c2369f4e6d23b266bc3fe1f7d63463825743bbf1
[dragonfly.git] / sys / bus / cam / cam_queue.c
1 /*-
2  * CAM request queue management functions.
3  *
4  * Copyright (c) 1997 Justin T. Gibbs.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification, immediately at the beginning of the file.
13  * 2. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/cam/cam_queue.c,v 1.9 2005/07/01 15:21:29 avatar Exp $
29  * $DragonFly: src/sys/bus/cam/cam_queue.c,v 1.12 2008/05/18 20:30:19 pavalos Exp $
30  */
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36
37 #include "cam.h"
38 #include "cam_ccb.h"
39 #include "cam_queue.h"
40 #include "cam_debug.h"
41
42 MALLOC_DEFINE(M_CAMQ, "CAM queue", "CAM queue buffers");
43 MALLOC_DEFINE(M_CAMDEVQ, "CAM dev queue", "CAM dev queue buffers");
44 MALLOC_DEFINE(M_CAMCCBQ, "CAM ccb queue", "CAM ccb queue buffers");
45
46 static __inline int
47                 queue_cmp(cam_pinfo **queue_array, int i, int j);
48 static __inline void
49                 swap(cam_pinfo **queue_array, int i, int j);
50 static void     heap_up(cam_pinfo **queue_array, int new_index);
51 static void     heap_down(cam_pinfo **queue_array, int index,
52                           int last_index);
53
54 struct camq *
55 camq_alloc(int size)
56 {
57         struct camq *camq;
58
59         camq = kmalloc(sizeof(*camq), M_CAMQ, M_INTWAIT);
60         camq_init(camq, size);
61         return (camq);
62 }
63         
64 int
65 camq_init(struct camq *camq, int size)
66 {
67         bzero(camq, sizeof(*camq));
68         camq->array_size = size;
69         if (camq->array_size != 0) {
70                 camq->queue_array = kmalloc(size * sizeof(cam_pinfo *), 
71                                         M_CAMQ, M_INTWAIT | M_ZERO);
72                 /*
73                  * Heap algorithms like everything numbered from 1, so
74                  * offset our pointer into the heap array by one element.
75                  *
76                  * XXX this is a really dumb idea.
77                  */
78                 camq->queue_array--;
79         }
80         return (0);
81 }
82
83 /*
84  * Free a camq structure.  This should only be called if a controller
85  * driver failes somehow during its attach routine or is unloaded and has
86  * obtained a camq structure.  The XPT should ensure that the queue
87  * is empty before calling this routine.
88  */
89 void
90 camq_free(struct camq *queue)
91 {
92         if (queue != NULL) {
93                 camq_fini(queue);
94                 kfree(queue, M_CAMQ);
95         }
96 }
97
98 void
99 camq_fini(struct camq *queue)
100 {
101         if (queue->queue_array != NULL) {
102                 /*
103                  * Heap algorithms like everything numbered from 1, so
104                  * our pointer into the heap array is offset by one element.
105                  */
106                 queue->queue_array++;
107                 kfree(queue->queue_array, M_CAMQ);
108         }
109 }
110
111 u_int32_t
112 camq_resize(struct camq *queue, int new_size)
113 {
114         cam_pinfo **new_array;
115
116 #ifdef DIAGNOSTIC
117         if (new_size < queue->entries)
118                 panic("camq_resize: New queue size can't accommodate "
119                       "queued entries.");
120 #endif
121         new_array = kmalloc(new_size * sizeof(cam_pinfo *), M_CAMQ,
122                             M_INTWAIT | M_ZERO);
123
124         /*
125          * Heap algorithms like everything numbered from 1, so
126          * remember that our pointer into the heap array is offset
127          * by one element.
128          */
129         if (queue->queue_array != NULL) {
130                 queue->queue_array++;
131                 bcopy(queue->queue_array, new_array,
132                       queue->entries * sizeof(cam_pinfo *));
133                 kfree(queue->queue_array, M_CAMQ);
134         }
135         queue->queue_array = new_array-1;
136         queue->array_size = new_size;
137         return (CAM_REQ_CMP);
138 }
139
140 /*
141  * camq_insert: Given an array of cam_pinfo* elememnts with
142  * the Heap(1, num_elements) property and array_size - num_elements >= 1,
143  * output Heap(1, num_elements+1) including new_entry in the array.
