drm/i915: Use signal_pending()
[dragonfly.git] / sys / dev / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_drv.h"
139
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define GEN8_LR_CONTEXT_ALIGN 4096
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define CTX_LRI_HEADER_0                0x01
160 #define CTX_CONTEXT_CONTROL             0x02
161 #define CTX_RING_HEAD                   0x04
162 #define CTX_RING_TAIL                   0x06
163 #define CTX_RING_BUFFER_START           0x08
164 #define CTX_RING_BUFFER_CONTROL         0x0a
165 #define CTX_BB_HEAD_U                   0x0c
166 #define CTX_BB_HEAD_L                   0x0e
167 #define CTX_BB_STATE                    0x10
168 #define CTX_SECOND_BB_HEAD_U            0x12
169 #define CTX_SECOND_BB_HEAD_L            0x14
170 #define CTX_SECOND_BB_STATE             0x16
171 #define CTX_BB_PER_CTX_PTR              0x18
172 #define CTX_RCS_INDIRECT_CTX            0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
174 #define CTX_LRI_HEADER_1                0x21
175 #define CTX_CTX_TIMESTAMP               0x22
176 #define CTX_PDP3_UDW                    0x24
177 #define CTX_PDP3_LDW                    0x26
178 #define CTX_PDP2_UDW                    0x28
179 #define CTX_PDP2_LDW                    0x2a
180 #define CTX_PDP1_UDW                    0x2c
181 #define CTX_PDP1_LDW                    0x2e
182 #define CTX_PDP0_UDW                    0x30
183 #define CTX_PDP0_LDW                    0x32
184 #define CTX_LRI_HEADER_2                0x41
185 #define CTX_R_PWR_CLK_STATE             0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193 enum {
194         ADVANCED_CONTEXT = 0,
195         LEGACY_CONTEXT,
196         ADVANCED_AD_CONTEXT,
197         LEGACY_64B_CONTEXT
198 };
199 #define GEN8_CTX_MODE_SHIFT 3
200 enum {
201         FAULT_AND_HANG = 0,
202         FAULT_AND_HALT, /* Debug only */
203         FAULT_AND_STREAM,
204         FAULT_AND_CONTINUE /* Unsupported */
205 };
206 #define GEN8_CTX_ID_SHIFT 32
207
208 /**
209  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
210  * @dev: DRM device.
211  * @enable_execlists: value of i915.enable_execlists module parameter.
212  *
213  * Only certain platforms support Execlists (the prerequisites being
214  * support for Logical Ring Contexts and Aliasing PPGTT or better),
215  * and only when enabled via module parameter.
216  *
217  * Return: 1 if Execlists is supported and has to be enabled.
218  */
219 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
220 {
221         WARN_ON(i915.enable_ppgtt == -1);
222
223         if (enable_execlists == 0)
224                 return 0;
225
226         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
227             i915.use_mmio_flip >= 0)
228                 return 1;
229
230         return 0;
231 }
232
233 /**
234  * intel_execlists_ctx_id() - get the Execlists Context ID
235  * @ctx_obj: Logical Ring Context backing object.
236  *
237  * Do not confuse with ctx->id! Unfortunately we have a name overload
238  * here: the old context ID we pass to userspace as a handler so that
239  * they can refer to a context, and the new context ID we pass to the
240  * ELSP so that the GPU can inform us of the context status via
241  * interrupts.
242  *
243  * Return: 20-bits globally unique context ID.
244  */
245 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
246 {
247         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
248
249         /* LRCA is required to be 4K aligned so the more significant 20 bits
250          * are globally unique */
251         return lrca >> 12;
252 }
253
254 static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_object *ctx_obj)
255 {
256         uint64_t desc;
257         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
258
259         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
260
261         desc = GEN8_CTX_VALID;
262         desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
263         desc |= GEN8_CTX_L3LLC_COHERENT;
264         desc |= GEN8_CTX_PRIVILEGE;
265         desc |= lrca;
266         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
267
268         /* TODO: WaDisableLiteRestore when we start using semaphore
269          * signalling between Command Streamers */
270         /* desc |= GEN8_CTX_FORCE_RESTORE; */
271
272         return desc;
273 }
274
275 static void execlists_elsp_write(struct intel_engine_cs *ring,
276                                  struct drm_i915_gem_object *ctx_obj0,
277                                  struct drm_i915_gem_object *ctx_obj1)
278 {
279         struct drm_i915_private *dev_priv = ring->dev->dev_private;
280         uint64_t temp = 0;
281         uint32_t desc[4];
282
283         /* XXX: You must always write both descriptors in the order below. */
284         if (ctx_obj1)
285                 temp = execlists_ctx_descriptor(ctx_obj1);
286         else
287                 temp = 0;
288         desc[1] = (u32)(temp >> 32);
289         desc[0] = (u32)temp;
290
291         temp = execlists_ctx_descriptor(ctx_obj0);
292         desc[3] = (u32)(temp >> 32);
293         desc[2] = (u32)temp;
294
295         /* Set Force Wakeup bit to prevent GT from entering C6 while ELSP writes
296          * are in progress.
297          *
298          * The other problem is that we can't just call gen6_gt_force_wake_get()
299          * because that function calls intel_runtime_pm_get(), which might sleep.
300          * Instead, we do the runtime_pm_get/put when creating/destroying requests.
