kernel/pf: Remove an unused variable.
[dragonfly.git] / sys / net / pf / pf_norm.c
1 /*      $OpenBSD: pf_norm.c,v 1.113 2008/05/07 07:07:29 markus Exp $ */
2
3 /*
4  * Copyright (c) 2010 The DragonFly Project.  All rights reserved.
5  *
6  * Copyright 2001 Niels Provos <provos@citi.umich.edu>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/mbuf.h>
36 #include <sys/filio.h>
37 #include <sys/fcntl.h>
38 #include <sys/socket.h>
39 #include <sys/kernel.h>
40 #include <sys/time.h>
41
42 #include <net/if.h>
43 #include <net/if_types.h>
44 #include <net/bpf.h>
45 #include <net/route.h>
46 #include <net/pf/if_pflog.h>
47
48 #include <netinet/in.h>
49 #include <netinet/in_var.h>
50 #include <netinet/in_systm.h>
51 #include <netinet/ip.h>
52 #include <netinet/ip_var.h>
53 #include <netinet/tcp.h>
54 #include <netinet/tcp_seq.h>
55 #include <netinet/udp.h>
56 #include <netinet/ip_icmp.h>
57
58 #ifdef INET6
59 #include <netinet/ip6.h>
60 #endif /* INET6 */
61
62 #include <net/pf/pfvar.h>
63
64 #define PFFRAG_SEENLAST 0x0001          /* Seen the last fragment for this */
65 #define PFFRAG_NOBUFFER 0x0002          /* Non-buffering fragment cache */
66 #define PFFRAG_DROP     0x0004          /* Drop all fragments */
67 #define BUFFER_FRAGMENTS(fr)    (!((fr)->fr_flags & PFFRAG_NOBUFFER))
68
69
70 TAILQ_HEAD(pf_fragqueue, pf_fragment)   pf_fragqueue[MAXCPU];
71 TAILQ_HEAD(pf_cachequeue, pf_fragment)  pf_cachequeue[MAXCPU];
72
73 static __inline int      pf_frag_compare(struct pf_fragment *,
74                             struct pf_fragment *);
75 RB_HEAD(pf_frag_tree, pf_fragment)      pf_frag_tree[MAXCPU],
76                                         pf_cache_tree[MAXCPU];
77 RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
78 RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
79
80 /* Private prototypes */
81 void                     pf_ip2key(struct pf_fragment *, struct ip *);
82 void                     pf_remove_fragment(struct pf_fragment *);
83 void                     pf_flush_fragments(void);
84 void                     pf_free_fragment(struct pf_fragment *);
85 struct pf_fragment      *pf_find_fragment(struct ip *, struct pf_frag_tree *);
86 struct mbuf             *pf_reassemble(struct mbuf **, struct pf_fragment **,
87                             struct pf_frent *, int);
88 struct mbuf             *pf_fragcache(struct mbuf **, struct ip*,
89                             struct pf_fragment **, int, int, int *);
90 int                      pf_normalize_tcpopt(struct pf_rule *, struct mbuf *,
91                             struct tcphdr *, int, sa_family_t);
92
93 #define DPFPRINTF(x) do {                               \
94         if (pf_status.debug >= PF_DEBUG_MISC) {         \
95                 kprintf("%s: ", __func__);              \
96                 kprintf x ;                             \
97         }                                               \
98 } while(0)
99
100 static MALLOC_DEFINE(M_PFFRAGPL, "pffrag", "pf fragment pool list");
101 static MALLOC_DEFINE(M_PFCACHEPL, "pffrcache", "pf fragment cache pool list");
102 static MALLOC_DEFINE(M_PFFRENTPL, "pffrent", "pf frent pool list");
103 static MALLOC_DEFINE(M_PFCENTPL, "pffrcent", "pf fragment cent pool list");
104 static MALLOC_DEFINE(M_PFSTATESCRUBPL, "pfstatescrub", "pf state scrub pool list");
105
106 /* Globals */
107 struct malloc_type       *pf_frent_pl, *pf_frag_pl, *pf_cache_pl, *pf_cent_pl;
108 struct malloc_type       *pf_state_scrub_pl;
109 int                      pf_nfrents, pf_ncache;
110
111 void
112 pf_normalize_init(void)
113 {
114         int n;
115
116         /* XXX
117         pool_sethiwat(&pf_frag_pl, PFFRAG_FRAG_HIWAT);
118         pool_sethardlimit(&pf_frent_pl, PFFRAG_FRENT_HIWAT, NULL, 0);
119         pool_sethardlimit(&pf_cache_pl, PFFRAG_FRCACHE_HIWAT, NULL, 0);
120         pool_sethardlimit(&pf_cent_pl, PFFRAG_FRCENT_HIWAT, NULL, 0);
121         */
122
123         for (n = 0; n < MAXCPU; ++n) {
124                 TAILQ_INIT(&pf_fragqueue[n]);
125                 TAILQ_INIT(&pf_cachequeue[n]);
126                 RB_INIT(&pf_frag_tree[n]);
127                 RB_INIT(&pf_cache_tree[n]);
128         }
129 }
130
131 static __inline int
132 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
133 {
134         int     diff;
135
136         if ((diff = a->fr_id - b->fr_id))
137                 return (diff);
138         else if ((diff = a->fr_p - b->fr_p))
139                 return (diff);
140         else if (a->fr_src.s_addr < b->fr_src.s_addr)
141                 return (-1);
142         else if (a->fr_src.s_addr > b->fr_src.s_addr)
143                 return (1);
144         else if (a->fr_dst.s_addr < b->fr_dst.s_addr)
145                 return (-1);
146         else if (a->fr_dst.s_addr > b->fr_dst.s_addr)
147                 return (1);
148         return (0);
149 }
150
151 void
152 pf_purge_expired_fragments(void)
153 {
154         struct pf_fragment *frag;
155         u_int32_t expire;
156         int cpu = mycpu->gd_cpuid;
157
158         expire = time_second - pf_default_rule.timeout[PFTM_FRAG];
159
160         while ((frag = TAILQ_LAST(&pf_fragqueue[cpu], pf_fragqueue)) != NULL) {
161                 KASSERT((BUFFER_FRAGMENTS(frag)),
162                         ("BUFFER_FRAGMENTS(frag) == 0: %s", __func__));
163                 if (frag->fr_timeout > expire)
164                         break;
165
166                 DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
167                 pf_free_fragment(frag);
168         }
169
170         while ((frag = TAILQ_LAST(&pf_cachequeue[cpu], pf_cachequeue)) != NULL) {
171                 KASSERT((!BUFFER_FRAGMENTS(frag)),
172                         ("BUFFER_FRAGMENTS(frag) != 0: %s", __func__));
173                 if (frag->fr_timeout > expire)
174                         break;
175
176                 DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
177                 pf_free_fragment(frag);
178                 KASSERT((TAILQ_EMPTY(&pf_cachequeue[cpu]) ||
179                     TAILQ_LAST(&pf_cachequeue[cpu], pf_cachequeue) != frag),
180                     ("!(TAILQ_EMPTY() || TAILQ_LAST() == farg): %s",
181                     __func__));
182         }
183 }
184
185 /*
186  * Try to flush old fragments to make space for new ones
187  */
188
189 void
190 pf_flush_fragments(void)
191 {
192         struct pf_fragment *frag;
193         int goal;
194         int cpu = mycpu->gd_cpuid;
195
196         goal = pf_nfrents * 9 / 10;
197         DPFPRINTF(("trying to free > %d frents\n",
198             pf_nfrents - goal));
199         while (goal < pf_nfrents) {
200                 frag = TAILQ_LAST(&pf_fragqueue[cpu], pf_fragqueue);
201                 if (frag == NULL)
202                         break;
203                 pf_free_fragment(frag);
204         }
205
206
207         goal = pf_ncache * 9 / 10;
208         DPFPRINTF(("trying to free > %d cache entries\n",
209             pf_ncache - goal));
210         while (goal < pf_ncache) {
211                 frag = TAILQ_LAST(&pf_cachequeue[cpu], pf_cachequeue);
212                 if (frag == NULL)
213                         break;
214                 pf_free_fragment(frag);
215         }
216 }
217
218 /* Frees the fragments and all associated entries */
219
220 void
221 pf_free_fragment(struct pf_fragment *frag)
222 {
223         struct pf_frent         *frent;
224         struct pf_frcache       *frcache;
225
226         /* Free all fragments */
227         if (BUFFER_FRAGMENTS(frag)) {
228                 for (frent = LIST_FIRST(&frag->fr_queue); frent;
229                     frent = LIST_FIRST(&frag->fr_queue)) {
230                         LIST_REMOVE(frent, fr_next);
231
232                         m_freem(frent->fr_m);
233                         kfree(frent, M_PFFRENTPL);
234                         pf_nfrents--;
235                 }
236         } else {
237                 for (frcache = LIST_FIRST(&frag->fr_cache); frcache;
238                     frcache = LIST_FIRST(&frag->fr_cache)) {
239                         LIST_REMOVE(frcache, fr_next);
240
241                         KASSERT((LIST_EMPTY(&frag->fr_cache) ||
242                             LIST_FIRST(&frag->fr_cache)->fr_off >
243                             frcache->fr_end),
244                             ("! (LIST_EMPTY() || LIST_FIRST()->fr_off >"
245                              " frcache->fr_end): %s", __func__));
246
247                         kfree(frcache, M_PFCENTPL);
248                         pf_ncache--;
249                 }
250         }
251
252         pf_remove_fragment(frag);
253 }
254
255 void
256 pf_ip2key(struct pf_fragment *key, struct ip *ip)
257 {
258         key->fr_p = ip->ip_p;
259         key->fr_id = ip->ip_id;
260         key->fr_src.s_addr = ip->ip_src.s_addr;
261         key->fr_dst.s_addr = ip->ip_dst.s_addr;
262 }
263
264 struct pf_fragment *
265 pf_find_fragment(struct ip *ip, struct pf_frag_tree *tree)
266 {
267         struct pf_fragment       key;
268         struct pf_fragment      *frag;
269         int cpu = mycpu->gd_cpuid;
270
271         pf_ip2key(&key, ip);
272
273         frag = RB_FIND(pf_frag_tree, tree, &key);
274         if (frag != NULL) {
275                 /* XXX Are we sure we want to update the timeout? */
276                 frag->fr_timeout = time_second;
277                 if (BUFFER_FRAGMENTS(frag)) {
278                         TAILQ_REMOVE(&pf_fragqueue[cpu], frag, frag_next);
279                         TAILQ_INSERT_HEAD(&pf_fragqueue[cpu], frag, frag_next);
280                 } else {
281                         TAILQ_REMOVE(&pf_cachequeue[cpu], frag, frag_next);
282                         TAILQ_INSERT_HEAD(&pf_cachequeue[cpu], frag, frag_next);
283                 }
284         }
285
286         return (frag);
287 }
288
289 /* Removes a fragment from the fragment queue and frees the fragment */
290
291 void
292 pf_remove_fragment(struct pf_fragment *frag)
293 {
294         int cpu = mycpu->gd_cpuid;
295
296         if (BUFFER_FRAGMENTS(frag)) {
297                 RB_REMOVE(pf_frag_tree, &pf_frag_tree[cpu], frag);
298                 TAILQ_REMOVE(&pf_fragqueue[cpu], frag, frag_next);