144  */
145 void
146 camq_insert(struct camq *queue, cam_pinfo *new_entry)
147 {
148 #ifdef DIAGNOSTIC
149         if (queue->entries >= queue->array_size)
150                 panic("camq_insert: Attempt to insert into a full queue");
151 #endif
152         queue->entries++;
153         queue->queue_array[queue->entries] = new_entry;
154         new_entry->index = queue->entries;
155         if (queue->entries != 0)
156                 heap_up(queue->queue_array, queue->entries);
157 }
158
159 /*
160  * camq_remove:  Given an array of cam_pinfo* elevements with the
161  * Heap(1, num_elements) property and an index such that 1 <= index <=
162  * num_elements, remove that entry and restore the Heap(1, num_elements-1)
163  * property.
164  *
165  * When removing do not leave any junk pointers around in the array.
166  * This also ensures that CAMQ_GET_HEAD() returns NULL if the queue is
167  * empty.
168  */
169 cam_pinfo *
170 camq_remove(struct camq *queue, int index)
171 {
172         cam_pinfo *removed_entry;
173
174         if (index == 0 || index > queue->entries)
175                 return (NULL);
176         removed_entry = queue->queue_array[index];
177         if (queue->entries != index) {
178                 queue->queue_array[index] = queue->queue_array[queue->entries];
179                 queue->queue_array[index]->index = index;
180                 heap_down(queue->queue_array, index, queue->entries - 1);
181         }
182         queue->queue_array[queue->entries] = NULL;
183         removed_entry->index = CAM_UNQUEUED_INDEX;
184         queue->entries--;
185         return (removed_entry);
186 }
187
188 /*
189  * camq_change_priority:  Given an array of cam_pinfo* elements with the
190  * Heap(1, num_entries) property, an index such that 1 <= index <= num_elements,
191  * and a new priority for the element at index, change the priority of
192  * element index and restore the Heap(0, num_elements) property.
193  */
194 void
195 camq_change_priority(struct camq *queue, int index, u_int32_t new_priority)
196 {
197         if (new_priority > queue->queue_array[index]->priority) {
198                 queue->queue_array[index]->priority = new_priority;
199                 heap_down(queue->queue_array, index, queue->entries);
200         } else {
201                 /* new_priority <= old_priority */
202                 queue->queue_array[index]->priority = new_priority;
203                 heap_up(queue->queue_array, index);
204         }
205 }
206
207 struct cam_devq *
208 cam_devq_alloc(int devices, int openings)
209 {
210         struct cam_devq *devq;
211
212         devq = kmalloc(sizeof(*devq), M_CAMDEVQ, M_INTWAIT);
213         cam_devq_init(devq, devices, openings);
214         return (devq);
215 }
216
217 int
218 cam_devq_init(struct cam_devq *devq, int devices, int openings)
219 {
220         bzero(devq, sizeof(*devq));
221         camq_init(&devq->alloc_queue, devices);
222         camq_init(&devq->send_queue, devices);
223         devq->alloc_openings = openings;
224         devq->alloc_active = 0;
225         devq->send_openings = openings;
226         devq->send_active = 0;  
227         devq->refcount = 1;
228         return (0);     
229 }
230
231 void
232 cam_devq_reference(struct cam_devq *devq)
233 {
234         ++devq->refcount;
235 }
236
237 void
238 cam_devq_release(struct cam_devq *devq)
239 {
240         if (--devq->refcount == 0) {
241                 if (devq->alloc_active || devq->send_active)
242                         kprintf("cam_devq_release: WARNING active allocations %d active send %d!\n", devq->alloc_active, devq->send_active);
243                 camq_fini(&devq->alloc_queue);
244                 camq_fini(&devq->send_queue);
245                 kfree(devq, M_CAMDEVQ);
246         }
247 }
248
249 u_int32_t
250 cam_devq_resize(struct cam_devq *camq, int devices)
251 {
252         u_int32_t retval;
253
254         retval = camq_resize(&camq->alloc_queue, devices);
255
256         if (retval == CAM_REQ_CMP)
257                 retval = camq_resize(&camq->send_queue, devices);
258
259         return (retval);
260 }
261
262 struct cam_ccbq *
263 cam_ccbq_alloc(int openings)
264 {
265         struct cam_ccbq *ccbq;
266
267         ccbq = kmalloc(sizeof(*ccbq), M_CAMCCBQ, M_INTWAIT);
268         cam_ccbq_init(ccbq, openings);
269         return (ccbq);
270 }
271
272 void
273 cam_ccbq_free(struct cam_ccbq *ccbq)
274 {
275         if (ccbq) {
276                 camq_fini(&ccbq->queue);
277                 kfree(ccbq, M_CAMCCBQ);
278         }
279 }
280
281 u_int32_t
282 cam_ccbq_resize(struct cam_ccbq *ccbq, int new_size)
283 {
284         int delta;
285         int space_left;
286
287         delta = new_size - (ccbq->dev_active + ccbq->dev_openings);
288         space_left = new_size
289             - ccbq->queue.entries
290             - ccbq->held
291             - ccbq->dev_active;
292
293         /*
294          * Only attempt to change the underlying queue size if we are
295          * shrinking it and there is space for all outstanding entries
296          * in the new array or we have been requested to grow the array.
