Merge branch 'vendor/LDNS'
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  */
35
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  * 
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  * 
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72
73 #include "opt_ifpoll.h"
74
75 #include <sys/param.h>
76 #include <sys/bus.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/ktr.h>
80 #include <sys/interrupt.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/queue.h>
84 #include <sys/rman.h>
85 #include <sys/serialize.h>
86 #include <sys/socket.h>
87 #include <sys/sockio.h>
88 #include <sys/sysctl.h>
89
90 #include <netinet/ip.h>
91 #include <netinet/tcp.h>
92
93 #include <net/bpf.h>
94 #include <net/ethernet.h>
95 #include <net/if.h>
96 #include <net/if_arp.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_poll.h>
100 #include <net/if_types.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104
105 #include <dev/netif/mii_layer/mii.h>
106 #include <dev/netif/mii_layer/miivar.h>
107 #include <dev/netif/mii_layer/brgphyreg.h>
108
109 #include <bus/pci/pcidevs.h>
110 #include <bus/pci/pcireg.h>
111 #include <bus/pci/pcivar.h>
112
113 #include <dev/netif/bge/if_bgereg.h>
114 #include <dev/netif/bge/if_bgevar.h>
115
116 /* "device miibus" required.  See GENERIC if you get errors here. */
117 #include "miibus_if.h"
118
119 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP)
120
121 static const struct bge_type {
122         uint16_t                bge_vid;
123         uint16_t                bge_did;
124         char                    *bge_name;
125 } bge_devs[] = {
126         { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
127                 "3COM 3C996 Gigabit Ethernet" },
128
129         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
130                 "Alteon BCM5700 Gigabit Ethernet" },
131         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
132                 "Alteon BCM5701 Gigabit Ethernet" },
133
134         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
135                 "Altima AC1000 Gigabit Ethernet" },
136         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
137                 "Altima AC1002 Gigabit Ethernet" },
138         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
139                 "Altima AC9100 Gigabit Ethernet" },
140
141         { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
142                 "Apple BCM5701 Gigabit Ethernet" },
143
144         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
145                 "Broadcom BCM5700 Gigabit Ethernet" },
146         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
147                 "Broadcom BCM5701 Gigabit Ethernet" },
148         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
149                 "Broadcom BCM5702 Gigabit Ethernet" },
150         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
151                 "Broadcom BCM5702X Gigabit Ethernet" },
152         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
153                 "Broadcom BCM5702 Gigabit Ethernet" },
154         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
155                 "Broadcom BCM5703 Gigabit Ethernet" },
156         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
157                 "Broadcom BCM5703X Gigabit Ethernet" },
158         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
159                 "Broadcom BCM5703 Gigabit Ethernet" },
160         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
161                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
162         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
163                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
164         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
165                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
166         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
167                 "Broadcom BCM5705 Gigabit Ethernet" },
168         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
169                 "Broadcom BCM5705F Gigabit Ethernet" },
170         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
171                 "Broadcom BCM5705K Gigabit Ethernet" },
172         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
173                 "Broadcom BCM5705M Gigabit Ethernet" },
174         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
175                 "Broadcom BCM5705M Gigabit Ethernet" },
176         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
177                 "Broadcom BCM5714C Gigabit Ethernet" },
178         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
179                 "Broadcom BCM5714S Gigabit Ethernet" },
180         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
181                 "Broadcom BCM5715 Gigabit Ethernet" },
182         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
183                 "Broadcom BCM5715S Gigabit Ethernet" },
184         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
185                 "Broadcom BCM5720 Gigabit Ethernet" },
186         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
187                 "Broadcom BCM5721 Gigabit Ethernet" },
188         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
189                 "Broadcom BCM5722 Gigabit Ethernet" },
190         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723,
191                 "Broadcom BCM5723 Gigabit Ethernet" },
192         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
193                 "Broadcom BCM5750 Gigabit Ethernet" },
194         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
195                 "Broadcom BCM5750M Gigabit Ethernet" },
196         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
197                 "Broadcom BCM5751 Gigabit Ethernet" },
198         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
199                 "Broadcom BCM5751F Gigabit Ethernet" },
200         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
201                 "Broadcom BCM5751M Gigabit Ethernet" },
202         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
203                 "Broadcom BCM5752 Gigabit Ethernet" },
204         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
205                 "Broadcom BCM5752M Gigabit Ethernet" },
206         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
207                 "Broadcom BCM5753 Gigabit Ethernet" },
208         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
209                 "Broadcom BCM5753F Gigabit Ethernet" },
210         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
211                 "Broadcom BCM5753M Gigabit Ethernet" },
212         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
213                 "Broadcom BCM5754 Gigabit Ethernet" },
214         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
215                 "Broadcom BCM5754M Gigabit Ethernet" },
216         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
217                 "Broadcom BCM5755 Gigabit Ethernet" },
218         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
219                 "Broadcom BCM5755M Gigabit Ethernet" },
220         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
221                 "Broadcom BCM5756 Gigabit Ethernet" },
222         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761,
223                 "Broadcom BCM5761 Gigabit Ethernet" },
224         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E,
225                 "Broadcom BCM5761E Gigabit Ethernet" },
226         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S,
227                 "Broadcom BCM5761S Gigabit Ethernet" },
228         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE,
229                 "Broadcom BCM5761SE Gigabit Ethernet" },
230         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764,
231                 "Broadcom BCM5764 Gigabit Ethernet" },
232         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
233                 "Broadcom BCM5780 Gigabit Ethernet" },
234         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
235                 "Broadcom BCM5780S Gigabit Ethernet" },
236         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
237                 "Broadcom BCM5781 Gigabit Ethernet" },
238         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
239                 "Broadcom BCM5782 Gigabit Ethernet" },
240         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784,
241                 "Broadcom BCM5784 Gigabit Ethernet" },
242         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F,
243                 "Broadcom BCM5785F Gigabit Ethernet" },
244         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G,
245                 "Broadcom BCM5785G Gigabit Ethernet" },
246         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
247                 "Broadcom BCM5786 Gigabit Ethernet" },
248         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
249                 "Broadcom BCM5787 Gigabit Ethernet" },
250         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
251                 "Broadcom BCM5787F Gigabit Ethernet" },
252         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
253                 "Broadcom BCM5787M Gigabit Ethernet" },
254         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
255                 "Broadcom BCM5788 Gigabit Ethernet" },
256         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
257                 "Broadcom BCM5789 Gigabit Ethernet" },
258         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
259                 "Broadcom BCM5901 Fast Ethernet" },
260         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
261                 "Broadcom BCM5901A2 Fast Ethernet" },
262         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
263                 "Broadcom BCM5903M Fast Ethernet" },
264         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906,
265                 "Broadcom BCM5906 Fast Ethernet"},
266         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M,
267                 "Broadcom BCM5906M Fast Ethernet"},
268         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760,
269                 "Broadcom BCM57760 Gigabit Ethernet"},
270         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780,
271                 "Broadcom BCM57780 Gigabit Ethernet"},
272         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788,
273                 "Broadcom BCM57788 Gigabit Ethernet"},
274         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790,
275                 "Broadcom BCM57790 Gigabit Ethernet"},
276         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
277                 "SysKonnect Gigabit Ethernet" },
278
279         { 0, 0, NULL }
280 };
281
282 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
283 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
284 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
285 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
286 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
287 #define BGE_IS_5755_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
288 #define BGE_IS_5788(sc)                 ((sc)->bge_flags & BGE_FLAG_5788)
289
290 #define BGE_IS_CRIPPLED(sc)             \
291         (BGE_IS_5788((sc)) || (sc)->bge_asicrev == BGE_ASICREV_BCM5700)
292
293 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
294
295 static int      bge_probe(device_t);
296 static int      bge_attach(device_t);
297 static int      bge_detach(device_t);
298 static void     bge_txeof(struct bge_softc *, uint16_t);
299 static void     bge_rxeof(struct bge_softc *, uint16_t, int);
300
301 static void     bge_tick(void *);
302 static void     bge_stats_update(struct bge_softc *);
303 static void     bge_stats_update_regs(struct bge_softc *);
304 static struct mbuf *
305                 bge_defrag_shortdma(struct mbuf *);
306 static int      bge_encap(struct bge_softc *, struct mbuf **,
307                     uint32_t *, int *);
308 static void     bge_xmit(struct bge_softc *, uint32_t);
309 static int      bge_setup_tso(struct bge_softc *, struct mbuf **,
310                     uint16_t *, uint16_t *);
311
312 #ifdef IFPOLL_ENABLE
313 static void     bge_npoll(struct ifnet *, struct ifpoll_info *);
314 static void     bge_npoll_compat(struct ifnet *, void *, int );
315 #endif
316 static void     bge_intr_crippled(void *);
317 static void     bge_intr_legacy(void *);
318 static void     bge_msi(void *);
319 static void     bge_msi_oneshot(void *);
320 static void     bge_intr(struct bge_softc *);
321 static void     bge_enable_intr(struct bge_softc *);
322 static void     bge_disable_intr(struct bge_softc *);
323 static void     bge_start(struct ifnet *, struct ifaltq_subque *);
324 static int      bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
325 static void     bge_init(void *);
326 static void     bge_stop(struct bge_softc *);
327 static void     bge_watchdog(struct ifnet *);
328 static void     bge_shutdown(device_t);
329 static int      bge_suspend(device_t);
330 static int      bge_resume(device_t);
331 static int      bge_ifmedia_upd(struct ifnet *);
332 static void     bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
333
334 static uint8_t  bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
335 static int      bge_read_nvram(struct bge_softc *, caddr_t, int, int);
336
337 static uint8_t  bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
338 static int      bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
339
340 static void     bge_setmulti(struct bge_softc *);
341 static void     bge_setpromisc(struct bge_softc *);
342 static void     bge_enable_msi(struct bge_softc *sc);
343
344 static int      bge_alloc_jumbo_mem(struct bge_softc *);
345 static void     bge_free_jumbo_mem(struct bge_softc *);
346 static struct bge_jslot
347                 *bge_jalloc(struct bge_softc *);
348 static void     bge_jfree(void *);
349 static void     bge_jref(void *);
350 static int      bge_newbuf_std(struct bge_softc *, int, int);
351 static int      bge_newbuf_jumbo(struct bge_softc *, int, int);
352 static void     bge_setup_rxdesc_std(struct bge_softc *, int);
353 static void     bge_setup_rxdesc_jumbo(struct bge_softc *, int);
354 static int      bge_init_rx_ring_std(struct bge_softc *);
355 static void     bge_free_rx_ring_std(struct bge_softc *);
356 static int      bge_init_rx_ring_jumbo(struct bge_softc *);
357 static void     bge_free_rx_ring_jumbo(struct bge_softc *);
358 static void     bge_free_tx_ring(struct bge_softc *);
359 static int      bge_init_tx_ring(struct bge_softc *);
360
361 static int      bge_chipinit(struct bge_softc *);
362 static int      bge_blockinit(struct bge_softc *);
363 static void     bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
364
365 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
366 static void     bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
367 #ifdef notdef
368 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
369 #endif
370 static void     bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
371 static void     bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
372 static void     bge_writembx(struct bge_softc *, int, int);
373
374 static int      bge_miibus_readreg(device_t, int, int);
375 static int      bge_miibus_writereg(device_t, int, int, int);
376 static void     bge_miibus_statchg(device_t);
377 static void     bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
378 static void     bge_tbi_link_upd(struct bge_softc *, uint32_t);
379 static void     bge_copper_link_upd(struct bge_softc *, uint32_t);
380 static void     bge_autopoll_link_upd(struct bge_softc *, uint32_t);
381 static void     bge_link_poll(struct bge_softc *);
382
383 static void     bge_reset(struct bge_softc *);
384
385 static int      bge_dma_alloc(struct bge_softc *);
386 static void     bge_dma_free(struct bge_softc *);
387 static int      bge_dma_block_alloc(struct bge_softc *, bus_size_t,
388                                     bus_dma_tag_t *, bus_dmamap_t *,
389                                     void **, bus_addr_t *);
390 static void     bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
391
392 static int      bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
393 static int      bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
394 static int      bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
395 static int      bge_get_eaddr(struct bge_softc *, uint8_t[]);
396
397 static void     bge_coal_change(struct bge_softc *);
398 static int      bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
399 static int      bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
400 static int      bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
401 static int      bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
402 static int      bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
403 static int      bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
404 static int      bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
405 static int      bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
406 static int      bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
407                     int, int, uint32_t);
408
409 /*
410  * Set following tunable to 1 for some IBM blade servers with the DNLK
411  * switch module. Auto negotiation is broken for those configurations.
412  */
413 static int      bge_fake_autoneg = 0;
414 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
415
416 static int      bge_msi_enable = 1;
417 TUNABLE_INT("hw.bge.msi.enable", &bge_msi_enable);
418
419 #if !defined(KTR_IF_BGE)
420 #define KTR_IF_BGE      KTR_ALL
421 #endif
422 KTR_INFO_MASTER(if_bge);
423 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr");
424 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt");
425 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt");
426 #define logif(name)     KTR_LOG(if_bge_ ## name)
427
428 static device_method_t bge_methods[] = {
429         /* Device interface */
430         DEVMETHOD(device_probe,         bge_probe),
431         DEVMETHOD(device_attach,        bge_attach),
432         DEVMETHOD(device_detach,        bge_detach),
433         DEVMETHOD(device_shutdown,      bge_shutdown),
434         DEVMETHOD(device_suspend,       bge_suspend),
435         DEVMETHOD(device_resume,        bge_resume),
436
437         /* bus interface */
438         DEVMETHOD(bus_print_child,      bus_generic_print_child),
439         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
440
441         /* MII interface */
442         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
443         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
444         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
445
446         DEVMETHOD_END
447 };
448
449 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
450 static devclass_t bge_devclass;
451
452 DECLARE_DUMMY_MODULE(if_bge);
453 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, NULL, NULL);
454 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, NULL, NULL);
455
456 static uint32_t
457 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
458 {
459         device_t dev = sc->bge_dev;
460         uint32_t val;
461
462         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
463             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
464                 return 0;
465
466         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
467         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
468         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
469         return (val);
470 }
471
472 static void
473 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
474 {
475         device_t dev = sc->bge_dev;
476
477         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
478             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
479                 return;
480
481         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
482         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
483         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
484 }
485
486 #ifdef notdef
487 static uint32_t
488 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
489 {
490         device_t dev = sc->bge_dev;
491
492         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
493         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
494 }
495 #endif
496
497 static void
498 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
499 {
500         device_t dev = sc->bge_dev;
501
502         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
503         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
504 }
505
506 static void
507 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
508 {
509         CSR_WRITE_4(sc, off, val);
510 }
511
512 static void
513 bge_writembx(struct bge_softc *sc, int off, int val)
514 {
515         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
516                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
517
518         CSR_WRITE_4(sc, off, val);
519         if (sc->bge_mbox_reorder)
520                 CSR_READ_4(sc, off);
521 }
522
523 static uint8_t
524 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
525 {
526         uint32_t access, byte = 0;
527         int i;
528
529         /* Lock. */
530         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
531         for (i = 0; i < 8000; i++) {
532                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
533                         break;
534                 DELAY(20);
535         }
536         if (i == 8000)
537                 return (1);
538
539         /* Enable access. */
540         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
541         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
542
543         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
544         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
545         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
546                 DELAY(10);
547                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
548                         DELAY(10);
549                         break;
550                 }
551         }
552
553         if (i == BGE_TIMEOUT * 10) {
554                 if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
555                 return (1);
556         }
557
558         /* Get result. */
559         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
560
561         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
562
563         /* Disable access. */
564         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
565
566         /* Unlock. */
567         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
568         CSR_READ_4(sc, BGE_NVRAM_SWARB);
569
570         return (0);
571 }
572
573 /*
574  * Read a sequence of bytes from NVRAM.
575  */
576 static int
577 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
578 {
579         int err = 0, i;
580         uint8_t byte = 0;
581
582         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
583                 return (1);
584
585         for (i = 0; i < cnt; i++) {
586                 err = bge_nvram_getbyte(sc, off + i, &byte);
587                 if (err)
588                         break;
589                 *(dest + i) = byte;
590         }
591
592         return (err ? 1 : 0);
593 }
594
595 /*
596  * Read a byte of data stored in the EEPROM at address 'addr.' The
597  * BCM570x supports both the traditional bitbang interface and an
598  * auto access interface for reading the EEPROM. We use the auto
599  * access method.
600  */
601 static uint8_t
602 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
603 {
604         int i;
605         uint32_t byte = 0;
606
607         /*
608          * Enable use of auto EEPROM access so we can avoid
609          * having to use the bitbang method.
610          */
611         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
612
613         /* Reset the EEPROM, load the clock period. */
614         CSR_WRITE_4(sc, BGE_EE_ADDR,
615             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
616         DELAY(20);
617
618         /* Issue the read EEPROM command. */
619         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
620
621         /* Wait for completion */
622         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
623                 DELAY(10);
624                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
625                         break;
626         }
627
628         if (i == BGE_TIMEOUT) {
629                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
630                 return(1);
631         }
632
633         /* Get result. */
634         byte = CSR_READ_4(sc, BGE_EE_DATA);
635
636         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
637
638         return(0);
639 }
640
641 /*
642  * Read a sequence of bytes from the EEPROM.
