_ring:
2074         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2075 cleanup_render_ring:
2076         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2077
2078         return ret;
2079 }
2080
2081 static u32
2082 make_rpcs(struct drm_device *dev)
2083 {
2084         u32 rpcs = 0;
2085
2086         /*
2087          * No explicit RPCS request is needed to ensure full
2088          * slice/subslice/EU enablement prior to Gen9.
2089         */
2090         if (INTEL_INFO(dev)->gen < 9)
2091                 return 0;
2092
2093         /*
2094          * Starting in Gen9, render power gating can leave
2095          * slice/subslice/EU in a partially enabled state. We
2096          * must make an explicit request through RPCS for full
2097          * enablement.
2098         */
2099         if (INTEL_INFO(dev)->has_slice_pg) {
2100                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2101                 rpcs |= INTEL_INFO(dev)->slice_total <<
2102                         GEN8_RPCS_S_CNT_SHIFT;
2103                 rpcs |= GEN8_RPCS_ENABLE;
2104         }
2105
2106         if (INTEL_INFO(dev)->has_subslice_pg) {
2107                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2108                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2109                         GEN8_RPCS_SS_CNT_SHIFT;
2110                 rpcs |= GEN8_RPCS_ENABLE;
2111         }
2112
2113         if (INTEL_INFO(dev)->has_eu_pg) {
2114                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2115                         GEN8_RPCS_EU_MIN_SHIFT;
2116                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2117                         GEN8_RPCS_EU_MAX_SHIFT;
2118                 rpcs |= GEN8_RPCS_ENABLE;
2119         }
2120
2121         return rpcs;
2122 }
2123
2124 static int
2125 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2126                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2127 {
2128         struct drm_device *dev = ring->dev;
2129         struct drm_i915_private *dev_priv = dev->dev_private;
2130         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2131         struct vm_page *page;
2132         uint32_t *reg_state;
2133         int ret;
2134
2135         if (!ppgtt)
2136                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2137
2138         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2139         if (ret) {
2140                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2141                 return ret;
2142         }
2143
2144         ret = i915_gem_object_get_pages(ctx_obj);
2145         if (ret) {
2146                 DRM_DEBUG_DRIVER("Could not get object pages\n");
2147                 return ret;
2148         }
2149
2150         i915_gem_object_pin_pages(ctx_obj);
2151
2152         /* The second page of the context object contains some fields which must
2153          * be set up prior to the first execution. */
2154         page = i915_gem_object_get_page(ctx_obj, 1);
2155         reg_state = kmap_atomic(page);
2156
2157         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2158          * commands followed by (reg, value) pairs. The values we are setting here are
2159          * only for the first context restore: on a subsequent save, the GPU will
2160          * recreate this batchbuffer with new values (including all the missing
2161          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2162         if (ring->id == RCS)
2163                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2164         else
2165                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2166         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2167         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2168         reg_state[CTX_CONTEXT_CONTROL+1] =
2169                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2170                                    CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2171                                    CTX_CTRL_RS_CTX_ENABLE);
2172         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2173         reg_state[CTX_RING_HEAD+1] = 0;
2174         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2175         reg_state[CTX_RING_TAIL+1] = 0;
2176         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
2177         /* Ring buffer start address is not known until the buffer is pinned.
2178          * It is written to the context image in execlists_update_context()
2179          */
2180         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2181         reg_state[CTX_RING_BUFFER_CONTROL+1] =
2182                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2183         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2184         reg_state[CTX_BB_HEAD_U+1] = 0;
2185         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2186         reg_state[CTX_BB_HEAD_L+1] = 0;
2187         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2188         reg_state[CTX_BB_STATE+1] = (1<<5);
2189         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2190         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2191         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2192         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2193         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2194         reg_state[CTX_SECOND_BB_STATE+1] = 0;
2195         if (ring->id == RCS) {
2196                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2197                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2198                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2199                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2200                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2201                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2202                 if (ring->wa_ctx.obj) {
2203                         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2204                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2205
2206                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2207                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2208                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2209
2210                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2211                                 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2212
2213                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2214                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2215                                 0x01;
2216                 }
2217         }
2218         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2219         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2220         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2221         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2222         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2223         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2224         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2225         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2226         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2227         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2228         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2229         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2230
2231         /* With dynamic page allocation, PDPs may not be allocated at this point,
2232          * Point the unallocated PDPs to the scratch page
2233          */
2234         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2235         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2236         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2237         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2238         if (ring->id == RCS) {
2239                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2240                 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2241                 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2242         }
2243
2244         kunmap_atomic(reg_state);
2245
2246         ctx_obj->dirty = 1;
2247         set_page_dirty(page);
2248         i915_gem_object_unpin_pages(ctx_obj);
2249
2250         return 0;
2251 }
2252
2253 /**
2254  * intel_lr_context_free() - free the LRC specific bits of a context
2255  * @ctx: the LR context to free.
