if_iwm - Update struct iwm_scan_results_notif. Remove old/unused definitions
[dragonfly.git] / sys / vm / vm_fault.c
1 /*
2  * Copyright (c) 2003-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * ---
35  *
36  * Copyright (c) 1991, 1993
37  *      The Regents of the University of California.  All rights reserved.
38  * Copyright (c) 1994 John S. Dyson
39  * All rights reserved.
40  * Copyright (c) 1994 David Greenman
41  * All rights reserved.
42  *
43  *
44  * This code is derived from software contributed to Berkeley by
45  * The Mach Operating System project at Carnegie-Mellon University.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * ---
72  *
73  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
74  * All rights reserved.
75  *
76  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
77  *
78  * Permission to use, copy, modify and distribute this software and
79  * its documentation is hereby granted, provided that both the copyright
80  * notice and this permission notice appear in all copies of the
81  * software, derivative works or modified versions, and any portions
82  * thereof, and that both notices appear in supporting documentation.
83  *
84  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
85  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
86  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
87  *
88  * Carnegie Mellon requests users of this software to return to
89  *
90  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
91  *  School of Computer Science
92  *  Carnegie Mellon University
93  *  Pittsburgh PA 15213-3890
94  *
95  * any improvements or extensions that they make and grant Carnegie the
96  * rights to redistribute these changes.
97  */
98
99 /*
100  *      Page fault handling module.
101  */
102
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/vnode.h>
108 #include <sys/resourcevar.h>
109 #include <sys/vmmeter.h>
110 #include <sys/vkernel.h>
111 #include <sys/lock.h>
112 #include <sys/sysctl.h>
113
114 #include <cpu/lwbuf.h>
115
116 #include <vm/vm.h>
117 #include <vm/vm_param.h>
118 #include <vm/pmap.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_pager.h>
125 #include <vm/vnode_pager.h>
126 #include <vm/vm_extern.h>
127
128 #include <sys/thread2.h>
129 #include <vm/vm_page2.h>
130
131 struct faultstate {
132         vm_page_t m;
133         vm_object_t object;
134         vm_pindex_t pindex;
135         vm_prot_t prot;
136         vm_page_t first_m;
137         vm_object_t first_object;
138         vm_prot_t first_prot;
139         vm_map_t map;
140         vm_map_entry_t entry;
141         int lookup_still_valid;
142         int hardfault;
143         int fault_flags;
144         int map_generation;
145         int shared;
146         int first_shared;
147         boolean_t wired;
148         struct vnode *vp;
149 };
150
151 static int debug_fault = 0;
152 SYSCTL_INT(_vm, OID_AUTO, debug_fault, CTLFLAG_RW, &debug_fault, 0, "");
153 static int debug_cluster = 0;
154 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
155 int vm_shared_fault = 1;
156 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
157 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0,
158            "Allow shared token on vm_object");
159
160 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
161 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *,
162                         vpte_t, int, int);
163 #if 0
164 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
165 #endif
166 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
167 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
168                         vm_map_entry_t entry, int prot, int fault_flags);
169 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
170                         vm_map_entry_t entry, int prot, int fault_flags);
171
172 static __inline void
173 release_page(struct faultstate *fs)
174 {
175         vm_page_deactivate(fs->m);
176         vm_page_wakeup(fs->m);
177         fs->m = NULL;
178 }
179
180 /*
181  * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
182  *       requires relocking and then checking the timestamp.
183  *
184  * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
185  *       not have to update fs->map_generation here.
186  *
187  * NOTE: This function can fail due to a deadlock against the caller's
188  *       holding of a vm_page BUSY.
189  */
190 static __inline int
191 relock_map(struct faultstate *fs)
192 {
193         int error;
194
195         if (fs->lookup_still_valid == FALSE && fs->map) {
196                 error = vm_map_lock_read_to(fs->map);
197                 if (error == 0)
198                         fs->lookup_still_valid = TRUE;
199         } else {
200                 error = 0;
201         }
202         return error;
203 }
204
205 static __inline void
206 unlock_map(struct faultstate *fs)
207 {
208         if (fs->lookup_still_valid && fs->map) {
209                 vm_map_lookup_done(fs->map, fs->entry, 0);
210                 fs->lookup_still_valid = FALSE;
211         }
212 }
213
214 /*
215  * Clean up after a successful call to vm_fault_object() so another call
216  * to vm_fault_object() can be made.
217  */
218 static void
219 _cleanup_successful_fault(struct faultstate *fs, int relock)
220 {
221         /*
222          * We allocated a junk page for a COW operation that did
223          * not occur, the page must be freed.
224          */
225         if (fs->object != fs->first_object) {
226                 KKASSERT(fs->first_shared == 0);
227                 vm_page_free(fs->first_m);
228                 vm_object_pip_wakeup(fs->object);
229                 fs->first_m = NULL;
230         }
231
232         /*
233          * Reset fs->object.
234          */
235         fs->object = fs->first_object;
236         if (relock && fs->lookup_still_valid == FALSE) {
237                 if (fs->map)
238                         vm_map_lock_read(fs->map);
239                 fs->lookup_still_valid = TRUE;
240         }
241 }
242
243 static void
244 _unlock_things(struct faultstate *fs, int dealloc)
245 {
246         _cleanup_successful_fault(fs, 0);
247         if (dealloc) {
248                 /*vm_object_deallocate(fs->first_object);*/
249                 /*fs->first_object = NULL; drop used later on */
250         }
251         unlock_map(fs); 
252         if (fs->vp != NULL) { 
253                 vput(fs->vp);
254                 fs->vp = NULL;
255         }
256 }
257
258 #define unlock_things(fs) _unlock_things(fs, 0)
259 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
260 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
261
262 /*
263  * TRYPAGER 
264  *
265  * Determine if the pager for the current object *might* contain the page.
266  *
267  * We only need to try the pager if this is not a default object (default
268  * objects are zero-fill and have no real pager), and if we are not taking
269  * a wiring fault or if the FS entry is wired.
270  */
271 #define TRYPAGER(fs)    \
272                 (fs->object->type != OBJT_DEFAULT && \
273                 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
274
275 /*
276  * vm_fault:
277  *
278  * Handle a page fault occuring at the given address, requiring the given
279  * permissions, in the map specified.  If successful, the page is inserted
280  * into the associated physical map.
281  *
282  * NOTE: The given address should be truncated to the proper page address.
283  *
284  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
285  * a standard error specifying why the fault is fatal is returned.
286  *
287  * The map in question must be referenced, and remains so.
288  * The caller may hold no locks.
289  * No other requirements.
290  */
291 int
292 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
293 {
294         int result;
295         vm_pindex_t first_pindex;
296         struct faultstate fs;
297         struct lwp *lp;
298         struct proc *p;
299         thread_t td;
300         int growstack;
301         int retry = 0;
302         int inherit_prot;
303
304         inherit_prot = fault_type & VM_PROT_NOSYNC;
305         fs.hardfault = 0;
306         fs.fault_flags = fault_flags;
307         fs.vp = NULL;
308         fs.shared = vm_shared_fault;
309         fs.first_shared = vm_shared_fault;
310         growstack = 1;
311
312         /*
313          * vm_map interactions
314          */
315         td = curthread;
316         if ((lp = td->td_lwp) != NULL)
317                 lp->lwp_flags |= LWP_PAGING;
318         lwkt_gettoken(&map->token);
319
320 RetryFault:
321         /*
322          * Find the vm_map_entry representing the backing store and resolve
323          * the top level object and page index.  This may have the side
324          * effect of executing a copy-on-write on the map entry and/or
325          * creating a shadow object, but will not COW any actual VM pages.
326          *
327          * On success fs.map is left read-locked and various other fields 
328          * are initialized but not otherwise referenced or locked.
329          *
330          * NOTE!  vm_map_lookup will try to upgrade the fault_type to
331          * VM_FAULT_WRITE if the map entry is a virtual page table and also
332          * writable, so we can set the 'A'accessed bit in the virtual page
333          * table entry.
334          */
335         fs.map = map;
336         result = vm_map_lookup(&fs.map, vaddr, fault_type,
337                                &fs.entry, &fs.first_object,
338                                &first_pindex, &fs.first_prot, &fs.wired);
339
340         /*
341          * If the lookup failed or the map protections are incompatible,
342          * the fault generally fails.
343          *
344          * The failure could be due to TDF_NOFAULT if vm_map_lookup()
345          * tried to do a COW fault.
346          *
347          * If the caller is trying to do a user wiring we have more work
348          * to do.
349          */
350         if (result != KERN_SUCCESS) {
351                 if (result == KERN_FAILURE_NOFAULT) {
352                         result = KERN_FAILURE;
353                         goto done;
354                 }
355                 if (result != KERN_PROTECTION_FAILURE ||
356                     (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
357                 {
358                         if (result == KERN_INVALID_ADDRESS && growstack &&
359                             map != &kernel_map && curproc != NULL) {
360                                 result = vm_map_growstack(curproc, vaddr);
361                                 if (result == KERN_SUCCESS) {
362                                         growstack = 0;
363                                         ++retry;
364                                         goto RetryFault;
365                                 }
366                                 result = KERN_FAILURE;
367                         }
368                         goto done;
369                 }
370
371                 /*
372                  * If we are user-wiring a r/w segment, and it is COW, then
373                  * we need to do the COW operation.  Note that we don't
374                  * currently COW RO sections now, because it is NOT desirable
375                  * to COW .text.  We simply keep .text from ever being COW'ed
376                  * and take the heat that one cannot debug wired .text sections.
377                  */
378                 result = vm_map_lookup(&fs.map, vaddr,
379                                        VM_PROT_READ|VM_PROT_WRITE|
380                                         VM_PROT_OVERRIDE_WRITE,
381                                        &fs.entry, &fs.first_object,
382                                        &first_pindex, &fs.first_prot,
383                                        &fs.wired);
384                 if (result != KERN_SUCCESS) {
385                         /* could also be KERN_FAILURE_NOFAULT */
386                         result = KERN_FAILURE;
387                         goto done;
388                 }
389
390                 /*
391                  * If we don't COW now, on a user wire, the user will never
392                  * be able to write to the mapping.  If we don't make this
393                  * restriction, the bookkeeping would be nearly impossible.
394                  *
395                  * XXX We have a shared lock, this will have a MP race but
396                  * I don't see how it can hurt anything.
397                  */
398                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
399                         fs.entry->max_protection &= ~VM_PROT_WRITE;
400         }
401
402         /*
403          * fs.map is read-locked
404          *
405          * Misc checks.  Save the map generation number to detect races.
406          */
407         fs.map_generation = fs.map->timestamp;
408         fs.lookup_still_valid = TRUE;
409         fs.first_m = NULL;
410         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
411         fs.prot = fs.first_prot;        /* default (used by uksmap) */
412
413         if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
414                 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
415                         panic("vm_fault: fault on nofault entry, addr: %p",
416                               (void *)vaddr);
417                 }
418                 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
419                     vaddr >= fs.entry->start &&
420                     vaddr < fs.entry->start + PAGE_SIZE) {
421                         panic("vm_fault: fault on stack guard, addr: %p",
422                               (void *)vaddr);
423                 }
424         }
425
426         /*
427          * A user-kernel shared map has no VM object and bypasses
428          * everything.  We execute the uksmap function with a temporary
429          * fictitious vm_page.  The address is directly mapped with no
430          * management.
431          */
432         if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
433                 struct vm_page fakem;
434
435                 bzero(&fakem, sizeof(fakem));
436                 fakem.pindex = first_pindex;
437                 fakem.flags = PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED;
438                 fakem.valid = VM_PAGE_BITS_ALL;
439                 fakem.pat_mode = VM_MEMATTR_DEFAULT;
440                 if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
441                         result = KERN_FAILURE;
442                         unlock_things(&fs);
443                         goto done2;
444                 }
445                 pmap_enter(fs.map->pmap, vaddr, &fakem, fs.prot | inherit_prot,
446                            fs.wired, fs.entry);
447                 goto done_success;
448         }
449
450         /*
451          * A system map entry may return a NULL object.  No object means
452          * no pager means an unrecoverable kernel fault.
453          */
454         if (fs.first_object == NULL) {
455                 panic("vm_fault: unrecoverable fault at %p in entry %p",
456                         (void *)vaddr, fs.entry);
457         }
458
459         /*
460          * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
461          * is set.