297          * We don't fail in the case where we can't reduce the array size,
298          * but clients that care that the queue be "garbage collected"
299          * should detect this condition and call us again with the
300          * same size once the outstanding entries have been processed.
301          */
302         if (space_left < 0
303          || camq_resize(&ccbq->queue, new_size) == CAM_REQ_CMP) {
304                 ccbq->devq_openings += delta;
305                 ccbq->dev_openings += delta;
306                 return (CAM_REQ_CMP);
307         } else {
308                 return (CAM_RESRC_UNAVAIL);
309         }
310 }
311
312 int
313 cam_ccbq_init(struct cam_ccbq *ccbq, int openings)
314 {
315         bzero(ccbq, sizeof(*ccbq));
316         camq_init(&ccbq->queue, openings);
317         ccbq->devq_openings = openings;
318         ccbq->dev_openings = openings;  
319         TAILQ_INIT(&ccbq->active_ccbs);
320         return (0);
321 }
322
323 /*
324  * Heap routines for manipulating CAM queues.
325  */
326 /*
327  * queue_cmp: Given an array of cam_pinfo* elements and indexes i
328  * and j, return less than 0, 0, or greater than 0 if i is less than,
329  * equal too, or greater than j respectively.
330  */
331 static __inline int
332 queue_cmp(cam_pinfo **queue_array, int i, int j)
333 {
334         if (queue_array[i]->priority == queue_array[j]->priority)
335                 return (  queue_array[i]->generation
336                         - queue_array[j]->generation );
337         else
338                 return (  queue_array[i]->priority
339                         - queue_array[j]->priority );
340 }
341
342 /*
343  * swap: Given an array of cam_pinfo* elements and indexes i and j,
344  * exchange elements i and j.
345  */
346 static __inline void
347 swap(cam_pinfo **queue_array, int i, int j)
348 {
349         cam_pinfo *temp_qentry;
350
351         temp_qentry = queue_array[j];
352         queue_array[j] = queue_array[i];
353         queue_array[i] = temp_qentry;
354         queue_array[j]->index = j;
355         queue_array[i]->index = i;
356 }
357
358 /*
359  * heap_up:  Given an array of cam_pinfo* elements with the
360  * Heap(1, new_index-1) property and a new element in location
361  * new_index, output Heap(1, new_index).
362  */
363 static void
364 heap_up(cam_pinfo **queue_array, int new_index)
365 {
366         int child;
367         int parent;
368
369         child = new_index;
370
371         while (child != 1) {
372
373                 parent = child >> 1;
374                 if (queue_cmp(queue_array, parent, child) <= 0)
375                         break;
376                 swap(queue_array, parent, child);
377                 child = parent;
378         }
379 }
380
381 /*
382  * heap_down:  Given an array of cam_pinfo* elements with the
383  * Heap(index + 1, num_entries) property with index containing
384  * an unsorted entry, output Heap(index, num_entries).
385  */
386 static void
387 heap_down(cam_pinfo **queue_array, int index, int num_entries)
388 {
389         int child;
390         int parent;
391         
392         parent = index;
393         child = parent << 1;
394         for (; child <= num_entries; child = parent << 1) {
395
396                 if (child < num_entries) {
397                         /* child+1 is the right child of parent */
398                         if (queue_cmp(queue_array, child + 1, child) < 0)
399                                 child++;
400                 }
401                 /* child is now the least child of parent */
402                 if (queue_cmp(queue_array, parent, child) <= 0)
403                         break;
404                 swap(queue_array, child, parent);
405                 parent = child;
406         }
407 }