bge: Keep MAC_MODE accesses atomic
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  */
35
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  * 
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  * 
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72
73 #include "opt_ifpoll.h"
74
75 #include <sys/param.h>
76 #include <sys/bus.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/ktr.h>
80 #include <sys/interrupt.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/queue.h>
84 #include <sys/rman.h>
85 #include <sys/serialize.h>
86 #include <sys/socket.h>
87 #include <sys/sockio.h>
88 #include <sys/sysctl.h>
89
90 #include <netinet/ip.h>
91 #include <netinet/tcp.h>
92
93 #include <net/bpf.h>
94 #include <net/ethernet.h>
95 #include <net/if.h>
96 #include <net/if_arp.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_poll.h>
100 #include <net/if_types.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104
105 #include <dev/netif/mii_layer/mii.h>
106 #include <dev/netif/mii_layer/miivar.h>
107 #include <dev/netif/mii_layer/brgphyreg.h>
108
109 #include "pcidevs.h"
110 #include <bus/pci/pcireg.h>
111 #include <bus/pci/pcivar.h>
112
113 #include <dev/netif/bge/if_bgereg.h>
114 #include <dev/netif/bge/if_bgevar.h>
115
116 /* "device miibus" required.  See GENERIC if you get errors here. */
117 #include "miibus_if.h"
118
119 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP)
120
121 #define BGE_RESET_SHUTDOWN      0
122 #define BGE_RESET_START         1
123 #define BGE_RESET_SUSPEND       2
124
125 static const struct bge_type {
126         uint16_t                bge_vid;
127         uint16_t                bge_did;
128         char                    *bge_name;
129 } bge_devs[] = {
130         { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
131                 "3COM 3C996 Gigabit Ethernet" },
132
133         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
134                 "Alteon BCM5700 Gigabit Ethernet" },
135         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
136                 "Alteon BCM5701 Gigabit Ethernet" },
137
138         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
139                 "Altima AC1000 Gigabit Ethernet" },
140         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
141                 "Altima AC1002 Gigabit Ethernet" },
142         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
143                 "Altima AC9100 Gigabit Ethernet" },
144
145         { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
146                 "Apple BCM5701 Gigabit Ethernet" },
147
148         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
149                 "Broadcom BCM5700 Gigabit Ethernet" },
150         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
151                 "Broadcom BCM5701 Gigabit Ethernet" },
152         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
153                 "Broadcom BCM5702 Gigabit Ethernet" },
154         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
155                 "Broadcom BCM5702X Gigabit Ethernet" },
156         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
157                 "Broadcom BCM5702 Gigabit Ethernet" },
158         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
159                 "Broadcom BCM5703 Gigabit Ethernet" },
160         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
161                 "Broadcom BCM5703X Gigabit Ethernet" },
162         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
163                 "Broadcom BCM5703 Gigabit Ethernet" },
164         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
165                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
166         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
167                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
168         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
169                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
170         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
171                 "Broadcom BCM5705 Gigabit Ethernet" },
172         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
173                 "Broadcom BCM5705F Gigabit Ethernet" },
174         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
175                 "Broadcom BCM5705K Gigabit Ethernet" },
176         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
177                 "Broadcom BCM5705M Gigabit Ethernet" },
178         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
179                 "Broadcom BCM5705M Gigabit Ethernet" },
180         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
181                 "Broadcom BCM5714C Gigabit Ethernet" },
182         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
183                 "Broadcom BCM5714S Gigabit Ethernet" },
184         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
185                 "Broadcom BCM5715 Gigabit Ethernet" },
186         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
187                 "Broadcom BCM5715S Gigabit Ethernet" },
188         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
189                 "Broadcom BCM5720 Gigabit Ethernet" },
190         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
191                 "Broadcom BCM5721 Gigabit Ethernet" },
192         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
193                 "Broadcom BCM5722 Gigabit Ethernet" },
194         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723,
195                 "Broadcom BCM5723 Gigabit Ethernet" },
196         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
197                 "Broadcom BCM5750 Gigabit Ethernet" },
198         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
199                 "Broadcom BCM5750M Gigabit Ethernet" },
200         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
201                 "Broadcom BCM5751 Gigabit Ethernet" },
202         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
203                 "Broadcom BCM5751F Gigabit Ethernet" },
204         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
205                 "Broadcom BCM5751M Gigabit Ethernet" },
206         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
207                 "Broadcom BCM5752 Gigabit Ethernet" },
208         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
209                 "Broadcom BCM5752M Gigabit Ethernet" },
210         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
211                 "Broadcom BCM5753 Gigabit Ethernet" },
212         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
213                 "Broadcom BCM5753F Gigabit Ethernet" },
214         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
215                 "Broadcom BCM5753M Gigabit Ethernet" },
216         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
217                 "Broadcom BCM5754 Gigabit Ethernet" },
218         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
219                 "Broadcom BCM5754M Gigabit Ethernet" },
220         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
221                 "Broadcom BCM5755 Gigabit Ethernet" },
222         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
223                 "Broadcom BCM5755M Gigabit Ethernet" },
224         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
225                 "Broadcom BCM5756 Gigabit Ethernet" },
226         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761,
227                 "Broadcom BCM5761 Gigabit Ethernet" },
228         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E,
229                 "Broadcom BCM5761E Gigabit Ethernet" },
230         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S,
231                 "Broadcom BCM5761S Gigabit Ethernet" },
232         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE,
233                 "Broadcom BCM5761SE Gigabit Ethernet" },
234         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764,
235                 "Broadcom BCM5764 Gigabit Ethernet" },
236         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
237                 "Broadcom BCM5780 Gigabit Ethernet" },
238         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
239                 "Broadcom BCM5780S Gigabit Ethernet" },
240         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
241                 "Broadcom BCM5781 Gigabit Ethernet" },
242         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
243                 "Broadcom BCM5782 Gigabit Ethernet" },
244         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784,
245                 "Broadcom BCM5784 Gigabit Ethernet" },
246         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F,
247                 "Broadcom BCM5785F Gigabit Ethernet" },
248         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G,
249                 "Broadcom BCM5785G Gigabit Ethernet" },
250         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
251                 "Broadcom BCM5786 Gigabit Ethernet" },
252         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
253                 "Broadcom BCM5787 Gigabit Ethernet" },
254         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
255                 "Broadcom BCM5787F Gigabit Ethernet" },
256         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
257                 "Broadcom BCM5787M Gigabit Ethernet" },
258         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
259                 "Broadcom BCM5788 Gigabit Ethernet" },
260         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
261                 "Broadcom BCM5789 Gigabit Ethernet" },
262         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
263                 "Broadcom BCM5901 Fast Ethernet" },
264         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
265                 "Broadcom BCM5901A2 Fast Ethernet" },
266         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
267                 "Broadcom BCM5903M Fast Ethernet" },
268         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906,
269                 "Broadcom BCM5906 Fast Ethernet"},
270         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M,
271                 "Broadcom BCM5906M Fast Ethernet"},
272         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760,
273                 "Broadcom BCM57760 Gigabit Ethernet"},
274         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780,
275                 "Broadcom BCM57780 Gigabit Ethernet"},
276         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788,
277                 "Broadcom BCM57788 Gigabit Ethernet"},
278         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790,
279                 "Broadcom BCM57790 Gigabit Ethernet"},
280         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
281                 "SysKonnect Gigabit Ethernet" },
282
283         { 0, 0, NULL }
284 };
285
286 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
287 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
288 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
289 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
290 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
291 #define BGE_IS_5755_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
292 #define BGE_IS_5788(sc)                 ((sc)->bge_flags & BGE_FLAG_5788)
293
294 #define BGE_IS_CRIPPLED(sc)             \
295         (BGE_IS_5788((sc)) || (sc)->bge_asicrev == BGE_ASICREV_BCM5700)
296
297 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
298
299 static int      bge_probe(device_t);
300 static int      bge_attach(device_t);
301 static int      bge_detach(device_t);
302 static void     bge_txeof(struct bge_softc *, uint16_t);
303 static void     bge_rxeof(struct bge_softc *, uint16_t, int);
304
305 static void     bge_tick(void *);
306 static void     bge_stats_update(struct bge_softc *);
307 static void     bge_stats_update_regs(struct bge_softc *);
308 static struct mbuf *
309                 bge_defrag_shortdma(struct mbuf *);
310 static int      bge_encap(struct bge_softc *, struct mbuf **,
311                     uint32_t *, int *);
312 static void     bge_xmit(struct bge_softc *, uint32_t);
313 static int      bge_setup_tso(struct bge_softc *, struct mbuf **,
314                     uint16_t *, uint16_t *);
315
316 #ifdef IFPOLL_ENABLE
317 static void     bge_npoll(struct ifnet *, struct ifpoll_info *);
318 static void     bge_npoll_compat(struct ifnet *, void *, int );
319 #endif
320 static void     bge_intr_crippled(void *);
321 static void     bge_intr_legacy(void *);
322 static void     bge_msi(void *);
323 static void     bge_msi_oneshot(void *);
324 static void     bge_intr(struct bge_softc *);
325 static void     bge_enable_intr(struct bge_softc *);
326 static void     bge_disable_intr(struct bge_softc *);
327 static void     bge_start(struct ifnet *, struct ifaltq_subque *);
328 static int      bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
329 static void     bge_init(void *);
330 static void     bge_stop(struct bge_softc *);
331 static void     bge_watchdog(struct ifnet *);
332 static void     bge_shutdown(device_t);
333 static int      bge_suspend(device_t);
334 static int      bge_resume(device_t);
335 static int      bge_ifmedia_upd(struct ifnet *);
336 static void     bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
337
338 static uint8_t  bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
339 static int      bge_read_nvram(struct bge_softc *, caddr_t, int, int);
340
341 static uint8_t  bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
342 static int      bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
343
344 static void     bge_setmulti(struct bge_softc *);
345 static void     bge_setpromisc(struct bge_softc *);
346 static void     bge_enable_msi(struct bge_softc *sc);
347
348 static int      bge_alloc_jumbo_mem(struct bge_softc *);
349 static void     bge_free_jumbo_mem(struct bge_softc *);
350 static struct bge_jslot
351                 *bge_jalloc(struct bge_softc *);
352 static void     bge_jfree(void *);
353 static void     bge_jref(void *);
354 static int      bge_newbuf_std(struct bge_softc *, int, int);
355 static int      bge_newbuf_jumbo(struct bge_softc *, int, int);
356 static void     bge_setup_rxdesc_std(struct bge_softc *, int);
357 static void     bge_setup_rxdesc_jumbo(struct bge_softc *, int);
358 static int      bge_init_rx_ring_std(struct bge_softc *);
359 static void     bge_free_rx_ring_std(struct bge_softc *);
360 static int      bge_init_rx_ring_jumbo(struct bge_softc *);
361 static void     bge_free_rx_ring_jumbo(struct bge_softc *);
362 static void     bge_free_tx_ring(struct bge_softc *);
363 static int      bge_init_tx_ring(struct bge_softc *);
364
365 static int      bge_chipinit(struct bge_softc *);
366 static int      bge_blockinit(struct bge_softc *);
367 static void     bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
368
369 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
370 static void     bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
371 #ifdef notdef
372 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
373 #endif
374 static void     bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
375 static void     bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
376 static void     bge_writembx(struct bge_softc *, int, int);
377
378 static int      bge_miibus_readreg(device_t, int, int);
379 static int      bge_miibus_writereg(device_t, int, int, int);
380 static void     bge_miibus_statchg(device_t);
381 static void     bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
382 static void     bge_tbi_link_upd(struct bge_softc *, uint32_t);
383 static void     bge_copper_link_upd(struct bge_softc *, uint32_t);
384 static void     bge_autopoll_link_upd(struct bge_softc *, uint32_t);
385 static void     bge_link_poll(struct bge_softc *);
386
387 static void     bge_reset(struct bge_softc *);
388
389 static int      bge_dma_alloc(struct bge_softc *);
390 static void     bge_dma_free(struct bge_softc *);
391 static int      bge_dma_block_alloc(struct bge_softc *, bus_size_t,
392                                     bus_dma_tag_t *, bus_dmamap_t *,
393                                     void **, bus_addr_t *);
394 static void     bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
395
396 static int      bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
397 static int      bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
398 static int      bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
399 static int      bge_get_eaddr(struct bge_softc *, uint8_t[]);
400
401 static void     bge_coal_change(struct bge_softc *);
402 static int      bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
403 static int      bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
404 static int      bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
405 static int      bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
406 static int      bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
407 static int      bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
408 static int      bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
409 static int      bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
410 static int      bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
411                     int, int, uint32_t);
412
413 static void     bge_sig_post_reset(struct bge_softc *, int);
414 static void     bge_sig_legacy(struct bge_softc *, int);
415 static void     bge_sig_pre_reset(struct bge_softc *, int);
416 static void     bge_stop_fw(struct bge_softc *);
417 static void     bge_asf_driver_up(struct bge_softc *);
418
419 /*
420  * Set following tunable to 1 for some IBM blade servers with the DNLK
421  * switch module. Auto negotiation is broken for those configurations.
422  */
423 static int      bge_fake_autoneg = 0;
424 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
425
426 static int      bge_msi_enable = 1;
427 TUNABLE_INT("hw.bge.msi.enable", &bge_msi_enable);
428
429 static int      bge_allow_asf = 1;
430 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
431
432 #if !defined(KTR_IF_BGE)
433 #define KTR_IF_BGE      KTR_ALL
434 #endif
435 KTR_INFO_MASTER(if_bge);
436 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr");
437 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt");
438 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt");
439 #define logif(name)     KTR_LOG(if_bge_ ## name)
440
441 static device_method_t bge_methods[] = {
442         /* Device interface */
443         DEVMETHOD(device_probe,         bge_probe),
444         DEVMETHOD(device_attach,        bge_attach),
445         DEVMETHOD(device_detach,        bge_detach),
446         DEVMETHOD(device_shutdown,      bge_shutdown),
447         DEVMETHOD(device_suspend,       bge_suspend),
448         DEVMETHOD(device_resume,        bge_resume),
449
450         /* bus interface */
451         DEVMETHOD(bus_print_child,      bus_generic_print_child),
452         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
453
454         /* MII interface */
455         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
456         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
457         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
458
459         DEVMETHOD_END
460 };
461
462 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
463 static devclass_t bge_devclass;
464
465 DECLARE_DUMMY_MODULE(if_bge);
466 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, NULL, NULL);
467 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, NULL, NULL);
468
469 static uint32_t
470 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
471 {
472         device_t dev = sc->bge_dev;
473         uint32_t val;
474
475         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
476             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
477                 return 0;
478
479         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
480         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
481         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
482         return (val);
483 }
484
485 static void
486 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
487 {
488         device_t dev = sc->bge_dev;
489
490         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
491             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
492                 return;
493
494         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
495         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
496         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
497 }
498
499 #ifdef notdef
500 static uint32_t
501 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
502 {
503         device_t dev = sc->bge_dev;
504
505         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
506         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
507 }
508 #endif
509
510 static void
511 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
512 {
513         device_t dev = sc->bge_dev;
514
515         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
516         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
517 }
518
519 static void
520 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
521 {
522         CSR_WRITE_4(sc, off, val);
523 }
524
525 static void
526 bge_writembx(struct bge_softc *sc, int off, int val)
527 {
528         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
529                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
530
531         CSR_WRITE_4(sc, off, val);
532         if (sc->bge_mbox_reorder)
533                 CSR_READ_4(sc, off);
534 }
535
536 static uint8_t
537 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
538 {
539         uint32_t access, byte = 0;
540         int i;
541
542         /* Lock. */
543         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
544         for (i = 0; i < 8000; i++) {
545                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
546                         break;
547                 DELAY(20);
548         }
549         if (i == 8000)
550                 return (1);
551
552         /* Enable access. */
553         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
554         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
555
556         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
557         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
558         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
559                 DELAY(10);
560                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
561                         DELAY(10);
562                         break;
563                 }
564         }
565
566         if (i == BGE_TIMEOUT * 10) {
567                 if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
568                 return (1);
569         }
570
571         /* Get result. */
572         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
573
574         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
575
576         /* Disable access. */
577         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
578
579         /* Unlock. */
580         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
581         CSR_READ_4(sc, BGE_NVRAM_SWARB);
582
583         return (0);
584 }
585
586 /*
587  * Read a sequence of bytes from NVRAM.
588  */
589 static int
590 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
591 {
592         int err = 0, i;
593         uint8_t byte = 0;
594
595         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
596                 return (1);
597
598         for (i = 0; i < cnt; i++) {
599                 err = bge_nvram_getbyte(sc, off + i, &byte);
600                 if (err)
601                         break;
602                 *(dest + i) = byte;
603         }
604
605         return (err ? 1 : 0);
606 }
607
608 /*
609  * Read a byte of data stored in the EEPROM at address 'addr.' The
610  * BCM570x supports both the traditional bitbang interface and an
611  * auto access interface for reading the EEPROM. We use the auto
612  * access method.
613  */
614 static uint8_t
615 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
616 {
617         int i;
618         uint32_t byte = 0;
619
620         /*
621          * Enable use of auto EEPROM access so we can avoid
622          * having to use the bitbang method.
623          */
624         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
625
626         /* Reset the EEPROM, load the clock period. */
627         CSR_WRITE_4(sc, BGE_EE_ADDR,
628             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
629         DELAY(20);
630
631         /* Issue the read EEPROM command. */
632         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
633
634         /* Wait for completion */
635         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
636                 DELAY(10);
637                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
638                         break;
639         }
640
641         if (i == BGE_TIMEOUT) {
642                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
643                 return(1);
644         }
645
646         /* Get result. */
647         byte = CSR_READ_4(sc, BGE_EE_DATA);
648
649         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
650
651         return(0);
652 }
653
654 /*
655  * Read a sequence of bytes from the EEPROM.
656  */
657 static int
658 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
659 {
660         size_t i;
661         int err;
662         uint8_t byte;
663
664         for (byte = 0, err = 0, i = 0; i < len; i++) {
665                 err = bge_eeprom_getbyte(sc, off + i, &byte);
666                 if (err)
667                         break;
668                 *(dest + i) = byte;
669         }
670
671         return(err ? 1 : 0);
672 }
673
674 static int
675 bge_miibus_readreg(device_t dev, int phy, int reg)
676 {
677         struct bge_softc *sc = device_get_softc(dev);
678         uint32_t val;
679         int i;
680
681         KASSERT(phy == sc->bge_phyno,
682             ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
683
684         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
685         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
686                 CSR_WRITE_4(sc, BGE_MI_MODE,
687                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
688                 DELAY(80);
689         }
690
691         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
692             BGE_MIPHY(phy) | BGE_MIREG(reg));
693
694         /* Poll for the PHY register access to complete. */
695         for (i = 0; i < BGE_TIMEOUT; i++) {
696                 DELAY(10);
697                 val = CSR_READ_4(sc, BGE_MI_COMM);
698                 if ((val & BGE_MICOMM_BUSY) == 0) {
699                         DELAY(5);
700                         val = CSR_READ_4(sc, BGE_MI_COMM);
701                         break;
702                 }
703         }
704         if (i == BGE_TIMEOUT) {
705                 if_printf(&sc->arpcom.ac_if, "PHY read timed out "
706                     "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
707                 val = 0;
708         }
709
710         /* Restore the autopoll bit if necessary. */
711         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
712                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
713                 DELAY(80);
714         }
715
716         if (val & BGE_MICOMM_READFAIL)
717                 return 0;
718
719         return (val & 0xFFFF);
720 }
721
722 static int
723 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
724 {
725         struct bge_softc *sc = device_get_softc(dev);
726         int i;
727
728         KASSERT(phy == sc->bge_phyno,
729             ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
730
731         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
732             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
733                return 0;
734
735         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
736         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
737                 CSR_WRITE_4(sc, BGE_MI_MODE,
738                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
739                 DELAY(80);
740         }
741
742         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
743             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
744
745         for (i = 0; i < BGE_TIMEOUT; i++) {
746                 DELAY(10);
747                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
748                         DELAY(5);
749                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
750                         break;
751                 }
752         }
753         if (i == BGE_TIMEOUT) {
754                 if_printf(&sc->arpcom.ac_if, "PHY write timed out "
755                     "(phy %d, reg %d, val %d)\n", phy, reg, val);
756         }
757
758         /* Restore the autopoll bit if necessary. */
759         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
760                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
761                 DELAY(80);
762         }
763
764         return 0;
765 }
766
767 static void
768 bge_miibus_statchg(device_t dev)
769 {
770         struct bge_softc *sc;
771         struct mii_data *mii;
772         uint32_t mac_mode;
773
774         sc = device_get_softc(dev);
775         if ((sc->arpcom.ac_if.if_flags & IFF_RUNNING) == 0)
776                 return;
777
778         mii = device_get_softc(sc->bge_miibus);
779
780         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
781             (IFM_ACTIVE | IFM_AVALID)) {
782                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
783                 case IFM_10_T:
784                 case IFM_100_TX:
785                         sc->bge_link = 1;
786                         break;
787                 case IFM_1000_T:
788                 case IFM_1000_SX:
789                 case IFM_2500_SX:
790                         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
791                                 sc->bge_link = 1;
792                         else
793                                 sc->bge_link = 0;
794                         break;
795                 default:
796                         sc->bge_link = 0;
797                         break;
798                 }
799         } else {
800                 sc->bge_link = 0;
801         }
802         if (sc->bge_link == 0)
803                 return;
804
805         /*
806          * APE firmware touches these registers to keep the MAC
807          * connected to the outside world.  Try to keep the
808          * accesses atomic.
