Merge branch 'vendor/BINUTILS224'
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  */
35
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  * 
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  * 
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72
73 #include "opt_ifpoll.h"
74
75 #include <sys/param.h>
76 #include <sys/bus.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/ktr.h>
80 #include <sys/interrupt.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/queue.h>
84 #include <sys/rman.h>
85 #include <sys/serialize.h>
86 #include <sys/socket.h>
87 #include <sys/sockio.h>
88 #include <sys/sysctl.h>
89
90 #include <netinet/ip.h>
91 #include <netinet/tcp.h>
92
93 #include <net/bpf.h>
94 #include <net/ethernet.h>
95 #include <net/if.h>
96 #include <net/if_arp.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_poll.h>
100 #include <net/if_types.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104
105 #include <dev/netif/mii_layer/mii.h>
106 #include <dev/netif/mii_layer/miivar.h>
107 #include <dev/netif/mii_layer/brgphyreg.h>
108
109 #include "pcidevs.h"
110 #include <bus/pci/pcireg.h>
111 #include <bus/pci/pcivar.h>
112
113 #include <dev/netif/bge/if_bgereg.h>
114 #include <dev/netif/bge/if_bgevar.h>
115
116 /* "device miibus" required.  See GENERIC if you get errors here. */
117 #include "miibus_if.h"
118
119 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP)
120
121 #define BGE_RESET_SHUTDOWN      0
122 #define BGE_RESET_START         1
123 #define BGE_RESET_SUSPEND       2
124
125 static const struct bge_type {
126         uint16_t                bge_vid;
127         uint16_t                bge_did;
128         char                    *bge_name;
129 } bge_devs[] = {
130         { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
131                 "3COM 3C996 Gigabit Ethernet" },
132
133         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
134                 "Alteon BCM5700 Gigabit Ethernet" },
135         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
136                 "Alteon BCM5701 Gigabit Ethernet" },
137
138         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
139                 "Altima AC1000 Gigabit Ethernet" },
140         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
141                 "Altima AC1002 Gigabit Ethernet" },
142         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
143                 "Altima AC9100 Gigabit Ethernet" },
144
145         { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
146                 "Apple BCM5701 Gigabit Ethernet" },
147
148         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
149                 "Broadcom BCM5700 Gigabit Ethernet" },
150         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
151                 "Broadcom BCM5701 Gigabit Ethernet" },
152         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
153                 "Broadcom BCM5702 Gigabit Ethernet" },
154         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
155                 "Broadcom BCM5702X Gigabit Ethernet" },
156         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
157                 "Broadcom BCM5702 Gigabit Ethernet" },
158         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
159                 "Broadcom BCM5703 Gigabit Ethernet" },
160         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
161                 "Broadcom BCM5703X Gigabit Ethernet" },
162         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
163                 "Broadcom BCM5703 Gigabit Ethernet" },
164         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
165                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
166         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
167                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
168         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
169                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
170         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
171                 "Broadcom BCM5705 Gigabit Ethernet" },
172         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
173                 "Broadcom BCM5705F Gigabit Ethernet" },
174         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
175                 "Broadcom BCM5705K Gigabit Ethernet" },
176         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
177                 "Broadcom BCM5705M Gigabit Ethernet" },
178         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
179                 "Broadcom BCM5705M Gigabit Ethernet" },
180         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
181                 "Broadcom BCM5714C Gigabit Ethernet" },
182         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
183                 "Broadcom BCM5714S Gigabit Ethernet" },
184         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
185                 "Broadcom BCM5715 Gigabit Ethernet" },
186         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
187                 "Broadcom BCM5715S Gigabit Ethernet" },
188         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
189                 "Broadcom BCM5720 Gigabit Ethernet" },
190         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
191                 "Broadcom BCM5721 Gigabit Ethernet" },
192         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
193                 "Broadcom BCM5722 Gigabit Ethernet" },
194         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723,
195                 "Broadcom BCM5723 Gigabit Ethernet" },
196         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
197                 "Broadcom BCM5750 Gigabit Ethernet" },
198         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
199                 "Broadcom BCM5750M Gigabit Ethernet" },
200         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
201                 "Broadcom BCM5751 Gigabit Ethernet" },
202         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
203                 "Broadcom BCM5751F Gigabit Ethernet" },
204         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
205                 "Broadcom BCM5751M Gigabit Ethernet" },
206         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
207                 "Broadcom BCM5752 Gigabit Ethernet" },
208         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
209                 "Broadcom BCM5752M Gigabit Ethernet" },
210         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
211                 "Broadcom BCM5753 Gigabit Ethernet" },
212         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
213                 "Broadcom BCM5753F Gigabit Ethernet" },
214         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
215                 "Broadcom BCM5753M Gigabit Ethernet" },
216         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
217                 "Broadcom BCM5754 Gigabit Ethernet" },
218         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
219                 "Broadcom BCM5754M Gigabit Ethernet" },
220         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
221                 "Broadcom BCM5755 Gigabit Ethernet" },
222         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
223                 "Broadcom BCM5755M Gigabit Ethernet" },
224         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
225                 "Broadcom BCM5756 Gigabit Ethernet" },
226         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761,
227                 "Broadcom BCM5761 Gigabit Ethernet" },
228         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E,
229                 "Broadcom BCM5761E Gigabit Ethernet" },
230         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S,
231                 "Broadcom BCM5761S Gigabit Ethernet" },
232         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE,
233                 "Broadcom BCM5761SE Gigabit Ethernet" },
234         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764,
235                 "Broadcom BCM5764 Gigabit Ethernet" },
236         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
237                 "Broadcom BCM5780 Gigabit Ethernet" },
238         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
239                 "Broadcom BCM5780S Gigabit Ethernet" },
240         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
241                 "Broadcom BCM5781 Gigabit Ethernet" },
242         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
243                 "Broadcom BCM5782 Gigabit Ethernet" },
244         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784,
245                 "Broadcom BCM5784 Gigabit Ethernet" },
246         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F,
247                 "Broadcom BCM5785F Gigabit Ethernet" },
248         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G,
249                 "Broadcom BCM5785G Gigabit Ethernet" },
250         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
251                 "Broadcom BCM5786 Gigabit Ethernet" },
252         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
253                 "Broadcom BCM5787 Gigabit Ethernet" },
254         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
255                 "Broadcom BCM5787F Gigabit Ethernet" },
256         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
257                 "Broadcom BCM5787M Gigabit Ethernet" },
258         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
259                 "Broadcom BCM5788 Gigabit Ethernet" },
260         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
261                 "Broadcom BCM5789 Gigabit Ethernet" },
262         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
263                 "Broadcom BCM5901 Fast Ethernet" },
264         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
265                 "Broadcom BCM5901A2 Fast Ethernet" },
266         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
267                 "Broadcom BCM5903M Fast Ethernet" },
268         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906,
269                 "Broadcom BCM5906 Fast Ethernet"},
270         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M,
271                 "Broadcom BCM5906M Fast Ethernet"},
272         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760,
273                 "Broadcom BCM57760 Gigabit Ethernet"},
274         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780,
275                 "Broadcom BCM57780 Gigabit Ethernet"},
276         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788,
277                 "Broadcom BCM57788 Gigabit Ethernet"},
278         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790,
279                 "Broadcom BCM57790 Gigabit Ethernet"},
280         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
281                 "SysKonnect Gigabit Ethernet" },
282
283         { 0, 0, NULL }
284 };
285
286 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
287 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
288 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
289 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
290 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
291 #define BGE_IS_5755_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
292 #define BGE_IS_5788(sc)                 ((sc)->bge_flags & BGE_FLAG_5788)
293
294 #define BGE_IS_CRIPPLED(sc)             \
295         (BGE_IS_5788((sc)) || (sc)->bge_asicrev == BGE_ASICREV_BCM5700)
296
297 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
298
299 static int      bge_probe(device_t);
300 static int      bge_attach(device_t);
301 static int      bge_detach(device_t);
302 static void     bge_txeof(struct bge_softc *, uint16_t);
303 static void     bge_rxeof(struct bge_softc *, uint16_t, int);
304
305 static void     bge_tick(void *);
306 static void     bge_stats_update(struct bge_softc *);
307 static void     bge_stats_update_regs(struct bge_softc *);
308 static struct mbuf *
309                 bge_defrag_shortdma(struct mbuf *);
310 static int      bge_encap(struct bge_softc *, struct mbuf **,
311                     uint32_t *, int *);
312 static void     bge_xmit(struct bge_softc *, uint32_t);
313 static int      bge_setup_tso(struct bge_softc *, struct mbuf **,
314                     uint16_t *, uint16_t *);
315
316 #ifdef IFPOLL_ENABLE
317 static void     bge_npoll(struct ifnet *, struct ifpoll_info *);
318 static void     bge_npoll_compat(struct ifnet *, void *, int );
319 #endif
320 static void     bge_intr_crippled(void *);
321 static void     bge_intr_legacy(void *);
322 static void     bge_msi(void *);
323 static void     bge_msi_oneshot(void *);
324 static void     bge_intr(struct bge_softc *);
325 static void     bge_enable_intr(struct bge_softc *);
326 static void     bge_disable_intr(struct bge_softc *);
327 static void     bge_start(struct ifnet *, struct ifaltq_subque *);
328 static int      bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
329 static void     bge_init(void *);
330 static void     bge_stop(struct bge_softc *);
331 static void     bge_watchdog(struct ifnet *);
332 static void     bge_shutdown(device_t);
333 static int      bge_suspend(device_t);
334 static int      bge_resume(device_t);
335 static int      bge_ifmedia_upd(struct ifnet *);
336 static void     bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
337
338 static uint8_t  bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
339 static int      bge_read_nvram(struct bge_softc *, caddr_t, int, int);
340
341 static uint8_t  bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
342 static int      bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
343
344 static void     bge_setmulti(struct bge_softc *);
345 static void     bge_setpromisc(struct bge_softc *);
346 static void     bge_enable_msi(struct bge_softc *sc);
347
348 static int      bge_alloc_jumbo_mem(struct bge_softc *);
349 static void     bge_free_jumbo_mem(struct bge_softc *);
350 static struct bge_jslot
351                 *bge_jalloc(struct bge_softc *);
352 static void     bge_jfree(void *);
353 static void     bge_jref(void *);
354 static int      bge_newbuf_std(struct bge_softc *, int, int);
355 static int      bge_newbuf_jumbo(struct bge_softc *, int, int);
356 static void     bge_setup_rxdesc_std(struct bge_softc *, int);
357 static void     bge_setup_rxdesc_jumbo(struct bge_softc *, int);
358 static int      bge_init_rx_ring_std(struct bge_softc *);
359 static void     bge_free_rx_ring_std(struct bge_softc *);
360 static int      bge_init_rx_ring_jumbo(struct bge_softc *);
361 static void     bge_free_rx_ring_jumbo(struct bge_softc *);
362 static void     bge_free_tx_ring(struct bge_softc *);
363 static int      bge_init_tx_ring(struct bge_softc *);
364
365 static int      bge_chipinit(struct bge_softc *);
366 static int      bge_blockinit(struct bge_softc *);
367 static void     bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
368
369 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
370 static void     bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
371 #ifdef notdef
372 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
373 #endif
374 static void     bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
375 static void     bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
376 static void     bge_writembx(struct bge_softc *, int, int);
377
378 static int      bge_miibus_readreg(device_t, int, int);
379 static int      bge_miibus_writereg(device_t, int, int, int);
380 static void     bge_miibus_statchg(device_t);
381 static void     bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
382 static void     bge_tbi_link_upd(struct bge_softc *, uint32_t);
383 static void     bge_copper_link_upd(struct bge_softc *, uint32_t);
384 static void     bge_autopoll_link_upd(struct bge_softc *, uint32_t);
385 static void     bge_link_poll(struct bge_softc *);
386
387 static void     bge_reset(struct bge_softc *);
388
389 static int      bge_dma_alloc(struct bge_softc *);
390 static void     bge_dma_free(struct bge_softc *);
391 static int      bge_dma_block_alloc(struct bge_softc *, bus_size_t,
392                                     bus_dma_tag_t *, bus_dmamap_t *,
393                                     void **, bus_addr_t *);
394 static void     bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
395
396 static int      bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
397 static int      bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
398 static int      bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
399 static int      bge_get_eaddr(struct bge_softc *, uint8_t[]);
400
401 static void     bge_coal_change(struct bge_softc *);
402 static int      bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
403 static int      bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
404 static int      bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
405 static int      bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
406 static int      bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
407 static int      bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
408 static int      bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
409 static int      bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
410 static int      bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
411                     int, int, uint32_t);
412
413 static void     bge_sig_post_reset(struct bge_softc *, int);
414 static void     bge_sig_legacy(struct bge_softc *, int);
415 static void     bge_sig_pre_reset(struct bge_softc *, int);
416 static void     bge_stop_fw(struct bge_softc *);
417 static void     bge_asf_driver_up(struct bge_softc *);
418
419 /*
420  * Set following tunable to 1 for some IBM blade servers with the DNLK
421  * switch module. Auto negotiation is broken for those configurations.
422  */
423 static int      bge_fake_autoneg = 0;
424 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
425
426 static int      bge_msi_enable = 1;
427 TUNABLE_INT("hw.bge.msi.enable", &bge_msi_enable);
428
429 static int      bge_allow_asf = 1;
430 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
431
432 #if !defined(KTR_IF_BGE)
433 #define KTR_IF_BGE      KTR_ALL
434 #endif
435 KTR_INFO_MASTER(if_bge);
436 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr");
437 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt");
438 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt");
439 #define logif(name)     KTR_LOG(if_bge_ ## name)
440
441 static device_method_t bge_methods[] = {
442         /* Device interface */
443         DEVMETHOD(device_probe,         bge_probe),
444         DEVMETHOD(device_attach,        bge_attach),
445         DEVMETHOD(device_detach,        bge_detach),
446         DEVMETHOD(device_shutdown,      bge_shutdown),
447         DEVMETHOD(device_suspend,       bge_suspend),
448         DEVMETHOD(device_resume,        bge_resume),
449
450         /* bus interface */
451         DEVMETHOD(bus_print_child,      bus_generic_print_child),
452         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
453
454         /* MII interface */
455         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
456         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
457         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
458
459         DEVMETHOD_END
460 };
461
462 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
463 static devclass_t bge_devclass;
464
465 DECLARE_DUMMY_MODULE(if_bge);
466 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, NULL, NULL);
467 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, NULL, NULL);
468
469 static uint32_t
470 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
471 {
472         device_t dev = sc->bge_dev;
473         uint32_t val;
474
475         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
476             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
477                 return 0;
478
479         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
480         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
481         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
482         return (val);
483 }
484
485 static void
486 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
487 {
488         device_t dev = sc->bge_dev;
489
490         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
491             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
492                 return;
493
494         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
495         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
496         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
497 }
498
499 #ifdef notdef
500 static uint32_t
501 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
502 {
503         device_t dev = sc->bge_dev;
504
505         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
506         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
507 }
508 #endif
509
510 static void
511 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
512 {
513         device_t dev = sc->bge_dev;
514
515         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
516         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
517 }
518
519 static void
520 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
521 {
522         CSR_WRITE_4(sc, off, val);
523 }
524
525 static void
526 bge_writembx(struct bge_softc *sc, int off, int val)
527 {
528         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
529                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
530
531         CSR_WRITE_4(sc, off, val);
532         if (sc->bge_mbox_reorder)
533                 CSR_READ_4(sc, off);
534 }
535
536 static uint8_t
537 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
538 {
539         uint32_t access, byte = 0;
540         int i;
541
542         /* Lock. */
543         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
544         for (i = 0; i < 8000; i++) {
545                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
546                         break;
547                 DELAY(20);
548         }
549         if (i == 8000)
550                 return (1);
551
552         /* Enable access. */
553         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
554         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
555
556         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
557         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
558         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
559                 DELAY(10);
560                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
561                         DELAY(10);
562                         break;
563                 }
564         }
565
566         if (i == BGE_TIMEOUT * 10) {
567                 if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
568                 return (1);
569         }
570
571         /* Get result. */
572         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
573
574         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
575
576         /* Disable access. */
577         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
578
579         /* Unlock. */
580         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
581         CSR_READ_4(sc, BGE_NVRAM_SWARB);
582
583         return (0);
584 }
585
586 /*
587  * Read a sequence of bytes from NVRAM.
588  */
589 static int
590 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
591 {
592         int err = 0, i;
593         uint8_t byte = 0;
594
595         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
596                 return (1);
597
598         for (i = 0; i < cnt; i++) {
599                 err = bge_nvram_getbyte(sc, off + i, &byte);
600                 if (err)
601                         break;
602                 *(dest + i) = byte;
603         }
604
605         return (err ? 1 : 0);
606 }
607
608 /*
609  * Read a byte of data stored in the EEPROM at address 'addr.' The
610  * BCM570x supports both the traditional bitbang interface and an
611  * auto access interface for reading the EEPROM. We use the auto
612  * access method.