2256  *
2257  * The real context freeing is done in i915_gem_context_free: this only
2258  * takes care of the bits that are LRC related: the per-engine backing
2259  * objects and the logical ringbuffer.
2260  */
2261 void intel_lr_context_free(struct intel_context *ctx)
2262 {
2263         int i;
2264
2265         for (i = 0; i < I915_NUM_RINGS; i++) {
2266                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2267
2268                 if (ctx_obj) {
2269                         struct intel_ringbuffer *ringbuf =
2270                                         ctx->engine[i].ringbuf;
2271                         struct intel_engine_cs *ring = ringbuf->ring;
2272
2273                         if (ctx == ring->default_context) {
2274                                 intel_unpin_ringbuffer_obj(ringbuf);
2275                                 i915_gem_object_ggtt_unpin(ctx_obj);
2276                         }
2277                         WARN_ON(ctx->engine[ring->id].pin_count);
2278                         intel_destroy_ringbuffer_obj(ringbuf);
2279                         kfree(ringbuf);
2280                         drm_gem_object_unreference(&ctx_obj->base);
2281                 }
2282         }
2283 }
2284
2285 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2286 {
2287         int ret = 0;
2288
2289         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2290
2291         switch (ring->id) {
2292         case RCS:
2293                 if (INTEL_INFO(ring->dev)->gen >= 9)
2294                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2295                 else
2296                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2297                 break;
2298         case VCS:
2299         case BCS:
2300         case VECS:
2301         case VCS2:
2302                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2303                 break;
2304         }
2305
2306         return ret;
2307 }
2308
2309 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2310                 struct drm_i915_gem_object *default_ctx_obj)
2311 {
2312         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2313
2314         /* The status page is offset 0 from the default context object
2315          * in LRC mode. */
2316         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
2317         ring->status_page.page_addr =
2318                         kmap(sg_page(default_ctx_obj->pages->sgl));
2319         ring->status_page.obj = default_ctx_obj;
2320
2321         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2322                         (u32)ring->status_page.gfx_addr);
2323         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2324 }
2325
2326 /**
2327  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2328  * @ctx: LR context to create.
2329  * @ring: engine to be used with the context.
2330  *
2331  * This function can be called more than once, with different engines, if we plan
2332  * to use the context with them. The context backing objects and the ringbuffers
2333  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2334  * the creation is a deferred call: it's better to make sure first that we need to use
2335  * a given ring with the context.
2336  *
2337  * Return: non-zero on error.