643  */
644 static int
645 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
646 {
647         size_t i;
648         int err;
649         uint8_t byte;
650
651         for (byte = 0, err = 0, i = 0; i < len; i++) {
652                 err = bge_eeprom_getbyte(sc, off + i, &byte);
653                 if (err)
654                         break;
655                 *(dest + i) = byte;
656         }
657
658         return(err ? 1 : 0);
659 }
660
661 static int
662 bge_miibus_readreg(device_t dev, int phy, int reg)
663 {
664         struct bge_softc *sc = device_get_softc(dev);
665         uint32_t val;
666         int i;
667
668         KASSERT(phy == sc->bge_phyno,
669             ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
670
671         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
672         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
673                 CSR_WRITE_4(sc, BGE_MI_MODE,
674                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
675                 DELAY(80);
676         }
677
678         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
679             BGE_MIPHY(phy) | BGE_MIREG(reg));
680
681         /* Poll for the PHY register access to complete. */
682         for (i = 0; i < BGE_TIMEOUT; i++) {
683                 DELAY(10);
684                 val = CSR_READ_4(sc, BGE_MI_COMM);
685                 if ((val & BGE_MICOMM_BUSY) == 0) {
686                         DELAY(5);
687                         val = CSR_READ_4(sc, BGE_MI_COMM);
688                         break;
689                 }
690         }
691         if (i == BGE_TIMEOUT) {
692                 if_printf(&sc->arpcom.ac_if, "PHY read timed out "
693                     "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
694                 val = 0;
695         }
696
697         /* Restore the autopoll bit if necessary. */
698         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
699                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
700                 DELAY(80);
701         }
702
703         if (val & BGE_MICOMM_READFAIL)
704                 return 0;
705
706         return (val & 0xFFFF);
707 }
708
709 static int
710 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
711 {
712         struct bge_softc *sc = device_get_softc(dev);
713         int i;
714
715         KASSERT(phy == sc->bge_phyno,
716             ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
717
718         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
719             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
720                return 0;
721
722         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
723         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
724                 CSR_WRITE_4(sc, BGE_MI_MODE,
725                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
726                 DELAY(80);
727         }
728
729         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
730             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
731
732         for (i = 0; i < BGE_TIMEOUT; i++) {
733                 DELAY(10);
734                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
735                         DELAY(5);
736                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
737                         break;
738                 }
739         }
740         if (i == BGE_TIMEOUT) {
741                 if_printf(&sc->arpcom.ac_if, "PHY write timed out "
742                     "(phy %d, reg %d, val %d)\n", phy, reg, val);
743         }
744
745         /* Restore the autopoll bit if necessary. */
746         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
747                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
748                 DELAY(80);
749         }
750
751         return 0;
752 }
753
754 static void
755 bge_miibus_statchg(device_t dev)
756 {
757         struct bge_softc *sc;
758         struct mii_data *mii;
759
760         sc = device_get_softc(dev);
761         mii = device_get_softc(sc->bge_miibus);
762
763         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
764             (IFM_ACTIVE | IFM_AVALID)) {
765                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
766                 case IFM_10_T:
767                 case IFM_100_TX:
768                         sc->bge_link = 1;
769                         break;
770                 case IFM_1000_T:
771                 case IFM_1000_SX:
772                 case IFM_2500_SX:
773                         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
774                                 sc->bge_link = 1;
775                         else
776                                 sc->bge_link = 0;
777                         break;
778                 default:
779                         sc->bge_link = 0;
780                         break;
781                 }
782         } else {
783                 sc->bge_link = 0;
784         }
785         if (sc->bge_link == 0)
786                 return;
787
788         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
789         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
790             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
791                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
792         } else {
793                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
794         }
795
796         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
797                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
798         } else {
799                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
800         }
801 }
802
803 /*
804  * Memory management for jumbo frames.
805  */
806 static int
807 bge_alloc_jumbo_mem(struct bge_softc *sc)
808 {
809         struct ifnet *ifp = &sc->arpcom.ac_if;
810         struct bge_jslot *entry;
811         uint8_t *ptr;
812         bus_addr_t paddr;
813         int i, error;
814
815         /*
816          * Create tag for jumbo mbufs.
817          * This is really a bit of a kludge. We allocate a special
818          * jumbo buffer pool which (thanks to the way our DMA
819          * memory allocation works) will consist of contiguous
820          * pages. This means that even though a jumbo buffer might
821          * be larger than a page size, we don't really need to
822          * map it into more than one DMA segment. However, the
823          * default mbuf tag will result in multi-segment mappings,
824          * so we have to create a special jumbo mbuf tag that
825          * lets us get away with mapping the jumbo buffers as
826          * a single segment. I think eventually the driver should
827          * be changed so that it uses ordinary mbufs and cluster
828          * buffers, i.e. jumbo frames can span multiple DMA
829          * descriptors. But that's a project for another day.
830          */
831
832         /*
833          * Create DMA stuffs for jumbo RX ring.
834          */
835         error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
836                                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
837                                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
838                                     (void *)&sc->bge_ldata.bge_rx_jumbo_ring,
839                                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
840         if (error) {
841                 if_printf(ifp, "could not create jumbo RX ring\n");
842                 return error;
843         }
844
845         /*
846          * Create DMA stuffs for jumbo buffer block.
847          */
848         error = bge_dma_block_alloc(sc, BGE_JMEM,
849                                     &sc->bge_cdata.bge_jumbo_tag,
850                                     &sc->bge_cdata.bge_jumbo_map,
851                                     (void **)&sc->bge_ldata.bge_jumbo_buf,
852                                     &paddr);
853         if (error) {
854                 if_printf(ifp, "could not create jumbo buffer\n");
855                 return error;
856         }
857
858         SLIST_INIT(&sc->bge_jfree_listhead);
859
860         /*
861          * Now divide it up into 9K pieces and save the addresses
862          * in an array. Note that we play an evil trick here by using
863          * the first few bytes in the buffer to hold the the address
864          * of the softc structure for this interface. This is because
865          * bge_jfree() needs it, but it is called by the mbuf management
866          * code which will not pass it to us explicitly.
867          */
868         for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
869                 entry = &sc->bge_cdata.bge_jslots[i];
870                 entry->bge_sc = sc;
871                 entry->bge_buf = ptr;
872                 entry->bge_paddr = paddr;
873                 entry->bge_inuse = 0;
874                 entry->bge_slot = i;
875                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
876
877                 ptr += BGE_JLEN;
878                 paddr += BGE_JLEN;
879         }
880         return 0;
881 }
882
883 static void
884 bge_free_jumbo_mem(struct bge_softc *sc)
885 {
886         /* Destroy jumbo RX ring. */
887         bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
888                            sc->bge_cdata.bge_rx_jumbo_ring_map,
889                            sc->bge_ldata.bge_rx_jumbo_ring);
890
891         /* Destroy jumbo buffer block. */
892         bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
893                            sc->bge_cdata.bge_jumbo_map,
894                            sc->bge_ldata.bge_jumbo_buf);
895 }
896
897 /*
898  * Allocate a jumbo buffer.
899  */
900 static struct bge_jslot *
901 bge_jalloc(struct bge_softc *sc)
902 {
903         struct bge_jslot *entry;
904
905         lwkt_serialize_enter(&sc->bge_jslot_serializer);
906         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
907         if (entry) {
908                 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
909                 entry->bge_inuse = 1;
910         } else {
911                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
912         }
913         lwkt_serialize_exit(&sc->bge_jslot_serializer);
914         return(entry);
915 }
916
917 /*
918  * Adjust usage count on a jumbo buffer.
919  */
920 static void
921 bge_jref(void *arg)
922 {
923         struct bge_jslot *entry = (struct bge_jslot *)arg;
924         struct bge_softc *sc = entry->bge_sc;
925
926         if (sc == NULL)
927                 panic("bge_jref: can't find softc pointer!");
928
929         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
930                 panic("bge_jref: asked to reference buffer "
931                     "that we don't manage!");
932         } else if (entry->bge_inuse == 0) {
933                 panic("bge_jref: buffer already free!");
934         } else {
935                 atomic_add_int(&entry->bge_inuse, 1);
936         }
937 }
938
939 /*
940  * Release a jumbo buffer.
941  */
942 static void
943 bge_jfree(void *arg)
944 {
945         struct bge_jslot *entry = (struct bge_jslot *)arg;
946         struct bge_softc *sc = entry->bge_sc;
947
948         if (sc == NULL)
949                 panic("bge_jfree: can't find softc pointer!");
950
951         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
952                 panic("bge_jfree: asked to free buffer that we don't manage!");
953         } else if (entry->bge_inuse == 0) {
954                 panic("bge_jfree: buffer already free!");
955         } else {
956                 /*
957                  * Possible MP race to 0, use the serializer.  The atomic insn
958                  * is still needed for races against bge_jref().
959                  */
960                 lwkt_serialize_enter(&sc->bge_jslot_serializer);
961                 atomic_subtract_int(&entry->bge_inuse, 1);
962                 if (entry->bge_inuse == 0) {
963                         SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 
964                                           entry, jslot_link);
965                 }
966                 lwkt_serialize_exit(&sc->bge_jslot_serializer);
967         }
968 }
969
970
971 /*
972  * Intialize a standard receive ring descriptor.
973  */
974 static int
975 bge_newbuf_std(struct bge_softc *sc, int i, int init)
976 {
977         struct mbuf *m_new = NULL;
978         bus_dma_segment_t seg;
979         bus_dmamap_t map;
980         int error, nsegs;
981
982         m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
983         if (m_new == NULL)
984                 return ENOBUFS;
985         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
986
987         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
988                 m_adj(m_new, ETHER_ALIGN);
989
990         error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag,
991                         sc->bge_cdata.bge_rx_tmpmap, m_new,
992                         &seg, 1, &nsegs, BUS_DMA_NOWAIT);
993         if (error) {
994                 m_freem(m_new);
995                 return error;
996         }
997
998         if (!init) {
999                 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1000                                 sc->bge_cdata.bge_rx_std_dmamap[i],
1001                                 BUS_DMASYNC_POSTREAD);
1002                 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1003                         sc->bge_cdata.bge_rx_std_dmamap[i]);
1004         }
1005
1006         map = sc->bge_cdata.bge_rx_tmpmap;
1007         sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i];
1008         sc->bge_cdata.bge_rx_std_dmamap[i] = map;
1009
1010         sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new;
1011         sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr;
1012
1013         bge_setup_rxdesc_std(sc, i);
1014         return 0;
1015 }
1016
1017 static void
1018 bge_setup_rxdesc_std(struct bge_softc *sc, int i)
1019 {
1020         struct bge_rxchain *rc;
1021         struct bge_rx_bd *r;
1022
1023         rc = &sc->bge_cdata.bge_rx_std_chain[i];
1024         r = &sc->bge_ldata.bge_rx_std_ring[i];
1025
1026         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1027         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1028         r->bge_len = rc->bge_mbuf->m_len;
1029         r->bge_idx = i;
1030         r->bge_flags = BGE_RXBDFLAG_END;
1031 }
1032
1033 /*
1034  * Initialize a jumbo receive ring descriptor. This allocates
1035  * a jumbo buffer from the pool managed internally by the driver.
1036  */
1037 static int
1038 bge_newbuf_jumbo(struct bge_softc *sc, int i, int init)
1039 {
1040         struct mbuf *m_new = NULL;
1041         struct bge_jslot *buf;
1042         bus_addr_t paddr;
1043
1044         /* Allocate the mbuf. */
1045         MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1046         if (m_new == NULL)
1047                 return ENOBUFS;
1048
1049         /* Allocate the jumbo buffer */
1050         buf = bge_jalloc(sc);
1051         if (buf == NULL) {
1052                 m_freem(m_new);
1053                 return ENOBUFS;
1054         }
1055
1056         /* Attach the buffer to the mbuf. */
1057         m_new->m_ext.ext_arg = buf;
1058         m_new->m_ext.ext_buf = buf->bge_buf;
1059         m_new->m_ext.ext_free = bge_jfree;
1060         m_new->m_ext.ext_ref = bge_jref;
1061         m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1062
1063         m_new->m_flags |= M_EXT;
1064
1065         m_new->m_data = m_new->m_ext.ext_buf;
1066         m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1067
1068         paddr = buf->bge_paddr;
1069         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
1070                 m_adj(m_new, ETHER_ALIGN);
1071                 paddr += ETHER_ALIGN;
1072         }
1073
1074         /* Save necessary information */
1075         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new;
1076         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr;
1077
1078         /* Set up the descriptor. */
1079         bge_setup_rxdesc_jumbo(sc, i);
1080         return 0;
1081 }
1082
1083 static void
1084 bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i)
1085 {
1086         struct bge_rx_bd *r;
1087         struct bge_rxchain *rc;
1088
1089         r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
1090         rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1091
1092         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1093         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1094         r->bge_len = rc->bge_mbuf->m_len;
1095         r->bge_idx = i;
1096         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1097 }
1098
1099 static int
1100 bge_init_rx_ring_std(struct bge_softc *sc)
1101 {
1102         int i, error;
1103
1104         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1105                 error = bge_newbuf_std(sc, i, 1);
1106                 if (error)
1107                         return error;
1108         }
1109
1110         sc->bge_std = BGE_STD_RX_RING_CNT - 1;
1111         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1112
1113         return(0);
1114 }
1115
1116 static void
1117 bge_free_rx_ring_std(struct bge_softc *sc)
1118 {
1119         int i;
1120
1121         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1122                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i];
1123
1124                 if (rc->bge_mbuf != NULL) {
1125                         bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1126                                           sc->bge_cdata.bge_rx_std_dmamap[i]);
1127                         m_freem(rc->bge_mbuf);
1128                         rc->bge_mbuf = NULL;
1129                 }
1130                 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
1131                     sizeof(struct bge_rx_bd));
1132         }
1133 }
1134
1135 static int
1136 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1137 {
1138         struct bge_rcb *rcb;
1139         int i, error;
1140
1141         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1142                 error = bge_newbuf_jumbo(sc, i, 1);
1143                 if (error)
1144                         return error;
1145         }
1146
1147         sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
1148
1149         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1150         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1151         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1152
1153         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1154
1155         return(0);
1156 }
1157
1158 static void
1159 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1160 {
1161         int i;
1162
1163         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1164                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1165
1166                 if (rc->bge_mbuf != NULL) {
1167                         m_freem(rc->bge_mbuf);
1168                         rc->bge_mbuf = NULL;
1169                 }
1170                 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1171                     sizeof(struct bge_rx_bd));
1172         }
1173 }
1174
1175 static void
1176 bge_free_tx_ring(struct bge_softc *sc)
1177 {
1178         int i;
1179
1180         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1181                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1182                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1183                                           sc->bge_cdata.bge_tx_dmamap[i]);
1184                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1185                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1186                 }
1187                 bzero(&sc->bge_ldata.bge_tx_ring[i],
1188                     sizeof(struct bge_tx_bd));
1189         }
1190 }
1191
1192 static int
1193 bge_init_tx_ring(struct bge_softc *sc)
1194 {
1195         sc->bge_txcnt = 0;
1196         sc->bge_tx_saved_considx = 0;
1197         sc->bge_tx_prodidx = 0;
1198
1199         /* Initialize transmit producer index for host-memory send ring. */
1200         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1201
1202         /* 5700 b2 errata */
1203         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1204                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1205
1206         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1207         /* 5700 b2 errata */
1208         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1209                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1210
1211         return(0);
1212 }
1213
1214 static void
1215 bge_setmulti(struct bge_softc *sc)
1216 {
1217         struct ifnet *ifp;
1218         struct ifmultiaddr *ifma;
1219         uint32_t hashes[4] = { 0, 0, 0, 0 };
1220         int h, i;
1221
1222         ifp = &sc->arpcom.ac_if;
1223
1224         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1225                 for (i = 0; i < 4; i++)
1226                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1227                 return;
1228         }
1229
1230         /* First, zot all the existing filters. */
1231         for (i = 0; i < 4; i++)
1232                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1233
1234         /* Now program new ones. */
1235         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1236                 if (ifma->ifma_addr->sa_family != AF_LINK)
1237                         continue;
1238                 h = ether_crc32_le(
1239                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1240                     ETHER_ADDR_LEN) & 0x7f;
1241                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1242         }
1243
1244         for (i = 0; i < 4; i++)
1245                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1246 }
1247
1248 /*
1249  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1250  * self-test results.
1251  */
1252 static int
1253 bge_chipinit(struct bge_softc *sc)
1254 {
1255         int i;
1256         uint32_t dma_rw_ctl;
1257         uint16_t val;
1258
1259         /* Set endian type before we access any non-PCI registers. */
1260         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1261             BGE_INIT | sc->bge_pci_miscctl, 4);
1262
1263         /* Clear the MAC control register */
1264         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1265
1266         /*
1267          * Clear the MAC statistics block in the NIC's
1268          * internal memory.
1269          */
1270         for (i = BGE_STATS_BLOCK;
1271             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1272                 BGE_MEMWIN_WRITE(sc, i, 0);
1273
1274         for (i = BGE_STATUS_BLOCK;
1275             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1276                 BGE_MEMWIN_WRITE(sc, i, 0);
1277
1278         if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1279                 /*
1280                  * Fix data corruption caused by non-qword write with WB.
1281                  * Fix master abort in PCI mode.
1282                  * Fix PCI latency timer.
1283                  */
1284                 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1285                 val |= (1 << 10) | (1 << 12) | (1 << 13);
1286                 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1287         }
1288
1289         /* Set up the PCI DMA control register. */
1290         dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1291         if (sc->bge_flags & BGE_FLAG_PCIE) {
1292                 /* PCI-E bus */
1293                 /* DMA read watermark not used on PCI-E */
1294                 dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1295         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1296                 /* PCI-X bus */
1297                 if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1298                         dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1299                             (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1300                         dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1301                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5714) {
1302                         dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1303                             (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1304                         dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1305                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1306                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1307                         uint32_t rd_wat = 0x7;
1308                         uint32_t clkctl;
1309
1310                         clkctl = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1311                         if ((sc->bge_flags & BGE_FLAG_MAXADDR_40BIT) &&
1312                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1313                                 dma_rw_ctl |=
1314                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1315                         } else if (clkctl == 0x6 || clkctl == 0x7) {
1316                                 dma_rw_ctl |=
1317                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1318                         }
1319                         if (sc->bge_asicrev == BGE_ASICREV_BCM5703)
1320                                 rd_wat = 0x4;
1321
1322                         dma_rw_ctl |= (rd_wat << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1323                             (3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1324                         dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1325                 } else {
1326                         dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1327                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1328                         dma_rw_ctl |= 0xf;
1329                 }
1330         } else {
1331                 /* Conventional PCI bus */
1332                 dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1333                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1334                 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1335                     sc->bge_asicrev != BGE_ASICREV_BCM5750)
1336                         dma_rw_ctl |= 0xf;
1337         }
1338
1339         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1340             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1341                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1342         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1343             sc->bge_asicrev == BGE_ASICREV_BCM5701) {
1344                 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1345                     BGE_PCIDMARWCTL_ASRT_ALL_BE;
1346         }
1347         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1348
1349         /*
1350          * Set up general mode register.
1351          */
1352         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1353             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1354             BGE_MODECTL_TX_NO_PHDR_CSUM);
1355
1356         /*
1357          * BCM5701 B5 have a bug causing data corruption when using
1358          * 64-bit DMA reads, which can be terminated early and then
1359          * completed later as 32-bit accesses, in combination with
1360          * certain bridges.
1361          */
1362         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1363             sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1364                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1365
1366         /*
1367          * Disable memory write invalidate.  Apparently it is not supported
1368          * properly by these devices.  Also ensure that INTx isn't disabled,
1369          * as these chips need it even when using MSI.
1370          */
1371         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1372             (PCIM_CMD_MWRICEN | PCIM_CMD_INTxDIS), 4);
1373
1374         /* Set the timer prescaler (always 66Mhz) */
1375         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1376
1377         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1378                 DELAY(40);      /* XXX */
1379
1380                 /* Put PHY into ready state */
1381                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1382                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1383                 DELAY(40);
1384         }
1385
1386         return(0);
1387 }
1388
1389 static int
1390 bge_blockinit(struct bge_softc *sc)
1391 {
1392         struct bge_rcb *rcb;
1393         bus_size_t vrcb;
1394         bge_hostaddr taddr;
1395         uint32_t val;
1396         int i, limit;
1397
1398         /*
1399          * Initialize the memory window pointer register so that
1400          * we can access the first 32K of internal NIC RAM. This will
1401          * allow us to set up the TX send ring RCBs and the RX return
1402          * ring RCBs, plus other things which live in NIC memory.