613  */
614 static uint8_t
615 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
616 {
617         int i;
618         uint32_t byte = 0;
619
620         /*
621          * Enable use of auto EEPROM access so we can avoid
622          * having to use the bitbang method.
623          */
624         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
625
626         /* Reset the EEPROM, load the clock period. */
627         CSR_WRITE_4(sc, BGE_EE_ADDR,
628             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
629         DELAY(20);
630
631         /* Issue the read EEPROM command. */
632         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
633
634         /* Wait for completion */
635         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
636                 DELAY(10);
637                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
638                         break;
639         }
640
641         if (i == BGE_TIMEOUT) {
642                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
643                 return(1);
644         }
645
646         /* Get result. */
647         byte = CSR_READ_4(sc, BGE_EE_DATA);
648
649         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
650
651         return(0);
652 }
653
654 /*
655  * Read a sequence of bytes from the EEPROM.
656  */
657 static int
658 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
659 {
660         size_t i;
661         int err;
662         uint8_t byte;
663
664         for (byte = 0, err = 0, i = 0; i < len; i++) {
665                 err = bge_eeprom_getbyte(sc, off + i, &byte);
666                 if (err)
667                         break;
668                 *(dest + i) = byte;
669         }
670
671         return(err ? 1 : 0);
672 }
673
674 static int
675 bge_miibus_readreg(device_t dev, int phy, int reg)
676 {
677         struct bge_softc *sc = device_get_softc(dev);
678         uint32_t val;
679         int i;
680
681         KASSERT(phy == sc->bge_phyno,
682             ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
683
684         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
685         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
686                 CSR_WRITE_4(sc, BGE_MI_MODE,
687                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
688                 DELAY(80);
689         }
690
691         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
692             BGE_MIPHY(phy) | BGE_MIREG(reg));
693
694         /* Poll for the PHY register access to complete. */
695         for (i = 0; i < BGE_TIMEOUT; i++) {
696                 DELAY(10);
697                 val = CSR_READ_4(sc, BGE_MI_COMM);
698                 if ((val & BGE_MICOMM_BUSY) == 0) {
699                         DELAY(5);
700                         val = CSR_READ_4(sc, BGE_MI_COMM);
701                         break;
702                 }
703         }
704         if (i == BGE_TIMEOUT) {
705                 if_printf(&sc->arpcom.ac_if, "PHY read timed out "
706                     "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
707                 val = 0;
708         }
709
710         /* Restore the autopoll bit if necessary. */
711         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
712                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
713                 DELAY(80);
714         }
715
716         if (val & BGE_MICOMM_READFAIL)
717                 return 0;
718
719         return (val & 0xFFFF);
720 }
721
722 static int
723 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
724 {
725         struct bge_softc *sc = device_get_softc(dev);
726         int i;
727
728         KASSERT(phy == sc->bge_phyno,
729             ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
730
731         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
732             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
733                return 0;
734
735         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
736         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
737                 CSR_WRITE_4(sc, BGE_MI_MODE,
738                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
739                 DELAY(80);
740         }
741
742         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
743             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
744
745         for (i = 0; i < BGE_TIMEOUT; i++) {
746                 DELAY(10);
747                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
748                         DELAY(5);
749                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
750                         break;
751                 }
752         }
753         if (i == BGE_TIMEOUT) {
754                 if_printf(&sc->arpcom.ac_if, "PHY write timed out "
755                     "(phy %d, reg %d, val %d)\n", phy, reg, val);
756         }
757
758         /* Restore the autopoll bit if necessary. */
759         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
760                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
761                 DELAY(80);
762         }
763
764         return 0;
765 }
766
767 static void
768 bge_miibus_statchg(device_t dev)
769 {
770         struct bge_softc *sc;
771         struct mii_data *mii;
772         uint32_t mac_mode;
773
774         sc = device_get_softc(dev);
775         if ((sc->arpcom.ac_if.if_flags & IFF_RUNNING) == 0)
776                 return;
777
778         mii = device_get_softc(sc->bge_miibus);
779
780         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
781             (IFM_ACTIVE | IFM_AVALID)) {
782                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
783                 case IFM_10_T:
784                 case IFM_100_TX:
785                         sc->bge_link = 1;
786                         break;
787                 case IFM_1000_T:
788                 case IFM_1000_SX:
789                 case IFM_2500_SX:
790                         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
791                                 sc->bge_link = 1;
792                         else
793                                 sc->bge_link = 0;
794                         break;
795                 default:
796                         sc->bge_link = 0;
797                         break;
798                 }
799         } else {
800                 sc->bge_link = 0;
801         }
802         if (sc->bge_link == 0)
803                 return;
804
805         /*
806          * APE firmware touches these registers to keep the MAC
807          * connected to the outside world.  Try to keep the
808          * accesses atomic.
809          */
810
811         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
812             ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
813
814         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
815             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
816                 mac_mode |= BGE_PORTMODE_GMII;
817         else
818                 mac_mode |= BGE_PORTMODE_MII;
819
820         if ((mii->mii_media_active & IFM_GMASK) != IFM_FDX)
821                 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
822
823         CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
824         DELAY(40);
825 }
826
827 /*
828  * Memory management for jumbo frames.
829  */
830 static int
831 bge_alloc_jumbo_mem(struct bge_softc *sc)
832 {
833         struct ifnet *ifp = &sc->arpcom.ac_if;
834         struct bge_jslot *entry;
835         uint8_t *ptr;
836         bus_addr_t paddr;
837         int i, error;
838
839         /*
840          * Create tag for jumbo mbufs.
841          * This is really a bit of a kludge. We allocate a special
842          * jumbo buffer pool which (thanks to the way our DMA
843          * memory allocation works) will consist of contiguous
844          * pages. This means that even though a jumbo buffer might
845          * be larger than a page size, we don't really need to
846          * map it into more than one DMA segment. However, the
847          * default mbuf tag will result in multi-segment mappings,
848          * so we have to create a special jumbo mbuf tag that
849          * lets us get away with mapping the jumbo buffers as
850          * a single segment. I think eventually the driver should
851          * be changed so that it uses ordinary mbufs and cluster
852          * buffers, i.e. jumbo frames can span multiple DMA
853          * descriptors. But that's a project for another day.
854          */
855
856         /*
857          * Create DMA stuffs for jumbo RX ring.
858          */
859         error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
860                                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
861                                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
862                                     (void *)&sc->bge_ldata.bge_rx_jumbo_ring,
863                                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
864         if (error) {
865                 if_printf(ifp, "could not create jumbo RX ring\n");
866                 return error;
867         }
868
869         /*
870          * Create DMA stuffs for jumbo buffer block.
871          */
872         error = bge_dma_block_alloc(sc, BGE_JMEM,
873                                     &sc->bge_cdata.bge_jumbo_tag,
874                                     &sc->bge_cdata.bge_jumbo_map,
875                                     (void **)&sc->bge_ldata.bge_jumbo_buf,
876                                     &paddr);
877         if (error) {
878                 if_printf(ifp, "could not create jumbo buffer\n");
879                 return error;
880         }
881
882         SLIST_INIT(&sc->bge_jfree_listhead);
883
884         /*
885          * Now divide it up into 9K pieces and save the addresses
886          * in an array. Note that we play an evil trick here by using
887          * the first few bytes in the buffer to hold the the address
888          * of the softc structure for this interface. This is because
889          * bge_jfree() needs it, but it is called by the mbuf management
890          * code which will not pass it to us explicitly.
891          */
892         for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
893                 entry = &sc->bge_cdata.bge_jslots[i];
894                 entry->bge_sc = sc;
895                 entry->bge_buf = ptr;
896                 entry->bge_paddr = paddr;
897                 entry->bge_inuse = 0;
898                 entry->bge_slot = i;
899                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
900
901                 ptr += BGE_JLEN;
902                 paddr += BGE_JLEN;
903         }
904         return 0;
905 }
906
907 static void
908 bge_free_jumbo_mem(struct bge_softc *sc)
909 {
910         /* Destroy jumbo RX ring. */
911         bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
912                            sc->bge_cdata.bge_rx_jumbo_ring_map,
913                            sc->bge_ldata.bge_rx_jumbo_ring);
914
915         /* Destroy jumbo buffer block. */
916         bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
917                            sc->bge_cdata.bge_jumbo_map,
918                            sc->bge_ldata.bge_jumbo_buf);
919 }
920
921 /*
922  * Allocate a jumbo buffer.
923  */
924 static struct bge_jslot *
925 bge_jalloc(struct bge_softc *sc)
926 {
927         struct bge_jslot *entry;
928
929         lwkt_serialize_enter(&sc->bge_jslot_serializer);
930         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
931         if (entry) {
932                 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
933                 entry->bge_inuse = 1;
934         } else {
935                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
936         }
937         lwkt_serialize_exit(&sc->bge_jslot_serializer);
938         return(entry);
939 }
940
941 /*
942  * Adjust usage count on a jumbo buffer.
943  */
944 static void
945 bge_jref(void *arg)
946 {
947         struct bge_jslot *entry = (struct bge_jslot *)arg;
948         struct bge_softc *sc = entry->bge_sc;
949
950         if (sc == NULL)
951                 panic("bge_jref: can't find softc pointer!");
952
953         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
954                 panic("bge_jref: asked to reference buffer "
955                     "that we don't manage!");
956         } else if (entry->bge_inuse == 0) {
957                 panic("bge_jref: buffer already free!");
958         } else {
959                 atomic_add_int(&entry->bge_inuse, 1);
960         }
961 }
962
963 /*
964  * Release a jumbo buffer.
965  */
966 static void
967 bge_jfree(void *arg)
968 {
969         struct bge_jslot *entry = (struct bge_jslot *)arg;
970         struct bge_softc *sc = entry->bge_sc;
971
972         if (sc == NULL)
973                 panic("bge_jfree: can't find softc pointer!");
974
975         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
976                 panic("bge_jfree: asked to free buffer that we don't manage!");
977         } else if (entry->bge_inuse == 0) {
978                 panic("bge_jfree: buffer already free!");
979         } else {
980                 /*
981                  * Possible MP race to 0, use the serializer.  The atomic insn
982                  * is still needed for races against bge_jref().
983                  */
984                 lwkt_serialize_enter(&sc->bge_jslot_serializer);
985                 atomic_subtract_int(&entry->bge_inuse, 1);
986                 if (entry->bge_inuse == 0) {
987                         SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 
988                                           entry, jslot_link);
989                 }
990                 lwkt_serialize_exit(&sc->bge_jslot_serializer);
991         }
992 }
993
994
995 /*
996  * Intialize a standard receive ring descriptor.
997  */
998 static int
999 bge_newbuf_std(struct bge_softc *sc, int i, int init)
1000 {
1001         struct mbuf *m_new = NULL;
1002         bus_dma_segment_t seg;
1003         bus_dmamap_t map;
1004         int error, nsegs;
1005
1006         m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1007         if (m_new == NULL)
1008                 return ENOBUFS;
1009         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1010
1011         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1012                 m_adj(m_new, ETHER_ALIGN);
1013
1014         error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag,
1015                         sc->bge_cdata.bge_rx_tmpmap, m_new,
1016                         &seg, 1, &nsegs, BUS_DMA_NOWAIT);
1017         if (error) {
1018                 m_freem(m_new);
1019                 return error;
1020         }
1021
1022         if (!init) {
1023                 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1024                                 sc->bge_cdata.bge_rx_std_dmamap[i],
1025                                 BUS_DMASYNC_POSTREAD);
1026                 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1027                         sc->bge_cdata.bge_rx_std_dmamap[i]);
1028         }
1029
1030         map = sc->bge_cdata.bge_rx_tmpmap;
1031         sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i];
1032         sc->bge_cdata.bge_rx_std_dmamap[i] = map;
1033
1034         sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new;
1035         sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr;
1036
1037         bge_setup_rxdesc_std(sc, i);
1038         return 0;
1039 }
1040
1041 static void
1042 bge_setup_rxdesc_std(struct bge_softc *sc, int i)
1043 {
1044         struct bge_rxchain *rc;
1045         struct bge_rx_bd *r;
1046
1047         rc = &sc->bge_cdata.bge_rx_std_chain[i];
1048         r = &sc->bge_ldata.bge_rx_std_ring[i];
1049
1050         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1051         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1052         r->bge_len = rc->bge_mbuf->m_len;
1053         r->bge_idx = i;
1054         r->bge_flags = BGE_RXBDFLAG_END;
1055 }
1056
1057 /*
1058  * Initialize a jumbo receive ring descriptor. This allocates
1059  * a jumbo buffer from the pool managed internally by the driver.
1060  */
1061 static int
1062 bge_newbuf_jumbo(struct bge_softc *sc, int i, int init)
1063 {
1064         struct mbuf *m_new = NULL;
1065         struct bge_jslot *buf;
1066         bus_addr_t paddr;
1067
1068         /* Allocate the mbuf. */
1069         MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1070         if (m_new == NULL)
1071                 return ENOBUFS;
1072
1073         /* Allocate the jumbo buffer */
1074         buf = bge_jalloc(sc);
1075         if (buf == NULL) {
1076                 m_freem(m_new);
1077                 return ENOBUFS;
1078         }
1079
1080         /* Attach the buffer to the mbuf. */
1081         m_new->m_ext.ext_arg = buf;
1082         m_new->m_ext.ext_buf = buf->bge_buf;
1083         m_new->m_ext.ext_free = bge_jfree;
1084         m_new->m_ext.ext_ref = bge_jref;
1085         m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1086
1087         m_new->m_flags |= M_EXT;
1088
1089         m_new->m_data = m_new->m_ext.ext_buf;
1090         m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1091
1092         paddr = buf->bge_paddr;
1093         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
1094                 m_adj(m_new, ETHER_ALIGN);
1095                 paddr += ETHER_ALIGN;
1096         }
1097
1098         /* Save necessary information */
1099         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new;
1100         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr;
1101
1102         /* Set up the descriptor. */
1103         bge_setup_rxdesc_jumbo(sc, i);
1104         return 0;
1105 }
1106
1107 static void
1108 bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i)
1109 {
1110         struct bge_rx_bd *r;
1111         struct bge_rxchain *rc;
1112
1113         r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
1114         rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1115
1116         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1117         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1118         r->bge_len = rc->bge_mbuf->m_len;
1119         r->bge_idx = i;
1120         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1121 }
1122
1123 static int
1124 bge_init_rx_ring_std(struct bge_softc *sc)
1125 {
1126         int i, error;
1127
1128         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1129                 error = bge_newbuf_std(sc, i, 1);
1130                 if (error)
1131                         return error;
1132         }
1133
1134         sc->bge_std = BGE_STD_RX_RING_CNT - 1;
1135         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1136
1137         return(0);
1138 }
1139
1140 static void
1141 bge_free_rx_ring_std(struct bge_softc *sc)
1142 {
1143         int i;
1144
1145         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1146                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i];
1147
1148                 if (rc->bge_mbuf != NULL) {
1149                         bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1150                                           sc->bge_cdata.bge_rx_std_dmamap[i]);
1151                         m_freem(rc->bge_mbuf);
1152                         rc->bge_mbuf = NULL;
1153                 }
1154                 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
1155                     sizeof(struct bge_rx_bd));
1156         }
1157 }
1158
1159 static int
1160 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1161 {
1162         struct bge_rcb *rcb;
1163         int i, error;
1164
1165         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1166                 error = bge_newbuf_jumbo(sc, i, 1);
1167                 if (error)
1168                         return error;
1169         }
1170
1171         sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
1172
1173         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1174         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1175         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1176
1177         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1178
1179         return(0);
1180 }
1181
1182 static void
1183 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1184 {
1185         int i;
1186
1187         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1188                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1189
1190                 if (rc->bge_mbuf != NULL) {
1191                         m_freem(rc->bge_mbuf);
1192                         rc->bge_mbuf = NULL;
1193                 }
1194                 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1195                     sizeof(struct bge_rx_bd));
1196         }
1197 }
1198
1199 static void
1200 bge_free_tx_ring(struct bge_softc *sc)
1201 {
1202         int i;
1203
1204         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1205                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1206                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1207                                           sc->bge_cdata.bge_tx_dmamap[i]);
1208                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1209                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1210                 }
1211                 bzero(&sc->bge_ldata.bge_tx_ring[i],
1212                     sizeof(struct bge_tx_bd));
1213         }
1214 }
1215
1216 static int
1217 bge_init_tx_ring(struct bge_softc *sc)
1218 {
1219         sc->bge_txcnt = 0;
1220         sc->bge_tx_saved_considx = 0;
1221         sc->bge_tx_prodidx = 0;
1222
1223         /* Initialize transmit producer index for host-memory send ring. */
1224         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1225
1226         /* 5700 b2 errata */
1227         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1228                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1229
1230         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1231         /* 5700 b2 errata */
1232         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1233                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1234
1235         return(0);
1236 }
1237
1238 static void
1239 bge_setmulti(struct bge_softc *sc)
1240 {
1241         struct ifnet *ifp;
1242         struct ifmultiaddr *ifma;
1243         uint32_t hashes[4] = { 0, 0, 0, 0 };
1244         int h, i;
1245
1246         ifp = &sc->arpcom.ac_if;
1247
1248         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1249                 for (i = 0; i < 4; i++)
1250                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1251                 return;
1252         }
1253
1254         /* First, zot all the existing filters. */
1255         for (i = 0; i < 4; i++)
1256                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1257
1258         /* Now program new ones. */
1259         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1260                 if (ifma->ifma_addr->sa_family != AF_LINK)
1261                         continue;
1262                 h = ether_crc32_le(
1263                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1264                     ETHER_ADDR_LEN) & 0x7f;
1265                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1266         }
1267
1268         for (i = 0; i < 4; i++)
1269                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1270 }
1271
1272 /*
1273  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1274  * self-test results.