299                 kfree(frag, M_PFFRAGPL);
300         } else {
301                 RB_REMOVE(pf_frag_tree, &pf_cache_tree[cpu], frag);
302                 TAILQ_REMOVE(&pf_cachequeue[cpu], frag, frag_next);
303                 kfree(frag, M_PFCACHEPL);
304         }
305 }
306
307 #define FR_IP_OFF(fr)   (((fr)->fr_ip->ip_off & IP_OFFMASK) << 3)
308 struct mbuf *
309 pf_reassemble(struct mbuf **m0, struct pf_fragment **frag,
310     struct pf_frent *frent, int mff)
311 {
312         struct mbuf     *m = *m0, *m2;
313         struct pf_frent *frea, *next;
314         struct pf_frent *frep = NULL;
315         struct ip       *ip = frent->fr_ip;
316         int             hlen = ip->ip_hl << 2;
317         u_int16_t       off = (ip->ip_off & IP_OFFMASK) << 3;
318         u_int16_t       ip_len = ip->ip_len - ip->ip_hl * 4;
319         u_int16_t       max = ip_len + off;
320         int             cpu = mycpu->gd_cpuid;
321
322         KASSERT((*frag == NULL || BUFFER_FRAGMENTS(*frag)),
323             ("! (*frag == NULL || BUFFER_FRAGMENTS(*frag)): %s", __func__));
324
325         /* Strip off ip header */
326         m->m_data += hlen;
327         m->m_len -= hlen;
328
329         /* Create a new reassembly queue for this packet */
330         if (*frag == NULL) {
331                 *frag = kmalloc(sizeof(struct pf_fragment), M_PFFRAGPL, M_NOWAIT);
332                 if (*frag == NULL) {
333                         pf_flush_fragments();
334                         *frag = kmalloc(sizeof(struct pf_fragment), M_PFFRAGPL, M_NOWAIT);
335                         if (*frag == NULL)
336                                 goto drop_fragment;
337                 }
338
339                 (*frag)->fr_flags = 0;
340                 (*frag)->fr_max = 0;
341                 (*frag)->fr_src = frent->fr_ip->ip_src;
342                 (*frag)->fr_dst = frent->fr_ip->ip_dst;
343                 (*frag)->fr_p = frent->fr_ip->ip_p;
344                 (*frag)->fr_id = frent->fr_ip->ip_id;
345                 (*frag)->fr_timeout = time_second;
346                 LIST_INIT(&(*frag)->fr_queue);
347
348                 RB_INSERT(pf_frag_tree, &pf_frag_tree[cpu], *frag);
349                 TAILQ_INSERT_HEAD(&pf_fragqueue[cpu], *frag, frag_next);
350
351                 /* We do not have a previous fragment */
352                 frep = NULL;
353                 goto insert;
354         }
355
356         /*
357          * Find a fragment after the current one:
358          *  - off contains the real shifted offset.
359          */
360         LIST_FOREACH(frea, &(*frag)->fr_queue, fr_next) {
361                 if (FR_IP_OFF(frea) > off)
362                         break;
363                 frep = frea;
364         }
365
366         KASSERT((frep != NULL || frea != NULL),
367             ("!(frep != NULL || frea != NULL): %s", __func__));
368
369         if (frep != NULL &&
370             FR_IP_OFF(frep) + frep->fr_ip->ip_len - frep->fr_ip->ip_hl *
371             4 > off)
372         {
373                 u_int16_t       precut;
374
375                 precut = FR_IP_OFF(frep) + frep->fr_ip->ip_len -
376                     frep->fr_ip->ip_hl * 4 - off;
377                 if (precut >= ip_len)
378                         goto drop_fragment;
379                 m_adj(frent->fr_m, precut);
380                 DPFPRINTF(("overlap -%d\n", precut));
381                 /* Enforce 8 byte boundaries */
382                 ip->ip_off = ip->ip_off + (precut >> 3);
383                 off = (ip->ip_off & IP_OFFMASK) << 3;
384                 ip_len -= precut;
385                 ip->ip_len = ip_len;
386         }
387
388         for (; frea != NULL && ip_len + off > FR_IP_OFF(frea);
389             frea = next)
390         {
391                 u_int16_t       aftercut;
392
393                 aftercut = ip_len + off - FR_IP_OFF(frea);
394                 DPFPRINTF(("adjust overlap %d\n", aftercut));
395                 if (aftercut < frea->fr_ip->ip_len - frea->fr_ip->ip_hl
396                     * 4)
397                 {
398                         frea->fr_ip->ip_len =
399                             frea->fr_ip->ip_len - aftercut;
400                         frea->fr_ip->ip_off = frea->fr_ip->ip_off +
401                             (aftercut >> 3);
402                         m_adj(frea->fr_m, aftercut);
403                         break;
404                 }
405
406                 /* This fragment is completely overlapped, lose it */
407                 next = LIST_NEXT(frea, fr_next);
408                 m_freem(frea->fr_m);
409                 LIST_REMOVE(frea, fr_next);
410                 kfree(frea, M_PFFRENTPL);
411                 pf_nfrents--;
412         }
413
414  insert:
415         /* Update maximum data size */
416         if ((*frag)->fr_max < max)
417                 (*frag)->fr_max = max;
418         /* This is the last segment */
419         if (!mff)
420                 (*frag)->fr_flags |= PFFRAG_SEENLAST;
421
422         if (frep == NULL)
423                 LIST_INSERT_HEAD(&(*frag)->fr_queue, frent, fr_next);
424         else
425                 LIST_INSERT_AFTER(frep, frent, fr_next);
426
427         /* Check if we are completely reassembled */
428         if (!((*frag)->fr_flags & PFFRAG_SEENLAST))
429                 return (NULL);
430
431         /* Check if we have all the data */
432         off = 0;
433         for (frep = LIST_FIRST(&(*frag)->fr_queue); frep; frep = next) {
434                 next = LIST_NEXT(frep, fr_next);
435
436                 off += frep->fr_ip->ip_len - frep->fr_ip->ip_hl * 4;
437                 if (off < (*frag)->fr_max &&
438                     (next == NULL || FR_IP_OFF(next) != off))
439                 {
440                         DPFPRINTF(("missing fragment at %d, next %d, max %d\n",
441                             off, next == NULL ? -1 : FR_IP_OFF(next),
442                             (*frag)->fr_max));
443                         return (NULL);
444                 }
445         }
446         DPFPRINTF(("%d < %d?\n", off, (*frag)->fr_max));
447         if (off < (*frag)->fr_max)
448                 return (NULL);
449
450         /* We have all the data */
451         frent = LIST_FIRST(&(*frag)->fr_queue);
452         KASSERT((frent != NULL), ("frent == NULL: %s", __func__));
453         if ((frent->fr_ip->ip_hl << 2) + off > IP_MAXPACKET) {
454                 DPFPRINTF(("drop: too big: %d\n", off));
455                 pf_free_fragment(*frag);
456                 *frag = NULL;
457                 return (NULL);
458         }
459         next = LIST_NEXT(frent, fr_next);
460
461         /* Magic from ip_input */
462         ip = frent->fr_ip;
463         m = frent->fr_m;
464         m2 = m->m_next;
465         m->m_next = NULL;
466         m_cat(m, m2);
467         kfree(frent, M_PFFRENTPL);
468         pf_nfrents--;
469         for (frent = next; frent != NULL; frent = next) {
470                 next = LIST_NEXT(frent, fr_next);
471
472                 m2 = frent->fr_m;
473                 kfree(frent, M_PFFRENTPL);
474                 pf_nfrents--;
475                 m_cat(m, m2);
476         }
477
478         ip->ip_src = (*frag)->fr_src;
479         ip->ip_dst = (*frag)->fr_dst;
480
481         /* Remove from fragment queue */
482         pf_remove_fragment(*frag);
483         *frag = NULL;
484
485         hlen = ip->ip_hl << 2;
486         ip->ip_len = off + hlen;
487         m->m_len += hlen;
488         m->m_data -= hlen;
489
490         /* some debugging cruft by sklower, below, will go away soon */
491         /* XXX this should be done elsewhere */
492         if (m->m_flags & M_PKTHDR) {
493                 int plen = 0;
494                 for (m2 = m; m2; m2 = m2->m_next)
495                         plen += m2->m_len;
496                 m->m_pkthdr.len = plen;
497         }
498
499         DPFPRINTF(("complete: %p(%d)\n", m, ip->ip_len));
500         return (m);
501
502  drop_fragment:
503         /* Oops - fail safe - drop packet */
504         kfree(frent, M_PFFRENTPL);
505         pf_nfrents--;
506         m_freem(m);
507         return (NULL);
508 }
509
510 struct mbuf *
511 pf_fragcache(struct mbuf **m0, struct ip *h, struct pf_fragment **frag, int mff,
512     int drop, int *nomem)
513 {
514         struct mbuf     *m = *m0;
515         struct pf_frcache *frp, *fra, *cur = NULL;
516         int             ip_len = h->ip_len - (h->ip_hl << 2);
517         u_int16_t       off = h->ip_off << 3;
518         u_int16_t       max = ip_len + off;
519         int             hosed = 0;
520         int             cpu = mycpu->gd_cpuid;
521
522         KASSERT((*frag == NULL || !BUFFER_FRAGMENTS(*frag)),
523             ("!(*frag == NULL || !BUFFER_FRAGMENTS(*frag)): %s", __func__));
524
525         /* Create a new range queue for this packet */
526         if (*frag == NULL) {
527                 *frag = kmalloc(sizeof(struct pf_fragment), M_PFCACHEPL, M_NOWAIT);
528                 if (*frag == NULL) {
529                         pf_flush_fragments();
530                         *frag = kmalloc(sizeof(struct pf_fragment), M_PFCACHEPL, M_NOWAIT);
531                         if (*frag == NULL)
532                                 goto no_mem;
533                 }
534
535                 /* Get an entry for the queue */
536                 cur = kmalloc(sizeof(struct pf_frcache), M_PFCENTPL, M_NOWAIT);
537                 if (cur == NULL) {
538                         kfree(*frag, M_PFCACHEPL);
539                         *frag = NULL;
540                         goto no_mem;
541                 }
542                 pf_ncache++;
543
544                 (*frag)->fr_flags = PFFRAG_NOBUFFER;
545                 (*frag)->fr_max = 0;
546                 (*frag)->fr_src = h->ip_src;
547                 (*frag)->fr_dst = h->ip_dst;
548                 (*frag)->fr_p = h->ip_p;
549                 (*frag)->fr_id = h->ip_id;
550                 (*frag)->fr_timeout = time_second;
551
552                 cur->fr_off = off;
553                 cur->fr_end = max;
554                 LIST_INIT(&(*frag)->fr_cache);
555                 LIST_INSERT_HEAD(&(*frag)->fr_cache, cur, fr_next);
556