1403          */
1404         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1405
1406         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1407
1408         if (!BGE_IS_5705_PLUS(sc)) {
1409                 /* Configure mbuf memory pool */
1410                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1411                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1412                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1413                 else
1414                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1415
1416                 /* Configure DMA resource pool */
1417                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1418                     BGE_DMA_DESCRIPTORS);
1419                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1420         }
1421
1422         /* Configure mbuf pool watermarks */
1423         if (!BGE_IS_5705_PLUS(sc)) {
1424                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1425                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1426                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1427         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1428                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1429                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1430                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1431         } else {
1432                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1433                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1434                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1435         }
1436
1437         /* Configure DMA resource watermarks */
1438         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1439         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1440
1441         /* Enable buffer manager */
1442         CSR_WRITE_4(sc, BGE_BMAN_MODE,
1443             BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1444
1445         /* Poll for buffer manager start indication */
1446         for (i = 0; i < BGE_TIMEOUT; i++) {
1447                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1448                         break;
1449                 DELAY(10);
1450         }
1451
1452         if (i == BGE_TIMEOUT) {
1453                 if_printf(&sc->arpcom.ac_if,
1454                           "buffer manager failed to start\n");
1455                 return(ENXIO);
1456         }
1457
1458         /* Enable flow-through queues */
1459         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1460         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1461
1462         /* Wait until queue initialization is complete */
1463         for (i = 0; i < BGE_TIMEOUT; i++) {
1464                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1465                         break;
1466                 DELAY(10);
1467         }
1468
1469         if (i == BGE_TIMEOUT) {
1470                 if_printf(&sc->arpcom.ac_if,
1471                           "flow-through queue init failed\n");
1472                 return(ENXIO);
1473         }
1474
1475         /*
1476          * Summary of rings supported by the controller:
1477          *
1478          * Standard Receive Producer Ring
1479          * - This ring is used to feed receive buffers for "standard"
1480          *   sized frames (typically 1536 bytes) to the controller.
1481          *
1482          * Jumbo Receive Producer Ring
1483          * - This ring is used to feed receive buffers for jumbo sized
1484          *   frames (i.e. anything bigger than the "standard" frames)
1485          *   to the controller.
1486          *
1487          * Mini Receive Producer Ring
1488          * - This ring is used to feed receive buffers for "mini"
1489          *   sized frames to the controller.
1490          * - This feature required external memory for the controller
1491          *   but was never used in a production system.  Should always
1492          *   be disabled.
1493          *
1494          * Receive Return Ring
1495          * - After the controller has placed an incoming frame into a
1496          *   receive buffer that buffer is moved into a receive return
1497          *   ring.  The driver is then responsible to passing the
1498          *   buffer up to the stack.  Many versions of the controller
1499          *   support multiple RR rings.
1500          *
1501          * Send Ring
1502          * - This ring is used for outgoing frames.  Many versions of
1503          *   the controller support multiple send rings.
1504          */
1505
1506         /* Initialize the standard receive producer ring control block. */
1507         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1508         rcb->bge_hostaddr.bge_addr_lo =
1509             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1510         rcb->bge_hostaddr.bge_addr_hi =
1511             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1512         if (BGE_IS_5705_PLUS(sc)) {
1513                 /*
1514                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1515                  * Bits 15-2 : Reserved (should be 0)
1516                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1517                  * Bit 0     : Reserved
1518                  */
1519                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1520         } else {
1521                 /*
1522                  * Ring size is always XXX entries
1523                  * Bits 31-16: Maximum RX frame size
1524                  * Bits 15-2 : Reserved (should be 0)
1525                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1526                  * Bit 0     : Reserved
1527                  */
1528                 rcb->bge_maxlen_flags =
1529                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1530         }
1531         rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1532         /* Write the standard receive producer ring control block. */
1533         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1534         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1535         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1536         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1537         /* Reset the standard receive producer ring producer index. */
1538         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1539
1540         /*
1541          * Initialize the jumbo RX producer ring control
1542          * block.  We set the 'ring disabled' bit in the
1543          * flags field until we're actually ready to start
1544          * using this ring (i.e. once we set the MTU
1545          * high enough to require it).
1546          */
1547         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1548                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1549                 /* Get the jumbo receive producer ring RCB parameters. */
1550                 rcb->bge_hostaddr.bge_addr_lo =
1551                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1552                 rcb->bge_hostaddr.bge_addr_hi =
1553                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1554                 rcb->bge_maxlen_flags =
1555                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1556                     BGE_RCB_FLAG_RING_DISABLED);
1557                 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1558                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1559                     rcb->bge_hostaddr.bge_addr_hi);
1560                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1561                     rcb->bge_hostaddr.bge_addr_lo);
1562                 /* Program the jumbo receive producer ring RCB parameters. */
1563                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1564                     rcb->bge_maxlen_flags);
1565                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1566                 /* Reset the jumbo receive producer ring producer index. */
1567                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1568         }
1569
1570         /* Disable the mini receive producer ring RCB. */
1571         if (BGE_IS_5700_FAMILY(sc)) {
1572                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1573                 rcb->bge_maxlen_flags =
1574                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1575                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1576                     rcb->bge_maxlen_flags);
1577                 /* Reset the mini receive producer ring producer index. */
1578                 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1579         }
1580
1581         /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1582         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1583             (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1584              sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1585              sc->bge_chipid == BGE_CHIPID_BCM5906_A2)) {
1586                 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1587                     (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1588         }
1589
1590         /*
1591          * The BD ring replenish thresholds control how often the
1592          * hardware fetches new BD's from the producer rings in host
1593          * memory.  Setting the value too low on a busy system can
1594          * starve the hardware and recue the throughpout.
1595          *
1596          * Set the BD ring replentish thresholds. The recommended
1597          * values are 1/8th the number of descriptors allocated to
1598          * each ring.
1599          */
1600         if (BGE_IS_5705_PLUS(sc))
1601                 val = 8;
1602         else
1603                 val = BGE_STD_RX_RING_CNT / 8;
1604         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1605         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1606                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1607                     BGE_JUMBO_RX_RING_CNT/8);
1608         }
1609
1610         /*
1611          * Disable all send rings by setting the 'ring disabled' bit
1612          * in the flags field of all the TX send ring control blocks,
1613          * located in NIC memory.
1614          */
1615         if (!BGE_IS_5705_PLUS(sc)) {
1616                 /* 5700 to 5704 had 16 send rings. */
1617                 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1618         } else {
1619                 limit = 1;
1620         }
1621         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1622         for (i = 0; i < limit; i++) {
1623                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1624                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1625                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1626                 vrcb += sizeof(struct bge_rcb);
1627         }
1628
1629         /* Configure send ring RCB 0 (we use only the first ring) */
1630         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1631         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1632         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1633         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1634         RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1635             BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1636         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1637             BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1638
1639         /*
1640          * Disable all receive return rings by setting the
1641          * 'ring diabled' bit in the flags field of all the receive
1642          * return ring control blocks, located in NIC memory.
1643          */
1644         if (!BGE_IS_5705_PLUS(sc))
1645                 limit = BGE_RX_RINGS_MAX;
1646         else if (sc->bge_asicrev == BGE_ASICREV_BCM5755)
1647                 limit = 4;
1648         else
1649                 limit = 1;
1650         /* Disable all receive return rings. */
1651         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1652         for (i = 0; i < limit; i++) {
1653                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1654                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1655                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1656                     BGE_RCB_FLAG_RING_DISABLED);
1657                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1658                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1659                     (i * (sizeof(uint64_t))), 0);
1660                 vrcb += sizeof(struct bge_rcb);
1661         }
1662
1663         /*
1664          * Set up receive return ring 0.  Note that the NIC address
1665          * for RX return rings is 0x0.  The return rings live entirely
1666          * within the host, so the nicaddr field in the RCB isn't used.
1667          */
1668         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1669         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1670         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1671         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1672         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1673         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1674             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1675
1676         /* Set random backoff seed for TX */
1677         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1678             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1679             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1680             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1681             BGE_TX_BACKOFF_SEED_MASK);
1682
1683         /* Set inter-packet gap */
1684         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1685
1686         /*
1687          * Specify which ring to use for packets that don't match
1688          * any RX rules.
1689          */
1690         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1691
1692         /*
1693          * Configure number of RX lists. One interrupt distribution
1694          * list, sixteen active lists, one bad frames class.
1695          */
1696         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1697
1698         /* Inialize RX list placement stats mask. */
1699         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1700         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1701
1702         /* Disable host coalescing until we get it set up */
1703         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1704
1705         /* Poll to make sure it's shut down. */
1706         for (i = 0; i < BGE_TIMEOUT; i++) {
1707                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1708                         break;
1709                 DELAY(10);
1710         }
1711
1712         if (i == BGE_TIMEOUT) {
1713                 if_printf(&sc->arpcom.ac_if,
1714                           "host coalescing engine failed to idle\n");
1715                 return(ENXIO);
1716         }
1717
1718         /* Set up host coalescing defaults */
1719         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1720         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1721         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_coal_bds);
1722         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_coal_bds);
1723         if (!BGE_IS_5705_PLUS(sc)) {
1724                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
1725                     sc->bge_rx_coal_ticks_int);
1726                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
1727                     sc->bge_tx_coal_ticks_int);
1728         }
1729         /*
1730          * NOTE:
1731          * The datasheet (57XX-PG105-R) says BCM5705+ do not
1732          * have following two registers; obviously it is wrong.
1733          */
1734         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, sc->bge_rx_coal_bds_int);
1735         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, sc->bge_tx_coal_bds_int);
1736
1737         /* Set up address of statistics block */
1738         if (!BGE_IS_5705_PLUS(sc)) {
1739                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1740                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1741                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1742                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1743
1744                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1745                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1746                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1747         }
1748
1749         /* Set up address of status block */
1750         bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1751         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1752             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1753         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1754             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1755
1756         /*
1757          * Set up status block partail update size.
1758          *
1759          * Because only single TX ring, RX produce ring and Rx return ring
1760          * are used, ask device to update only minimum part of status block
1761          * except for BCM5700 AX/BX, whose status block partial update size
1762          * can't be configured.
1763          */
1764         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1765             sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1766                 /* XXX Actually reserved on BCM5700 AX/BX */
1767                 val = BGE_STATBLKSZ_FULL;
1768         } else {
1769                 val = BGE_STATBLKSZ_32BYTE;
1770         }
1771 #if 0
1772         /*
1773          * Does not seem to have visible effect in both
1774          * bulk data (1472B UDP datagram) and tiny data
1775          * (18B UDP datagram) TX tests.
1776          */
1777         if (!BGE_IS_CRIPPLED(sc))
1778                 val |= BGE_HCCMODE_CLRTICK_TX;
1779 #endif
1780
1781         /* Turn on host coalescing state machine */
1782         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1783
1784         /* Turn on RX BD completion state machine and enable attentions */
1785         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1786             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1787
1788         /* Turn on RX list placement state machine */
1789         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1790
1791         /* Turn on RX list selector state machine. */
1792         if (!BGE_IS_5705_PLUS(sc))
1793                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1794
1795         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1796             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1797             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1798             BGE_MACMODE_FRMHDR_DMA_ENB;
1799
1800         if (sc->bge_flags & BGE_FLAG_TBI)
1801                 val |= BGE_PORTMODE_TBI;
1802         else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1803                 val |= BGE_PORTMODE_GMII;
1804         else
1805                 val |= BGE_PORTMODE_MII;
1806
1807         /* Turn on DMA, clear stats */
1808         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1809
1810         /* Set misc. local control, enable interrupts on attentions */
1811         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1812
1813 #ifdef notdef
1814         /* Assert GPIO pins for PHY reset */
1815         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1816             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1817         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1818             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1819 #endif
1820
1821         /* Turn on DMA completion state machine */
1822         if (!BGE_IS_5705_PLUS(sc))
1823                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1824
1825         /* Turn on write DMA state machine */
1826         val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1827         if (BGE_IS_5755_PLUS(sc)) {
1828                 /* Enable host coalescing bug fix. */
1829                 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1830         }
1831         if (sc->bge_asicrev == BGE_ASICREV_BCM5785) {
1832                 /* Request larger DMA burst size to get better performance. */
1833                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
1834         }
1835         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1836         DELAY(40);
1837
1838         if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
1839             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1840             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1841             sc->bge_asicrev == BGE_ASICREV_BCM57780) {
1842                 /*
1843                  * Enable fix for read DMA FIFO overruns.
1844                  * The fix is to limit the number of RX BDs
1845                  * the hardware would fetch at a fime.
1846                  */
1847                 val = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
1848                 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL,
1849                     val| BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1850         }
1851
1852         /* Turn on read DMA state machine */
1853         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1854         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1855             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1856             sc->bge_asicrev == BGE_ASICREV_BCM57780)
1857                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1858                   BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1859                   BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1860         if (sc->bge_flags & BGE_FLAG_PCIE)
1861                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1862         if (sc->bge_flags & BGE_FLAG_TSO)
1863                 val |= BGE_RDMAMODE_TSO4_ENABLE;
1864         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1865         DELAY(40);
1866
1867         /* Turn on RX data completion state machine */
1868         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1869
1870         /* Turn on RX BD initiator state machine */
1871         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1872
1873         /* Turn on RX data and RX BD initiator state machine */
1874         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1875
1876         /* Turn on Mbuf cluster free state machine */
1877         if (!BGE_IS_5705_PLUS(sc))
1878                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1879
1880         /* Turn on send BD completion state machine */
1881         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1882
1883         /* Turn on send data completion state machine */
1884         val = BGE_SDCMODE_ENABLE;
1885         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1886                 val |= BGE_SDCMODE_CDELAY; 
1887         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1888
1889         /* Turn on send data initiator state machine */
1890         if (sc->bge_flags & BGE_FLAG_TSO)
1891                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
1892                     BGE_SDIMODE_HW_LSO_PRE_DMA);
1893         else
1894                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1895
1896         /* Turn on send BD initiator state machine */
1897         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1898
1899         /* Turn on send BD selector state machine */
1900         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1901
1902         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1903         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1904             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1905
1906         /* ack/clear link change events */
1907         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1908             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1909             BGE_MACSTAT_LINK_CHANGED);
1910         CSR_WRITE_4(sc, BGE_MI_STS, 0);
1911
1912         /*
1913          * Enable attention when the link has changed state for
1914          * devices that use auto polling.
1915          */
1916         if (sc->bge_flags & BGE_FLAG_TBI) {
1917                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1918         } else {
1919                 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
1920                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1921                         DELAY(80);
1922                 }
1923                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1924                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1925                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1926                             BGE_EVTENB_MI_INTERRUPT);
1927                 }
1928         }
1929
1930         /*
1931          * Clear any pending link state attention.
1932          * Otherwise some link state change events may be lost until attention
1933          * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1934          * It's not necessary on newer BCM chips - perhaps enabling link
1935          * state change attentions implies clearing pending attention.
1936          */
1937         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1938             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1939             BGE_MACSTAT_LINK_CHANGED);
1940
1941         /* Enable link state change attentions. */
1942         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1943
1944         return(0);
1945 }
1946
1947 /*
1948  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1949  * against our list and return its name if we find a match. Note
1950  * that since the Broadcom controller contains VPD support, we
1951  * can get the device name string from the controller itself instead
1952  * of the compiled-in string. This is a little slow, but it guarantees
1953  * we'll always announce the right product name.
1954  */
1955 static int
1956 bge_probe(device_t dev)
1957 {
1958         const struct bge_type *t;
1959         uint16_t product, vendor;
1960
1961         product = pci_get_device(dev);
1962         vendor = pci_get_vendor(dev);
1963
1964         for (t = bge_devs; t->bge_name != NULL; t++) {
1965                 if (vendor == t->bge_vid && product == t->bge_did)
1966                         break;
1967         }
1968         if (t->bge_name == NULL)
1969                 return(ENXIO);
1970
1971         device_set_desc(dev, t->bge_name);
1972         return(0);
1973 }
1974
1975 static int
1976 bge_attach(device_t dev)
1977 {
1978         struct ifnet *ifp;
1979         struct bge_softc *sc;
1980         uint32_t hwcfg = 0, misccfg;
1981         int error = 0, rid, capmask;
1982         uint8_t ether_addr[ETHER_ADDR_LEN];
1983         uint16_t product, vendor;
1984         driver_intr_t *intr_func;
1985         uintptr_t mii_priv = 0;
1986         u_int intr_flags;
1987         int msi_enable;
1988
1989         sc = device_get_softc(dev);
1990         sc->bge_dev = dev;
1991         callout_init_mp(&sc->bge_stat_timer);
1992         lwkt_serialize_init(&sc->bge_jslot_serializer);
1993
1994         product = pci_get_device(dev);
1995         vendor = pci_get_vendor(dev);
1996
1997 #ifndef BURN_BRIDGES
1998         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1999                 uint32_t irq, mem;
2000
2001                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
2002                 mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
2003
2004                 device_printf(dev, "chip is in D%d power mode "
2005                     "-- setting to D0\n", pci_get_powerstate(dev));
2006
2007                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
2008
2009                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
2010                 pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
2011         }
2012 #endif  /* !BURN_BRIDGE */
2013
2014         /*
2015          * Map control/status registers.
2016          */
2017         pci_enable_busmaster(dev);
2018
2019         rid = BGE_PCI_BAR0;
2020         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2021             RF_ACTIVE);
2022
2023         if (sc->bge_res == NULL) {
2024                 device_printf(dev, "couldn't map memory\n");
2025                 return ENXIO;
2026         }
2027
2028         sc->bge_btag = rman_get_bustag(sc->bge_res);
2029         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
2030
2031         /* Save various chip information */
2032         sc->bge_chipid =
2033             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2034             BGE_PCIMISCCTL_ASICREV_SHIFT;
2035         if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2036                 /* All chips, which use BGE_PCI_PRODID_ASICREV, have CPMU */
2037                 sc->bge_flags |= BGE_FLAG_CPMU;
2038                 sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2039         }
2040         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2041         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2042
2043         /* Save chipset family. */
2044         switch (sc->bge_asicrev) {
2045         case BGE_ASICREV_BCM5755:
2046         case BGE_ASICREV_BCM5761:
2047         case BGE_ASICREV_BCM5784:
2048         case BGE_ASICREV_BCM5785:
2049         case BGE_ASICREV_BCM5787:
2050         case BGE_ASICREV_BCM57780:
2051             sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2052                 BGE_FLAG_5705_PLUS;
2053             break;
2054
2055         case BGE_ASICREV_BCM5700:
2056         case BGE_ASICREV_BCM5701:
2057         case BGE_ASICREV_BCM5703:
2058         case BGE_ASICREV_BCM5704:
2059                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2060                 break;
2061
2062         case BGE_ASICREV_BCM5714_A0:
2063         case BGE_ASICREV_BCM5780:
2064         case BGE_ASICREV_BCM5714:
2065                 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
2066                 /* Fall through */
2067
2068         case BGE_ASICREV_BCM5750:
2069         case BGE_ASICREV_BCM5752:
2070         case BGE_ASICREV_BCM5906:
2071                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
2072                 /* Fall through */
2073
2074         case BGE_ASICREV_BCM5705:
2075                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
2076                 break;
2077         }
2078
2079         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2080                 sc->bge_flags |= BGE_FLAG_NO_EEPROM;
2081
2082         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
2083         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2084             (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2085              misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2086                 sc->bge_flags |= BGE_FLAG_5788;
2087
2088         /* BCM5755 or higher and BCM5906 have short DMA bug. */
2089         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
2090                 sc->bge_flags |= BGE_FLAG_SHORTDMA;
2091
2092         /*
2093          * Increase STD RX ring prod index by at most 8 for BCM5750,
2094          * BCM5752 and BCM5755 to workaround hardware errata.