809          */
810
811         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
812             ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
813
814         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
815             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
816                 mac_mode |= BGE_PORTMODE_GMII;
817         else
818                 mac_mode |= BGE_PORTMODE_MII;
819
820         if ((mii->mii_media_active & IFM_GMASK) != IFM_FDX)
821                 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
822
823         CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
824 }
825
826 /*
827  * Memory management for jumbo frames.
828  */
829 static int
830 bge_alloc_jumbo_mem(struct bge_softc *sc)
831 {
832         struct ifnet *ifp = &sc->arpcom.ac_if;
833         struct bge_jslot *entry;
834         uint8_t *ptr;
835         bus_addr_t paddr;
836         int i, error;
837
838         /*
839          * Create tag for jumbo mbufs.
840          * This is really a bit of a kludge. We allocate a special
841          * jumbo buffer pool which (thanks to the way our DMA
842          * memory allocation works) will consist of contiguous
843          * pages. This means that even though a jumbo buffer might
844          * be larger than a page size, we don't really need to
845          * map it into more than one DMA segment. However, the
846          * default mbuf tag will result in multi-segment mappings,
847          * so we have to create a special jumbo mbuf tag that
848          * lets us get away with mapping the jumbo buffers as
849          * a single segment. I think eventually the driver should
850          * be changed so that it uses ordinary mbufs and cluster
851          * buffers, i.e. jumbo frames can span multiple DMA
852          * descriptors. But that's a project for another day.
853          */
854
855         /*
856          * Create DMA stuffs for jumbo RX ring.
857          */
858         error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
859                                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
860                                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
861                                     (void *)&sc->bge_ldata.bge_rx_jumbo_ring,
862                                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
863         if (error) {
864                 if_printf(ifp, "could not create jumbo RX ring\n");
865                 return error;
866         }
867
868         /*
869          * Create DMA stuffs for jumbo buffer block.
870          */
871         error = bge_dma_block_alloc(sc, BGE_JMEM,
872                                     &sc->bge_cdata.bge_jumbo_tag,
873                                     &sc->bge_cdata.bge_jumbo_map,
874                                     (void **)&sc->bge_ldata.bge_jumbo_buf,
875                                     &paddr);
876         if (error) {
877                 if_printf(ifp, "could not create jumbo buffer\n");
878                 return error;
879         }
880
881         SLIST_INIT(&sc->bge_jfree_listhead);
882
883         /*
884          * Now divide it up into 9K pieces and save the addresses
885          * in an array. Note that we play an evil trick here by using
886          * the first few bytes in the buffer to hold the the address
887          * of the softc structure for this interface. This is because
888          * bge_jfree() needs it, but it is called by the mbuf management
889          * code which will not pass it to us explicitly.
890          */
891         for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
892                 entry = &sc->bge_cdata.bge_jslots[i];
893                 entry->bge_sc = sc;
894                 entry->bge_buf = ptr;
895                 entry->bge_paddr = paddr;
896                 entry->bge_inuse = 0;
897                 entry->bge_slot = i;
898                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
899
900                 ptr += BGE_JLEN;
901                 paddr += BGE_JLEN;
902         }
903         return 0;
904 }
905
906 static void
907 bge_free_jumbo_mem(struct bge_softc *sc)
908 {
909         /* Destroy jumbo RX ring. */
910         bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
911                            sc->bge_cdata.bge_rx_jumbo_ring_map,
912                            sc->bge_ldata.bge_rx_jumbo_ring);
913
914         /* Destroy jumbo buffer block. */
915         bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
916                            sc->bge_cdata.bge_jumbo_map,
917                            sc->bge_ldata.bge_jumbo_buf);
918 }
919
920 /*
921  * Allocate a jumbo buffer.
922  */
923 static struct bge_jslot *
924 bge_jalloc(struct bge_softc *sc)
925 {
926         struct bge_jslot *entry;
927
928         lwkt_serialize_enter(&sc->bge_jslot_serializer);
929         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
930         if (entry) {
931                 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
932                 entry->bge_inuse = 1;
933         } else {
934                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
935         }
936         lwkt_serialize_exit(&sc->bge_jslot_serializer);
937         return(entry);
938 }
939
940 /*
941  * Adjust usage count on a jumbo buffer.
942  */
943 static void
944 bge_jref(void *arg)
945 {
946         struct bge_jslot *entry = (struct bge_jslot *)arg;
947         struct bge_softc *sc = entry->bge_sc;
948
949         if (sc == NULL)
950                 panic("bge_jref: can't find softc pointer!");
951
952         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
953                 panic("bge_jref: asked to reference buffer "
954                     "that we don't manage!");
955         } else if (entry->bge_inuse == 0) {
956                 panic("bge_jref: buffer already free!");
957         } else {
958                 atomic_add_int(&entry->bge_inuse, 1);
959         }
960 }
961
962 /*
963  * Release a jumbo buffer.
964  */
965 static void
966 bge_jfree(void *arg)
967 {
968         struct bge_jslot *entry = (struct bge_jslot *)arg;
969         struct bge_softc *sc = entry->bge_sc;
970
971         if (sc == NULL)
972                 panic("bge_jfree: can't find softc pointer!");
973
974         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
975                 panic("bge_jfree: asked to free buffer that we don't manage!");
976         } else if (entry->bge_inuse == 0) {
977                 panic("bge_jfree: buffer already free!");
978         } else {
979                 /*
980                  * Possible MP race to 0, use the serializer.  The atomic insn
981                  * is still needed for races against bge_jref().
982                  */
983                 lwkt_serialize_enter(&sc->bge_jslot_serializer);
984                 atomic_subtract_int(&entry->bge_inuse, 1);
985                 if (entry->bge_inuse == 0) {
986                         SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 
987                                           entry, jslot_link);
988                 }
989                 lwkt_serialize_exit(&sc->bge_jslot_serializer);
990         }
991 }
992
993
994 /*
995  * Intialize a standard receive ring descriptor.
996  */
997 static int
998 bge_newbuf_std(struct bge_softc *sc, int i, int init)
999 {
1000         struct mbuf *m_new = NULL;
1001         bus_dma_segment_t seg;
1002         bus_dmamap_t map;
1003         int error, nsegs;
1004
1005         m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1006         if (m_new == NULL)
1007                 return ENOBUFS;
1008         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1009
1010         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1011                 m_adj(m_new, ETHER_ALIGN);
1012
1013         error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag,
1014                         sc->bge_cdata.bge_rx_tmpmap, m_new,
1015                         &seg, 1, &nsegs, BUS_DMA_NOWAIT);
1016         if (error) {
1017                 m_freem(m_new);
1018                 return error;
1019         }
1020
1021         if (!init) {
1022                 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1023                                 sc->bge_cdata.bge_rx_std_dmamap[i],
1024                                 BUS_DMASYNC_POSTREAD);
1025                 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1026                         sc->bge_cdata.bge_rx_std_dmamap[i]);
1027         }
1028
1029         map = sc->bge_cdata.bge_rx_tmpmap;
1030         sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i];
1031         sc->bge_cdata.bge_rx_std_dmamap[i] = map;
1032
1033         sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new;
1034         sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr;
1035
1036         bge_setup_rxdesc_std(sc, i);
1037         return 0;
1038 }
1039
1040 static void
1041 bge_setup_rxdesc_std(struct bge_softc *sc, int i)
1042 {
1043         struct bge_rxchain *rc;
1044         struct bge_rx_bd *r;
1045
1046         rc = &sc->bge_cdata.bge_rx_std_chain[i];
1047         r = &sc->bge_ldata.bge_rx_std_ring[i];
1048
1049         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1050         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1051         r->bge_len = rc->bge_mbuf->m_len;
1052         r->bge_idx = i;
1053         r->bge_flags = BGE_RXBDFLAG_END;
1054 }
1055
1056 /*
1057  * Initialize a jumbo receive ring descriptor. This allocates
1058  * a jumbo buffer from the pool managed internally by the driver.
1059  */
1060 static int
1061 bge_newbuf_jumbo(struct bge_softc *sc, int i, int init)
1062 {
1063         struct mbuf *m_new = NULL;
1064         struct bge_jslot *buf;
1065         bus_addr_t paddr;
1066
1067         /* Allocate the mbuf. */
1068         MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1069         if (m_new == NULL)
1070                 return ENOBUFS;
1071
1072         /* Allocate the jumbo buffer */
1073         buf = bge_jalloc(sc);
1074         if (buf == NULL) {
1075                 m_freem(m_new);
1076                 return ENOBUFS;
1077         }
1078
1079         /* Attach the buffer to the mbuf. */
1080         m_new->m_ext.ext_arg = buf;
1081         m_new->m_ext.ext_buf = buf->bge_buf;
1082         m_new->m_ext.ext_free = bge_jfree;
1083         m_new->m_ext.ext_ref = bge_jref;
1084         m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1085
1086         m_new->m_flags |= M_EXT;
1087
1088         m_new->m_data = m_new->m_ext.ext_buf;
1089         m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1090
1091         paddr = buf->bge_paddr;
1092         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
1093                 m_adj(m_new, ETHER_ALIGN);
1094                 paddr += ETHER_ALIGN;
1095         }
1096
1097         /* Save necessary information */
1098         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new;
1099         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr;
1100
1101         /* Set up the descriptor. */
1102         bge_setup_rxdesc_jumbo(sc, i);
1103         return 0;
1104 }
1105
1106 static void
1107 bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i)
1108 {
1109         struct bge_rx_bd *r;
1110         struct bge_rxchain *rc;
1111
1112         r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
1113         rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1114
1115         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1116         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1117         r->bge_len = rc->bge_mbuf->m_len;
1118         r->bge_idx = i;
1119         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1120 }
1121
1122 static int
1123 bge_init_rx_ring_std(struct bge_softc *sc)
1124 {
1125         int i, error;
1126
1127         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1128                 error = bge_newbuf_std(sc, i, 1);
1129                 if (error)
1130                         return error;
1131         }
1132
1133         sc->bge_std = BGE_STD_RX_RING_CNT - 1;
1134         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1135
1136         return(0);
1137 }
1138
1139 static void
1140 bge_free_rx_ring_std(struct bge_softc *sc)
1141 {
1142         int i;
1143
1144         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1145                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i];
1146
1147                 if (rc->bge_mbuf != NULL) {
1148                         bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1149                                           sc->bge_cdata.bge_rx_std_dmamap[i]);
1150                         m_freem(rc->bge_mbuf);
1151                         rc->bge_mbuf = NULL;
1152                 }
1153                 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
1154                     sizeof(struct bge_rx_bd));
1155         }
1156 }
1157
1158 static int
1159 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1160 {
1161         struct bge_rcb *rcb;
1162         int i, error;
1163
1164         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1165                 error = bge_newbuf_jumbo(sc, i, 1);
1166                 if (error)
1167                         return error;
1168         }
1169
1170         sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
1171
1172         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1173         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1174         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1175
1176         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1177
1178         return(0);
1179 }
1180
1181 static void
1182 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1183 {
1184         int i;
1185
1186         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1187                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1188
1189                 if (rc->bge_mbuf != NULL) {
1190                         m_freem(rc->bge_mbuf);
1191                         rc->bge_mbuf = NULL;
1192                 }
1193                 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1194                     sizeof(struct bge_rx_bd));
1195         }
1196 }
1197
1198 static void
1199 bge_free_tx_ring(struct bge_softc *sc)
1200 {
1201         int i;
1202
1203         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1204                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1205                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1206                                           sc->bge_cdata.bge_tx_dmamap[i]);
1207                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1208                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1209                 }
1210                 bzero(&sc->bge_ldata.bge_tx_ring[i],
1211                     sizeof(struct bge_tx_bd));
1212         }
1213 }
1214
1215 static int
1216 bge_init_tx_ring(struct bge_softc *sc)
1217 {
1218         sc->bge_txcnt = 0;
1219         sc->bge_tx_saved_considx = 0;
1220         sc->bge_tx_prodidx = 0;
1221
1222         /* Initialize transmit producer index for host-memory send ring. */
1223         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1224
1225         /* 5700 b2 errata */
1226         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1227                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1228
1229         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1230         /* 5700 b2 errata */
1231         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1232                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1233
1234         return(0);
1235 }
1236
1237 static void
1238 bge_setmulti(struct bge_softc *sc)
1239 {
1240         struct ifnet *ifp;
1241         struct ifmultiaddr *ifma;
1242         uint32_t hashes[4] = { 0, 0, 0, 0 };
1243         int h, i;
1244
1245         ifp = &sc->arpcom.ac_if;
1246
1247         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1248                 for (i = 0; i < 4; i++)
1249                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1250                 return;
1251         }
1252
1253         /* First, zot all the existing filters. */
1254         for (i = 0; i < 4; i++)
1255                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1256
1257         /* Now program new ones. */
1258         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1259                 if (ifma->ifma_addr->sa_family != AF_LINK)
1260                         continue;
1261                 h = ether_crc32_le(
1262                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1263                     ETHER_ADDR_LEN) & 0x7f;
1264                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1265         }
1266
1267         for (i = 0; i < 4; i++)
1268                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1269 }
1270
1271 /*
1272  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1273  * self-test results.
1274  */
1275 static int
1276 bge_chipinit(struct bge_softc *sc)
1277 {
1278         int i;
1279         uint32_t dma_rw_ctl, mode_ctl;
1280         uint16_t val;
1281
1282         /* Set endian type before we access any non-PCI registers. */
1283         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1284             BGE_INIT | sc->bge_pci_miscctl, 4);
1285
1286         /* Clear the MAC control register */
1287         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1288
1289         /*
1290          * Clear the MAC statistics block in the NIC's
1291          * internal memory.
1292          */
1293         for (i = BGE_STATS_BLOCK;
1294             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1295                 BGE_MEMWIN_WRITE(sc, i, 0);
1296
1297         for (i = BGE_STATUS_BLOCK;
1298             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1299                 BGE_MEMWIN_WRITE(sc, i, 0);
1300
1301         if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1302                 /*
1303                  * Fix data corruption caused by non-qword write with WB.
1304                  * Fix master abort in PCI mode.
1305                  * Fix PCI latency timer.
1306                  */
1307                 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1308                 val |= (1 << 10) | (1 << 12) | (1 << 13);
1309                 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1310         }
1311
1312         /* Set up the PCI DMA control register. */
1313         dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1314         if (sc->bge_flags & BGE_FLAG_PCIE) {
1315                 /* PCI-E bus */
1316                 /* DMA read watermark not used on PCI-E */
1317                 dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1318         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1319                 /* PCI-X bus */
1320                 if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1321                         dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1322                             (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1323                         dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1324                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5714) {
1325                         dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1326                             (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1327                         dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1328                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1329                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1330                         uint32_t rd_wat = 0x7;
1331                         uint32_t clkctl;
1332
1333                         clkctl = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1334                         if ((sc->bge_flags & BGE_FLAG_MAXADDR_40BIT) &&
1335                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1336                                 dma_rw_ctl |=
1337                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1338                         } else if (clkctl == 0x6 || clkctl == 0x7) {
1339                                 dma_rw_ctl |=
1340                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1341                         }
1342                         if (sc->bge_asicrev == BGE_ASICREV_BCM5703)
1343                                 rd_wat = 0x4;
1344
1345                         dma_rw_ctl |= (rd_wat << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1346                             (3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1347                         dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1348                 } else {
1349                         dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1350                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1351                         dma_rw_ctl |= 0xf;
1352                 }
1353         } else {
1354                 /* Conventional PCI bus */
1355                 dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1356                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1357                 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1358                     sc->bge_asicrev != BGE_ASICREV_BCM5750)
1359                         dma_rw_ctl |= 0xf;
1360         }
1361
1362         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1363             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1364                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1365         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1366             sc->bge_asicrev == BGE_ASICREV_BCM5701) {
1367                 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1368                     BGE_PCIDMARWCTL_ASRT_ALL_BE;
1369         }
1370         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1371
1372         /*
1373          * Set up general mode register.
1374          */
1375         mode_ctl = BGE_DMA_SWAP_OPTIONS|
1376             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1377             BGE_MODECTL_TX_NO_PHDR_CSUM;
1378
1379         /*
1380          * BCM5701 B5 have a bug causing data corruption when using
1381          * 64-bit DMA reads, which can be terminated early and then
1382          * completed later as 32-bit accesses, in combination with
1383          * certain bridges.
1384          */
1385         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1386             sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1387                 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1388
1389         /*
1390          * Tell the firmware the driver is running
1391          */
1392         if (sc->bge_asf_mode & ASF_STACKUP)
1393                 mode_ctl |= BGE_MODECTL_STACKUP;
1394
1395         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1396
1397         /*
1398          * Disable memory write invalidate.  Apparently it is not supported
1399          * properly by these devices.  Also ensure that INTx isn't disabled,
1400          * as these chips need it even when using MSI.
1401          */
1402         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1403             (PCIM_CMD_MWRICEN | PCIM_CMD_INTxDIS), 4);
1404
1405         /* Set the timer prescaler (always 66Mhz) */
1406         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1407
1408         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1409                 DELAY(40);      /* XXX */
1410
1411                 /* Put PHY into ready state */
1412                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1413                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1414                 DELAY(40);
1415         }
1416
1417         return(0);
1418 }
1419
1420 static int
1421 bge_blockinit(struct bge_softc *sc)
1422 {
1423         struct bge_rcb *rcb;
1424         bus_size_t vrcb;
1425         bge_hostaddr taddr;
1426         uint32_t val;
1427         int i, limit;
1428
1429         /*
1430          * Initialize the memory window pointer register so that
1431          * we can access the first 32K of internal NIC RAM. This will
1432          * allow us to set up the TX send ring RCBs and the RX return
1433          * ring RCBs, plus other things which live in NIC memory.