557                 RB_INSERT(pf_frag_tree, &pf_cache_tree[cpu], *frag);
558                 TAILQ_INSERT_HEAD(&pf_cachequeue[cpu], *frag, frag_next);
559
560                 DPFPRINTF(("fragcache[%d]: new %d-%d\n", h->ip_id, off, max));
561
562                 goto pass;
563         }
564
565         /*
566          * Find a fragment after the current one:
567          *  - off contains the real shifted offset.
568          */
569         frp = NULL;
570         LIST_FOREACH(fra, &(*frag)->fr_cache, fr_next) {
571                 if (fra->fr_off > off)
572                         break;
573                 frp = fra;
574         }
575
576         KASSERT((frp != NULL || fra != NULL),
577             ("!(frp != NULL || fra != NULL): %s", __func__));
578
579         if (frp != NULL) {
580                 int     precut;
581
582                 precut = frp->fr_end - off;
583                 if (precut >= ip_len) {
584                         /* Fragment is entirely a duplicate */
585                         DPFPRINTF(("fragcache[%d]: dead (%d-%d) %d-%d\n",
586                             h->ip_id, frp->fr_off, frp->fr_end, off, max));
587                         goto drop_fragment;
588                 }
589                 if (precut == 0) {
590                         /* They are adjacent.  Fixup cache entry */
591                         DPFPRINTF(("fragcache[%d]: adjacent (%d-%d) %d-%d\n",
592                             h->ip_id, frp->fr_off, frp->fr_end, off, max));
593                         frp->fr_end = max;
594                 } else if (precut > 0) {
595                         /* The first part of this payload overlaps with a
596                          * fragment that has already been passed.
597                          * Need to trim off the first part of the payload.
598                          * But to do so easily, we need to create another
599                          * mbuf to throw the original header into.
600                          */
601
602                         DPFPRINTF(("fragcache[%d]: chop %d (%d-%d) %d-%d\n",
603                             h->ip_id, precut, frp->fr_off, frp->fr_end, off,
604                             max));
605
606                         off += precut;
607                         max -= precut;
608                         /* Update the previous frag to encompass this one */
609                         frp->fr_end = max;
610
611                         if (!drop) {
612                                 /* XXX Optimization opportunity
613                                  * This is a very heavy way to trim the payload.
614                                  * we could do it much faster by diddling mbuf
615                                  * internals but that would be even less legible
616                                  * than this mbuf magic.  For my next trick,
617                                  * I'll pull a rabbit out of my laptop.
618                                  */
619                                 *m0 = m_dup(m, M_NOWAIT);
620                                 /* From KAME Project : We have missed this! */
621                                 m_adj(*m0, (h->ip_hl << 2) -
622                                     (*m0)->m_pkthdr.len);
623                                 if (*m0 == NULL)
624                                         goto no_mem;
625                                 KASSERT(((*m0)->m_next == NULL), 
626                                     ("(*m0)->m_next != NULL: %s", 
627                                     __func__));
628                                 m_adj(m, precut + (h->ip_hl << 2));
629                                 m_cat(*m0, m);
630                                 m = *m0;
631                                 if (m->m_flags & M_PKTHDR) {
632                                         int plen = 0;
633                                         struct mbuf *t;
634                                         for (t = m; t; t = t->m_next)
635                                                 plen += t->m_len;
636                                         m->m_pkthdr.len = plen;
637                                 }
638
639
640                                 h = mtod(m, struct ip *);
641
642                                 KASSERT(((int)m->m_len ==
643                                     h->ip_len - precut),
644                                     ("m->m_len != h->ip_len - precut: %s",
645                                     __func__));
646                                 h->ip_off = h->ip_off +
647                                     (precut >> 3);
648                                 h->ip_len = h->ip_len - precut;
649                         } else {
650                                 hosed++;
651                         }
652                 } else {
653                         /* There is a gap between fragments */
654
655                         DPFPRINTF(("fragcache[%d]: gap %d (%d-%d) %d-%d\n",
656                             h->ip_id, -precut, frp->fr_off, frp->fr_end, off,
657                             max));
658
659                         cur = kmalloc(sizeof(struct pf_frcache), M_PFCENTPL, M_NOWAIT);
660                         if (cur == NULL)
661                                 goto no_mem;
662                         pf_ncache++;
663
664                         cur->fr_off = off;
665                         cur->fr_end = max;
666                         LIST_INSERT_AFTER(frp, cur, fr_next);
667                 }
668         }
669
670         if (fra != NULL) {
671                 int     aftercut;
672                 int     merge = 0;
673
674                 aftercut = max - fra->fr_off;
675                 if (aftercut == 0) {
676                         /* Adjacent fragments */
677                         DPFPRINTF(("fragcache[%d]: adjacent %d-%d (%d-%d)\n",
678                             h->ip_id, off, max, fra->fr_off, fra->fr_end));
679                         fra->fr_off = off;
680                         merge = 1;
681                 } else if (aftercut > 0) {
682                         /* Need to chop off the tail of this fragment */
683                         DPFPRINTF(("fragcache[%d]: chop %d %d-%d (%d-%d)\n",
684                             h->ip_id, aftercut, off, max, fra->fr_off,
685                             fra->fr_end));
686                         fra->fr_off = off;
687                         max -= aftercut;
688
689                         merge = 1;
690
691                         if (!drop) {
692                                 m_adj(m, -aftercut);
693                                 if (m->m_flags & M_PKTHDR) {
694                                         int plen = 0;
695                                         struct mbuf *t;
696                                         for (t = m; t; t = t->m_next)
697                                                 plen += t->m_len;
698                                         m->m_pkthdr.len = plen;
699                                 }
700                                 h = mtod(m, struct ip *);
701                                 KASSERT(((int)m->m_len == h->ip_len - aftercut),
702                                     ("m->m_len != h->ip_len - aftercut: %s",
703                                     __func__));
704                                 h->ip_len = h->ip_len - aftercut;
705                         } else {
706                                 hosed++;
707                         }
708                 } else if (frp == NULL) {
709                         /* There is a gap between fragments */
710                         DPFPRINTF(("fragcache[%d]: gap %d %d-%d (%d-%d)\n",
711                             h->ip_id, -aftercut, off, max, fra->fr_off,
712                             fra->fr_end));
713
714                         cur = kmalloc(sizeof(struct pf_frcache), M_PFCENTPL, M_NOWAIT);
715                         if (cur == NULL)
716                                 goto no_mem;
717                         pf_ncache++;
718
719                         cur->fr_off = off;
720                         cur->fr_end = max;
721                         LIST_INSERT_BEFORE(fra, cur, fr_next);
722                 }
723
724
725                 /* Need to glue together two separate fragment descriptors */
726                 if (merge) {
727                         if (cur && fra->fr_off <= cur->fr_end) {
728                                 /* Need to merge in a previous 'cur' */
729                                 DPFPRINTF(("fragcache[%d]: adjacent(merge "
730                                     "%d-%d) %d-%d (%d-%d)\n",
731                                     h->ip_id, cur->fr_off, cur->fr_end, off,
732                                     max, fra->fr_off, fra->fr_end));
733                                 fra->fr_off = cur->fr_off;
734                                 LIST_REMOVE(cur, fr_next);
735                                 kfree(cur, M_PFCENTPL);
736                                 pf_ncache--;
737                                 cur = NULL;
738
739                         } else if (frp && fra->fr_off <= frp->fr_end) {
740                                 /* Need to merge in a modified 'frp' */
741                                 KASSERT((cur == NULL), ("cur != NULL: %s",
742                                     __func__));
743                                 DPFPRINTF(("fragcache[%d]: adjacent(merge "
744                                     "%d-%d) %d-%d (%d-%d)\n",
745                                     h->ip_id, frp->fr_off, frp->fr_end, off,
746                                     max, fra->fr_off, fra->fr_end));
747                                 fra->fr_off = frp->fr_off;
748                                 LIST_REMOVE(frp, fr_next);
749                                 kfree(frp, M_PFCENTPL);
750                                 pf_ncache--;
751                                 frp = NULL;
752
753                         }
754                 }
755         }
756
757         if (hosed) {
758                 /*
759                  * We must keep tracking the overall fragment even when
760                  * we're going to drop it anyway so that we know when to
761                  * free the overall descriptor.  Thus we drop the frag late.
