Merge branch 'vendor/DIFFUTILS'
[dragonfly.git] / sys / vm / vm_swapcache.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36
37 /*
38  * Implement the swapcache daemon.  When enabled swap is assumed to be
39  * configured on a fast storage device such as a SSD.  Swap is assigned
40  * to clean vnode-backed pages in the inactive queue, clustered by object
41  * if possible, and written out.  The swap assignment sticks around even
42  * after the underlying pages have been recycled.
43  *
44  * The daemon manages write bandwidth based on sysctl settings to control
45  * wear on the SSD.
46  *
47  * The vnode strategy code will check for the swap assignments and divert
48  * reads to the swap device when the data is present in the swapcache.
49  *
50  * This operates on both regular files and the block device vnodes used by
51  * filesystems to manage meta-data.
52  */
53
54 #include "opt_vm.h"
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/proc.h>
59 #include <sys/kthread.h>
60 #include <sys/resourcevar.h>
61 #include <sys/signalvar.h>
62 #include <sys/vnode.h>
63 #include <sys/vmmeter.h>
64 #include <sys/sysctl.h>
65 #include <sys/eventhandler.h>
66
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <sys/lock.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_pageout.h>
74 #include <vm/vm_pager.h>
75 #include <vm/swap_pager.h>
76 #include <vm/vm_extern.h>
77
78 #include <sys/thread2.h>
79 #include <sys/spinlock2.h>
80 #include <vm/vm_page2.h>
81
82 /* the kernel process "vm_pageout"*/
83 static int vm_swapcached_flush (vm_page_t m, int isblkdev);
84 static int vm_swapcache_test(vm_page_t m);
85 static int vm_swapcache_writing_heuristic(void);
86 static int vm_swapcache_writing(vm_page_t marker, int count, int scount);
87 static void vm_swapcache_cleaning(vm_object_t marker,
88                         struct vm_object_hash **swindexp);
89 static void vm_swapcache_movemarker(vm_object_t marker,
90                         struct vm_object_hash *swindex, vm_object_t object);
91 struct thread *swapcached_thread;
92
93 SYSCTL_NODE(_vm, OID_AUTO, swapcache, CTLFLAG_RW, NULL, NULL);
94
95 int vm_swapcache_read_enable;
96 int vm_swapcache_inactive_heuristic;
97 static int vm_swapcache_sleep;
98 static int vm_swapcache_maxscan = PQ_L2_SIZE * 8;
99 static int vm_swapcache_maxlaunder = PQ_L2_SIZE * 4;
100 static int vm_swapcache_data_enable = 0;
101 static int vm_swapcache_meta_enable = 0;
102 static int vm_swapcache_maxswappct = 75;
103 static int vm_swapcache_hysteresis;
104 static int vm_swapcache_min_hysteresis;
105 int vm_swapcache_use_chflags = 0;       /* require chflags cache */
106 static int64_t vm_swapcache_minburst = 10000000LL;      /* 10MB */
107 static int64_t vm_swapcache_curburst = 4000000000LL;    /* 4G after boot */
108 static int64_t vm_swapcache_maxburst = 2000000000LL;    /* 2G nominal max */
109 static int64_t vm_swapcache_accrate = 100000LL;         /* 100K/s */
110 static int64_t vm_swapcache_write_count;
111 static int64_t vm_swapcache_maxfilesize;
112 static int64_t vm_swapcache_cleanperobj = 16*1024*1024;
113
114 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxlaunder,
115         CTLFLAG_RW, &vm_swapcache_maxlaunder, 0, "");
116 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxscan,
117         CTLFLAG_RW, &vm_swapcache_maxscan, 0, "");
118
119 SYSCTL_INT(_vm_swapcache, OID_AUTO, data_enable,
120         CTLFLAG_RW, &vm_swapcache_data_enable, 0, "");
121 SYSCTL_INT(_vm_swapcache, OID_AUTO, meta_enable,
122         CTLFLAG_RW, &vm_swapcache_meta_enable, 0, "");
123 SYSCTL_INT(_vm_swapcache, OID_AUTO, read_enable,
124         CTLFLAG_RW, &vm_swapcache_read_enable, 0, "");
125 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxswappct,
126         CTLFLAG_RW, &vm_swapcache_maxswappct, 0, "");
127 SYSCTL_INT(_vm_swapcache, OID_AUTO, hysteresis,
128         CTLFLAG_RD, &vm_swapcache_hysteresis, 0, "");
129 SYSCTL_INT(_vm_swapcache, OID_AUTO, min_hysteresis,
130         CTLFLAG_RW, &vm_swapcache_min_hysteresis, 0, "");
131 SYSCTL_INT(_vm_swapcache, OID_AUTO, use_chflags,
132         CTLFLAG_RW, &vm_swapcache_use_chflags, 0, "");