2095          */
2096         if (sc->bge_asicrev == BGE_ASICREV_BCM5750 ||
2097             sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2098             sc->bge_asicrev == BGE_ASICREV_BCM5755)
2099                 sc->bge_rx_wreg = 8;
2100
2101         /*
2102          * Check if this is a PCI-X or PCI Express device.
2103          */
2104         if (BGE_IS_5705_PLUS(sc)) {
2105                 if (pci_is_pcie(dev)) {
2106                         sc->bge_flags |= BGE_FLAG_PCIE;
2107                         sc->bge_pciecap = pci_get_pciecap_ptr(sc->bge_dev);
2108                         pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
2109                 }
2110         } else {
2111                 /*
2112                  * Check if the device is in PCI-X Mode.
2113                  * (This bit is not valid on PCI Express controllers.)
2114                  */
2115                 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
2116                     BGE_PCISTATE_PCI_BUSMODE) == 0) {
2117                         sc->bge_flags |= BGE_FLAG_PCIX;
2118                         sc->bge_pcixcap = pci_get_pcixcap_ptr(sc->bge_dev);
2119                         sc->bge_mbox_reorder = device_getenv_int(sc->bge_dev,
2120                             "mbox_reorder", 0);
2121                 }
2122         }
2123         device_printf(dev, "CHIP ID 0x%08x; "
2124                       "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2125                       sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2126                       (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
2127                       : ((sc->bge_flags & BGE_FLAG_PCIE) ?
2128                         "PCI-E" : "PCI"));
2129
2130         /*
2131          * The 40bit DMA bug applies to the 5714/5715 controllers and is
2132          * not actually a MAC controller bug but an issue with the embedded
2133          * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2134          */
2135         if ((sc->bge_flags & BGE_FLAG_PCIX) &&
2136             (BGE_IS_5714_FAMILY(sc) || device_getenv_int(dev, "dma40b", 0)))
2137                 sc->bge_flags |= BGE_FLAG_MAXADDR_40BIT;
2138
2139         /*
2140          * When using the BCM5701 in PCI-X mode, data corruption has
2141          * been observed in the first few bytes of some received packets.
2142          * Aligning the packet buffer in memory eliminates the corruption.
2143          * Unfortunately, this misaligns the packet payloads.  On platforms
2144          * which do not support unaligned accesses, we will realign the
2145          * payloads by copying the received packets.
2146          */
2147         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2148             (sc->bge_flags & BGE_FLAG_PCIX))
2149                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2150
2151         if (!BGE_IS_CRIPPLED(sc)) {
2152                 if (device_getenv_int(dev, "status_tag", 1)) {
2153                         sc->bge_flags |= BGE_FLAG_STATUS_TAG;
2154                         sc->bge_pci_miscctl = BGE_PCIMISCCTL_TAGGED_STATUS;
2155                         if (bootverbose)
2156                                 device_printf(dev, "enable status tag\n");
2157                 }
2158         }
2159
2160         if (BGE_IS_5755_PLUS(sc)) {
2161                 /*
2162                  * BCM5754 and BCM5787 shares the same ASIC id so
2163                  * explicit device id check is required.
2164                  * Due to unknown reason TSO does not work on BCM5755M.
2165                  */
2166                 if (product != PCI_PRODUCT_BROADCOM_BCM5754 &&
2167                     product != PCI_PRODUCT_BROADCOM_BCM5754M &&
2168                     product != PCI_PRODUCT_BROADCOM_BCM5755M)
2169                         sc->bge_flags |= BGE_FLAG_TSO;
2170         }
2171
2172         /*
2173          * Set various PHY quirk flags.
2174          */
2175
2176         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2177              sc->bge_asicrev == BGE_ASICREV_BCM5701) &&
2178             pci_get_subvendor(dev) == PCI_VENDOR_DELL)
2179                 mii_priv |= BRGPHY_FLAG_NO_3LED;
2180
2181         capmask = MII_CAPMASK_DEFAULT;
2182         if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2183              (misccfg == 0x4000 || misccfg == 0x8000)) ||
2184             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2185              vendor == PCI_VENDOR_BROADCOM &&
2186              (product == PCI_PRODUCT_BROADCOM_BCM5901 ||
2187               product == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2188               product == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2189             (vendor == PCI_VENDOR_BROADCOM &&
2190              (product == PCI_PRODUCT_BROADCOM_BCM5751F ||
2191               product == PCI_PRODUCT_BROADCOM_BCM5753F ||
2192               product == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2193             product == PCI_PRODUCT_BROADCOM_BCM57790 ||
2194             sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2195                 /* 10/100 only */
2196                 capmask &= ~BMSR_EXTSTAT;
2197         }
2198
2199         mii_priv |= BRGPHY_FLAG_WIRESPEED;
2200         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2201             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2202              (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2203               sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2204             sc->bge_asicrev == BGE_ASICREV_BCM5906)
2205                 mii_priv &= ~BRGPHY_FLAG_WIRESPEED;
2206
2207         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2208             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2209                 mii_priv |= BRGPHY_FLAG_CRC_BUG;
2210
2211         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2212             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2213                 mii_priv |= BRGPHY_FLAG_ADC_BUG;
2214
2215         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2216                 mii_priv |= BRGPHY_FLAG_5704_A0;
2217
2218         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2219                 mii_priv |= BRGPHY_FLAG_5906;
2220
2221         if (BGE_IS_5705_PLUS(sc) &&
2222             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2223             /* sc->bge_asicrev != BGE_ASICREV_BCM5717 && */
2224             sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2225             /* sc->bge_asicrev != BGE_ASICREV_BCM57765 && */
2226             sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2227                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2228                     sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2229                     sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2230                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2231                         if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
2232                             product != PCI_PRODUCT_BROADCOM_BCM5756)
2233                                 mii_priv |= BRGPHY_FLAG_JITTER_BUG;
2234                         if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
2235                                 mii_priv |= BRGPHY_FLAG_ADJUST_TRIM;
2236                 } else {
2237                         mii_priv |= BRGPHY_FLAG_BER_BUG;
2238                 }
2239         }
2240
2241         /*
2242          * Allocate interrupt
2243          */
2244         msi_enable = bge_msi_enable;
2245         if ((sc->bge_flags & BGE_FLAG_STATUS_TAG) == 0) {
2246                 /* If "tagged status" is disabled, don't enable MSI */
2247                 msi_enable = 0;
2248         } else if (msi_enable) {
2249                 msi_enable = 0; /* Disable by default */
2250                 if (BGE_IS_575X_PLUS(sc)) {
2251                         msi_enable = 1;
2252                         /* XXX we filter all 5714 chips */
2253                         if (sc->bge_asicrev == BGE_ASICREV_BCM5714 ||
2254                             (sc->bge_asicrev == BGE_ASICREV_BCM5750 &&
2255                              (sc->bge_chiprev == BGE_CHIPREV_5750_AX ||
2256                               sc->bge_chiprev == BGE_CHIPREV_5750_BX)))
2257                                 msi_enable = 0;
2258                         else if (BGE_IS_5755_PLUS(sc) ||
2259                             sc->bge_asicrev == BGE_ASICREV_BCM5906)
2260                                 sc->bge_flags |= BGE_FLAG_ONESHOT_MSI;
2261                 }
2262         }
2263         if (msi_enable) {
2264                 if (pci_find_extcap(dev, PCIY_MSI, &sc->bge_msicap)) {
2265                         device_printf(dev, "no MSI capability\n");
2266                         msi_enable = 0;
2267                 }
2268         }
2269
2270         sc->bge_irq_type = pci_alloc_1intr(dev, msi_enable, &sc->bge_irq_rid,
2271             &intr_flags);
2272
2273         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->bge_irq_rid,
2274             intr_flags);
2275         if (sc->bge_irq == NULL) {
2276                 device_printf(dev, "couldn't map interrupt\n");
2277                 error = ENXIO;
2278                 goto fail;
2279         }
2280
2281         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2282                 bge_enable_msi(sc);
2283         else
2284                 sc->bge_flags &= ~BGE_FLAG_ONESHOT_MSI;
2285
2286         /* Initialize if_name earlier, so if_printf could be used */
2287         ifp = &sc->arpcom.ac_if;
2288         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2289
2290         /* Try to reset the chip. */
2291         bge_reset(sc);
2292
2293         if (bge_chipinit(sc)) {
2294                 device_printf(dev, "chip initialization failed\n");
2295                 error = ENXIO;
2296                 goto fail;
2297         }
2298
2299         /*
2300          * Get station address
2301          */
2302         error = bge_get_eaddr(sc, ether_addr);
2303         if (error) {
2304                 device_printf(dev, "failed to read station address\n");
2305                 goto fail;
2306         }
2307
2308         /* 5705/5750 limits RX return ring to 512 entries. */
2309         if (BGE_IS_5705_PLUS(sc))
2310                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2311         else
2312                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2313
2314         error = bge_dma_alloc(sc);
2315         if (error)
2316                 goto fail;
2317
2318         /* Set default tuneable values. */
2319         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2320         sc->bge_rx_coal_ticks = BGE_RX_COAL_TICKS_DEF;
2321         sc->bge_tx_coal_ticks = BGE_TX_COAL_TICKS_DEF;
2322         sc->bge_rx_coal_bds = BGE_RX_COAL_BDS_DEF;
2323         sc->bge_tx_coal_bds = BGE_TX_COAL_BDS_DEF;
2324         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2325                 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_DEF;
2326                 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_DEF;
2327                 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_DEF;
2328                 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_DEF;
2329         } else {
2330                 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_MIN;
2331                 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_MIN;
2332                 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_MIN;
2333                 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_MIN;
2334         }
2335         sc->bge_tx_wreg = BGE_TX_WREG_NSEGS;
2336
2337         /* Set up TX spare and reserved descriptor count */
2338         if (sc->bge_flags & BGE_FLAG_TSO) {
2339                 sc->bge_txspare = BGE_NSEG_SPARE_TSO;
2340                 sc->bge_txrsvd = BGE_NSEG_RSVD_TSO;
2341         } else {
2342                 sc->bge_txspare = BGE_NSEG_SPARE;
2343                 sc->bge_txrsvd = BGE_NSEG_RSVD;
2344         }
2345
2346         /* Set up ifnet structure */
2347         ifp->if_softc = sc;
2348         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2349         ifp->if_ioctl = bge_ioctl;
2350         ifp->if_start = bge_start;
2351 #ifdef IFPOLL_ENABLE
2352         ifp->if_npoll = bge_npoll;
2353 #endif
2354         ifp->if_watchdog = bge_watchdog;
2355         ifp->if_init = bge_init;
2356         ifp->if_mtu = ETHERMTU;
2357         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2358         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2359         ifq_set_ready(&ifp->if_snd);
2360
2361         /*
2362          * 5700 B0 chips do not support checksumming correctly due
2363          * to hardware bugs.
2364          */
2365         if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
2366                 ifp->if_capabilities |= IFCAP_HWCSUM;
2367                 ifp->if_hwassist |= BGE_CSUM_FEATURES;
2368         }
2369         if (sc->bge_flags & BGE_FLAG_TSO) {
2370                 ifp->if_capabilities |= IFCAP_TSO;
2371                 ifp->if_hwassist |= CSUM_TSO;
2372         }
2373         ifp->if_capenable = ifp->if_capabilities;
2374
2375         /*
2376          * Figure out what sort of media we have by checking the
2377          * hardware config word in the first 32k of NIC internal memory,
2378          * or fall back to examining the EEPROM if necessary.
2379          * Note: on some BCM5700 cards, this value appears to be unset.
2380          * If that's the case, we have to rely on identifying the NIC
2381          * by its PCI subsystem ID, as we do below for the SysKonnect
2382          * SK-9D41.
2383          */
2384         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2385                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2386         } else {
2387                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2388                                     sizeof(hwcfg))) {
2389                         device_printf(dev, "failed to read EEPROM\n");
2390                         error = ENXIO;
2391                         goto fail;
2392                 }
2393                 hwcfg = ntohl(hwcfg);
2394         }
2395
2396         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2397         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2398             (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2399                 if (BGE_IS_5714_FAMILY(sc))
2400                         sc->bge_flags |= BGE_FLAG_MII_SERDES;
2401                 else
2402                         sc->bge_flags |= BGE_FLAG_TBI;
2403         }
2404
2405         /* Setup MI MODE */
2406         if (sc->bge_flags & BGE_FLAG_CPMU)
2407                 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2408         else
2409                 sc->bge_mi_mode = BGE_MIMODE_BASE;
2410         if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2411                 /* Enable auto polling for BCM570[0-5]. */
2412                 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2413         }
2414
2415         /* Setup link status update stuffs */
2416         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2417             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
2418                 sc->bge_link_upd = bge_bcm5700_link_upd;
2419                 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
2420         } else if (sc->bge_flags & BGE_FLAG_TBI) {
2421                 sc->bge_link_upd = bge_tbi_link_upd;
2422                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2423         } else if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2424                 sc->bge_link_upd = bge_autopoll_link_upd;
2425                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2426         } else {
2427                 sc->bge_link_upd = bge_copper_link_upd;
2428                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2429         }
2430
2431         /*
2432          * Broadcom's own driver always assumes the internal
2433          * PHY is at GMII address 1.  On some chips, the PHY responds
2434          * to accesses at all addresses, which could cause us to
2435          * bogusly attach the PHY 32 times at probe type.  Always
2436          * restricting the lookup to address 1 is simpler than
2437          * trying to figure out which chips revisions should be
2438          * special-cased.
2439          */
2440         sc->bge_phyno = 1;
2441
2442         if (sc->bge_flags & BGE_FLAG_TBI) {
2443                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
2444                     bge_ifmedia_upd, bge_ifmedia_sts);
2445                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2446                 ifmedia_add(&sc->bge_ifmedia,
2447                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2448                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2449                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2450                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2451         } else {
2452                 struct mii_probe_args mii_args;
2453
2454                 mii_probe_args_init(&mii_args, bge_ifmedia_upd, bge_ifmedia_sts);
2455                 mii_args.mii_probemask = 1 << sc->bge_phyno;
2456                 mii_args.mii_capmask = capmask;
2457                 mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2458                 mii_args.mii_priv = mii_priv;
2459
2460                 error = mii_probe(dev, &sc->bge_miibus, &mii_args);
2461                 if (error) {
2462                         device_printf(dev, "MII without any PHY!\n");
2463                         goto fail;
2464                 }
2465         }
2466
2467         /*
2468          * Create sysctl nodes.
2469          */
2470         sysctl_ctx_init(&sc->bge_sysctl_ctx);
2471         sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
2472                                               SYSCTL_STATIC_CHILDREN(_hw),
2473                                               OID_AUTO,
2474                                               device_get_nameunit(dev),
2475                                               CTLFLAG_RD, 0, "");
2476         if (sc->bge_sysctl_tree == NULL) {
2477                 device_printf(dev, "can't add sysctl node\n");
2478                 error = ENXIO;
2479                 goto fail;
2480         }
2481
2482         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2483                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2484                         OID_AUTO, "rx_coal_ticks",
2485                         CTLTYPE_INT | CTLFLAG_RW,
2486                         sc, 0, bge_sysctl_rx_coal_ticks, "I",
2487                         "Receive coalescing ticks (usec).");
2488         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2489                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2490                         OID_AUTO, "tx_coal_ticks",
2491                         CTLTYPE_INT | CTLFLAG_RW,
2492                         sc, 0, bge_sysctl_tx_coal_ticks, "I",
2493                         "Transmit coalescing ticks (usec).");
2494         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2495                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2496                         OID_AUTO, "rx_coal_bds",
2497                         CTLTYPE_INT | CTLFLAG_RW,
2498                         sc, 0, bge_sysctl_rx_coal_bds, "I",
2499                         "Receive max coalesced BD count.");
2500         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2501                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2502                         OID_AUTO, "tx_coal_bds",
2503                         CTLTYPE_INT | CTLFLAG_RW,
2504                         sc, 0, bge_sysctl_tx_coal_bds, "I",
2505                         "Transmit max coalesced BD count.");
2506
2507         SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2508                        SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2509                        OID_AUTO, "tx_wreg", CTLFLAG_RW,
2510                        &sc->bge_tx_wreg, 0,
2511                        "# of segments before writing to hardware register");
2512
2513         if (sc->bge_flags & BGE_FLAG_PCIE) {
2514                 /*
2515                  * A common design characteristic for many Broadcom
2516                  * client controllers is that they only support a
2517                  * single outstanding DMA read operation on the PCIe
2518                  * bus. This means that it will take twice as long to
2519                  * fetch a TX frame that is split into header and
2520                  * payload buffers as it does to fetch a single,
2521                  * contiguous TX frame (2 reads vs. 1 read). For these
2522                  * controllers, coalescing buffers to reduce the number
2523                  * of memory reads is effective way to get maximum
2524                  * performance(about 940Mbps).  Without collapsing TX
2525                  * buffers the maximum TCP bulk transfer performance
2526                  * is about 850Mbps. However forcing coalescing mbufs
2527                  * consumes a lot of CPU cycles, so leave it off by
2528                  * default.
2529                  */
2530                 SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2531                                SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2532                                OID_AUTO, "force_defrag", CTLFLAG_RW,
2533                                &sc->bge_force_defrag, 0,
2534                                "Force defragment on TX path");
2535         }
2536         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2537                 if (!BGE_IS_5705_PLUS(sc)) {
2538                         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2539                             SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2540                             "rx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2541                             sc, 0, bge_sysctl_rx_coal_ticks_int, "I",
2542                             "Receive coalescing ticks "
2543                             "during interrupt (usec).");
2544                         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2545                             SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2546                             "tx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2547                             sc, 0, bge_sysctl_tx_coal_ticks_int, "I",
2548                             "Transmit coalescing ticks "
2549                             "during interrupt (usec).");
2550                 }
2551                 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2552                     SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2553                     "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2554                     sc, 0, bge_sysctl_rx_coal_bds_int, "I",
2555                     "Receive max coalesced BD count during interrupt.");
2556                 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2557                     SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2558                     "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2559                     sc, 0, bge_sysctl_tx_coal_bds_int, "I",
2560                     "Transmit max coalesced BD count during interrupt.");
2561         }
2562
2563         /*
2564          * Call MI attach routine.