762                  */
763                 goto drop_fragment;
764         }
765
766
767  pass:
768         /* Update maximum data size */
769         if ((*frag)->fr_max < max)
770                 (*frag)->fr_max = max;
771
772         /* This is the last segment */
773         if (!mff)
774                 (*frag)->fr_flags |= PFFRAG_SEENLAST;
775
776         /* Check if we are completely reassembled */
777         if (((*frag)->fr_flags & PFFRAG_SEENLAST) &&
778             LIST_FIRST(&(*frag)->fr_cache)->fr_off == 0 &&
779             LIST_FIRST(&(*frag)->fr_cache)->fr_end == (*frag)->fr_max) {
780                 /* Remove from fragment queue */
781                 DPFPRINTF(("fragcache[%d]: done 0-%d\n", h->ip_id,
782                     (*frag)->fr_max));
783                 pf_free_fragment(*frag);
784                 *frag = NULL;
785         }
786
787         return (m);
788
789  no_mem:
790         *nomem = 1;
791
792         /* Still need to pay attention to !IP_MF */
793         if (!mff && *frag != NULL)
794                 (*frag)->fr_flags |= PFFRAG_SEENLAST;
795
796         m_freem(m);
797         return (NULL);
798
799  drop_fragment:
800
801         /* Still need to pay attention to !IP_MF */
802         if (!mff && *frag != NULL)
803                 (*frag)->fr_flags |= PFFRAG_SEENLAST;
804
805         if (drop) {
806                 /* This fragment has been deemed bad.  Don't reass */
807                 if (((*frag)->fr_flags & PFFRAG_DROP) == 0)
808                         DPFPRINTF(("fragcache[%d]: dropping overall fragment\n",
809                             h->ip_id));
810                 (*frag)->fr_flags |= PFFRAG_DROP;
811         }
812
813         m_freem(m);
814         return (NULL);
815 }
816
817 int
818 pf_normalize_ip(struct mbuf **m0, int dir, struct pfi_kif *kif, u_short *reason,
819     struct pf_pdesc *pd)
820 {
821         struct mbuf     *m = *m0;
822         struct pf_rule  *r;
823         struct pf_frent *frent;
824         struct pf_fragment *frag = NULL;
825         struct ip       *h = mtod(m, struct ip *);
826         int             mff = (h->ip_off & IP_MF);
827         int             hlen = h->ip_hl << 2;
828         u_int16_t       fragoff = (h->ip_off & IP_OFFMASK) << 3;
829         u_int16_t       max;
830         int             ip_len;
831         int             tag = -1;
832         int             cpu = mycpu->gd_cpuid;
833
834         r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
835         while (r != NULL) {
836                 r->evaluations++;
837                 if (pfi_kif_match(r->kif, kif) == r->ifnot)
838                         r = r->skip[PF_SKIP_IFP].ptr;
839                 else if (r->direction && r->direction != dir)
840                         r = r->skip[PF_SKIP_DIR].ptr;
841                 else if (r->af && r->af != AF_INET)
842                         r = r->skip[PF_SKIP_AF].ptr;
843                 else if (r->proto && r->proto != h->ip_p)
844                         r = r->skip[PF_SKIP_PROTO].ptr;
845                 else if (PF_MISMATCHAW(&r->src.addr,
846                     (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
847                     r->src.neg, kif))
848                         r = r->skip[PF_SKIP_SRC_ADDR].ptr;
849                 else if (PF_MISMATCHAW(&r->dst.addr,
850                     (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
851                     r->dst.neg, NULL))
852                         r = r->skip[PF_SKIP_DST_ADDR].ptr;
853                 else if (r->match_tag && !pf_match_tag(m, r, &tag))
854                         r = TAILQ_NEXT(r, entries);
855                 else
856                         break;
857         }
858
859         if (r == NULL || r->action == PF_NOSCRUB)
860                 return (PF_PASS);
861         else {
862                 r->packets[dir == PF_OUT]++;
863                 r->bytes[dir == PF_OUT] += pd->tot_len;
864         }
865
866         /* Check for illegal packets */
867         if (hlen < (int)sizeof(struct ip))
868                 goto drop;
869
870         if (hlen > h->ip_len)
871                 goto drop;
872
873         /* Clear IP_DF if the rule uses the no-df option */
874         if (r->rule_flag & PFRULE_NODF && h->ip_off & IP_DF) {
875                 u_int16_t ip_off = h->ip_off;
876
877                 h->ip_off &= ~IP_DF;
878                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
879         }
880
881         /* We will need other tests here */
882         if (!fragoff && !mff)
883                 goto no_fragment;
884
885         /* A fragment; rehash required. */
886         m->m_flags &= ~M_HASH;
887
888         /* We're dealing with a fragment now. Don't allow fragments
889          * with IP_DF to enter the cache. If the flag was cleared by
890          * no-df above, fine. Otherwise drop it.
891          */
892         if (h->ip_off & IP_DF) {
893                 DPFPRINTF(("IP_DF\n"));
894                 goto bad;
895         }
896
897         ip_len = h->ip_len - hlen;
898
899         /* All fragments are 8 byte aligned */
900         if (mff && (ip_len & 0x7)) {
901                 DPFPRINTF(("mff and %d\n", ip_len));
902                 goto bad;
903         }
904
905         /* Respect maximum length */
906         if (fragoff + ip_len > IP_MAXPACKET) {
907                 DPFPRINTF(("max packet %d\n", fragoff + ip_len));
908                 goto bad;
909         }
910         max = fragoff + ip_len;
911
912         if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0) {
913                 /* Fully buffer all of the fragments */
914
915                 frag = pf_find_fragment(h, &pf_frag_tree[cpu]);
916
917                 /* Check if we saw the last fragment already */
918                 if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
919                     max > frag->fr_max)
920                         goto bad;
921
922                 /* Get an entry for the fragment queue */
923                 frent = kmalloc(sizeof(struct pf_frent), M_PFFRENTPL, M_NOWAIT);
924                 if (frent == NULL) {
925                         REASON_SET(reason, PFRES_MEMORY);
926                         return (PF_DROP);
927                 }
928                 pf_nfrents++;
929                 frent->fr_ip = h;
930                 frent->fr_m = m;
931
932                 /* Might return a completely reassembled mbuf, or NULL */
933                 DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
934                 *m0 = m = pf_reassemble(m0, &frag, frent, mff);
935
936                 if (m == NULL)
937                         return (PF_DROP);
938
939                 if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
940                         goto drop;
941
942                 h = mtod(m, struct ip *);
943         } else {
944                 /* non-buffering fragment cache (drops or masks overlaps) */
945                 int     nomem = 0;
946
947                 if (dir == PF_OUT && m->m_pkthdr.pf.flags & PF_TAG_FRAGCACHE) {
948                         /*
949                          * Already passed the fragment cache in the
950                          * input direction.  If we continued, it would
951                          * appear to be a dup and would be dropped.