1275  */
1276 static int
1277 bge_chipinit(struct bge_softc *sc)
1278 {
1279         int i;
1280         uint32_t dma_rw_ctl, mode_ctl;
1281         uint16_t val;
1282
1283         /* Set endian type before we access any non-PCI registers. */
1284         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1285             BGE_INIT | sc->bge_pci_miscctl, 4);
1286
1287         /*
1288          * Clear the MAC statistics block in the NIC's
1289          * internal memory.
1290          */
1291         for (i = BGE_STATS_BLOCK;
1292             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1293                 BGE_MEMWIN_WRITE(sc, i, 0);
1294
1295         for (i = BGE_STATUS_BLOCK;
1296             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1297                 BGE_MEMWIN_WRITE(sc, i, 0);
1298
1299         if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1300                 /*
1301                  * Fix data corruption caused by non-qword write with WB.
1302                  * Fix master abort in PCI mode.
1303                  * Fix PCI latency timer.
1304                  */
1305                 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1306                 val |= (1 << 10) | (1 << 12) | (1 << 13);
1307                 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1308         }
1309
1310         /* Set up the PCI DMA control register. */
1311         dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1312         if (sc->bge_flags & BGE_FLAG_PCIE) {
1313                 /* PCI-E bus */
1314                 /* DMA read watermark not used on PCI-E */
1315                 dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1316         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1317                 /* PCI-X bus */
1318                 if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1319                         dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1320                             (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1321                         dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1322                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5714) {
1323                         dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1324                             (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1325                         dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1326                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1327                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1328                         uint32_t rd_wat = 0x7;
1329                         uint32_t clkctl;
1330
1331                         clkctl = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1332                         if ((sc->bge_flags & BGE_FLAG_MAXADDR_40BIT) &&
1333                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1334                                 dma_rw_ctl |=
1335                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1336                         } else if (clkctl == 0x6 || clkctl == 0x7) {
1337                                 dma_rw_ctl |=
1338                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1339                         }
1340                         if (sc->bge_asicrev == BGE_ASICREV_BCM5703)
1341                                 rd_wat = 0x4;
1342
1343                         dma_rw_ctl |= (rd_wat << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1344                             (3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1345                         dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1346                 } else {
1347                         dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1348                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1349                         dma_rw_ctl |= 0xf;
1350                 }
1351         } else {
1352                 /* Conventional PCI bus */
1353                 dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1354                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1355                 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1356                     sc->bge_asicrev != BGE_ASICREV_BCM5750)
1357                         dma_rw_ctl |= 0xf;
1358         }
1359
1360         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1361             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1362                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1363         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1364             sc->bge_asicrev == BGE_ASICREV_BCM5701) {
1365                 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1366                     BGE_PCIDMARWCTL_ASRT_ALL_BE;
1367         }
1368         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1369
1370         /*
1371          * Set up general mode register.
1372          */
1373         mode_ctl = BGE_DMA_SWAP_OPTIONS|
1374             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1375             BGE_MODECTL_TX_NO_PHDR_CSUM;
1376
1377         /*
1378          * BCM5701 B5 have a bug causing data corruption when using
1379          * 64-bit DMA reads, which can be terminated early and then
1380          * completed later as 32-bit accesses, in combination with
1381          * certain bridges.
1382          */
1383         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1384             sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1385                 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1386
1387         /*
1388          * Tell the firmware the driver is running
1389          */
1390         if (sc->bge_asf_mode & ASF_STACKUP)
1391                 mode_ctl |= BGE_MODECTL_STACKUP;
1392
1393         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1394
1395         /*
1396          * Disable memory write invalidate.  Apparently it is not supported
1397          * properly by these devices.  Also ensure that INTx isn't disabled,
1398          * as these chips need it even when using MSI.
1399          */
1400         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1401             (PCIM_CMD_MWRICEN | PCIM_CMD_INTxDIS), 4);
1402
1403         /* Set the timer prescaler (always 66Mhz) */
1404         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1405
1406         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1407                 DELAY(40);      /* XXX */
1408
1409                 /* Put PHY into ready state */
1410                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1411                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1412                 DELAY(40);
1413         }
1414
1415         return(0);
1416 }
1417
1418 static int
1419 bge_blockinit(struct bge_softc *sc)
1420 {
1421         struct bge_rcb *rcb;
1422         bus_size_t vrcb;
1423         bge_hostaddr taddr;
1424         uint32_t val;
1425         int i, limit;
1426
1427         /*
1428          * Initialize the memory window pointer register so that
1429          * we can access the first 32K of internal NIC RAM. This will
1430          * allow us to set up the TX send ring RCBs and the RX return
1431          * ring RCBs, plus other things which live in NIC memory.
1432          */
1433         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1434
1435         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1436
1437         if (!BGE_IS_5705_PLUS(sc)) {
1438                 /* Configure mbuf memory pool */
1439                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1440                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1441                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1442                 else
1443                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1444
1445                 /* Configure DMA resource pool */
1446                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1447                     BGE_DMA_DESCRIPTORS);
1448                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1449         }
1450
1451         /* Configure mbuf pool watermarks */
1452         if (!BGE_IS_5705_PLUS(sc)) {
1453                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1454                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1455                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1456         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1457                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1458                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1459                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1460         } else {
1461                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1462                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1463                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1464         }
1465
1466         /* Configure DMA resource watermarks */
1467         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1468         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1469
1470         /* Enable buffer manager */
1471         CSR_WRITE_4(sc, BGE_BMAN_MODE,
1472             BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1473
1474         /* Poll for buffer manager start indication */
1475         for (i = 0; i < BGE_TIMEOUT; i++) {
1476                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1477                         break;
1478                 DELAY(10);
1479         }
1480
1481         if (i == BGE_TIMEOUT) {
1482                 if_printf(&sc->arpcom.ac_if,
1483                           "buffer manager failed to start\n");
1484                 return(ENXIO);
1485         }
1486
1487         /* Enable flow-through queues */
1488         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1489         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1490
1491         /* Wait until queue initialization is complete */
1492         for (i = 0; i < BGE_TIMEOUT; i++) {
1493                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1494                         break;
1495                 DELAY(10);
1496         }
1497
1498         if (i == BGE_TIMEOUT) {
1499                 if_printf(&sc->arpcom.ac_if,
1500                           "flow-through queue init failed\n");
1501                 return(ENXIO);
1502         }
1503
1504         /*
1505          * Summary of rings supported by the controller:
1506          *
1507          * Standard Receive Producer Ring
1508          * - This ring is used to feed receive buffers for "standard"
1509          *   sized frames (typically 1536 bytes) to the controller.
1510          *
1511          * Jumbo Receive Producer Ring
1512          * - This ring is used to feed receive buffers for jumbo sized
1513          *   frames (i.e. anything bigger than the "standard" frames)
1514          *   to the controller.
1515          *
1516          * Mini Receive Producer Ring
1517          * - This ring is used to feed receive buffers for "mini"
1518          *   sized frames to the controller.
1519          * - This feature required external memory for the controller
1520          *   but was never used in a production system.  Should always
1521          *   be disabled.
1522          *
1523          * Receive Return Ring
1524          * - After the controller has placed an incoming frame into a
1525          *   receive buffer that buffer is moved into a receive return
1526          *   ring.  The driver is then responsible to passing the
1527          *   buffer up to the stack.  Many versions of the controller
1528          *   support multiple RR rings.
1529          *
1530          * Send Ring
1531          * - This ring is used for outgoing frames.  Many versions of
1532          *   the controller support multiple send rings.
1533          */
1534
1535         /* Initialize the standard receive producer ring control block. */
1536         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1537         rcb->bge_hostaddr.bge_addr_lo =
1538             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1539         rcb->bge_hostaddr.bge_addr_hi =
1540             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1541         if (BGE_IS_5705_PLUS(sc)) {
1542                 /*
1543                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1544                  * Bits 15-2 : Reserved (should be 0)
1545                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1546                  * Bit 0     : Reserved
1547                  */
1548                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1549         } else {
1550                 /*
1551                  * Ring size is always XXX entries
1552                  * Bits 31-16: Maximum RX frame size
1553                  * Bits 15-2 : Reserved (should be 0)
1554                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1555                  * Bit 0     : Reserved
1556                  */
1557                 rcb->bge_maxlen_flags =
1558                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1559         }
1560         rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1561         /* Write the standard receive producer ring control block. */
1562         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1563         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1564         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1565         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1566         /* Reset the standard receive producer ring producer index. */
1567         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1568
1569         /*
1570          * Initialize the jumbo RX producer ring control
1571          * block.  We set the 'ring disabled' bit in the
1572          * flags field until we're actually ready to start
1573          * using this ring (i.e. once we set the MTU
1574          * high enough to require it).
1575          */
1576         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1577                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1578                 /* Get the jumbo receive producer ring RCB parameters. */
1579                 rcb->bge_hostaddr.bge_addr_lo =
1580                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1581                 rcb->bge_hostaddr.bge_addr_hi =
1582                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1583                 rcb->bge_maxlen_flags =
1584                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1585                     BGE_RCB_FLAG_RING_DISABLED);
1586                 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1587                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1588                     rcb->bge_hostaddr.bge_addr_hi);
1589                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1590                     rcb->bge_hostaddr.bge_addr_lo);
1591                 /* Program the jumbo receive producer ring RCB parameters. */
1592                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1593                     rcb->bge_maxlen_flags);
1594                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1595                 /* Reset the jumbo receive producer ring producer index. */
1596                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1597         }
1598
1599         /* Disable the mini receive producer ring RCB. */
1600         if (BGE_IS_5700_FAMILY(sc)) {
1601                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1602                 rcb->bge_maxlen_flags =
1603                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1604                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1605                     rcb->bge_maxlen_flags);
1606                 /* Reset the mini receive producer ring producer index. */
1607                 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1608         }
1609
1610         /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1611         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1612             (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1613              sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1614              sc->bge_chipid == BGE_CHIPID_BCM5906_A2)) {
1615                 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1616                     (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1617         }
1618
1619         /*
1620          * The BD ring replenish thresholds control how often the
1621          * hardware fetches new BD's from the producer rings in host
1622          * memory.  Setting the value too low on a busy system can
1623          * starve the hardware and recue the throughpout.
1624          *
1625          * Set the BD ring replentish thresholds. The recommended
1626          * values are 1/8th the number of descriptors allocated to
1627          * each ring.
1628          */
1629         if (BGE_IS_5705_PLUS(sc))
1630                 val = 8;
1631         else
1632                 val = BGE_STD_RX_RING_CNT / 8;
1633         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1634         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1635                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1636                     BGE_JUMBO_RX_RING_CNT/8);
1637         }
1638
1639         /*
1640          * Disable all send rings by setting the 'ring disabled' bit
1641          * in the flags field of all the TX send ring control blocks,
1642          * located in NIC memory.
1643          */
1644         if (!BGE_IS_5705_PLUS(sc)) {
1645                 /* 5700 to 5704 had 16 send rings. */
1646                 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1647         } else {
1648                 limit = 1;
1649         }
1650         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1651         for (i = 0; i < limit; i++) {
1652                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1653                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1654                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1655                 vrcb += sizeof(struct bge_rcb);
1656         }
1657
1658         /* Configure send ring RCB 0 (we use only the first ring) */
1659         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1660         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1661         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1662         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1663         RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1664             BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1665         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1666             BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1667
1668         /*
1669          * Disable all receive return rings by setting the
1670          * 'ring diabled' bit in the flags field of all the receive
1671          * return ring control blocks, located in NIC memory.
1672          */
1673         if (!BGE_IS_5705_PLUS(sc))
1674                 limit = BGE_RX_RINGS_MAX;
1675         else if (sc->bge_asicrev == BGE_ASICREV_BCM5755)
1676                 limit = 4;
1677         else
1678                 limit = 1;
1679         /* Disable all receive return rings. */
1680         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1681         for (i = 0; i < limit; i++) {
1682                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1683                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1684                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1685                     BGE_RCB_FLAG_RING_DISABLED);
1686                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1687                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1688                     (i * (sizeof(uint64_t))), 0);
1689                 vrcb += sizeof(struct bge_rcb);
1690         }
1691
1692         /*
1693          * Set up receive return ring 0.  Note that the NIC address
1694          * for RX return rings is 0x0.  The return rings live entirely
1695          * within the host, so the nicaddr field in the RCB isn't used.
1696          */
1697         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1698         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1699         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1700         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1701         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1702         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1703             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1704
1705         /* Set random backoff seed for TX */
1706         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1707             (sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1708              sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1709              sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5]) &
1710             BGE_TX_BACKOFF_SEED_MASK);
1711
1712         /* Set inter-packet gap */
1713         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1714
1715         /*
1716          * Specify which ring to use for packets that don't match
1717          * any RX rules.
1718          */
1719         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1720
1721         /*
1722          * Configure number of RX lists. One interrupt distribution
1723          * list, sixteen active lists, one bad frames class.
1724          */
1725         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1726
1727         /* Inialize RX list placement stats mask. */
1728         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1729         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1730
1731         /* Disable host coalescing until we get it set up */
1732         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1733
1734         /* Poll to make sure it's shut down. */
1735         for (i = 0; i < BGE_TIMEOUT; i++) {
1736                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1737                         break;
1738                 DELAY(10);
1739         }
1740
1741         if (i == BGE_TIMEOUT) {
1742                 if_printf(&sc->arpcom.ac_if,
1743                           "host coalescing engine failed to idle\n");
1744                 return(ENXIO);
1745         }
1746
1747         /* Set up host coalescing defaults */
1748         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1749         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1750         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_coal_bds);
1751         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_coal_bds);
1752         if (!BGE_IS_5705_PLUS(sc)) {
1753                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
1754                     sc->bge_rx_coal_ticks_int);
1755                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
1756                     sc->bge_tx_coal_ticks_int);
1757         }
1758         /*
1759          * NOTE:
1760          * The datasheet (57XX-PG105-R) says BCM5705+ do not
1761          * have following two registers; obviously it is wrong.
1762          */
1763         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, sc->bge_rx_coal_bds_int);
1764         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, sc->bge_tx_coal_bds_int);
1765
1766         /* Set up address of statistics block */
1767         if (!BGE_IS_5705_PLUS(sc)) {
1768                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1769                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1770                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1771                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1772
1773                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1774                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1775                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1776         }
1777
1778         /* Set up address of status block */
1779         bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1780         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1781             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1782         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1783             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1784
1785         /*
1786          * Set up status block partail update size.
1787          *
1788          * Because only single TX ring, RX produce ring and Rx return ring
1789          * are used, ask device to update only minimum part of status block
1790          * except for BCM5700 AX/BX, whose status block partial update size
1791          * can't be configured.
1792          */
1793         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1794             sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1795                 /* XXX Actually reserved on BCM5700 AX/BX */
1796                 val = BGE_STATBLKSZ_FULL;
1797         } else {
1798                 val = BGE_STATBLKSZ_32BYTE;
1799         }
1800 #if 0
1801         /*
1802          * Does not seem to have visible effect in both
1803          * bulk data (1472B UDP datagram) and tiny data
1804          * (18B UDP datagram) TX tests.
1805          */
1806         if (!BGE_IS_CRIPPLED(sc))
1807                 val |= BGE_HCCMODE_CLRTICK_TX;
1808 #endif
1809
1810         /* Turn on host coalescing state machine */
1811         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1812
1813         /* Turn on RX BD completion state machine and enable attentions */
1814         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1815             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1816
1817         /* Turn on RX list placement state machine */
1818         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1819
1820         /* Turn on RX list selector state machine. */
1821         if (!BGE_IS_5705_PLUS(sc))
1822                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1823
1824         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1825             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1826             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1827             BGE_MACMODE_FRMHDR_DMA_ENB;
1828
1829         if (sc->bge_flags & BGE_FLAG_TBI)
1830                 val |= BGE_PORTMODE_TBI;
1831         else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1832                 val |= BGE_PORTMODE_GMII;
1833         else
1834                 val |= BGE_PORTMODE_MII;
1835
1836         /* Turn on DMA, clear stats */
1837         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1838         DELAY(40);
1839
1840         /* Set misc. local control, enable interrupts on attentions */
1841         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1842
1843 #ifdef notdef
1844         /* Assert GPIO pins for PHY reset */
1845         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1846             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1847         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1848             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1849 #endif
1850
1851         /* Turn on DMA completion state machine */
1852         if (!BGE_IS_5705_PLUS(sc))
1853                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1854
1855         /* Turn on write DMA state machine */
1856         val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1857         if (BGE_IS_5755_PLUS(sc)) {
1858                 /* Enable host coalescing bug fix. */
1859                 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1860         }
1861         if (sc->bge_asicrev == BGE_ASICREV_BCM5785) {
1862                 /* Request larger DMA burst size to get better performance. */
1863                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
1864         }
1865         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1866         DELAY(40);
1867
1868         if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
1869             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1870             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1871             sc->bge_asicrev == BGE_ASICREV_BCM57780) {
1872                 /*
1873                  * Enable fix for read DMA FIFO overruns.