2565          */
2566         ether_ifattach(ifp, ether_addr, NULL);
2567
2568         ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
2569
2570 #ifdef IFPOLL_ENABLE
2571         /* Polling setup */
2572         ifpoll_compat_setup(&sc->bge_npoll,
2573             &sc->bge_sysctl_ctx, sc->bge_sysctl_tree, device_get_unit(dev),
2574             ifp->if_serializer);
2575 #endif
2576
2577         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2578                 if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
2579                         intr_func = bge_msi_oneshot;
2580                         if (bootverbose)
2581                                 device_printf(dev, "oneshot MSI\n");
2582                 } else {
2583                         intr_func = bge_msi;
2584                 }
2585         } else if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2586                 intr_func = bge_intr_legacy;
2587         } else {
2588                 intr_func = bge_intr_crippled;
2589         }
2590         error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE, intr_func, sc,
2591             &sc->bge_intrhand, ifp->if_serializer);
2592         if (error) {
2593                 ether_ifdetach(ifp);
2594                 device_printf(dev, "couldn't set up irq\n");
2595                 goto fail;
2596         }
2597
2598         return(0);
2599 fail:
2600         bge_detach(dev);
2601         return(error);
2602 }
2603
2604 static int
2605 bge_detach(device_t dev)
2606 {
2607         struct bge_softc *sc = device_get_softc(dev);
2608
2609         if (device_is_attached(dev)) {
2610                 struct ifnet *ifp = &sc->arpcom.ac_if;
2611
2612                 lwkt_serialize_enter(ifp->if_serializer);
2613                 bge_stop(sc);
2614                 bge_reset(sc);
2615                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2616                 lwkt_serialize_exit(ifp->if_serializer);
2617
2618                 ether_ifdetach(ifp);
2619         }
2620
2621         if (sc->bge_flags & BGE_FLAG_TBI)
2622                 ifmedia_removeall(&sc->bge_ifmedia);
2623         if (sc->bge_miibus)
2624                 device_delete_child(dev, sc->bge_miibus);
2625         bus_generic_detach(dev);
2626
2627         if (sc->bge_irq != NULL) {
2628                 bus_release_resource(dev, SYS_RES_IRQ, sc->bge_irq_rid,
2629                     sc->bge_irq);
2630         }
2631         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2632                 pci_release_msi(dev);
2633
2634         if (sc->bge_res != NULL) {
2635                 bus_release_resource(dev, SYS_RES_MEMORY,
2636                     BGE_PCI_BAR0, sc->bge_res);
2637         }
2638
2639         if (sc->bge_sysctl_tree != NULL)
2640                 sysctl_ctx_free(&sc->bge_sysctl_ctx);
2641
2642         bge_dma_free(sc);
2643
2644         return 0;
2645 }
2646
2647 static void
2648 bge_reset(struct bge_softc *sc)
2649 {
2650         device_t dev;
2651         uint32_t cachesize, command, pcistate, reset;
2652         void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2653         int i, val = 0;
2654
2655         dev = sc->bge_dev;
2656
2657         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2658             sc->bge_asicrev != BGE_ASICREV_BCM5906) {
2659                 if (sc->bge_flags & BGE_FLAG_PCIE)
2660                         write_op = bge_writemem_direct;
2661                 else
2662                         write_op = bge_writemem_ind;
2663         } else {
2664                 write_op = bge_writereg_ind;
2665         }
2666
2667         /* Save some important PCI state. */
2668         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2669         command = pci_read_config(dev, BGE_PCI_CMD, 4);
2670         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2671
2672         pci_write_config(dev, BGE_PCI_MISC_CTL,
2673             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2674             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2675             sc->bge_pci_miscctl, 4);
2676
2677         /* Disable fastboot on controllers that support it. */
2678         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2679             BGE_IS_5755_PLUS(sc)) {
2680                 if (bootverbose)
2681                         if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2682                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2683         }
2684
2685         /*
2686          * Write the magic number to SRAM at offset 0xB50.
2687          * When firmware finishes its initialization it will
2688          * write ~BGE_MAGIC_NUMBER to the same location.
2689          */
2690         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2691
2692         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2693
2694         /* XXX: Broadcom Linux driver. */
2695         if (sc->bge_flags & BGE_FLAG_PCIE) {
2696                 /* Force PCI-E 1.0a mode */
2697                 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2698                     CSR_READ_4(sc, BGE_PCIE_PHY_TSTCTL) ==
2699                     (BGE_PCIE_PHY_TSTCTL_PSCRAM |
2700                      BGE_PCIE_PHY_TSTCTL_PCIE10)) {
2701                         CSR_WRITE_4(sc, BGE_PCIE_PHY_TSTCTL,
2702                             BGE_PCIE_PHY_TSTCTL_PSCRAM);
2703                 }
2704                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2705                         /* Prevent PCIE link training during global reset */
2706                         CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2707                         reset |= (1<<29);
2708                 }
2709         }
2710
2711         /* 
2712          * Set GPHY Power Down Override to leave GPHY
2713          * powered up in D0 uninitialized.
2714          */
2715         if (BGE_IS_5705_PLUS(sc) && (sc->bge_flags & BGE_FLAG_CPMU) == 0)
2716                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2717
2718         /* Issue global reset */
2719         write_op(sc, BGE_MISC_CFG, reset);
2720
2721         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2722                 uint32_t status, ctrl;
2723
2724                 status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2725                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2726                     status | BGE_VCPU_STATUS_DRV_RESET);
2727                 ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2728                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2729                     ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2730         }
2731
2732         DELAY(1000);
2733
2734         /* XXX: Broadcom Linux driver. */
2735         if (sc->bge_flags & BGE_FLAG_PCIE) {
2736                 uint16_t devctl;
2737
2738                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2739                         uint32_t v;
2740
2741                         DELAY(500000); /* wait for link training to complete */
2742                         v = pci_read_config(dev, 0xc4, 4);
2743                         pci_write_config(dev, 0xc4, v | (1<<15), 4);
2744                 }
2745
2746                 devctl = pci_read_config(dev,
2747                     sc->bge_pciecap + PCIER_DEVCTRL, 2);
2748
2749                 /* Disable no snoop and disable relaxed ordering. */
2750                 devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2751
2752                 /* Old PCI-E chips only support 128 bytes Max PayLoad Size. */
2753                 if ((sc->bge_flags & BGE_FLAG_CPMU) == 0) {
2754                         devctl &= ~PCIEM_DEVCTL_MAX_PAYLOAD_MASK;
2755                         devctl |= PCIEM_DEVCTL_MAX_PAYLOAD_128;
2756                 }
2757
2758                 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVCTRL,
2759                     devctl, 2);
2760
2761                 /* Clear error status. */
2762                 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVSTS,
2763                     PCIEM_DEVSTS_CORR_ERR |
2764                     PCIEM_DEVSTS_NFATAL_ERR |
2765                     PCIEM_DEVSTS_FATAL_ERR |
2766                     PCIEM_DEVSTS_UNSUPP_REQ, 2);
2767         }
2768
2769         /* Reset some of the PCI state that got zapped by reset */
2770         pci_write_config(dev, BGE_PCI_MISC_CTL,
2771             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2772             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2773             sc->bge_pci_miscctl, 4);
2774         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2775         pci_write_config(dev, BGE_PCI_CMD, command, 4);
2776         write_op(sc, BGE_MISC_CFG, (65 << 1));
2777
2778         /*
2779          * Disable PCI-X relaxed ordering to ensure status block update
2780          * comes first then packet buffer DMA. Otherwise driver may
2781          * read stale status block.
2782          */
2783         if (sc->bge_flags & BGE_FLAG_PCIX) {
2784                 uint16_t devctl;
2785
2786                 devctl = pci_read_config(dev,
2787                     sc->bge_pcixcap + PCIXR_COMMAND, 2);
2788                 devctl &= ~PCIXM_COMMAND_ERO;
2789                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
2790                         devctl &= ~PCIXM_COMMAND_MAX_READ;
2791                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
2792                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2793                         devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
2794                             PCIXM_COMMAND_MAX_READ);
2795                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
2796                 }
2797                 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
2798                     devctl, 2);
2799         }
2800
2801         /*
2802          * Enable memory arbiter and re-enable MSI if necessary.
2803          */
2804         if (BGE_IS_5714_FAMILY(sc)) {
2805                 uint32_t val;
2806
2807                 if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2808                         /*
2809                          * Resetting BCM5714 family will clear MSI
2810                          * enable bit; restore it after resetting.
2811                          */
2812                         PCI_SETBIT(sc->bge_dev, sc->bge_msicap + PCIR_MSI_CTRL,
2813                             PCIM_MSICTRL_MSI_ENABLE, 2);
2814                         BGE_SETBIT(sc, BGE_MSI_MODE, BGE_MSIMODE_ENABLE);
2815                 }
2816                 val = CSR_READ_4(sc, BGE_MARB_MODE);
2817                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2818         } else {
2819                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2820         }
2821
2822         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2823                 for (i = 0; i < BGE_TIMEOUT; i++) {
2824                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2825                         if (val & BGE_VCPU_STATUS_INIT_DONE)
2826                                 break;
2827                         DELAY(100);
2828                 }
2829                 if (i == BGE_TIMEOUT) {
2830                         if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2831                         return;
2832                 }
2833         } else {
2834                 /*
2835                  * Poll until we see the 1's complement of the magic number.
2836                  * This indicates that the firmware initialization
2837                  * is complete.
2838                  */
2839                 for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) {
2840                         val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2841                         if (val == ~BGE_MAGIC_NUMBER)
2842                                 break;
2843                         DELAY(10);
2844                 }
2845                 if (i == BGE_FIRMWARE_TIMEOUT) {
2846                         if_printf(&sc->arpcom.ac_if, "firmware handshake "
2847                                   "timed out, found 0x%08x\n", val);
2848                 }
2849         }
2850
2851         /*
2852          * XXX Wait for the value of the PCISTATE register to
2853          * return to its original pre-reset state. This is a
2854          * fairly good indicator of reset completion. If we don't
2855          * wait for the reset to fully complete, trying to read
2856          * from the device's non-PCI registers may yield garbage
2857          * results.
2858          */
2859         for (i = 0; i < BGE_TIMEOUT; i++) {
2860                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2861                         break;
2862                 DELAY(10);
2863         }
2864
2865         /* Fix up byte swapping */
2866         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2867             BGE_MODECTL_BYTESWAP_DATA);
2868
2869         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2870
2871         /*
2872          * The 5704 in TBI mode apparently needs some special
2873          * adjustment to insure the SERDES drive level is set
2874          * to 1.2V.
2875          */
2876         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2877             (sc->bge_flags & BGE_FLAG_TBI)) {
2878                 uint32_t serdescfg;
2879
2880                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2881                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2882                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2883         }
2884
2885         /* XXX: Broadcom Linux driver. */
2886         if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2887             sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
2888             sc->bge_asicrev != BGE_ASICREV_BCM5785) {
2889                 uint32_t v;
2890
2891                 /* Enable Data FIFO protection. */
2892                 v = CSR_READ_4(sc, BGE_PCIE_TLDLPL_PORT);
2893                 CSR_WRITE_4(sc, BGE_PCIE_TLDLPL_PORT, v | (1 << 25));
2894         }
2895
2896         DELAY(10000);
2897 }
2898
2899 /*
2900  * Frame reception handling. This is called if there's a frame
2901  * on the receive return list.
2902  *
2903  * Note: we have to be able to handle two possibilities here:
2904  * 1) the frame is from the jumbo recieve ring
2905  * 2) the frame is from the standard receive ring
2906  */
2907
2908 static void
2909 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int count)
2910 {
2911         struct ifnet *ifp;
2912         int stdcnt = 0, jumbocnt = 0;
2913
2914         ifp = &sc->arpcom.ac_if;
2915
2916         while (sc->bge_rx_saved_considx != rx_prod && count != 0) {
2917                 struct bge_rx_bd        *cur_rx;
2918                 uint32_t                rxidx;
2919                 struct mbuf             *m = NULL;
2920                 uint16_t                vlan_tag = 0;
2921                 int                     have_tag = 0;
2922
2923                 --count;
2924
2925                 cur_rx =
2926             &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
2927
2928                 rxidx = cur_rx->bge_idx;
2929                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2930                 logif(rx_pkt);
2931
2932                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2933                         have_tag = 1;
2934                         vlan_tag = cur_rx->bge_vlan_tag;
2935                 }
2936
2937                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2938                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2939                         jumbocnt++;
2940
2941                         if (rxidx != sc->bge_jumbo) {
2942                                 IFNET_STAT_INC(ifp, ierrors, 1);
2943                                 if_printf(ifp, "sw jumbo index(%d) "
2944                                     "and hw jumbo index(%d) mismatch, drop!\n",
2945                                     sc->bge_jumbo, rxidx);
2946                                 bge_setup_rxdesc_jumbo(sc, rxidx);
2947                                 continue;
2948                         }
2949
2950                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf;
2951                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2952                                 IFNET_STAT_INC(ifp, ierrors, 1);
2953                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2954                                 continue;
2955                         }
2956                         if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) {
2957                                 IFNET_STAT_INC(ifp, ierrors, 1);
2958                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2959                                 continue;
2960                         }
2961                 } else {
2962                         int discard = 0;
2963
2964                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2965                         stdcnt++;
2966
2967                         if (rxidx != sc->bge_std) {
2968                                 IFNET_STAT_INC(ifp, ierrors, 1);
2969                                 if_printf(ifp, "sw std index(%d) "
2970                                     "and hw std index(%d) mismatch, drop!\n",
2971                                     sc->bge_std, rxidx);
2972                                 bge_setup_rxdesc_std(sc, rxidx);
2973                                 discard = 1;
2974                                 goto refresh_rx;
2975                         }
2976
2977                         m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf;
2978                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2979                                 IFNET_STAT_INC(ifp, ierrors, 1);
2980                                 bge_setup_rxdesc_std(sc, sc->bge_std);
2981                                 discard = 1;
2982                                 goto refresh_rx;
2983                         }
2984                         if (bge_newbuf_std(sc, sc->bge_std, 0)) {
2985                                 IFNET_STAT_INC(ifp, ierrors, 1);
2986                                 bge_setup_rxdesc_std(sc, sc->bge_std);
2987                                 discard = 1;
2988                         }
2989 refresh_rx:
2990                         if (sc->bge_rx_wreg > 0 && stdcnt >= sc->bge_rx_wreg) {
2991                                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO,
2992                                     sc->bge_std);
2993                                 stdcnt = 0;
2994                         }
2995                         if (discard)
2996                                 continue;
2997                 }
2998
2999                 IFNET_STAT_INC(ifp, ipackets, 1);
3000 #if !defined(__i386__) && !defined(__x86_64__)
3001                 /*
3002                  * The x86 allows unaligned accesses, but for other
3003                  * platforms we must make sure the payload is aligned.
3004                  */
3005                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3006                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3007                             cur_rx->bge_len);
3008                         m->m_data += ETHER_ALIGN;
3009                 }
3010 #endif
3011                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3012                 m->m_pkthdr.rcvif = ifp;
3013
3014                 if (ifp->if_capenable & IFCAP_RXCSUM) {
3015                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3016                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3017                                 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
3018                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3019                         }
3020                         if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
3021                             m->m_pkthdr.len >= BGE_MIN_FRAMELEN) {
3022                                 m->m_pkthdr.csum_data =
3023                                         cur_rx->bge_tcp_udp_csum;
3024                                 m->m_pkthdr.csum_flags |=
3025                                         CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3026                         }
3027                 }
3028
3029                 /*
3030                  * If we received a packet with a vlan tag, pass it
3031                  * to vlan_input() instead of ether_input().
3032                  */
3033                 if (have_tag) {
3034                         m->m_flags |= M_VLANTAG;
3035                         m->m_pkthdr.ether_vlantag = vlan_tag;
3036                 }
3037                 ifp->if_input(ifp, m);
3038         }
3039
3040         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3041         if (stdcnt)
3042                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3043         if (jumbocnt)
3044                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3045 }
3046
3047 static void
3048 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3049 {
3050         struct ifnet *ifp;
3051
3052         ifp = &sc->arpcom.ac_if;
3053
3054         /*
3055          * Go through our tx ring and free mbufs for those
3056          * frames that have been sent.
3057          */
3058         while (sc->bge_tx_saved_considx != tx_cons) {
3059                 uint32_t idx = 0;
3060
3061                 idx = sc->bge_tx_saved_considx;
3062                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3063                         IFNET_STAT_INC(ifp, opackets, 1);
3064                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3065                             sc->bge_cdata.bge_tx_dmamap[idx]);
3066                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3067                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
3068                 }
3069                 sc->bge_txcnt--;
3070                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3071                 logif(tx_pkt);
3072         }
3073
3074         if ((BGE_TX_RING_CNT - sc->bge_txcnt) >=
3075             (sc->bge_txrsvd + sc->bge_txspare))
3076                 ifq_clr_oactive(&ifp->if_snd);
3077
3078         if (sc->bge_txcnt == 0)
3079                 ifp->if_timer = 0;
3080
3081         if (!ifq_is_empty(&ifp->if_snd))
3082                 if_devstart(ifp);
3083 }
3084
3085 #ifdef IFPOLL_ENABLE
3086
3087 static void
3088 bge_npoll_compat(struct ifnet *ifp, void *arg __unused, int cycles)
3089 {
3090         struct bge_softc *sc = ifp->if_softc;
3091         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3092         uint16_t rx_prod, tx_cons;
3093
3094         ASSERT_SERIALIZED(ifp->if_serializer);
3095
3096         if (sc->bge_npoll.ifpc_stcount-- == 0) {
3097                 sc->bge_npoll.ifpc_stcount = sc->bge_npoll.ifpc_stfrac;
3098                 /*
3099                  * Process link state changes.
3100                  */
3101                 bge_link_poll(sc);
3102         }
3103
3104         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
3105                 sc->bge_status_tag = sblk->bge_status_tag;
3106                 /*
3107                  * Use a load fence to ensure that status_tag
3108                  * is saved  before rx_prod and tx_cons.
3109                  */
3110                 cpu_lfence();
3111         }
3112
3113         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3114         if (sc->bge_rx_saved_considx != rx_prod)
3115                 bge_rxeof(sc, rx_prod, cycles);
3116
3117         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3118         if (sc->bge_tx_saved_considx != tx_cons)
3119                 bge_txeof(sc, tx_cons);
3120
3121         if (sc->bge_flags & BGE_FLAG_STATUS_TAG)
3122                 bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3123
3124         if (sc->bge_coal_chg)
3125                 bge_coal_change(sc);
3126 }
3127
3128 static void
3129 bge_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3130 {
3131         struct bge_softc *sc = ifp->if_softc;
3132
3133         ASSERT_SERIALIZED(ifp->if_serializer);
3134
3135         if (info != NULL) {
3136                 int cpuid = sc->bge_npoll.ifpc_cpuid;
3137
3138                 info->ifpi_rx[cpuid].poll_func = bge_npoll_compat;
3139                 info->ifpi_rx[cpuid].arg = NULL;
3140                 info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
3141
3142                 if (ifp->if_flags & IFF_RUNNING)
3143                         bge_disable_intr(sc);
3144                 ifq_set_cpuid(&ifp->if_snd, cpuid);
3145         } else {
3146                 if (ifp->if_flags & IFF_RUNNING)
3147                         bge_enable_intr(sc);
3148                 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
3149         }
3150 }
3151
3152 #endif  /* IFPOLL_ENABLE */
3153
3154 static void
3155 bge_intr_crippled(void *xsc)
3156 {
3157         struct bge_softc *sc = xsc;
3158         struct ifnet *ifp = &sc->arpcom.ac_if;
3159
3160         logif(intr);
3161
3162         /*
3163          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3164          * disable interrupts by writing nonzero like we used to, since with
3165          * our current organization this just gives complications and
3166          * pessimizations for re-enabling interrupts.  We used to have races
3167          * instead of the necessary complications.  Disabling interrupts
3168          * would just reduce the chance of a status update while we are
3169          * running (by switching to the interrupt-mode coalescence
3170          * parameters), but this chance is already very low so it is more
3171          * efficient to get another interrupt than prevent it.