952                          */
953                         goto fragment_pass;
954                 }
955
956                 frag = pf_find_fragment(h, &pf_cache_tree[cpu]);
957
958                 /* Check if we saw the last fragment already */
959                 if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
960                     max > frag->fr_max) {
961                         if (r->rule_flag & PFRULE_FRAGDROP)
962                                 frag->fr_flags |= PFFRAG_DROP;
963                         goto bad;
964                 }
965
966                 *m0 = m = pf_fragcache(m0, h, &frag, mff,
967                     (r->rule_flag & PFRULE_FRAGDROP) ? 1 : 0, &nomem);
968                 if (m == NULL) {
969                         if (nomem)
970                                 goto no_mem;
971                         goto drop;
972                 }
973
974                 if (dir == PF_IN)
975                         m->m_pkthdr.pf.flags |= PF_TAG_FRAGCACHE;
976
977                 if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
978                         goto drop;
979                 goto fragment_pass;
980         }
981
982  no_fragment:
983         /* At this point, only IP_DF is allowed in ip_off */
984         if (h->ip_off & ~IP_DF) {
985                 u_int16_t ip_off = h->ip_off;
986
987                 h->ip_off &= IP_DF;
988                 h->ip_sum = pf_cksum_fixup(h->ip_sum, htons(ip_off), htons(h->ip_off), 0);
989         }
990
991         /* Enforce a minimum ttl, may cause endless packet loops */
992         if (r->min_ttl && h->ip_ttl < r->min_ttl) {
993                 u_int16_t ip_ttl = h->ip_ttl;
994
995                 h->ip_ttl = r->min_ttl;
996                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
997         }
998
999         /* Enforce tos */
1000         if (r->rule_flag & PFRULE_SET_TOS) {
1001                 u_int16_t       ov, nv;
1002
1003                 ov = *(u_int16_t *)h;
1004                 h->ip_tos = r->set_tos;
1005                 nv = *(u_int16_t *)h;
1006
1007                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
1008         }
1009
1010         if (r->rule_flag & PFRULE_RANDOMID) {
1011                 u_int16_t ip_id = h->ip_id;
1012
1013                 h->ip_id = ip_randomid();
1014                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
1015         }
1016         if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0)
1017                 pd->flags |= PFDESC_IP_REAS;
1018
1019         return (PF_PASS);
1020
1021  fragment_pass:
1022         /* Enforce a minimum ttl, may cause endless packet loops */
1023         if (r->min_ttl && h->ip_ttl < r->min_ttl) {
1024                 u_int16_t ip_ttl = h->ip_ttl;
1025
1026                 h->ip_ttl = r->min_ttl;
1027                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
1028         }
1029         /* Enforce tos */
1030         if (r->rule_flag & PFRULE_SET_TOS) {
1031                 u_int16_t       ov, nv;
1032
1033                 ov = *(u_int16_t *)h;
1034                 h->ip_tos = r->set_tos;
1035                 nv = *(u_int16_t *)h;
1036
1037                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
1038         }
1039         if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0)
1040                 pd->flags |= PFDESC_IP_REAS;
1041         return (PF_PASS);
1042
1043  no_mem:
1044         REASON_SET(reason, PFRES_MEMORY);
1045         if (r != NULL && r->log)
1046                 PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL, pd);
1047         return (PF_DROP);
1048
1049  drop:
1050         REASON_SET(reason, PFRES_NORM);
1051         if (r != NULL && r->log)
1052                 PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL, pd);
1053         return (PF_DROP);
1054
1055  bad:
1056         DPFPRINTF(("dropping bad fragment\n"));
1057
1058         /* Free associated fragments */
1059         if (frag != NULL)
1060                 pf_free_fragment(frag);
1061
1062         REASON_SET(reason, PFRES_FRAG);
1063         if (r != NULL && r->log)
1064                 PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL, pd);
1065
1066         return (PF_DROP);
1067 }
1068
1069 #ifdef INET6
1070 int
1071 pf_normalize_ip6(struct mbuf **m0, int dir, struct pfi_kif *kif,
1072     u_short *reason, struct pf_pdesc *pd)
1073 {
1074         struct mbuf             *m = *m0;
1075         struct pf_rule          *r;
1076         struct ip6_hdr          *h = mtod(m, struct ip6_hdr *);
1077         int                      off;
1078         struct ip6_ext           ext;
1079         struct ip6_opt           opt;
1080         struct ip6_opt_jumbo     jumbo;
1081         struct ip6_frag          frag;
1082         u_int32_t                jumbolen = 0, plen;
1083         u_int16_t                fragoff = 0;
1084         int                      optend;
1085         int                      ooff;
1086         u_int8_t                 proto;
1087         int                      terminal;
1088
1089         r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1090         while (r != NULL) {
1091                 r->evaluations++;
1092                 if (pfi_kif_match(r->kif, kif) == r->ifnot)
1093                         r = r->skip[PF_SKIP_IFP].ptr;
1094                 else if (r->direction && r->direction != dir)
1095                         r = r->skip[PF_SKIP_DIR].ptr;
1096                 else if (r->af && r->af != AF_INET6)
1097                         r = r->skip[PF_SKIP_AF].ptr;
1098 #if 0 /* header chain! */
1099                 else if (r->proto && r->proto != h->ip6_nxt)
1100                         r = r->skip[PF_SKIP_PROTO].ptr;
1101 #endif
1102                 else if (PF_MISMATCHAW(&r->src.addr,
1103                     (struct pf_addr *)&h->ip6_src, AF_INET6,
1104                     r->src.neg, kif))
1105                         r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1106                 else if (PF_MISMATCHAW(&r->dst.addr,
1107                     (struct pf_addr *)&h->ip6_dst, AF_INET6,
1108                     r->dst.neg, NULL))
1109                         r = r->skip[PF_SKIP_DST_ADDR].ptr;
1110                 else
1111                         break;
1112         }
1113
1114         if (r == NULL || r->action == PF_NOSCRUB)
1115                 return (PF_PASS);
1116         else {
1117                 r->packets[dir == PF_OUT]++;
1118                 r->bytes[dir == PF_OUT] += pd->tot_len;
1119         }
1120
1121         /* Check for illegal packets */
1122         if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
1123                 goto drop;
1124
1125         off = sizeof(struct ip6_hdr);
1126         proto = h->ip6_nxt;
1127         terminal = 0;
1128         do {
1129                 switch (proto) {
1130                 case IPPROTO_FRAGMENT:
1131                         goto fragment;
1132                         break;
1133                 case IPPROTO_AH:
1134                 case IPPROTO_ROUTING:
1135                 case IPPROTO_DSTOPTS:
1136                         if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1137                             NULL, AF_INET6))
1138                                 goto shortpkt;
1139                         if (proto == IPPROTO_AH)
1140                                 off += (ext.ip6e_len + 2) * 4;
1141                         else
1142                                 off += (ext.ip6e_len + 1) * 8;
1143                         proto = ext.ip6e_nxt;
1144                         break;
1145                 case IPPROTO_HOPOPTS:
1146                         if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1147                             NULL, AF_INET6))
1148                                 goto shortpkt;
1149                         optend = off + (ext.ip6e_len + 1) * 8;
1150                         ooff = off + sizeof(ext);
1151                         do {
1152                                 if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
1153                                     sizeof(opt.ip6o_type), NULL, NULL,
1154                                     AF_INET6))
1155                                         goto shortpkt;
1156                                 if (opt.ip6o_type == IP6OPT_PAD1) {
1157                                         ooff++;
1158                                         continue;
1159                                 }
1160                                 if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
1161                                     NULL, NULL, AF_INET6))
1162                                         goto shortpkt;
1163                                 if (ooff + sizeof(opt) + opt.ip6o_len > optend)
1164                                         goto drop;
1165                                 switch (opt.ip6o_type) {
1166                                 case IP6OPT_JUMBO:
1167                                         if (h->ip6_plen != 0)
1168                                                 goto drop;
1169                                         if (!pf_pull_hdr(m, ooff, &jumbo,
1170                                             sizeof(jumbo), NULL, NULL,
1171                                             AF_INET6))
1172                                                 goto shortpkt;
1173                                         memcpy(&jumbolen, jumbo.ip6oj_jumbo_len,
1174                                             sizeof(jumbolen));
1175                                         jumbolen = ntohl(jumbolen);
1176                                         if (jumbolen <= IPV6_MAXPACKET)
1177                                                 goto drop;
1178                                         if (sizeof(struct ip6_hdr) + jumbolen !=
1179                                             m->m_pkthdr.len)
1180                                                 goto drop;
1181                                         break;
1182                                 default:
1183                                         break;
1184                                 }
1185                                 ooff += sizeof(opt) + opt.ip6o_len;
1186                         } while (ooff < optend);
1187
1188                         off = optend;
1189                         proto = ext.ip6e_nxt;
1190                         break;
1191                 default:
1192                         terminal = 1;
1193                         break;
1194                 }
1195         } while (!terminal);
1196
1197         /* jumbo payload option must be present, or plen > 0 */
1198         if (ntohs(h->ip6_plen) == 0)
1199                 plen = jumbolen;
1200         else
1201                 plen = ntohs(h->ip6_plen);
1202         if (plen == 0)
1203                 goto drop;
1204         if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1205                 goto shortpkt;