133
134 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, minburst,
135         CTLFLAG_RW, &vm_swapcache_minburst, 0, "");
136 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, curburst,
137         CTLFLAG_RW, &vm_swapcache_curburst, 0, "");
138 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxburst,
139         CTLFLAG_RW, &vm_swapcache_maxburst, 0, "");
140 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxfilesize,
141         CTLFLAG_RW, &vm_swapcache_maxfilesize, 0, "");
142 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, accrate,
143         CTLFLAG_RW, &vm_swapcache_accrate, 0, "");
144 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, write_count,
145         CTLFLAG_RW, &vm_swapcache_write_count, 0, "");
146 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, cleanperobj,
147         CTLFLAG_RW, &vm_swapcache_cleanperobj, 0, "");
148
149 #define SWAPMAX(adj)    \
150         ((int64_t)vm_swap_max * (vm_swapcache_maxswappct + (adj)) / 100)
151
152 /*
153  * When shutting down the machine we want to stop swapcache operation
154  * immediately so swap is not accessed after devices have been shuttered.
155  */
156 static void
157 shutdown_swapcache(void *arg __unused)
158 {
159         vm_swapcache_read_enable = 0;
160         vm_swapcache_data_enable = 0;
161         vm_swapcache_meta_enable = 0;
162         wakeup(&vm_swapcache_sleep);    /* shortcut 5-second wait */
163 }
164
165 /*
166  * vm_swapcached is the high level pageout daemon.
167  *
168  * No requirements.
169  */
170 static void
171 vm_swapcached_thread(void)
172 {
173         enum { SWAPC_WRITING, SWAPC_CLEANING } state = SWAPC_WRITING;
174         enum { SWAPB_BURSTING, SWAPB_RECOVERING } burst = SWAPB_BURSTING;
175         static struct vm_page page_marker[PQ_L2_SIZE];
176         static struct vm_object swmarker;
177         static struct vm_object_hash *swindex;
178         int q;
179
180         /*
181          * Thread setup
182          */
183         curthread->td_flags |= TDF_SYSTHREAD;
184         EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
185                               swapcached_thread, SHUTDOWN_PRI_FIRST);
186         EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_swapcache,
187                               NULL, SHUTDOWN_PRI_SECOND);
188
189         /*
190          * Initialize our marker for the inactive scan (SWAPC_WRITING)
191          */
192         bzero(&page_marker, sizeof(page_marker));
193         for (q = 0; q < PQ_L2_SIZE; ++q) {
194                 page_marker[q].flags = PG_FICTITIOUS | PG_MARKER;
195                 page_marker[q].busy_count = PBUSY_LOCKED;
196                 page_marker[q].queue = PQ_INACTIVE + q;
197                 page_marker[q].pc = q;
198                 page_marker[q].wire_count = 1;
199                 vm_page_queues_spin_lock(PQ_INACTIVE + q);
200                 TAILQ_INSERT_HEAD(
201                         &vm_page_queues[PQ_INACTIVE + q].pl,
202                         &page_marker[q], pageq);
203                 vm_page_queues_spin_unlock(PQ_INACTIVE + q);
204         }
205
206         vm_swapcache_min_hysteresis = 1024;
207         vm_swapcache_hysteresis = vm_swapcache_min_hysteresis;
208         vm_swapcache_inactive_heuristic = -vm_swapcache_hysteresis;
209
210         /*
211          * Initialize our marker for the vm_object scan (SWAPC_CLEANING)
212          */
213         bzero(&swmarker, sizeof(swmarker));
214         swmarker.type = OBJT_MARKER;
215         swindex = &vm_object_hash[0];
216         lwkt_gettoken(&swindex->token);
217         TAILQ_INSERT_HEAD(&swindex->list, &swmarker, object_list);
218         lwkt_reltoken(&swindex->token);
219
220         for (;;) {
221                 int reached_end;
222                 int scount;
223                 int count;
224
225                 /*
226                  * Handle shutdown
227                  */
228                 kproc_suspend_loop();
229
230                 /*
231                  * Check every 5 seconds when not enabled or if no swap
232                  * is present.