3172          *
3173          * We do the ack first to ensure another interrupt if there is a
3174          * status update after the ack.  We don't check for the status
3175          * changing later because it is more efficient to get another
3176          * interrupt than prevent it, not quite as above (not checking is
3177          * a smaller optimization than not toggling the interrupt enable,
3178          * since checking doesn't involve PCI accesses and toggling require
3179          * the status check).  So toggling would probably be a pessimization
3180          * even with MSI.  It would only be needed for using a task queue.
3181          */
3182         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3183
3184         /*
3185          * Process link state changes.
3186          */
3187         bge_link_poll(sc);
3188
3189         if (ifp->if_flags & IFF_RUNNING) {
3190                 struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3191                 uint16_t rx_prod, tx_cons;
3192
3193                 rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3194                 if (sc->bge_rx_saved_considx != rx_prod)
3195                         bge_rxeof(sc, rx_prod, -1);
3196
3197                 tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3198                 if (sc->bge_tx_saved_considx != tx_cons)
3199                         bge_txeof(sc, tx_cons);
3200         }
3201
3202         if (sc->bge_coal_chg)
3203                 bge_coal_change(sc);
3204 }
3205
3206 static void
3207 bge_intr_legacy(void *xsc)
3208 {
3209         struct bge_softc *sc = xsc;
3210         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3211
3212         if (sc->bge_status_tag == sblk->bge_status_tag) {
3213                 uint32_t val;
3214
3215                 val = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3216                 if (val & BGE_PCISTAT_INTR_NOTACT)
3217                         return;
3218         }
3219
3220         /*
3221          * NOTE:
3222          * Interrupt will have to be disabled if tagged status
3223          * is used, else interrupt will always be asserted on
3224          * certain chips (at least on BCM5750 AX/BX).
3225          */
3226         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3227
3228         bge_intr(sc);
3229 }
3230
3231 static void
3232 bge_msi(void *xsc)
3233 {
3234         struct bge_softc *sc = xsc;
3235
3236         /* Disable interrupt first */
3237         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3238         bge_intr(sc);
3239 }
3240
3241 static void
3242 bge_msi_oneshot(void *xsc)
3243 {
3244         bge_intr(xsc);
3245 }
3246
3247 static void
3248 bge_intr(struct bge_softc *sc)
3249 {
3250         struct ifnet *ifp = &sc->arpcom.ac_if;
3251         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3252         uint16_t rx_prod, tx_cons;
3253         uint32_t status;
3254
3255         sc->bge_status_tag = sblk->bge_status_tag;
3256         /*
3257          * Use a load fence to ensure that status_tag is saved 
3258          * before rx_prod, tx_cons and status.
3259          */
3260         cpu_lfence();
3261
3262         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3263         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3264         status = sblk->bge_status;
3265
3266         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bge_link_evt)
3267                 bge_link_poll(sc);
3268
3269         if (ifp->if_flags & IFF_RUNNING) {
3270                 if (sc->bge_rx_saved_considx != rx_prod)
3271                         bge_rxeof(sc, rx_prod, -1);
3272
3273                 if (sc->bge_tx_saved_considx != tx_cons)
3274                         bge_txeof(sc, tx_cons);
3275         }
3276
3277         bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3278
3279         if (sc->bge_coal_chg)
3280                 bge_coal_change(sc);
3281 }
3282
3283 static void
3284 bge_tick(void *xsc)
3285 {
3286         struct bge_softc *sc = xsc;
3287         struct ifnet *ifp = &sc->arpcom.ac_if;
3288
3289         lwkt_serialize_enter(ifp->if_serializer);
3290
3291         if (BGE_IS_5705_PLUS(sc))
3292                 bge_stats_update_regs(sc);
3293         else
3294                 bge_stats_update(sc);
3295
3296         if (sc->bge_flags & BGE_FLAG_TBI) {
3297                 /*
3298                  * Since in TBI mode auto-polling can't be used we should poll
3299                  * link status manually. Here we register pending link event
3300                  * and trigger interrupt.
3301                  */
3302                 sc->bge_link_evt++;
3303                 if (BGE_IS_CRIPPLED(sc))
3304                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3305                 else
3306                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3307         } else if (!sc->bge_link) {
3308                 mii_tick(device_get_softc(sc->bge_miibus));
3309         }
3310
3311         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3312
3313         lwkt_serialize_exit(ifp->if_serializer);
3314 }
3315
3316 static void
3317 bge_stats_update_regs(struct bge_softc *sc)
3318 {
3319         struct ifnet *ifp = &sc->arpcom.ac_if;
3320         struct bge_mac_stats_regs stats;
3321         uint32_t *s;
3322         int i;
3323
3324         s = (uint32_t *)&stats;
3325         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
3326                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
3327                 s++;
3328         }
3329
3330         IFNET_STAT_SET(ifp, collisions,
3331            (stats.dot3StatsSingleCollisionFrames +
3332            stats.dot3StatsMultipleCollisionFrames +
3333            stats.dot3StatsExcessiveCollisions +
3334            stats.dot3StatsLateCollisions));
3335 }
3336
3337 static void
3338 bge_stats_update(struct bge_softc *sc)
3339 {
3340         struct ifnet *ifp = &sc->arpcom.ac_if;
3341         bus_size_t stats;
3342
3343         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3344
3345 #define READ_STAT(sc, stats, stat)      \
3346         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3347
3348         IFNET_STAT_SET(ifp, collisions,
3349            (READ_STAT(sc, stats,
3350                 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
3351             READ_STAT(sc, stats,
3352                 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3353             READ_STAT(sc, stats,
3354                 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
3355             READ_STAT(sc, stats,
3356                 txstats.dot3StatsLateCollisions.bge_addr_lo)));
3357
3358 #undef READ_STAT
3359
3360 #ifdef notdef
3361         IFNET_STAT_SET(ifp, collisions,
3362            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3363            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3364            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3365            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions));
3366 #endif
3367 }
3368
3369 /*
3370  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3371  * pointers to descriptors.
3372  */
3373 static int
3374 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx,
3375     int *segs_used)
3376 {
3377         struct bge_tx_bd *d = NULL, *last_d;
3378         uint16_t csum_flags = 0, mss = 0;
3379         bus_dma_segment_t segs[BGE_NSEG_NEW];
3380         bus_dmamap_t map;
3381         int error, maxsegs, nsegs, idx, i;
3382         struct mbuf *m_head = *m_head0, *m_new;
3383
3384         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3385                 error = bge_setup_tso(sc, m_head0, &mss, &csum_flags);
3386                 if (error)
3387                         return ENOBUFS;
3388                 m_head = *m_head0;
3389         } else if (m_head->m_pkthdr.csum_flags & BGE_CSUM_FEATURES) {
3390                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3391                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3392                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3393                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3394                 if (m_head->m_flags & M_LASTFRAG)
3395                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3396                 else if (m_head->m_flags & M_FRAG)
3397                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3398         }
3399
3400         idx = *txidx;
3401         map = sc->bge_cdata.bge_tx_dmamap[idx];
3402
3403         maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - sc->bge_txrsvd;
3404         KASSERT(maxsegs >= sc->bge_txspare,
3405                 ("not enough segments %d", maxsegs));
3406
3407         if (maxsegs > BGE_NSEG_NEW)
3408                 maxsegs = BGE_NSEG_NEW;
3409
3410         /*
3411          * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
3412          * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
3413          * but when such padded frames employ the bge IP/TCP checksum
3414          * offload, the hardware checksum assist gives incorrect results
3415          * (possibly from incorporating its own padding into the UDP/TCP
3416          * checksum; who knows).  If we pad such runts with zeros, the
3417          * onboard checksum comes out correct.
3418          */
3419         if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
3420             m_head->m_pkthdr.len < BGE_MIN_FRAMELEN) {
3421                 error = m_devpad(m_head, BGE_MIN_FRAMELEN);
3422                 if (error)
3423                         goto back;
3424         }
3425
3426         if ((sc->bge_flags & BGE_FLAG_SHORTDMA) && m_head->m_next != NULL) {
3427                 m_new = bge_defrag_shortdma(m_head);
3428                 if (m_new == NULL) {
3429                         error = ENOBUFS;
3430                         goto back;
3431                 }
3432                 *m_head0 = m_head = m_new;
3433         }
3434         if ((m_head->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3435             sc->bge_force_defrag && (sc->bge_flags & BGE_FLAG_PCIE) &&
3436             m_head->m_next != NULL) {
3437                 /*
3438                  * Forcefully defragment mbuf chain to overcome hardware
3439                  * limitation which only support a single outstanding
3440                  * DMA read operation.  If it fails, keep moving on using
3441                  * the original mbuf chain.
3442                  */
3443                 m_new = m_defrag(m_head, MB_DONTWAIT);
3444                 if (m_new != NULL)
3445                         *m_head0 = m_head = m_new;
3446         }
3447
3448         error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map,
3449                         m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3450         if (error)
3451                 goto back;
3452         *segs_used += nsegs;
3453
3454         m_head = *m_head0;
3455         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3456
3457         for (i = 0; ; i++) {
3458                 d = &sc->bge_ldata.bge_tx_ring[idx];
3459
3460                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3461                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3462                 d->bge_len = segs[i].ds_len;
3463                 d->bge_flags = csum_flags;
3464                 d->bge_mss = mss;
3465
3466                 if (i == nsegs - 1)
3467                         break;
3468                 BGE_INC(idx, BGE_TX_RING_CNT);
3469         }
3470         last_d = d;
3471
3472         /* Set vlan tag to the first segment of the packet. */
3473         d = &sc->bge_ldata.bge_tx_ring[*txidx];
3474         if (m_head->m_flags & M_VLANTAG) {
3475                 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3476                 d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
3477         } else {
3478                 d->bge_vlan_tag = 0;
3479         }
3480
3481         /* Mark the last segment as end of packet... */
3482         last_d->bge_flags |= BGE_TXBDFLAG_END;
3483
3484         /*
3485          * Insure that the map for this transmission is placed at
3486          * the array index of the last descriptor in this chain.
3487          */
3488         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3489         sc->bge_cdata.bge_tx_dmamap[idx] = map;
3490         sc->bge_cdata.bge_tx_chain[idx] = m_head;
3491         sc->bge_txcnt += nsegs;
3492
3493         BGE_INC(idx, BGE_TX_RING_CNT);
3494         *txidx = idx;
3495 back:
3496         if (error) {
3497                 m_freem(*m_head0);
3498                 *m_head0 = NULL;
3499         }
3500         return error;
3501 }
3502
3503 static void
3504 bge_xmit(struct bge_softc *sc, uint32_t prodidx)
3505 {
3506         /* Transmit */
3507         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3508         /* 5700 b2 errata */
3509         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
3510                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3511 }
3512
3513 /*
3514  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3515  * to the mbuf data regions directly in the transmit descriptors.
3516  */
3517 static void
3518 bge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3519 {
3520         struct bge_softc *sc = ifp->if_softc;
3521         struct mbuf *m_head = NULL;
3522         uint32_t prodidx;
3523         int nsegs = 0;
3524
3525         ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
3526
3527         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
3528                 return;
3529
3530         prodidx = sc->bge_tx_prodidx;
3531
3532         while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3533                 m_head = ifq_dequeue(&ifp->if_snd);
3534                 if (m_head == NULL)
3535                         break;
3536
3537                 /*
3538                  * XXX
3539                  * The code inside the if() block is never reached since we
3540                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
3541                  * requests to checksum TCP/UDP in a fragmented packet.
3542                  * 
3543                  * XXX
3544                  * safety overkill.  If this is a fragmented packet chain
3545                  * with delayed TCP/UDP checksums, then only encapsulate
3546                  * it if we have enough descriptors to handle the entire
3547                  * chain at once.
3548                  * (paranoia -- may not actually be needed)
3549                  */
3550                 if ((m_head->m_flags & M_FIRSTFRAG) &&
3551                     (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
3552                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3553                             m_head->m_pkthdr.csum_data + sc->bge_txrsvd) {
3554                                 ifq_set_oactive(&ifp->if_snd);
3555                                 ifq_prepend(&ifp->if_snd, m_head);
3556                                 break;
3557                         }
3558                 }
3559
3560                 /*
3561                  * Sanity check: avoid coming within bge_txrsvd
3562                  * descriptors of the end of the ring.  Also make
3563                  * sure there are bge_txspare descriptors for
3564                  * jumbo buffers' defragmentation.
3565                  */
3566                 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3567                     (sc->bge_txrsvd + sc->bge_txspare)) {
3568                         ifq_set_oactive(&ifp->if_snd);
3569                         ifq_prepend(&ifp->if_snd, m_head);
3570                         break;
3571                 }
3572
3573                 /*
3574                  * Pack the data into the transmit ring. If we
3575                  * don't have room, set the OACTIVE flag and wait
3576                  * for the NIC to drain the ring.
3577                  */
3578                 if (bge_encap(sc, &m_head, &prodidx, &nsegs)) {
3579                         ifq_set_oactive(&ifp->if_snd);
3580                         IFNET_STAT_INC(ifp, oerrors, 1);
3581                         break;
3582                 }
3583
3584                 if (nsegs >= sc->bge_tx_wreg) {
3585                         bge_xmit(sc, prodidx);
3586                         nsegs = 0;
3587                 }
3588
3589                 ETHER_BPF_MTAP(ifp, m_head);
3590
3591                 /*
3592                  * Set a timeout in case the chip goes out to lunch.
3593                  */
3594                 ifp->if_timer = 5;
3595         }
3596
3597         if (nsegs > 0)
3598                 bge_xmit(sc, prodidx);
3599         sc->bge_tx_prodidx = prodidx;
3600 }
3601
3602 static void
3603 bge_init(void *xsc)
3604 {
3605         struct bge_softc *sc = xsc;
3606         struct ifnet *ifp = &sc->arpcom.ac_if;
3607         uint16_t *m;
3608         uint32_t mode;
3609
3610         ASSERT_SERIALIZED(ifp->if_serializer);
3611
3612         /* Cancel pending I/O and flush buffers. */
3613         bge_stop(sc);
3614         bge_reset(sc);
3615         bge_chipinit(sc);
3616
3617         /*
3618          * Init the various state machines, ring
3619          * control blocks and firmware.
3620          */
3621         if (bge_blockinit(sc)) {
3622                 if_printf(ifp, "initialization failure\n");
3623                 bge_stop(sc);
3624                 return;
3625         }
3626
3627         /* Specify MTU. */
3628         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3629             ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3630
3631         /* Load our MAC address. */
3632         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3633         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3634         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3635
3636         /* Enable or disable promiscuous mode as needed. */
3637         bge_setpromisc(sc);
3638
3639         /* Program multicast filter. */
3640         bge_setmulti(sc);
3641
3642         /* Init RX ring. */
3643         if (bge_init_rx_ring_std(sc)) {
3644                 if_printf(ifp, "RX ring initialization failed\n");
3645                 bge_stop(sc);
3646                 return;
3647         }
3648
3649         /*
3650          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3651          * memory to insure that the chip has in fact read the first
3652          * entry of the ring.
3653          */
3654         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3655                 uint32_t                v, i;
3656                 for (i = 0; i < 10; i++) {
3657                         DELAY(20);
3658                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3659                         if (v == (MCLBYTES - ETHER_ALIGN))
3660                                 break;
3661                 }
3662                 if (i == 10)
3663                         if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
3664         }
3665
3666         /* Init jumbo RX ring. */
3667         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3668                 if (bge_init_rx_ring_jumbo(sc)) {
3669                         if_printf(ifp, "Jumbo RX ring initialization failed\n");
3670                         bge_stop(sc);
3671                         return;
3672                 }
3673         }
3674
3675         /* Init our RX return ring index */
3676         sc->bge_rx_saved_considx = 0;
3677
3678         /* Init TX ring. */
3679         bge_init_tx_ring(sc);
3680
3681         /* Enable TX MAC state machine lockup fix. */
3682         mode = CSR_READ_4(sc, BGE_TX_MODE);
3683         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3684                 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3685         /* Turn on transmitter */
3686         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3687
3688         /* Turn on receiver */
3689         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3690
3691         /*
3692          * Set the number of good frames to receive after RX MBUF
3693          * Low Watermark has been reached.  After the RX MAC receives
3694          * this number of frames, it will drop subsequent incoming
3695          * frames until the MBUF High Watermark is reached.
3696          */
3697         CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3698
3699         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
3700                 if (bootverbose) {
3701                         if_printf(ifp, "MSI_MODE: %#x\n",
3702                             CSR_READ_4(sc, BGE_MSI_MODE));
3703                 }
3704
3705                 /*
3706                  * XXX
3707                  * Linux driver turns it on for all chips supporting MSI?!
3708                  */
3709                 if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
3710                         /*
3711                          * XXX
3712                          * According to 5722-PG101-R,
3713                          * BGE_PCIE_TRANSACT_ONESHOT_MSI applies only to
3714                          * BCM5906.
3715                          */
3716                         BGE_SETBIT(sc, BGE_PCIE_TRANSACT,
3717                             BGE_PCIE_TRANSACT_ONESHOT_MSI);
3718                 }
3719         }
3720
3721         /* Tell firmware we're alive. */
3722         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3723
3724         /* Enable host interrupts if polling(4) is not enabled. */
3725         PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3726 #ifdef IFPOLL_ENABLE
3727         if (ifp->if_flags & IFF_NPOLLING)
3728                 bge_disable_intr(sc);
3729         else
3730 #endif
3731         bge_enable_intr(sc);
3732
3733         bge_ifmedia_upd(ifp);
3734
3735         ifp->if_flags |= IFF_RUNNING;
3736         ifq_clr_oactive(&ifp->if_snd);
3737
3738         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3739 }
3740
3741 /*
3742  * Set media options.
3743  */
3744 static int
3745 bge_ifmedia_upd(struct ifnet *ifp)
3746 {
3747         struct bge_softc *sc = ifp->if_softc;
3748
3749         /* If this is a 1000baseX NIC, enable the TBI port. */
3750         if (sc->bge_flags & BGE_FLAG_TBI) {
3751                 struct ifmedia *ifm = &sc->bge_ifmedia;
3752
3753                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3754                         return(EINVAL);
3755
3756                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3757                 case IFM_AUTO:
3758                         /*
3759                          * The BCM5704 ASIC appears to have a special
3760                          * mechanism for programming the autoneg
3761                          * advertisement registers in TBI mode.