1206
1207         /* Enforce a minimum ttl, may cause endless packet loops */
1208         if (r->min_ttl && h->ip6_hlim < r->min_ttl)
1209                 h->ip6_hlim = r->min_ttl;
1210
1211         return (PF_PASS);
1212
1213  fragment:
1214         if (ntohs(h->ip6_plen) == 0 || jumbolen)
1215                 goto drop;
1216         plen = ntohs(h->ip6_plen);
1217
1218         if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
1219                 goto shortpkt;
1220         fragoff = ntohs(frag.ip6f_offlg & IP6F_OFF_MASK);
1221         if (fragoff + (plen - off - sizeof(frag)) > IPV6_MAXPACKET)
1222                 goto badfrag;
1223
1224         /* do something about it */
1225         /* remember to set pd->flags |= PFDESC_IP_REAS */
1226         return (PF_PASS);
1227
1228  shortpkt:
1229         REASON_SET(reason, PFRES_SHORT);
1230         if (r != NULL && r->log)
1231                 PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL, pd);
1232         return (PF_DROP);
1233
1234  drop:
1235         REASON_SET(reason, PFRES_NORM);
1236         if (r != NULL && r->log)
1237                 PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL, pd);
1238         return (PF_DROP);
1239
1240  badfrag:
1241         REASON_SET(reason, PFRES_FRAG);
1242         if (r != NULL && r->log)
1243                 PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL, pd);
1244         return (PF_DROP);
1245 }
1246 #endif /* INET6 */
1247
1248 int
1249 pf_normalize_tcp(int dir, struct pfi_kif *kif, struct mbuf *m, int ipoff,
1250     int off, void *h, struct pf_pdesc *pd)
1251 {
1252         struct pf_rule  *r, *rm = NULL;
1253         struct tcphdr   *th = pd->hdr.tcp;
1254         int              rewrite = 0;
1255         u_short          reason;
1256         u_int8_t         flags;
1257         sa_family_t      af = pd->af;
1258
1259         r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1260         while (r != NULL) {
1261                 r->evaluations++;
1262                 if (pfi_kif_match(r->kif, kif) == r->ifnot)
1263                         r = r->skip[PF_SKIP_IFP].ptr;
1264                 else if (r->direction && r->direction != dir)
1265                         r = r->skip[PF_SKIP_DIR].ptr;
1266                 else if (r->af && r->af != af)
1267                         r = r->skip[PF_SKIP_AF].ptr;
1268                 else if (r->proto && r->proto != pd->proto)
1269                         r = r->skip[PF_SKIP_PROTO].ptr;
1270                 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
1271                     r->src.neg, kif))
1272                         r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1273                 else if (r->src.port_op && !pf_match_port(r->src.port_op,
1274                             r->src.port[0], r->src.port[1], th->th_sport))
1275                         r = r->skip[PF_SKIP_SRC_PORT].ptr;
1276                 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
1277                     r->dst.neg, NULL))
1278                         r = r->skip[PF_SKIP_DST_ADDR].ptr;
1279                 else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
1280                             r->dst.port[0], r->dst.port[1], th->th_dport))
1281                         r = r->skip[PF_SKIP_DST_PORT].ptr;
1282                 else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
1283                             pf_osfp_fingerprint(pd, m, off, th),
1284                             r->os_fingerprint))
1285                         r = TAILQ_NEXT(r, entries);
1286                 else {
1287                         rm = r;
1288                         break;
1289                 }
1290         }
1291
1292         if (rm == NULL || rm->action == PF_NOSCRUB)
1293                 return (PF_PASS);
1294         else {
1295                 r->packets[dir == PF_OUT]++;
1296                 r->bytes[dir == PF_OUT] += pd->tot_len;
1297         }
1298
1299         if (rm->rule_flag & PFRULE_REASSEMBLE_TCP)
1300                 pd->flags |= PFDESC_TCP_NORM;
1301
1302         flags = th->th_flags;
1303         if (flags & TH_SYN) {
1304                 /* Illegal packet */
1305                 if (flags & TH_RST)
1306                         goto tcp_drop;
1307
1308                 if (flags & TH_FIN)
1309                         flags &= ~TH_FIN;
1310         } else {
1311                 /* Illegal packet */
1312                 if (!(flags & (TH_ACK|TH_RST)))
1313                         goto tcp_drop;
1314         }
1315
1316         if (!(flags & TH_ACK)) {
1317                 /* These flags are only valid if ACK is set */
1318                 if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
1319                         goto tcp_drop;
1320         }
1321
1322         /* Check for illegal header length */
1323         if (th->th_off < (sizeof(struct tcphdr) >> 2))
1324                 goto tcp_drop;
1325
1326         /* If flags changed, or reserved data set, then adjust */
1327         if (flags != th->th_flags || th->th_x2 != 0) {
1328                 u_int16_t       ov, nv;
1329
1330                 ov = *(u_int16_t *)(&th->th_ack + 1);
1331                 th->th_flags = flags;
1332                 th->th_x2 = 0;
1333                 nv = *(u_int16_t *)(&th->th_ack + 1);
1334
1335                 th->th_sum = pf_cksum_fixup(th->th_sum, ov, nv, 0);
1336                 rewrite = 1;
1337         }
1338
1339         /* Remove urgent pointer, if TH_URG is not set */
1340         if (!(flags & TH_URG) && th->th_urp) {
1341                 th->th_sum = pf_cksum_fixup(th->th_sum, th->th_urp, 0, 0);
1342                 th->th_urp = 0;
1343                 rewrite = 1;
1344         }
1345
1346         /* Process options */
1347         if (r->max_mss && pf_normalize_tcpopt(r, m, th, off, pd->af))
1348                 rewrite = 1;
1349
1350         /* copy back packet headers if we sanitized */
1351         if (rewrite)
1352                 m_copyback(m, off, sizeof(*th), (caddr_t)th);
1353
1354         return (PF_PASS);
1355
1356  tcp_drop:
1357         REASON_SET(&reason, PFRES_NORM);
1358         if (rm != NULL && r->log)
1359                 PFLOG_PACKET(kif, h, m, AF_INET, dir, reason, r, NULL, NULL, pd);
1360         return (PF_DROP);
1361 }
1362
1363 int
1364 pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
1365     struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
1366 {
1367         u_int32_t tsval, tsecr;
1368         u_int8_t hdr[60];
1369         u_int8_t *opt;
1370
1371         KASSERT((src->scrub == NULL), 
1372             ("pf_normalize_tcp_init: src->scrub != NULL"));
1373
1374         src->scrub = kmalloc(sizeof(struct pf_state_scrub), M_PFSTATESCRUBPL,
1375             M_NOWAIT | M_ZERO);
1376         if (src->scrub == NULL)
1377                 return (1);
1378
1379         switch (pd->af) {
1380 #ifdef INET
1381         case AF_INET: {
1382                 struct ip *h = mtod(m, struct ip *);
1383                 src->scrub->pfss_ttl = h->ip_ttl;
1384                 break;
1385         }
1386 #endif /* INET */
1387 #ifdef INET6
1388         case AF_INET6: {
1389                 struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1390                 src->scrub->pfss_ttl = h->ip6_hlim;
1391                 break;
1392         }
1393 #endif /* INET6 */
1394         }
1395
1396
1397         /*
1398          * All normalizations below are only begun if we see the start of
1399          * the connections.  They must all set an enabled bit in pfss_flags
1400          */
1401         if ((th->th_flags & TH_SYN) == 0)
1402                 return (0);
1403
1404
1405         if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
1406             pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1407                 /* Diddle with TCP options */
1408                 int hlen;
1409                 opt = hdr + sizeof(struct tcphdr);
1410                 hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1411                 while (hlen >= TCPOLEN_TIMESTAMP) {
1412                         switch (*opt) {
1413                         case TCPOPT_EOL:        /* FALLTHROUGH */
1414                         case TCPOPT_NOP:
1415                                 opt++;
1416                                 hlen--;
1417                                 break;
1418                         case TCPOPT_TIMESTAMP:
1419                                 if (opt[1] >= TCPOLEN_TIMESTAMP) {
1420                                         src->scrub->pfss_flags |=
1421                                             PFSS_TIMESTAMP;
1422                                         src->scrub->pfss_ts_mod = karc4random();
1423
1424                                         /* note PFSS_PAWS not set yet */
1425                                         memcpy(&tsval, &opt[2],
1426                                             sizeof(u_int32_t));
1427                                         memcpy(&tsecr, &opt[6],
1428                                             sizeof(u_int32_t));
1429                                         src->scrub->pfss_tsval0 = ntohl(tsval);
1430                                         src->scrub->pfss_tsval = ntohl(tsval);
1431                                         src->scrub->pfss_tsecr = ntohl(tsecr);
1432                                         getmicrouptime(&src->scrub->pfss_last);
1433                                 }
1434                                 /* FALLTHROUGH */
1435                         default:
1436                                 hlen -= MAX(opt[1], 2);
1437                                 opt += MAX(opt[1], 2);
1438                                 break;
1439                         }
1440                 }
1441         }
1442
1443         return (0);
1444 }
1445
1446 void
1447 pf_normalize_tcp_cleanup(struct pf_state *state)
1448 {
1449         if (state->src.scrub)
1450                 kfree(state->src.scrub, M_PFSTATESCRUBPL);
1451         if (state->dst.scrub)
1452                 kfree(state->dst.scrub, M_PFSTATESCRUBPL);
1453
1454         /* Someday... flush the TCP segment reassembly descriptors. */
1455 }
1456
1457 int
1458 pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
1459     u_short *reason, struct tcphdr *th, struct pf_state *state,
1460     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
1461 {
1462         struct timeval uptime;
1463         u_int32_t tsval, tsecr;
1464         u_int tsval_from_last;
1465         u_int8_t hdr[60];
1466         u_int8_t *opt;
1467         int copyback = 0;
1468         int got_ts = 0;
1469
1470         KASSERT((src->scrub || dst->scrub), 
1471             ("pf_normalize_tcp_statefull: src->scrub && dst->scrub!"));
1472
1473         /*
1474          * Enforce the minimum TTL seen for this connection.  Negate a common
1475          * technique to evade an intrusion detection system and confuse
1476          * firewall state code.