233                  */
234                 if ((vm_swapcache_data_enable == 0 &&
235                      vm_swapcache_meta_enable == 0 &&
236                      vm_swap_cache_use <= SWAPMAX(0)) ||
237                     vm_swap_max == 0) {
238                         tsleep(&vm_swapcache_sleep, 0, "csleep", hz * 5);
239                         continue;
240                 }
241
242                 /*
243                  * Polling rate when enabled is approximately 10 hz.
244                  */
245                 tsleep(&vm_swapcache_sleep, 0, "csleep", hz / 10);
246
247                 /*
248                  * State hysteresis.  Generate write activity up to 75% of
249                  * swap, then clean out swap assignments down to 70%, then
250                  * repeat.
251                  */
252                 if (state == SWAPC_WRITING) {
253                         if (vm_swap_cache_use > SWAPMAX(0))
254                                 state = SWAPC_CLEANING;
255                 } else {
256                         if (vm_swap_cache_use < SWAPMAX(-10))
257                                 state = SWAPC_WRITING;
258                 }
259
260                 /*
261                  * We are allowed to continue accumulating burst value
262                  * in either state.  Allow the user to set curburst > maxburst
263                  * for the initial load-in.
264                  */
265                 if (vm_swapcache_curburst < vm_swapcache_maxburst) {
266                         vm_swapcache_curburst += vm_swapcache_accrate / 10;
267                         if (vm_swapcache_curburst > vm_swapcache_maxburst)
268                                 vm_swapcache_curburst = vm_swapcache_maxburst;
269                 }
270
271                 /*
272                  * We don't want to nickle-and-dime the scan as that will
273                  * create unnecessary fragmentation.  The minimum burst
274                  * is one-seconds worth of accumulation.
275                  */
276                 if (state != SWAPC_WRITING) {
277                         vm_swapcache_cleaning(&swmarker, &swindex);
278                         continue;
279                 }
280                 if (vm_swapcache_curburst < vm_swapcache_accrate)
281                         continue;
282
283                 reached_end = 0;
284                 count = vm_swapcache_maxlaunder / PQ_L2_SIZE + 2;
285                 scount = vm_swapcache_maxscan / PQ_L2_SIZE + 2;
286
287                 if (burst == SWAPB_BURSTING) {
288                         if (vm_swapcache_writing_heuristic()) {
289                                 for (q = 0; q < PQ_L2_SIZE; ++q) {
290                                         reached_end +=
291                                                 vm_swapcache_writing(
292                                                         &page_marker[q],
293                                                         count,
294                                                         scount);
295                                 }
296                         }
297                         if (vm_swapcache_curburst <= 0)
298                                 burst = SWAPB_RECOVERING;
299                 } else if (vm_swapcache_curburst > vm_swapcache_minburst) {
300                         if (vm_swapcache_writing_heuristic()) {
301                                 for (q = 0; q < PQ_L2_SIZE; ++q) {
302                                         reached_end +=
303                                                 vm_swapcache_writing(
304                                                         &page_marker[q],
305                                                         count,
306                                                         scount);
307                                 }
308                         }
309                         burst = SWAPB_BURSTING;
310                 }
311                 if (reached_end == PQ_L2_SIZE) {
312                         vm_swapcache_inactive_heuristic =
313                                 -vm_swapcache_hysteresis;
314                 }
315         }
316
317         /*
318          * Cleanup (NOT REACHED)
319          */
320         for (q = 0; q < PQ_L2_SIZE; ++q) {
321                 vm_page_queues_spin_lock(PQ_INACTIVE + q);
322                 TAILQ_REMOVE(
323                         &vm_page_queues[PQ_INACTIVE + q].pl,
324                         &page_marker[q], pageq);
325                 vm_page_queues_spin_unlock(PQ_INACTIVE + q);
326         }
327
328         lwkt_gettoken(&swindex->token);
329         TAILQ_REMOVE(&swindex->list, &swmarker, object_list);
330         lwkt_reltoken(&swindex->token);
331 }
332
333 static struct kproc_desc swpc_kp = {
334         "swapcached",
335         vm_swapcached_thread,
336         &swapcached_thread
337 };
338 SYSINIT(swapcached, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, &swpc_kp);
339
340 /*
341  * Deal with an overflow of the heuristic counter or if the user
342  * manually changes the hysteresis.