301          */
302         lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
303         if (IS_CHERRYVIEW(dev_priv->dev)) {
304                 if (dev_priv->uncore.fw_rendercount++ == 0)
305                         dev_priv->uncore.funcs.force_wake_get(dev_priv,
306                                                               FORCEWAKE_RENDER);
307                 if (dev_priv->uncore.fw_mediacount++ == 0)
308                         dev_priv->uncore.funcs.force_wake_get(dev_priv,
309                                                               FORCEWAKE_MEDIA);
310         } else {
311                 if (dev_priv->uncore.forcewake_count++ == 0)
312                         dev_priv->uncore.funcs.force_wake_get(dev_priv,
313                                                               FORCEWAKE_ALL);
314         }
315         lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
316
317         I915_WRITE(RING_ELSP(ring), desc[1]);
318         I915_WRITE(RING_ELSP(ring), desc[0]);
319         I915_WRITE(RING_ELSP(ring), desc[3]);
320         /* The context is automatically loaded after the following */
321         I915_WRITE(RING_ELSP(ring), desc[2]);
322
323         /* ELSP is a wo register, so use another nearby reg for posting instead */
324         POSTING_READ(RING_EXECLIST_STATUS(ring));
325
326         /* Release Force Wakeup (see the big comment above). */
327         lockmgr(&dev_priv->uncore.lock, LK_EXCLUSIVE);
328         if (IS_CHERRYVIEW(dev_priv->dev)) {
329                 if (--dev_priv->uncore.fw_rendercount == 0)
330                         dev_priv->uncore.funcs.force_wake_put(dev_priv,
331                                                               FORCEWAKE_RENDER);
332                 if (--dev_priv->uncore.fw_mediacount == 0)
333                         dev_priv->uncore.funcs.force_wake_put(dev_priv,
334                                                               FORCEWAKE_MEDIA);
335         } else {
336                 if (--dev_priv->uncore.forcewake_count == 0)
337                         dev_priv->uncore.funcs.force_wake_put(dev_priv,
338                                                               FORCEWAKE_ALL);
339         }
340
341         lockmgr(&dev_priv->uncore.lock, LK_RELEASE);
342 }
343
344 static int execlists_ctx_write_tail(struct drm_i915_gem_object *ctx_obj, u32 tail)
345 {
346         struct vm_page *page;
347         uint32_t *reg_state;
348
349         page = i915_gem_object_get_page(ctx_obj, 1);
350         reg_state = kmap_atomic(page);
351
352         reg_state[CTX_RING_TAIL+1] = tail;
353
354         kunmap_atomic(reg_state);
355
356         return 0;
357 }
358
359 static int execlists_submit_context(struct intel_engine_cs *ring,
360                                     struct intel_context *to0, u32 tail0,
361                                     struct intel_context *to1, u32 tail1)
362 {
363         struct drm_i915_gem_object *ctx_obj0;
364         struct drm_i915_gem_object *ctx_obj1 = NULL;
365
366         ctx_obj0 = to0->engine[ring->id].state;
367         BUG_ON(!ctx_obj0);
368         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
369
370         execlists_ctx_write_tail(ctx_obj0, tail0);
371
372         if (to1) {
373                 ctx_obj1 = to1->engine[ring->id].state;
374                 BUG_ON(!ctx_obj1);
375                 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
376
377                 execlists_ctx_write_tail(ctx_obj1, tail1);
378         }
379
380         execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
381
382         return 0;
383 }
384
385 static void execlists_context_unqueue(struct intel_engine_cs *ring)
386 {
387         struct intel_ctx_submit_request *req0 = NULL, *req1 = NULL;
388         struct intel_ctx_submit_request *cursor = NULL, *tmp = NULL;
389         struct drm_i915_private *dev_priv = ring->dev->dev_private;
390
391         assert_spin_locked(&ring->execlist_lock);
392
393         if (list_empty(&ring->execlist_queue))
394                 return;
395
396         /* Try to read in pairs */
397         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
398                                  execlist_link) {
399                 if (!req0) {
400                         req0 = cursor;
401                 } else if (req0->ctx == cursor->ctx) {
402                         /* Same ctx: ignore first request, as second request
403                          * will update tail past first request's workload */
404                         cursor->elsp_submitted = req0->elsp_submitted;
405                         list_del(&req0->execlist_link);
406                         queue_work(dev_priv->wq, &req0->work);
407                         req0 = cursor;
408                 } else {
409                         req1 = cursor;
410                         break;
411                 }
412         }
413
414         WARN_ON(req1 && req1->elsp_submitted);
415
416         WARN_ON(execlists_submit_context(ring, req0->ctx, req0->tail,
417                                          req1 ? req1->ctx : NULL,
418                                          req1 ? req1->tail : 0));
419
420         req0->elsp_submitted++;
421         if (req1)
422                 req1->elsp_submitted++;
423 }
424
425 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
426                                            u32 request_id)
427 {
428         struct drm_i915_private *dev_priv = ring->dev->dev_private;
429         struct intel_ctx_submit_request *head_req;
430
431         assert_spin_locked(&ring->execlist_lock);
432
433         head_req = list_first_entry_or_null(&ring->execlist_queue,
434                                             struct intel_ctx_submit_request,
435                                             execlist_link);
436
437         if (head_req != NULL) {
438                 struct drm_i915_gem_object *ctx_obj =
439                                 head_req->ctx->engine[ring->id].state;
440                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
441                         WARN(head_req->elsp_submitted == 0,
442                              "Never submitted head request\n");
443
444                         if (--head_req->elsp_submitted <= 0) {
445                                 list_del(&head_req->execlist_link);
446                                 queue_work(dev_priv->wq, &head_req->work);
447                                 return true;
448                         }
449                 }
450         }
451
452         return false;
453 }
454
455 /**
456  * intel_execlists_handle_ctx_events() - handle Context Switch interrupts
457  * @ring: Engine Command Streamer to handle.
458  *
459  * Check the unread Context Status Buffers and manage the submission of new
460  * contexts to the ELSP accordingly.