1477          */
1478         switch (pd->af) {
1479 #ifdef INET
1480         case AF_INET: {
1481                 if (src->scrub) {
1482                         struct ip *h = mtod(m, struct ip *);
1483                         if (h->ip_ttl > src->scrub->pfss_ttl)
1484                                 src->scrub->pfss_ttl = h->ip_ttl;
1485                         h->ip_ttl = src->scrub->pfss_ttl;
1486                 }
1487                 break;
1488         }
1489 #endif /* INET */
1490 #ifdef INET6
1491         case AF_INET6: {
1492                 if (src->scrub) {
1493                         struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1494                         if (h->ip6_hlim > src->scrub->pfss_ttl)
1495                                 src->scrub->pfss_ttl = h->ip6_hlim;
1496                         h->ip6_hlim = src->scrub->pfss_ttl;
1497                 }
1498                 break;
1499         }
1500 #endif /* INET6 */
1501         }
1502
1503         if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
1504             ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
1505             (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
1506             pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1507                 /* Diddle with TCP options */
1508                 int hlen;
1509                 opt = hdr + sizeof(struct tcphdr);
1510                 hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1511                 while (hlen >= TCPOLEN_TIMESTAMP) {
1512                         switch (*opt) {
1513                         case TCPOPT_EOL:        /* FALLTHROUGH */
1514                         case TCPOPT_NOP:
1515                                 opt++;
1516                                 hlen--;
1517                                 break;
1518                         case TCPOPT_TIMESTAMP:
1519                                 /* Modulate the timestamps.  Can be used for
1520                                  * NAT detection, OS uptime determination or
1521                                  * reboot detection.
1522                                  */
1523
1524                                 if (got_ts) {
1525                                         /* Huh?  Multiple timestamps!? */
1526                                         if (pf_status.debug >= PF_DEBUG_MISC) {
1527                                                 DPFPRINTF(("multiple TS??"));
1528                                                 pf_print_state(state);
1529                                                 kprintf("\n");
1530                                         }
1531                                         REASON_SET(reason, PFRES_TS);
1532                                         return (PF_DROP);
1533                                 }
1534                                 if (opt[1] >= TCPOLEN_TIMESTAMP) {
1535                                         memcpy(&tsval, &opt[2],
1536                                             sizeof(u_int32_t));
1537                                         if (tsval && src->scrub &&
1538                                             (src->scrub->pfss_flags &
1539                                             PFSS_TIMESTAMP)) {
1540                                                 tsval = ntohl(tsval);
1541                                                 pf_change_a(&opt[2],
1542                                                     &th->th_sum,
1543                                                     htonl(tsval +
1544                                                     src->scrub->pfss_ts_mod),
1545                                                     0);
1546                                                 copyback = 1;
1547                                         }
1548
1549                                         /* Modulate TS reply iff valid (!0) */
1550                                         memcpy(&tsecr, &opt[6],
1551                                             sizeof(u_int32_t));
1552                                         if (tsecr && dst->scrub &&
1553                                             (dst->scrub->pfss_flags &
1554                                             PFSS_TIMESTAMP)) {
1555                                                 tsecr = ntohl(tsecr)
1556                                                     - dst->scrub->pfss_ts_mod;
1557                                                 pf_change_a(&opt[6],
1558                                                     &th->th_sum, htonl(tsecr),
1559                                                     0);
1560                                                 copyback = 1;
1561                                         }
1562                                         got_ts = 1;
1563                                 }
1564                                 /* FALLTHROUGH */
1565                         default:
1566                                 hlen -= MAX(opt[1], 2);
1567                                 opt += MAX(opt[1], 2);
1568                                 break;
1569                         }
1570                 }
1571                 if (copyback) {
1572                         /* Copyback the options, caller copys back header */
1573                         *writeback = 1;
1574                         m_copyback(m, off + sizeof(struct tcphdr),
1575                             (th->th_off << 2) - sizeof(struct tcphdr), hdr +
1576                             sizeof(struct tcphdr));
1577                 }
1578         }
1579
1580
1581         /*
1582          * Must invalidate PAWS checks on connections idle for too long.
1583          * The fastest allowed timestamp clock is 1ms.  That turns out to
1584          * be about 24 days before it wraps.  XXX Right now our lowerbound
1585          * TS echo check only works for the first 12 days of a connection
1586          * when the TS has exhausted half its 32bit space
1587          */
1588 #define TS_MAX_IDLE     (24*24*60*60)
1589 #define TS_MAX_CONN     (12*24*60*60)   /* XXX remove when better tsecr check */
1590
1591         getmicrouptime(&uptime);
1592         if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
1593             (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
1594             time_second - state->creation > TS_MAX_CONN))  {
1595                 if (pf_status.debug >= PF_DEBUG_MISC) {
1596                         DPFPRINTF(("src idled out of PAWS\n"));
1597                         pf_print_state(state);
1598                         kprintf("\n");
1599                 }
1600                 src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
1601                     | PFSS_PAWS_IDLED;
1602         }
1603         if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
1604             uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
1605                 if (pf_status.debug >= PF_DEBUG_MISC) {
1606                         DPFPRINTF(("dst idled out of PAWS\n"));
1607                         pf_print_state(state);
1608                         kprintf("\n");
1609                 }
1610                 dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
1611                     | PFSS_PAWS_IDLED;
1612         }
1613
1614         if (got_ts && src->scrub && dst->scrub &&
1615             (src->scrub->pfss_flags & PFSS_PAWS) &&
1616             (dst->scrub->pfss_flags & PFSS_PAWS)) {
1617                 /* Validate that the timestamps are "in-window".
1618                  * RFC1323 describes TCP Timestamp options that allow
1619                  * measurement of RTT (round trip time) and PAWS
1620                  * (protection against wrapped sequence numbers).  PAWS
1621                  * gives us a set of rules for rejecting packets on
1622                  * long fat pipes (packets that were somehow delayed 
1623                  * in transit longer than the time it took to send the
1624                  * full TCP sequence space of 4Gb).  We can use these
1625                  * rules and infer a few others that will let us treat
1626                  * the 32bit timestamp and the 32bit echoed timestamp
1627                  * as sequence numbers to prevent a blind attacker from
1628                  * inserting packets into a connection.
1629                  *
1630                  * RFC1323 tells us:
1631                  *  - The timestamp on this packet must be greater than
1632                  *    or equal to the last value echoed by the other
1633                  *    endpoint.  The RFC says those will be discarded
1634                  *    since it is a dup that has already been acked.
1635                  *    This gives us a lowerbound on the timestamp.
1636                  *        timestamp >= other last echoed timestamp
1637                  *  - The timestamp will be less than or equal to
1638                  *    the last timestamp plus the time between the
1639                  *    last packet and now.  The RFC defines the max
1640                  *    clock rate as 1ms.  We will allow clocks to be
1641                  *    up to 10% fast and will allow a total difference
1642                  *    or 30 seconds due to a route change.  And this
1643                  *    gives us an upperbound on the timestamp.
1644                  *        timestamp <= last timestamp + max ticks
1645                  *    We have to be careful here.  Windows will send an
1646                  *    initial timestamp of zero and then initialize it
1647                  *    to a random value after the 3whs; presumably to
1648                  *    avoid a DoS by having to call an expensive RNG
1649                  *    during a SYN flood.  Proof MS has at least one
1650                  *    good security geek.
1651                  *
1652                  *  - The TCP timestamp option must also echo the other
1653                  *    endpoints timestamp.  The timestamp echoed is the
1654                  *    one carried on the earliest unacknowledged segment
1655                  *    on the left edge of the sequence window.  The RFC
1656                  *    states that the host will reject any echoed
1657                  *    timestamps that were larger than any ever sent.
1658                  *    This gives us an upperbound on the TS echo.
1659                  *        tescr <= largest_tsval
1660                  *  - The lowerbound on the TS echo is a little more
1661                  *    tricky to determine.  The other endpoint's echoed
1662                  *    values will not decrease.  But there may be
1663                  *    network conditions that re-order packets and
1664                  *    cause our view of them to decrease.  For now the
1665                  *    only lowerbound we can safely determine is that
1666                  *    the TS echo will never be less than the original
1667                  *    TS.  XXX There is probably a better lowerbound.