343  *
344  * Try to avoid small incremental pageouts by waiting for enough
345  * pages to buildup in the inactive queue to hopefully get a good
346  * burst in.  This heuristic is bumped by the VM system and reset
347  * when our scan hits the end of the queue.
348  *
349  * Return TRUE if we need to take a writing pass.
350  */
351 static int
352 vm_swapcache_writing_heuristic(void)
353 {
354         int hyst;
355
356         hyst = vmstats.v_inactive_count / 4;
357         if (hyst < vm_swapcache_min_hysteresis)
358                 hyst = vm_swapcache_min_hysteresis;
359         cpu_ccfence();
360         vm_swapcache_hysteresis = hyst;
361
362         if (vm_swapcache_inactive_heuristic < -hyst)
363                 vm_swapcache_inactive_heuristic = -hyst;
364
365         return (vm_swapcache_inactive_heuristic >= 0);
366 }
367
368 /*
369  * Take a writing pass on one of the inactive queues, return non-zero if
370  * we hit the end of the queue.
371  */
372 static int
373 vm_swapcache_writing(vm_page_t marker, int count, int scount)
374 {
375         vm_object_t object;
376         struct vnode *vp;
377         vm_page_t m;
378         int isblkdev;
379
380         /*
381          * Scan the inactive queue from our marker to locate
382          * suitable pages to push to the swap cache.
383          *
384          * We are looking for clean vnode-backed pages.
385          */
386         vm_page_queues_spin_lock(marker->queue);
387         while ((m = TAILQ_NEXT(marker, pageq)) != NULL &&
388                count > 0 && scount-- > 0) {
389                 KKASSERT(m->queue == marker->queue);
390
391                 /*
392                  * Stop using swap if paniced, dumping, or dumped.
393                  * Don't try to write if our curburst has been exhausted.
394                  */
395                 if (panicstr || dumping)
396                         break;
397                 if (vm_swapcache_curburst < 0)
398                         break;
399
400                 /*
401                  * Move marker
402                  */
403                 TAILQ_REMOVE(
404                         &vm_page_queues[marker->queue].pl, marker, pageq);
405                 TAILQ_INSERT_AFTER(
406                         &vm_page_queues[marker->queue].pl, m, marker, pageq);
407
408                 /*
409                  * Ignore markers and ignore pages that already have a swap
410                  * assignment.
411                  */
412                 if (m->flags & (PG_MARKER | PG_SWAPPED))
413                         continue;
414                 if (vm_page_busy_try(m, TRUE))
415                         continue;
416                 vm_page_queues_spin_unlock(marker->queue);
417
418                 if ((object = m->object) == NULL) {
419                         vm_page_wakeup(m);
420                         vm_page_queues_spin_lock(marker->queue);
421                         continue;
422                 }
423                 vm_object_hold(object);
424                 if (m->object != object) {
425                         vm_object_drop(object);
426                         vm_page_wakeup(m);
427                         vm_page_queues_spin_lock(marker->queue);
428                         continue;
429                 }
430                 if (vm_swapcache_test(m)) {
431                         vm_object_drop(object);
432                         vm_page_wakeup(m);
433                         vm_page_queues_spin_lock(marker->queue);
434                         continue;
435                 }
436
437                 vp = object->handle;
438                 if (vp == NULL) {
439                         vm_object_drop(object);
440                         vm_page_wakeup(m);
441                         vm_page_queues_spin_lock(marker->queue);
442                         continue;
443                 }
444
445                 switch(vp->v_type) {
446                 case VREG:
447                         /*
448                          * PG_NOTMETA generically means 'don't swapcache this',
449                          * and HAMMER will set this for regular data buffers
450                          * (and leave it unset for meta-data buffers) as
451                          * appropriate when double buffering is enabled.
452                          */
453                         if (m->flags & PG_NOTMETA) {
454                                 vm_object_drop(object);
455                                 vm_page_wakeup(m);
456                                 vm_page_queues_spin_lock(marker->queue);
457                                 continue;
458                         }
459
460                         /*
461                          * If data_enable is 0 do not try to swapcache data.