461  */
462 void intel_execlists_handle_ctx_events(struct intel_engine_cs *ring)
463 {
464         struct drm_i915_private *dev_priv = ring->dev->dev_private;
465         u32 status_pointer;
466         u8 read_pointer;
467         u8 write_pointer;
468         u32 status;
469         u32 status_id;
470         u32 submit_contexts = 0;
471
472         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
473
474         read_pointer = ring->next_context_status_buffer;
475         write_pointer = status_pointer & 0x07;
476         if (read_pointer > write_pointer)
477                 write_pointer += 6;
478
479         lockmgr(&ring->execlist_lock, LK_EXCLUSIVE);
480
481         while (read_pointer < write_pointer) {
482                 read_pointer++;
483                 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
484                                 (read_pointer % 6) * 8);
485                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
486                                 (read_pointer % 6) * 8 + 4);
487
488                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
489                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
490                                 if (execlists_check_remove_request(ring, status_id))
491                                         WARN(1, "Lite Restored request removed from queue\n");
492                         } else
493                                 WARN(1, "Preemption without Lite Restore\n");
494                 }
495
496                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
497                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
498                         if (execlists_check_remove_request(ring, status_id))
499                                 submit_contexts++;
500                 }
501         }
502
503         if (submit_contexts != 0)
504                 execlists_context_unqueue(ring);
505
506         lockmgr(&ring->execlist_lock, LK_RELEASE);
507
508         WARN(submit_contexts > 2, "More than two context complete events?\n");
509         ring->next_context_status_buffer = write_pointer % 6;
510
511         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
512                    ((u32)ring->next_context_status_buffer & 0x07) << 8);
513 }
514
515 static void execlists_free_request_task(struct work_struct *work)
516 {
517         struct intel_ctx_submit_request *req =
518                 container_of(work, struct intel_ctx_submit_request, work);
519         struct drm_device *dev = req->ring->dev;
520         struct drm_i915_private *dev_priv = dev->dev_private;
521
522         intel_runtime_pm_put(dev_priv);
523
524         mutex_lock(&dev->struct_mutex);
525         i915_gem_context_unreference(req->ctx);
526         mutex_unlock(&dev->struct_mutex);
527
528         kfree(req);
529 }
530
531 static int execlists_context_queue(struct intel_engine_cs *ring,
532                                    struct intel_context *to,
533                                    u32 tail)
534 {
535         struct intel_ctx_submit_request *req = NULL, *cursor;
536         struct drm_i915_private *dev_priv = ring->dev->dev_private;
537         int num_elements = 0;
538
539         req = kzalloc(sizeof(*req), GFP_KERNEL);
540         if (req == NULL)
541                 return -ENOMEM;
542         req->ctx = to;
543         i915_gem_context_reference(req->ctx);
544         req->ring = ring;
545         req->tail = tail;
546         INIT_WORK(&req->work, execlists_free_request_task);
547
548         intel_runtime_pm_get(dev_priv);
549
550         lockmgr(&ring->execlist_lock, LK_EXCLUSIVE);
551
552         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
553                 if (++num_elements > 2)
554                         break;
555
556         if (num_elements > 2) {
557                 struct intel_ctx_submit_request *tail_req;
558
559                 tail_req = list_last_entry(&ring->execlist_queue,
560                                            struct intel_ctx_submit_request,
561                                            execlist_link);
562
563                 if (to == tail_req->ctx) {
564                         WARN(tail_req->elsp_submitted != 0,
565                              "More than 2 already-submitted reqs queued\n");
566                         list_del(&tail_req->execlist_link);
567                         queue_work(dev_priv->wq, &tail_req->work);
568                 }
569         }
570
571         list_add_tail(&req->execlist_link, &ring->execlist_queue);
572         if (num_elements == 0)
573                 execlists_context_unqueue(ring);
574
575         lockmgr(&ring->execlist_lock, LK_RELEASE);
576
577         return 0;
578 }
579
580 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf)
581 {
582         struct intel_engine_cs *ring = ringbuf->ring;
583         uint32_t flush_domains;
584         int ret;
585
586         flush_domains = 0;
587         if (ring->gpu_caches_dirty)
588                 flush_domains = I915_GEM_GPU_DOMAINS;
589
590         ret = ring->emit_flush(ringbuf, I915_GEM_GPU_DOMAINS, flush_domains);
591         if (ret)
592                 return ret;
593
594         ring->gpu_caches_dirty = false;
595         return 0;
596 }
597
598 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
599                                  struct list_head *vmas)
600 {
601         struct intel_engine_cs *ring = ringbuf->ring;
602         struct i915_vma *vma;
603         uint32_t flush_domains = 0;
604         bool flush_chipset = false;
605         int ret;
606
607         list_for_each_entry(vma, vmas, exec_list) {
608                 struct drm_i915_gem_object *obj = vma->obj;
609
610                 ret = i915_gem_object_sync(obj, ring);
611                 if (ret)
612                         return ret;
613
614                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
615                         flush_chipset |= i915_gem_clflush_object(obj, false);
616
617                 flush_domains |= obj->base.write_domain;
618         }
619
620         if (flush_domains & I915_GEM_DOMAIN_GTT)
621                 wmb();
622
623         /* Unconditionally invalidate gpu caches and ensure that we do flush
624          * any residual writes from the previous batch.
625          */
626         return logical_ring_invalidate_all_caches(ringbuf);
627 }
628
629 /**
630  * execlists_submission() - submit a batchbuffer for execution, Execlists style
631  * @dev: DRM device.
632  * @file: DRM file.
633  * @ring: Engine Command Streamer to submit to.
634  * @ctx: Context to employ for this submission.
635  * @args: execbuffer call arguments.
636  * @vmas: list of vmas.
637  * @batch_obj: the batchbuffer to submit.
638  * @exec_start: batchbuffer start virtual address pointer.
639  * @flags: translated execbuffer call flags.
640  *
641  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
642  * away the submission details of the execbuffer ioctl call.
643  *
644  * Return: non-zero if the submission fails.