462          *
463          * Unfortunately a deadlock can occur if we are forced to page-in
464          * from swap, but diving all the way into the vm_pager_get_page()
465          * function to find out is too much.  Just check the object type.
466          *
467          * The deadlock is a CAM deadlock on a busy VM page when trying
468          * to finish an I/O if another process gets stuck in
469          * vop_helper_read_shortcut() due to a swap fault.
470          */
471         if ((td->td_flags & TDF_NOFAULT) &&
472             (retry ||
473              fs.first_object->type == OBJT_VNODE ||
474              fs.first_object->type == OBJT_SWAP ||
475              fs.first_object->backing_object)) {
476                 result = KERN_FAILURE;
477                 unlock_things(&fs);
478                 goto done2;
479         }
480
481         /*
482          * If the entry is wired we cannot change the page protection.
483          */
484         if (fs.wired)
485                 fault_type = fs.first_prot;
486
487         /*
488          * We generally want to avoid unnecessary exclusive modes on backing
489          * and terminal objects because this can seriously interfere with
490          * heavily fork()'d processes (particularly /bin/sh scripts).
491          *
492          * However, we also want to avoid unnecessary retries due to needed
493          * shared->exclusive promotion for common faults.  Exclusive mode is
494          * always needed if any page insertion, rename, or free occurs in an
495          * object (and also indirectly if any I/O is done).
496          *
497          * The main issue here is going to be fs.first_shared.  If the
498          * first_object has a backing object which isn't shadowed and the
499          * process is single-threaded we might as well use an exclusive
500          * lock/chain right off the bat.
501          */
502         if (fs.first_shared && fs.first_object->backing_object &&
503             LIST_EMPTY(&fs.first_object->shadow_head) &&
504             td->td_proc && td->td_proc->p_nthreads == 1) {
505                 fs.first_shared = 0;
506         }
507
508         /*
509          * swap_pager_unswapped() needs an exclusive object
510          */
511         if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
512                 fs.first_shared = 0;
513         }
514
515         /*
516          * Obtain a top-level object lock, shared or exclusive depending
517          * on fs.first_shared.  If a shared lock winds up being insufficient
518          * we will retry with an exclusive lock.
519          *
520          * The vnode pager lock is always shared.
521          */
522         if (fs.first_shared)
523                 vm_object_hold_shared(fs.first_object);
524         else
525                 vm_object_hold(fs.first_object);
526         if (fs.vp == NULL)
527                 fs.vp = vnode_pager_lock(fs.first_object);
528
529         /*
530          * The page we want is at (first_object, first_pindex), but if the
531          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
532          * page table to figure out the actual pindex.
533          *
534          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
535          * ONLY
536          */
537         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
538                 result = vm_fault_vpagetable(&fs, &first_pindex,
539                                              fs.entry->aux.master_pde,
540                                              fault_type, 1);
541                 if (result == KERN_TRY_AGAIN) {
542                         vm_object_drop(fs.first_object);
543                         ++retry;
544                         goto RetryFault;
545                 }
546                 if (result != KERN_SUCCESS)
547                         goto done;
548         }
549
550         /*
551          * Now we have the actual (object, pindex), fault in the page.  If
552          * vm_fault_object() fails it will unlock and deallocate the FS
553          * data.   If it succeeds everything remains locked and fs->object
554          * will have an additional PIP count if it is not equal to
555          * fs->first_object
556          *
557          * vm_fault_object will set fs->prot for the pmap operation.  It is
558          * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
559          * page can be safely written.  However, it will force a read-only
560          * mapping for a read fault if the memory is managed by a virtual
561          * page table.
562          *
563          * If the fault code uses the shared object lock shortcut
564          * we must not try to burst (we can't allocate VM pages).
565          */
566         result = vm_fault_object(&fs, first_pindex, fault_type, 1);
567
568         if (debug_fault > 0) {
569                 --debug_fault;
570                 kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
571                         "fs.m=%p fs.prot=%02x fs.wired=%02x fs.entry=%p\n",
572                         result, (intmax_t)vaddr, fault_type, fault_flags,
573                         fs.m, fs.prot, fs.wired, fs.entry);
574         }
575
576         if (result == KERN_TRY_AGAIN) {
577                 vm_object_drop(fs.first_object);
578                 ++retry;
579                 goto RetryFault;
580         }
581         if (result != KERN_SUCCESS)
582                 goto done;
583
584         /*
585          * On success vm_fault_object() does not unlock or deallocate, and fs.m
586          * will contain a busied page.
587          *
588          * Enter the page into the pmap and do pmap-related adjustments.
589          */
590         KKASSERT(fs.lookup_still_valid == TRUE);
591         vm_page_flag_set(fs.m, PG_REFERENCED);
592         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot | inherit_prot,
593                    fs.wired, fs.entry);
594
595         /*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
596         KKASSERT(fs.m->flags & PG_BUSY);
597
598         /*
599          * If the page is not wired down, then put it where the pageout daemon
600          * can find it.
601          */
602         if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
603                 if (fs.wired)
604                         vm_page_wire(fs.m);
605                 else
606                         vm_page_unwire(fs.m, 1);
607         } else {
608                 vm_page_activate(fs.m);
609         }
610         vm_page_wakeup(fs.m);
611
612         /*
613          * Burst in a few more pages if possible.  The fs.map should still
614          * be locked.  To avoid interlocking against a vnode->getblk
615          * operation we had to be sure to unbusy our primary vm_page above
616          * first.
617          *
618          * A normal burst can continue down backing store, only execute
619          * if we are holding an exclusive lock, otherwise the exclusive
620          * locks the burst code gets might cause excessive SMP collisions.
621          *
622          * A quick burst can be utilized when there is no backing object
623          * (i.e. a shared file mmap).
624          */
625         if ((fault_flags & VM_FAULT_BURST) &&
626             (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
627             fs.wired == 0) {
628                 if (fs.first_shared == 0 && fs.shared == 0) {
629                         vm_prefault(fs.map->pmap, vaddr,
630                                     fs.entry, fs.prot, fault_flags);
631                 } else {
632                         vm_prefault_quick(fs.map->pmap, vaddr,
633                                           fs.entry, fs.prot, fault_flags);
634                 }
635         }
636
637 done_success:
638         mycpu->gd_cnt.v_vm_faults++;
639         if (td->td_lwp)
640                 ++td->td_lwp->lwp_ru.ru_minflt;
641
642         /*
643          * Unlock everything, and return
644          */
645         unlock_things(&fs);
646
647         if (td->td_lwp) {
648                 if (fs.hardfault) {
649                         td->td_lwp->lwp_ru.ru_majflt++;
650                 } else {
651                         td->td_lwp->lwp_ru.ru_minflt++;
652                 }
653         }
654
655         /*vm_object_deallocate(fs.first_object);*/
656         /*fs.m = NULL; */
657         /*fs.first_object = NULL; must still drop later */
658
659         result = KERN_SUCCESS;
660 done:
661         if (fs.first_object)
662                 vm_object_drop(fs.first_object);
663 done2:
664         lwkt_reltoken(&map->token);
665         if (lp)
666                 lp->lwp_flags &= ~LWP_PAGING;
667
668 #if !defined(NO_SWAPPING)
669         /*
670          * Check the process RSS limit and force deactivation and
671          * (asynchronous) paging if necessary.  This is a complex operation,
672          * only do it for direct user-mode faults, for now.
673          *
674          * To reduce overhead implement approximately a ~16MB hysteresis.
675          */
676         p = td->td_proc;
677         if ((fault_flags & VM_FAULT_USERMODE) && lp &&
678             p->p_limit && map->pmap && vm_pageout_memuse_mode >= 1 &&
679             map != &kernel_map) {
680                 vm_pindex_t limit;
681                 vm_pindex_t size;
682
683                 limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
684                                         p->p_rlimit[RLIMIT_RSS].rlim_max));
685                 size = pmap_resident_tlnw_count(map->pmap);
686                 if (limit >= 0 && size > 4096 && size - 4096 >= limit) {
687                         vm_pageout_map_deactivate_pages(map, limit);
688                 }
689         }
690 #endif
691
692         return (result);
693 }
694
695 /*
696  * Fault in the specified virtual address in the current process map, 
697  * returning a held VM page or NULL.  See vm_fault_page() for more 
698  * information.
699  *
700  * No requirements.
701  */
702 vm_page_t
703 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
704 {
705         struct lwp *lp = curthread->td_lwp;
706         vm_page_t m;
707
708         m = vm_fault_page(&lp->lwp_vmspace->vm_map, va, 
709                           fault_type, VM_FAULT_NORMAL, errorp);
710         return(m);
711 }
712
713 /*
714  * Fault in the specified virtual address in the specified map, doing all
715  * necessary manipulation of the object store and all necessary I/O.  Return
716  * a held VM page or NULL, and set *errorp.  The related pmap is not
717  * updated.
718  *
719  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
720  * and marked PG_REFERENCED as well.
721  *
722  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
723  * error will be returned.
724  *
725  * No requirements.
726  */
727 vm_page_t
728 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
729               int fault_flags, int *errorp)
730 {
731         vm_pindex_t first_pindex;
732         struct faultstate fs;
733         int result;
734         int retry = 0;
735         vm_prot_t orig_fault_type = fault_type;
736
737         fs.hardfault = 0;
738         fs.fault_flags = fault_flags;
739         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
740
741         /*
742          * Dive the pmap (concurrency possible).  If we find the
743          * appropriate page we can terminate early and quickly.
744          */
745         fs.m = pmap_fault_page_quick(map->pmap, vaddr, fault_type);
746         if (fs.m) {
747                 *errorp = 0;
748                 return(fs.m);
749         }
750
751         /*
752          * Otherwise take a concurrency hit and do a formal page
753          * fault.
754          */
755         fs.shared = vm_shared_fault;
756         fs.first_shared = vm_shared_fault;
757         fs.vp = NULL;
758         lwkt_gettoken(&map->token);
759
760         /*
761          * swap_pager_unswapped() needs an exclusive object
762          */
763         if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
764                 fs.first_shared = 0;
765         }
766
767 RetryFault:
768         /*
769          * Find the vm_map_entry representing the backing store and resolve
770          * the top level object and page index.  This may have the side
771          * effect of executing a copy-on-write on the map entry and/or
772          * creating a shadow object, but will not COW any actual VM pages.
773          *
774          * On success fs.map is left read-locked and various other fields 
775          * are initialized but not otherwise referenced or locked.
776          *
777          * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
778          * if the map entry is a virtual page table and also writable,
779          * so we can set the 'A'accessed bit in the virtual page table entry.
780          */
781         fs.map = map;
782         result = vm_map_lookup(&fs.map, vaddr, fault_type,
783                                &fs.entry, &fs.first_object,
784                                &first_pindex, &fs.first_prot, &fs.wired);
785
786         if (result != KERN_SUCCESS) {
787                 *errorp = result;
788                 fs.m = NULL;
789                 goto done;
790         }
791
792         /*
793          * fs.map is read-locked
794          *
795          * Misc checks.  Save the map generation number to detect races.
796          */
797         fs.map_generation = fs.map->timestamp;
798         fs.lookup_still_valid = TRUE;
799         fs.first_m = NULL;
800         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
801
802         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
803                 panic("vm_fault: fault on nofault entry, addr: %lx",
804                     (u_long)vaddr);
805         }
806
807         /*
808          * A user-kernel shared map has no VM object and bypasses
809          * everything.  We execute the uksmap function with a temporary
810          * fictitious vm_page.  The address is directly mapped with no
811          * management.
812          */
813         if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
814                 struct vm_page fakem;
815
816                 bzero(&fakem, sizeof(fakem));
817                 fakem.pindex = first_pindex;
818                 fakem.flags = PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED;
819                 fakem.valid = VM_PAGE_BITS_ALL;
820                 fakem.pat_mode = VM_MEMATTR_DEFAULT;
821                 if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
822                         *errorp = KERN_FAILURE;
823                         fs.m = NULL;
824                         unlock_things(&fs);
825                         goto done2;
826                 }
827                 fs.m = PHYS_TO_VM_PAGE(fakem.phys_addr);
828                 vm_page_hold(fs.m);
829
830                 unlock_things(&fs);
831                 *errorp = 0;
832                 goto done;
833         }
834
835
836         /*
837          * A system map entry may return a NULL object.  No object means
838          * no pager means an unrecoverable kernel fault.