462                          * If use_chflags is set then only swapcache data for
463                          * VSWAPCACHE marked vnodes, otherwise any vnode.
464                          */
465                         if (vm_swapcache_data_enable == 0 ||
466                             ((vp->v_flag & VSWAPCACHE) == 0 &&
467                              vm_swapcache_use_chflags)) {
468                                 vm_object_drop(object);
469                                 vm_page_wakeup(m);
470                                 vm_page_queues_spin_lock(marker->queue);
471                                 continue;
472                         }
473                         if (vm_swapcache_maxfilesize &&
474                             object->size >
475                             (vm_swapcache_maxfilesize >> PAGE_SHIFT)) {
476                                 vm_object_drop(object);
477                                 vm_page_wakeup(m);
478                                 vm_page_queues_spin_lock(marker->queue);
479                                 continue;
480                         }
481                         isblkdev = 0;
482                         break;
483                 case VCHR:
484                         /*
485                          * PG_NOTMETA generically means 'don't swapcache this',
486                          * and HAMMER will set this for regular data buffers
487                          * (and leave it unset for meta-data buffers) as
488                          * appropriate when double buffering is enabled.
489                          */
490                         if (m->flags & PG_NOTMETA) {
491                                 vm_object_drop(object);
492                                 vm_page_wakeup(m);
493                                 vm_page_queues_spin_lock(marker->queue);
494                                 continue;
495                         }
496                         if (vm_swapcache_meta_enable == 0) {
497                                 vm_object_drop(object);
498                                 vm_page_wakeup(m);
499                                 vm_page_queues_spin_lock(marker->queue);
500                                 continue;
501                         }
502                         isblkdev = 1;
503                         break;
504                 default:
505                         vm_object_drop(object);
506                         vm_page_wakeup(m);
507                         vm_page_queues_spin_lock(marker->queue);
508                         continue;
509                 }
510
511
512                 /*
513                  * Assign swap and initiate I/O.
514                  *
515                  * (adjust for the --count which also occurs in the loop)
516                  */
517                 count -= vm_swapcached_flush(m, isblkdev);
518
519                 /*
520                  * Setup for next loop using marker.
521                  */
522                 vm_object_drop(object);
523                 vm_page_queues_spin_lock(marker->queue);
524         }
525
526         /*
527          * The marker could wind up at the end, which is ok.  If we hit the
528          * end of the list adjust the heuristic.
529          *
530          * Earlier inactive pages that were dirty and become clean
531          * are typically moved to the end of PQ_INACTIVE by virtue
532          * of vfs_vmio_release() when they become unwired from the
533          * buffer cache.
534          */
535         vm_page_queues_spin_unlock(marker->queue);
536
537         /*
538          * m invalid but can be used to test for NULL
539          */
540         return (m == NULL);
541 }
542
543 /*
544  * Flush the specified page using the swap_pager.  The page
545  * must be busied by the caller and its disposition will become
546  * the responsibility of this function.
547  *
548  * Try to collect surrounding pages, including pages which may
549  * have already been assigned swap.  Try to cluster within a
550  * contiguous aligned SMAP_META_PAGES (typ 16 x PAGE_SIZE) block
551  * to match what swap_pager_putpages() can do.
552  *
553  * We also want to try to match against the buffer cache blocksize
554  * but we don't really know what it is here.  Since the buffer cache
555  * wires and unwires pages in groups the fact that we skip wired pages
556  * should be sufficient.
557  *
558  * Returns a count of pages we might have flushed (minimum 1)
559  */
560 static
561 int
562 vm_swapcached_flush(vm_page_t m, int isblkdev)
563 {
564         vm_object_t object;
565         vm_page_t marray[SWAP_META_PAGES];
566         vm_pindex_t basei;
567         int rtvals[SWAP_META_PAGES];
568         int x;
569         int i;
570         int j;
571         int count;
572         int error;
573
574         vm_page_io_start(m);
575         vm_page_protect(m, VM_PROT_READ);
576         object = m->object;
577         vm_object_hold(object);
578
579         /*
580          * Try to cluster around (m), keeping in mind that the swap pager
581          * can only do SMAP_META_PAGES worth of continguous write.