645  */
646 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
647                                struct intel_engine_cs *ring,
648                                struct intel_context *ctx,
649                                struct drm_i915_gem_execbuffer2 *args,
650                                struct list_head *vmas,
651                                struct drm_i915_gem_object *batch_obj,
652                                u64 exec_start, u32 flags)
653 {
654         struct drm_i915_private *dev_priv = dev->dev_private;
655         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
656         int instp_mode;
657         u32 instp_mask;
658         int ret;
659
660         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
661         instp_mask = I915_EXEC_CONSTANTS_MASK;
662         switch (instp_mode) {
663         case I915_EXEC_CONSTANTS_REL_GENERAL:
664         case I915_EXEC_CONSTANTS_ABSOLUTE:
665         case I915_EXEC_CONSTANTS_REL_SURFACE:
666                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
667                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
668                         return -EINVAL;
669                 }
670
671                 if (instp_mode != dev_priv->relative_constants_mode) {
672                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
673                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
674                                 return -EINVAL;
675                         }
676
677                         /* The HW changed the meaning on this bit on gen6 */
678                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
679                 }
680                 break;
681         default:
682                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
683                 return -EINVAL;
684         }
685
686         if (args->num_cliprects != 0) {
687                 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
688                 return -EINVAL;
689         } else {
690                 if (args->DR4 == 0xffffffff) {
691                         DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
692                         args->DR4 = 0;
693                 }
694
695                 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
696                         DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
697                         return -EINVAL;
698                 }
699         }
700
701         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
702                 DRM_DEBUG("sol reset is gen7 only\n");
703                 return -EINVAL;
704         }
705
706         ret = execlists_move_to_gpu(ringbuf, vmas);
707         if (ret)
708                 return ret;
709
710         if (ring == &dev_priv->ring[RCS] &&
711             instp_mode != dev_priv->relative_constants_mode) {
712                 ret = intel_logical_ring_begin(ringbuf, 4);
713                 if (ret)
714                         return ret;
715
716                 intel_logical_ring_emit(ringbuf, MI_NOOP);
717                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
718                 intel_logical_ring_emit(ringbuf, INSTPM);
719                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
720                 intel_logical_ring_advance(ringbuf);
721
722                 dev_priv->relative_constants_mode = instp_mode;
723         }
724
725         ret = ring->emit_bb_start(ringbuf, exec_start, flags);
726         if (ret)
727                 return ret;
728
729         i915_gem_execbuffer_move_to_active(vmas, ring);
730         i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
731
732         return 0;
733 }
734
735 void intel_logical_ring_stop(struct intel_engine_cs *ring)
736 {
737         struct drm_i915_private *dev_priv = ring->dev->dev_private;
738         int ret;
739
740         if (!intel_ring_initialized(ring))
741                 return;
742
743         ret = intel_ring_idle(ring);
744         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
745                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
746                           ring->name, ret);
747
748         /* TODO: Is this correct with Execlists enabled? */
749         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
750         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
751                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
752                 return;
753         }
754         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
755 }
756
757 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf)
758 {
759         struct intel_engine_cs *ring = ringbuf->ring;
760         int ret;
761
762         if (!ring->gpu_caches_dirty)
763                 return 0;
764
765         ret = ring->emit_flush(ringbuf, 0, I915_GEM_GPU_DOMAINS);
766         if (ret)
767                 return ret;
768
769         ring->gpu_caches_dirty = false;
770         return 0;
771 }
772
773 /**
774  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
775  * @ringbuf: Logical Ringbuffer to advance.
776  *
777  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
778  * really happens during submission is that the context and current tail will be placed
779  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
780  * point, the tail *inside* the context is updated and the ELSP written to.
781  */
782 void intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf)
783 {
784         struct intel_engine_cs *ring = ringbuf->ring;
785         struct intel_context *ctx = ringbuf->FIXME_lrc_ctx;
786
787         intel_logical_ring_advance(ringbuf);
788
789         if (intel_ring_stopped(ring))
790                 return;
791
792         execlists_context_queue(ring, ctx, ringbuf->tail);
793 }
794
795 static int logical_ring_alloc_seqno(struct intel_engine_cs *ring,
796                                     struct intel_context *ctx)
797 {
798         if (ring->outstanding_lazy_seqno)
799                 return 0;
800
801         if (ring->preallocated_lazy_request == NULL) {
802                 struct drm_i915_gem_request *request;
803
804                 request = kmalloc(sizeof(*request), M_DRM, M_WAITOK);
805                 if (request == NULL)
806                         return -ENOMEM;
807
808                 /* Hold a reference to the context this request belongs to
809                  * (we will need it when the time comes to emit/retire the
810                  * request).
811                  */
812                 request->ctx = ctx;
813                 i915_gem_context_reference(request->ctx);
814
815                 ring->preallocated_lazy_request = request;
816         }
817
818         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
819 }
820
821 static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
822                                      int bytes)
823 {
824         struct intel_engine_cs *ring = ringbuf->ring;
825         struct drm_i915_gem_request *request;
826         u32 seqno = 0;
827         int ret;
828
829         if (ringbuf->last_retired_head != -1) {
830                 ringbuf->head = ringbuf->last_retired_head;
831                 ringbuf->last_retired_head = -1;
832
833                 ringbuf->space = intel_ring_space(ringbuf);
834                 if (ringbuf->space >= bytes)
835                         return 0;
836         }
837
838         list_for_each_entry(request, &ring->request_list, list) {
839                 if (__intel_ring_space(request->tail, ringbuf->tail,
840                                        ringbuf->size) >= bytes) {
841                         seqno = request->seqno;
842                         break;
843                 }
844         }
845
846         if (seqno == 0)
847                 return -ENOSPC;
848
849         ret = i915_wait_seqno(ring, seqno);
850         if (ret)
851                 return ret;
852
853         i915_gem_retire_requests_ring(ring);
854         ringbuf->head = ringbuf->last_retired_head;
855         ringbuf->last_retired_head = -1;
856
857         ringbuf->space = intel_ring_space(ringbuf);
858         return 0;
859 }
860
861 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
862                                        int bytes)
863 {
864         struct intel_engine_cs *ring = ringbuf->ring;
865         struct drm_device *dev = ring->dev;
866         struct drm_i915_private *dev_priv = dev->dev_private;
867         unsigned long end;
868         int ret;
869
870         ret = logical_ring_wait_request(ringbuf, bytes);
871         if (ret != -ENOSPC)
872                 return ret;
873
874         /* Force the context submission in case we have been skipping it */
875         intel_logical_ring_advance_and_submit(ringbuf);
876
877         /* With GEM the hangcheck timer should kick us out of the loop,
878          * leaving it early runs the risk of corrupting GEM state (due
879          * to running on almost untested codepaths). But on resume
880          * timers don't work yet, so prevent a complete hang in that
881          * case by choosing an insanely large timeout. */
882         end = jiffies + 60 * HZ;
883
884         do {
885                 ringbuf->head = I915_READ_HEAD(ring);
886                 ringbuf->space = intel_ring_space(ringbuf);
887                 if (ringbuf->space >= bytes) {
888                         ret = 0;
889                         break;
890                 }
891
892                 msleep(1);
893
894                 if (dev_priv->mm.interruptible && signal_pending(curthread->td_lwp)) {
895                         ret = -ERESTARTSYS;
896                         break;
897                 }
898
899                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
900                                            dev_priv->mm.interruptible);
901                 if (ret)
902                         break;
903
904                 if (time_after(jiffies, end)) {
905                         ret = -EBUSY;
906                         break;
907                 }
908         } while (1);
909
910         return ret;
911 }
912
913 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf)
914 {
915         uint32_t __iomem *virt;
916         int rem = ringbuf->size - ringbuf->tail;
917
918         if (ringbuf->space < rem) {
919                 int ret = logical_ring_wait_for_space(ringbuf, rem);
920
921                 if (ret)
922                         return ret;
923         }
924
925         virt = (unsigned int *)((char *)ringbuf->virtual_start + ringbuf->tail);
926         rem /= 4;
927         while (rem--)
928                 iowrite32(MI_NOOP, virt++);
929
930         ringbuf->tail = 0;
931         ringbuf->space = intel_ring_space(ringbuf);
932
933         return 0;
934 }
935
936 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf, int bytes)
937 {
938         int ret;
939
940         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
941                 ret = logical_ring_wrap_buffer(ringbuf);
942                 if (unlikely(ret))
943                         return ret;
944         }
945
946         if (unlikely(ringbuf->space < bytes)) {
947                 ret = logical_ring_wait_for_space(ringbuf, bytes);
948                 if (unlikely(ret))
949                         return ret;
950         }
951
952         return 0;
953 }
954
955 /**
956  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
957  *
958  * @ringbuf: Logical ringbuffer.