839          */
840         if (fs.first_object == NULL) {
841                 panic("vm_fault: unrecoverable fault at %p in entry %p",
842                         (void *)vaddr, fs.entry);
843         }
844
845         /*
846          * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
847          * is set.
848          *
849          * Unfortunately a deadlock can occur if we are forced to page-in
850          * from swap, but diving all the way into the vm_pager_get_page()
851          * function to find out is too much.  Just check the object type.
852          */
853         if ((curthread->td_flags & TDF_NOFAULT) &&
854             (retry ||
855              fs.first_object->type == OBJT_VNODE ||
856              fs.first_object->type == OBJT_SWAP ||
857              fs.first_object->backing_object)) {
858                 *errorp = KERN_FAILURE;
859                 unlock_things(&fs);
860                 goto done2;
861         }
862
863         /*
864          * If the entry is wired we cannot change the page protection.
865          */
866         if (fs.wired)
867                 fault_type = fs.first_prot;
868
869         /*
870          * Make a reference to this object to prevent its disposal while we
871          * are messing with it.  Once we have the reference, the map is free
872          * to be diddled.  Since objects reference their shadows (and copies),
873          * they will stay around as well.
874          *
875          * The reference should also prevent an unexpected collapse of the
876          * parent that might move pages from the current object into the
877          * parent unexpectedly, resulting in corruption.
878          *
879          * Bump the paging-in-progress count to prevent size changes (e.g.
880          * truncation operations) during I/O.  This must be done after
881          * obtaining the vnode lock in order to avoid possible deadlocks.
882          */
883         if (fs.first_shared)
884                 vm_object_hold_shared(fs.first_object);
885         else
886                 vm_object_hold(fs.first_object);
887         if (fs.vp == NULL)
888                 fs.vp = vnode_pager_lock(fs.first_object);      /* shared */
889
890         /*
891          * The page we want is at (first_object, first_pindex), but if the
892          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
893          * page table to figure out the actual pindex.
894          *
895          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
896          * ONLY
897          */
898         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
899                 result = vm_fault_vpagetable(&fs, &first_pindex,
900                                              fs.entry->aux.master_pde,
901                                              fault_type, 1);
902                 if (result == KERN_TRY_AGAIN) {
903                         vm_object_drop(fs.first_object);
904                         ++retry;
905                         goto RetryFault;
906                 }
907                 if (result != KERN_SUCCESS) {
908                         *errorp = result;
909                         fs.m = NULL;
910                         goto done;
911                 }
912         }
913
914         /*
915          * Now we have the actual (object, pindex), fault in the page.  If
916          * vm_fault_object() fails it will unlock and deallocate the FS
917          * data.   If it succeeds everything remains locked and fs->object
918          * will have an additinal PIP count if it is not equal to
919          * fs->first_object
920          */
921         fs.m = NULL;
922         result = vm_fault_object(&fs, first_pindex, fault_type, 1);
923
924         if (result == KERN_TRY_AGAIN) {
925                 vm_object_drop(fs.first_object);
926                 ++retry;
927                 goto RetryFault;
928         }
929         if (result != KERN_SUCCESS) {
930                 *errorp = result;
931                 fs.m = NULL;
932                 goto done;
933         }
934
935         if ((orig_fault_type & VM_PROT_WRITE) &&
936             (fs.prot & VM_PROT_WRITE) == 0) {
937                 *errorp = KERN_PROTECTION_FAILURE;
938                 unlock_and_deallocate(&fs);
939                 fs.m = NULL;
940                 goto done;
941         }
942
943         /*
944          * DO NOT UPDATE THE PMAP!!!  This function may be called for
945          * a pmap unrelated to the current process pmap, in which case
946          * the current cpu core will not be listed in the pmap's pm_active
947          * mask.  Thus invalidation interlocks will fail to work properly.
948          *
949          * (for example, 'ps' uses procfs to read program arguments from
950          * each process's stack).
951          *
952          * In addition to the above this function will be called to acquire
953          * a page that might already be faulted in, re-faulting it
954          * continuously is a waste of time.
955          *
956          * XXX could this have been the cause of our random seg-fault
957          *     issues?  procfs accesses user stacks.
958          */
959         vm_page_flag_set(fs.m, PG_REFERENCED);
960 #if 0
961         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, NULL);
962         mycpu->gd_cnt.v_vm_faults++;
963         if (curthread->td_lwp)
964                 ++curthread->td_lwp->lwp_ru.ru_minflt;
965 #endif
966
967         /*
968          * On success vm_fault_object() does not unlock or deallocate, and fs.m
969          * will contain a busied page.  So we must unlock here after having
970          * messed with the pmap.
971          */
972         unlock_things(&fs);
973
974         /*
975          * Return a held page.  We are not doing any pmap manipulation so do
976          * not set PG_MAPPED.  However, adjust the page flags according to
977          * the fault type because the caller may not use a managed pmapping
978          * (so we don't want to lose the fact that the page will be dirtied
979          * if a write fault was specified).
980          */
981         vm_page_hold(fs.m);
982         vm_page_activate(fs.m);
983         if (fault_type & VM_PROT_WRITE)
984                 vm_page_dirty(fs.m);
985
986         if (curthread->td_lwp) {
987                 if (fs.hardfault) {
988                         curthread->td_lwp->lwp_ru.ru_majflt++;
989                 } else {
990                         curthread->td_lwp->lwp_ru.ru_minflt++;
991                 }
992         }
993
994         /*
995          * Unlock everything, and return the held page.
996          */
997         vm_page_wakeup(fs.m);
998         /*vm_object_deallocate(fs.first_object);*/
999         /*fs.first_object = NULL; */
1000         *errorp = 0;
1001
1002 done:
1003         if (fs.first_object)
1004                 vm_object_drop(fs.first_object);
1005 done2:
1006         lwkt_reltoken(&map->token);
1007         return(fs.m);
1008 }
1009
1010 /*
1011  * Fault in the specified (object,offset), dirty the returned page as
1012  * needed.  If the requested fault_type cannot be done NULL and an
1013  * error is returned.
1014  *
1015  * A held (but not busied) page is returned.
1016  *
1017  * The passed in object must be held as specified by the shared
1018  * argument.
1019  */
1020 vm_page_t
1021 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
1022                      vm_prot_t fault_type, int fault_flags,
1023                      int *sharedp, int *errorp)
1024 {
1025         int result;
1026         vm_pindex_t first_pindex;
1027         struct faultstate fs;
1028         struct vm_map_entry entry;
1029
1030         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1031         bzero(&entry, sizeof(entry));
1032         entry.object.vm_object = object;
1033         entry.maptype = VM_MAPTYPE_NORMAL;
1034         entry.protection = entry.max_protection = fault_type;
1035
1036         fs.hardfault = 0;
1037         fs.fault_flags = fault_flags;
1038         fs.map = NULL;
1039         fs.shared = vm_shared_fault;
1040         fs.first_shared = *sharedp;
1041         fs.vp = NULL;
1042         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1043
1044         /*
1045          * Might require swap block adjustments
1046          */
1047         if (fs.first_shared && (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY))) {
1048                 fs.first_shared = 0;
1049                 vm_object_upgrade(object);
1050         }
1051
1052         /*
1053          * Retry loop as needed (typically for shared->exclusive transitions)
1054          */
1055 RetryFault:
1056         *sharedp = fs.first_shared;
1057         first_pindex = OFF_TO_IDX(offset);
1058         fs.first_object = object;
1059         fs.entry = &entry;
1060         fs.first_prot = fault_type;
1061         fs.wired = 0;
1062         /*fs.map_generation = 0; unused */
1063
1064         /*
1065          * Make a reference to this object to prevent its disposal while we
1066          * are messing with it.  Once we have the reference, the map is free
1067          * to be diddled.  Since objects reference their shadows (and copies),
1068          * they will stay around as well.
1069          *
1070          * The reference should also prevent an unexpected collapse of the
1071          * parent that might move pages from the current object into the
1072          * parent unexpectedly, resulting in corruption.
1073          *
1074          * Bump the paging-in-progress count to prevent size changes (e.g.
1075          * truncation operations) during I/O.  This must be done after
1076          * obtaining the vnode lock in order to avoid possible deadlocks.
1077          */
1078         if (fs.vp == NULL)
1079                 fs.vp = vnode_pager_lock(fs.first_object);
1080
1081         fs.lookup_still_valid = TRUE;
1082         fs.first_m = NULL;
1083         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
1084
1085 #if 0
1086         /* XXX future - ability to operate on VM object using vpagetable */
1087         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1088                 result = vm_fault_vpagetable(&fs, &first_pindex,
1089                                              fs.entry->aux.master_pde,
1090                                              fault_type, 0);
1091                 if (result == KERN_TRY_AGAIN) {
1092                         if (fs.first_shared == 0 && *sharedp)
1093                                 vm_object_upgrade(object);
1094                         goto RetryFault;
1095                 }
1096                 if (result != KERN_SUCCESS) {
1097                         *errorp = result;
1098                         return (NULL);
1099                 }
1100         }
1101 #endif
1102
1103         /*
1104          * Now we have the actual (object, pindex), fault in the page.  If
1105          * vm_fault_object() fails it will unlock and deallocate the FS
1106          * data.   If it succeeds everything remains locked and fs->object
1107          * will have an additinal PIP count if it is not equal to
1108          * fs->first_object
1109          *
1110          * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_object intact.
1111          * We may have to upgrade its lock to handle the requested fault.
1112          */
1113         result = vm_fault_object(&fs, first_pindex, fault_type, 0);
1114
1115         if (result == KERN_TRY_AGAIN) {
1116                 if (fs.first_shared == 0 && *sharedp)
1117                         vm_object_upgrade(object);
1118                 goto RetryFault;
1119         }
1120         if (result != KERN_SUCCESS) {
1121                 *errorp = result;
1122                 return(NULL);
1123         }
1124
1125         if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
1126                 *errorp = KERN_PROTECTION_FAILURE;
1127                 unlock_and_deallocate(&fs);
1128                 return(NULL);
1129         }
1130
1131         /*
1132          * On success vm_fault_object() does not unlock or deallocate, so we
1133          * do it here.  Note that the returned fs.m will be busied.
1134          */
1135         unlock_things(&fs);
1136
1137         /*
1138          * Return a held page.  We are not doing any pmap manipulation so do
1139          * not set PG_MAPPED.  However, adjust the page flags according to
1140          * the fault type because the caller may not use a managed pmapping
1141          * (so we don't want to lose the fact that the page will be dirtied
1142          * if a write fault was specified).
1143          */
1144         vm_page_hold(fs.m);
1145         vm_page_activate(fs.m);
1146         if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1147                 vm_page_dirty(fs.m);
1148         if (fault_flags & VM_FAULT_UNSWAP)
1149                 swap_pager_unswapped(fs.m);
1150
1151         /*
1152          * Indicate that the page was accessed.
1153          */
1154         vm_page_flag_set(fs.m, PG_REFERENCED);
1155
1156         if (curthread->td_lwp) {
1157                 if (fs.hardfault) {
1158                         curthread->td_lwp->lwp_ru.ru_majflt++;
1159                 } else {
1160                         curthread->td_lwp->lwp_ru.ru_minflt++;
1161                 }
1162         }
1163
1164         /*
1165          * Unlock everything, and return the held page.
1166          */
1167         vm_page_wakeup(fs.m);
1168         /*vm_object_deallocate(fs.first_object);*/
1169         /*fs.first_object = NULL; */
1170
1171         *errorp = 0;
1172         return(fs.m);
1173 }
1174
1175 /*
1176  * Translate the virtual page number (first_pindex) that is relative
1177  * to the address space into a logical page number that is relative to the
1178  * backing object.  Use the virtual page table pointed to by (vpte).
1179  *
1180  * This implements an N-level page table.  Any level can terminate the
1181  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
1182  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1183  */
1184 static
1185 int
1186 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1187                     vpte_t vpte, int fault_type, int allow_nofault)
1188 {
1189         struct lwbuf *lwb;
1190         struct lwbuf lwb_cache;
1191         int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1192         int result = KERN_SUCCESS;
1193         vpte_t *ptep;
1194
1195         ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1196         for (;;) {
1197                 /*
1198                  * We cannot proceed if the vpte is not valid, not readable
1199                  * for a read fault, or not writable for a write fault.