1874                  * The fix is to limit the number of RX BDs
1875                  * the hardware would fetch at a fime.
1876                  */
1877                 val = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
1878                 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL,
1879                     val| BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1880         }
1881
1882         /* Turn on read DMA state machine */
1883         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1884         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1885             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1886             sc->bge_asicrev == BGE_ASICREV_BCM57780)
1887                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1888                   BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1889                   BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1890         if (sc->bge_flags & BGE_FLAG_PCIE)
1891                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1892         if (sc->bge_flags & BGE_FLAG_TSO)
1893                 val |= BGE_RDMAMODE_TSO4_ENABLE;
1894         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1895         DELAY(40);
1896
1897         /* Turn on RX data completion state machine */
1898         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1899
1900         /* Turn on RX BD initiator state machine */
1901         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1902
1903         /* Turn on RX data and RX BD initiator state machine */
1904         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1905
1906         /* Turn on Mbuf cluster free state machine */
1907         if (!BGE_IS_5705_PLUS(sc))
1908                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1909
1910         /* Turn on send BD completion state machine */
1911         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1912
1913         /* Turn on send data completion state machine */
1914         val = BGE_SDCMODE_ENABLE;
1915         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1916                 val |= BGE_SDCMODE_CDELAY; 
1917         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1918
1919         /* Turn on send data initiator state machine */
1920         if (sc->bge_flags & BGE_FLAG_TSO)
1921                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
1922                     BGE_SDIMODE_HW_LSO_PRE_DMA);
1923         else
1924                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1925
1926         /* Turn on send BD initiator state machine */
1927         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1928
1929         /* Turn on send BD selector state machine */
1930         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1931
1932         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1933         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1934             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1935
1936         /* ack/clear link change events */
1937         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1938             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1939             BGE_MACSTAT_LINK_CHANGED);
1940         CSR_WRITE_4(sc, BGE_MI_STS, 0);
1941
1942         /*
1943          * Enable attention when the link has changed state for
1944          * devices that use auto polling.
1945          */
1946         if (sc->bge_flags & BGE_FLAG_TBI) {
1947                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1948         } else {
1949                 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
1950                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1951                         DELAY(80);
1952                 }
1953                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1954                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1955                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1956                             BGE_EVTENB_MI_INTERRUPT);
1957                 }
1958         }
1959
1960         /*
1961          * Clear any pending link state attention.
1962          * Otherwise some link state change events may be lost until attention
1963          * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1964          * It's not necessary on newer BCM chips - perhaps enabling link
1965          * state change attentions implies clearing pending attention.
1966          */
1967         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1968             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1969             BGE_MACSTAT_LINK_CHANGED);
1970
1971         /* Enable link state change attentions. */
1972         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1973
1974         return(0);
1975 }
1976
1977 /*
1978  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1979  * against our list and return its name if we find a match. Note
1980  * that since the Broadcom controller contains VPD support, we
1981  * can get the device name string from the controller itself instead
1982  * of the compiled-in string. This is a little slow, but it guarantees
1983  * we'll always announce the right product name.
1984  */
1985 static int
1986 bge_probe(device_t dev)
1987 {
1988         const struct bge_type *t;
1989         uint16_t product, vendor;
1990
1991         product = pci_get_device(dev);
1992         vendor = pci_get_vendor(dev);
1993
1994         for (t = bge_devs; t->bge_name != NULL; t++) {
1995                 if (vendor == t->bge_vid && product == t->bge_did)
1996                         break;
1997         }
1998         if (t->bge_name == NULL)
1999                 return(ENXIO);
2000
2001         device_set_desc(dev, t->bge_name);
2002         return(0);
2003 }
2004
2005 static int
2006 bge_attach(device_t dev)
2007 {
2008         struct ifnet *ifp;
2009         struct bge_softc *sc;
2010         uint32_t hwcfg = 0, misccfg;
2011         int error = 0, rid, capmask;
2012         uint8_t ether_addr[ETHER_ADDR_LEN];
2013         uint16_t product, vendor;
2014         driver_intr_t *intr_func;
2015         uintptr_t mii_priv = 0;
2016         u_int intr_flags;
2017         int msi_enable;
2018
2019         sc = device_get_softc(dev);
2020         sc->bge_dev = dev;
2021         callout_init_mp(&sc->bge_stat_timer);
2022         lwkt_serialize_init(&sc->bge_jslot_serializer);
2023
2024         product = pci_get_device(dev);
2025         vendor = pci_get_vendor(dev);
2026
2027 #ifndef BURN_BRIDGES
2028         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
2029                 uint32_t irq, mem;
2030
2031                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
2032                 mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
2033
2034                 device_printf(dev, "chip is in D%d power mode "
2035                     "-- setting to D0\n", pci_get_powerstate(dev));
2036
2037                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
2038
2039                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
2040                 pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
2041         }
2042 #endif  /* !BURN_BRIDGE */
2043
2044         /*
2045          * Map control/status registers.
2046          */
2047         pci_enable_busmaster(dev);
2048
2049         rid = BGE_PCI_BAR0;
2050         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2051             RF_ACTIVE);
2052
2053         if (sc->bge_res == NULL) {
2054                 device_printf(dev, "couldn't map memory\n");
2055                 return ENXIO;
2056         }
2057
2058         sc->bge_btag = rman_get_bustag(sc->bge_res);
2059         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
2060
2061         /* Save various chip information */
2062         sc->bge_chipid =
2063             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2064             BGE_PCIMISCCTL_ASICREV_SHIFT;
2065         if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2066                 /* All chips, which use BGE_PCI_PRODID_ASICREV, have CPMU */
2067                 sc->bge_flags |= BGE_FLAG_CPMU;
2068                 sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2069         }
2070         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2071         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2072
2073         /* Save chipset family. */
2074         switch (sc->bge_asicrev) {
2075         case BGE_ASICREV_BCM5755:
2076         case BGE_ASICREV_BCM5761:
2077         case BGE_ASICREV_BCM5784:
2078         case BGE_ASICREV_BCM5785:
2079         case BGE_ASICREV_BCM5787:
2080         case BGE_ASICREV_BCM57780:
2081             sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2082                 BGE_FLAG_5705_PLUS;
2083             break;
2084
2085         case BGE_ASICREV_BCM5700:
2086         case BGE_ASICREV_BCM5701:
2087         case BGE_ASICREV_BCM5703:
2088         case BGE_ASICREV_BCM5704:
2089                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2090                 break;
2091
2092         case BGE_ASICREV_BCM5714_A0:
2093         case BGE_ASICREV_BCM5780:
2094         case BGE_ASICREV_BCM5714:
2095                 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
2096                 /* Fall through */
2097
2098         case BGE_ASICREV_BCM5750:
2099         case BGE_ASICREV_BCM5752:
2100         case BGE_ASICREV_BCM5906:
2101                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
2102                 /* Fall through */
2103
2104         case BGE_ASICREV_BCM5705:
2105                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
2106                 break;
2107         }
2108
2109         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2110                 sc->bge_flags |= BGE_FLAG_NO_EEPROM;
2111
2112         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2113                 sc->bge_flags |= BGE_FLAG_APE;
2114
2115         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
2116         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2117             (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2118              misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2119                 sc->bge_flags |= BGE_FLAG_5788;
2120
2121         /* BCM5755 or higher and BCM5906 have short DMA bug. */
2122         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
2123                 sc->bge_flags |= BGE_FLAG_SHORTDMA;
2124
2125         /*
2126          * Increase STD RX ring prod index by at most 8 for BCM5750,
2127          * BCM5752 and BCM5755 to workaround hardware errata.
2128          */
2129         if (sc->bge_asicrev == BGE_ASICREV_BCM5750 ||
2130             sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2131             sc->bge_asicrev == BGE_ASICREV_BCM5755)
2132                 sc->bge_rx_wreg = 8;
2133
2134         /*
2135          * Check if this is a PCI-X or PCI Express device.
2136          */
2137         if (BGE_IS_5705_PLUS(sc)) {
2138                 if (pci_is_pcie(dev)) {
2139                         sc->bge_flags |= BGE_FLAG_PCIE;
2140                         sc->bge_pciecap = pci_get_pciecap_ptr(sc->bge_dev);
2141                         pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
2142                 }
2143         } else {
2144                 /*
2145                  * Check if the device is in PCI-X Mode.
2146                  * (This bit is not valid on PCI Express controllers.)
2147                  */
2148                 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
2149                     BGE_PCISTATE_PCI_BUSMODE) == 0) {
2150                         sc->bge_flags |= BGE_FLAG_PCIX;
2151                         sc->bge_pcixcap = pci_get_pcixcap_ptr(sc->bge_dev);
2152                         sc->bge_mbox_reorder = device_getenv_int(sc->bge_dev,
2153                             "mbox_reorder", 0);
2154                 }
2155         }
2156         device_printf(dev, "CHIP ID 0x%08x; "
2157                       "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2158                       sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2159                       (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
2160                       : ((sc->bge_flags & BGE_FLAG_PCIE) ?
2161                         "PCI-E" : "PCI"));
2162
2163         /*
2164          * The 40bit DMA bug applies to the 5714/5715 controllers and is
2165          * not actually a MAC controller bug but an issue with the embedded
2166          * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2167          */
2168         if ((sc->bge_flags & BGE_FLAG_PCIX) &&
2169             (BGE_IS_5714_FAMILY(sc) || device_getenv_int(dev, "dma40b", 0)))
2170                 sc->bge_flags |= BGE_FLAG_MAXADDR_40BIT;
2171
2172         /*
2173          * When using the BCM5701 in PCI-X mode, data corruption has
2174          * been observed in the first few bytes of some received packets.
2175          * Aligning the packet buffer in memory eliminates the corruption.
2176          * Unfortunately, this misaligns the packet payloads.  On platforms
2177          * which do not support unaligned accesses, we will realign the
2178          * payloads by copying the received packets.
2179          */
2180         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2181             (sc->bge_flags & BGE_FLAG_PCIX))
2182                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2183
2184         if (!BGE_IS_CRIPPLED(sc)) {
2185                 if (device_getenv_int(dev, "status_tag", 1)) {
2186                         sc->bge_flags |= BGE_FLAG_STATUS_TAG;
2187                         sc->bge_pci_miscctl = BGE_PCIMISCCTL_TAGGED_STATUS;
2188                         if (bootverbose)
2189                                 device_printf(dev, "enable status tag\n");
2190                 }
2191         }
2192
2193         if (BGE_IS_5755_PLUS(sc)) {
2194                 /*
2195                  * BCM5754 and BCM5787 shares the same ASIC id so
2196                  * explicit device id check is required.
2197                  * Due to unknown reason TSO does not work on BCM5755M.
2198                  */
2199                 if (product != PCI_PRODUCT_BROADCOM_BCM5754 &&
2200                     product != PCI_PRODUCT_BROADCOM_BCM5754M &&
2201                     product != PCI_PRODUCT_BROADCOM_BCM5755M)
2202                         sc->bge_flags |= BGE_FLAG_TSO;
2203         }
2204
2205         /*
2206          * Set various PHY quirk flags.
2207          */
2208
2209         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2210              sc->bge_asicrev == BGE_ASICREV_BCM5701) &&
2211             pci_get_subvendor(dev) == PCI_VENDOR_DELL)
2212                 mii_priv |= BRGPHY_FLAG_NO_3LED;
2213
2214         capmask = MII_CAPMASK_DEFAULT;
2215         if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2216              (misccfg == 0x4000 || misccfg == 0x8000)) ||
2217             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2218              vendor == PCI_VENDOR_BROADCOM &&
2219              (product == PCI_PRODUCT_BROADCOM_BCM5901 ||
2220               product == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2221               product == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2222             (vendor == PCI_VENDOR_BROADCOM &&
2223              (product == PCI_PRODUCT_BROADCOM_BCM5751F ||
2224               product == PCI_PRODUCT_BROADCOM_BCM5753F ||
2225               product == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2226             product == PCI_PRODUCT_BROADCOM_BCM57790 ||
2227             sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2228                 /* 10/100 only */
2229                 capmask &= ~BMSR_EXTSTAT;
2230         }
2231
2232         mii_priv |= BRGPHY_FLAG_WIRESPEED;
2233         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2234             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2235              (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2236               sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2237             sc->bge_asicrev == BGE_ASICREV_BCM5906)
2238                 mii_priv &= ~BRGPHY_FLAG_WIRESPEED;
2239
2240         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2241             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2242                 mii_priv |= BRGPHY_FLAG_CRC_BUG;
2243
2244         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2245             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2246                 mii_priv |= BRGPHY_FLAG_ADC_BUG;
2247
2248         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2249                 mii_priv |= BRGPHY_FLAG_5704_A0;
2250
2251         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2252                 mii_priv |= BRGPHY_FLAG_5906;
2253
2254         if (BGE_IS_5705_PLUS(sc) &&
2255             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2256             /* sc->bge_asicrev != BGE_ASICREV_BCM5717 && */
2257             sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2258             /* sc->bge_asicrev != BGE_ASICREV_BCM57765 && */
2259             sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2260                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2261                     sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2262                     sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2263                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2264                         if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
2265                             product != PCI_PRODUCT_BROADCOM_BCM5756)
2266                                 mii_priv |= BRGPHY_FLAG_JITTER_BUG;
2267                         if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
2268                                 mii_priv |= BRGPHY_FLAG_ADJUST_TRIM;
2269                 } else {
2270                         mii_priv |= BRGPHY_FLAG_BER_BUG;
2271                 }
2272         }
2273
2274         /*
2275          * Allocate interrupt
2276          */
2277         msi_enable = bge_msi_enable;
2278         if ((sc->bge_flags & BGE_FLAG_STATUS_TAG) == 0) {
2279                 /* If "tagged status" is disabled, don't enable MSI */
2280                 msi_enable = 0;
2281         } else if (msi_enable) {
2282                 msi_enable = 0; /* Disable by default */
2283                 if (BGE_IS_575X_PLUS(sc)) {
2284                         msi_enable = 1;
2285                         /* XXX we filter all 5714 chips */
2286                         if (sc->bge_asicrev == BGE_ASICREV_BCM5714 ||
2287                             (sc->bge_asicrev == BGE_ASICREV_BCM5750 &&
2288                              (sc->bge_chiprev == BGE_CHIPREV_5750_AX ||
2289                               sc->bge_chiprev == BGE_CHIPREV_5750_BX)))
2290                                 msi_enable = 0;
2291                         else if (BGE_IS_5755_PLUS(sc) ||
2292                             sc->bge_asicrev == BGE_ASICREV_BCM5906)
2293                                 sc->bge_flags |= BGE_FLAG_ONESHOT_MSI;
2294                 }
2295         }
2296         if (msi_enable) {
2297                 if (pci_find_extcap(dev, PCIY_MSI, &sc->bge_msicap)) {
2298                         device_printf(dev, "no MSI capability\n");
2299                         msi_enable = 0;
2300                 }
2301         }
2302
2303         sc->bge_irq_type = pci_alloc_1intr(dev, msi_enable, &sc->bge_irq_rid,
2304             &intr_flags);
2305
2306         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->bge_irq_rid,
2307             intr_flags);
2308         if (sc->bge_irq == NULL) {
2309                 device_printf(dev, "couldn't map interrupt\n");
2310                 error = ENXIO;
2311                 goto fail;
2312         }
2313
2314         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2315                 bge_enable_msi(sc);
2316         else
2317                 sc->bge_flags &= ~BGE_FLAG_ONESHOT_MSI;
2318
2319         /* Initialize if_name earlier, so if_printf could be used */
2320         ifp = &sc->arpcom.ac_if;
2321         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2322
2323         sc->bge_asf_mode = 0;
2324         /* No ASF if APE present. */
2325         if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
2326                 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
2327                     BGE_SRAM_DATA_SIG_MAGIC)) {
2328                         if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
2329                             BGE_HWCFG_ASF) {
2330                                 sc->bge_asf_mode |= ASF_ENABLE;
2331                                 sc->bge_asf_mode |= ASF_STACKUP;
2332                                 if (BGE_IS_575X_PLUS(sc))
2333                                         sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2334                         }
2335                 }
2336         }
2337
2338         /*
2339          * Try to reset the chip.