959  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
960  *
961  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
962  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
963  * and also preallocates a request (every workload submission is still mediated through
964  * requests, same as it did with legacy ringbuffer submission).
965  *
966  * Return: non-zero if the ringbuffer is not ready to be written to.
967  */
968 int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf, int num_dwords)
969 {
970         struct intel_engine_cs *ring = ringbuf->ring;
971         struct drm_device *dev = ring->dev;
972         struct drm_i915_private *dev_priv = dev->dev_private;
973         int ret;
974
975         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
976                                    dev_priv->mm.interruptible);
977         if (ret)
978                 return ret;
979
980         ret = logical_ring_prepare(ringbuf, num_dwords * sizeof(uint32_t));
981         if (ret)
982                 return ret;
983
984         /* Preallocate the olr before touching the ring */
985         ret = logical_ring_alloc_seqno(ring, ringbuf->FIXME_lrc_ctx);
986         if (ret)
987                 return ret;
988
989         ringbuf->space -= num_dwords * sizeof(uint32_t);
990         return 0;
991 }
992
993 static int gen8_init_common_ring(struct intel_engine_cs *ring)
994 {
995         struct drm_device *dev = ring->dev;
996         struct drm_i915_private *dev_priv = dev->dev_private;
997
998         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
999         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1000
1001         I915_WRITE(RING_MODE_GEN7(ring),
1002                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1003                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1004         POSTING_READ(RING_MODE_GEN7(ring));
1005         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1006
1007         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1008
1009         return 0;
1010 }
1011
1012 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1013 {
1014         struct drm_device *dev = ring->dev;
1015         struct drm_i915_private *dev_priv = dev->dev_private;
1016         int ret;
1017
1018         ret = gen8_init_common_ring(ring);
1019         if (ret)
1020                 return ret;
1021
1022         /* We need to disable the AsyncFlip performance optimisations in order
1023          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1024          * programmed to '1' on all products.
1025          *
1026          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1027          */
1028         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1029
1030         ret = intel_init_pipe_control(ring);
1031         if (ret)
1032                 return ret;
1033
1034         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1035
1036         return ret;
1037 }
1038
1039 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1040                               u64 offset, unsigned flags)
1041 {
1042         bool ppgtt = !(flags & I915_DISPATCH_SECURE);
1043         int ret;
1044
1045         ret = intel_logical_ring_begin(ringbuf, 4);
1046         if (ret)
1047                 return ret;
1048
1049         /* FIXME(BDW): Address space and security selectors. */
1050         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1051         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1052         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1053         intel_logical_ring_emit(ringbuf, MI_NOOP);
1054         intel_logical_ring_advance(ringbuf);
1055
1056         return 0;
1057 }
1058
1059 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1060 {
1061         struct drm_device *dev = ring->dev;
1062         struct drm_i915_private *dev_priv = dev->dev_private;
1063
1064         if (!dev->irq_enabled)
1065                 return false;
1066
1067         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1068         if (ring->irq_refcount++ == 0) {
1069                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1070                 POSTING_READ(RING_IMR(ring->mmio_base));
1071         }
1072         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1073
1074         return true;
1075 }
1076
1077 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1078 {
1079         struct drm_device *dev = ring->dev;
1080         struct drm_i915_private *dev_priv = dev->dev_private;
1081
1082         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1083         if (--ring->irq_refcount == 0) {
1084                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1085                 POSTING_READ(RING_IMR(ring->mmio_base));
1086         }
1087         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1088 }
1089
1090 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1091                            u32 invalidate_domains,
1092                            u32 unused)
1093 {
1094         struct intel_engine_cs *ring = ringbuf->ring;
1095         struct drm_device *dev = ring->dev;
1096         struct drm_i915_private *dev_priv = dev->dev_private;
1097         uint32_t cmd;
1098         int ret;
1099
1100         ret = intel_logical_ring_begin(ringbuf, 4);
1101         if (ret)
1102                 return ret;
1103
1104         cmd = MI_FLUSH_DW + 1;
1105
1106         if (ring == &dev_priv->ring[VCS]) {
1107                 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
1108                         cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1109                                 MI_FLUSH_DW_STORE_INDEX |
1110                                 MI_FLUSH_DW_OP_STOREDW;
1111         } else {
1112                 if (invalidate_domains & I915_GEM_DOMAIN_RENDER)
1113                         cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1114                                 MI_FLUSH_DW_OP_STOREDW;
1115         }
1116
1117         intel_logical_ring_emit(ringbuf, cmd);
1118         intel_logical_ring_emit(ringbuf,
1119                                 I915_GEM_HWS_SCRATCH_ADDR |
1120                                 MI_FLUSH_DW_USE_GTT);
1121         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1122         intel_logical_ring_emit(ringbuf, 0); /* value */
1123         intel_logical_ring_advance(ringbuf);
1124
1125         return 0;
1126 }
1127
1128 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1129                                   u32 invalidate_domains,
1130                                   u32 flush_domains)
1131 {
1132         struct intel_engine_cs *ring = ringbuf->ring;
1133         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1134         u32 flags = 0;
1135         int ret;
1136
1137         flags |= PIPE_CONTROL_CS_STALL;
1138
1139         if (flush_domains) {
1140                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1141                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1142         }
1143
1144         if (invalidate_domains) {
1145                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1146                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1147                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1148                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1149                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1150                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1151                 flags |= PIPE_CONTROL_QW_WRITE;
1152                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1153         }
1154
1155         ret = intel_logical_ring_begin(ringbuf, 6);
1156         if (ret)
1157                 return ret;
1158
1159         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1160         intel_logical_ring_emit(ringbuf, flags);
1161         intel_logical_ring_emit(ringbuf, scratch_addr);
1162         intel_logical_ring_emit(ringbuf, 0);
1163         intel_logical_ring_emit(ringbuf, 0);
1164         intel_logical_ring_emit(ringbuf, 0);
1165         intel_logical_ring_advance(ringbuf);
1166
1167         return 0;
1168 }
1169
1170 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1171 {
1172         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1173 }
1174
1175 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1176 {
1177         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1178 }
1179
1180 static int gen8_emit_request(struct intel_ringbuffer *ringbuf)
1181 {
1182         struct intel_engine_cs *ring = ringbuf->ring;
1183         u32 cmd;
1184         int ret;
1185
1186         ret = intel_logical_ring_begin(ringbuf, 6);
1187         if (ret)
1188                 return ret;
1189
1190         cmd = MI_STORE_DWORD_IMM_GEN8;
1191         cmd |= MI_GLOBAL_GTT;
1192
1193         intel_logical_ring_emit(ringbuf, cmd);
1194         intel_logical_ring_emit(ringbuf,
1195                                 (ring->status_page.gfx_addr +
1196                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1197         intel_logical_ring_emit(ringbuf, 0);
1198         intel_logical_ring_emit(ringbuf, ring->outstanding_lazy_seqno);
1199         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1200         intel_logical_ring_emit(ringbuf, MI_NOOP);
1201         intel_logical_ring_advance_and_submit(ringbuf);
1202
1203         return 0;
1204 }
1205
1206 /**
1207  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1208  *
1209  * @ring: Engine Command Streamer.