1200                  */
1201                 if ((vpte & VPTE_V) == 0) {
1202                         unlock_and_deallocate(fs);
1203                         return (KERN_FAILURE);
1204                 }
1205                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW) == 0) {
1206                         unlock_and_deallocate(fs);
1207                         return (KERN_FAILURE);
1208                 }
1209                 if ((vpte & VPTE_PS) || vshift == 0)
1210                         break;
1211                 KKASSERT(vshift >= VPTE_PAGE_BITS);
1212
1213                 /*
1214                  * Get the page table page.  Nominally we only read the page
1215                  * table, but since we are actively setting VPTE_M and VPTE_A,
1216                  * tell vm_fault_object() that we are writing it. 
1217                  *
1218                  * There is currently no real need to optimize this.
1219                  */
1220                 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1221                                          VM_PROT_READ|VM_PROT_WRITE,
1222                                          allow_nofault);
1223                 if (result != KERN_SUCCESS)
1224                         return (result);
1225
1226                 /*
1227                  * Process the returned fs.m and look up the page table
1228                  * entry in the page table page.
1229                  */
1230                 vshift -= VPTE_PAGE_BITS;
1231                 lwb = lwbuf_alloc(fs->m, &lwb_cache);
1232                 ptep = ((vpte_t *)lwbuf_kva(lwb) +
1233                         ((*pindex >> vshift) & VPTE_PAGE_MASK));
1234                 vpte = *ptep;
1235
1236                 /*
1237                  * Page table write-back.  If the vpte is valid for the
1238                  * requested operation, do a write-back to the page table.
1239                  *
1240                  * XXX VPTE_M is not set properly for page directory pages.
1241                  * It doesn't get set in the page directory if the page table
1242                  * is modified during a read access.
1243                  */
1244                 vm_page_activate(fs->m);
1245                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
1246                     (vpte & VPTE_RW)) {
1247                         if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
1248                                 atomic_set_long(ptep, VPTE_M | VPTE_A);
1249                                 vm_page_dirty(fs->m);
1250                         }
1251                 }
1252                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V)) {
1253                         if ((vpte & VPTE_A) == 0) {
1254                                 atomic_set_long(ptep, VPTE_A);
1255                                 vm_page_dirty(fs->m);
1256                         }
1257                 }
1258                 lwbuf_free(lwb);
1259                 vm_page_flag_set(fs->m, PG_REFERENCED);
1260                 vm_page_wakeup(fs->m);
1261                 fs->m = NULL;
1262                 cleanup_successful_fault(fs);
1263         }
1264         /*
1265          * Combine remaining address bits with the vpte.
1266          */
1267         /* JG how many bits from each? */
1268         *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1269                   (*pindex & ((1L << vshift) - 1));
1270         return (KERN_SUCCESS);
1271 }
1272
1273
1274 /*
1275  * This is the core of the vm_fault code.
1276  *
1277  * Do all operations required to fault-in (fs.first_object, pindex).  Run
1278  * through the shadow chain as necessary and do required COW or virtual
1279  * copy operations.  The caller has already fully resolved the vm_map_entry
1280  * and, if appropriate, has created a copy-on-write layer.  All we need to
1281  * do is iterate the object chain.
1282  *
1283  * On failure (fs) is unlocked and deallocated and the caller may return or
1284  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1285  * deallocated, fs.m will contained a resolved, busied page, and fs.object
1286  * will have an additional PIP count if it is not equal to fs.first_object.
1287  *
1288  * If locks based on fs->first_shared or fs->shared are insufficient,
1289  * clear the appropriate field(s) and return RETRY.  COWs require that
1290  * first_shared be 0, while page allocations (or frees) require that
1291  * shared be 0.  Renames require that both be 0.
1292  *
1293  * fs->first_object must be held on call.
1294  */
1295 static
1296 int
1297 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1298                 vm_prot_t fault_type, int allow_nofault)
1299 {
1300         vm_object_t next_object;
1301         vm_pindex_t pindex;
1302         int error;
1303
1304         ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1305         fs->prot = fs->first_prot;
1306         fs->object = fs->first_object;
1307         pindex = first_pindex;
1308
1309         vm_object_chain_acquire(fs->first_object, fs->shared);
1310         vm_object_pip_add(fs->first_object, 1);
1311
1312         /* 
1313          * If a read fault occurs we try to make the page writable if
1314          * possible.  There are three cases where we cannot make the
1315          * page mapping writable:
1316          *
1317          * (1) The mapping is read-only or the VM object is read-only,
1318          *     fs->prot above will simply not have VM_PROT_WRITE set.
1319          *
1320          * (2) If the mapping is a virtual page table we need to be able
1321          *     to detect writes so we can set VPTE_M in the virtual page
1322          *     table.
1323          *
1324          * (3) If the VM page is read-only or copy-on-write, upgrading would
1325          *     just result in an unnecessary COW fault.
1326          *
1327          * VM_PROT_VPAGED is set if faulting via a virtual page table and
1328          * causes adjustments to the 'M'odify bit to also turn off write
1329          * access to force a re-fault.
1330          */
1331         if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1332                 if ((fault_type & VM_PROT_WRITE) == 0)
1333                         fs->prot &= ~VM_PROT_WRITE;
1334         }
1335
1336         if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1337             pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1338                 if ((fault_type & VM_PROT_WRITE) == 0)
1339                         fs->prot &= ~VM_PROT_WRITE;
1340         }
1341
1342         /* vm_object_hold(fs->object); implied b/c object == first_object */
1343
1344         for (;;) {
1345                 /*
1346                  * The entire backing chain from first_object to object
1347                  * inclusive is chainlocked.
1348                  *
1349                  * If the object is dead, we stop here
1350                  */
1351                 if (fs->object->flags & OBJ_DEAD) {
1352                         vm_object_pip_wakeup(fs->first_object);
1353                         vm_object_chain_release_all(fs->first_object,
1354                                                     fs->object);
1355                         if (fs->object != fs->first_object)
1356                                 vm_object_drop(fs->object);
1357                         unlock_and_deallocate(fs);
1358                         return (KERN_PROTECTION_FAILURE);
1359                 }
1360
1361                 /*
1362                  * See if the page is resident.  Wait/Retry if the page is
1363                  * busy (lots of stuff may have changed so we can't continue
1364                  * in that case).
1365                  *
1366                  * We can theoretically allow the soft-busy case on a read
1367                  * fault if the page is marked valid, but since such
1368                  * pages are typically already pmap'd, putting that
1369                  * special case in might be more effort then it is
1370                  * worth.  We cannot under any circumstances mess
1371                  * around with a vm_page_t->busy page except, perhaps,
1372                  * to pmap it.
1373                  */
1374                 fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1375                                                 TRUE, &error);
1376                 if (error) {
1377                         vm_object_pip_wakeup(fs->first_object);
1378                         vm_object_chain_release_all(fs->first_object,
1379                                                     fs->object);
1380                         if (fs->object != fs->first_object)
1381                                 vm_object_drop(fs->object);
1382                         unlock_things(fs);
1383                         vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1384                         mycpu->gd_cnt.v_intrans++;
1385                         /*vm_object_deallocate(fs->first_object);*/
1386                         /*fs->first_object = NULL;*/
1387                         fs->m = NULL;
1388                         return (KERN_TRY_AGAIN);
1389                 }
1390                 if (fs->m) {
1391                         /*
1392                          * The page is busied for us.
1393                          *
1394                          * If reactivating a page from PQ_CACHE we may have
1395                          * to rate-limit.
1396                          */
1397                         int queue = fs->m->queue;
1398                         vm_page_unqueue_nowakeup(fs->m);
1399
1400                         if ((queue - fs->m->pc) == PQ_CACHE && 
1401                             vm_page_count_severe()) {
1402                                 vm_page_activate(fs->m);
1403                                 vm_page_wakeup(fs->m);
1404                                 fs->m = NULL;
1405                                 vm_object_pip_wakeup(fs->first_object);
1406                                 vm_object_chain_release_all(fs->first_object,
1407                                                             fs->object);
1408                                 if (fs->object != fs->first_object)
1409                                         vm_object_drop(fs->object);
1410                                 unlock_and_deallocate(fs);
1411                                 if (allow_nofault == 0 ||
1412                                     (curthread->td_flags & TDF_NOFAULT) == 0) {
1413                                         thread_t td;
1414
1415                                         vm_wait_pfault();
1416                                         td = curthread;
1417                                         if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1418                                                 return (KERN_PROTECTION_FAILURE);
1419                                 }
1420                                 return (KERN_TRY_AGAIN);
1421                         }
1422
1423                         /*
1424                          * If it still isn't completely valid (readable),
1425                          * or if a read-ahead-mark is set on the VM page,
1426                          * jump to readrest, else we found the page and
1427                          * can return.
1428                          *
1429                          * We can release the spl once we have marked the
1430                          * page busy.
1431                          */
1432                         if (fs->m->object != &kernel_object) {
1433                                 if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1434                                     VM_PAGE_BITS_ALL) {
1435                                         goto readrest;
1436                                 }
1437                                 if (fs->m->flags & PG_RAM) {
1438                                         if (debug_cluster)
1439                                                 kprintf("R");
1440                                         vm_page_flag_clear(fs->m, PG_RAM);
1441                                         goto readrest;
1442                                 }
1443                         }
1444                         break; /* break to PAGE HAS BEEN FOUND */
1445                 }
1446
1447                 /*
1448                  * Page is not resident, If this is the search termination
1449                  * or the pager might contain the page, allocate a new page.
1450                  */
1451                 if (TRYPAGER(fs) || fs->object == fs->first_object) {
1452                         /*
1453                          * Allocating, must be exclusive.
1454                          */
1455                         if (fs->object == fs->first_object &&
1456                             fs->first_shared) {
1457                                 fs->first_shared = 0;
1458                                 vm_object_pip_wakeup(fs->first_object);
1459                                 vm_object_chain_release_all(fs->first_object,
1460                                                             fs->object);
1461                                 if (fs->object != fs->first_object)
1462                                         vm_object_drop(fs->object);
1463                                 unlock_and_deallocate(fs);
1464                                 return (KERN_TRY_AGAIN);
1465                         }
1466                         if (fs->object != fs->first_object &&
1467                             fs->shared) {
1468                                 fs->first_shared = 0;
1469                                 fs->shared = 0;
1470                                 vm_object_pip_wakeup(fs->first_object);
1471                                 vm_object_chain_release_all(fs->first_object,
1472                                                             fs->object);
1473                                 if (fs->object != fs->first_object)
1474                                         vm_object_drop(fs->object);
1475                                 unlock_and_deallocate(fs);
1476                                 return (KERN_TRY_AGAIN);
1477                         }
1478
1479                         /*
1480                          * If the page is beyond the object size we fail
1481                          */
1482                         if (pindex >= fs->object->size) {
1483                                 vm_object_pip_wakeup(fs->first_object);
1484                                 vm_object_chain_release_all(fs->first_object,
1485                                                             fs->object);
1486                                 if (fs->object != fs->first_object)
1487                                         vm_object_drop(fs->object);
1488                                 unlock_and_deallocate(fs);
1489                                 return (KERN_PROTECTION_FAILURE);
1490                         }
1491
1492                         /*
1493                          * Allocate a new page for this object/offset pair.
1494                          *
1495                          * It is possible for the allocation to race, so
1496                          * handle the case.
1497                          */
1498                         fs->m = NULL;
1499                         if (!vm_page_count_severe()) {
1500                                 fs->m = vm_page_alloc(fs->object, pindex,
1501                                     ((fs->vp || fs->object->backing_object) ?
1502                                         VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1503                                         VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1504                                         VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1505                         }
1506                         if (fs->m == NULL) {
1507                                 vm_object_pip_wakeup(fs->first_object);
1508                                 vm_object_chain_release_all(fs->first_object,
1509                                                             fs->object);
1510                                 if (fs->object != fs->first_object)
1511                                         vm_object_drop(fs->object);
1512                                 unlock_and_deallocate(fs);
1513                                 if (allow_nofault == 0 ||
1514                                     (curthread->td_flags & TDF_NOFAULT) == 0) {
1515                                         thread_t td;
1516
1517                                         vm_wait_pfault();
1518                                         td = curthread;
1519                                         if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1520                                                 return (KERN_PROTECTION_FAILURE);
1521                                 }
1522                                 return (KERN_TRY_AGAIN);
1523                         }
1524
1525                         /*
1526                          * Fall through to readrest.  We have a new page which
1527                          * will have to be paged (since m->valid will be 0).