2340          */
2341         bge_stop_fw(sc);
2342         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
2343         bge_reset(sc);
2344         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
2345         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
2346
2347         if (bge_chipinit(sc)) {
2348                 device_printf(dev, "chip initialization failed\n");
2349                 error = ENXIO;
2350                 goto fail;
2351         }
2352
2353         /*
2354          * Get station address
2355          */
2356         error = bge_get_eaddr(sc, ether_addr);
2357         if (error) {
2358                 device_printf(dev, "failed to read station address\n");
2359                 goto fail;
2360         }
2361
2362         /* 5705/5750 limits RX return ring to 512 entries. */
2363         if (BGE_IS_5705_PLUS(sc))
2364                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2365         else
2366                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2367
2368         error = bge_dma_alloc(sc);
2369         if (error)
2370                 goto fail;
2371
2372         /* Set default tuneable values. */
2373         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2374         sc->bge_rx_coal_ticks = BGE_RX_COAL_TICKS_DEF;
2375         sc->bge_tx_coal_ticks = BGE_TX_COAL_TICKS_DEF;
2376         sc->bge_rx_coal_bds = BGE_RX_COAL_BDS_DEF;
2377         sc->bge_tx_coal_bds = BGE_TX_COAL_BDS_DEF;
2378         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2379                 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_DEF;
2380                 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_DEF;
2381                 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_DEF;
2382                 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_DEF;
2383         } else {
2384                 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_MIN;
2385                 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_MIN;
2386                 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_MIN;
2387                 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_MIN;
2388         }
2389         sc->bge_tx_wreg = BGE_TX_WREG_NSEGS;
2390
2391         /* Set up TX spare and reserved descriptor count */
2392         if (sc->bge_flags & BGE_FLAG_TSO) {
2393                 sc->bge_txspare = BGE_NSEG_SPARE_TSO;
2394                 sc->bge_txrsvd = BGE_NSEG_RSVD_TSO;
2395         } else {
2396                 sc->bge_txspare = BGE_NSEG_SPARE;
2397                 sc->bge_txrsvd = BGE_NSEG_RSVD;
2398         }
2399
2400         /* Set up ifnet structure */
2401         ifp->if_softc = sc;
2402         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2403         ifp->if_ioctl = bge_ioctl;
2404         ifp->if_start = bge_start;
2405 #ifdef IFPOLL_ENABLE
2406         ifp->if_npoll = bge_npoll;
2407 #endif
2408         ifp->if_watchdog = bge_watchdog;
2409         ifp->if_init = bge_init;
2410         ifp->if_mtu = ETHERMTU;
2411         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2412         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2413         ifq_set_ready(&ifp->if_snd);
2414
2415         /*
2416          * 5700 B0 chips do not support checksumming correctly due
2417          * to hardware bugs.
2418          */
2419         if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
2420                 ifp->if_capabilities |= IFCAP_HWCSUM;
2421                 ifp->if_hwassist |= BGE_CSUM_FEATURES;
2422         }
2423         if (sc->bge_flags & BGE_FLAG_TSO) {
2424                 ifp->if_capabilities |= IFCAP_TSO;
2425                 ifp->if_hwassist |= CSUM_TSO;
2426         }
2427         ifp->if_capenable = ifp->if_capabilities;
2428
2429         /*
2430          * Figure out what sort of media we have by checking the
2431          * hardware config word in the first 32k of NIC internal memory,
2432          * or fall back to examining the EEPROM if necessary.
2433          * Note: on some BCM5700 cards, this value appears to be unset.
2434          * If that's the case, we have to rely on identifying the NIC
2435          * by its PCI subsystem ID, as we do below for the SysKonnect
2436          * SK-9D41.
2437          */
2438         if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
2439                 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
2440         } else {
2441                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2442                                     sizeof(hwcfg))) {
2443                         device_printf(dev, "failed to read EEPROM\n");
2444                         error = ENXIO;
2445                         goto fail;
2446                 }
2447                 hwcfg = ntohl(hwcfg);
2448         }
2449
2450         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2451         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2452             (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2453                 if (BGE_IS_5714_FAMILY(sc))
2454                         sc->bge_flags |= BGE_FLAG_MII_SERDES;
2455                 else
2456                         sc->bge_flags |= BGE_FLAG_TBI;
2457         }
2458
2459         /* Setup MI MODE */
2460         if (sc->bge_flags & BGE_FLAG_CPMU)
2461                 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2462         else
2463                 sc->bge_mi_mode = BGE_MIMODE_BASE;
2464         if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2465                 /* Enable auto polling for BCM570[0-5]. */
2466                 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2467         }
2468
2469         /* Setup link status update stuffs */
2470         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2471             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
2472                 sc->bge_link_upd = bge_bcm5700_link_upd;
2473                 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
2474         } else if (sc->bge_flags & BGE_FLAG_TBI) {
2475                 sc->bge_link_upd = bge_tbi_link_upd;
2476                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2477         } else if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2478                 sc->bge_link_upd = bge_autopoll_link_upd;
2479                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2480         } else {
2481                 sc->bge_link_upd = bge_copper_link_upd;
2482                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2483         }
2484
2485         /*
2486          * Broadcom's own driver always assumes the internal
2487          * PHY is at GMII address 1.  On some chips, the PHY responds
2488          * to accesses at all addresses, which could cause us to
2489          * bogusly attach the PHY 32 times at probe type.  Always
2490          * restricting the lookup to address 1 is simpler than
2491          * trying to figure out which chips revisions should be
2492          * special-cased.
2493          */
2494         sc->bge_phyno = 1;
2495
2496         if (sc->bge_flags & BGE_FLAG_TBI) {
2497                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
2498                     bge_ifmedia_upd, bge_ifmedia_sts);
2499                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2500                 ifmedia_add(&sc->bge_ifmedia,
2501                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2502                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2503                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2504                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2505         } else {
2506                 struct mii_probe_args mii_args;
2507                 int tries;
2508
2509                 /*
2510                  * Do transceiver setup and tell the firmware the
2511                  * driver is down so we can try to get access the
2512                  * probe if ASF is running.  Retry a couple of times
2513                  * if we get a conflict with the ASF firmware accessing
2514                  * the PHY.
2515                  */
2516                 tries = 0;
2517                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2518 again:
2519                 bge_asf_driver_up(sc);
2520
2521                 mii_probe_args_init(&mii_args, bge_ifmedia_upd, bge_ifmedia_sts);
2522                 mii_args.mii_probemask = 1 << sc->bge_phyno;
2523                 mii_args.mii_capmask = capmask;
2524                 mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2525                 mii_args.mii_priv = mii_priv;
2526
2527                 error = mii_probe(dev, &sc->bge_miibus, &mii_args);
2528                 if (error) {
2529                         if (tries++ < 4) {
2530                                 device_printf(sc->bge_dev, "Probe MII again\n");
2531                                 bge_miibus_writereg(sc->bge_dev,
2532                                     sc->bge_phyno, MII_BMCR, BMCR_RESET);
2533                                 goto again;
2534                         }
2535                         device_printf(dev, "MII without any PHY!\n");
2536                         goto fail;
2537                 }
2538
2539                 /*
2540                  * Now tell the firmware we are going up after probing the PHY
2541                  */
2542                 if (sc->bge_asf_mode & ASF_STACKUP)
2543                         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2544         }
2545
2546         /*
2547          * Create sysctl nodes.
2548          */
2549         sysctl_ctx_init(&sc->bge_sysctl_ctx);
2550         sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
2551                                               SYSCTL_STATIC_CHILDREN(_hw),
2552                                               OID_AUTO,
2553                                               device_get_nameunit(dev),
2554                                               CTLFLAG_RD, 0, "");
2555         if (sc->bge_sysctl_tree == NULL) {
2556                 device_printf(dev, "can't add sysctl node\n");
2557                 error = ENXIO;
2558                 goto fail;
2559         }
2560
2561         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2562                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2563                         OID_AUTO, "rx_coal_ticks",
2564                         CTLTYPE_INT | CTLFLAG_RW,
2565                         sc, 0, bge_sysctl_rx_coal_ticks, "I",
2566                         "Receive coalescing ticks (usec).");
2567         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2568                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2569                         OID_AUTO, "tx_coal_ticks",
2570                         CTLTYPE_INT | CTLFLAG_RW,
2571                         sc, 0, bge_sysctl_tx_coal_ticks, "I",
2572                         "Transmit coalescing ticks (usec).");
2573         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2574                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2575                         OID_AUTO, "rx_coal_bds",
2576                         CTLTYPE_INT | CTLFLAG_RW,
2577                         sc, 0, bge_sysctl_rx_coal_bds, "I",
2578                         "Receive max coalesced BD count.");
2579         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2580                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2581                         OID_AUTO, "tx_coal_bds",
2582                         CTLTYPE_INT | CTLFLAG_RW,
2583                         sc, 0, bge_sysctl_tx_coal_bds, "I",
2584                         "Transmit max coalesced BD count.");
2585
2586         SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2587                        SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2588                        OID_AUTO, "tx_wreg", CTLFLAG_RW,
2589                        &sc->bge_tx_wreg, 0,
2590                        "# of segments before writing to hardware register");
2591
2592         if (sc->bge_flags & BGE_FLAG_PCIE) {
2593                 /*
2594                  * A common design characteristic for many Broadcom
2595                  * client controllers is that they only support a
2596                  * single outstanding DMA read operation on the PCIe
2597                  * bus. This means that it will take twice as long to
2598                  * fetch a TX frame that is split into header and
2599                  * payload buffers as it does to fetch a single,
2600                  * contiguous TX frame (2 reads vs. 1 read). For these
2601                  * controllers, coalescing buffers to reduce the number
2602                  * of memory reads is effective way to get maximum
2603                  * performance(about 940Mbps).  Without collapsing TX
2604                  * buffers the maximum TCP bulk transfer performance
2605                  * is about 850Mbps. However forcing coalescing mbufs
2606                  * consumes a lot of CPU cycles, so leave it off by
2607                  * default.
2608                  */
2609                 SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2610                                SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2611                                OID_AUTO, "force_defrag", CTLFLAG_RW,
2612                                &sc->bge_force_defrag, 0,
2613                                "Force defragment on TX path");
2614         }
2615         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2616                 if (!BGE_IS_5705_PLUS(sc)) {
2617                         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2618                             SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2619                             "rx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2620                             sc, 0, bge_sysctl_rx_coal_ticks_int, "I",
2621                             "Receive coalescing ticks "
2622                             "during interrupt (usec).");
2623                         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2624                             SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2625                             "tx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2626                             sc, 0, bge_sysctl_tx_coal_ticks_int, "I",
2627                             "Transmit coalescing ticks "
2628                             "during interrupt (usec).");
2629                 }
2630                 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2631                     SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2632                     "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2633                     sc, 0, bge_sysctl_rx_coal_bds_int, "I",
2634                     "Receive max coalesced BD count during interrupt.");
2635                 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2636                     SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2637                     "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2638                     sc, 0, bge_sysctl_tx_coal_bds_int, "I",
2639                     "Transmit max coalesced BD count during interrupt.");
2640         }
2641
2642         /*
2643          * Call MI attach routine.
2644          */
2645         ether_ifattach(ifp, ether_addr, NULL);
2646
2647         ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
2648
2649 #ifdef IFPOLL_ENABLE
2650         /* Polling setup */
2651         ifpoll_compat_setup(&sc->bge_npoll,
2652             &sc->bge_sysctl_ctx, sc->bge_sysctl_tree, device_get_unit(dev),
2653             ifp->if_serializer);
2654 #endif
2655
2656         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2657                 if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
2658                         intr_func = bge_msi_oneshot;
2659                         if (bootverbose)
2660                                 device_printf(dev, "oneshot MSI\n");
2661                 } else {
2662                         intr_func = bge_msi;
2663                 }
2664         } else if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2665                 intr_func = bge_intr_legacy;
2666         } else {
2667                 intr_func = bge_intr_crippled;
2668         }
2669         error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE, intr_func, sc,
2670             &sc->bge_intrhand, ifp->if_serializer);
2671         if (error) {
2672                 ether_ifdetach(ifp);
2673                 device_printf(dev, "couldn't set up irq\n");
2674                 goto fail;
2675         }
2676
2677         return(0);
2678 fail:
2679         bge_detach(dev);
2680         return(error);
2681 }
2682
2683 static int
2684 bge_detach(device_t dev)
2685 {
2686         struct bge_softc *sc = device_get_softc(dev);
2687
2688         if (device_is_attached(dev)) {
2689                 struct ifnet *ifp = &sc->arpcom.ac_if;
2690
2691                 lwkt_serialize_enter(ifp->if_serializer);
2692                 bge_stop(sc);
2693                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2694                 lwkt_serialize_exit(ifp->if_serializer);
2695
2696                 ether_ifdetach(ifp);
2697         }
2698
2699         if (sc->bge_flags & BGE_FLAG_TBI)
2700                 ifmedia_removeall(&sc->bge_ifmedia);
2701         if (sc->bge_miibus)
2702                 device_delete_child(dev, sc->bge_miibus);
2703         bus_generic_detach(dev);
2704
2705         if (sc->bge_irq != NULL) {
2706                 bus_release_resource(dev, SYS_RES_IRQ, sc->bge_irq_rid,
2707                     sc->bge_irq);
2708         }
2709         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2710                 pci_release_msi(dev);
2711
2712         if (sc->bge_res != NULL) {
2713                 bus_release_resource(dev, SYS_RES_MEMORY,
2714                     BGE_PCI_BAR0, sc->bge_res);
2715         }
2716
2717         if (sc->bge_sysctl_tree != NULL)
2718                 sysctl_ctx_free(&sc->bge_sysctl_ctx);
2719
2720         bge_dma_free(sc);
2721
2722         return 0;
2723 }
2724
2725 static void
2726 bge_reset(struct bge_softc *sc)
2727 {
2728         device_t dev = sc->bge_dev;
2729         uint32_t cachesize, command, reset, mac_mode, mac_mode_mask;
2730         void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2731         int i, val = 0;
2732
2733         mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
2734         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
2735
2736         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2737             sc->bge_asicrev != BGE_ASICREV_BCM5906) {
2738                 if (sc->bge_flags & BGE_FLAG_PCIE)
2739                         write_op = bge_writemem_direct;
2740                 else
2741                         write_op = bge_writemem_ind;
2742         } else {
2743                 write_op = bge_writereg_ind;
2744         }
2745
2746         /* Save some important PCI state. */
2747         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2748         command = pci_read_config(dev, BGE_PCI_CMD, 4);
2749
2750         pci_write_config(dev, BGE_PCI_MISC_CTL,
2751             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2752             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2753             sc->bge_pci_miscctl, 4);
2754
2755         /* Disable fastboot on controllers that support it. */
2756         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2757             BGE_IS_5755_PLUS(sc)) {
2758                 if (bootverbose)
2759                         if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2760                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2761         }
2762
2763         /*
2764          * Write the magic number to SRAM at offset 0xB50.
2765          * When firmware finishes its initialization it will
2766          * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
2767          */
2768         bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2769
2770         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2771
2772         /* XXX: Broadcom Linux driver. */
2773         if (sc->bge_flags & BGE_FLAG_PCIE) {
2774                 /* Force PCI-E 1.0a mode */
2775                 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2776                     CSR_READ_4(sc, BGE_PCIE_PHY_TSTCTL) ==
2777                     (BGE_PCIE_PHY_TSTCTL_PSCRAM |
2778                      BGE_PCIE_PHY_TSTCTL_PCIE10)) {
2779                         CSR_WRITE_4(sc, BGE_PCIE_PHY_TSTCTL,
2780                             BGE_PCIE_PHY_TSTCTL_PSCRAM);
2781                 }
2782                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2783                         /* Prevent PCIE link training during global reset */
2784                         CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2785                         reset |= (1<<29);
2786                 }
2787         }
2788
2789         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2790                 uint32_t status, ctrl;
2791
2792                 status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2793                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2794                     status | BGE_VCPU_STATUS_DRV_RESET);
2795                 ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2796                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2797                     ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2798         }
2799
2800         /* 
2801          * Set GPHY Power Down Override to leave GPHY
2802          * powered up in D0 uninitialized.