1434          */
1435         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1436
1437         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1438
1439         if (!BGE_IS_5705_PLUS(sc)) {
1440                 /* Configure mbuf memory pool */
1441                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1442                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1443                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1444                 else
1445                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1446
1447                 /* Configure DMA resource pool */
1448                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1449                     BGE_DMA_DESCRIPTORS);
1450                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1451         }
1452
1453         /* Configure mbuf pool watermarks */
1454         if (!BGE_IS_5705_PLUS(sc)) {
1455                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1456                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1457                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1458         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1459                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1460                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1461                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1462         } else {
1463                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1464                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1465                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1466         }
1467
1468         /* Configure DMA resource watermarks */
1469         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1470         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1471
1472         /* Enable buffer manager */
1473         CSR_WRITE_4(sc, BGE_BMAN_MODE,
1474             BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1475
1476         /* Poll for buffer manager start indication */
1477         for (i = 0; i < BGE_TIMEOUT; i++) {
1478                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1479                         break;
1480                 DELAY(10);
1481         }
1482
1483         if (i == BGE_TIMEOUT) {
1484                 if_printf(&sc->arpcom.ac_if,
1485                           "buffer manager failed to start\n");
1486                 return(ENXIO);
1487         }
1488
1489         /* Enable flow-through queues */
1490         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1491         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1492
1493         /* Wait until queue initialization is complete */
1494         for (i = 0; i < BGE_TIMEOUT; i++) {
1495                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1496                         break;
1497                 DELAY(10);
1498         }
1499
1500         if (i == BGE_TIMEOUT) {
1501                 if_printf(&sc->arpcom.ac_if,
1502                           "flow-through queue init failed\n");
1503                 return(ENXIO);
1504         }
1505
1506         /*
1507          * Summary of rings supported by the controller:
1508          *
1509          * Standard Receive Producer Ring
1510          * - This ring is used to feed receive buffers for "standard"
1511          *   sized frames (typically 1536 bytes) to the controller.
1512          *
1513          * Jumbo Receive Producer Ring
1514          * - This ring is used to feed receive buffers for jumbo sized
1515          *   frames (i.e. anything bigger than the "standard" frames)
1516          *   to the controller.
1517          *
1518          * Mini Receive Producer Ring
1519          * - This ring is used to feed receive buffers for "mini"
1520          *   sized frames to the controller.
1521          * - This feature required external memory for the controller
1522          *   but was never used in a production system.  Should always
1523          *   be disabled.
1524          *
1525          * Receive Return Ring
1526          * - After the controller has placed an incoming frame into a
1527          *   receive buffer that buffer is moved into a receive return
1528          *   ring.  The driver is then responsible to passing the
1529          *   buffer up to the stack.  Many versions of the controller
1530          *   support multiple RR rings.
1531          *
1532          * Send Ring
1533          * - This ring is used for outgoing frames.  Many versions of
1534          *   the controller support multiple send rings.
1535          */
1536
1537         /* Initialize the standard receive producer ring control block. */
1538         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1539         rcb->bge_hostaddr.bge_addr_lo =
1540             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1541         rcb->bge_hostaddr.bge_addr_hi =
1542             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1543         if (BGE_IS_5705_PLUS(sc)) {
1544                 /*
1545                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1546                  * Bits 15-2 : Reserved (should be 0)
1547                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1548                  * Bit 0     : Reserved
1549                  */
1550                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1551         } else {
1552                 /*
1553                  * Ring size is always XXX entries
1554                  * Bits 31-16: Maximum RX frame size
1555                  * Bits 15-2 : Reserved (should be 0)
1556                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1557                  * Bit 0     : Reserved
1558                  */
1559                 rcb->bge_maxlen_flags =
1560                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1561         }
1562         rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1563         /* Write the standard receive producer ring control block. */
1564         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1565         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1566         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1567         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1568         /* Reset the standard receive producer ring producer index. */
1569         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1570
1571         /*
1572          * Initialize the jumbo RX producer ring control
1573          * block.  We set the 'ring disabled' bit in the
1574          * flags field until we're actually ready to start
1575          * using this ring (i.e. once we set the MTU
1576          * high enough to require it).
1577          */
1578         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1579                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1580                 /* Get the jumbo receive producer ring RCB parameters. */
1581                 rcb->bge_hostaddr.bge_addr_lo =
1582                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1583                 rcb->bge_hostaddr.bge_addr_hi =
1584                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1585                 rcb->bge_maxlen_flags =
1586                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1587                     BGE_RCB_FLAG_RING_DISABLED);
1588                 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1589                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1590                     rcb->bge_hostaddr.bge_addr_hi);
1591                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1592                     rcb->bge_hostaddr.bge_addr_lo);
1593                 /* Program the jumbo receive producer ring RCB parameters. */
1594                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1595                     rcb->bge_maxlen_flags);
1596                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1597                 /* Reset the jumbo receive producer ring producer index. */
1598                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1599         }
1600
1601         /* Disable the mini receive producer ring RCB. */
1602         if (BGE_IS_5700_FAMILY(sc)) {
1603                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1604                 rcb->bge_maxlen_flags =
1605                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1606                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1607                     rcb->bge_maxlen_flags);
1608                 /* Reset the mini receive producer ring producer index. */
1609                 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1610         }
1611
1612         /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1613         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1614             (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1615              sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1616              sc->bge_chipid == BGE_CHIPID_BCM5906_A2)) {
1617                 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1618                     (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1619         }
1620
1621         /*
1622          * The BD ring replenish thresholds control how often the
1623          * hardware fetches new BD's from the producer rings in host
1624          * memory.  Setting the value too low on a busy system can
1625          * starve the hardware and recue the throughpout.
1626          *
1627          * Set the BD ring replentish thresholds. The recommended
1628          * values are 1/8th the number of descriptors allocated to
1629          * each ring.
1630          */
1631         if (BGE_IS_5705_PLUS(sc))
1632                 val = 8;
1633         else
1634                 val = BGE_STD_RX_RING_CNT / 8;
1635         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1636         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1637                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1638                     BGE_JUMBO_RX_RING_CNT/8);
1639         }
1640
1641         /*
1642          * Disable all send rings by setting the 'ring disabled' bit
1643          * in the flags field of all the TX send ring control blocks,
1644          * located in NIC memory.
1645          */
1646         if (!BGE_IS_5705_PLUS(sc)) {
1647                 /* 5700 to 5704 had 16 send rings. */
1648                 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1649         } else {
1650                 limit = 1;
1651         }
1652         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1653         for (i = 0; i < limit; i++) {
1654                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1655                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1656                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1657                 vrcb += sizeof(struct bge_rcb);
1658         }
1659
1660         /* Configure send ring RCB 0 (we use only the first ring) */
1661         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1662         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1663         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1664         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1665         RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1666             BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1667         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1668             BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1669
1670         /*
1671          * Disable all receive return rings by setting the
1672          * 'ring diabled' bit in the flags field of all the receive
1673          * return ring control blocks, located in NIC memory.
1674          */
1675         if (!BGE_IS_5705_PLUS(sc))
1676                 limit = BGE_RX_RINGS_MAX;
1677         else if (sc->bge_asicrev == BGE_ASICREV_BCM5755)
1678                 limit = 4;
1679         else
1680                 limit = 1;
1681         /* Disable all receive return rings. */
1682         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1683         for (i = 0; i < limit; i++) {
1684                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1685                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1686                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1687                     BGE_RCB_FLAG_RING_DISABLED);
1688                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1689                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1690                     (i * (sizeof(uint64_t))), 0);
1691                 vrcb += sizeof(struct bge_rcb);
1692         }
1693
1694         /*
1695          * Set up receive return ring 0.  Note that the NIC address
1696          * for RX return rings is 0x0.  The return rings live entirely
1697          * within the host, so the nicaddr field in the RCB isn't used.
1698          */
1699         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1700         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1701         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1702         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1703         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1704         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1705             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1706
1707         /* Set random backoff seed for TX */
1708         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1709             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1710             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1711             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1712             BGE_TX_BACKOFF_SEED_MASK);
1713
1714         /* Set inter-packet gap */
1715         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1716
1717         /*
1718          * Specify which ring to use for packets that don't match
1719          * any RX rules.
1720          */
1721         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1722
1723         /*
1724          * Configure number of RX lists. One interrupt distribution
1725          * list, sixteen active lists, one bad frames class.
1726          */
1727         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1728
1729         /* Inialize RX list placement stats mask. */
1730         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1731         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1732
1733         /* Disable host coalescing until we get it set up */
1734         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1735
1736         /* Poll to make sure it's shut down. */
1737         for (i = 0; i < BGE_TIMEOUT; i++) {
1738                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1739                         break;
1740                 DELAY(10);
1741         }
1742
1743         if (i == BGE_TIMEOUT) {
1744                 if_printf(&sc->arpcom.ac_if,
1745                           "host coalescing engine failed to idle\n");
1746                 return(ENXIO);
1747         }
1748
1749         /* Set up host coalescing defaults */
1750         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1751         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1752         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_coal_bds);
1753         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_coal_bds);
1754         if (!BGE_IS_5705_PLUS(sc)) {
1755                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
1756                     sc->bge_rx_coal_ticks_int);
1757                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
1758                     sc->bge_tx_coal_ticks_int);
1759         }
1760         /*
1761          * NOTE:
1762          * The datasheet (57XX-PG105-R) says BCM5705+ do not
1763          * have following two registers; obviously it is wrong.
1764          */
1765         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, sc->bge_rx_coal_bds_int);
1766         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, sc->bge_tx_coal_bds_int);
1767
1768         /* Set up address of statistics block */
1769         if (!BGE_IS_5705_PLUS(sc)) {
1770                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1771                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1772                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1773                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1774
1775                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1776                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1777                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1778         }
1779
1780         /* Set up address of status block */
1781         bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1782         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1783             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1784         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1785             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1786
1787         /*
1788          * Set up status block partail update size.
1789          *
1790          * Because only single TX ring, RX produce ring and Rx return ring
1791          * are used, ask device to update only minimum part of status block
1792          * except for BCM5700 AX/BX, whose status block partial update size
1793          * can't be configured.
1794          */
1795         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1796             sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1797                 /* XXX Actually reserved on BCM5700 AX/BX */
1798                 val = BGE_STATBLKSZ_FULL;
1799         } else {
1800                 val = BGE_STATBLKSZ_32BYTE;
1801         }
1802 #if 0
1803         /*
1804          * Does not seem to have visible effect in both
1805          * bulk data (1472B UDP datagram) and tiny data
1806          * (18B UDP datagram) TX tests.
1807          */
1808         if (!BGE_IS_CRIPPLED(sc))
1809                 val |= BGE_HCCMODE_CLRTICK_TX;
1810 #endif
1811
1812         /* Turn on host coalescing state machine */
1813         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1814
1815         /* Turn on RX BD completion state machine and enable attentions */
1816         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1817             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1818
1819         /* Turn on RX list placement state machine */
1820         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1821
1822         /* Turn on RX list selector state machine. */
1823         if (!BGE_IS_5705_PLUS(sc))
1824                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1825
1826         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1827             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1828             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1829             BGE_MACMODE_FRMHDR_DMA_ENB;
1830
1831         if (sc->bge_flags & BGE_FLAG_TBI)
1832                 val |= BGE_PORTMODE_TBI;
1833         else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1834                 val |= BGE_PORTMODE_GMII;
1835         else
1836                 val |= BGE_PORTMODE_MII;
1837
1838         /* Turn on DMA, clear stats */
1839         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1840
1841         /* Set misc. local control, enable interrupts on attentions */
1842         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1843
1844 #ifdef notdef
1845         /* Assert GPIO pins for PHY reset */
1846         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1847             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1848         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1849             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1850 #endif
1851
1852         /* Turn on DMA completion state machine */
1853         if (!BGE_IS_5705_PLUS(sc))
1854                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1855
1856         /* Turn on write DMA state machine */
1857         val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1858         if (BGE_IS_5755_PLUS(sc)) {
1859                 /* Enable host coalescing bug fix. */
1860                 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1861         }
1862         if (sc->bge_asicrev == BGE_ASICREV_BCM5785) {
1863                 /* Request larger DMA burst size to get better performance. */
1864                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
1865         }
1866         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1867         DELAY(40);
1868
1869         if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
1870             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1871             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1872             sc->bge_asicrev == BGE_ASICREV_BCM57780) {
1873                 /*
1874                  * Enable fix for read DMA FIFO overruns.
1875                  * The fix is to limit the number of RX BDs
1876                  * the hardware would fetch at a fime.
1877                  */
1878                 val = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
1879                 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL,
1880                     val| BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1881         }
1882
1883         /* Turn on read DMA state machine */
1884         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1885         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1886             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1887             sc->bge_asicrev == BGE_ASICREV_BCM57780)
1888                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1889                   BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1890                   BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1891         if (sc->bge_flags & BGE_FLAG_PCIE)
1892                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1893         if (sc->bge_flags & BGE_FLAG_TSO)
1894                 val |= BGE_RDMAMODE_TSO4_ENABLE;
1895         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1896         DELAY(40);
1897
1898         /* Turn on RX data completion state machine */
1899         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1900
1901         /* Turn on RX BD initiator state machine */
1902         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1903
1904         /* Turn on RX data and RX BD initiator state machine */
1905         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1906
1907         /* Turn on Mbuf cluster free state machine */
1908         if (!BGE_IS_5705_PLUS(sc))
1909                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1910
1911         /* Turn on send BD completion state machine */
1912         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1913
1914         /* Turn on send data completion state machine */
1915         val = BGE_SDCMODE_ENABLE;
1916         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1917                 val |= BGE_SDCMODE_CDELAY; 
1918         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1919
1920         /* Turn on send data initiator state machine */
1921         if (sc->bge_flags & BGE_FLAG_TSO)
1922                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
1923                     BGE_SDIMODE_HW_LSO_PRE_DMA);
1924         else
1925                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1926
1927         /* Turn on send BD initiator state machine */
1928         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1929
1930         /* Turn on send BD selector state machine */
1931         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1932
1933         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1934         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1935             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1936
1937         /* ack/clear link change events */
1938         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1939             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1940             BGE_MACSTAT_LINK_CHANGED);
1941         CSR_WRITE_4(sc, BGE_MI_STS, 0);
1942
1943         /*
1944          * Enable attention when the link has changed state for
1945          * devices that use auto polling.
1946          */
1947         if (sc->bge_flags & BGE_FLAG_TBI) {
1948                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1949         } else {
1950                 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
1951                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1952                         DELAY(80);
1953                 }
1954                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1955                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1956                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1957                             BGE_EVTENB_MI_INTERRUPT);
1958                 }
1959         }
1960
1961         /*
1962          * Clear any pending link state attention.
1963          * Otherwise some link state change events may be lost until attention
1964          * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1965          * It's not necessary on newer BCM chips - perhaps enabling link
1966          * state change attentions implies clearing pending attention.
1967          */
1968         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1969             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1970             BGE_MACSTAT_LINK_CHANGED);
1971
1972         /* Enable link state change attentions. */
1973         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1974
1975         return(0);
1976 }
1977
1978 /*
1979  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1980  * against our list and return its name if we find a match. Note
1981  * that since the Broadcom controller contains VPD support, we
1982  * can get the device name string from the controller itself instead
1983  * of the compiled-in string. This is a little slow, but it guarantees
1984  * we'll always announce the right product name.
1985  */
1986 static int
1987 bge_probe(device_t dev)
1988 {
1989         const struct bge_type *t;
1990         uint16_t product, vendor;
1991
1992         product = pci_get_device(dev);
1993         vendor = pci_get_vendor(dev);
1994
1995         for (t = bge_devs; t->bge_name != NULL; t++) {
1996                 if (vendor == t->bge_vid && product == t->bge_did)
1997                         break;
1998         }
1999         if (t->bge_name == NULL)
2000                 return(ENXIO);
2001
2002         device_set_desc(dev, t->bge_name);
2003         return(0);
2004 }
2005
2006 static int
2007 bge_attach(device_t dev)
2008 {
2009         struct ifnet *ifp;
2010         struct bge_softc *sc;
2011         uint32_t hwcfg = 0, misccfg;
2012         int error = 0, rid, capmask;
2013         uint8_t ether_addr[ETHER_ADDR_LEN];
2014         uint16_t product, vendor;
2015         driver_intr_t *intr_func;
2016         uintptr_t mii_priv = 0;
2017         u_int intr_flags;
2018         int msi_enable;
2019
2020         sc = device_get_softc(dev);
2021         sc->bge_dev = dev;
2022         callout_init_mp(&sc->bge_stat_timer);
2023         lwkt_serialize_init(&sc->bge_jslot_serializer);
2024
2025         product = pci_get_device(dev);
2026         vendor = pci_get_vendor(dev);
2027
2028 #ifndef BURN_BRIDGES
2029         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
2030                 uint32_t irq, mem;
2031
2032                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
2033                 mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
2034
2035                 device_printf(dev, "chip is in D%d power mode "
2036                     "-- setting to D0\n", pci_get_powerstate(dev));
2037
2038                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
2039
2040                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
2041                 pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
2042         }
2043 #endif  /* !BURN_BRIDGE */
2044
2045         /*
2046          * Map control/status registers.
2047          */
2048         pci_enable_busmaster(dev);
2049
2050         rid = BGE_PCI_BAR0;
2051         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2052             RF_ACTIVE);
2053
2054         if (sc->bge_res == NULL) {
2055                 device_printf(dev, "couldn't map memory\n");
2056                 return ENXIO;
2057         }
2058
2059         sc->bge_btag = rman_get_bustag(sc->bge_res);
2060         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
2061
2062         /* Save various chip information */
2063         sc->bge_chipid =
2064             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2065             BGE_PCIMISCCTL_ASICREV_SHIFT;
2066         if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2067                 /* All chips, which use BGE_PCI_PRODID_ASICREV, have CPMU */
2068                 sc->bge_flags |= BGE_FLAG_CPMU;
2069                 sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2070         }
2071         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2072         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2073
2074         /* Save chipset family. */
2075         switch (sc->bge_asicrev) {
2076         case BGE_ASICREV_BCM5755:
2077         case BGE_ASICREV_BCM5761:
2078         case BGE_ASICREV_BCM5784:
2079         case BGE_ASICREV_BCM5785:
2080         case BGE_ASICREV_BCM5787:
2081         case BGE_ASICREV_BCM57780:
2082             sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2083                 BGE_FLAG_5705_PLUS;
2084             break;
2085
2086         case BGE_ASICREV_BCM5700:
2087         case BGE_ASICREV_BCM5701:
2088         case BGE_ASICREV_BCM5703:
2089         case BGE_ASICREV_BCM5704:
2090                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2091                 break;
2092
2093         case BGE_ASICREV_BCM5714_A0:
2094         case BGE_ASICREV_BCM5780:
2095         case BGE_ASICREV_BCM5714:
2096                 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
2097                 /* Fall through */
2098
2099         case BGE_ASICREV_BCM5750:
2100         case BGE_ASICREV_BCM5752:
2101         case BGE_ASICREV_BCM5906:
2102                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
2103                 /* Fall through */
2104
2105         case BGE_ASICREV_BCM5705:
2106                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
2107                 break;
2108         }
2109
2110         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2111                 sc->bge_flags |= BGE_FLAG_NO_EEPROM;
2112
2113         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2114                 sc->bge_flags |= BGE_FLAG_APE;
2115
2116         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
2117         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2118             (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2119              misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2120                 sc->bge_flags |= BGE_FLAG_5788;
2121
2122         /* BCM5755 or higher and BCM5906 have short DMA bug. */
2123         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
2124                 sc->bge_flags |= BGE_FLAG_SHORTDMA;
2125
2126         /*
2127          * Increase STD RX ring prod index by at most 8 for BCM5750,
2128          * BCM5752 and BCM5755 to workaround hardware errata.
2129          */
2130         if (sc->bge_asicrev == BGE_ASICREV_BCM5750 ||
2131             sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2132             sc->bge_asicrev == BGE_ASICREV_BCM5755)
2133                 sc->bge_rx_wreg = 8;
2134
2135         /*
2136          * Check if this is a PCI-X or PCI Express device.