582          */
583         x = (int)m->pindex & SWAP_META_MASK;
584         marray[x] = m;
585         basei = m->pindex;
586         vm_page_wakeup(m);
587
588         for (i = x - 1; i >= 0; --i) {
589                 m = vm_page_lookup_busy_try(object, basei - x + i,
590                                             TRUE, &error);
591                 if (error || m == NULL)
592                         break;
593                 if (vm_swapcache_test(m)) {
594                         vm_page_wakeup(m);
595                         break;
596                 }
597                 if (isblkdev && (m->flags & PG_NOTMETA)) {
598                         vm_page_wakeup(m);
599                         break;
600                 }
601                 vm_page_io_start(m);
602                 vm_page_protect(m, VM_PROT_READ);
603                 if (m->queue - m->pc == PQ_CACHE) {
604                         vm_page_unqueue_nowakeup(m);
605                         vm_page_deactivate(m);
606                 }
607                 marray[i] = m;
608                 vm_page_wakeup(m);
609         }
610         ++i;
611
612         for (j = x + 1; j < SWAP_META_PAGES; ++j) {
613                 m = vm_page_lookup_busy_try(object, basei - x + j,
614                                             TRUE, &error);
615                 if (error || m == NULL)
616                         break;
617                 if (vm_swapcache_test(m)) {
618                         vm_page_wakeup(m);
619                         break;
620                 }
621                 if (isblkdev && (m->flags & PG_NOTMETA)) {
622                         vm_page_wakeup(m);
623                         break;
624                 }
625                 vm_page_io_start(m);
626                 vm_page_protect(m, VM_PROT_READ);
627                 if (m->queue - m->pc == PQ_CACHE) {
628                         vm_page_unqueue_nowakeup(m);
629                         vm_page_deactivate(m);
630                 }
631                 marray[j] = m;
632                 vm_page_wakeup(m);
633         }
634
635         count = j - i;
636         vm_object_pip_add(object, count);
637         swap_pager_putpages(object, marray + i, count, FALSE, rtvals + i);
638         vm_swapcache_write_count += count * PAGE_SIZE;
639         vm_swapcache_curburst -= count * PAGE_SIZE;
640
641         while (i < j) {
642                 if (rtvals[i] != VM_PAGER_PEND) {
643                         vm_page_busy_wait(marray[i], FALSE, "swppgfd");
644                         vm_page_io_finish(marray[i]);
645                         vm_page_wakeup(marray[i]);
646                         vm_object_pip_wakeup(object);
647                 }
648                 ++i;
649         }
650         vm_object_drop(object);
651         return(count);
652 }
653
654 /*
655  * Test whether a VM page is suitable for writing to the swapcache.
656  * Does not test m->queue, PG_MARKER, or PG_SWAPPED.
657  *
658  * Returns 0 on success, 1 on failure
659  */
660 static int
661 vm_swapcache_test(vm_page_t m)
662 {
663         vm_object_t object;
664
665         if (m->flags & PG_UNMANAGED)
666                 return(1);
667         if (m->hold_count || m->wire_count)
668                 return(1);
669         if (m->valid != VM_PAGE_BITS_ALL)
670                 return(1);
671         if (m->dirty & m->valid)
672                 return(1);
673         if ((object = m->object) == NULL)
674                 return(1);
675         if (object->type != OBJT_VNODE ||
676             (object->flags & OBJ_DEAD)) {
677                 return(1);
678         }
679         vm_page_test_dirty(m);
680         if (m->dirty & m->valid)
681                 return(1);
682         return(0);
683 }
684
685 /*
686  * Cleaning pass.
687  *
688  * We clean whole objects up to 16MB
689  */
690 static
691 void
692 vm_swapcache_cleaning(vm_object_t marker, struct vm_object_hash **swindexp)
693 {
694         vm_object_t object;
695         struct vnode *vp;
696         int count;
697         int scount;
698         int n;
699         int didmove;
700
701         count = vm_swapcache_maxlaunder;
702         scount = vm_swapcache_maxscan;
703
704         /*
705          * Look for vnode objects
706          */
707         lwkt_gettoken(&(*swindexp)->token);
708
709         didmove = 0;
710 outerloop:
711         while ((object = TAILQ_NEXT(marker, object_list)) != NULL) {
712                 /*
713                  * We have to skip markers.  We cannot hold/drop marker
714                  * objects!
715                  */
716                 if (object->type == OBJT_MARKER) {
717                         vm_swapcache_movemarker(marker, *swindexp, object);
718                         didmove = 1;
719                         continue;
720                 }
721
722                 /*
723                  * Safety, or in case there are millions of VM objects
724                  * without swapcache backing.