2803          */
2804         if (BGE_IS_5705_PLUS(sc) && (sc->bge_flags & BGE_FLAG_CPMU) == 0)
2805                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2806
2807         /* Issue global reset */
2808         write_op(sc, BGE_MISC_CFG, reset);
2809
2810         if (sc->bge_flags & BGE_FLAG_PCIE)
2811                 DELAY(100 * 1000);
2812         else
2813                 DELAY(1000);
2814
2815         /* XXX: Broadcom Linux driver. */
2816         if (sc->bge_flags & BGE_FLAG_PCIE) {
2817                 uint16_t devctl;
2818
2819                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2820                         uint32_t v;
2821
2822                         DELAY(500000); /* wait for link training to complete */
2823                         v = pci_read_config(dev, 0xc4, 4);
2824                         pci_write_config(dev, 0xc4, v | (1<<15), 4);
2825                 }
2826
2827                 devctl = pci_read_config(dev,
2828                     sc->bge_pciecap + PCIER_DEVCTRL, 2);
2829
2830                 /* Disable no snoop and disable relaxed ordering. */
2831                 devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2832
2833                 /* Old PCI-E chips only support 128 bytes Max PayLoad Size. */
2834                 if ((sc->bge_flags & BGE_FLAG_CPMU) == 0) {
2835                         devctl &= ~PCIEM_DEVCTL_MAX_PAYLOAD_MASK;
2836                         devctl |= PCIEM_DEVCTL_MAX_PAYLOAD_128;
2837                 }
2838
2839                 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVCTRL,
2840                     devctl, 2);
2841
2842                 /* Clear error status. */
2843                 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVSTS,
2844                     PCIEM_DEVSTS_CORR_ERR |
2845                     PCIEM_DEVSTS_NFATAL_ERR |
2846                     PCIEM_DEVSTS_FATAL_ERR |
2847                     PCIEM_DEVSTS_UNSUPP_REQ, 2);
2848         }
2849
2850         /* Reset some of the PCI state that got zapped by reset */
2851         pci_write_config(dev, BGE_PCI_MISC_CTL,
2852             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2853             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2854             sc->bge_pci_miscctl, 4);
2855         val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
2856         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
2857             (sc->bge_flags & BGE_FLAG_PCIX))
2858                 val |= BGE_PCISTATE_RETRY_SAME_DMA;
2859         pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
2860         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2861         pci_write_config(dev, BGE_PCI_CMD, command, 4);
2862
2863         /*
2864          * Disable PCI-X relaxed ordering to ensure status block update
2865          * comes first then packet buffer DMA. Otherwise driver may
2866          * read stale status block.
2867          */
2868         if (sc->bge_flags & BGE_FLAG_PCIX) {
2869                 uint16_t devctl;
2870
2871                 devctl = pci_read_config(dev,
2872                     sc->bge_pcixcap + PCIXR_COMMAND, 2);
2873                 devctl &= ~PCIXM_COMMAND_ERO;
2874                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
2875                         devctl &= ~PCIXM_COMMAND_MAX_READ;
2876                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
2877                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2878                         devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
2879                             PCIXM_COMMAND_MAX_READ);
2880                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
2881                 }
2882                 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
2883                     devctl, 2);
2884         }
2885
2886         /*
2887          * Enable memory arbiter and re-enable MSI if necessary.
2888          */
2889         if (BGE_IS_5714_FAMILY(sc)) {
2890                 uint32_t val;
2891
2892                 if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2893                         /*
2894                          * Resetting BCM5714 family will clear MSI
2895                          * enable bit; restore it after resetting.
2896                          */
2897                         PCI_SETBIT(sc->bge_dev, sc->bge_msicap + PCIR_MSI_CTRL,
2898                             PCIM_MSICTRL_MSI_ENABLE, 2);
2899                         BGE_SETBIT(sc, BGE_MSI_MODE, BGE_MSIMODE_ENABLE);
2900                 }
2901                 val = CSR_READ_4(sc, BGE_MARB_MODE);
2902                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2903         } else {
2904                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2905         }
2906
2907         /* Fix up byte swapping. */
2908         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2909             BGE_MODECTL_BYTESWAP_DATA);
2910
2911         val = CSR_READ_4(sc, BGE_MAC_MODE);
2912         val = (val & ~mac_mode_mask) | mac_mode;
2913         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2914         DELAY(40);
2915
2916         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2917                 for (i = 0; i < BGE_TIMEOUT; i++) {
2918                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2919                         if (val & BGE_VCPU_STATUS_INIT_DONE)
2920                                 break;
2921                         DELAY(100);
2922                 }
2923                 if (i == BGE_TIMEOUT) {
2924                         if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2925                         return;
2926                 }
2927         } else {
2928                 /*
2929                  * Poll until we see the 1's complement of the magic number.
2930                  * This indicates that the firmware initialization
2931                  * is complete.
2932                  */
2933                 for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) {
2934                         val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2935                         if (val == ~BGE_SRAM_FW_MB_MAGIC)
2936                                 break;
2937                         DELAY(10);
2938                 }
2939                 if (i == BGE_FIRMWARE_TIMEOUT) {
2940                         if_printf(&sc->arpcom.ac_if, "firmware handshake "
2941                                   "timed out, found 0x%08x\n", val);
2942                 }
2943         }
2944
2945         /*
2946          * The 5704 in TBI mode apparently needs some special
2947          * adjustment to insure the SERDES drive level is set
2948          * to 1.2V.
2949          */
2950         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2951             (sc->bge_flags & BGE_FLAG_TBI)) {
2952                 uint32_t serdescfg;
2953
2954                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2955                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2956                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2957         }
2958
2959         /* XXX: Broadcom Linux driver. */
2960         if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2961             sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
2962             sc->bge_asicrev != BGE_ASICREV_BCM5785) {
2963                 uint32_t v;
2964
2965                 /* Enable Data FIFO protection. */
2966                 v = CSR_READ_4(sc, BGE_PCIE_TLDLPL_PORT);
2967                 CSR_WRITE_4(sc, BGE_PCIE_TLDLPL_PORT, v | (1 << 25));
2968         }
2969
2970         DELAY(10000);
2971 }
2972
2973 /*
2974  * Frame reception handling. This is called if there's a frame
2975  * on the receive return list.
2976  *
2977  * Note: we have to be able to handle two possibilities here:
2978  * 1) the frame is from the jumbo recieve ring
2979  * 2) the frame is from the standard receive ring
2980  */
2981
2982 static void
2983 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int count)
2984 {
2985         struct ifnet *ifp;
2986         int stdcnt = 0, jumbocnt = 0;
2987
2988         ifp = &sc->arpcom.ac_if;
2989
2990         while (sc->bge_rx_saved_considx != rx_prod && count != 0) {
2991                 struct bge_rx_bd        *cur_rx;
2992                 uint32_t                rxidx;
2993                 struct mbuf             *m = NULL;
2994                 uint16_t                vlan_tag = 0;
2995                 int                     have_tag = 0;
2996
2997                 --count;
2998
2999                 cur_rx =
3000             &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
3001
3002                 rxidx = cur_rx->bge_idx;
3003                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
3004                 logif(rx_pkt);
3005
3006                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3007                         have_tag = 1;
3008                         vlan_tag = cur_rx->bge_vlan_tag;
3009                 }
3010
3011                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3012                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3013                         jumbocnt++;
3014
3015                         if (rxidx != sc->bge_jumbo) {
3016                                 IFNET_STAT_INC(ifp, ierrors, 1);
3017                                 if_printf(ifp, "sw jumbo index(%d) "
3018                                     "and hw jumbo index(%d) mismatch, drop!\n",
3019                                     sc->bge_jumbo, rxidx);
3020                                 bge_setup_rxdesc_jumbo(sc, rxidx);
3021                                 continue;
3022                         }
3023
3024                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf;
3025                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3026                                 IFNET_STAT_INC(ifp, ierrors, 1);
3027                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
3028                                 continue;
3029                         }
3030                         if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) {
3031                                 IFNET_STAT_INC(ifp, ierrors, 1);
3032                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
3033                                 continue;
3034                         }
3035                 } else {
3036                         int discard = 0;
3037
3038                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3039                         stdcnt++;
3040
3041                         if (rxidx != sc->bge_std) {
3042                                 IFNET_STAT_INC(ifp, ierrors, 1);
3043                                 if_printf(ifp, "sw std index(%d) "
3044                                     "and hw std index(%d) mismatch, drop!\n",
3045                                     sc->bge_std, rxidx);
3046                                 bge_setup_rxdesc_std(sc, rxidx);
3047                                 discard = 1;
3048                                 goto refresh_rx;
3049                         }
3050
3051                         m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf;
3052                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3053                                 IFNET_STAT_INC(ifp, ierrors, 1);
3054                                 bge_setup_rxdesc_std(sc, sc->bge_std);
3055                                 discard = 1;
3056                                 goto refresh_rx;
3057                         }
3058                         if (bge_newbuf_std(sc, sc->bge_std, 0)) {
3059                                 IFNET_STAT_INC(ifp, ierrors, 1);
3060                                 bge_setup_rxdesc_std(sc, sc->bge_std);
3061                                 discard = 1;
3062                         }
3063 refresh_rx:
3064                         if (sc->bge_rx_wreg > 0 && stdcnt >= sc->bge_rx_wreg) {
3065                                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO,
3066                                     sc->bge_std);
3067                                 stdcnt = 0;
3068                         }
3069                         if (discard)
3070                                 continue;
3071                 }
3072
3073                 IFNET_STAT_INC(ifp, ipackets, 1);
3074 #if !defined(__i386__) && !defined(__x86_64__)
3075                 /*
3076                  * The x86 allows unaligned accesses, but for other
3077                  * platforms we must make sure the payload is aligned.
3078                  */
3079                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3080                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3081                             cur_rx->bge_len);
3082                         m->m_data += ETHER_ALIGN;
3083                 }
3084 #endif
3085                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3086                 m->m_pkthdr.rcvif = ifp;
3087
3088                 if (ifp->if_capenable & IFCAP_RXCSUM) {
3089                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3090                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3091                                 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
3092                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3093                         }
3094                         if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
3095                             m->m_pkthdr.len >= BGE_MIN_FRAMELEN) {
3096                                 m->m_pkthdr.csum_data =
3097                                         cur_rx->bge_tcp_udp_csum;
3098                                 m->m_pkthdr.csum_flags |=
3099                                         CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3100                         }
3101                 }
3102
3103                 /*
3104                  * If we received a packet with a vlan tag, pass it
3105                  * to vlan_input() instead of ether_input().
3106                  */
3107                 if (have_tag) {
3108                         m->m_flags |= M_VLANTAG;
3109                         m->m_pkthdr.ether_vlantag = vlan_tag;
3110                 }
3111                 ifp->if_input(ifp, m);
3112         }
3113
3114         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3115         if (stdcnt)
3116                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3117         if (jumbocnt)
3118                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3119 }
3120
3121 static void
3122 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3123 {
3124         struct ifnet *ifp;
3125
3126         ifp = &sc->arpcom.ac_if;
3127
3128         /*
3129          * Go through our tx ring and free mbufs for those
3130          * frames that have been sent.
3131          */
3132         while (sc->bge_tx_saved_considx != tx_cons) {
3133                 uint32_t idx = 0;
3134
3135                 idx = sc->bge_tx_saved_considx;
3136                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3137                         IFNET_STAT_INC(ifp, opackets, 1);
3138                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3139                             sc->bge_cdata.bge_tx_dmamap[idx]);
3140                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3141                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
3142                 }
3143                 sc->bge_txcnt--;
3144                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3145                 logif(tx_pkt);
3146         }
3147
3148         if ((BGE_TX_RING_CNT - sc->bge_txcnt) >=
3149             (sc->bge_txrsvd + sc->bge_txspare))
3150                 ifq_clr_oactive(&ifp->if_snd);
3151
3152         if (sc->bge_txcnt == 0)
3153                 ifp->if_timer = 0;
3154
3155         if (!ifq_is_empty(&ifp->if_snd))
3156                 if_devstart(ifp);
3157 }
3158
3159 #ifdef IFPOLL_ENABLE
3160
3161 static void
3162 bge_npoll_compat(struct ifnet *ifp, void *arg __unused, int cycles)
3163 {
3164         struct bge_softc *sc = ifp->if_softc;
3165         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3166         uint16_t rx_prod, tx_cons;
3167
3168         ASSERT_SERIALIZED(ifp->if_serializer);
3169
3170         if (sc->bge_npoll.ifpc_stcount-- == 0) {
3171                 sc->bge_npoll.ifpc_stcount = sc->bge_npoll.ifpc_stfrac;
3172                 /*
3173                  * Process link state changes.
3174                  */
3175                 bge_link_poll(sc);
3176         }
3177
3178         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
3179                 sc->bge_status_tag = sblk->bge_status_tag;
3180                 /*
3181                  * Use a load fence to ensure that status_tag
3182                  * is saved  before rx_prod and tx_cons.
3183                  */
3184                 cpu_lfence();
3185         }
3186
3187         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3188         if (sc->bge_rx_saved_considx != rx_prod)
3189                 bge_rxeof(sc, rx_prod, cycles);
3190
3191         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3192         if (sc->bge_tx_saved_considx != tx_cons)
3193                 bge_txeof(sc, tx_cons);
3194
3195         if (sc->bge_flags & BGE_FLAG_STATUS_TAG)
3196                 bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3197
3198         if (sc->bge_coal_chg)
3199                 bge_coal_change(sc);
3200 }
3201
3202 static void
3203 bge_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3204 {
3205         struct bge_softc *sc = ifp->if_softc;
3206
3207         ASSERT_SERIALIZED(ifp->if_serializer);
3208
3209         if (info != NULL) {
3210                 int cpuid = sc->bge_npoll.ifpc_cpuid;
3211
3212                 info->ifpi_rx[cpuid].poll_func = bge_npoll_compat;
3213                 info->ifpi_rx[cpuid].arg = NULL;
3214                 info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
3215
3216                 if (ifp->if_flags & IFF_RUNNING)
3217                         bge_disable_intr(sc);
3218                 ifq_set_cpuid(&ifp->if_snd, cpuid);
3219         } else {
3220                 if (ifp->if_flags & IFF_RUNNING)
3221                         bge_enable_intr(sc);
3222                 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
3223         }
3224 }
3225
3226 #endif  /* IFPOLL_ENABLE */
3227
3228 static void
3229 bge_intr_crippled(void *xsc)
3230 {
3231         struct bge_softc *sc = xsc;
3232         struct ifnet *ifp = &sc->arpcom.ac_if;
3233
3234         logif(intr);
3235
3236         /*
3237          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3238          * disable interrupts by writing nonzero like we used to, since with
3239          * our current organization this just gives complications and
3240          * pessimizations for re-enabling interrupts.  We used to have races
3241          * instead of the necessary complications.  Disabling interrupts
3242          * would just reduce the chance of a status update while we are
3243          * running (by switching to the interrupt-mode coalescence
3244          * parameters), but this chance is already very low so it is more
3245          * efficient to get another interrupt than prevent it.
3246          *
3247          * We do the ack first to ensure another interrupt if there is a
3248          * status update after the ack.  We don't check for the status
3249          * changing later because it is more efficient to get another
3250          * interrupt than prevent it, not quite as above (not checking is
3251          * a smaller optimization than not toggling the interrupt enable,
3252          * since checking doesn't involve PCI accesses and toggling require
3253          * the status check).  So toggling would probably be a pessimization
3254          * even with MSI.  It would only be needed for using a task queue.
3255          */
3256         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3257
3258         /*
3259          * Process link state changes.
3260          */
3261         bge_link_poll(sc);
3262
3263         if (ifp->if_flags & IFF_RUNNING) {
3264                 struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3265                 uint16_t rx_prod, tx_cons;
3266
3267                 rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3268                 if (sc->bge_rx_saved_considx != rx_prod)
3269                         bge_rxeof(sc, rx_prod, -1);
3270
3271                 tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3272                 if (sc->bge_tx_saved_considx != tx_cons)
3273                         bge_txeof(sc, tx_cons);
3274         }
3275
3276         if (sc->bge_coal_chg)
3277                 bge_coal_change(sc);
3278 }
3279
3280 static void
3281 bge_intr_legacy(void *xsc)
3282 {
3283         struct bge_softc *sc = xsc;
3284         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3285
3286         if (sc->bge_status_tag == sblk->bge_status_tag) {
3287                 uint32_t val;
3288
3289                 val = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3290                 if (val & BGE_PCISTAT_INTR_NOTACT)
3291                         return;
3292         }
3293
3294         /*
3295          * NOTE:
3296          * Interrupt will have to be disabled if tagged status
3297          * is used, else interrupt will always be asserted on
3298          * certain chips (at least on BCM5750 AX/BX).
3299          */
3300         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3301
3302         bge_intr(sc);
3303 }
3304
3305 static void
3306 bge_msi(void *xsc)
3307 {
3308         struct bge_softc *sc = xsc;
3309
3310         /* Disable interrupt first */
3311         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3312         bge_intr(sc);
3313 }
3314
3315 static void
3316 bge_msi_oneshot(void *xsc)
3317 {
3318         bge_intr(xsc);
3319 }
3320
3321 static void
3322 bge_intr(struct bge_softc *sc)
3323 {
3324         struct ifnet *ifp = &sc->arpcom.ac_if;
3325         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3326         uint16_t rx_prod, tx_cons;
3327         uint32_t status;
3328
3329         sc->bge_status_tag = sblk->bge_status_tag;
3330         /*
3331          * Use a load fence to ensure that status_tag is saved 
3332          * before rx_prod, tx_cons and status.