2137          */
2138         if (BGE_IS_5705_PLUS(sc)) {
2139                 if (pci_is_pcie(dev)) {
2140                         sc->bge_flags |= BGE_FLAG_PCIE;
2141                         sc->bge_pciecap = pci_get_pciecap_ptr(sc->bge_dev);
2142                         pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
2143                 }
2144         } else {
2145                 /*
2146                  * Check if the device is in PCI-X Mode.
2147                  * (This bit is not valid on PCI Express controllers.)
2148                  */
2149                 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
2150                     BGE_PCISTATE_PCI_BUSMODE) == 0) {
2151                         sc->bge_flags |= BGE_FLAG_PCIX;
2152                         sc->bge_pcixcap = pci_get_pcixcap_ptr(sc->bge_dev);
2153                         sc->bge_mbox_reorder = device_getenv_int(sc->bge_dev,
2154                             "mbox_reorder", 0);
2155                 }
2156         }
2157         device_printf(dev, "CHIP ID 0x%08x; "
2158                       "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2159                       sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2160                       (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
2161                       : ((sc->bge_flags & BGE_FLAG_PCIE) ?
2162                         "PCI-E" : "PCI"));
2163
2164         /*
2165          * The 40bit DMA bug applies to the 5714/5715 controllers and is
2166          * not actually a MAC controller bug but an issue with the embedded
2167          * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2168          */
2169         if ((sc->bge_flags & BGE_FLAG_PCIX) &&
2170             (BGE_IS_5714_FAMILY(sc) || device_getenv_int(dev, "dma40b", 0)))
2171                 sc->bge_flags |= BGE_FLAG_MAXADDR_40BIT;
2172
2173         /*
2174          * When using the BCM5701 in PCI-X mode, data corruption has
2175          * been observed in the first few bytes of some received packets.
2176          * Aligning the packet buffer in memory eliminates the corruption.
2177          * Unfortunately, this misaligns the packet payloads.  On platforms
2178          * which do not support unaligned accesses, we will realign the
2179          * payloads by copying the received packets.
2180          */
2181         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2182             (sc->bge_flags & BGE_FLAG_PCIX))
2183                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2184
2185         if (!BGE_IS_CRIPPLED(sc)) {
2186                 if (device_getenv_int(dev, "status_tag", 1)) {
2187                         sc->bge_flags |= BGE_FLAG_STATUS_TAG;
2188                         sc->bge_pci_miscctl = BGE_PCIMISCCTL_TAGGED_STATUS;
2189                         if (bootverbose)
2190                                 device_printf(dev, "enable status tag\n");
2191                 }
2192         }
2193
2194         if (BGE_IS_5755_PLUS(sc)) {
2195                 /*
2196                  * BCM5754 and BCM5787 shares the same ASIC id so
2197                  * explicit device id check is required.
2198                  * Due to unknown reason TSO does not work on BCM5755M.
2199                  */
2200                 if (product != PCI_PRODUCT_BROADCOM_BCM5754 &&
2201                     product != PCI_PRODUCT_BROADCOM_BCM5754M &&
2202                     product != PCI_PRODUCT_BROADCOM_BCM5755M)
2203                         sc->bge_flags |= BGE_FLAG_TSO;
2204         }
2205
2206         /*
2207          * Set various PHY quirk flags.
2208          */
2209
2210         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2211              sc->bge_asicrev == BGE_ASICREV_BCM5701) &&
2212             pci_get_subvendor(dev) == PCI_VENDOR_DELL)
2213                 mii_priv |= BRGPHY_FLAG_NO_3LED;
2214
2215         capmask = MII_CAPMASK_DEFAULT;
2216         if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2217              (misccfg == 0x4000 || misccfg == 0x8000)) ||
2218             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2219              vendor == PCI_VENDOR_BROADCOM &&
2220              (product == PCI_PRODUCT_BROADCOM_BCM5901 ||
2221               product == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2222               product == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2223             (vendor == PCI_VENDOR_BROADCOM &&
2224              (product == PCI_PRODUCT_BROADCOM_BCM5751F ||
2225               product == PCI_PRODUCT_BROADCOM_BCM5753F ||
2226               product == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2227             product == PCI_PRODUCT_BROADCOM_BCM57790 ||
2228             sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2229                 /* 10/100 only */
2230                 capmask &= ~BMSR_EXTSTAT;
2231         }
2232
2233         mii_priv |= BRGPHY_FLAG_WIRESPEED;
2234         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2235             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2236              (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2237               sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2238             sc->bge_asicrev == BGE_ASICREV_BCM5906)
2239                 mii_priv &= ~BRGPHY_FLAG_WIRESPEED;
2240
2241         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2242             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2243                 mii_priv |= BRGPHY_FLAG_CRC_BUG;
2244
2245         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2246             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2247                 mii_priv |= BRGPHY_FLAG_ADC_BUG;
2248
2249         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2250                 mii_priv |= BRGPHY_FLAG_5704_A0;
2251
2252         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2253                 mii_priv |= BRGPHY_FLAG_5906;
2254
2255         if (BGE_IS_5705_PLUS(sc) &&
2256             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2257             /* sc->bge_asicrev != BGE_ASICREV_BCM5717 && */
2258             sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2259             /* sc->bge_asicrev != BGE_ASICREV_BCM57765 && */
2260             sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2261                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2262                     sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2263                     sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2264                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2265                         if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
2266                             product != PCI_PRODUCT_BROADCOM_BCM5756)
2267                                 mii_priv |= BRGPHY_FLAG_JITTER_BUG;
2268                         if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
2269                                 mii_priv |= BRGPHY_FLAG_ADJUST_TRIM;
2270                 } else {
2271                         mii_priv |= BRGPHY_FLAG_BER_BUG;
2272                 }
2273         }
2274
2275         /*
2276          * Allocate interrupt
2277          */
2278         msi_enable = bge_msi_enable;
2279         if ((sc->bge_flags & BGE_FLAG_STATUS_TAG) == 0) {
2280                 /* If "tagged status" is disabled, don't enable MSI */
2281                 msi_enable = 0;
2282         } else if (msi_enable) {
2283                 msi_enable = 0; /* Disable by default */
2284                 if (BGE_IS_575X_PLUS(sc)) {
2285                         msi_enable = 1;
2286                         /* XXX we filter all 5714 chips */
2287                         if (sc->bge_asicrev == BGE_ASICREV_BCM5714 ||
2288                             (sc->bge_asicrev == BGE_ASICREV_BCM5750 &&
2289                              (sc->bge_chiprev == BGE_CHIPREV_5750_AX ||
2290                               sc->bge_chiprev == BGE_CHIPREV_5750_BX)))
2291                                 msi_enable = 0;
2292                         else if (BGE_IS_5755_PLUS(sc) ||
2293                             sc->bge_asicrev == BGE_ASICREV_BCM5906)
2294                                 sc->bge_flags |= BGE_FLAG_ONESHOT_MSI;
2295                 }
2296         }
2297         if (msi_enable) {
2298                 if (pci_find_extcap(dev, PCIY_MSI, &sc->bge_msicap)) {
2299                         device_printf(dev, "no MSI capability\n");
2300                         msi_enable = 0;
2301                 }
2302         }
2303
2304         sc->bge_irq_type = pci_alloc_1intr(dev, msi_enable, &sc->bge_irq_rid,
2305             &intr_flags);
2306
2307         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->bge_irq_rid,
2308             intr_flags);
2309         if (sc->bge_irq == NULL) {
2310                 device_printf(dev, "couldn't map interrupt\n");
2311                 error = ENXIO;
2312                 goto fail;
2313         }
2314
2315         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2316                 bge_enable_msi(sc);
2317         else
2318                 sc->bge_flags &= ~BGE_FLAG_ONESHOT_MSI;
2319
2320         /* Initialize if_name earlier, so if_printf could be used */
2321         ifp = &sc->arpcom.ac_if;
2322         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2323
2324         sc->bge_asf_mode = 0;
2325         /* No ASF if APE present. */
2326         if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
2327                 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
2328                     BGE_SRAM_DATA_SIG_MAGIC)) {
2329                         if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
2330                             BGE_HWCFG_ASF) {
2331                                 sc->bge_asf_mode |= ASF_ENABLE;
2332                                 sc->bge_asf_mode |= ASF_STACKUP;
2333                                 if (BGE_IS_575X_PLUS(sc))
2334                                         sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2335                         }
2336                 }
2337         }
2338
2339         /*
2340          * Try to reset the chip.
2341          */
2342         bge_stop_fw(sc);
2343         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
2344         bge_reset(sc);
2345         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
2346         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
2347
2348         if (bge_chipinit(sc)) {
2349                 device_printf(dev, "chip initialization failed\n");
2350                 error = ENXIO;
2351                 goto fail;
2352         }
2353
2354         /*
2355          * Get station address
2356          */
2357         error = bge_get_eaddr(sc, ether_addr);
2358         if (error) {
2359                 device_printf(dev, "failed to read station address\n");
2360                 goto fail;
2361         }
2362
2363         /* 5705/5750 limits RX return ring to 512 entries. */
2364         if (BGE_IS_5705_PLUS(sc))
2365                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2366         else
2367                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2368
2369         error = bge_dma_alloc(sc);
2370         if (error)
2371                 goto fail;
2372
2373         /* Set default tuneable values. */
2374         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2375         sc->bge_rx_coal_ticks = BGE_RX_COAL_TICKS_DEF;
2376         sc->bge_tx_coal_ticks = BGE_TX_COAL_TICKS_DEF;
2377         sc->bge_rx_coal_bds = BGE_RX_COAL_BDS_DEF;
2378         sc->bge_tx_coal_bds = BGE_TX_COAL_BDS_DEF;
2379         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2380                 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_DEF;
2381                 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_DEF;
2382                 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_DEF;
2383                 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_DEF;
2384         } else {
2385                 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_MIN;
2386                 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_MIN;
2387                 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_MIN;
2388                 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_MIN;
2389         }
2390         sc->bge_tx_wreg = BGE_TX_WREG_NSEGS;
2391
2392         /* Set up TX spare and reserved descriptor count */
2393         if (sc->bge_flags & BGE_FLAG_TSO) {
2394                 sc->bge_txspare = BGE_NSEG_SPARE_TSO;
2395                 sc->bge_txrsvd = BGE_NSEG_RSVD_TSO;
2396         } else {
2397                 sc->bge_txspare = BGE_NSEG_SPARE;
2398                 sc->bge_txrsvd = BGE_NSEG_RSVD;
2399         }
2400
2401         /* Set up ifnet structure */
2402         ifp->if_softc = sc;
2403         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2404         ifp->if_ioctl = bge_ioctl;
2405         ifp->if_start = bge_start;
2406 #ifdef IFPOLL_ENABLE
2407         ifp->if_npoll = bge_npoll;
2408 #endif
2409         ifp->if_watchdog = bge_watchdog;
2410         ifp->if_init = bge_init;
2411         ifp->if_mtu = ETHERMTU;
2412         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2413         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2414         ifq_set_ready(&ifp->if_snd);
2415
2416         /*
2417          * 5700 B0 chips do not support checksumming correctly due
2418          * to hardware bugs.
2419          */
2420         if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
2421                 ifp->if_capabilities |= IFCAP_HWCSUM;
2422                 ifp->if_hwassist |= BGE_CSUM_FEATURES;
2423         }
2424         if (sc->bge_flags & BGE_FLAG_TSO) {
2425                 ifp->if_capabilities |= IFCAP_TSO;
2426                 ifp->if_hwassist |= CSUM_TSO;
2427         }
2428         ifp->if_capenable = ifp->if_capabilities;
2429
2430         /*
2431          * Figure out what sort of media we have by checking the
2432          * hardware config word in the first 32k of NIC internal memory,
2433          * or fall back to examining the EEPROM if necessary.
2434          * Note: on some BCM5700 cards, this value appears to be unset.
2435          * If that's the case, we have to rely on identifying the NIC
2436          * by its PCI subsystem ID, as we do below for the SysKonnect
2437          * SK-9D41.
2438          */
2439         if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
2440                 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
2441         } else {
2442                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2443                                     sizeof(hwcfg))) {
2444                         device_printf(dev, "failed to read EEPROM\n");
2445                         error = ENXIO;
2446                         goto fail;
2447                 }
2448                 hwcfg = ntohl(hwcfg);
2449         }
2450
2451         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2452         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2453             (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2454                 if (BGE_IS_5714_FAMILY(sc))
2455                         sc->bge_flags |= BGE_FLAG_MII_SERDES;
2456                 else
2457                         sc->bge_flags |= BGE_FLAG_TBI;
2458         }
2459
2460         /* Setup MI MODE */
2461         if (sc->bge_flags & BGE_FLAG_CPMU)
2462                 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2463         else
2464                 sc->bge_mi_mode = BGE_MIMODE_BASE;
2465         if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2466                 /* Enable auto polling for BCM570[0-5]. */
2467                 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2468         }
2469
2470         /* Setup link status update stuffs */
2471         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2472             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
2473                 sc->bge_link_upd = bge_bcm5700_link_upd;
2474                 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
2475         } else if (sc->bge_flags & BGE_FLAG_TBI) {
2476                 sc->bge_link_upd = bge_tbi_link_upd;
2477                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2478         } else if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2479                 sc->bge_link_upd = bge_autopoll_link_upd;
2480                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2481         } else {
2482                 sc->bge_link_upd = bge_copper_link_upd;
2483                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2484         }
2485
2486         /*
2487          * Broadcom's own driver always assumes the internal
2488          * PHY is at GMII address 1.  On some chips, the PHY responds
2489          * to accesses at all addresses, which could cause us to
2490          * bogusly attach the PHY 32 times at probe type.  Always
2491          * restricting the lookup to address 1 is simpler than
2492          * trying to figure out which chips revisions should be
2493          * special-cased.
2494          */
2495         sc->bge_phyno = 1;
2496
2497         if (sc->bge_flags & BGE_FLAG_TBI) {
2498                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
2499                     bge_ifmedia_upd, bge_ifmedia_sts);
2500                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2501                 ifmedia_add(&sc->bge_ifmedia,
2502                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2503                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2504                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2505                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2506         } else {
2507                 struct mii_probe_args mii_args;
2508                 int tries;
2509
2510                 /*
2511                  * Do transceiver setup and tell the firmware the
2512                  * driver is down so we can try to get access the
2513                  * probe if ASF is running.  Retry a couple of times
2514                  * if we get a conflict with the ASF firmware accessing
2515                  * the PHY.
2516                  */
2517                 tries = 0;
2518                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2519 again:
2520                 bge_asf_driver_up(sc);
2521
2522                 mii_probe_args_init(&mii_args, bge_ifmedia_upd, bge_ifmedia_sts);
2523                 mii_args.mii_probemask = 1 << sc->bge_phyno;
2524                 mii_args.mii_capmask = capmask;
2525                 mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2526                 mii_args.mii_priv = mii_priv;
2527
2528                 error = mii_probe(dev, &sc->bge_miibus, &mii_args);
2529                 if (error) {
2530                         if (tries++ < 4) {
2531                                 device_printf(sc->bge_dev, "Probe MII again\n");
2532                                 bge_miibus_writereg(sc->bge_dev,
2533                                     sc->bge_phyno, MII_BMCR, BMCR_RESET);
2534                                 goto again;
2535                         }
2536                         device_printf(dev, "MII without any PHY!\n");
2537                         goto fail;
2538                 }
2539
2540                 /*
2541                  * Now tell the firmware we are going up after probing the PHY
2542                  */
2543                 if (sc->bge_asf_mode & ASF_STACKUP)
2544                         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2545         }
2546
2547         /*
2548          * Create sysctl nodes.
2549          */
2550         sysctl_ctx_init(&sc->bge_sysctl_ctx);
2551         sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
2552                                               SYSCTL_STATIC_CHILDREN(_hw),
2553                                               OID_AUTO,
2554                                               device_get_nameunit(dev),
2555                                               CTLFLAG_RD, 0, "");
2556         if (sc->bge_sysctl_tree == NULL) {
2557                 device_printf(dev, "can't add sysctl node\n");
2558                 error = ENXIO;
2559                 goto fail;
2560         }
2561
2562         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2563                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2564                         OID_AUTO, "rx_coal_ticks",
2565                         CTLTYPE_INT | CTLFLAG_RW,
2566                         sc, 0, bge_sysctl_rx_coal_ticks, "I",
2567                         "Receive coalescing ticks (usec).");
2568         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2569                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2570                         OID_AUTO, "tx_coal_ticks",
2571                         CTLTYPE_INT | CTLFLAG_RW,
2572                         sc, 0, bge_sysctl_tx_coal_ticks, "I",
2573                         "Transmit coalescing ticks (usec).");
2574         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2575                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2576                         OID_AUTO, "rx_coal_bds",
2577                         CTLTYPE_INT | CTLFLAG_RW,
2578                         sc, 0, bge_sysctl_rx_coal_bds, "I",
2579                         "Receive max coalesced BD count.");
2580         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2581                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2582                         OID_AUTO, "tx_coal_bds",
2583                         CTLTYPE_INT | CTLFLAG_RW,
2584                         sc, 0, bge_sysctl_tx_coal_bds, "I",
2585                         "Transmit max coalesced BD count.");
2586
2587         SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2588                        SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2589                        OID_AUTO, "tx_wreg", CTLFLAG_RW,
2590                        &sc->bge_tx_wreg, 0,
2591                        "# of segments before writing to hardware register");
2592
2593         if (sc->bge_flags & BGE_FLAG_PCIE) {
2594                 /*
2595                  * A common design characteristic for many Broadcom
2596                  * client controllers is that they only support a
2597                  * single outstanding DMA read operation on the PCIe
2598                  * bus. This means that it will take twice as long to
2599                  * fetch a TX frame that is split into header and
2600                  * payload buffers as it does to fetch a single,
2601                  * contiguous TX frame (2 reads vs. 1 read). For these
2602                  * controllers, coalescing buffers to reduce the number
2603                  * of memory reads is effective way to get maximum
2604                  * performance(about 940Mbps).  Without collapsing TX
2605                  * buffers the maximum TCP bulk transfer performance
2606                  * is about 850Mbps. However forcing coalescing mbufs
2607                  * consumes a lot of CPU cycles, so leave it off by
2608                  * default.
2609                  */
2610                 SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2611                                SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2612                                OID_AUTO, "force_defrag", CTLFLAG_RW,
2613                                &sc->bge_force_defrag, 0,
2614                                "Force defragment on TX path");
2615         }
2616         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2617                 if (!BGE_IS_5705_PLUS(sc)) {
2618                         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2619                             SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2620                             "rx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2621                             sc, 0, bge_sysctl_rx_coal_ticks_int, "I",
2622                             "Receive coalescing ticks "
2623                             "during interrupt (usec).");
2624                         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2625                             SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2626                             "tx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2627                             sc, 0, bge_sysctl_tx_coal_ticks_int, "I",
2628                             "Transmit coalescing ticks "
2629                             "during interrupt (usec).");
2630                 }
2631                 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2632                     SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2633                     "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2634                     sc, 0, bge_sysctl_rx_coal_bds_int, "I",
2635                     "Receive max coalesced BD count during interrupt.");
2636                 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2637                     SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2638                     "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2639                     sc, 0, bge_sysctl_tx_coal_bds_int, "I",
2640                     "Transmit max coalesced BD count during interrupt.");
2641         }
2642
2643         /*
2644          * Call MI attach routine.