1210  *
1211  */
1212 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1213 {
1214         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1215
1216         if (!intel_ring_initialized(ring))
1217                 return;
1218
1219         intel_logical_ring_stop(ring);
1220         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1221         ring->preallocated_lazy_request = NULL;
1222         ring->outstanding_lazy_seqno = 0;
1223
1224         if (ring->cleanup)
1225                 ring->cleanup(ring);
1226
1227         i915_cmd_parser_fini_ring(ring);
1228
1229         if (ring->status_page.obj) {
1230                 kunmap(ring->status_page.obj->pages[0]);
1231                 ring->status_page.obj = NULL;
1232         }
1233 }
1234
1235 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1236 {
1237         int ret;
1238
1239         /* Intentionally left blank. */
1240         ring->buffer = NULL;
1241
1242         ring->dev = dev;
1243         INIT_LIST_HEAD(&ring->active_list);
1244         INIT_LIST_HEAD(&ring->request_list);
1245         init_waitqueue_head(&ring->irq_queue);
1246
1247         INIT_LIST_HEAD(&ring->execlist_queue);
1248         lockinit(&ring->execlist_lock, "i915el", 0, LK_CANRECURSE);
1249         ring->next_context_status_buffer = 0;
1250
1251         ret = i915_cmd_parser_init_ring(ring);
1252         if (ret)
1253                 return ret;
1254
1255         if (ring->init) {
1256                 ret = ring->init(ring);
1257                 if (ret)
1258                         return ret;
1259         }
1260
1261         ret = intel_lr_context_deferred_create(ring->default_context, ring);
1262
1263         return ret;
1264 }
1265
1266 static int logical_render_ring_init(struct drm_device *dev)
1267 {
1268         struct drm_i915_private *dev_priv = dev->dev_private;
1269         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1270
1271         ring->name = "render ring";
1272         ring->id = RCS;
1273         ring->mmio_base = RENDER_RING_BASE;
1274         ring->irq_enable_mask =
1275                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1276         ring->irq_keep_mask =
1277                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1278         if (HAS_L3_DPF(dev))
1279                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1280
1281         ring->init = gen8_init_render_ring;
1282         ring->cleanup = intel_fini_pipe_control;
1283         ring->get_seqno = gen8_get_seqno;
1284         ring->set_seqno = gen8_set_seqno;
1285         ring->emit_request = gen8_emit_request;
1286         ring->emit_flush = gen8_emit_flush_render;
1287         ring->irq_get = gen8_logical_ring_get_irq;
1288         ring->irq_put = gen8_logical_ring_put_irq;
1289         ring->emit_bb_start = gen8_emit_bb_start;
1290
1291         return logical_ring_init(dev, ring);
1292 }
1293
1294 static int logical_bsd_ring_init(struct drm_device *dev)
1295 {
1296         struct drm_i915_private *dev_priv = dev->dev_private;
1297         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1298
1299         ring->name = "bsd ring";
1300         ring->id = VCS;
1301         ring->mmio_base = GEN6_BSD_RING_BASE;
1302         ring->irq_enable_mask =
1303                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1304         ring->irq_keep_mask =
1305                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1306
1307         ring->init = gen8_init_common_ring;
1308         ring->get_seqno = gen8_get_seqno;
1309         ring->set_seqno = gen8_set_seqno;
1310         ring->emit_request = gen8_emit_request;
1311         ring->emit_flush = gen8_emit_flush;
1312         ring->irq_get = gen8_logical_ring_get_irq;
1313         ring->irq_put = gen8_logical_ring_put_irq;
1314         ring->emit_bb_start = gen8_emit_bb_start;
1315
1316         return logical_ring_init(dev, ring);
1317 }
1318
1319 static int logical_bsd2_ring_init(struct drm_device *dev)
1320 {
1321         struct drm_i915_private *dev_priv = dev->dev_private;
1322         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1323
1324         ring->name = "bds2 ring";
1325         ring->id = VCS2;
1326         ring->mmio_base = GEN8_BSD2_RING_BASE;
1327         ring->irq_enable_mask =
1328                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1329         ring->irq_keep_mask =
1330                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1331
1332         ring->init = gen8_init_common_ring;
1333         ring->get_seqno = gen8_get_seqno;
1334         ring->set_seqno = gen8_set_seqno;
1335         ring->emit_request = gen8_emit_request;
1336         ring->emit_flush = gen8_emit_flush;
1337         ring->irq_get = gen8_logical_ring_get_irq;
1338         ring->irq_put = gen8_logical_ring_put_irq;
1339         ring->emit_bb_start = gen8_emit_bb_start;
1340
1341         return logical_ring_init(dev, ring);
1342 }
1343
1344 static int logical_blt_ring_init(struct drm_device *dev)
1345 {
1346         struct drm_i915_private *dev_priv = dev->dev_private;
1347         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1348
1349         ring->name = "blitter ring";
1350         ring->id = BCS;
1351         ring->mmio_base = BLT_RING_BASE;
1352         ring->irq_enable_mask =
1353                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1354         ring->irq_keep_mask =
1355                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1356
1357         ring->init = gen8_init_common_ring;
1358         ring->get_seqno = gen8_get_seqno;
1359         ring->set_seqno = gen8_set_seqno;
1360         ring->emit_request = gen8_emit_request;
1361         ring->emit_flush = gen8_emit_flush;
1362         ring->irq_get = gen8_logical_ring_get_irq;
1363         ring->irq_put = gen8_logical_ring_put_irq;
1364         ring->emit_bb_start = gen8_emit_bb_start;
1365
1366         return logical_ring_init(dev, ring);
1367 }
1368
1369 static int logical_vebox_ring_init(struct drm_device *dev)
1370 {
1371         struct drm_i915_private *dev_priv = dev->dev_private;
1372         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1373
1374         ring->name = "video enhancement ring";
1375         ring->id = VECS;
1376         ring->mmio_base = VEBOX_RING_BASE;
1377         ring->irq_enable_mask =
1378                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1379         ring->irq_keep_mask =
1380                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1381
1382         ring->init = gen8_init_common_ring;
1383         ring->get_seqno = gen8_get_seqno;
1384         ring->set_seqno = gen8_set_seqno;
1385         ring->emit_request = gen8_emit_request;
1386         ring->emit_flush = gen8_emit_flush;
1387         ring->irq_get = gen8_logical_ring_get_irq;
1388         ring->irq_put = gen8_logical_ring_put_irq;
1389         ring->emit_bb_start = gen8_emit_bb_start;
1390
1391         return logical_ring_init(dev, ring);
1392 }
1393
1394 /**
1395  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1396  * @dev: DRM device.