1528                          */
1529                 }
1530
1531 readrest:
1532                 /*
1533                  * We have found an invalid or partially valid page, a
1534                  * page with a read-ahead mark which might be partially or
1535                  * fully valid (and maybe dirty too), or we have allocated
1536                  * a new page.
1537                  *
1538                  * Attempt to fault-in the page if there is a chance that the
1539                  * pager has it, and potentially fault in additional pages
1540                  * at the same time.
1541                  *
1542                  * If TRYPAGER is true then fs.m will be non-NULL and busied
1543                  * for us.
1544                  */
1545                 if (TRYPAGER(fs)) {
1546                         int rv;
1547                         int seqaccess;
1548                         u_char behavior = vm_map_entry_behavior(fs->entry);
1549
1550                         if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1551                                 seqaccess = 0;
1552                         else
1553                                 seqaccess = -1;
1554
1555                         /*
1556                          * Doing I/O may synchronously insert additional
1557                          * pages so we can't be shared at this point either.
1558                          *
1559                          * NOTE: We can't free fs->m here in the allocated
1560                          *       case (fs->object != fs->first_object) as
1561                          *       this would require an exclusively locked
1562                          *       VM object.
1563                          */
1564                         if (fs->object == fs->first_object &&
1565                             fs->first_shared) {
1566                                 vm_page_deactivate(fs->m);
1567                                 vm_page_wakeup(fs->m);
1568                                 fs->m = NULL;
1569                                 fs->first_shared = 0;
1570                                 vm_object_pip_wakeup(fs->first_object);
1571                                 vm_object_chain_release_all(fs->first_object,
1572                                                             fs->object);
1573                                 if (fs->object != fs->first_object)
1574                                         vm_object_drop(fs->object);
1575                                 unlock_and_deallocate(fs);
1576                                 return (KERN_TRY_AGAIN);
1577                         }
1578                         if (fs->object != fs->first_object &&
1579                             fs->shared) {
1580                                 vm_page_deactivate(fs->m);
1581                                 vm_page_wakeup(fs->m);
1582                                 fs->m = NULL;
1583                                 fs->first_shared = 0;
1584                                 fs->shared = 0;
1585                                 vm_object_pip_wakeup(fs->first_object);
1586                                 vm_object_chain_release_all(fs->first_object,
1587                                                             fs->object);
1588                                 if (fs->object != fs->first_object)
1589                                         vm_object_drop(fs->object);
1590                                 unlock_and_deallocate(fs);
1591                                 return (KERN_TRY_AGAIN);
1592                         }
1593
1594                         /*
1595                          * Avoid deadlocking against the map when doing I/O.
1596                          * fs.object and the page is PG_BUSY'd.
1597                          *
1598                          * NOTE: Once unlocked, fs->entry can become stale
1599                          *       so this will NULL it out.
1600                          *
1601                          * NOTE: fs->entry is invalid until we relock the
1602                          *       map and verify that the timestamp has not
1603                          *       changed.
1604                          */
1605                         unlock_map(fs);
1606
1607                         /*
1608                          * Acquire the page data.  We still hold a ref on
1609                          * fs.object and the page has been PG_BUSY's.
1610                          *
1611                          * The pager may replace the page (for example, in
1612                          * order to enter a fictitious page into the
1613                          * object).  If it does so it is responsible for
1614                          * cleaning up the passed page and properly setting
1615                          * the new page PG_BUSY.
1616                          *
1617                          * If we got here through a PG_RAM read-ahead
1618                          * mark the page may be partially dirty and thus
1619                          * not freeable.  Don't bother checking to see
1620                          * if the pager has the page because we can't free
1621                          * it anyway.  We have to depend on the get_page
1622                          * operation filling in any gaps whether there is
1623                          * backing store or not.
1624                          */
1625                         rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1626
1627                         if (rv == VM_PAGER_OK) {
1628                                 /*
1629                                  * Relookup in case pager changed page. Pager
1630                                  * is responsible for disposition of old page
1631                                  * if moved.
1632                                  *
1633                                  * XXX other code segments do relookups too.
1634                                  * It's a bad abstraction that needs to be
1635                                  * fixed/removed.
1636                                  */
1637                                 fs->m = vm_page_lookup(fs->object, pindex);
1638                                 if (fs->m == NULL) {
1639                                         vm_object_pip_wakeup(fs->first_object);
1640                                         vm_object_chain_release_all(
1641                                                 fs->first_object, fs->object);
1642                                         if (fs->object != fs->first_object)
1643                                                 vm_object_drop(fs->object);
1644                                         unlock_and_deallocate(fs);
1645                                         return (KERN_TRY_AGAIN);
1646                                 }
1647                                 ++fs->hardfault;
1648                                 break; /* break to PAGE HAS BEEN FOUND */
1649                         }
1650
1651                         /*
1652                          * Remove the bogus page (which does not exist at this
1653                          * object/offset); before doing so, we must get back
1654                          * our object lock to preserve our invariant.
1655                          *
1656                          * Also wake up any other process that may want to bring
1657                          * in this page.
1658                          *
1659                          * If this is the top-level object, we must leave the
1660                          * busy page to prevent another process from rushing
1661                          * past us, and inserting the page in that object at
1662                          * the same time that we are.
1663                          */
1664                         if (rv == VM_PAGER_ERROR) {
1665                                 if (curproc) {
1666                                         kprintf("vm_fault: pager read error, "
1667                                                 "pid %d (%s)\n",
1668                                                 curproc->p_pid,
1669                                                 curproc->p_comm);
1670                                 } else {
1671                                         kprintf("vm_fault: pager read error, "
1672                                                 "thread %p (%s)\n",
1673                                                 curthread,
1674                                                 curproc->p_comm);
1675                                 }
1676                         }
1677
1678                         /*
1679                          * Data outside the range of the pager or an I/O error
1680                          *
1681                          * The page may have been wired during the pagein,
1682                          * e.g. by the buffer cache, and cannot simply be
1683                          * freed.  Call vnode_pager_freepage() to deal with it.
1684                          *
1685                          * Also note that we cannot free the page if we are
1686                          * holding the related object shared. XXX not sure
1687                          * what to do in that case.
1688                          */
1689                         if (fs->object != fs->first_object) {
1690                                 vnode_pager_freepage(fs->m);
1691                                 fs->m = NULL;
1692                                 /*
1693                                  * XXX - we cannot just fall out at this
1694                                  * point, m has been freed and is invalid!
1695                                  */
1696                         }
1697                         /*
1698                          * XXX - the check for kernel_map is a kludge to work
1699                          * around having the machine panic on a kernel space
1700                          * fault w/ I/O error.
1701                          */
1702                         if (((fs->map != &kernel_map) &&
1703                             (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1704                                 if (fs->m) {
1705                                         if (fs->first_shared) {
1706                                                 vm_page_deactivate(fs->m);
1707                                                 vm_page_wakeup(fs->m);
1708                                         } else {
1709                                                 vnode_pager_freepage(fs->m);
1710                                         }
1711                                         fs->m = NULL;
1712                                 }
1713                                 vm_object_pip_wakeup(fs->first_object);
1714                                 vm_object_chain_release_all(fs->first_object,
1715                                                             fs->object);
1716                                 if (fs->object != fs->first_object)
1717                                         vm_object_drop(fs->object);
1718                                 unlock_and_deallocate(fs);
1719                                 if (rv == VM_PAGER_ERROR)
1720                                         return (KERN_FAILURE);
1721                                 else
1722                                         return (KERN_PROTECTION_FAILURE);
1723                                 /* NOT REACHED */
1724                         }
1725                 }
1726
1727                 /*
1728                  * We get here if the object has a default pager (or unwiring) 
1729                  * or the pager doesn't have the page.
1730                  *
1731                  * fs->first_m will be used for the COW unless we find a
1732                  * deeper page to be mapped read-only, in which case the
1733                  * unlock*(fs) will free first_m.
1734                  */
1735                 if (fs->object == fs->first_object)
1736                         fs->first_m = fs->m;
1737
1738                 /*
1739                  * Move on to the next object.  The chain lock should prevent
1740                  * the backing_object from getting ripped out from under us.
1741                  *
1742                  * The object lock for the next object is governed by
1743                  * fs->shared.
1744                  */
1745                 if ((next_object = fs->object->backing_object) != NULL) {
1746                         if (fs->shared)
1747                                 vm_object_hold_shared(next_object);
1748                         else
1749                                 vm_object_hold(next_object);
1750                         vm_object_chain_acquire(next_object, fs->shared);
1751                         KKASSERT(next_object == fs->object->backing_object);
1752                         pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1753                 }
1754
1755                 if (next_object == NULL) {
1756                         /*
1757                          * If there's no object left, fill the page in the top
1758                          * object with zeros.
1759                          */
1760                         if (fs->object != fs->first_object) {
1761 #if 0
1762                                 if (fs->first_object->backing_object !=
1763                                     fs->object) {
1764                                         vm_object_hold(fs->first_object->backing_object);
1765                                 }
1766 #endif
1767                                 vm_object_chain_release_all(
1768                                         fs->first_object->backing_object,
1769                                         fs->object);
1770 #if 0
1771                                 if (fs->first_object->backing_object !=
1772                                     fs->object) {
1773                                         vm_object_drop(fs->first_object->backing_object);
1774                                 }
1775 #endif
1776                                 vm_object_pip_wakeup(fs->object);
1777                                 vm_object_drop(fs->object);
1778                                 fs->object = fs->first_object;
1779                                 pindex = first_pindex;
1780                                 fs->m = fs->first_m;
1781                         }
1782                         fs->first_m = NULL;
1783
1784                         /*
1785                          * Zero the page and mark it valid.
1786                          */
1787                         vm_page_zero_fill(fs->m);
1788                         mycpu->gd_cnt.v_zfod++;
1789                         fs->m->valid = VM_PAGE_BITS_ALL;
1790                         break;  /* break to PAGE HAS BEEN FOUND */
1791                 }
1792                 if (fs->object != fs->first_object) {
1793                         vm_object_pip_wakeup(fs->object);
1794                         vm_object_lock_swap();
1795                         vm_object_drop(fs->object);
1796                 }
1797                 KASSERT(fs->object != next_object,
1798                         ("object loop %p", next_object));
1799                 fs->object = next_object;
1800                 vm_object_pip_add(fs->object, 1);
1801         }
1802
1803         /*
1804          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1805          * is held.]
1806          *
1807          * object still held.
1808          *
1809          * local shared variable may be different from fs->shared.
1810          *
1811          * If the page is being written, but isn't already owned by the
1812          * top-level object, we have to copy it into a new page owned by the
1813          * top-level object.
1814          */
1815         KASSERT((fs->m->flags & PG_BUSY) != 0,
1816                 ("vm_fault: not busy after main loop"));
1817
1818         if (fs->object != fs->first_object) {
1819                 /*
1820                  * We only really need to copy if we want to write it.
1821                  */
1822                 if (fault_type & VM_PROT_WRITE) {
1823                         /*
1824                          * This allows pages to be virtually copied from a 
1825                          * backing_object into the first_object, where the 
1826                          * backing object has no other refs to it, and cannot
1827                          * gain any more refs.  Instead of a bcopy, we just 
1828                          * move the page from the backing object to the 
1829                          * first object.  Note that we must mark the page 
1830                          * dirty in the first object so that it will go out 
1831                          * to swap when needed.