2645          */
2646         ether_ifattach(ifp, ether_addr, NULL);
2647
2648         ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
2649
2650 #ifdef IFPOLL_ENABLE
2651         /* Polling setup */
2652         ifpoll_compat_setup(&sc->bge_npoll,
2653             &sc->bge_sysctl_ctx, sc->bge_sysctl_tree, device_get_unit(dev),
2654             ifp->if_serializer);
2655 #endif
2656
2657         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2658                 if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
2659                         intr_func = bge_msi_oneshot;
2660                         if (bootverbose)
2661                                 device_printf(dev, "oneshot MSI\n");
2662                 } else {
2663                         intr_func = bge_msi;
2664                 }
2665         } else if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2666                 intr_func = bge_intr_legacy;
2667         } else {
2668                 intr_func = bge_intr_crippled;
2669         }
2670         error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE, intr_func, sc,
2671             &sc->bge_intrhand, ifp->if_serializer);
2672         if (error) {
2673                 ether_ifdetach(ifp);
2674                 device_printf(dev, "couldn't set up irq\n");
2675                 goto fail;
2676         }
2677
2678         return(0);
2679 fail:
2680         bge_detach(dev);
2681         return(error);
2682 }
2683
2684 static int
2685 bge_detach(device_t dev)
2686 {
2687         struct bge_softc *sc = device_get_softc(dev);
2688
2689         if (device_is_attached(dev)) {
2690                 struct ifnet *ifp = &sc->arpcom.ac_if;
2691
2692                 lwkt_serialize_enter(ifp->if_serializer);
2693                 bge_stop(sc);
2694                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2695                 lwkt_serialize_exit(ifp->if_serializer);
2696
2697                 ether_ifdetach(ifp);
2698         }
2699
2700         if (sc->bge_flags & BGE_FLAG_TBI)
2701                 ifmedia_removeall(&sc->bge_ifmedia);
2702         if (sc->bge_miibus)
2703                 device_delete_child(dev, sc->bge_miibus);
2704         bus_generic_detach(dev);
2705
2706         if (sc->bge_irq != NULL) {
2707                 bus_release_resource(dev, SYS_RES_IRQ, sc->bge_irq_rid,
2708                     sc->bge_irq);
2709         }
2710         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2711                 pci_release_msi(dev);
2712
2713         if (sc->bge_res != NULL) {
2714                 bus_release_resource(dev, SYS_RES_MEMORY,
2715                     BGE_PCI_BAR0, sc->bge_res);
2716         }
2717
2718         if (sc->bge_sysctl_tree != NULL)
2719                 sysctl_ctx_free(&sc->bge_sysctl_ctx);
2720
2721         bge_dma_free(sc);
2722
2723         return 0;
2724 }
2725
2726 static void
2727 bge_reset(struct bge_softc *sc)
2728 {
2729         device_t dev;
2730         uint32_t cachesize, command, pcistate, reset;
2731         void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2732         int i, val = 0;
2733
2734         dev = sc->bge_dev;
2735
2736         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2737             sc->bge_asicrev != BGE_ASICREV_BCM5906) {
2738                 if (sc->bge_flags & BGE_FLAG_PCIE)
2739                         write_op = bge_writemem_direct;
2740                 else
2741                         write_op = bge_writemem_ind;
2742         } else {
2743                 write_op = bge_writereg_ind;
2744         }
2745
2746         /* Save some important PCI state. */
2747         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2748         command = pci_read_config(dev, BGE_PCI_CMD, 4);
2749         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2750
2751         pci_write_config(dev, BGE_PCI_MISC_CTL,
2752             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2753             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2754             sc->bge_pci_miscctl, 4);
2755
2756         /* Disable fastboot on controllers that support it. */
2757         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2758             BGE_IS_5755_PLUS(sc)) {
2759                 if (bootverbose)
2760                         if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2761                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2762         }
2763
2764         /*
2765          * Write the magic number to SRAM at offset 0xB50.
2766          * When firmware finishes its initialization it will
2767          * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
2768          */
2769         bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2770
2771         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2772
2773         /* XXX: Broadcom Linux driver. */
2774         if (sc->bge_flags & BGE_FLAG_PCIE) {
2775                 /* Force PCI-E 1.0a mode */
2776                 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2777                     CSR_READ_4(sc, BGE_PCIE_PHY_TSTCTL) ==
2778                     (BGE_PCIE_PHY_TSTCTL_PSCRAM |
2779                      BGE_PCIE_PHY_TSTCTL_PCIE10)) {
2780                         CSR_WRITE_4(sc, BGE_PCIE_PHY_TSTCTL,
2781                             BGE_PCIE_PHY_TSTCTL_PSCRAM);
2782                 }
2783                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2784                         /* Prevent PCIE link training during global reset */
2785                         CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2786                         reset |= (1<<29);
2787                 }
2788         }
2789
2790         /* 
2791          * Set GPHY Power Down Override to leave GPHY
2792          * powered up in D0 uninitialized.
2793          */
2794         if (BGE_IS_5705_PLUS(sc) && (sc->bge_flags & BGE_FLAG_CPMU) == 0)
2795                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2796
2797         /* Issue global reset */
2798         write_op(sc, BGE_MISC_CFG, reset);
2799
2800         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2801                 uint32_t status, ctrl;
2802
2803                 status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2804                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2805                     status | BGE_VCPU_STATUS_DRV_RESET);
2806                 ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2807                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2808                     ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2809         }
2810
2811         DELAY(1000);
2812
2813         /* XXX: Broadcom Linux driver. */
2814         if (sc->bge_flags & BGE_FLAG_PCIE) {
2815                 uint16_t devctl;
2816
2817                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2818                         uint32_t v;
2819
2820                         DELAY(500000); /* wait for link training to complete */
2821                         v = pci_read_config(dev, 0xc4, 4);
2822                         pci_write_config(dev, 0xc4, v | (1<<15), 4);
2823                 }
2824
2825                 devctl = pci_read_config(dev,
2826                     sc->bge_pciecap + PCIER_DEVCTRL, 2);
2827
2828                 /* Disable no snoop and disable relaxed ordering. */
2829                 devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2830
2831                 /* Old PCI-E chips only support 128 bytes Max PayLoad Size. */
2832                 if ((sc->bge_flags & BGE_FLAG_CPMU) == 0) {
2833                         devctl &= ~PCIEM_DEVCTL_MAX_PAYLOAD_MASK;
2834                         devctl |= PCIEM_DEVCTL_MAX_PAYLOAD_128;
2835                 }
2836
2837                 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVCTRL,
2838                     devctl, 2);
2839
2840                 /* Clear error status. */
2841                 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVSTS,
2842                     PCIEM_DEVSTS_CORR_ERR |
2843                     PCIEM_DEVSTS_NFATAL_ERR |
2844                     PCIEM_DEVSTS_FATAL_ERR |
2845                     PCIEM_DEVSTS_UNSUPP_REQ, 2);
2846         }
2847
2848         /* Reset some of the PCI state that got zapped by reset */
2849         pci_write_config(dev, BGE_PCI_MISC_CTL,
2850             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2851             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2852             sc->bge_pci_miscctl, 4);
2853         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2854         pci_write_config(dev, BGE_PCI_CMD, command, 4);
2855         write_op(sc, BGE_MISC_CFG, (65 << 1));
2856
2857         /*
2858          * Disable PCI-X relaxed ordering to ensure status block update
2859          * comes first then packet buffer DMA. Otherwise driver may
2860          * read stale status block.
2861          */
2862         if (sc->bge_flags & BGE_FLAG_PCIX) {
2863                 uint16_t devctl;
2864
2865                 devctl = pci_read_config(dev,
2866                     sc->bge_pcixcap + PCIXR_COMMAND, 2);
2867                 devctl &= ~PCIXM_COMMAND_ERO;
2868                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
2869                         devctl &= ~PCIXM_COMMAND_MAX_READ;
2870                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
2871                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2872                         devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
2873                             PCIXM_COMMAND_MAX_READ);
2874                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
2875                 }
2876                 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
2877                     devctl, 2);
2878         }
2879
2880         /*
2881          * Enable memory arbiter and re-enable MSI if necessary.
2882          */
2883         if (BGE_IS_5714_FAMILY(sc)) {
2884                 uint32_t val;
2885
2886                 if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2887                         /*
2888                          * Resetting BCM5714 family will clear MSI
2889                          * enable bit; restore it after resetting.
2890                          */
2891                         PCI_SETBIT(sc->bge_dev, sc->bge_msicap + PCIR_MSI_CTRL,
2892                             PCIM_MSICTRL_MSI_ENABLE, 2);
2893                         BGE_SETBIT(sc, BGE_MSI_MODE, BGE_MSIMODE_ENABLE);
2894                 }
2895                 val = CSR_READ_4(sc, BGE_MARB_MODE);
2896                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2897         } else {
2898                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2899         }
2900
2901         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2902                 for (i = 0; i < BGE_TIMEOUT; i++) {
2903                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2904                         if (val & BGE_VCPU_STATUS_INIT_DONE)
2905                                 break;
2906                         DELAY(100);
2907                 }
2908                 if (i == BGE_TIMEOUT) {
2909                         if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2910                         return;
2911                 }
2912         } else {
2913                 /*
2914                  * Poll until we see the 1's complement of the magic number.
2915                  * This indicates that the firmware initialization
2916                  * is complete.
2917                  */
2918                 for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) {
2919                         val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2920                         if (val == ~BGE_SRAM_FW_MB_MAGIC)
2921                                 break;
2922                         DELAY(10);
2923                 }
2924                 if (i == BGE_FIRMWARE_TIMEOUT) {
2925                         if_printf(&sc->arpcom.ac_if, "firmware handshake "
2926                                   "timed out, found 0x%08x\n", val);
2927                 }
2928         }
2929
2930         /*
2931          * XXX Wait for the value of the PCISTATE register to
2932          * return to its original pre-reset state. This is a
2933          * fairly good indicator of reset completion. If we don't
2934          * wait for the reset to fully complete, trying to read
2935          * from the device's non-PCI registers may yield garbage
2936          * results.
2937          */
2938         for (i = 0; i < BGE_TIMEOUT; i++) {
2939                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2940                         break;
2941                 DELAY(10);
2942         }
2943
2944         /* Fix up byte swapping */
2945         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2946             BGE_MODECTL_BYTESWAP_DATA);
2947
2948         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2949
2950         /*
2951          * The 5704 in TBI mode apparently needs some special
2952          * adjustment to insure the SERDES drive level is set
2953          * to 1.2V.
2954          */
2955         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2956             (sc->bge_flags & BGE_FLAG_TBI)) {
2957                 uint32_t serdescfg;
2958
2959                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2960                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2961                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2962         }
2963
2964         /* XXX: Broadcom Linux driver. */
2965         if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2966             sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
2967             sc->bge_asicrev != BGE_ASICREV_BCM5785) {
2968                 uint32_t v;
2969
2970                 /* Enable Data FIFO protection. */
2971                 v = CSR_READ_4(sc, BGE_PCIE_TLDLPL_PORT);
2972                 CSR_WRITE_4(sc, BGE_PCIE_TLDLPL_PORT, v | (1 << 25));
2973         }
2974
2975         DELAY(10000);
2976 }
2977
2978 /*
2979  * Frame reception handling. This is called if there's a frame
2980  * on the receive return list.
2981  *
2982  * Note: we have to be able to handle two possibilities here:
2983  * 1) the frame is from the jumbo recieve ring
2984  * 2) the frame is from the standard receive ring
2985  */
2986
2987 static void
2988 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int count)
2989 {
2990         struct ifnet *ifp;
2991         int stdcnt = 0, jumbocnt = 0;
2992
2993         ifp = &sc->arpcom.ac_if;
2994
2995         while (sc->bge_rx_saved_considx != rx_prod && count != 0) {
2996                 struct bge_rx_bd        *cur_rx;
2997                 uint32_t                rxidx;
2998                 struct mbuf             *m = NULL;
2999                 uint16_t                vlan_tag = 0;
3000                 int                     have_tag = 0;
3001
3002                 --count;
3003
3004                 cur_rx =
3005             &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
3006
3007                 rxidx = cur_rx->bge_idx;
3008                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
3009                 logif(rx_pkt);
3010
3011                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3012                         have_tag = 1;
3013                         vlan_tag = cur_rx->bge_vlan_tag;
3014                 }
3015
3016                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3017                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3018                         jumbocnt++;
3019
3020                         if (rxidx != sc->bge_jumbo) {
3021                                 IFNET_STAT_INC(ifp, ierrors, 1);
3022                                 if_printf(ifp, "sw jumbo index(%d) "
3023                                     "and hw jumbo index(%d) mismatch, drop!\n",
3024                                     sc->bge_jumbo, rxidx);
3025                                 bge_setup_rxdesc_jumbo(sc, rxidx);
3026                                 continue;
3027                         }
3028
3029                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf;
3030                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3031                                 IFNET_STAT_INC(ifp, ierrors, 1);
3032                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
3033                                 continue;
3034                         }
3035                         if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) {
3036                                 IFNET_STAT_INC(ifp, ierrors, 1);
3037                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
3038                                 continue;
3039                         }
3040                 } else {
3041                         int discard = 0;
3042
3043                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3044                         stdcnt++;
3045
3046                         if (rxidx != sc->bge_std) {
3047                                 IFNET_STAT_INC(ifp, ierrors, 1);
3048                                 if_printf(ifp, "sw std index(%d) "
3049                                     "and hw std index(%d) mismatch, drop!\n",
3050                                     sc->bge_std, rxidx);
3051                                 bge_setup_rxdesc_std(sc, rxidx);
3052                                 discard = 1;
3053                                 goto refresh_rx;
3054                         }
3055
3056                         m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf;
3057                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3058                                 IFNET_STAT_INC(ifp, ierrors, 1);
3059                                 bge_setup_rxdesc_std(sc, sc->bge_std);
3060                                 discard = 1;
3061                                 goto refresh_rx;
3062                         }
3063                         if (bge_newbuf_std(sc, sc->bge_std, 0)) {
3064                                 IFNET_STAT_INC(ifp, ierrors, 1);
3065                                 bge_setup_rxdesc_std(sc, sc->bge_std);
3066                                 discard = 1;
3067                         }
3068 refresh_rx:
3069                         if (sc->bge_rx_wreg > 0 && stdcnt >= sc->bge_rx_wreg) {
3070                                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO,
3071                                     sc->bge_std);
3072                                 stdcnt = 0;
3073                         }
3074                         if (discard)
3075                                 continue;
3076                 }
3077
3078                 IFNET_STAT_INC(ifp, ipackets, 1);
3079 #if !defined(__i386__) && !defined(__x86_64__)
3080                 /*
3081                  * The x86 allows unaligned accesses, but for other
3082                  * platforms we must make sure the payload is aligned.
3083                  */
3084                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3085                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3086                             cur_rx->bge_len);
3087                         m->m_data += ETHER_ALIGN;
3088                 }
3089 #endif
3090                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3091                 m->m_pkthdr.rcvif = ifp;
3092
3093                 if (ifp->if_capenable & IFCAP_RXCSUM) {
3094                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3095                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3096                                 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
3097                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3098                         }
3099                         if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
3100                             m->m_pkthdr.len >= BGE_MIN_FRAMELEN) {
3101                                 m->m_pkthdr.csum_data =
3102                                         cur_rx->bge_tcp_udp_csum;
3103                                 m->m_pkthdr.csum_flags |=
3104                                         CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3105                         }
3106                 }
3107
3108                 /*
3109                  * If we received a packet with a vlan tag, pass it
3110                  * to vlan_input() instead of ether_input().
3111                  */
3112                 if (have_tag) {
3113                         m->m_flags |= M_VLANTAG;
3114                         m->m_pkthdr.ether_vlantag = vlan_tag;
3115                 }
3116                 ifp->if_input(ifp, m);
3117         }
3118
3119         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3120         if (stdcnt)
3121                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3122         if (jumbocnt)
3123                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3124 }
3125
3126 static void
3127 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3128 {
3129         struct ifnet *ifp;
3130
3131         ifp = &sc->arpcom.ac_if;
3132
3133         /*
3134          * Go through our tx ring and free mbufs for those
3135          * frames that have been sent.
3136          */
3137         while (sc->bge_tx_saved_considx != tx_cons) {
3138                 uint32_t idx = 0;
3139
3140                 idx = sc->bge_tx_saved_considx;
3141                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3142                         IFNET_STAT_INC(ifp, opackets, 1);
3143                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3144                             sc->bge_cdata.bge_tx_dmamap[idx]);
3145                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3146                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
3147                 }
3148                 sc->bge_txcnt--;
3149                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3150                 logif(tx_pkt);
3151         }
3152
3153         if ((BGE_TX_RING_CNT - sc->bge_txcnt) >=
3154             (sc->bge_txrsvd + sc->bge_txspare))
3155                 ifq_clr_oactive(&ifp->if_snd);
3156
3157         if (sc->bge_txcnt == 0)
3158                 ifp->if_timer = 0;
3159
3160         if (!ifq_is_empty(&ifp->if_snd))
3161                 if_devstart(ifp);
3162 }
3163
3164 #ifdef IFPOLL_ENABLE
3165
3166 static void
3167 bge_npoll_compat(struct ifnet *ifp, void *arg __unused, int cycles)
3168 {
3169         struct bge_softc *sc = ifp->if_softc;
3170         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3171         uint16_t rx_prod, tx_cons;
3172
3173         ASSERT_SERIALIZED(ifp->if_serializer);
3174
3175         if (sc->bge_npoll.ifpc_stcount-- == 0) {
3176                 sc->bge_npoll.ifpc_stcount = sc->bge_npoll.ifpc_stfrac;
3177                 /*
3178                  * Process link state changes.
3179                  */
3180                 bge_link_poll(sc);
3181         }
3182
3183         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
3184                 sc->bge_status_tag = sblk->bge_status_tag;
3185                 /*
3186                  * Use a load fence to ensure that status_tag
3187                  * is saved  before rx_prod and tx_cons.
3188                  */
3189                 cpu_lfence();
3190         }
3191
3192         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3193         if (sc->bge_rx_saved_considx != rx_prod)
3194                 bge_rxeof(sc, rx_prod, cycles);
3195
3196         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3197         if (sc->bge_tx_saved_considx != tx_cons)
3198                 bge_txeof(sc, tx_cons);
3199
3200         if (sc->bge_flags & BGE_FLAG_STATUS_TAG)
3201                 bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3202
3203         if (sc->bge_coal_chg)
3204                 bge_coal_change(sc);
3205 }
3206
3207 static void
3208 bge_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3209 {
3210         struct bge_softc *sc = ifp->if_softc;
3211
3212         ASSERT_SERIALIZED(ifp->if_serializer);
3213
3214         if (info != NULL) {
3215                 int cpuid = sc->bge_npoll.ifpc_cpuid;
3216
3217                 info->ifpi_rx[cpuid].poll_func = bge_npoll_compat;
3218                 info->ifpi_rx[cpuid].arg = NULL;
3219                 info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
3220
3221                 if (ifp->if_flags & IFF_RUNNING)
3222                         bge_disable_intr(sc);
3223                 ifq_set_cpuid(&ifp->if_snd, cpuid);
3224         } else {
3225                 if (ifp->if_flags & IFF_RUNNING)
3226                         bge_enable_intr(sc);
3227                 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
3228         }
3229 }
3230
3231 #endif  /* IFPOLL_ENABLE */
3232
3233 static void
3234 bge_intr_crippled(void *xsc)
3235 {
3236         struct bge_softc *sc = xsc;
3237         struct ifnet *ifp = &sc->arpcom.ac_if;
3238
3239         logif(intr);
3240
3241         /*
3242          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3243          * disable interrupts by writing nonzero like we used to, since with
3244          * our current organization this just gives complications and
3245          * pessimizations for re-enabling interrupts.  We used to have races
3246          * instead of the necessary complications.  Disabling interrupts
3247          * would just reduce the chance of a status update while we are
3248          * running (by switching to the interrupt-mode coalescence
3249          * parameters), but this chance is already very low so it is more
3250          * efficient to get another interrupt than prevent it.
3251          *
3252          * We do the ack first to ensure another interrupt if there is a
3253          * status update after the ack.  We don't check for the status
3254          * changing later because it is more efficient to get another
3255          * interrupt than prevent it, not quite as above (not checking is
3256          * a smaller optimization than not toggling the interrupt enable,
3257          * since checking doesn't involve PCI accesses and toggling require
3258          * the status check).  So toggling would probably be a pessimization
3259          * even with MSI.  It would only be needed for using a task queue.