725                  */
726                 if (--scount <= 0)
727                         goto breakout;
728
729                 /*
730                  * We must hold the object before potentially yielding.
731                  */
732                 vm_object_hold(object);
733                 lwkt_yield();
734
735                 /* 
736                  * Only operate on live VNODE objects that are either
737                  * VREG or VCHR (VCHR for meta-data).
738                  */
739                 if ((object->type != OBJT_VNODE) ||
740                     ((object->flags & OBJ_DEAD) ||
741                      object->swblock_count == 0) ||
742                     ((vp = object->handle) == NULL) ||
743                     (vp->v_type != VREG && vp->v_type != VCHR)) {
744                         vm_object_drop(object);
745                         /* object may be invalid now */
746                         vm_swapcache_movemarker(marker, *swindexp, object);
747                         didmove = 1;
748                         continue;
749                 }
750
751                 /*
752                  * Reset the object pindex stored in the marker if the
753                  * working object has changed.
754                  */
755                 if (marker->backing_object != object || didmove) {
756                         marker->size = 0;
757                         marker->backing_object_offset = 0;
758                         marker->backing_object = object;
759                         didmove = 0;
760                 }
761
762                 /*
763                  * Look for swblocks starting at our iterator.
764                  *
765                  * The swap_pager_condfree() function attempts to free
766                  * swap space starting at the specified index.  The index
767                  * will be updated on return.  The function will return
768                  * a scan factor (NOT the number of blocks freed).
769                  *
770                  * If it must cut its scan of the object short due to an
771                  * excessive number of swblocks, or is able to free the
772                  * requested number of blocks, it will return n >= count
773                  * and we break and pick it back up on a future attempt.
774                  *
775                  * Scan the object linearly and try to batch large sets of
776                  * blocks that are likely to clean out entire swap radix
777                  * tree leafs.
778                  */
779                 lwkt_token_swap();
780                 lwkt_reltoken(&(*swindexp)->token);
781
782                 n = swap_pager_condfree(object, &marker->size,
783                                     (count + SWAP_META_MASK) & ~SWAP_META_MASK);
784
785                 vm_object_drop(object);         /* object may be invalid now */
786                 lwkt_gettoken(&(*swindexp)->token);
787
788                 /*
789                  * If we have exhausted the object or deleted our per-pass
790                  * page limit then move us to the next object.  Note that
791                  * the current object may no longer be on the vm_object_list.
792                  */
793                 if (n <= 0 ||
794                     marker->backing_object_offset > vm_swapcache_cleanperobj) {
795                         vm_swapcache_movemarker(marker, *swindexp, object);
796                         didmove = 1;
797                 }
798
799                 /*
800                  * If we have exhausted our max-launder stop for now.
801                  */
802                 count -= n;
803                 marker->backing_object_offset += n * PAGE_SIZE;
804                 if (count < 0)
805                         goto breakout;
806         }
807
808         /*
809          * Iterate vm_object_lists[] hash table
810          */
811         TAILQ_REMOVE(&(*swindexp)->list, marker, object_list);
812         lwkt_reltoken(&(*swindexp)->token);
813         if (++*swindexp >= &vm_object_hash[VMOBJ_HSIZE])
814                 *swindexp = &vm_object_hash[0];
815         lwkt_gettoken(&(*swindexp)->token);
816         TAILQ_INSERT_HEAD(&(*swindexp)->list, marker, object_list);
817
818         if (*swindexp != &vm_object_hash[0])
819                 goto outerloop;
820
821 breakout:
822         lwkt_reltoken(&(*swindexp)->token);
823 }
824
825 /*
826  * Move the marker past the current object.  Object can be stale, but we
827  * still need it to determine if the marker has to be moved.  If the object
828  * is still the 'current object' (object after the marker), we hop-scotch
829  * the marker past it.
830  */
831 static void
832 vm_swapcache_movemarker(vm_object_t marker, struct vm_object_hash *swindex,
833                         vm_object_t object)
834 {
835         if (TAILQ_NEXT(marker, object_list) == object) {
836                 TAILQ_REMOVE(&swindex->list, marker, object_list);
837                 TAILQ_INSERT_AFTER(&swindex->list, object, marker, object_list);
838         }
839 }