1397  *
1398  * This function inits the engines for an Execlists submission style (the equivalent in the
1399  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1400  * those engines that are present in the hardware.
1401  *
1402  * Return: non-zero if the initialization failed.
1403  */
1404 int intel_logical_rings_init(struct drm_device *dev)
1405 {
1406         struct drm_i915_private *dev_priv = dev->dev_private;
1407         int ret;
1408
1409         ret = logical_render_ring_init(dev);
1410         if (ret)
1411                 return ret;
1412
1413         if (HAS_BSD(dev)) {
1414                 ret = logical_bsd_ring_init(dev);
1415                 if (ret)
1416                         goto cleanup_render_ring;
1417         }
1418
1419         if (HAS_BLT(dev)) {
1420                 ret = logical_blt_ring_init(dev);
1421                 if (ret)
1422                         goto cleanup_bsd_ring;
1423         }
1424
1425         if (HAS_VEBOX(dev)) {
1426                 ret = logical_vebox_ring_init(dev);
1427                 if (ret)
1428                         goto cleanup_blt_ring;
1429         }
1430
1431         if (HAS_BSD2(dev)) {
1432                 ret = logical_bsd2_ring_init(dev);
1433                 if (ret)
1434                         goto cleanup_vebox_ring;
1435         }
1436
1437         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1438         if (ret)
1439                 goto cleanup_bsd2_ring;
1440
1441         return 0;
1442
1443 cleanup_bsd2_ring:
1444         intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1445 cleanup_vebox_ring:
1446         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1447 cleanup_blt_ring:
1448         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1449 cleanup_bsd_ring:
1450         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1451 cleanup_render_ring:
1452         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1453
1454         return ret;
1455 }
1456
1457 int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1458                                        struct intel_context *ctx)
1459 {
1460         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1461         struct render_state so;
1462         struct drm_i915_file_private *file_priv = ctx->file_priv;
1463         struct drm_file *file = file_priv ? file_priv->file : NULL;
1464         int ret;
1465
1466         ret = i915_gem_render_state_prepare(ring, &so);
1467         if (ret)
1468                 return ret;
1469
1470         if (so.rodata == NULL)
1471                 return 0;
1472
1473         ret = ring->emit_bb_start(ringbuf,
1474                         so.ggtt_offset,
1475                         I915_DISPATCH_SECURE);
1476         if (ret)
1477                 goto out;
1478
1479         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1480
1481         ret = __i915_add_request(ring, file, so.obj, NULL);
1482         /* intel_logical_ring_add_request moves object to inactive if it
1483          * fails */
1484 out:
1485         i915_gem_render_state_fini(&so);
1486         return ret;
1487 }
1488
1489 static int
1490 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1491                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1492 {
1493         struct drm_device *dev = ring->dev;
1494         struct drm_i915_private *dev_priv = dev->dev_private;
1495         struct drm_i915_gem_object *ring_obj = ringbuf->obj;
1496         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1497         struct vm_page *page;
1498         uint32_t *reg_state;
1499         int ret;
1500
1501         if (!ppgtt)
1502                 ppgtt = dev_priv->mm.aliasing_ppgtt;
1503
1504         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1505         if (ret) {
1506                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1507                 return ret;
1508         }
1509
1510         ret = i915_gem_object_get_pages(ctx_obj);
1511         if (ret) {
1512                 DRM_DEBUG_DRIVER("Could not get object pages\n");
1513                 return ret;
1514         }
1515
1516         i915_gem_object_pin_pages(ctx_obj);
1517
1518         /* The second page of the context object contains some fields which must
1519          * be set up prior to the first execution. */
1520         page = i915_gem_object_get_page(ctx_obj, 1);
1521         reg_state = kmap_atomic(page);
1522
1523         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1524          * commands followed by (reg, value) pairs. The values we are setting here are
1525          * only for the first context restore: on a subsequent save, the GPU will
1526          * recreate this batchbuffer with new values (including all the missing
1527          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1528         if (ring->id == RCS)
1529                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1530         else
1531                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1532         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1533         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1534         reg_state[CTX_CONTEXT_CONTROL+1] =
1535                         _MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
1536         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1537         reg_state[CTX_RING_HEAD+1] = 0;
1538         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1539         reg_state[CTX_RING_TAIL+1] = 0;
1540         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1541         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
1542         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1543         reg_state[CTX_RING_BUFFER_CONTROL+1] =
1544                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1545         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1546         reg_state[CTX_BB_HEAD_U+1] = 0;
1547         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1548         reg_state[CTX_BB_HEAD_L+1] = 0;
1549         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1550         reg_state[CTX_BB_STATE+1] = (1<<5);
1551         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1552         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1553         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1554         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1555         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1556         reg_state[CTX_SECOND_BB_STATE+1] = 0;
1557         if (ring->id == RCS) {
1558                 /* TODO: according to BSpec, the register state context
1559                  * for CHV does not have these. OTOH, these registers do
1560                  * exist in CHV. I'm waiting for a clarification */
1561                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1562                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1563                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1564                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1565                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1566                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1567         }
1568         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1569         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1570         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1571         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1572         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1573         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1574         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1575         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1576         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1577         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1578         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1579         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1580         reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
1581         reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
1582         reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
1583         reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
1584         reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
1585         reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
1586         reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
1587         reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
1588         if (ring->id == RCS) {
1589                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1590                 reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
1591                 reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
1592         }
1593
1594         kunmap_atomic(reg_state);
1595
1596         ctx_obj->dirty = 1;
1597         set_page_dirty(page);
1598         i915_gem_object_unpin_pages(ctx_obj);
1599
1600         return 0;
1601 }
1602
1603 /**
1604  * intel_lr_context_free() - free the LRC specific bits of a context
1605  * @ctx: the LR context to free.