3260          */
3261         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3262
3263         /*
3264          * Process link state changes.
3265          */
3266         bge_link_poll(sc);
3267
3268         if (ifp->if_flags & IFF_RUNNING) {
3269                 struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3270                 uint16_t rx_prod, tx_cons;
3271
3272                 rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3273                 if (sc->bge_rx_saved_considx != rx_prod)
3274                         bge_rxeof(sc, rx_prod, -1);
3275
3276                 tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3277                 if (sc->bge_tx_saved_considx != tx_cons)
3278                         bge_txeof(sc, tx_cons);
3279         }
3280
3281         if (sc->bge_coal_chg)
3282                 bge_coal_change(sc);
3283 }
3284
3285 static void
3286 bge_intr_legacy(void *xsc)
3287 {
3288         struct bge_softc *sc = xsc;
3289         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3290
3291         if (sc->bge_status_tag == sblk->bge_status_tag) {
3292                 uint32_t val;
3293
3294                 val = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3295                 if (val & BGE_PCISTAT_INTR_NOTACT)
3296                         return;
3297         }
3298
3299         /*
3300          * NOTE:
3301          * Interrupt will have to be disabled if tagged status
3302          * is used, else interrupt will always be asserted on
3303          * certain chips (at least on BCM5750 AX/BX).
3304          */
3305         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3306
3307         bge_intr(sc);
3308 }
3309
3310 static void
3311 bge_msi(void *xsc)
3312 {
3313         struct bge_softc *sc = xsc;
3314
3315         /* Disable interrupt first */
3316         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3317         bge_intr(sc);
3318 }
3319
3320 static void
3321 bge_msi_oneshot(void *xsc)
3322 {
3323         bge_intr(xsc);
3324 }
3325
3326 static void
3327 bge_intr(struct bge_softc *sc)
3328 {
3329         struct ifnet *ifp = &sc->arpcom.ac_if;
3330         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3331         uint16_t rx_prod, tx_cons;
3332         uint32_t status;
3333
3334         sc->bge_status_tag = sblk->bge_status_tag;
3335         /*
3336          * Use a load fence to ensure that status_tag is saved 
3337          * before rx_prod, tx_cons and status.
3338          */
3339         cpu_lfence();
3340
3341         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3342         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3343         status = sblk->bge_status;
3344
3345         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bge_link_evt)
3346                 bge_link_poll(sc);
3347
3348         if (ifp->if_flags & IFF_RUNNING) {
3349                 if (sc->bge_rx_saved_considx != rx_prod)
3350                         bge_rxeof(sc, rx_prod, -1);
3351
3352                 if (sc->bge_tx_saved_considx != tx_cons)
3353                         bge_txeof(sc, tx_cons);
3354         }
3355
3356         bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3357
3358         if (sc->bge_coal_chg)
3359                 bge_coal_change(sc);
3360 }
3361
3362 static void
3363 bge_tick(void *xsc)
3364 {
3365         struct bge_softc *sc = xsc;
3366         struct ifnet *ifp = &sc->arpcom.ac_if;
3367
3368         lwkt_serialize_enter(ifp->if_serializer);
3369
3370         if (BGE_IS_5705_PLUS(sc))
3371                 bge_stats_update_regs(sc);
3372         else
3373                 bge_stats_update(sc);
3374
3375         if (sc->bge_flags & BGE_FLAG_TBI) {
3376                 /*
3377                  * Since in TBI mode auto-polling can't be used we should poll
3378                  * link status manually. Here we register pending link event
3379                  * and trigger interrupt.
3380                  */
3381                 sc->bge_link_evt++;
3382                 if (BGE_IS_CRIPPLED(sc))
3383                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3384                 else
3385                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3386         } else if (!sc->bge_link) {
3387                 mii_tick(device_get_softc(sc->bge_miibus));
3388         }
3389
3390         bge_asf_driver_up(sc);
3391
3392         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3393
3394         lwkt_serialize_exit(ifp->if_serializer);
3395 }
3396
3397 static void
3398 bge_stats_update_regs(struct bge_softc *sc)
3399 {
3400         struct ifnet *ifp = &sc->arpcom.ac_if;
3401         struct bge_mac_stats_regs stats;
3402         uint32_t *s;
3403         int i;
3404
3405         s = (uint32_t *)&stats;
3406         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
3407                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
3408                 s++;
3409         }
3410
3411         IFNET_STAT_SET(ifp, collisions,
3412            (stats.dot3StatsSingleCollisionFrames +
3413            stats.dot3StatsMultipleCollisionFrames +
3414            stats.dot3StatsExcessiveCollisions +
3415            stats.dot3StatsLateCollisions));
3416 }
3417
3418 static void
3419 bge_stats_update(struct bge_softc *sc)
3420 {
3421         struct ifnet *ifp = &sc->arpcom.ac_if;
3422         bus_size_t stats;
3423
3424         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3425
3426 #define READ_STAT(sc, stats, stat)      \
3427         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3428
3429         IFNET_STAT_SET(ifp, collisions,
3430            (READ_STAT(sc, stats,
3431                 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
3432             READ_STAT(sc, stats,
3433                 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3434             READ_STAT(sc, stats,
3435                 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
3436             READ_STAT(sc, stats,
3437                 txstats.dot3StatsLateCollisions.bge_addr_lo)));
3438
3439 #undef READ_STAT
3440
3441 #ifdef notdef
3442         IFNET_STAT_SET(ifp, collisions,
3443            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3444            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3445            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3446            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions));
3447 #endif
3448 }
3449
3450 /*
3451  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3452  * pointers to descriptors.
3453  */
3454 static int
3455 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx,
3456     int *segs_used)
3457 {
3458         struct bge_tx_bd *d = NULL, *last_d;
3459         uint16_t csum_flags = 0, mss = 0;
3460         bus_dma_segment_t segs[BGE_NSEG_NEW];
3461         bus_dmamap_t map;
3462         int error, maxsegs, nsegs, idx, i;
3463         struct mbuf *m_head = *m_head0, *m_new;
3464
3465         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3466                 error = bge_setup_tso(sc, m_head0, &mss, &csum_flags);
3467                 if (error)
3468                         return ENOBUFS;
3469                 m_head = *m_head0;
3470         } else if (m_head->m_pkthdr.csum_flags & BGE_CSUM_FEATURES) {
3471                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3472                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3473                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3474                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3475                 if (m_head->m_flags & M_LASTFRAG)
3476                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3477                 else if (m_head->m_flags & M_FRAG)
3478                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3479         }
3480
3481         idx = *txidx;
3482         map = sc->bge_cdata.bge_tx_dmamap[idx];
3483
3484         maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - sc->bge_txrsvd;
3485         KASSERT(maxsegs >= sc->bge_txspare,
3486                 ("not enough segments %d", maxsegs));
3487
3488         if (maxsegs > BGE_NSEG_NEW)
3489                 maxsegs = BGE_NSEG_NEW;
3490
3491         /*
3492          * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
3493          * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
3494          * but when such padded frames employ the bge IP/TCP checksum
3495          * offload, the hardware checksum assist gives incorrect results
3496          * (possibly from incorporating its own padding into the UDP/TCP
3497          * checksum; who knows).  If we pad such runts with zeros, the
3498          * onboard checksum comes out correct.
3499          */
3500         if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
3501             m_head->m_pkthdr.len < BGE_MIN_FRAMELEN) {
3502                 error = m_devpad(m_head, BGE_MIN_FRAMELEN);
3503                 if (error)
3504                         goto back;
3505         }
3506
3507         if ((sc->bge_flags & BGE_FLAG_SHORTDMA) && m_head->m_next != NULL) {
3508                 m_new = bge_defrag_shortdma(m_head);
3509                 if (m_new == NULL) {
3510                         error = ENOBUFS;
3511                         goto back;
3512                 }
3513                 *m_head0 = m_head = m_new;
3514         }
3515         if ((m_head->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3516             sc->bge_force_defrag && (sc->bge_flags & BGE_FLAG_PCIE) &&
3517             m_head->m_next != NULL) {
3518                 /*
3519                  * Forcefully defragment mbuf chain to overcome hardware
3520                  * limitation which only support a single outstanding
3521                  * DMA read operation.  If it fails, keep moving on using
3522                  * the original mbuf chain.
3523                  */
3524                 m_new = m_defrag(m_head, MB_DONTWAIT);
3525                 if (m_new != NULL)
3526                         *m_head0 = m_head = m_new;
3527         }
3528
3529         error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map,
3530                         m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3531         if (error)
3532                 goto back;
3533         *segs_used += nsegs;
3534
3535         m_head = *m_head0;
3536         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3537
3538         for (i = 0; ; i++) {
3539                 d = &sc->bge_ldata.bge_tx_ring[idx];
3540
3541                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3542                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3543                 d->bge_len = segs[i].ds_len;
3544                 d->bge_flags = csum_flags;
3545                 d->bge_mss = mss;
3546
3547                 if (i == nsegs - 1)
3548                         break;
3549                 BGE_INC(idx, BGE_TX_RING_CNT);
3550         }
3551         last_d = d;
3552
3553         /* Set vlan tag to the first segment of the packet. */
3554         d = &sc->bge_ldata.bge_tx_ring[*txidx];
3555         if (m_head->m_flags & M_VLANTAG) {
3556                 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3557                 d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
3558         } else {
3559                 d->bge_vlan_tag = 0;
3560         }
3561
3562         /* Mark the last segment as end of packet... */
3563         last_d->bge_flags |= BGE_TXBDFLAG_END;
3564
3565         /*
3566          * Insure that the map for this transmission is placed at
3567          * the array index of the last descriptor in this chain.
3568          */
3569         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3570         sc->bge_cdata.bge_tx_dmamap[idx] = map;
3571         sc->bge_cdata.bge_tx_chain[idx] = m_head;
3572         sc->bge_txcnt += nsegs;
3573
3574         BGE_INC(idx, BGE_TX_RING_CNT);
3575         *txidx = idx;
3576 back:
3577         if (error) {
3578                 m_freem(*m_head0);
3579                 *m_head0 = NULL;
3580         }
3581         return error;
3582 }
3583
3584 static void
3585 bge_xmit(struct bge_softc *sc, uint32_t prodidx)
3586 {
3587         /* Transmit */
3588         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3589         /* 5700 b2 errata */
3590         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
3591                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3592 }
3593
3594 /*
3595  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3596  * to the mbuf data regions directly in the transmit descriptors.
3597  */
3598 static void
3599 bge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3600 {
3601         struct bge_softc *sc = ifp->if_softc;
3602         struct mbuf *m_head = NULL;
3603         uint32_t prodidx;
3604         int nsegs = 0;
3605
3606         ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
3607
3608         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
3609                 return;
3610
3611         prodidx = sc->bge_tx_prodidx;
3612
3613         while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3614                 m_head = ifq_dequeue(&ifp->if_snd);
3615                 if (m_head == NULL)
3616                         break;
3617
3618                 /*
3619                  * XXX
3620                  * The code inside the if() block is never reached since we
3621                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
3622                  * requests to checksum TCP/UDP in a fragmented packet.
3623                  * 
3624                  * XXX
3625                  * safety overkill.  If this is a fragmented packet chain
3626                  * with delayed TCP/UDP checksums, then only encapsulate
3627                  * it if we have enough descriptors to handle the entire
3628                  * chain at once.
3629                  * (paranoia -- may not actually be needed)
3630                  */
3631                 if ((m_head->m_flags & M_FIRSTFRAG) &&
3632                     (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
3633                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3634                             m_head->m_pkthdr.csum_data + sc->bge_txrsvd) {
3635                                 ifq_set_oactive(&ifp->if_snd);
3636                                 ifq_prepend(&ifp->if_snd, m_head);
3637                                 break;
3638                         }
3639                 }
3640
3641                 /*
3642                  * Sanity check: avoid coming within bge_txrsvd
3643                  * descriptors of the end of the ring.  Also make
3644                  * sure there are bge_txspare descriptors for
3645                  * jumbo buffers' defragmentation.
3646                  */
3647                 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3648                     (sc->bge_txrsvd + sc->bge_txspare)) {
3649                         ifq_set_oactive(&ifp->if_snd);
3650                         ifq_prepend(&ifp->if_snd, m_head);
3651                         break;
3652                 }
3653
3654                 /*
3655                  * Pack the data into the transmit ring. If we
3656                  * don't have room, set the OACTIVE flag and wait
3657                  * for the NIC to drain the ring.
3658                  */
3659                 if (bge_encap(sc, &m_head, &prodidx, &nsegs)) {
3660                         ifq_set_oactive(&ifp->if_snd);
3661                         IFNET_STAT_INC(ifp, oerrors, 1);
3662                         break;
3663                 }
3664
3665                 if (nsegs >= sc->bge_tx_wreg) {
3666                         bge_xmit(sc, prodidx);
3667                         nsegs = 0;
3668                 }
3669
3670                 ETHER_BPF_MTAP(ifp, m_head);
3671
3672                 /*
3673                  * Set a timeout in case the chip goes out to lunch.
3674                  */
3675                 ifp->if_timer = 5;
3676         }
3677
3678         if (nsegs > 0)
3679                 bge_xmit(sc, prodidx);
3680         sc->bge_tx_prodidx = prodidx;
3681 }
3682
3683 static void
3684 bge_init(void *xsc)
3685 {
3686         struct bge_softc *sc = xsc;
3687         struct ifnet *ifp = &sc->arpcom.ac_if;
3688         uint16_t *m;
3689         uint32_t mode;
3690
3691         ASSERT_SERIALIZED(ifp->if_serializer);
3692
3693         /* Cancel pending I/O and flush buffers. */
3694         bge_stop(sc);
3695
3696         bge_stop_fw(sc);
3697         bge_sig_pre_reset(sc, BGE_RESET_START);
3698         bge_reset(sc);
3699         bge_sig_legacy(sc, BGE_RESET_START);
3700         bge_sig_post_reset(sc, BGE_RESET_START);
3701
3702         bge_chipinit(sc);
3703
3704         /*
3705          * Init the various state machines, ring
3706          * control blocks and firmware.
3707          */
3708         if (bge_blockinit(sc)) {
3709                 if_printf(ifp, "initialization failure\n");
3710                 bge_stop(sc);
3711                 return;
3712         }
3713
3714         /* Specify MTU. */
3715         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3716             ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3717
3718         /* Load our MAC address. */
3719         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3720         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3721         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3722
3723         /* Enable or disable promiscuous mode as needed. */
3724         bge_setpromisc(sc);
3725
3726         /* Program multicast filter. */
3727         bge_setmulti(sc);
3728
3729         /* Init RX ring. */
3730         if (bge_init_rx_ring_std(sc)) {
3731                 if_printf(ifp, "RX ring initialization failed\n");
3732                 bge_stop(sc);
3733                 return;
3734         }
3735
3736         /*
3737          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3738          * memory to insure that the chip has in fact read the first
3739          * entry of the ring.
3740          */
3741         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3742                 uint32_t                v, i;
3743                 for (i = 0; i < 10; i++) {
3744                         DELAY(20);
3745                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3746                         if (v == (MCLBYTES - ETHER_ALIGN))
3747                                 break;
3748                 }
3749                 if (i == 10)
3750                         if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
3751         }
3752
3753         /* Init jumbo RX ring. */
3754         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3755                 if (bge_init_rx_ring_jumbo(sc)) {
3756                         if_printf(ifp, "Jumbo RX ring initialization failed\n");
3757                         bge_stop(sc);
3758                         return;
3759                 }
3760         }
3761
3762         /* Init our RX return ring index */
3763         sc->bge_rx_saved_considx = 0;
3764
3765         /* Init TX ring. */
3766         bge_init_tx_ring(sc);
3767
3768         /* Enable TX MAC state machine lockup fix. */
3769         mode = CSR_READ_4(sc, BGE_TX_MODE);
3770         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3771                 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3772         /* Turn on transmitter */
3773         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3774
3775         /* Turn on receiver */
3776         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3777
3778         /*
3779          * Set the number of good frames to receive after RX MBUF
3780          * Low Watermark has been reached.  After the RX MAC receives
3781          * this number of frames, it will drop subsequent incoming
3782          * frames until the MBUF High Watermark is reached.
3783          */
3784         CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3785
3786         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
3787                 if (bootverbose) {
3788                         if_printf(ifp, "MSI_MODE: %#x\n",
3789                             CSR_READ_4(sc, BGE_MSI_MODE));
3790                 }
3791
3792                 /*
3793                  * XXX
3794                  * Linux driver turns it on for all chips supporting MSI?!
3795                  */
3796                 if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
3797                         /*
3798                          * XXX
3799                          * According to 5722-PG101-R,
3800                          * BGE_PCIE_TRANSACT_ONESHOT_MSI applies only to
3801                          * BCM5906.
3802                          */
3803                         BGE_SETBIT(sc, BGE_PCIE_TRANSACT,
3804                             BGE_PCIE_TRANSACT_ONESHOT_MSI);
3805                 }
3806         }
3807
3808         /* Tell firmware we're alive. */
3809         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3810
3811         /* Enable host interrupts if polling(4) is not enabled. */
3812         PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3813 #ifdef IFPOLL_ENABLE
3814         if (ifp->if_flags & IFF_NPOLLING)
3815                 bge_disable_intr(sc);
3816         else
3817 #endif
3818         bge_enable_intr(sc);
3819
3820         ifp->if_flags |= IFF_RUNNING;
3821         ifq_clr_oactive(&ifp->if_snd);
3822
3823         bge_ifmedia_upd(ifp);
3824
3825         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3826 }
3827
3828 /*
3829  * Set media options.
3830  */
3831 static int
3832 bge_ifmedia_upd(struct ifnet *ifp)
3833 {
3834         struct bge_softc *sc = ifp->if_softc;
3835
3836         /* If this is a 1000baseX NIC, enable the TBI port. */
3837         if (sc->bge_flags & BGE_FLAG_TBI) {
3838                 struct ifmedia *ifm = &sc->bge_ifmedia;
3839
3840                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3841                         return(EINVAL);
3842
3843                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3844                 case IFM_AUTO:
3845                         /*
3846                          * The BCM5704 ASIC appears to have a special
3847                          * mechanism for programming the autoneg
3848                          * advertisement registers in TBI mode.
3849                          */
3850                         if (!bge_fake_autoneg &&
3851                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3852                                 uint32_t sgdig;
3853
3854                                 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3855                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3856                                 sgdig |= BGE_SGDIGCFG_AUTO |
3857                                          BGE_SGDIGCFG_PAUSE_CAP |
3858                                          BGE_SGDIGCFG_ASYM_PAUSE;
3859                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3860                                             sgdig | BGE_SGDIGCFG_SEND);
3861                                 DELAY(5);
3862                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3863                         }
3864                         break;
3865                 case IFM_1000_SX:
3866                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3867                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
3868                                     BGE_MACMODE_HALF_DUPLEX);
3869                         } else {
3870                                 BGE_SETBIT(sc, BGE_MAC_MODE,
3871                                     BGE_MACMODE_HALF_DUPLEX);
3872                         }
3873                         break;
3874                 default:
3875                         return(EINVAL);
3876                 }
3877         } else {
3878                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3879
3880                 sc->bge_link_evt++;
3881                 sc->bge_link = 0;
3882                 if (mii->mii_instance) {
3883                         struct mii_softc *miisc;
3884
3885                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3886                                 mii_phy_reset(miisc);
3887                 }
3888                 mii_mediachg(mii);
3889
3890                 /*
3891                  * Force an interrupt so that we will call bge_link_upd
3892                  * if needed and clear any pending link state attention.
3893                  * Without this we are not getting any further interrupts
3894                  * for link state changes and thus will not UP the link and
3895                  * not be able to send in bge_start.  The only way to get
3896                  * things working was to receive a packet and get an RX
3897                  * intr.