1668                  *    Remove TS_MAX_CONN with better lowerbound check.
1669                  *        tescr >= other original TS
1670                  *
1671                  * It is also important to note that the fastest
1672                  * timestamp clock of 1ms will wrap its 32bit space in
1673                  * 24 days.  So we just disable TS checking after 24
1674                  * days of idle time.  We actually must use a 12d
1675                  * connection limit until we can come up with a better
1676                  * lowerbound to the TS echo check.
1677                  */
1678                 struct timeval delta_ts;
1679                 int ts_fudge;
1680
1681
1682                 /*
1683                  * PFTM_TS_DIFF is how many seconds of leeway to allow
1684                  * a host's timestamp.  This can happen if the previous
1685                  * packet got delayed in transit for much longer than
1686                  * this packet.
1687                  */
1688                 if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
1689                         ts_fudge = pf_default_rule.timeout[PFTM_TS_DIFF];
1690
1691
1692                 /* Calculate max ticks since the last timestamp */
1693 #define TS_MAXFREQ      1100            /* RFC max TS freq of 1Khz + 10% skew */
1694 #define TS_MICROSECS    1000000         /* microseconds per second */
1695 #ifndef timersub
1696 #define timersub(tvp, uvp, vvp)                                         \
1697         do {                                                            \
1698                 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;          \
1699                 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;       \
1700                 if ((vvp)->tv_usec < 0) {                               \
1701                         (vvp)->tv_sec--;                                \
1702                         (vvp)->tv_usec += 1000000;                      \
1703                 }                                                       \
1704         } while (0)
1705 #endif
1706
1707                 timersub(&uptime, &src->scrub->pfss_last, &delta_ts);
1708                 tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
1709                 tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
1710
1711
1712                 if ((src->state >= TCPS_ESTABLISHED &&
1713                     dst->state >= TCPS_ESTABLISHED) &&
1714                     (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
1715                     SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
1716                     (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
1717                     SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
1718                         /* Bad RFC1323 implementation or an insertion attack.
1719                          *
1720                          * - Solaris 2.6 and 2.7 are known to send another ACK
1721                          *   after the FIN,FIN|ACK,ACK closing that carries
1722                          *   an old timestamp.
1723                          */
1724
1725                         DPFPRINTF(("Timestamp failed %c%c%c%c\n",
1726                             SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
1727                             SEQ_GT(tsval, src->scrub->pfss_tsval +
1728                             tsval_from_last) ? '1' : ' ',
1729                             SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
1730                             SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
1731                         DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
1732                             "idle: %lus %lums\n",
1733                             tsval, tsecr, tsval_from_last, delta_ts.tv_sec,
1734                             delta_ts.tv_usec / 1000));
1735                         DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
1736                             src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
1737                         DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
1738                             "\n", dst->scrub->pfss_tsval,
1739                             dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
1740                         if (pf_status.debug >= PF_DEBUG_MISC) {
1741                                 pf_print_state(state);
1742                                 pf_print_flags(th->th_flags);
1743                                 kprintf("\n");
1744                         }
1745                         REASON_SET(reason, PFRES_TS);
1746                         return (PF_DROP);
1747                 }
1748
1749                 /* XXX I'd really like to require tsecr but it's optional */
1750
1751         } else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
1752             ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
1753             || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
1754             src->scrub && dst->scrub &&
1755             (src->scrub->pfss_flags & PFSS_PAWS) &&
1756             (dst->scrub->pfss_flags & PFSS_PAWS)) {
1757                 /* Didn't send a timestamp.  Timestamps aren't really useful
1758                  * when:
1759                  *  - connection opening or closing (often not even sent).
1760                  *    but we must not let an attacker to put a FIN on a
1761                  *    data packet to sneak it through our ESTABLISHED check.
1762                  *  - on a TCP reset.  RFC suggests not even looking at TS.
1763                  *  - on an empty ACK.  The TS will not be echoed so it will
1764                  *    probably not help keep the RTT calculation in sync and
1765                  *    there isn't as much danger when the sequence numbers
1766                  *    got wrapped.  So some stacks don't include TS on empty
1767                  *    ACKs :-(
1768                  *
1769                  * To minimize the disruption to mostly RFC1323 conformant
1770                  * stacks, we will only require timestamps on data packets.
1771                  *
1772                  * And what do ya know, we cannot require timestamps on data
1773                  * packets.  There appear to be devices that do legitimate
1774                  * TCP connection hijacking.  There are HTTP devices that allow
1775                  * a 3whs (with timestamps) and then buffer the HTTP request.
1776                  * If the intermediate device has the HTTP response cache, it
1777                  * will spoof the response but not bother timestamping its
1778                  * packets.  So we can look for the presence of a timestamp in
1779                  * the first data packet and if there, require it in all future
1780                  * packets.
1781                  */
1782
1783                 if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
1784                         /*
1785                          * Hey!  Someone tried to sneak a packet in.  Or the
1786                          * stack changed its RFC1323 behavior?!?!
1787                          */
1788                         if (pf_status.debug >= PF_DEBUG_MISC) {
1789                                 DPFPRINTF(("Did not receive expected RFC1323 "
1790                                     "timestamp\n"));
1791                                 pf_print_state(state);
1792                                 pf_print_flags(th->th_flags);
1793                                 kprintf("\n");
1794                         }
1795                         REASON_SET(reason, PFRES_TS);
1796                         return (PF_DROP);
1797                 }
1798         }
1799
1800
1801         /*
1802          * We will note if a host sends his data packets with or without
1803          * timestamps.  And require all data packets to contain a timestamp
1804          * if the first does.  PAWS implicitly requires that all data packets be
1805          * timestamped.  But I think there are middle-man devices that hijack
1806          * TCP streams immediately after the 3whs and don't timestamp their
1807          * packets (seen in a WWW accelerator or cache).
1808          */
1809         if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
1810             (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
1811                 if (got_ts)
1812                         src->scrub->pfss_flags |= PFSS_DATA_TS;
1813                 else {
1814                         src->scrub->pfss_flags |= PFSS_DATA_NOTS;
1815                         if (pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
1816                             (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
1817                                 /* Don't warn if other host rejected RFC1323 */
1818                                 DPFPRINTF(("Broken RFC1323 stack did not "
1819                                     "timestamp data packet. Disabled PAWS "
1820                                     "security.\n"));
1821                                 pf_print_state(state);
1822                                 pf_print_flags(th->th_flags);
1823                                 kprintf("\n");
1824                         }
1825                 }
1826         }
1827
1828
1829         /*
1830          * Update PAWS values
1831          */
1832         if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
1833             (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
1834                 getmicrouptime(&src->scrub->pfss_last);
1835                 if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
1836                     (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1837                         src->scrub->pfss_tsval = tsval;
1838
1839                 if (tsecr) {
1840                         if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
1841                             (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1842                                 src->scrub->pfss_tsecr = tsecr;
1843
1844                         if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
1845                             (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
1846                             src->scrub->pfss_tsval0 == 0)) {
1847                                 /* tsval0 MUST be the lowest timestamp */
1848                                 src->scrub->pfss_tsval0 = tsval;
1849                         }
1850
1851                         /* Only fully initialized after a TS gets echoed */
1852                         if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
1853                                 src->scrub->pfss_flags |= PFSS_PAWS;
1854                 }
1855         }
1856
1857         /* I have a dream....  TCP segment reassembly.... */
1858         return (0);
1859 }
1860
1861 int
1862 pf_normalize_tcpopt(struct pf_rule *r, struct mbuf *m, struct tcphdr *th,
1863     int off, sa_family_t af)
1864 {
1865         u_int16_t       *mss;
1866         int              thoff;
1867         int              opt, cnt, optlen = 0;
1868         int              rewrite = 0;
1869         u_char           opts[TCP_MAXOLEN];
1870         u_char          *optp = opts;
1871
1872         thoff = th->th_off << 2;
1873         cnt = thoff - sizeof(struct tcphdr);
1874
1875         if (cnt > 0 && !pf_pull_hdr(m, off + sizeof(*th), opts, cnt,
1876             NULL, NULL, af))
1877                 return (rewrite);
1878
1879         for (; cnt > 0; cnt -= optlen, optp += optlen) {
1880                 opt = optp[0];
1881                 if (opt == TCPOPT_EOL)
1882                         break;
1883                 if (opt == TCPOPT_NOP)
1884                         optlen = 1;
1885                 else {
1886                         if (cnt < 2)
1887                                 break;
1888                         optlen = optp[1];
1889                         if (optlen < 2 || optlen > cnt)
1890                                 break;
1891                 }
1892                 switch (opt) {
1893                 case TCPOPT_MAXSEG:
1894                         mss = (u_int16_t *)(optp + 2);
1895                         if ((ntohs(*mss)) > r->max_mss) {
1896                                 th->th_sum = pf_cksum_fixup(th->th_sum,
1897                                     *mss, htons(r->max_mss), 0);
1898                                 *mss = htons(r->max_mss);
1899                                 rewrite = 1;
1900                         }
1901                         break;
1902                 default:
1903                         break;
1904                 }
1905         }
1906
1907         if (rewrite)
1908                 m_copyback(m, off + sizeof(*th), thoff - sizeof(*th), opts);
1909
1910         return (rewrite);
1911 }