3333          */
3334         cpu_lfence();
3335
3336         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3337         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3338         status = sblk->bge_status;
3339
3340         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bge_link_evt)
3341                 bge_link_poll(sc);
3342
3343         if (ifp->if_flags & IFF_RUNNING) {
3344                 if (sc->bge_rx_saved_considx != rx_prod)
3345                         bge_rxeof(sc, rx_prod, -1);
3346
3347                 if (sc->bge_tx_saved_considx != tx_cons)
3348                         bge_txeof(sc, tx_cons);
3349         }
3350
3351         bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3352
3353         if (sc->bge_coal_chg)
3354                 bge_coal_change(sc);
3355 }
3356
3357 static void
3358 bge_tick(void *xsc)
3359 {
3360         struct bge_softc *sc = xsc;
3361         struct ifnet *ifp = &sc->arpcom.ac_if;
3362
3363         lwkt_serialize_enter(ifp->if_serializer);
3364
3365         if (BGE_IS_5705_PLUS(sc))
3366                 bge_stats_update_regs(sc);
3367         else
3368                 bge_stats_update(sc);
3369
3370         if (sc->bge_flags & BGE_FLAG_TBI) {
3371                 /*
3372                  * Since in TBI mode auto-polling can't be used we should poll
3373                  * link status manually. Here we register pending link event
3374                  * and trigger interrupt.
3375                  */
3376                 sc->bge_link_evt++;
3377                 if (BGE_IS_CRIPPLED(sc))
3378                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3379                 else
3380                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3381         } else if (!sc->bge_link) {
3382                 mii_tick(device_get_softc(sc->bge_miibus));
3383         }
3384
3385         bge_asf_driver_up(sc);
3386
3387         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3388
3389         lwkt_serialize_exit(ifp->if_serializer);
3390 }
3391
3392 static void
3393 bge_stats_update_regs(struct bge_softc *sc)
3394 {
3395         struct ifnet *ifp = &sc->arpcom.ac_if;
3396         struct bge_mac_stats_regs stats;
3397         uint32_t *s;
3398         int i;
3399
3400         s = (uint32_t *)&stats;
3401         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
3402                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
3403                 s++;
3404         }
3405
3406         IFNET_STAT_SET(ifp, collisions,
3407            (stats.dot3StatsSingleCollisionFrames +
3408            stats.dot3StatsMultipleCollisionFrames +
3409            stats.dot3StatsExcessiveCollisions +
3410            stats.dot3StatsLateCollisions));
3411 }
3412
3413 static void
3414 bge_stats_update(struct bge_softc *sc)
3415 {
3416         struct ifnet *ifp = &sc->arpcom.ac_if;
3417         bus_size_t stats;
3418
3419         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3420
3421 #define READ_STAT(sc, stats, stat)      \
3422         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3423
3424         IFNET_STAT_SET(ifp, collisions,
3425            (READ_STAT(sc, stats,
3426                 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
3427             READ_STAT(sc, stats,
3428                 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3429             READ_STAT(sc, stats,
3430                 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
3431             READ_STAT(sc, stats,
3432                 txstats.dot3StatsLateCollisions.bge_addr_lo)));
3433
3434 #undef READ_STAT
3435
3436 #ifdef notdef
3437         IFNET_STAT_SET(ifp, collisions,
3438            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3439            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3440            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3441            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions));
3442 #endif
3443 }
3444
3445 /*
3446  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3447  * pointers to descriptors.
3448  */
3449 static int
3450 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx,
3451     int *segs_used)
3452 {
3453         struct bge_tx_bd *d = NULL, *last_d;
3454         uint16_t csum_flags = 0, mss = 0;
3455         bus_dma_segment_t segs[BGE_NSEG_NEW];
3456         bus_dmamap_t map;
3457         int error, maxsegs, nsegs, idx, i;
3458         struct mbuf *m_head = *m_head0, *m_new;
3459
3460         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3461                 error = bge_setup_tso(sc, m_head0, &mss, &csum_flags);
3462                 if (error)
3463                         return ENOBUFS;
3464                 m_head = *m_head0;
3465         } else if (m_head->m_pkthdr.csum_flags & BGE_CSUM_FEATURES) {
3466                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3467                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3468                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3469                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3470                 if (m_head->m_flags & M_LASTFRAG)
3471                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3472                 else if (m_head->m_flags & M_FRAG)
3473                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3474         }
3475
3476         idx = *txidx;
3477         map = sc->bge_cdata.bge_tx_dmamap[idx];
3478
3479         maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - sc->bge_txrsvd;
3480         KASSERT(maxsegs >= sc->bge_txspare,
3481                 ("not enough segments %d", maxsegs));
3482
3483         if (maxsegs > BGE_NSEG_NEW)
3484                 maxsegs = BGE_NSEG_NEW;
3485
3486         /*
3487          * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
3488          * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
3489          * but when such padded frames employ the bge IP/TCP checksum
3490          * offload, the hardware checksum assist gives incorrect results
3491          * (possibly from incorporating its own padding into the UDP/TCP
3492          * checksum; who knows).  If we pad such runts with zeros, the
3493          * onboard checksum comes out correct.
3494          */
3495         if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
3496             m_head->m_pkthdr.len < BGE_MIN_FRAMELEN) {
3497                 error = m_devpad(m_head, BGE_MIN_FRAMELEN);
3498                 if (error)
3499                         goto back;
3500         }
3501
3502         if ((sc->bge_flags & BGE_FLAG_SHORTDMA) && m_head->m_next != NULL) {
3503                 m_new = bge_defrag_shortdma(m_head);
3504                 if (m_new == NULL) {
3505                         error = ENOBUFS;
3506                         goto back;
3507                 }
3508                 *m_head0 = m_head = m_new;
3509         }
3510         if ((m_head->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3511             sc->bge_force_defrag && (sc->bge_flags & BGE_FLAG_PCIE) &&
3512             m_head->m_next != NULL) {
3513                 /*
3514                  * Forcefully defragment mbuf chain to overcome hardware
3515                  * limitation which only support a single outstanding
3516                  * DMA read operation.  If it fails, keep moving on using
3517                  * the original mbuf chain.
3518                  */
3519                 m_new = m_defrag(m_head, MB_DONTWAIT);
3520                 if (m_new != NULL)
3521                         *m_head0 = m_head = m_new;
3522         }
3523
3524         error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map,
3525                         m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3526         if (error)
3527                 goto back;
3528         *segs_used += nsegs;
3529
3530         m_head = *m_head0;
3531         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3532
3533         for (i = 0; ; i++) {
3534                 d = &sc->bge_ldata.bge_tx_ring[idx];
3535
3536                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3537                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3538                 d->bge_len = segs[i].ds_len;
3539                 d->bge_flags = csum_flags;
3540                 d->bge_mss = mss;
3541
3542                 if (i == nsegs - 1)
3543                         break;
3544                 BGE_INC(idx, BGE_TX_RING_CNT);
3545         }
3546         last_d = d;
3547
3548         /* Set vlan tag to the first segment of the packet. */
3549         d = &sc->bge_ldata.bge_tx_ring[*txidx];
3550         if (m_head->m_flags & M_VLANTAG) {
3551                 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3552                 d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
3553         } else {
3554                 d->bge_vlan_tag = 0;
3555         }
3556
3557         /* Mark the last segment as end of packet... */
3558         last_d->bge_flags |= BGE_TXBDFLAG_END;
3559
3560         /*
3561          * Insure that the map for this transmission is placed at
3562          * the array index of the last descriptor in this chain.
3563          */
3564         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3565         sc->bge_cdata.bge_tx_dmamap[idx] = map;
3566         sc->bge_cdata.bge_tx_chain[idx] = m_head;
3567         sc->bge_txcnt += nsegs;
3568
3569         BGE_INC(idx, BGE_TX_RING_CNT);
3570         *txidx = idx;
3571 back:
3572         if (error) {
3573                 m_freem(*m_head0);
3574                 *m_head0 = NULL;
3575         }
3576         return error;
3577 }
3578
3579 static void
3580 bge_xmit(struct bge_softc *sc, uint32_t prodidx)
3581 {
3582         /* Transmit */
3583         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3584         /* 5700 b2 errata */
3585         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
3586                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3587 }
3588
3589 /*
3590  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3591  * to the mbuf data regions directly in the transmit descriptors.
3592  */
3593 static void
3594 bge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3595 {
3596         struct bge_softc *sc = ifp->if_softc;
3597         struct mbuf *m_head = NULL;
3598         uint32_t prodidx;
3599         int nsegs = 0;
3600
3601         ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
3602
3603         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
3604                 return;
3605
3606         prodidx = sc->bge_tx_prodidx;
3607
3608         while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3609                 m_head = ifq_dequeue(&ifp->if_snd);
3610                 if (m_head == NULL)
3611                         break;
3612
3613                 /*
3614                  * XXX
3615                  * The code inside the if() block is never reached since we
3616                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
3617                  * requests to checksum TCP/UDP in a fragmented packet.
3618                  * 
3619                  * XXX
3620                  * safety overkill.  If this is a fragmented packet chain
3621                  * with delayed TCP/UDP checksums, then only encapsulate
3622                  * it if we have enough descriptors to handle the entire
3623                  * chain at once.
3624                  * (paranoia -- may not actually be needed)
3625                  */
3626                 if ((m_head->m_flags & M_FIRSTFRAG) &&
3627                     (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
3628                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3629                             m_head->m_pkthdr.csum_data + sc->bge_txrsvd) {
3630                                 ifq_set_oactive(&ifp->if_snd);
3631                                 ifq_prepend(&ifp->if_snd, m_head);
3632                                 break;
3633                         }
3634                 }
3635
3636                 /*
3637                  * Sanity check: avoid coming within bge_txrsvd
3638                  * descriptors of the end of the ring.  Also make
3639                  * sure there are bge_txspare descriptors for
3640                  * jumbo buffers' defragmentation.
3641                  */
3642                 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3643                     (sc->bge_txrsvd + sc->bge_txspare)) {
3644                         ifq_set_oactive(&ifp->if_snd);
3645                         ifq_prepend(&ifp->if_snd, m_head);
3646                         break;
3647                 }
3648
3649                 /*
3650                  * Pack the data into the transmit ring. If we
3651                  * don't have room, set the OACTIVE flag and wait
3652                  * for the NIC to drain the ring.
3653                  */
3654                 if (bge_encap(sc, &m_head, &prodidx, &nsegs)) {
3655                         ifq_set_oactive(&ifp->if_snd);
3656                         IFNET_STAT_INC(ifp, oerrors, 1);
3657                         break;
3658                 }
3659
3660                 if (nsegs >= sc->bge_tx_wreg) {
3661                         bge_xmit(sc, prodidx);
3662                         nsegs = 0;
3663                 }
3664
3665                 ETHER_BPF_MTAP(ifp, m_head);
3666
3667                 /*
3668                  * Set a timeout in case the chip goes out to lunch.
3669                  */
3670                 ifp->if_timer = 5;
3671         }
3672
3673         if (nsegs > 0)
3674                 bge_xmit(sc, prodidx);
3675         sc->bge_tx_prodidx = prodidx;
3676 }
3677
3678 static void
3679 bge_init(void *xsc)
3680 {
3681         struct bge_softc *sc = xsc;
3682         struct ifnet *ifp = &sc->arpcom.ac_if;
3683         uint16_t *m;
3684         uint32_t mode;
3685
3686         ASSERT_SERIALIZED(ifp->if_serializer);
3687
3688         /* Cancel pending I/O and flush buffers. */
3689         bge_stop(sc);
3690
3691         bge_stop_fw(sc);
3692         bge_sig_pre_reset(sc, BGE_RESET_START);
3693         bge_reset(sc);
3694         bge_sig_legacy(sc, BGE_RESET_START);
3695         bge_sig_post_reset(sc, BGE_RESET_START);
3696
3697         bge_chipinit(sc);
3698
3699         /*
3700          * Init the various state machines, ring
3701          * control blocks and firmware.
3702          */
3703         if (bge_blockinit(sc)) {
3704                 if_printf(ifp, "initialization failure\n");
3705                 bge_stop(sc);
3706                 return;
3707         }
3708
3709         /* Specify MTU. */
3710         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3711             ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3712
3713         /* Load our MAC address. */
3714         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3715         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3716         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3717
3718         /* Enable or disable promiscuous mode as needed. */
3719         bge_setpromisc(sc);
3720
3721         /* Program multicast filter. */
3722         bge_setmulti(sc);
3723
3724         /* Init RX ring. */
3725         if (bge_init_rx_ring_std(sc)) {
3726                 if_printf(ifp, "RX ring initialization failed\n");
3727                 bge_stop(sc);
3728                 return;
3729         }
3730
3731         /*
3732          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3733          * memory to insure that the chip has in fact read the first
3734          * entry of the ring.
3735          */
3736         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3737                 uint32_t                v, i;
3738                 for (i = 0; i < 10; i++) {
3739                         DELAY(20);
3740                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3741                         if (v == (MCLBYTES - ETHER_ALIGN))
3742                                 break;
3743                 }
3744                 if (i == 10)
3745                         if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
3746         }
3747
3748         /* Init jumbo RX ring. */
3749         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3750                 if (bge_init_rx_ring_jumbo(sc)) {
3751                         if_printf(ifp, "Jumbo RX ring initialization failed\n");
3752                         bge_stop(sc);
3753                         return;
3754                 }
3755         }
3756
3757         /* Init our RX return ring index */
3758         sc->bge_rx_saved_considx = 0;
3759
3760         /* Init TX ring. */
3761         bge_init_tx_ring(sc);
3762
3763         /* Enable TX MAC state machine lockup fix. */
3764         mode = CSR_READ_4(sc, BGE_TX_MODE);
3765         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3766                 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3767         /* Turn on transmitter */
3768         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3769         DELAY(100);
3770
3771         /* Turn on receiver */
3772         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3773         DELAY(10);
3774
3775         /*
3776          * Set the number of good frames to receive after RX MBUF
3777          * Low Watermark has been reached.  After the RX MAC receives
3778          * this number of frames, it will drop subsequent incoming
3779          * frames until the MBUF High Watermark is reached.
3780          */
3781         CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3782
3783         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
3784                 if (bootverbose) {
3785                         if_printf(ifp, "MSI_MODE: %#x\n",
3786                             CSR_READ_4(sc, BGE_MSI_MODE));
3787                 }
3788
3789                 /*
3790                  * XXX
3791                  * Linux driver turns it on for all chips supporting MSI?!
3792                  */
3793                 if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
3794                         /*
3795                          * XXX
3796                          * According to 5722-PG101-R,
3797                          * BGE_PCIE_TRANSACT_ONESHOT_MSI applies only to
3798                          * BCM5906.
3799                          */
3800                         BGE_SETBIT(sc, BGE_PCIE_TRANSACT,
3801                             BGE_PCIE_TRANSACT_ONESHOT_MSI);
3802                 }
3803         }
3804
3805         /* Tell firmware we're alive. */
3806         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3807
3808         /* Enable host interrupts if polling(4) is not enabled. */
3809         PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3810 #ifdef IFPOLL_ENABLE
3811         if (ifp->if_flags & IFF_NPOLLING)
3812                 bge_disable_intr(sc);
3813         else
3814 #endif
3815         bge_enable_intr(sc);
3816
3817         ifp->if_flags |= IFF_RUNNING;
3818         ifq_clr_oactive(&ifp->if_snd);
3819
3820         bge_ifmedia_upd(ifp);
3821
3822         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3823 }
3824
3825 /*
3826  * Set media options.
3827  */
3828 static int
3829 bge_ifmedia_upd(struct ifnet *ifp)
3830 {
3831         struct bge_softc *sc = ifp->if_softc;
3832
3833         /* If this is a 1000baseX NIC, enable the TBI port. */
3834         if (sc->bge_flags & BGE_FLAG_TBI) {
3835                 struct ifmedia *ifm = &sc->bge_ifmedia;
3836
3837                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3838                         return(EINVAL);
3839
3840                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3841                 case IFM_AUTO:
3842                         /*
3843                          * The BCM5704 ASIC appears to have a special
3844                          * mechanism for programming the autoneg
3845                          * advertisement registers in TBI mode.
3846                          */
3847                         if (!bge_fake_autoneg &&
3848                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3849                                 uint32_t sgdig;
3850
3851                                 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3852                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3853                                 sgdig |= BGE_SGDIGCFG_AUTO |
3854                                          BGE_SGDIGCFG_PAUSE_CAP |
3855                                          BGE_SGDIGCFG_ASYM_PAUSE;
3856                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3857                                             sgdig | BGE_SGDIGCFG_SEND);
3858                                 DELAY(5);
3859                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3860                         }
3861                         break;
3862                 case IFM_1000_SX:
3863                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3864                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
3865                                     BGE_MACMODE_HALF_DUPLEX);
3866                         } else {
3867                                 BGE_SETBIT(sc, BGE_MAC_MODE,
3868                                     BGE_MACMODE_HALF_DUPLEX);
3869                         }
3870                         DELAY(40);
3871                         break;
3872                 default:
3873                         return(EINVAL);
3874                 }
3875         } else {
3876                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3877
3878                 sc->bge_link_evt++;
3879                 sc->bge_link = 0;
3880                 if (mii->mii_instance) {
3881                         struct mii_softc *miisc;
3882
3883                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3884                                 mii_phy_reset(miisc);
3885                 }
3886                 mii_mediachg(mii);
3887
3888                 /*
3889                  * Force an interrupt so that we will call bge_link_upd
3890                  * if needed and clear any pending link state attention.