3898                  *
3899                  * bge_tick should help for fiber cards and we might not
3900                  * need to do this here if BGE_FLAG_TBI is set but as
3901                  * we poll for fiber anyway it should not harm.
3902                  */
3903                 if (BGE_IS_CRIPPLED(sc))
3904                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3905                 else
3906                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3907         }
3908         return(0);
3909 }
3910
3911 /*
3912  * Report current media status.
3913  */
3914 static void
3915 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3916 {
3917         struct bge_softc *sc = ifp->if_softc;
3918
3919         if ((ifp->if_flags & IFF_RUNNING) == 0)
3920                 return;
3921
3922         if (sc->bge_flags & BGE_FLAG_TBI) {
3923                 ifmr->ifm_status = IFM_AVALID;
3924                 ifmr->ifm_active = IFM_ETHER;
3925                 if (CSR_READ_4(sc, BGE_MAC_STS) &
3926                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
3927                         ifmr->ifm_status |= IFM_ACTIVE;
3928                 } else {
3929                         ifmr->ifm_active |= IFM_NONE;
3930                         return;
3931                 }
3932
3933                 ifmr->ifm_active |= IFM_1000_SX;
3934                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3935                         ifmr->ifm_active |= IFM_HDX;    
3936                 else
3937                         ifmr->ifm_active |= IFM_FDX;
3938         } else {
3939                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3940
3941                 mii_pollstat(mii);
3942                 ifmr->ifm_active = mii->mii_media_active;
3943                 ifmr->ifm_status = mii->mii_media_status;
3944         }
3945 }
3946
3947 static int
3948 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3949 {
3950         struct bge_softc *sc = ifp->if_softc;
3951         struct ifreq *ifr = (struct ifreq *)data;
3952         int mask, error = 0;
3953
3954         ASSERT_SERIALIZED(ifp->if_serializer);
3955
3956         switch (command) {
3957         case SIOCSIFMTU:
3958                 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3959                     (BGE_IS_JUMBO_CAPABLE(sc) &&
3960                      ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3961                         error = EINVAL;
3962                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3963                         ifp->if_mtu = ifr->ifr_mtu;
3964                         if (ifp->if_flags & IFF_RUNNING)
3965                                 bge_init(sc);
3966                 }
3967                 break;
3968         case SIOCSIFFLAGS:
3969                 if (ifp->if_flags & IFF_UP) {
3970                         if (ifp->if_flags & IFF_RUNNING) {
3971                                 mask = ifp->if_flags ^ sc->bge_if_flags;
3972
3973                                 /*
3974                                  * If only the state of the PROMISC flag
3975                                  * changed, then just use the 'set promisc
3976                                  * mode' command instead of reinitializing
3977                                  * the entire NIC. Doing a full re-init
3978                                  * means reloading the firmware and waiting
3979                                  * for it to start up, which may take a
3980                                  * second or two.  Similarly for ALLMULTI.
3981                                  */
3982                                 if (mask & IFF_PROMISC)
3983                                         bge_setpromisc(sc);
3984                                 if (mask & IFF_ALLMULTI)
3985                                         bge_setmulti(sc);
3986                         } else {
3987                                 bge_init(sc);
3988                         }
3989                 } else if (ifp->if_flags & IFF_RUNNING) {
3990                         bge_stop(sc);
3991                 }
3992                 sc->bge_if_flags = ifp->if_flags;
3993                 break;
3994         case SIOCADDMULTI:
3995         case SIOCDELMULTI:
3996                 if (ifp->if_flags & IFF_RUNNING)
3997                         bge_setmulti(sc);
3998                 break;
3999         case SIOCSIFMEDIA:
4000         case SIOCGIFMEDIA:
4001                 if (sc->bge_flags & BGE_FLAG_TBI) {
4002                         error = ifmedia_ioctl(ifp, ifr,
4003                             &sc->bge_ifmedia, command);
4004                 } else {
4005                         struct mii_data *mii;
4006
4007                         mii = device_get_softc(sc->bge_miibus);
4008                         error = ifmedia_ioctl(ifp, ifr,
4009                                               &mii->mii_media, command);
4010                 }
4011                 break;
4012         case SIOCSIFCAP:
4013                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
4014                 if (mask & IFCAP_HWCSUM) {
4015                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
4016                         if (ifp->if_capenable & IFCAP_TXCSUM)
4017                                 ifp->if_hwassist |= BGE_CSUM_FEATURES;
4018                         else
4019                                 ifp->if_hwassist &= ~BGE_CSUM_FEATURES;
4020                 }
4021                 if (mask & IFCAP_TSO) {
4022                         ifp->if_capenable ^= IFCAP_TSO;
4023                         if (ifp->if_capenable & IFCAP_TSO)
4024                                 ifp->if_hwassist |= CSUM_TSO;
4025                         else
4026                                 ifp->if_hwassist &= ~CSUM_TSO;
4027                 }
4028                 break;
4029         default:
4030                 error = ether_ioctl(ifp, command, data);
4031                 break;
4032         }
4033         return error;
4034 }
4035
4036 static void
4037 bge_watchdog(struct ifnet *ifp)
4038 {
4039         struct bge_softc *sc = ifp->if_softc;
4040
4041         if_printf(ifp, "watchdog timeout -- resetting\n");
4042
4043         bge_init(sc);
4044
4045         IFNET_STAT_INC(ifp, oerrors, 1);
4046
4047         if (!ifq_is_empty(&ifp->if_snd))
4048                 if_devstart(ifp);
4049 }
4050
4051 /*
4052  * Stop the adapter and free any mbufs allocated to the
4053  * RX and TX lists.
4054  */
4055 static void
4056 bge_stop(struct bge_softc *sc)
4057 {
4058         struct ifnet *ifp = &sc->arpcom.ac_if;
4059
4060         ASSERT_SERIALIZED(ifp->if_serializer);
4061
4062         callout_stop(&sc->bge_stat_timer);
4063
4064         /* Disable host interrupts. */
4065         bge_disable_intr(sc);
4066
4067         /*
4068          * Tell firmware we're shutting down.
4069          */
4070         bge_stop_fw(sc);
4071         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
4072
4073         /*
4074          * Disable all of the receiver blocks
4075          */
4076         bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4077         bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4078         bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4079         if (BGE_IS_5700_FAMILY(sc))
4080                 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4081         bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4082         bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4083         bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4084
4085         /*
4086          * Disable all of the transmit blocks
4087          */
4088         bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4089         bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4090         bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4091         bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4092         bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4093         if (BGE_IS_5700_FAMILY(sc))
4094                 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4095         bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4096
4097         /*
4098          * Shut down all of the memory managers and related
4099          * state machines.
4100          */
4101         bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4102         bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4103         if (BGE_IS_5700_FAMILY(sc))
4104                 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4105         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4106         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4107         if (!BGE_IS_5705_PLUS(sc)) {
4108                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4109                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4110         }
4111
4112         bge_reset(sc);
4113         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
4114         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
4115
4116         /*
4117          * Keep the ASF firmware running if up.
4118          */
4119         if (sc->bge_asf_mode & ASF_STACKUP)
4120                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4121         else
4122                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4123
4124         /* Free the RX lists. */
4125         bge_free_rx_ring_std(sc);
4126
4127         /* Free jumbo RX list. */
4128         if (BGE_IS_JUMBO_CAPABLE(sc))
4129                 bge_free_rx_ring_jumbo(sc);
4130
4131         /* Free TX buffers. */
4132         bge_free_tx_ring(sc);
4133
4134         sc->bge_status_tag = 0;
4135         sc->bge_link = 0;
4136         sc->bge_coal_chg = 0;
4137
4138         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4139
4140         ifp->if_flags &= ~IFF_RUNNING;
4141         ifq_clr_oactive(&ifp->if_snd);
4142         ifp->if_timer = 0;
4143 }
4144
4145 /*
4146  * Stop all chip I/O so that the kernel's probe routines don't
4147  * get confused by errant DMAs when rebooting.
4148  */
4149 static void
4150 bge_shutdown(device_t dev)
4151 {
4152         struct bge_softc *sc = device_get_softc(dev);
4153         struct ifnet *ifp = &sc->arpcom.ac_if;
4154
4155         lwkt_serialize_enter(ifp->if_serializer);
4156         bge_stop(sc);
4157         lwkt_serialize_exit(ifp->if_serializer);
4158 }
4159
4160 static int
4161 bge_suspend(device_t dev)
4162 {
4163         struct bge_softc *sc = device_get_softc(dev);
4164         struct ifnet *ifp = &sc->arpcom.ac_if;
4165
4166         lwkt_serialize_enter(ifp->if_serializer);
4167         bge_stop(sc);
4168         lwkt_serialize_exit(ifp->if_serializer);
4169
4170         return 0;
4171 }
4172
4173 static int
4174 bge_resume(device_t dev)
4175 {
4176         struct bge_softc *sc = device_get_softc(dev);
4177         struct ifnet *ifp = &sc->arpcom.ac_if;
4178
4179         lwkt_serialize_enter(ifp->if_serializer);
4180
4181         if (ifp->if_flags & IFF_UP) {
4182                 bge_init(sc);
4183
4184                 if (!ifq_is_empty(&ifp->if_snd))
4185                         if_devstart(ifp);
4186         }
4187
4188         lwkt_serialize_exit(ifp->if_serializer);
4189
4190         return 0;
4191 }
4192
4193 static void
4194 bge_setpromisc(struct bge_softc *sc)
4195 {
4196         struct ifnet *ifp = &sc->arpcom.ac_if;
4197
4198         if (ifp->if_flags & IFF_PROMISC)
4199                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4200         else
4201                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4202 }
4203
4204 static void
4205 bge_dma_free(struct bge_softc *sc)
4206 {
4207         int i;
4208
4209         /* Destroy RX mbuf DMA stuffs. */
4210         if (sc->bge_cdata.bge_rx_mtag != NULL) {
4211                 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4212                         bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4213                             sc->bge_cdata.bge_rx_std_dmamap[i]);
4214                 }
4215                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4216                                    sc->bge_cdata.bge_rx_tmpmap);
4217                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4218         }
4219
4220         /* Destroy TX mbuf DMA stuffs. */
4221         if (sc->bge_cdata.bge_tx_mtag != NULL) {
4222                 for (i = 0; i < BGE_TX_RING_CNT; i++) {
4223                         bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4224                             sc->bge_cdata.bge_tx_dmamap[i]);
4225                 }
4226                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4227         }
4228
4229         /* Destroy standard RX ring */
4230         bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
4231                            sc->bge_cdata.bge_rx_std_ring_map,
4232                            sc->bge_ldata.bge_rx_std_ring);
4233
4234         if (BGE_IS_JUMBO_CAPABLE(sc))
4235                 bge_free_jumbo_mem(sc);
4236
4237         /* Destroy RX return ring */
4238         bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
4239                            sc->bge_cdata.bge_rx_return_ring_map,
4240                            sc->bge_ldata.bge_rx_return_ring);
4241
4242         /* Destroy TX ring */
4243         bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
4244                            sc->bge_cdata.bge_tx_ring_map,
4245                            sc->bge_ldata.bge_tx_ring);
4246
4247         /* Destroy status block */
4248         bge_dma_block_free(sc->bge_cdata.bge_status_tag,
4249                            sc->bge_cdata.bge_status_map,
4250                            sc->bge_ldata.bge_status_block);
4251
4252         /* Destroy statistics block */
4253         bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
4254                            sc->bge_cdata.bge_stats_map,
4255                            sc->bge_ldata.bge_stats);
4256
4257         /* Destroy the parent tag */
4258         if (sc->bge_cdata.bge_parent_tag != NULL)
4259                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
4260 }
4261
4262 static int
4263 bge_dma_alloc(struct bge_softc *sc)
4264 {
4265         struct ifnet *ifp = &sc->arpcom.ac_if;
4266         int i, error;
4267         bus_addr_t lowaddr;
4268         bus_size_t txmaxsz;
4269
4270         lowaddr = BUS_SPACE_MAXADDR;
4271         if (sc->bge_flags & BGE_FLAG_MAXADDR_40BIT)
4272                 lowaddr = BGE_DMA_MAXADDR_40BIT;
4273
4274         /*
4275          * Allocate the parent bus DMA tag appropriate for PCI.
4276          *
4277          * All of the NetExtreme/NetLink controllers have 4GB boundary
4278          * DMA bug.
4279          * Whenever an address crosses a multiple of the 4GB boundary
4280          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
4281          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
4282          * state machine will lockup and cause the device to hang.
4283          */
4284         error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
4285                                    lowaddr, BUS_SPACE_MAXADDR,
4286                                    NULL, NULL,
4287                                    BUS_SPACE_MAXSIZE_32BIT, 0,
4288                                    BUS_SPACE_MAXSIZE_32BIT,
4289                                    0, &sc->bge_cdata.bge_parent_tag);
4290         if (error) {
4291                 if_printf(ifp, "could not allocate parent dma tag\n");
4292                 return error;
4293         }
4294
4295         /*
4296          * Create DMA tag and maps for RX mbufs.
4297          */
4298         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4299                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4300                                    NULL, NULL, MCLBYTES, 1, MCLBYTES,
4301                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
4302                                    &sc->bge_cdata.bge_rx_mtag);
4303         if (error) {
4304                 if_printf(ifp, "could not allocate RX mbuf dma tag\n");
4305                 return error;
4306         }
4307
4308         error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4309                                   BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_tmpmap);
4310         if (error) {
4311                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4312                 sc->bge_cdata.bge_rx_mtag = NULL;
4313                 return error;
4314         }
4315
4316         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4317                 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4318                                           BUS_DMA_WAITOK,
4319                                           &sc->bge_cdata.bge_rx_std_dmamap[i]);
4320                 if (error) {
4321                         int j;
4322
4323                         for (j = 0; j < i; ++j) {
4324                                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4325                                         sc->bge_cdata.bge_rx_std_dmamap[j]);
4326                         }
4327                         bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4328                         sc->bge_cdata.bge_rx_mtag = NULL;
4329
4330                         if_printf(ifp, "could not create DMA map for RX\n");
4331                         return error;
4332                 }
4333         }
4334
4335         /*
4336          * Create DMA tag and maps for TX mbufs.
4337          */
4338         if (sc->bge_flags & BGE_FLAG_TSO)
4339                 txmaxsz = IP_MAXPACKET + sizeof(struct ether_vlan_header);
4340         else
4341                 txmaxsz = BGE_JUMBO_FRAMELEN;
4342         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4343                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4344                                    NULL, NULL,
4345                                    txmaxsz, BGE_NSEG_NEW, PAGE_SIZE,
4346                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
4347                                    BUS_DMA_ONEBPAGE,
4348                                    &sc->bge_cdata.bge_tx_mtag);
4349         if (error) {
4350                 if_printf(ifp, "could not allocate TX mbuf dma tag\n");
4351                 return error;
4352         }
4353
4354         for (i = 0; i < BGE_TX_RING_CNT; i++) {
4355                 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag,
4356                                           BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
4357                                           &sc->bge_cdata.bge_tx_dmamap[i]);
4358                 if (error) {
4359                         int j;
4360
4361                         for (j = 0; j < i; ++j) {
4362                                 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4363                                         sc->bge_cdata.bge_tx_dmamap[j]);
4364                         }
4365                         bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4366                         sc->bge_cdata.bge_tx_mtag = NULL;
4367
4368                         if_printf(ifp, "could not create DMA map for TX\n");
4369                         return error;
4370                 }
4371         }
4372
4373         /*
4374          * Create DMA stuffs for standard RX ring.
4375          */
4376         error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
4377                                     &sc->bge_cdata.bge_rx_std_ring_tag,
4378                                     &sc->bge_cdata.bge_rx_std_ring_map,
4379                                     (void *)&sc->bge_ldata.bge_rx_std_ring,
4380                                     &sc->bge_ldata.bge_rx_std_ring_paddr);
4381         if (error) {
4382                 if_printf(ifp, "could not create std RX ring\n");
4383                 return error;
4384         }
4385
4386         /*
4387          * Create jumbo buffer pool.
4388          */
4389         if (BGE_IS_JUMBO_CAPABLE(sc)) {
4390                 error = bge_alloc_jumbo_mem(sc);
4391                 if (error) {
4392                         if_printf(ifp, "could not create jumbo buffer pool\n");
4393                         return error;
4394                 }
4395         }
4396
4397         /*
4398          * Create DMA stuffs for RX return ring.
4399          */
4400         error = bge_dma_block_alloc(sc,
4401             BGE_RX_RTN_RING_SZ(sc->bge_return_ring_cnt),
4402             &sc->bge_cdata.bge_rx_return_ring_tag,
4403             &sc->bge_cdata.bge_rx_return_ring_map,
4404             (void *)&sc->bge_ldata.bge_rx_return_ring,
4405             &sc->bge_ldata.bge_rx_return_ring_paddr);
4406         if (error) {
4407                 if_printf(ifp, "could not create RX ret ring\n");
4408                 return error;
4409         }
4410
4411         /*
4412          * Create DMA stuffs for TX ring.
4413          */
4414         error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
4415                                     &sc->bge_cdata.bge_tx_ring_tag,
4416                                     &sc->bge_cdata.bge_tx_ring_map,
4417                                     (void *)&sc->bge_ldata.bge_tx_ring,
4418                                     &sc->bge_ldata.bge_tx_ring_paddr);
4419         if (error) {
4420                 if_printf(ifp, "could not create TX ring\n");
4421                 return error;
4422         }
4423
4424         /*
4425          * Create DMA stuffs for status block.
4426          */
4427         error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
4428                                     &sc->bge_cdata.bge_status_tag,
4429                                     &sc->bge_cdata.bge_status_map,
4430                                     (void *)&sc->bge_ldata.bge_status_block,
4431                                     &sc->bge_ldata.bge_status_block_paddr);
4432         if (error) {
4433                 if_printf(ifp, "could not create status block\n");
4434                 return error;
4435         }
4436
4437         /*
4438          * Create DMA stuffs for statistics block.
4439          */
4440         error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
4441                                     &sc->bge_cdata.bge_stats_tag,
4442                                     &sc->bge_cdata.bge_stats_map,
4443                                     (void *)&sc->bge_ldata.bge_stats,
4444                                     &sc->bge_ldata.bge_stats_paddr);
4445         if (error) {
4446                 if_printf(ifp, "could not create stats block\n");
4447                 return error;
4448         }
4449         return 0;
4450 }
4451
4452 static int
4453 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
4454                     bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
4455 {
4456         bus_dmamem_t dmem;
4457         int error;
4458
4459         error = bus_dmamem_coherent(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
4460                                     BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4461                                     size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
4462         if (error)
4463                 return error;
4464
4465         *tag = dmem.dmem_tag;
4466         *map = dmem.dmem_map;
4467         *addr = dmem.dmem_addr;
4468         *paddr = dmem.dmem_busaddr;
4469
4470         return 0;
4471 }
4472
4473 static void
4474 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
4475 {
4476         if (tag != NULL) {
4477                 bus_dmamap_unload(tag, map);
4478                 bus_dmamem_free(tag, addr, map);
4479                 bus_dma_tag_destroy(tag);
4480         }
4481 }
4482
4483 /*
4484  * Grrr. The link status word in the status block does
4485  * not work correctly on the BCM5700 rev AX and BX chips,
4486  * according to all available information. Hence, we have
4487  * to enable MII interrupts in order to properly obtain
4488  * async link changes. Unfortunately, this also means that
4489  * we have to read the MAC status register to detect link
4490  * changes, thereby adding an additional register access to
4491  * the interrupt handler.