3762                          */
3763                         if (!bge_fake_autoneg &&
3764                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3765                                 uint32_t sgdig;
3766
3767                                 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3768                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3769                                 sgdig |= BGE_SGDIGCFG_AUTO |
3770                                          BGE_SGDIGCFG_PAUSE_CAP |
3771                                          BGE_SGDIGCFG_ASYM_PAUSE;
3772                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3773                                             sgdig | BGE_SGDIGCFG_SEND);
3774                                 DELAY(5);
3775                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3776                         }
3777                         break;
3778                 case IFM_1000_SX:
3779                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3780                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
3781                                     BGE_MACMODE_HALF_DUPLEX);
3782                         } else {
3783                                 BGE_SETBIT(sc, BGE_MAC_MODE,
3784                                     BGE_MACMODE_HALF_DUPLEX);
3785                         }
3786                         break;
3787                 default:
3788                         return(EINVAL);
3789                 }
3790         } else {
3791                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3792
3793                 sc->bge_link_evt++;
3794                 sc->bge_link = 0;
3795                 if (mii->mii_instance) {
3796                         struct mii_softc *miisc;
3797
3798                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3799                                 mii_phy_reset(miisc);
3800                 }
3801                 mii_mediachg(mii);
3802
3803                 /*
3804                  * Force an interrupt so that we will call bge_link_upd
3805                  * if needed and clear any pending link state attention.
3806                  * Without this we are not getting any further interrupts
3807                  * for link state changes and thus will not UP the link and
3808                  * not be able to send in bge_start.  The only way to get
3809                  * things working was to receive a packet and get an RX
3810                  * intr.
3811                  *
3812                  * bge_tick should help for fiber cards and we might not
3813                  * need to do this here if BGE_FLAG_TBI is set but as
3814                  * we poll for fiber anyway it should not harm.
3815                  */
3816                 if (BGE_IS_CRIPPLED(sc))
3817                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3818                 else
3819                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3820         }
3821         return(0);
3822 }
3823
3824 /*
3825  * Report current media status.
3826  */
3827 static void
3828 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3829 {
3830         struct bge_softc *sc = ifp->if_softc;
3831
3832         if (sc->bge_flags & BGE_FLAG_TBI) {
3833                 ifmr->ifm_status = IFM_AVALID;
3834                 ifmr->ifm_active = IFM_ETHER;
3835                 if (CSR_READ_4(sc, BGE_MAC_STS) &
3836                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
3837                         ifmr->ifm_status |= IFM_ACTIVE;
3838                 } else {
3839                         ifmr->ifm_active |= IFM_NONE;
3840                         return;
3841                 }
3842
3843                 ifmr->ifm_active |= IFM_1000_SX;
3844                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3845                         ifmr->ifm_active |= IFM_HDX;    
3846                 else
3847                         ifmr->ifm_active |= IFM_FDX;
3848         } else {
3849                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3850
3851                 mii_pollstat(mii);
3852                 ifmr->ifm_active = mii->mii_media_active;
3853                 ifmr->ifm_status = mii->mii_media_status;
3854         }
3855 }
3856
3857 static int
3858 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3859 {
3860         struct bge_softc *sc = ifp->if_softc;
3861         struct ifreq *ifr = (struct ifreq *)data;
3862         int mask, error = 0;
3863
3864         ASSERT_SERIALIZED(ifp->if_serializer);
3865
3866         switch (command) {
3867         case SIOCSIFMTU:
3868                 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3869                     (BGE_IS_JUMBO_CAPABLE(sc) &&
3870                      ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3871                         error = EINVAL;
3872                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3873                         ifp->if_mtu = ifr->ifr_mtu;
3874                         if (ifp->if_flags & IFF_RUNNING)
3875                                 bge_init(sc);
3876                 }
3877                 break;
3878         case SIOCSIFFLAGS:
3879                 if (ifp->if_flags & IFF_UP) {
3880                         if (ifp->if_flags & IFF_RUNNING) {
3881                                 mask = ifp->if_flags ^ sc->bge_if_flags;
3882
3883                                 /*
3884                                  * If only the state of the PROMISC flag
3885                                  * changed, then just use the 'set promisc
3886                                  * mode' command instead of reinitializing
3887                                  * the entire NIC. Doing a full re-init
3888                                  * means reloading the firmware and waiting
3889                                  * for it to start up, which may take a
3890                                  * second or two.  Similarly for ALLMULTI.
3891                                  */
3892                                 if (mask & IFF_PROMISC)
3893                                         bge_setpromisc(sc);
3894                                 if (mask & IFF_ALLMULTI)
3895                                         bge_setmulti(sc);
3896                         } else {
3897                                 bge_init(sc);
3898                         }
3899                 } else if (ifp->if_flags & IFF_RUNNING) {
3900                         bge_stop(sc);
3901                 }
3902                 sc->bge_if_flags = ifp->if_flags;
3903                 break;
3904         case SIOCADDMULTI:
3905         case SIOCDELMULTI:
3906                 if (ifp->if_flags & IFF_RUNNING)
3907                         bge_setmulti(sc);
3908                 break;
3909         case SIOCSIFMEDIA:
3910         case SIOCGIFMEDIA:
3911                 if (sc->bge_flags & BGE_FLAG_TBI) {
3912                         error = ifmedia_ioctl(ifp, ifr,
3913                             &sc->bge_ifmedia, command);
3914                 } else {
3915                         struct mii_data *mii;
3916
3917                         mii = device_get_softc(sc->bge_miibus);
3918                         error = ifmedia_ioctl(ifp, ifr,
3919                                               &mii->mii_media, command);
3920                 }
3921                 break;
3922         case SIOCSIFCAP:
3923                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3924                 if (mask & IFCAP_HWCSUM) {
3925                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
3926                         if (ifp->if_capenable & IFCAP_TXCSUM)
3927                                 ifp->if_hwassist |= BGE_CSUM_FEATURES;
3928                         else
3929                                 ifp->if_hwassist &= ~BGE_CSUM_FEATURES;
3930                 }
3931                 if (mask & IFCAP_TSO) {
3932                         ifp->if_capenable ^= IFCAP_TSO;
3933                         if (ifp->if_capenable & IFCAP_TSO)
3934                                 ifp->if_hwassist |= CSUM_TSO;
3935                         else
3936                                 ifp->if_hwassist &= ~CSUM_TSO;
3937                 }
3938                 break;
3939         default:
3940                 error = ether_ioctl(ifp, command, data);
3941                 break;
3942         }
3943         return error;
3944 }
3945
3946 static void
3947 bge_watchdog(struct ifnet *ifp)
3948 {
3949         struct bge_softc *sc = ifp->if_softc;
3950
3951         if_printf(ifp, "watchdog timeout -- resetting\n");
3952
3953         bge_init(sc);
3954
3955         IFNET_STAT_INC(ifp, oerrors, 1);
3956
3957         if (!ifq_is_empty(&ifp->if_snd))
3958                 if_devstart(ifp);
3959 }
3960
3961 /*
3962  * Stop the adapter and free any mbufs allocated to the
3963  * RX and TX lists.
3964  */
3965 static void
3966 bge_stop(struct bge_softc *sc)
3967 {
3968         struct ifnet *ifp = &sc->arpcom.ac_if;
3969
3970         ASSERT_SERIALIZED(ifp->if_serializer);
3971
3972         callout_stop(&sc->bge_stat_timer);
3973
3974         /*
3975          * Disable all of the receiver blocks
3976          */
3977         bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3978         bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3979         bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3980         if (BGE_IS_5700_FAMILY(sc))
3981                 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3982         bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3983         bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3984         bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3985
3986         /*
3987          * Disable all of the transmit blocks
3988          */
3989         bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3990         bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3991         bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3992         bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3993         bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3994         if (BGE_IS_5700_FAMILY(sc))
3995                 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3996         bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3997
3998         /*
3999          * Shut down all of the memory managers and related
4000          * state machines.
4001          */
4002         bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4003         bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4004         if (BGE_IS_5700_FAMILY(sc))
4005                 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4006         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4007         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4008         if (!BGE_IS_5705_PLUS(sc)) {
4009                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4010                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4011         }
4012
4013         /* Disable host interrupts. */
4014         bge_disable_intr(sc);
4015
4016         /*
4017          * Tell firmware we're shutting down.
4018          */
4019         BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4020
4021         /* Free the RX lists. */
4022         bge_free_rx_ring_std(sc);
4023
4024         /* Free jumbo RX list. */
4025         if (BGE_IS_JUMBO_CAPABLE(sc))
4026                 bge_free_rx_ring_jumbo(sc);
4027
4028         /* Free TX buffers. */
4029         bge_free_tx_ring(sc);
4030
4031         sc->bge_status_tag = 0;
4032         sc->bge_link = 0;
4033         sc->bge_coal_chg = 0;
4034
4035         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4036
4037         ifp->if_flags &= ~IFF_RUNNING;
4038         ifq_clr_oactive(&ifp->if_snd);
4039         ifp->if_timer = 0;
4040 }
4041
4042 /*
4043  * Stop all chip I/O so that the kernel's probe routines don't
4044  * get confused by errant DMAs when rebooting.
4045  */
4046 static void
4047 bge_shutdown(device_t dev)
4048 {
4049         struct bge_softc *sc = device_get_softc(dev);
4050         struct ifnet *ifp = &sc->arpcom.ac_if;
4051
4052         lwkt_serialize_enter(ifp->if_serializer);
4053         bge_stop(sc);
4054         bge_reset(sc);
4055         lwkt_serialize_exit(ifp->if_serializer);
4056 }
4057
4058 static int
4059 bge_suspend(device_t dev)
4060 {
4061         struct bge_softc *sc = device_get_softc(dev);
4062         struct ifnet *ifp = &sc->arpcom.ac_if;
4063
4064         lwkt_serialize_enter(ifp->if_serializer);
4065         bge_stop(sc);
4066         lwkt_serialize_exit(ifp->if_serializer);
4067
4068         return 0;
4069 }
4070
4071 static int
4072 bge_resume(device_t dev)
4073 {
4074         struct bge_softc *sc = device_get_softc(dev);
4075         struct ifnet *ifp = &sc->arpcom.ac_if;
4076
4077         lwkt_serialize_enter(ifp->if_serializer);
4078
4079         if (ifp->if_flags & IFF_UP) {
4080                 bge_init(sc);
4081
4082                 if (!ifq_is_empty(&ifp->if_snd))
4083                         if_devstart(ifp);
4084         }
4085
4086         lwkt_serialize_exit(ifp->if_serializer);
4087
4088         return 0;
4089 }
4090
4091 static void
4092 bge_setpromisc(struct bge_softc *sc)
4093 {
4094         struct ifnet *ifp = &sc->arpcom.ac_if;
4095
4096         if (ifp->if_flags & IFF_PROMISC)
4097                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4098         else
4099                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4100 }
4101
4102 static void
4103 bge_dma_free(struct bge_softc *sc)
4104 {
4105         int i;
4106
4107         /* Destroy RX mbuf DMA stuffs. */
4108         if (sc->bge_cdata.bge_rx_mtag != NULL) {
4109                 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4110                         bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4111                             sc->bge_cdata.bge_rx_std_dmamap[i]);
4112                 }
4113                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4114                                    sc->bge_cdata.bge_rx_tmpmap);
4115                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4116         }
4117
4118         /* Destroy TX mbuf DMA stuffs. */
4119         if (sc->bge_cdata.bge_tx_mtag != NULL) {
4120                 for (i = 0; i < BGE_TX_RING_CNT; i++) {
4121                         bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4122                             sc->bge_cdata.bge_tx_dmamap[i]);
4123                 }
4124                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4125         }
4126
4127         /* Destroy standard RX ring */
4128         bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
4129                            sc->bge_cdata.bge_rx_std_ring_map,
4130                            sc->bge_ldata.bge_rx_std_ring);
4131
4132         if (BGE_IS_JUMBO_CAPABLE(sc))
4133                 bge_free_jumbo_mem(sc);
4134
4135         /* Destroy RX return ring */
4136         bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
4137                            sc->bge_cdata.bge_rx_return_ring_map,
4138                            sc->bge_ldata.bge_rx_return_ring);
4139
4140         /* Destroy TX ring */
4141         bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
4142                            sc->bge_cdata.bge_tx_ring_map,
4143                            sc->bge_ldata.bge_tx_ring);
4144
4145         /* Destroy status block */
4146         bge_dma_block_free(sc->bge_cdata.bge_status_tag,
4147                            sc->bge_cdata.bge_status_map,
4148                            sc->bge_ldata.bge_status_block);
4149
4150         /* Destroy statistics block */
4151         bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
4152                            sc->bge_cdata.bge_stats_map,
4153                            sc->bge_ldata.bge_stats);
4154
4155         /* Destroy the parent tag */
4156         if (sc->bge_cdata.bge_parent_tag != NULL)
4157                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
4158 }
4159
4160 static int
4161 bge_dma_alloc(struct bge_softc *sc)
4162 {
4163         struct ifnet *ifp = &sc->arpcom.ac_if;
4164         int i, error;
4165         bus_addr_t lowaddr;
4166         bus_size_t txmaxsz;
4167
4168         lowaddr = BUS_SPACE_MAXADDR;
4169         if (sc->bge_flags & BGE_FLAG_MAXADDR_40BIT)
4170                 lowaddr = BGE_DMA_MAXADDR_40BIT;
4171
4172         /*
4173          * Allocate the parent bus DMA tag appropriate for PCI.
4174          *
4175          * All of the NetExtreme/NetLink controllers have 4GB boundary
4176          * DMA bug.
4177          * Whenever an address crosses a multiple of the 4GB boundary
4178          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
4179          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
4180          * state machine will lockup and cause the device to hang.
4181          */
4182         error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
4183                                    lowaddr, BUS_SPACE_MAXADDR,
4184                                    NULL, NULL,
4185                                    BUS_SPACE_MAXSIZE_32BIT, 0,
4186                                    BUS_SPACE_MAXSIZE_32BIT,
4187                                    0, &sc->bge_cdata.bge_parent_tag);
4188         if (error) {
4189                 if_printf(ifp, "could not allocate parent dma tag\n");
4190                 return error;
4191         }
4192
4193         /*
4194          * Create DMA tag and maps for RX mbufs.
4195          */
4196         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4197                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4198                                    NULL, NULL, MCLBYTES, 1, MCLBYTES,
4199                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
4200                                    &sc->bge_cdata.bge_rx_mtag);
4201         if (error) {
4202                 if_printf(ifp, "could not allocate RX mbuf dma tag\n");
4203                 return error;
4204         }
4205
4206         error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4207                                   BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_tmpmap);
4208         if (error) {
4209                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4210                 sc->bge_cdata.bge_rx_mtag = NULL;
4211                 return error;
4212         }
4213
4214         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4215                 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4216                                           BUS_DMA_WAITOK,
4217                                           &sc->bge_cdata.bge_rx_std_dmamap[i]);
4218                 if (error) {
4219                         int j;
4220
4221                         for (j = 0; j < i; ++j) {
4222                                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4223                                         sc->bge_cdata.bge_rx_std_dmamap[j]);
4224                         }
4225                         bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4226                         sc->bge_cdata.bge_rx_mtag = NULL;
4227
4228                         if_printf(ifp, "could not create DMA map for RX\n");
4229                         return error;
4230                 }
4231         }
4232
4233         /*
4234          * Create DMA tag and maps for TX mbufs.
4235          */
4236         if (sc->bge_flags & BGE_FLAG_TSO)
4237                 txmaxsz = IP_MAXPACKET + sizeof(struct ether_vlan_header);
4238         else
4239                 txmaxsz = BGE_JUMBO_FRAMELEN;
4240         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4241                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4242                                    NULL, NULL,
4243                                    txmaxsz, BGE_NSEG_NEW, PAGE_SIZE,
4244                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
4245                                    BUS_DMA_ONEBPAGE,
4246                                    &sc->bge_cdata.bge_tx_mtag);
4247         if (error) {
4248                 if_printf(ifp, "could not allocate TX mbuf dma tag\n");
4249                 return error;
4250         }
4251
4252         for (i = 0; i < BGE_TX_RING_CNT; i++) {
4253                 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag,
4254                                           BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
4255                                           &sc->bge_cdata.bge_tx_dmamap[i]);
4256                 if (error) {
4257                         int j;
4258
4259                         for (j = 0; j < i; ++j) {
4260                                 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4261                                         sc->bge_cdata.bge_tx_dmamap[j]);
4262                         }
4263                         bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4264                         sc->bge_cdata.bge_tx_mtag = NULL;
4265
4266                         if_printf(ifp, "could not create DMA map for TX\n");
4267                         return error;
4268                 }
4269         }
4270
4271         /*
4272          * Create DMA stuffs for standard RX ring.
4273          */
4274         error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
4275                                     &sc->bge_cdata.bge_rx_std_ring_tag,
4276                                     &sc->bge_cdata.bge_rx_std_ring_map,
4277                                     (void *)&sc->bge_ldata.bge_rx_std_ring,
4278                                     &sc->bge_ldata.bge_rx_std_ring_paddr);
4279         if (error) {
4280                 if_printf(ifp, "could not create std RX ring\n");
4281                 return error;
4282         }
4283
4284         /*
4285          * Create jumbo buffer pool.
4286          */
4287         if (BGE_IS_JUMBO_CAPABLE(sc)) {
4288                 error = bge_alloc_jumbo_mem(sc);
4289                 if (error) {
4290                         if_printf(ifp, "could not create jumbo buffer pool\n");
4291                         return error;
4292                 }
4293         }
4294
4295         /*
4296          * Create DMA stuffs for RX return ring.
4297          */
4298         error = bge_dma_block_alloc(sc,
4299             BGE_RX_RTN_RING_SZ(sc->bge_return_ring_cnt),
4300             &sc->bge_cdata.bge_rx_return_ring_tag,
4301             &sc->bge_cdata.bge_rx_return_ring_map,
4302             (void *)&sc->bge_ldata.bge_rx_return_ring,
4303             &sc->bge_ldata.bge_rx_return_ring_paddr);
4304         if (error) {
4305                 if_printf(ifp, "could not create RX ret ring\n");
4306                 return error;
4307         }
4308
4309         /*
4310          * Create DMA stuffs for TX ring.
4311          */
4312         error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
4313                                     &sc->bge_cdata.bge_tx_ring_tag,
4314                                     &sc->bge_cdata.bge_tx_ring_map,
4315                                     (void *)&sc->bge_ldata.bge_tx_ring,
4316                                     &sc->bge_ldata.bge_tx_ring_paddr);
4317         if (error) {
4318                 if_printf(ifp, "could not create TX ring\n");
4319                 return error;
4320         }
4321
4322         /*
4323          * Create DMA stuffs for status block.