1606  *
1607  * The real context freeing is done in i915_gem_context_free: this only
1608  * takes care of the bits that are LRC related: the per-engine backing
1609  * objects and the logical ringbuffer.
1610  */
1611 void intel_lr_context_free(struct intel_context *ctx)
1612 {
1613         int i;
1614
1615         for (i = 0; i < I915_NUM_RINGS; i++) {
1616                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1617                 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
1618
1619                 if (ctx_obj) {
1620                         intel_destroy_ringbuffer_obj(ringbuf);
1621                         kfree(ringbuf);
1622                         i915_gem_object_ggtt_unpin(ctx_obj);
1623                         drm_gem_object_unreference(&ctx_obj->base);
1624                 }
1625         }
1626 }
1627
1628 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1629 {
1630         int ret = 0;
1631
1632         WARN_ON(INTEL_INFO(ring->dev)->gen != 8);
1633
1634         switch (ring->id) {
1635         case RCS:
1636                 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1637                 break;
1638         case VCS:
1639         case BCS:
1640         case VECS:
1641         case VCS2:
1642                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1643                 break;
1644         }
1645
1646         return ret;
1647 }
1648
1649 /**
1650  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1651  * @ctx: LR context to create.
1652  * @ring: engine to be used with the context.
1653  *
1654  * This function can be called more than once, with different engines, if we plan
1655  * to use the context with them. The context backing objects and the ringbuffers
1656  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1657  * the creation is a deferred call: it's better to make sure first that we need to use
1658  * a given ring with the context.
1659  *
1660  * Return: non-zero on eror.
1661  */
1662 int intel_lr_context_deferred_create(struct intel_context *ctx,
1663                                      struct intel_engine_cs *ring)
1664 {
1665         struct drm_device *dev = ring->dev;
1666         struct drm_i915_gem_object *ctx_obj;
1667         uint32_t context_size;
1668         struct intel_ringbuffer *ringbuf;
1669         int ret;
1670
1671         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1672         if (ctx->engine[ring->id].state)
1673                 return 0;
1674
1675         context_size = round_up(get_lr_context_size(ring), 4096);
1676
1677         ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1678         if (IS_ERR(ctx_obj)) {
1679                 ret = PTR_ERR(ctx_obj);
1680                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1681                 return ret;
1682         }
1683
1684         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1685         if (ret) {
1686                 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n", ret);
1687                 drm_gem_object_unreference(&ctx_obj->base);
1688                 return ret;
1689         }
1690
1691         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1692         if (!ringbuf) {
1693                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1694                                 ring->name);
1695                 i915_gem_object_ggtt_unpin(ctx_obj);
1696                 drm_gem_object_unreference(&ctx_obj->base);
1697                 ret = -ENOMEM;
1698                 return ret;
1699         }
1700
1701         ringbuf->ring = ring;
1702         ringbuf->FIXME_lrc_ctx = ctx;
1703
1704         ringbuf->size = 32 * PAGE_SIZE;
1705         ringbuf->effective_size = ringbuf->size;
1706         ringbuf->head = 0;
1707         ringbuf->tail = 0;
1708         ringbuf->space = ringbuf->size;
1709         ringbuf->last_retired_head = -1;
1710
1711         /* TODO: For now we put this in the mappable region so that we can reuse
1712          * the existing ringbuffer code which ioremaps it. When we start
1713          * creating many contexts, this will no longer work and we must switch
1714          * to a kmapish interface.
1715          */
1716         ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1717         if (ret) {
1718                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer obj %s: %d\n",
1719                                 ring->name, ret);
1720                 goto error;
1721         }
1722
1723         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1724         if (ret) {
1725                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1726                 intel_destroy_ringbuffer_obj(ringbuf);
1727                 goto error;
1728         }
1729
1730         ctx->engine[ring->id].ringbuf = ringbuf;
1731         ctx->engine[ring->id].state = ctx_obj;
1732
1733         if (ctx == ring->default_context) {
1734                 /* The status page is offset 0 from the default context object
1735                  * in LRC mode. */
1736                 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(ctx_obj);
1737                 ring->status_page.page_addr =
1738                                 kmap(ctx_obj->pages[0]);
1739                 if (ring->status_page.page_addr == NULL)
1740                         return -ENOMEM;
1741                 ring->status_page.obj = ctx_obj;
1742         }
1743
1744         if (ring->id == RCS && !ctx->rcs_initialized) {
1745                 ret = intel_lr_context_render_state_init(ring, ctx);
1746                 if (ret) {
1747                         DRM_ERROR("Init render state failed: %d\n", ret);
1748                         ctx->engine[ring->id].ringbuf = NULL;
1749                         ctx->engine[ring->id].state = NULL;
1750                         intel_destroy_ringbuffer_obj(ringbuf);
1751                         goto error;
1752                 }
1753                 ctx->rcs_initialized = true;
1754         }
1755
1756         return 0;
1757
1758 error:
1759         kfree(ringbuf);
1760         i915_gem_object_ggtt_unpin(ctx_obj);
1761         drm_gem_object_unreference(&ctx_obj->base);
1762         return ret;
1763 }