1832                          */
1833                         if (
1834                                 /*
1835                                  * Must be holding exclusive locks
1836                                  */
1837                                 fs->first_shared == 0 &&
1838                                 fs->shared == 0 &&
1839                                 /*
1840                                  * Map, if present, has not changed
1841                                  */
1842                                 (fs->map == NULL ||
1843                                 fs->map_generation == fs->map->timestamp) &&
1844                                 /*
1845                                  * Only one shadow object
1846                                  */
1847                                 (fs->object->shadow_count == 1) &&
1848                                 /*
1849                                  * No COW refs, except us
1850                                  */
1851                                 (fs->object->ref_count == 1) &&
1852                                 /*
1853                                  * No one else can look this object up
1854                                  */
1855                                 (fs->object->handle == NULL) &&
1856                                 /*
1857                                  * No other ways to look the object up
1858                                  */
1859                                 ((fs->object->type == OBJT_DEFAULT) ||
1860                                  (fs->object->type == OBJT_SWAP)) &&
1861                                 /*
1862                                  * We don't chase down the shadow chain
1863                                  */
1864                                 (fs->object == fs->first_object->backing_object) &&
1865
1866                                 /*
1867                                  * grab the lock if we need to
1868                                  */
1869                                 (fs->lookup_still_valid ||
1870                                  fs->map == NULL ||
1871                                  lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1872                             ) {
1873                                 /*
1874                                  * (first_m) and (m) are both busied.  We have
1875                                  * move (m) into (first_m)'s object/pindex
1876                                  * in an atomic fashion, then free (first_m).
1877                                  *
1878                                  * first_object is held so second remove
1879                                  * followed by the rename should wind
1880                                  * up being atomic.  vm_page_free() might
1881                                  * block so we don't do it until after the
1882                                  * rename.
1883                                  */
1884                                 fs->lookup_still_valid = 1;
1885                                 vm_page_protect(fs->first_m, VM_PROT_NONE);
1886                                 vm_page_remove(fs->first_m);
1887                                 vm_page_rename(fs->m, fs->first_object,
1888                                                first_pindex);
1889                                 vm_page_free(fs->first_m);
1890                                 fs->first_m = fs->m;
1891                                 fs->m = NULL;
1892                                 mycpu->gd_cnt.v_cow_optim++;
1893                         } else {
1894                                 /*
1895                                  * Oh, well, lets copy it.
1896                                  *
1897                                  * Why are we unmapping the original page
1898                                  * here?  Well, in short, not all accessors
1899                                  * of user memory go through the pmap.  The
1900                                  * procfs code doesn't have access user memory
1901                                  * via a local pmap, so vm_fault_page*()
1902                                  * can't call pmap_enter().  And the umtx*()
1903                                  * code may modify the COW'd page via a DMAP
1904                                  * or kernel mapping and not via the pmap,
1905                                  * leaving the original page still mapped
1906                                  * read-only into the pmap.
1907                                  *
1908                                  * So we have to remove the page from at
1909                                  * least the current pmap if it is in it.
1910                                  * Just remove it from all pmaps.
1911                                  */
1912                                 KKASSERT(fs->first_shared == 0);
1913                                 vm_page_copy(fs->m, fs->first_m);
1914                                 vm_page_protect(fs->m, VM_PROT_NONE);
1915                                 vm_page_event(fs->m, VMEVENT_COW);
1916                         }
1917
1918                         /*
1919                          * We no longer need the old page or object.
1920                          */
1921                         if (fs->m)
1922                                 release_page(fs);
1923
1924                         /*
1925                          * We intend to revert to first_object, undo the
1926                          * chain lock through to that.
1927                          */
1928 #if 0
1929                         if (fs->first_object->backing_object != fs->object)
1930                                 vm_object_hold(fs->first_object->backing_object);
1931 #endif
1932                         vm_object_chain_release_all(
1933                                         fs->first_object->backing_object,
1934                                         fs->object);
1935 #if 0
1936                         if (fs->first_object->backing_object != fs->object)
1937                                 vm_object_drop(fs->first_object->backing_object);
1938 #endif
1939
1940                         /*
1941                          * fs->object != fs->first_object due to above 
1942                          * conditional
1943                          */
1944                         vm_object_pip_wakeup(fs->object);
1945                         vm_object_drop(fs->object);
1946
1947                         /*
1948                          * Only use the new page below...
1949                          */
1950                         mycpu->gd_cnt.v_cow_faults++;
1951                         fs->m = fs->first_m;
1952                         fs->object = fs->first_object;
1953                         pindex = first_pindex;
1954                 } else {
1955                         /*
1956                          * If it wasn't a write fault avoid having to copy
1957                          * the page by mapping it read-only.
1958                          */
1959                         fs->prot &= ~VM_PROT_WRITE;
1960                 }
1961         }
1962
1963         /*
1964          * Relock the map if necessary, then check the generation count.
1965          * relock_map() will update fs->timestamp to account for the
1966          * relocking if necessary.
1967          *
1968          * If the count has changed after relocking then all sorts of
1969          * crap may have happened and we have to retry.
1970          *
1971          * NOTE: The relock_map() can fail due to a deadlock against
1972          *       the vm_page we are holding BUSY.
1973          */
1974         if (fs->lookup_still_valid == FALSE && fs->map) {
1975                 if (relock_map(fs) ||
1976                     fs->map->timestamp != fs->map_generation) {
1977                         release_page(fs);
1978                         vm_object_pip_wakeup(fs->first_object);
1979                         vm_object_chain_release_all(fs->first_object,
1980                                                     fs->object);
1981                         if (fs->object != fs->first_object)
1982                                 vm_object_drop(fs->object);
1983                         unlock_and_deallocate(fs);
1984                         return (KERN_TRY_AGAIN);
1985                 }
1986         }
1987
1988         /*
1989          * If the fault is a write, we know that this page is being
1990          * written NOW so dirty it explicitly to save on pmap_is_modified()
1991          * calls later.
1992          *
1993          * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1994          * if the page is already dirty to prevent data written with
1995          * the expectation of being synced from not being synced.
1996          * Likewise if this entry does not request NOSYNC then make
1997          * sure the page isn't marked NOSYNC.  Applications sharing
1998          * data should use the same flags to avoid ping ponging.
1999          *
2000          * Also tell the backing pager, if any, that it should remove
2001          * any swap backing since the page is now dirty.
2002          */
2003         vm_page_activate(fs->m);
2004         if (fs->prot & VM_PROT_WRITE) {
2005                 vm_object_set_writeable_dirty(fs->m->object);
2006                 vm_set_nosync(fs->m, fs->entry);
2007                 if (fs->fault_flags & VM_FAULT_DIRTY) {
2008                         vm_page_dirty(fs->m);
2009                         swap_pager_unswapped(fs->m);
2010                 }
2011         }
2012
2013         vm_object_pip_wakeup(fs->first_object);
2014         vm_object_chain_release_all(fs->first_object, fs->object);
2015         if (fs->object != fs->first_object)
2016                 vm_object_drop(fs->object);
2017
2018         /*
2019          * Page had better still be busy.  We are still locked up and 
2020          * fs->object will have another PIP reference if it is not equal
2021          * to fs->first_object.
2022          */
2023         KASSERT(fs->m->flags & PG_BUSY,
2024                 ("vm_fault: page %p not busy!", fs->m));
2025
2026         /*
2027          * Sanity check: page must be completely valid or it is not fit to
2028          * map into user space.  vm_pager_get_pages() ensures this.
2029          */
2030         if (fs->m->valid != VM_PAGE_BITS_ALL) {
2031                 vm_page_zero_invalid(fs->m, TRUE);
2032                 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
2033         }
2034
2035         return (KERN_SUCCESS);
2036 }
2037
2038 /*
2039  * Hold each of the physical pages that are mapped by the specified range of
2040  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
2041  * and allow the specified types of access, "prot".  If all of the implied
2042  * pages are successfully held, then the number of held pages is returned
2043  * together with pointers to those pages in the array "ma".  However, if any
2044  * of the pages cannot be held, -1 is returned.
2045  */
2046 int
2047 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
2048     vm_prot_t prot, vm_page_t *ma, int max_count)
2049 {
2050         vm_offset_t start, end;
2051         int i, npages, error;
2052
2053         start = trunc_page(addr);
2054         end = round_page(addr + len);
2055
2056         npages = howmany(end - start, PAGE_SIZE);
2057
2058         if (npages > max_count)
2059                 return -1;
2060
2061         for (i = 0; i < npages; i++) {
2062                 // XXX error handling
2063                 ma[i] = vm_fault_page_quick(start + (i * PAGE_SIZE),
2064                         prot,
2065                         &error);
2066         }
2067
2068         return npages;
2069 }
2070
2071 /*
2072  * Wire down a range of virtual addresses in a map.  The entry in question
2073  * should be marked in-transition and the map must be locked.  We must
2074  * release the map temporarily while faulting-in the page to avoid a
2075  * deadlock.  Note that the entry may be clipped while we are blocked but
2076  * will never be freed.
2077  *
2078  * No requirements.
2079  */
2080 int
2081 vm_fault_wire(vm_map_t map, vm_map_entry_t entry,
2082               boolean_t user_wire, int kmflags)
2083 {
2084         boolean_t fictitious;
2085         vm_offset_t start;
2086         vm_offset_t end;
2087         vm_offset_t va;
2088         vm_paddr_t pa;
2089         vm_page_t m;
2090         pmap_t pmap;
2091         int rv;
2092         int wire_prot;
2093         int fault_flags;
2094
2095         lwkt_gettoken(&map->token);
2096
2097         if (user_wire) {
2098                 wire_prot = VM_PROT_READ;
2099                 fault_flags = VM_FAULT_USER_WIRE;
2100         } else {
2101                 wire_prot = VM_PROT_READ | VM_PROT_WRITE;
2102                 fault_flags = VM_FAULT_CHANGE_WIRING;
2103         }
2104         if (kmflags & KM_NOTLBSYNC)
2105                 wire_prot |= VM_PROT_NOSYNC;
2106
2107         pmap = vm_map_pmap(map);
2108         start = entry->start;
2109         end = entry->end;
2110         switch(entry->maptype) {
2111         case VM_MAPTYPE_NORMAL:
2112         case VM_MAPTYPE_VPAGETABLE:
2113                 fictitious = entry->object.vm_object &&
2114                             ((entry->object.vm_object->type == OBJT_DEVICE) ||
2115                              (entry->object.vm_object->type == OBJT_MGTDEVICE));
2116                 break;
2117         case VM_MAPTYPE_UKSMAP:
2118                 fictitious = TRUE;
2119                 break;
2120         default:
2121                 fictitious = FALSE;
2122                 break;
2123         }
2124
2125         if (entry->eflags & MAP_ENTRY_KSTACK)
2126                 start += PAGE_SIZE;
2127         map->timestamp++;
2128         vm_map_unlock(map);
2129
2130         /*
2131          * We simulate a fault to get the page and enter it in the physical
2132          * map.
2133          */
2134         for (va = start; va < end; va += PAGE_SIZE) {
2135                 rv = vm_fault(map, va, wire_prot, fault_flags);
2136                 if (rv) {
2137                         while (va > start) {
2138                                 va -= PAGE_SIZE;
2139                                 if ((pa = pmap_extract(pmap, va)) == 0)
2140                                         continue;
2141                                 pmap_change_wiring(pmap, va, FALSE, entry);
2142                                 if (!fictitious) {
2143                                         m = PHYS_TO_VM_PAGE(pa);
2144                                         vm_page_busy_wait(m, FALSE, "vmwrpg");
2145                                         vm_page_unwire(m, 1);
2146                                         vm_page_wakeup(m);
2147                                 }
2148                         }
2149                         goto done;
2150                 }
2151         }
2152         rv = KERN_SUCCESS;
2153 done:
2154         vm_map_lock(map);
2155         lwkt_reltoken(&map->token);
2156         return (rv);
2157 }
2158
2159 /*
2160  * Unwire a range of virtual addresses in a map.  The map should be
2161  * locked.
2162  */
2163 void
2164 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2165 {
2166         boolean_t fictitious;
2167         vm_offset_t start;
2168         vm_offset_t end;
2169         vm_offset_t va;
2170         vm_paddr_t pa;
2171         vm_page_t m;
2172         pmap_t pmap;
2173
2174         lwkt_gettoken(&map->token);
2175
2176         pmap = vm_map_pmap(map);
2177         start = entry->start;
2178         end = entry->end;
2179         fictitious = entry->object.vm_object &&
2180                         ((entry->object.vm_object->type == OBJT_DEVICE) ||
2181                          (entry->object.vm_object->type == OBJT_MGTDEVICE));
2182         if (entry->eflags & MAP_ENTRY_KSTACK)
2183                 start += PAGE_SIZE;
2184
2185         /*
2186          * Since the pages are wired down, we must be able to get their
2187          * mappings from the physical map system.