2338  */
2339 int intel_lr_context_deferred_create(struct intel_context *ctx,
2340                                      struct intel_engine_cs *ring)
2341 {
2342         const bool is_global_default_ctx = (ctx == ring->default_context);
2343         struct drm_device *dev = ring->dev;
2344         struct drm_i915_gem_object *ctx_obj;
2345         uint32_t context_size;
2346         struct intel_ringbuffer *ringbuf;
2347         int ret;
2348
2349         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2350         WARN_ON(ctx->engine[ring->id].state);
2351
2352         context_size = round_up(get_lr_context_size(ring), 4096);
2353
2354         ctx_obj = i915_gem_alloc_object(dev, context_size);
2355         if (!ctx_obj) {
2356                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2357                 return -ENOMEM;
2358         }
2359
2360         if (is_global_default_ctx) {
2361                 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
2362                 if (ret) {
2363                         DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2364                                         ret);
2365                         drm_gem_object_unreference(&ctx_obj->base);
2366                         return ret;
2367                 }
2368         }
2369
2370         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2371         if (!ringbuf) {
2372                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2373                                 ring->name);
2374                 ret = -ENOMEM;
2375                 goto error_unpin_ctx;
2376         }
2377
2378         ringbuf->ring = ring;
2379
2380         ringbuf->size = 32 * PAGE_SIZE;
2381         ringbuf->effective_size = ringbuf->size;
2382         ringbuf->head = 0;
2383         ringbuf->tail = 0;
2384         ringbuf->last_retired_head = -1;
2385         intel_ring_update_space(ringbuf);
2386
2387         if (ringbuf->obj == NULL) {
2388                 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2389                 if (ret) {
2390                         DRM_DEBUG_DRIVER(
2391                                 "Failed to allocate ringbuffer obj %s: %d\n",
2392                                 ring->name, ret);
2393                         goto error_free_rbuf;
2394                 }
2395
2396                 if (is_global_default_ctx) {
2397                         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2398                         if (ret) {
2399                                 DRM_ERROR(
2400                                         "Failed to pin and map ringbuffer %s: %d\n",
2401                                         ring->name, ret);
2402                                 goto error_destroy_rbuf;
2403                         }
2404                 }
2405
2406         }
2407
2408         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2409         if (ret) {
2410                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2411                 goto error;
2412         }
2413
2414         ctx->engine[ring->id].ringbuf = ringbuf;
2415         ctx->engine[ring->id].state = ctx_obj;
2416
2417         if (ctx == ring->default_context)
2418                 lrc_setup_hardware_status_page(ring, ctx_obj);
2419         else if (ring->id == RCS && !ctx->rcs_initialized) {
2420                 if (ring->init_context) {
2421                         struct drm_i915_gem_request *req;
2422
2423                         ret = i915_gem_request_alloc(ring, ctx, &req);
2424                         if (ret)
2425                                 return ret;
2426
2427                         ret = ring->init_context(req);
2428                         if (ret) {
2429                                 DRM_ERROR("ring init context: %d\n", ret);
2430                                 i915_gem_request_cancel(req);
2431                                 ctx->engine[ring->id].ringbuf = NULL;
2432                                 ctx->engine[ring->id].state = NULL;
2433                                 goto error;
2434                         }
2435
2436                         i915_add_request_no_flush(req);
2437                 }
2438
2439                 ctx->rcs_initialized = true;
2440         }
2441
2442         return 0;
2443
2444 error:
2445         if (is_global_default_ctx)
2446                 intel_unpin_ringbuffer_obj(ringbuf);
2447 error_destroy_rbuf:
2448         intel_destroy_ringbuffer_obj(ringbuf);
2449 error_free_rbuf:
2450         kfree(ringbuf);
2451 error_unpin_ctx:
2452         if (is_global_default_ctx)
2453                 i915_gem_object_ggtt_unpin(ctx_obj);
2454         drm_gem_object_unreference(&ctx_obj->base);
2455         return ret;
2456 }
2457
2458 void intel_lr_context_reset(struct drm_device *dev,
2459                         struct intel_context *ctx)
2460 {
2461         struct drm_i915_private *dev_priv = dev->dev_private;
2462         struct intel_engine_cs *ring;
2463         int i;
2464
2465         for_each_ring(ring, dev_priv, i) {
2466                 struct drm_i915_gem_object *ctx_obj =
2467                                 ctx->engine[ring->id].state;
2468                 struct intel_ringbuffer *ringbuf =
2469                                 ctx->engine[ring->id].ringbuf;
2470                 uint32_t *reg_state;
2471                 struct vm_page *page;
2472
2473                 if (!ctx_obj)
2474                         continue;
2475
2476                 if (i915_gem_object_get_pages(ctx_obj)) {
2477                         WARN(1, "Failed get_pages for context obj\n");
2478                         continue;
2479                 }
2480                 page = i915_gem_object_get_page(ctx_obj, 1);
2481                 reg_state = kmap_atomic(page);
2482
2483                 reg_state[CTX_RING_HEAD+1] = 0;
2484                 reg_state[CTX_RING_TAIL+1] = 0;
2485
2486                 kunmap_atomic(reg_state);
2487
2488                 ringbuf->head = 0;
2489                 ringbuf->tail = 0;
2490         }
2491 }