4324          */
4325         error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
4326                                     &sc->bge_cdata.bge_status_tag,
4327                                     &sc->bge_cdata.bge_status_map,
4328                                     (void *)&sc->bge_ldata.bge_status_block,
4329                                     &sc->bge_ldata.bge_status_block_paddr);
4330         if (error) {
4331                 if_printf(ifp, "could not create status block\n");
4332                 return error;
4333         }
4334
4335         /*
4336          * Create DMA stuffs for statistics block.
4337          */
4338         error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
4339                                     &sc->bge_cdata.bge_stats_tag,
4340                                     &sc->bge_cdata.bge_stats_map,
4341                                     (void *)&sc->bge_ldata.bge_stats,
4342                                     &sc->bge_ldata.bge_stats_paddr);
4343         if (error) {
4344                 if_printf(ifp, "could not create stats block\n");
4345                 return error;
4346         }
4347         return 0;
4348 }
4349
4350 static int
4351 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
4352                     bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
4353 {
4354         bus_dmamem_t dmem;
4355         int error;
4356
4357         error = bus_dmamem_coherent(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
4358                                     BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4359                                     size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
4360         if (error)
4361                 return error;
4362
4363         *tag = dmem.dmem_tag;
4364         *map = dmem.dmem_map;
4365         *addr = dmem.dmem_addr;
4366         *paddr = dmem.dmem_busaddr;
4367
4368         return 0;
4369 }
4370
4371 static void
4372 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
4373 {
4374         if (tag != NULL) {
4375                 bus_dmamap_unload(tag, map);
4376                 bus_dmamem_free(tag, addr, map);
4377                 bus_dma_tag_destroy(tag);
4378         }
4379 }
4380
4381 /*
4382  * Grrr. The link status word in the status block does
4383  * not work correctly on the BCM5700 rev AX and BX chips,
4384  * according to all available information. Hence, we have
4385  * to enable MII interrupts in order to properly obtain
4386  * async link changes. Unfortunately, this also means that
4387  * we have to read the MAC status register to detect link
4388  * changes, thereby adding an additional register access to
4389  * the interrupt handler.
4390  *
4391  * XXX: perhaps link state detection procedure used for
4392  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4393  */
4394 static void
4395 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
4396 {
4397         struct ifnet *ifp = &sc->arpcom.ac_if;
4398         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4399
4400         mii_pollstat(mii);
4401
4402         if (!sc->bge_link &&
4403             (mii->mii_media_status & IFM_ACTIVE) &&
4404             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4405                 sc->bge_link++;
4406                 if (bootverbose)
4407                         if_printf(ifp, "link UP\n");
4408         } else if (sc->bge_link &&
4409             (!(mii->mii_media_status & IFM_ACTIVE) ||
4410             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4411                 sc->bge_link = 0;
4412                 if (bootverbose)
4413                         if_printf(ifp, "link DOWN\n");
4414         }
4415
4416         /* Clear the interrupt. */
4417         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
4418         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4419         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
4420 }
4421
4422 static void
4423 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
4424 {
4425         struct ifnet *ifp = &sc->arpcom.ac_if;
4426
4427 #define PCS_ENCODE_ERR  (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
4428
4429         /*
4430          * Sometimes PCS encoding errors are detected in
4431          * TBI mode (on fiber NICs), and for some reason
4432          * the chip will signal them as link changes.
4433          * If we get a link change event, but the 'PCS
4434          * encoding error' bit in the MAC status register
4435          * is set, don't bother doing a link check.
4436          * This avoids spurious "gigabit link up" messages
4437          * that sometimes appear on fiber NICs during
4438          * periods of heavy traffic.
4439          */
4440         if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4441                 if (!sc->bge_link) {
4442                         sc->bge_link++;
4443                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4444                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
4445                                     BGE_MACMODE_TBI_SEND_CFGS);
4446                         }
4447                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4448
4449                         if (bootverbose)
4450                                 if_printf(ifp, "link UP\n");
4451
4452                         ifp->if_link_state = LINK_STATE_UP;
4453                         if_link_state_change(ifp);
4454                 }
4455         } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
4456                 if (sc->bge_link) {
4457                         sc->bge_link = 0;
4458
4459                         if (bootverbose)
4460                                 if_printf(ifp, "link DOWN\n");
4461
4462                         ifp->if_link_state = LINK_STATE_DOWN;
4463                         if_link_state_change(ifp);
4464                 }
4465         }
4466
4467 #undef PCS_ENCODE_ERR
4468
4469         /* Clear the attention. */
4470         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4471             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4472             BGE_MACSTAT_LINK_CHANGED);
4473 }
4474
4475 static void
4476 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
4477 {
4478         struct ifnet *ifp = &sc->arpcom.ac_if;
4479         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4480
4481         mii_pollstat(mii);
4482         bge_miibus_statchg(sc->bge_dev);
4483
4484         if (bootverbose) {
4485                 if (sc->bge_link)
4486                         if_printf(ifp, "link UP\n");
4487                 else
4488                         if_printf(ifp, "link DOWN\n");
4489         }
4490
4491         /* Clear the attention. */
4492         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4493             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4494             BGE_MACSTAT_LINK_CHANGED);
4495 }
4496
4497 static void
4498 bge_autopoll_link_upd(struct bge_softc *sc, uint32_t status __unused)
4499 {
4500         struct ifnet *ifp = &sc->arpcom.ac_if;
4501         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4502
4503         mii_pollstat(mii);
4504
4505         if (!sc->bge_link &&
4506             (mii->mii_media_status & IFM_ACTIVE) &&
4507             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4508                 sc->bge_link++;
4509                 if (bootverbose)
4510                         if_printf(ifp, "link UP\n");
4511         } else if (sc->bge_link &&
4512             (!(mii->mii_media_status & IFM_ACTIVE) ||
4513             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4514                 sc->bge_link = 0;
4515                 if (bootverbose)
4516                         if_printf(ifp, "link DOWN\n");
4517         }
4518
4519         /* Clear the attention. */
4520         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4521             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4522             BGE_MACSTAT_LINK_CHANGED);
4523 }
4524
4525 static int
4526 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
4527 {
4528         struct bge_softc *sc = arg1;
4529
4530         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4531             &sc->bge_rx_coal_ticks,
4532             BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4533             BGE_RX_COAL_TICKS_CHG);
4534 }
4535
4536 static int
4537 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
4538 {
4539         struct bge_softc *sc = arg1;
4540
4541         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4542             &sc->bge_tx_coal_ticks,
4543             BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4544             BGE_TX_COAL_TICKS_CHG);
4545 }
4546
4547 static int
4548 bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
4549 {
4550         struct bge_softc *sc = arg1;
4551
4552         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4553             &sc->bge_rx_coal_bds,
4554             BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4555             BGE_RX_COAL_BDS_CHG);
4556 }
4557
4558 static int
4559 bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
4560 {
4561         struct bge_softc *sc = arg1;
4562
4563         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4564             &sc->bge_tx_coal_bds,
4565             BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4566             BGE_TX_COAL_BDS_CHG);
4567 }
4568
4569 static int
4570 bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4571 {
4572         struct bge_softc *sc = arg1;
4573
4574         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4575             &sc->bge_rx_coal_ticks_int,
4576             BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4577             BGE_RX_COAL_TICKS_INT_CHG);
4578 }
4579
4580 static int
4581 bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4582 {
4583         struct bge_softc *sc = arg1;
4584
4585         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4586             &sc->bge_tx_coal_ticks_int,
4587             BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4588             BGE_TX_COAL_TICKS_INT_CHG);
4589 }
4590
4591 static int
4592 bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4593 {
4594         struct bge_softc *sc = arg1;
4595
4596         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4597             &sc->bge_rx_coal_bds_int,
4598             BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4599             BGE_RX_COAL_BDS_INT_CHG);
4600 }
4601
4602 static int
4603 bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4604 {
4605         struct bge_softc *sc = arg1;
4606
4607         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4608             &sc->bge_tx_coal_bds_int,
4609             BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4610             BGE_TX_COAL_BDS_INT_CHG);
4611 }
4612
4613 static int
4614 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
4615     int coal_min, int coal_max, uint32_t coal_chg_mask)
4616 {
4617         struct bge_softc *sc = arg1;
4618         struct ifnet *ifp = &sc->arpcom.ac_if;
4619         int error = 0, v;
4620
4621         lwkt_serialize_enter(ifp->if_serializer);
4622
4623         v = *coal;
4624         error = sysctl_handle_int(oidp, &v, 0, req);
4625         if (!error && req->newptr != NULL) {
4626                 if (v < coal_min || v > coal_max) {
4627                         error = EINVAL;
4628                 } else {
4629                         *coal = v;
4630                         sc->bge_coal_chg |= coal_chg_mask;
4631                 }
4632         }
4633
4634         lwkt_serialize_exit(ifp->if_serializer);
4635         return error;
4636 }
4637
4638 static void
4639 bge_coal_change(struct bge_softc *sc)
4640 {
4641         struct ifnet *ifp = &sc->arpcom.ac_if;
4642
4643         ASSERT_SERIALIZED(ifp->if_serializer);
4644
4645         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
4646                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
4647                             sc->bge_rx_coal_ticks);
4648                 DELAY(10);
4649                 CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4650
4651                 if (bootverbose) {
4652                         if_printf(ifp, "rx_coal_ticks -> %u\n",
4653                                   sc->bge_rx_coal_ticks);
4654                 }
4655         }
4656
4657         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
4658                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
4659                             sc->bge_tx_coal_ticks);
4660                 DELAY(10);
4661                 CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
4662
4663                 if (bootverbose) {
4664                         if_printf(ifp, "tx_coal_ticks -> %u\n",
4665                                   sc->bge_tx_coal_ticks);
4666                 }
4667         }
4668
4669         if (sc->bge_coal_chg & BGE_RX_COAL_BDS_CHG) {
4670                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
4671                             sc->bge_rx_coal_bds);
4672                 DELAY(10);
4673                 CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4674
4675                 if (bootverbose) {
4676                         if_printf(ifp, "rx_coal_bds -> %u\n",
4677                                   sc->bge_rx_coal_bds);
4678                 }
4679         }
4680
4681         if (sc->bge_coal_chg & BGE_TX_COAL_BDS_CHG) {
4682                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
4683                             sc->bge_tx_coal_bds);
4684                 DELAY(10);
4685                 CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
4686
4687                 if (bootverbose) {
4688                         if_printf(ifp, "tx_max_coal_bds -> %u\n",
4689                                   sc->bge_tx_coal_bds);
4690                 }
4691         }
4692
4693         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_INT_CHG) {
4694                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
4695                     sc->bge_rx_coal_ticks_int);
4696                 DELAY(10);
4697                 CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS_INT);
4698
4699                 if (bootverbose) {
4700                         if_printf(ifp, "rx_coal_ticks_int -> %u\n",
4701                             sc->bge_rx_coal_ticks_int);
4702                 }
4703         }
4704
4705         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_INT_CHG) {
4706                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
4707                     sc->bge_tx_coal_ticks_int);
4708                 DELAY(10);
4709                 CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS_INT);
4710
4711                 if (bootverbose) {
4712                         if_printf(ifp, "tx_coal_ticks_int -> %u\n",
4713                             sc->bge_tx_coal_ticks_int);
4714                 }
4715         }
4716
4717         if (sc->bge_coal_chg & BGE_RX_COAL_BDS_INT_CHG) {
4718                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
4719                     sc->bge_rx_coal_bds_int);
4720                 DELAY(10);
4721                 CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT);
4722
4723                 if (bootverbose) {
4724                         if_printf(ifp, "rx_coal_bds_int -> %u\n",
4725                             sc->bge_rx_coal_bds_int);
4726                 }
4727         }
4728
4729         if (sc->bge_coal_chg & BGE_TX_COAL_BDS_INT_CHG) {
4730                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4731                     sc->bge_tx_coal_bds_int);
4732                 DELAY(10);
4733                 CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT);
4734
4735                 if (bootverbose) {
4736                         if_printf(ifp, "tx_coal_bds_int -> %u\n",
4737                             sc->bge_tx_coal_bds_int);
4738                 }
4739         }
4740
4741         sc->bge_coal_chg = 0;
4742 }
4743
4744 static void
4745 bge_enable_intr(struct bge_softc *sc)
4746 {
4747         struct ifnet *ifp = &sc->arpcom.ac_if;
4748
4749         lwkt_serialize_handler_enable(ifp->if_serializer);
4750
4751         /*
4752          * Enable interrupt.
4753          */
4754         bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4755         if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4756                 /* XXX Linux driver */
4757                 bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4758         }
4759
4760         /*
4761          * Unmask the interrupt when we stop polling.
4762          */
4763         PCI_CLRBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4764             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4765
4766         /*
4767          * Trigger another interrupt, since above writing
4768          * to interrupt mailbox0 may acknowledge pending
4769          * interrupt.
4770          */
4771         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4772 }
4773
4774 static void
4775 bge_disable_intr(struct bge_softc *sc)
4776 {
4777         struct ifnet *ifp = &sc->arpcom.ac_if;
4778
4779         /*
4780          * Mask the interrupt when we start polling.
4781          */
4782         PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4783             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4784
4785         /*
4786          * Acknowledge possible asserted interrupt.
4787          */
4788         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4789
4790         sc->bge_npoll.ifpc_stcount = 0;
4791
4792         lwkt_serialize_handler_disable(ifp->if_serializer);
4793 }
4794
4795 static int
4796 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4797 {
4798         uint32_t mac_addr;
4799         int ret = 1;
4800
4801         mac_addr = bge_readmem_ind(sc, 0x0c14);
4802         if ((mac_addr >> 16) == 0x484b) {
4803                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4804                 ether_addr[1] = (uint8_t)mac_addr;
4805                 mac_addr = bge_readmem_ind(sc, 0x0c18);
4806                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4807                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4808                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4809                 ether_addr[5] = (uint8_t)mac_addr;
4810                 ret = 0;
4811         }
4812         return ret;
4813 }
4814
4815 static int
4816 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4817 {
4818         int mac_offset = BGE_EE_MAC_OFFSET;
4819
4820         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4821                 mac_offset = BGE_EE_MAC_OFFSET_5906;
4822
4823         return bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
4824 }
4825
4826 static int
4827 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4828 {
4829         if (sc->bge_flags & BGE_FLAG_NO_EEPROM)
4830                 return 1;
4831
4832         return bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4833                                ETHER_ADDR_LEN);
4834 }
4835
4836 static int
4837 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4838 {
4839         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4840                 /* NOTE: Order is critical */
4841                 bge_get_eaddr_mem,
4842                 bge_get_eaddr_nvram,
4843                 bge_get_eaddr_eeprom,
4844                 NULL
4845         };
4846         const bge_eaddr_fcn_t *func;
4847
4848         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4849                 if ((*func)(sc, eaddr) == 0)
4850                         break;
4851         }
4852         return (*func == NULL ? ENXIO : 0);
4853 }
4854
4855 /*
4856  * NOTE: 'm' is not freed upon failure
4857  */
4858 struct mbuf *
4859 bge_defrag_shortdma(struct mbuf *m)
4860 {
4861         struct mbuf *n;
4862         int found;
4863
4864         /*
4865          * If device receive two back-to-back send BDs with less than
4866          * or equal to 8 total bytes then the device may hang.  The two
4867          * back-to-back send BDs must in the same frame for this failure
4868          * to occur.  Scan mbuf chains and see whether two back-to-back
4869          * send BDs are there.  If this is the case, allocate new mbuf
4870          * and copy the frame to workaround the silicon bug.
4871          */
4872         for (n = m, found = 0; n != NULL; n = n->m_next) {
4873                 if (n->m_len < 8) {
4874                         found++;
4875                         if (found > 1)
4876                                 break;
4877                         continue;
4878                 }
4879                 found = 0;
4880         }
4881
4882         if (found > 1)
4883                 n = m_defrag(m, MB_DONTWAIT);
4884         else
4885                 n = m;
4886         return n;
4887 }
4888
4889 static void
4890 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
4891 {
4892         int i;
4893
4894         BGE_CLRBIT(sc, reg, bit);
4895         for (i = 0; i < BGE_TIMEOUT; i++) {
4896                 if ((CSR_READ_4(sc, reg) & bit) == 0)
4897                         return;
4898                 DELAY(100);
4899         }
4900 }
4901
4902 static void
4903 bge_link_poll(struct bge_softc *sc)
4904 {
4905         uint32_t status;
4906
4907         status = CSR_READ_4(sc, BGE_MAC_STS);
4908         if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
4909                 sc->bge_link_evt = 0;
4910                 sc->bge_link_upd(sc, status);
4911         }
4912 }
4913
4914 static void
4915 bge_enable_msi(struct bge_softc *sc)
4916 {
4917         uint32_t msi_mode;
4918
4919         msi_mode = CSR_READ_4(sc, BGE_MSI_MODE);
4920         msi_mode |= BGE_MSIMODE_ENABLE;
4921         if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4922                 /*
4923                  * According to all of the datasheets that are publicly
4924                  * available, bit 5 of the MSI_MODE is defined to be
4925                  * "MSI FIFO Underrun Attn" for BCM5755+ and BCM5906, on
4926                  * which "oneshot MSI" is enabled.  However, it is always
4927                  * safe to clear it here.
4928                  */
4929                 msi_mode &= ~BGE_MSIMODE_ONESHOT_DISABLE;
4930         }
4931         CSR_WRITE_4(sc, BGE_MSI_MODE, msi_mode);
4932 }
4933
4934 static int
4935 bge_setup_tso(struct bge_softc *sc, struct mbuf **mp,
4936     uint16_t *mss0, uint16_t *flags0)
4937 {
4938         struct mbuf *m;
4939         struct ip *ip;
4940         struct tcphdr *th;
4941         int thoff, iphlen, hoff, hlen;
4942         uint16_t flags, mss;
4943
4944         m = *mp;
4945         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4946
4947         hoff = m->m_pkthdr.csum_lhlen;
4948         iphlen = m->m_pkthdr.csum_iphlen;
4949         thoff = m->m_pkthdr.csum_thlen;
4950
4951         KASSERT(hoff > 0, ("invalid ether header len"));
4952         KASSERT(iphlen > 0, ("invalid ip header len"));
4953         KASSERT(thoff > 0, ("invalid tcp header len"));
4954
4955         if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4956                 m = m_pullup(m, hoff + iphlen + thoff);
4957                 if (m == NULL) {
4958                         *mp = NULL;
4959                         return ENOBUFS;
4960                 }
4961                 *mp = m;
4962         }
4963         ip = mtodoff(m, struct ip *, hoff);
4964         th = mtodoff(m, struct tcphdr *, hoff + iphlen);
4965
4966         mss = m->m_pkthdr.tso_segsz;
4967         flags = BGE_TXBDFLAG_CPU_PRE_DMA | BGE_TXBDFLAG_CPU_POST_DMA;
4968
4969         ip->ip_len = htons(mss + iphlen + thoff);
4970         th->th_sum = 0;
4971
4972         hlen = (iphlen + thoff) >> 2;
4973         mss |= (hlen << 11);
4974
4975         *mss0 = mss;
4976         *flags0 = flags;
4977
4978         return 0;
4979 }