2188          */
2189         for (va = start; va < end; va += PAGE_SIZE) {
2190                 pa = pmap_extract(pmap, va);
2191                 if (pa != 0) {
2192                         pmap_change_wiring(pmap, va, FALSE, entry);
2193                         if (!fictitious) {
2194                                 m = PHYS_TO_VM_PAGE(pa);
2195                                 vm_page_busy_wait(m, FALSE, "vmwupg");
2196                                 vm_page_unwire(m, 1);
2197                                 vm_page_wakeup(m);
2198                         }
2199                 }
2200         }
2201         lwkt_reltoken(&map->token);
2202 }
2203
2204 /*
2205  * Copy all of the pages from a wired-down map entry to another.
2206  *
2207  * The source and destination maps must be locked for write.
2208  * The source and destination maps token must be held
2209  * The source map entry must be wired down (or be a sharing map
2210  * entry corresponding to a main map entry that is wired down).
2211  *
2212  * No other requirements.
2213  *
2214  * XXX do segment optimization
2215  */
2216 void
2217 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2218                     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2219 {
2220         vm_object_t dst_object;
2221         vm_object_t src_object;
2222         vm_ooffset_t dst_offset;
2223         vm_ooffset_t src_offset;
2224         vm_prot_t prot;
2225         vm_offset_t vaddr;
2226         vm_page_t dst_m;
2227         vm_page_t src_m;
2228
2229         src_object = src_entry->object.vm_object;
2230         src_offset = src_entry->offset;
2231
2232         /*
2233          * Create the top-level object for the destination entry. (Doesn't
2234          * actually shadow anything - we copy the pages directly.)
2235          */
2236         vm_map_entry_allocate_object(dst_entry);
2237         dst_object = dst_entry->object.vm_object;
2238
2239         prot = dst_entry->max_protection;
2240
2241         /*
2242          * Loop through all of the pages in the entry's range, copying each
2243          * one from the source object (it should be there) to the destination
2244          * object.
2245          */
2246         vm_object_hold(src_object);
2247         vm_object_hold(dst_object);
2248         for (vaddr = dst_entry->start, dst_offset = 0;
2249             vaddr < dst_entry->end;
2250             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2251
2252                 /*
2253                  * Allocate a page in the destination object
2254                  */
2255                 do {
2256                         dst_m = vm_page_alloc(dst_object,
2257                                               OFF_TO_IDX(dst_offset),
2258                                               VM_ALLOC_NORMAL);
2259                         if (dst_m == NULL) {
2260                                 vm_wait(0);
2261                         }
2262                 } while (dst_m == NULL);
2263
2264                 /*
2265                  * Find the page in the source object, and copy it in.
2266                  * (Because the source is wired down, the page will be in
2267                  * memory.)
2268                  */
2269                 src_m = vm_page_lookup(src_object,
2270                                        OFF_TO_IDX(dst_offset + src_offset));
2271                 if (src_m == NULL)
2272                         panic("vm_fault_copy_wired: page missing");
2273
2274                 vm_page_copy(src_m, dst_m);
2275                 vm_page_event(src_m, VMEVENT_COW);
2276
2277                 /*
2278                  * Enter it in the pmap...
2279                  */
2280                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2281
2282                 /*
2283                  * Mark it no longer busy, and put it on the active list.
2284                  */
2285                 vm_page_activate(dst_m);
2286                 vm_page_wakeup(dst_m);
2287         }
2288         vm_object_drop(dst_object);
2289         vm_object_drop(src_object);
2290 }
2291
2292 #if 0
2293
2294 /*
2295  * This routine checks around the requested page for other pages that
2296  * might be able to be faulted in.  This routine brackets the viable
2297  * pages for the pages to be paged in.
2298  *
2299  * Inputs:
2300  *      m, rbehind, rahead
2301  *
2302  * Outputs:
2303  *  marray (array of vm_page_t), reqpage (index of requested page)
2304  *
2305  * Return value:
2306  *  number of pages in marray
2307  */
2308 static int
2309 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2310                           vm_page_t *marray, int *reqpage)
2311 {
2312         int i,j;
2313         vm_object_t object;
2314         vm_pindex_t pindex, startpindex, endpindex, tpindex;
2315         vm_page_t rtm;
2316         int cbehind, cahead;
2317
2318         object = m->object;
2319         pindex = m->pindex;
2320
2321         /*
2322          * we don't fault-ahead for device pager
2323          */
2324         if ((object->type == OBJT_DEVICE) ||
2325             (object->type == OBJT_MGTDEVICE)) {
2326                 *reqpage = 0;
2327                 marray[0] = m;
2328                 return 1;
2329         }
2330
2331         /*
2332          * if the requested page is not available, then give up now
2333          */
2334         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2335                 *reqpage = 0;   /* not used by caller, fix compiler warn */
2336                 return 0;
2337         }
2338
2339         if ((cbehind == 0) && (cahead == 0)) {
2340                 *reqpage = 0;
2341                 marray[0] = m;
2342                 return 1;
2343         }
2344
2345         if (rahead > cahead) {
2346                 rahead = cahead;
2347         }
2348
2349         if (rbehind > cbehind) {
2350                 rbehind = cbehind;
2351         }
2352
2353         /*
2354          * Do not do any readahead if we have insufficient free memory.
2355          *
2356          * XXX code was broken disabled before and has instability
2357          * with this conditonal fixed, so shortcut for now.
2358          */
2359         if (burst_fault == 0 || vm_page_count_severe()) {
2360                 marray[0] = m;
2361                 *reqpage = 0;
2362                 return 1;
2363         }
2364
2365         /*
2366          * scan backward for the read behind pages -- in memory 
2367          *
2368          * Assume that if the page is not found an interrupt will not
2369          * create it.  Theoretically interrupts can only remove (busy)
2370          * pages, not create new associations.
2371          */
2372         if (pindex > 0) {
2373                 if (rbehind > pindex) {
2374                         rbehind = pindex;
2375                         startpindex = 0;
2376                 } else {
2377                         startpindex = pindex - rbehind;
2378                 }
2379
2380                 vm_object_hold(object);
2381                 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2382                         if (vm_page_lookup(object, tpindex - 1))
2383                                 break;
2384                 }
2385
2386                 i = 0;
2387                 while (tpindex < pindex) {
2388                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2389                                                              VM_ALLOC_NULL_OK);
2390                         if (rtm == NULL) {
2391                                 for (j = 0; j < i; j++) {
2392                                         vm_page_free(marray[j]);
2393                                 }
2394                                 vm_object_drop(object);
2395                                 marray[0] = m;
2396                                 *reqpage = 0;
2397                                 return 1;
2398                         }
2399                         marray[i] = rtm;
2400                         ++i;
2401                         ++tpindex;
2402                 }
2403                 vm_object_drop(object);
2404         } else {
2405                 i = 0;
2406         }
2407
2408         /*
2409          * Assign requested page
2410          */
2411         marray[i] = m;
2412         *reqpage = i;
2413         ++i;
2414
2415         /*
2416          * Scan forwards for read-ahead pages
2417          */
2418         tpindex = pindex + 1;
2419         endpindex = tpindex + rahead;
2420         if (endpindex > object->size)
2421                 endpindex = object->size;
2422
2423         vm_object_hold(object);
2424         while (tpindex < endpindex) {
2425                 if (vm_page_lookup(object, tpindex))
2426                         break;
2427                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2428                                                      VM_ALLOC_NULL_OK);
2429                 if (rtm == NULL)
2430                         break;
2431                 marray[i] = rtm;
2432                 ++i;
2433                 ++tpindex;
2434         }
2435         vm_object_drop(object);
2436
2437         return (i);
2438 }
2439
2440 #endif
2441
2442 /*
2443  * vm_prefault() provides a quick way of clustering pagefaults into a
2444  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2445  * except it runs at page fault time instead of mmap time.
2446  *
2447  * vm.fast_fault        Enables pre-faulting zero-fill pages
2448  *
2449  * vm.prefault_pages    Number of pages (1/2 negative, 1/2 positive) to
2450  *                      prefault.  Scan stops in either direction when
2451  *                      a page is found to already exist.
2452  *
2453  * This code used to be per-platform pmap_prefault().  It is now
2454  * machine-independent and enhanced to also pre-fault zero-fill pages
2455  * (see vm.fast_fault) as well as make them writable, which greatly
2456  * reduces the number of page faults programs incur.
2457  *
2458  * Application performance when pre-faulting zero-fill pages is heavily
2459  * dependent on the application.  Very tiny applications like /bin/echo
2460  * lose a little performance while applications of any appreciable size
2461  * gain performance.  Prefaulting multiple pages also reduces SMP
2462  * congestion and can improve SMP performance significantly.
2463  *
2464  * NOTE!  prot may allow writing but this only applies to the top level
2465  *        object.  If we wind up mapping a page extracted from a backing
2466  *        object we have to make sure it is read-only.
2467  *
2468  * NOTE!  The caller has already handled any COW operations on the
2469  *        vm_map_entry via the normal fault code.  Do NOT call this
2470  *        shortcut unless the normal fault code has run on this entry.
2471  *
2472  * The related map must be locked.
2473  * No other requirements.
2474  */
2475 static int vm_prefault_pages = 8;
2476 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2477            "Maximum number of pages to pre-fault");
2478 static int vm_fast_fault = 1;
2479 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2480            "Burst fault zero-fill regions");
2481
2482 /*
2483  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2484  * is not already dirty by other means.  This will prevent passive
2485  * filesystem syncing as well as 'sync' from writing out the page.
2486  */
2487 static void
2488 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2489 {
2490         if (entry->eflags & MAP_ENTRY_NOSYNC) {
2491                 if (m->dirty == 0)
2492                         vm_page_flag_set(m, PG_NOSYNC);
2493         } else {
2494                 vm_page_flag_clear(m, PG_NOSYNC);
2495         }
2496 }
2497
2498 static void
2499 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2500             int fault_flags)
2501 {
2502         struct lwp *lp;
2503         vm_page_t m;
2504         vm_offset_t addr;
2505         vm_pindex_t index;
2506         vm_pindex_t pindex;
2507         vm_object_t object;
2508         int pprot;
2509         int i;
2510         int noneg;
2511         int nopos;
2512         int maxpages;
2513
2514         /*
2515          * Get stable max count value, disabled if set to 0
2516          */
2517         maxpages = vm_prefault_pages;
2518         cpu_ccfence();
2519         if (maxpages <= 0)
2520                 return;
2521
2522         /*
2523          * We do not currently prefault mappings that use virtual page
2524          * tables.  We do not prefault foreign pmaps.
2525          */
2526         if (entry->maptype != VM_MAPTYPE_NORMAL)
2527                 return;
2528         lp = curthread->td_lwp;
2529         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2530                 return;
2531
2532         /*
2533          * Limit pre-fault count to 1024 pages.
2534          */
2535         if (maxpages > 1024)
2536                 maxpages = 1024;
2537
2538         object = entry->object.vm_object;
2539         KKASSERT(object != NULL);
2540         KKASSERT(object == entry->object.vm_object);
2541         vm_object_hold(object);
2542         vm_object_chain_acquire(object, 0);
2543
2544         noneg = 0;
2545         nopos = 0;
2546         for (i = 0; i < maxpages; ++i) {
2547                 vm_object_t lobject;
2548                 vm_object_t nobject;
2549                 int allocated = 0;
2550                 int error;
2551
2552                 /*
2553                  * This can eat a lot of time on a heavily contended
2554                  * machine so yield on the tick if needed.
2555                  */
2556                 if ((i & 7) == 7)
2557                         lwkt_yield();
2558
2559                 /*
2560                  * Calculate the page to pre-fault, stopping the scan in
2561                  * each direction separately if the limit is reached.
2562                  */
2563                 if (i & 1) {
2564                         if (noneg)
2565                                 continue;
2566                         addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2567                 } else {
2568                         if (nopos)
2569                                 continue;
2570                         addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2571                 }
2572                 if (addr < entry->start) {
2573                         noneg = 1;
2574                         if (noneg && nopos)
2575                                 break;
2576                         continue;
2577                 }
2578                 if (addr >= entry->end) {
2579                         nopos = 1;
2580                         if (noneg && nopos)
2581                                 break;
2582                         continue;
2583                 }
2584
2585                 /*
2586                  * Skip pages already mapped, and stop scanning in that
2587                  * direction.  When the scan terminates in both directions
2588                  * we are done.