4492  *
4493  * XXX: perhaps link state detection procedure used for
4494  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4495  */
4496 static void
4497 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
4498 {
4499         struct ifnet *ifp = &sc->arpcom.ac_if;
4500         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4501
4502         mii_pollstat(mii);
4503
4504         if (!sc->bge_link &&
4505             (mii->mii_media_status & IFM_ACTIVE) &&
4506             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4507                 sc->bge_link++;
4508                 if (bootverbose)
4509                         if_printf(ifp, "link UP\n");
4510         } else if (sc->bge_link &&
4511             (!(mii->mii_media_status & IFM_ACTIVE) ||
4512             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4513                 sc->bge_link = 0;
4514                 if (bootverbose)
4515                         if_printf(ifp, "link DOWN\n");
4516         }
4517
4518         /* Clear the interrupt. */
4519         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
4520         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4521         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
4522 }
4523
4524 static void
4525 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
4526 {
4527         struct ifnet *ifp = &sc->arpcom.ac_if;
4528
4529 #define PCS_ENCODE_ERR  (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
4530
4531         /*
4532          * Sometimes PCS encoding errors are detected in
4533          * TBI mode (on fiber NICs), and for some reason
4534          * the chip will signal them as link changes.
4535          * If we get a link change event, but the 'PCS
4536          * encoding error' bit in the MAC status register
4537          * is set, don't bother doing a link check.
4538          * This avoids spurious "gigabit link up" messages
4539          * that sometimes appear on fiber NICs during
4540          * periods of heavy traffic.
4541          */
4542         if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4543                 if (!sc->bge_link) {
4544                         sc->bge_link++;
4545                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4546                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
4547                                     BGE_MACMODE_TBI_SEND_CFGS);
4548                         }
4549                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4550
4551                         if (bootverbose)
4552                                 if_printf(ifp, "link UP\n");
4553
4554                         ifp->if_link_state = LINK_STATE_UP;
4555                         if_link_state_change(ifp);
4556                 }
4557         } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
4558                 if (sc->bge_link) {
4559                         sc->bge_link = 0;
4560
4561                         if (bootverbose)
4562                                 if_printf(ifp, "link DOWN\n");
4563
4564                         ifp->if_link_state = LINK_STATE_DOWN;
4565                         if_link_state_change(ifp);
4566                 }
4567         }
4568
4569 #undef PCS_ENCODE_ERR
4570
4571         /* Clear the attention. */
4572         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4573             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4574             BGE_MACSTAT_LINK_CHANGED);
4575 }
4576
4577 static void
4578 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
4579 {
4580         struct ifnet *ifp = &sc->arpcom.ac_if;
4581         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4582
4583         mii_pollstat(mii);
4584         bge_miibus_statchg(sc->bge_dev);
4585
4586         if (bootverbose) {
4587                 if (sc->bge_link)
4588                         if_printf(ifp, "link UP\n");
4589                 else
4590                         if_printf(ifp, "link DOWN\n");
4591         }
4592
4593         /* Clear the attention. */
4594         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4595             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4596             BGE_MACSTAT_LINK_CHANGED);
4597 }
4598
4599 static void
4600 bge_autopoll_link_upd(struct bge_softc *sc, uint32_t status __unused)
4601 {
4602         struct ifnet *ifp = &sc->arpcom.ac_if;
4603         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4604
4605         mii_pollstat(mii);
4606
4607         if (!sc->bge_link &&
4608             (mii->mii_media_status & IFM_ACTIVE) &&
4609             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4610                 sc->bge_link++;
4611                 if (bootverbose)
4612                         if_printf(ifp, "link UP\n");
4613         } else if (sc->bge_link &&
4614             (!(mii->mii_media_status & IFM_ACTIVE) ||
4615             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4616                 sc->bge_link = 0;
4617                 if (bootverbose)
4618                         if_printf(ifp, "link DOWN\n");
4619         }
4620
4621         /* Clear the attention. */
4622         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4623             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4624             BGE_MACSTAT_LINK_CHANGED);
4625 }
4626
4627 static int
4628 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
4629 {
4630         struct bge_softc *sc = arg1;
4631
4632         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4633             &sc->bge_rx_coal_ticks,
4634             BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4635             BGE_RX_COAL_TICKS_CHG);
4636 }
4637
4638 static int
4639 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
4640 {
4641         struct bge_softc *sc = arg1;
4642
4643         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4644             &sc->bge_tx_coal_ticks,
4645             BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4646             BGE_TX_COAL_TICKS_CHG);
4647 }
4648
4649 static int
4650 bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
4651 {
4652         struct bge_softc *sc = arg1;
4653
4654         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4655             &sc->bge_rx_coal_bds,
4656             BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4657             BGE_RX_COAL_BDS_CHG);
4658 }
4659
4660 static int
4661 bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
4662 {
4663         struct bge_softc *sc = arg1;
4664
4665         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4666             &sc->bge_tx_coal_bds,
4667             BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4668             BGE_TX_COAL_BDS_CHG);
4669 }
4670
4671 static int
4672 bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4673 {
4674         struct bge_softc *sc = arg1;
4675
4676         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4677             &sc->bge_rx_coal_ticks_int,
4678             BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4679             BGE_RX_COAL_TICKS_INT_CHG);
4680 }
4681
4682 static int
4683 bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4684 {
4685         struct bge_softc *sc = arg1;
4686
4687         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4688             &sc->bge_tx_coal_ticks_int,
4689             BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4690             BGE_TX_COAL_TICKS_INT_CHG);
4691 }
4692
4693 static int
4694 bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4695 {
4696         struct bge_softc *sc = arg1;
4697
4698         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4699             &sc->bge_rx_coal_bds_int,
4700             BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4701             BGE_RX_COAL_BDS_INT_CHG);
4702 }
4703
4704 static int
4705 bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4706 {
4707         struct bge_softc *sc = arg1;
4708
4709         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4710             &sc->bge_tx_coal_bds_int,
4711             BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4712             BGE_TX_COAL_BDS_INT_CHG);
4713 }
4714
4715 static int
4716 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
4717     int coal_min, int coal_max, uint32_t coal_chg_mask)
4718 {
4719         struct bge_softc *sc = arg1;
4720         struct ifnet *ifp = &sc->arpcom.ac_if;
4721         int error = 0, v;
4722
4723         lwkt_serialize_enter(ifp->if_serializer);
4724
4725         v = *coal;
4726         error = sysctl_handle_int(oidp, &v, 0, req);
4727         if (!error && req->newptr != NULL) {
4728                 if (v < coal_min || v > coal_max) {
4729                         error = EINVAL;
4730                 } else {
4731                         *coal = v;
4732                         sc->bge_coal_chg |= coal_chg_mask;
4733                 }
4734         }
4735
4736         lwkt_serialize_exit(ifp->if_serializer);
4737         return error;
4738 }
4739
4740 static void
4741 bge_coal_change(struct bge_softc *sc)
4742 {
4743         struct ifnet *ifp = &sc->arpcom.ac_if;
4744
4745         ASSERT_SERIALIZED(ifp->if_serializer);
4746
4747         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
4748                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
4749                             sc->bge_rx_coal_ticks);
4750                 DELAY(10);
4751                 CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4752
4753                 if (bootverbose) {
4754                         if_printf(ifp, "rx_coal_ticks -> %u\n",
4755                                   sc->bge_rx_coal_ticks);
4756                 }
4757         }
4758
4759         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
4760                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
4761                             sc->bge_tx_coal_ticks);
4762                 DELAY(10);
4763                 CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
4764
4765                 if (bootverbose) {
4766                         if_printf(ifp, "tx_coal_ticks -> %u\n",
4767                                   sc->bge_tx_coal_ticks);
4768                 }
4769         }
4770
4771         if (sc->bge_coal_chg & BGE_RX_COAL_BDS_CHG) {
4772                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
4773                             sc->bge_rx_coal_bds);
4774                 DELAY(10);
4775                 CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4776
4777                 if (bootverbose) {
4778                         if_printf(ifp, "rx_coal_bds -> %u\n",
4779                                   sc->bge_rx_coal_bds);
4780                 }
4781         }
4782
4783         if (sc->bge_coal_chg & BGE_TX_COAL_BDS_CHG) {
4784                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
4785                             sc->bge_tx_coal_bds);
4786                 DELAY(10);
4787                 CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
4788
4789                 if (bootverbose) {
4790                         if_printf(ifp, "tx_max_coal_bds -> %u\n",
4791                                   sc->bge_tx_coal_bds);
4792                 }
4793         }
4794
4795         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_INT_CHG) {
4796                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
4797                     sc->bge_rx_coal_ticks_int);
4798                 DELAY(10);
4799                 CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS_INT);
4800
4801                 if (bootverbose) {
4802                         if_printf(ifp, "rx_coal_ticks_int -> %u\n",
4803                             sc->bge_rx_coal_ticks_int);
4804                 }
4805         }
4806
4807         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_INT_CHG) {
4808                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
4809                     sc->bge_tx_coal_ticks_int);
4810                 DELAY(10);
4811                 CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS_INT);
4812
4813                 if (bootverbose) {
4814                         if_printf(ifp, "tx_coal_ticks_int -> %u\n",
4815                             sc->bge_tx_coal_ticks_int);
4816                 }
4817         }
4818
4819         if (sc->bge_coal_chg & BGE_RX_COAL_BDS_INT_CHG) {
4820                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
4821                     sc->bge_rx_coal_bds_int);
4822                 DELAY(10);
4823                 CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT);
4824
4825                 if (bootverbose) {
4826                         if_printf(ifp, "rx_coal_bds_int -> %u\n",
4827                             sc->bge_rx_coal_bds_int);
4828                 }
4829         }
4830
4831         if (sc->bge_coal_chg & BGE_TX_COAL_BDS_INT_CHG) {
4832                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4833                     sc->bge_tx_coal_bds_int);
4834                 DELAY(10);
4835                 CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT);
4836
4837                 if (bootverbose) {
4838                         if_printf(ifp, "tx_coal_bds_int -> %u\n",
4839                             sc->bge_tx_coal_bds_int);
4840                 }
4841         }
4842
4843         sc->bge_coal_chg = 0;
4844 }
4845
4846 static void
4847 bge_enable_intr(struct bge_softc *sc)
4848 {
4849         struct ifnet *ifp = &sc->arpcom.ac_if;
4850
4851         lwkt_serialize_handler_enable(ifp->if_serializer);
4852
4853         /*
4854          * Enable interrupt.
4855          */
4856         bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4857         if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4858                 /* XXX Linux driver */
4859                 bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4860         }
4861
4862         /*
4863          * Unmask the interrupt when we stop polling.
4864          */
4865         PCI_CLRBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4866             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4867
4868         /*
4869          * Trigger another interrupt, since above writing
4870          * to interrupt mailbox0 may acknowledge pending
4871          * interrupt.
4872          */
4873         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4874 }
4875
4876 static void
4877 bge_disable_intr(struct bge_softc *sc)
4878 {
4879         struct ifnet *ifp = &sc->arpcom.ac_if;
4880
4881         /*
4882          * Mask the interrupt when we start polling.
4883          */
4884         PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4885             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4886
4887         /*
4888          * Acknowledge possible asserted interrupt.
4889          */
4890         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4891
4892         sc->bge_npoll.ifpc_stcount = 0;
4893
4894         lwkt_serialize_handler_disable(ifp->if_serializer);
4895 }
4896
4897 static int
4898 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4899 {
4900         uint32_t mac_addr;
4901         int ret = 1;
4902
4903         mac_addr = bge_readmem_ind(sc, 0x0c14);
4904         if ((mac_addr >> 16) == 0x484b) {
4905                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4906                 ether_addr[1] = (uint8_t)mac_addr;
4907                 mac_addr = bge_readmem_ind(sc, 0x0c18);
4908                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4909                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4910                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4911                 ether_addr[5] = (uint8_t)mac_addr;
4912                 ret = 0;
4913         }
4914         return ret;
4915 }
4916
4917 static int
4918 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4919 {
4920         int mac_offset = BGE_EE_MAC_OFFSET;
4921
4922         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4923                 mac_offset = BGE_EE_MAC_OFFSET_5906;
4924
4925         return bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
4926 }
4927
4928 static int
4929 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4930 {
4931         if (sc->bge_flags & BGE_FLAG_NO_EEPROM)
4932                 return 1;
4933
4934         return bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4935                                ETHER_ADDR_LEN);
4936 }
4937
4938 static int
4939 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4940 {
4941         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4942                 /* NOTE: Order is critical */
4943                 bge_get_eaddr_mem,
4944                 bge_get_eaddr_nvram,
4945                 bge_get_eaddr_eeprom,
4946                 NULL
4947         };
4948         const bge_eaddr_fcn_t *func;
4949
4950         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4951                 if ((*func)(sc, eaddr) == 0)
4952                         break;
4953         }
4954         return (*func == NULL ? ENXIO : 0);
4955 }
4956
4957 /*
4958  * NOTE: 'm' is not freed upon failure
4959  */
4960 struct mbuf *
4961 bge_defrag_shortdma(struct mbuf *m)
4962 {
4963         struct mbuf *n;
4964         int found;
4965
4966         /*
4967          * If device receive two back-to-back send BDs with less than
4968          * or equal to 8 total bytes then the device may hang.  The two
4969          * back-to-back send BDs must in the same frame for this failure
4970          * to occur.  Scan mbuf chains and see whether two back-to-back
4971          * send BDs are there.  If this is the case, allocate new mbuf
4972          * and copy the frame to workaround the silicon bug.
4973          */
4974         for (n = m, found = 0; n != NULL; n = n->m_next) {
4975                 if (n->m_len < 8) {
4976                         found++;
4977                         if (found > 1)
4978                                 break;
4979                         continue;
4980                 }
4981                 found = 0;
4982         }
4983
4984         if (found > 1)
4985                 n = m_defrag(m, MB_DONTWAIT);
4986         else
4987                 n = m;
4988         return n;
4989 }
4990
4991 static void
4992 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
4993 {
4994         int i;
4995
4996         BGE_CLRBIT(sc, reg, bit);
4997         for (i = 0; i < BGE_TIMEOUT; i++) {
4998                 if ((CSR_READ_4(sc, reg) & bit) == 0)
4999                         return;
5000                 DELAY(100);
5001         }
5002 }
5003
5004 static void
5005 bge_link_poll(struct bge_softc *sc)
5006 {
5007         uint32_t status;
5008
5009         status = CSR_READ_4(sc, BGE_MAC_STS);
5010         if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
5011                 sc->bge_link_evt = 0;
5012                 sc->bge_link_upd(sc, status);
5013         }
5014 }
5015
5016 static void
5017 bge_enable_msi(struct bge_softc *sc)
5018 {
5019         uint32_t msi_mode;
5020
5021         msi_mode = CSR_READ_4(sc, BGE_MSI_MODE);
5022         msi_mode |= BGE_MSIMODE_ENABLE;
5023         if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
5024                 /*
5025                  * According to all of the datasheets that are publicly
5026                  * available, bit 5 of the MSI_MODE is defined to be
5027                  * "MSI FIFO Underrun Attn" for BCM5755+ and BCM5906, on
5028                  * which "oneshot MSI" is enabled.  However, it is always
5029                  * safe to clear it here.
5030                  */
5031                 msi_mode &= ~BGE_MSIMODE_ONESHOT_DISABLE;
5032         }
5033         CSR_WRITE_4(sc, BGE_MSI_MODE, msi_mode);
5034 }
5035
5036 static int
5037 bge_setup_tso(struct bge_softc *sc, struct mbuf **mp,
5038     uint16_t *mss0, uint16_t *flags0)
5039 {
5040         struct mbuf *m;
5041         struct ip *ip;
5042         struct tcphdr *th;
5043         int thoff, iphlen, hoff, hlen;
5044         uint16_t flags, mss;
5045
5046         m = *mp;
5047         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
5048
5049         hoff = m->m_pkthdr.csum_lhlen;
5050         iphlen = m->m_pkthdr.csum_iphlen;
5051         thoff = m->m_pkthdr.csum_thlen;
5052
5053         KASSERT(hoff > 0, ("invalid ether header len"));
5054         KASSERT(iphlen > 0, ("invalid ip header len"));
5055         KASSERT(thoff > 0, ("invalid tcp header len"));
5056
5057         if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
5058                 m = m_pullup(m, hoff + iphlen + thoff);
5059                 if (m == NULL) {
5060                         *mp = NULL;
5061                         return ENOBUFS;
5062                 }
5063                 *mp = m;
5064         }
5065         ip = mtodoff(m, struct ip *, hoff);
5066         th = mtodoff(m, struct tcphdr *, hoff + iphlen);
5067
5068         mss = m->m_pkthdr.tso_segsz;
5069         flags = BGE_TXBDFLAG_CPU_PRE_DMA | BGE_TXBDFLAG_CPU_POST_DMA;
5070
5071         ip->ip_len = htons(mss + iphlen + thoff);
5072         th->th_sum = 0;
5073
5074         hlen = (iphlen + thoff) >> 2;
5075         mss |= (hlen << 11);
5076
5077         *mss0 = mss;
5078         *flags0 = flags;
5079
5080         return 0;
5081 }
5082
5083 static void
5084 bge_stop_fw(struct bge_softc *sc)
5085 {
5086         int i;
5087
5088         if (sc->bge_asf_mode) {
5089                 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
5090                 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
5091                     CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
5092
5093                 for (i = 0; i < 100; i++ ) {
5094                         if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
5095                             BGE_RX_CPU_DRV_EVENT))
5096                                 break;
5097                         DELAY(10);
5098                 }
5099         }
5100 }
5101
5102 static void
5103 bge_sig_pre_reset(struct bge_softc *sc, int type)
5104 {
5105         /*
5106          * Some chips don't like this so only do this if ASF is enabled
5107          */
5108         if (sc->bge_asf_mode)
5109                 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
5110
5111         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
5112                 switch (type) {
5113                 case BGE_RESET_START:
5114                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5115                             BGE_FW_DRV_STATE_START);
5116                         break;
5117                 case BGE_RESET_SHUTDOWN:
5118                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5119                             BGE_FW_DRV_STATE_UNLOAD);
5120                         break;
5121                 case BGE_RESET_SUSPEND:
5122                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5123                             BGE_FW_DRV_STATE_SUSPEND);
5124                         break;
5125                 }
5126         }
5127
5128 #ifdef notyet
5129         if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
5130                 bge_ape_driver_state_change(sc, type);
5131 #endif
5132 }
5133
5134 static void
5135 bge_sig_legacy(struct bge_softc *sc, int type)
5136 {
5137         if (sc->bge_asf_mode) {
5138                 switch (type) {
5139                 case BGE_RESET_START:
5140                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5141                             BGE_FW_DRV_STATE_START);
5142                         break;
5143                 case BGE_RESET_SHUTDOWN:
5144                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5145                             BGE_FW_DRV_STATE_UNLOAD);
5146                         break;
5147                 }
5148         }
5149 }
5150
5151 static void
5152 bge_sig_post_reset(struct bge_softc *sc, int type)
5153 {
5154         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
5155                 switch (type) {
5156                 case BGE_RESET_START:
5157                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5158                             BGE_FW_DRV_STATE_START_DONE);
5159                         /* START DONE */
5160                         break;
5161                 case BGE_RESET_SHUTDOWN:
5162                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5163                             BGE_FW_DRV_STATE_UNLOAD_DONE);
5164                         break;
5165                 }
5166         }
5167 #ifdef notyet
5168         if (type == BGE_RESET_SHUTDOWN)
5169                 bge_ape_driver_state_change(sc, type);
5170 #endif
5171 }
5172
5173 static void
5174 bge_asf_driver_up(struct bge_softc *sc)
5175 {
5176         if (sc->bge_asf_mode & ASF_STACKUP) {
5177                 /* Send ASF heartbeat aprox. every 2s */
5178                 if (sc->bge_asf_count)
5179                         sc->bge_asf_count --;
5180                 else {
5181                         sc->bge_asf_count = 2;
5182                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
5183                             BGE_FW_CMD_DRV_ALIVE);
5184                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
5185                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
5186                             BGE_FW_HB_TIMEOUT_SEC);
5187                         CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
5188                             CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
5189                             BGE_RX_CPU_DRV_EVENT);
5190                 }
5191         }
5192 }