2589                  */
2590                 if (pmap_prefault_ok(pmap, addr) == 0) {
2591                         if (i & 1)
2592                                 noneg = 1;
2593                         else
2594                                 nopos = 1;
2595                         if (noneg && nopos)
2596                                 break;
2597                         continue;
2598                 }
2599
2600                 /*
2601                  * Follow the VM object chain to obtain the page to be mapped
2602                  * into the pmap.
2603                  *
2604                  * If we reach the terminal object without finding a page
2605                  * and we determine it would be advantageous, then allocate
2606                  * a zero-fill page for the base object.  The base object
2607                  * is guaranteed to be OBJT_DEFAULT for this case.
2608                  *
2609                  * In order to not have to check the pager via *haspage*()
2610                  * we stop if any non-default object is encountered.  e.g.
2611                  * a vnode or swap object would stop the loop.
2612                  */
2613                 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2614                 lobject = object;
2615                 pindex = index;
2616                 pprot = prot;
2617
2618                 KKASSERT(lobject == entry->object.vm_object);
2619                 /*vm_object_hold(lobject); implied */
2620
2621                 while ((m = vm_page_lookup_busy_try(lobject, pindex,
2622                                                     TRUE, &error)) == NULL) {
2623                         if (lobject->type != OBJT_DEFAULT)
2624                                 break;
2625                         if (lobject->backing_object == NULL) {
2626                                 if (vm_fast_fault == 0)
2627                                         break;
2628                                 if ((prot & VM_PROT_WRITE) == 0 ||
2629                                     vm_page_count_min(0)) {
2630                                         break;
2631                                 }
2632
2633                                 /*
2634                                  * NOTE: Allocated from base object
2635                                  */
2636                                 m = vm_page_alloc(object, index,
2637                                                   VM_ALLOC_NORMAL |
2638                                                   VM_ALLOC_ZERO |
2639                                                   VM_ALLOC_USE_GD |
2640                                                   VM_ALLOC_NULL_OK);
2641                                 if (m == NULL)
2642                                         break;
2643                                 allocated = 1;
2644                                 pprot = prot;
2645                                 /* lobject = object .. not needed */
2646                                 break;
2647                         }
2648                         if (lobject->backing_object_offset & PAGE_MASK)
2649                                 break;
2650                         nobject = lobject->backing_object;
2651                         vm_object_hold(nobject);
2652                         KKASSERT(nobject == lobject->backing_object);
2653                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2654                         if (lobject != object) {
2655                                 vm_object_lock_swap();
2656                                 vm_object_drop(lobject);
2657                         }
2658                         lobject = nobject;
2659                         pprot &= ~VM_PROT_WRITE;
2660                         vm_object_chain_acquire(lobject, 0);
2661                 }
2662
2663                 /*
2664                  * NOTE: A non-NULL (m) will be associated with lobject if
2665                  *       it was found there, otherwise it is probably a
2666                  *       zero-fill page associated with the base object.
2667                  *
2668                  * Give-up if no page is available.
2669                  */
2670                 if (m == NULL) {
2671                         if (lobject != object) {
2672 #if 0
2673                                 if (object->backing_object != lobject)
2674                                         vm_object_hold(object->backing_object);
2675 #endif
2676                                 vm_object_chain_release_all(
2677                                         object->backing_object, lobject);
2678 #if 0
2679                                 if (object->backing_object != lobject)
2680                                         vm_object_drop(object->backing_object);
2681 #endif
2682                                 vm_object_drop(lobject);
2683                         }
2684                         break;
2685                 }
2686
2687                 /*
2688                  * The object must be marked dirty if we are mapping a
2689                  * writable page.  m->object is either lobject or object,
2690                  * both of which are still held.  Do this before we
2691                  * potentially drop the object.
2692                  */
2693                 if (pprot & VM_PROT_WRITE)
2694                         vm_object_set_writeable_dirty(m->object);
2695
2696                 /*
2697                  * Do not conditionalize on PG_RAM.  If pages are present in
2698                  * the VM system we assume optimal caching.  If caching is
2699                  * not optimal the I/O gravy train will be restarted when we
2700                  * hit an unavailable page.  We do not want to try to restart
2701                  * the gravy train now because we really don't know how much
2702                  * of the object has been cached.  The cost for restarting
2703                  * the gravy train should be low (since accesses will likely
2704                  * be I/O bound anyway).
2705                  */
2706                 if (lobject != object) {
2707 #if 0
2708                         if (object->backing_object != lobject)
2709                                 vm_object_hold(object->backing_object);
2710 #endif
2711                         vm_object_chain_release_all(object->backing_object,
2712                                                     lobject);
2713 #if 0
2714                         if (object->backing_object != lobject)
2715                                 vm_object_drop(object->backing_object);
2716 #endif
2717                         vm_object_drop(lobject);
2718                 }
2719
2720                 /*
2721                  * Enter the page into the pmap if appropriate.  If we had
2722                  * allocated the page we have to place it on a queue.  If not
2723                  * we just have to make sure it isn't on the cache queue
2724                  * (pages on the cache queue are not allowed to be mapped).
2725                  */
2726                 if (allocated) {
2727                         /*
2728                          * Page must be zerod.
2729                          */
2730                         vm_page_zero_fill(m);
2731                         mycpu->gd_cnt.v_zfod++;
2732                         m->valid = VM_PAGE_BITS_ALL;
2733
2734                         /*
2735                          * Handle dirty page case
2736                          */
2737                         if (pprot & VM_PROT_WRITE)
2738                                 vm_set_nosync(m, entry);
2739                         pmap_enter(pmap, addr, m, pprot, 0, entry);
2740                         mycpu->gd_cnt.v_vm_faults++;
2741                         if (curthread->td_lwp)
2742                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2743                         vm_page_deactivate(m);
2744                         if (pprot & VM_PROT_WRITE) {
2745                                 /*vm_object_set_writeable_dirty(m->object);*/
2746                                 vm_set_nosync(m, entry);
2747                                 if (fault_flags & VM_FAULT_DIRTY) {
2748                                         vm_page_dirty(m);
2749                                         /*XXX*/
2750                                         swap_pager_unswapped(m);
2751                                 }
2752                         }
2753                         vm_page_wakeup(m);
2754                 } else if (error) {
2755                         /* couldn't busy page, no wakeup */
2756                 } else if (
2757                     ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2758                     (m->flags & PG_FICTITIOUS) == 0) {
2759                         /*
2760                          * A fully valid page not undergoing soft I/O can
2761                          * be immediately entered into the pmap.
2762                          */
2763                         if ((m->queue - m->pc) == PQ_CACHE)
2764                                 vm_page_deactivate(m);
2765                         if (pprot & VM_PROT_WRITE) {
2766                                 /*vm_object_set_writeable_dirty(m->object);*/
2767                                 vm_set_nosync(m, entry);
2768                                 if (fault_flags & VM_FAULT_DIRTY) {
2769                                         vm_page_dirty(m);
2770                                         /*XXX*/
2771                                         swap_pager_unswapped(m);
2772                                 }
2773                         }
2774                         if (pprot & VM_PROT_WRITE)
2775                                 vm_set_nosync(m, entry);
2776                         pmap_enter(pmap, addr, m, pprot, 0, entry);
2777                         mycpu->gd_cnt.v_vm_faults++;
2778                         if (curthread->td_lwp)
2779                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2780                         vm_page_wakeup(m);
2781                 } else {
2782                         vm_page_wakeup(m);
2783                 }
2784         }
2785         vm_object_chain_release(object);
2786         vm_object_drop(object);
2787 }
2788
2789 /*
2790  * Object can be held shared
2791  */
2792 static void
2793 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
2794                   vm_map_entry_t entry, int prot, int fault_flags)
2795 {
2796         struct lwp *lp;
2797         vm_page_t m;
2798         vm_offset_t addr;
2799         vm_pindex_t pindex;
2800         vm_object_t object;
2801         int i;
2802         int noneg;
2803         int nopos;
2804         int maxpages;
2805
2806         /*
2807          * Get stable max count value, disabled if set to 0
2808          */
2809         maxpages = vm_prefault_pages;
2810         cpu_ccfence();
2811         if (maxpages <= 0)
2812                 return;
2813
2814         /*
2815          * We do not currently prefault mappings that use virtual page
2816          * tables.  We do not prefault foreign pmaps.
2817          */
2818         if (entry->maptype != VM_MAPTYPE_NORMAL)
2819                 return;
2820         lp = curthread->td_lwp;
2821         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2822                 return;
2823         object = entry->object.vm_object;
2824         if (object->backing_object != NULL)
2825                 return;
2826         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2827
2828         /*
2829          * Limit pre-fault count to 1024 pages.
2830          */
2831         if (maxpages > 1024)
2832                 maxpages = 1024;
2833
2834         noneg = 0;
2835         nopos = 0;
2836         for (i = 0; i < maxpages; ++i) {
2837                 int error;
2838
2839                 /*
2840                  * Calculate the page to pre-fault, stopping the scan in
2841                  * each direction separately if the limit is reached.
2842                  */
2843                 if (i & 1) {
2844                         if (noneg)
2845                                 continue;
2846                         addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2847                 } else {
2848                         if (nopos)
2849                                 continue;
2850                         addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2851                 }
2852                 if (addr < entry->start) {
2853                         noneg = 1;
2854                         if (noneg && nopos)
2855                                 break;
2856                         continue;
2857                 }
2858                 if (addr >= entry->end) {
2859                         nopos = 1;
2860                         if (noneg && nopos)
2861                                 break;
2862                         continue;
2863                 }
2864
2865                 /*
2866                  * Follow the VM object chain to obtain the page to be mapped
2867                  * into the pmap.  This version of the prefault code only
2868                  * works with terminal objects.
2869                  *
2870                  * The page must already exist.  If we encounter a problem
2871                  * we stop here.
2872                  *
2873                  * WARNING!  We cannot call swap_pager_unswapped() or insert
2874                  *           a new vm_page with a shared token.
2875                  */
2876                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2877
2878                 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2879                 if (m == NULL || error)
2880                         break;
2881
2882                 /*
2883                  * Skip pages already mapped, and stop scanning in that
2884                  * direction.  When the scan terminates in both directions
2885                  * we are done.
2886                  */
2887                 if (pmap_prefault_ok(pmap, addr) == 0) {
2888                         vm_page_wakeup(m);
2889                         if (i & 1)
2890                                 noneg = 1;
2891                         else
2892                                 nopos = 1;
2893                         if (noneg && nopos)
2894                                 break;
2895                         continue;
2896                 }
2897
2898                 /*
2899                  * Stop if the page cannot be trivially entered into the
2900                  * pmap.
2901                  */
2902                 if (((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) ||
2903                     (m->flags & PG_FICTITIOUS) ||
2904                     ((m->flags & PG_SWAPPED) &&
2905                      (prot & VM_PROT_WRITE) &&
2906                      (fault_flags & VM_FAULT_DIRTY))) {
2907                         vm_page_wakeup(m);
2908                         break;
2909                 }
2910
2911                 /*
2912                  * Enter the page into the pmap.  The object might be held
2913                  * shared so we can't do any (serious) modifying operation
2914                  * on it.
2915                  */
2916                 if ((m->queue - m->pc) == PQ_CACHE)
2917                         vm_page_deactivate(m);
2918                 if (prot & VM_PROT_WRITE) {
2919                         vm_object_set_writeable_dirty(m->object);
2920                         vm_set_nosync(m, entry);
2921                         if (fault_flags & VM_FAULT_DIRTY) {
2922                                 vm_page_dirty(m);
2923                                 /* can't happeen due to conditional above */
2924                                 /* swap_pager_unswapped(m); */
2925                         }
2926                 }
2927                 pmap_enter(pmap, addr, m, prot, 0, entry);
2928                 mycpu->gd_cnt.v_vm_faults++;
2929                 if (curthread->td_lwp)
2930                         ++curthread->td_lwp->lwp_ru.ru_minflt;
2931                 vm_page_wakeup(m);
2932         }
2933 }