3891                  * Without this we are not getting any further interrupts
3892                  * for link state changes and thus will not UP the link and
3893                  * not be able to send in bge_start.  The only way to get
3894                  * things working was to receive a packet and get an RX
3895                  * intr.
3896                  *
3897                  * bge_tick should help for fiber cards and we might not
3898                  * need to do this here if BGE_FLAG_TBI is set but as
3899                  * we poll for fiber anyway it should not harm.
3900                  */
3901                 if (BGE_IS_CRIPPLED(sc))
3902                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3903                 else
3904                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3905         }
3906         return(0);
3907 }
3908
3909 /*
3910  * Report current media status.
3911  */
3912 static void
3913 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3914 {
3915         struct bge_softc *sc = ifp->if_softc;
3916
3917         if ((ifp->if_flags & IFF_RUNNING) == 0)
3918                 return;
3919
3920         if (sc->bge_flags & BGE_FLAG_TBI) {
3921                 ifmr->ifm_status = IFM_AVALID;
3922                 ifmr->ifm_active = IFM_ETHER;
3923                 if (CSR_READ_4(sc, BGE_MAC_STS) &
3924                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
3925                         ifmr->ifm_status |= IFM_ACTIVE;
3926                 } else {
3927                         ifmr->ifm_active |= IFM_NONE;
3928                         return;
3929                 }
3930
3931                 ifmr->ifm_active |= IFM_1000_SX;
3932                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3933                         ifmr->ifm_active |= IFM_HDX;    
3934                 else
3935                         ifmr->ifm_active |= IFM_FDX;
3936         } else {
3937                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3938
3939                 mii_pollstat(mii);
3940                 ifmr->ifm_active = mii->mii_media_active;
3941                 ifmr->ifm_status = mii->mii_media_status;
3942         }
3943 }
3944
3945 static int
3946 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3947 {
3948         struct bge_softc *sc = ifp->if_softc;
3949         struct ifreq *ifr = (struct ifreq *)data;
3950         int mask, error = 0;
3951
3952         ASSERT_SERIALIZED(ifp->if_serializer);
3953
3954         switch (command) {
3955         case SIOCSIFMTU:
3956                 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3957                     (BGE_IS_JUMBO_CAPABLE(sc) &&
3958                      ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3959                         error = EINVAL;
3960                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3961                         ifp->if_mtu = ifr->ifr_mtu;
3962                         if (ifp->if_flags & IFF_RUNNING)
3963                                 bge_init(sc);
3964                 }
3965                 break;
3966         case SIOCSIFFLAGS:
3967                 if (ifp->if_flags & IFF_UP) {
3968                         if (ifp->if_flags & IFF_RUNNING) {
3969                                 mask = ifp->if_flags ^ sc->bge_if_flags;
3970
3971                                 /*
3972                                  * If only the state of the PROMISC flag
3973                                  * changed, then just use the 'set promisc
3974                                  * mode' command instead of reinitializing
3975                                  * the entire NIC. Doing a full re-init
3976                                  * means reloading the firmware and waiting
3977                                  * for it to start up, which may take a
3978                                  * second or two.  Similarly for ALLMULTI.
3979                                  */
3980                                 if (mask & IFF_PROMISC)
3981                                         bge_setpromisc(sc);
3982                                 if (mask & IFF_ALLMULTI)
3983                                         bge_setmulti(sc);
3984                         } else {
3985                                 bge_init(sc);
3986                         }
3987                 } else if (ifp->if_flags & IFF_RUNNING) {
3988                         bge_stop(sc);
3989                 }
3990                 sc->bge_if_flags = ifp->if_flags;
3991                 break;
3992         case SIOCADDMULTI:
3993         case SIOCDELMULTI:
3994                 if (ifp->if_flags & IFF_RUNNING)
3995                         bge_setmulti(sc);
3996                 break;
3997         case SIOCSIFMEDIA:
3998         case SIOCGIFMEDIA:
3999                 if (sc->bge_flags & BGE_FLAG_TBI) {
4000                         error = ifmedia_ioctl(ifp, ifr,
4001                             &sc->bge_ifmedia, command);
4002                 } else {
4003                         struct mii_data *mii;
4004
4005                         mii = device_get_softc(sc->bge_miibus);
4006                         error = ifmedia_ioctl(ifp, ifr,
4007                                               &mii->mii_media, command);
4008                 }
4009                 break;
4010         case SIOCSIFCAP:
4011                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
4012                 if (mask & IFCAP_HWCSUM) {
4013                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
4014                         if (ifp->if_capenable & IFCAP_TXCSUM)
4015                                 ifp->if_hwassist |= BGE_CSUM_FEATURES;
4016                         else
4017                                 ifp->if_hwassist &= ~BGE_CSUM_FEATURES;
4018                 }
4019                 if (mask & IFCAP_TSO) {
4020                         ifp->if_capenable ^= IFCAP_TSO;
4021                         if (ifp->if_capenable & IFCAP_TSO)
4022                                 ifp->if_hwassist |= CSUM_TSO;
4023                         else
4024                                 ifp->if_hwassist &= ~CSUM_TSO;
4025                 }
4026                 break;
4027         default:
4028                 error = ether_ioctl(ifp, command, data);
4029                 break;
4030         }
4031         return error;
4032 }
4033
4034 static void
4035 bge_watchdog(struct ifnet *ifp)
4036 {
4037         struct bge_softc *sc = ifp->if_softc;
4038
4039         if_printf(ifp, "watchdog timeout -- resetting\n");
4040
4041         bge_init(sc);
4042
4043         IFNET_STAT_INC(ifp, oerrors, 1);
4044
4045         if (!ifq_is_empty(&ifp->if_snd))
4046                 if_devstart(ifp);
4047 }
4048
4049 /*
4050  * Stop the adapter and free any mbufs allocated to the
4051  * RX and TX lists.
4052  */
4053 static void
4054 bge_stop(struct bge_softc *sc)
4055 {
4056         struct ifnet *ifp = &sc->arpcom.ac_if;
4057
4058         ASSERT_SERIALIZED(ifp->if_serializer);
4059
4060         callout_stop(&sc->bge_stat_timer);
4061
4062         /* Disable host interrupts. */
4063         bge_disable_intr(sc);
4064
4065         /*
4066          * Tell firmware we're shutting down.
4067          */
4068         bge_stop_fw(sc);
4069         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
4070
4071         /*
4072          * Disable all of the receiver blocks
4073          */
4074         bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4075         bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4076         bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4077         if (BGE_IS_5700_FAMILY(sc))
4078                 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4079         bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4080         bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4081         bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4082
4083         /*
4084          * Disable all of the transmit blocks
4085          */
4086         bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4087         bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4088         bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4089         bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4090         bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4091         if (BGE_IS_5700_FAMILY(sc))
4092                 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4093         bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4094
4095         /*
4096          * Shut down all of the memory managers and related
4097          * state machines.
4098          */
4099         bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4100         bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4101         if (BGE_IS_5700_FAMILY(sc))
4102                 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4103         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4104         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4105         if (!BGE_IS_5705_PLUS(sc)) {
4106                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4107                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4108         }
4109
4110         bge_reset(sc);
4111         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
4112         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
4113
4114         /*
4115          * Keep the ASF firmware running if up.
4116          */
4117         if (sc->bge_asf_mode & ASF_STACKUP)
4118                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4119         else
4120                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4121
4122         /* Free the RX lists. */
4123         bge_free_rx_ring_std(sc);
4124
4125         /* Free jumbo RX list. */
4126         if (BGE_IS_JUMBO_CAPABLE(sc))
4127                 bge_free_rx_ring_jumbo(sc);
4128
4129         /* Free TX buffers. */
4130         bge_free_tx_ring(sc);
4131
4132         sc->bge_status_tag = 0;
4133         sc->bge_link = 0;
4134         sc->bge_coal_chg = 0;
4135
4136         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4137
4138         ifp->if_flags &= ~IFF_RUNNING;
4139         ifq_clr_oactive(&ifp->if_snd);
4140         ifp->if_timer = 0;
4141 }
4142
4143 /*
4144  * Stop all chip I/O so that the kernel's probe routines don't
4145  * get confused by errant DMAs when rebooting.
4146  */
4147 static void
4148 bge_shutdown(device_t dev)
4149 {
4150         struct bge_softc *sc = device_get_softc(dev);
4151         struct ifnet *ifp = &sc->arpcom.ac_if;
4152
4153         lwkt_serialize_enter(ifp->if_serializer);
4154         bge_stop(sc);
4155         lwkt_serialize_exit(ifp->if_serializer);
4156 }
4157
4158 static int
4159 bge_suspend(device_t dev)
4160 {
4161         struct bge_softc *sc = device_get_softc(dev);
4162         struct ifnet *ifp = &sc->arpcom.ac_if;
4163
4164         lwkt_serialize_enter(ifp->if_serializer);
4165         bge_stop(sc);
4166         lwkt_serialize_exit(ifp->if_serializer);
4167
4168         return 0;
4169 }
4170
4171 static int
4172 bge_resume(device_t dev)
4173 {
4174         struct bge_softc *sc = device_get_softc(dev);
4175         struct ifnet *ifp = &sc->arpcom.ac_if;
4176
4177         lwkt_serialize_enter(ifp->if_serializer);
4178
4179         if (ifp->if_flags & IFF_UP) {
4180                 bge_init(sc);
4181
4182                 if (!ifq_is_empty(&ifp->if_snd))
4183                         if_devstart(ifp);
4184         }
4185
4186         lwkt_serialize_exit(ifp->if_serializer);
4187
4188         return 0;
4189 }
4190
4191 static void
4192 bge_setpromisc(struct bge_softc *sc)
4193 {
4194         struct ifnet *ifp = &sc->arpcom.ac_if;
4195
4196         if (ifp->if_flags & IFF_PROMISC)
4197                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4198         else
4199                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4200 }
4201
4202 static void
4203 bge_dma_free(struct bge_softc *sc)
4204 {
4205         int i;
4206
4207         /* Destroy RX mbuf DMA stuffs. */
4208         if (sc->bge_cdata.bge_rx_mtag != NULL) {
4209                 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4210                         bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4211                             sc->bge_cdata.bge_rx_std_dmamap[i]);
4212                 }
4213                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4214                                    sc->bge_cdata.bge_rx_tmpmap);
4215                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4216         }
4217
4218         /* Destroy TX mbuf DMA stuffs. */
4219         if (sc->bge_cdata.bge_tx_mtag != NULL) {
4220                 for (i = 0; i < BGE_TX_RING_CNT; i++) {
4221                         bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4222                             sc->bge_cdata.bge_tx_dmamap[i]);
4223                 }
4224                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4225         }
4226
4227         /* Destroy standard RX ring */
4228         bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
4229                            sc->bge_cdata.bge_rx_std_ring_map,
4230                            sc->bge_ldata.bge_rx_std_ring);
4231
4232         if (BGE_IS_JUMBO_CAPABLE(sc))
4233                 bge_free_jumbo_mem(sc);
4234
4235         /* Destroy RX return ring */
4236         bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
4237                            sc->bge_cdata.bge_rx_return_ring_map,
4238                            sc->bge_ldata.bge_rx_return_ring);
4239
4240         /* Destroy TX ring */
4241         bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
4242                            sc->bge_cdata.bge_tx_ring_map,
4243                            sc->bge_ldata.bge_tx_ring);
4244
4245         /* Destroy status block */
4246         bge_dma_block_free(sc->bge_cdata.bge_status_tag,
4247                            sc->bge_cdata.bge_status_map,
4248                            sc->bge_ldata.bge_status_block);
4249
4250         /* Destroy statistics block */
4251         bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
4252                            sc->bge_cdata.bge_stats_map,
4253                            sc->bge_ldata.bge_stats);
4254
4255         /* Destroy the parent tag */
4256         if (sc->bge_cdata.bge_parent_tag != NULL)
4257                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
4258 }
4259
4260 static int
4261 bge_dma_alloc(struct bge_softc *sc)
4262 {
4263         struct ifnet *ifp = &sc->arpcom.ac_if;
4264         int i, error;
4265         bus_addr_t lowaddr;
4266         bus_size_t txmaxsz;
4267
4268         lowaddr = BUS_SPACE_MAXADDR;
4269         if (sc->bge_flags & BGE_FLAG_MAXADDR_40BIT)
4270                 lowaddr = BGE_DMA_MAXADDR_40BIT;
4271
4272         /*
4273          * Allocate the parent bus DMA tag appropriate for PCI.
4274          *
4275          * All of the NetExtreme/NetLink controllers have 4GB boundary
4276          * DMA bug.
4277          * Whenever an address crosses a multiple of the 4GB boundary
4278          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
4279          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
4280          * state machine will lockup and cause the device to hang.
4281          */
4282         error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
4283                                    lowaddr, BUS_SPACE_MAXADDR,
4284                                    NULL, NULL,
4285                                    BUS_SPACE_MAXSIZE_32BIT, 0,
4286                                    BUS_SPACE_MAXSIZE_32BIT,
4287                                    0, &sc->bge_cdata.bge_parent_tag);
4288         if (error) {
4289                 if_printf(ifp, "could not allocate parent dma tag\n");
4290                 return error;
4291         }
4292
4293         /*
4294          * Create DMA tag and maps for RX mbufs.
4295          */
4296         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4297                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4298                                    NULL, NULL, MCLBYTES, 1, MCLBYTES,
4299                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
4300                                    &sc->bge_cdata.bge_rx_mtag);
4301         if (error) {
4302                 if_printf(ifp, "could not allocate RX mbuf dma tag\n");
4303                 return error;
4304         }
4305
4306         error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4307                                   BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_tmpmap);
4308         if (error) {
4309                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4310                 sc->bge_cdata.bge_rx_mtag = NULL;
4311                 return error;
4312         }
4313
4314         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4315                 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4316                                           BUS_DMA_WAITOK,
4317                                           &sc->bge_cdata.bge_rx_std_dmamap[i]);
4318                 if (error) {
4319                         int j;
4320
4321                         for (j = 0; j < i; ++j) {
4322                                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4323                                         sc->bge_cdata.bge_rx_std_dmamap[j]);
4324                         }
4325                         bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4326                         sc->bge_cdata.bge_rx_mtag = NULL;
4327
4328                         if_printf(ifp, "could not create DMA map for RX\n");
4329                         return error;
4330                 }
4331         }
4332
4333         /*
4334          * Create DMA tag and maps for TX mbufs.
4335          */
4336         if (sc->bge_flags & BGE_FLAG_TSO)
4337                 txmaxsz = IP_MAXPACKET + sizeof(struct ether_vlan_header);
4338         else
4339                 txmaxsz = BGE_JUMBO_FRAMELEN;
4340         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4341                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4342                                    NULL, NULL,
4343                                    txmaxsz, BGE_NSEG_NEW, PAGE_SIZE,
4344                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
4345                                    BUS_DMA_ONEBPAGE,
4346                                    &sc->bge_cdata.bge_tx_mtag);
4347         if (error) {
4348                 if_printf(ifp, "could not allocate TX mbuf dma tag\n");
4349                 return error;
4350         }
4351
4352         for (i = 0; i < BGE_TX_RING_CNT; i++) {
4353                 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag,
4354                                           BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
4355                                           &sc->bge_cdata.bge_tx_dmamap[i]);
4356                 if (error) {
4357                         int j;
4358
4359                         for (j = 0; j < i; ++j) {
4360                                 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4361                                         sc->bge_cdata.bge_tx_dmamap[j]);
4362                         }
4363                         bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4364                         sc->bge_cdata.bge_tx_mtag = NULL;
4365
4366                         if_printf(ifp, "could not create DMA map for TX\n");
4367                         return error;
4368                 }
4369         }
4370
4371         /*
4372          * Create DMA stuffs for standard RX ring.
4373          */
4374         error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
4375                                     &sc->bge_cdata.bge_rx_std_ring_tag,
4376                                     &sc->bge_cdata.bge_rx_std_ring_map,
4377                                     (void *)&sc->bge_ldata.bge_rx_std_ring,
4378                                     &sc->bge_ldata.bge_rx_std_ring_paddr);
4379         if (error) {
4380                 if_printf(ifp, "could not create std RX ring\n");
4381                 return error;
4382         }
4383
4384         /*
4385          * Create jumbo buffer pool.
4386          */
4387         if (BGE_IS_JUMBO_CAPABLE(sc)) {
4388                 error = bge_alloc_jumbo_mem(sc);
4389                 if (error) {
4390                         if_printf(ifp, "could not create jumbo buffer pool\n");
4391                         return error;
4392                 }
4393         }
4394
4395         /*
4396          * Create DMA stuffs for RX return ring.
4397          */
4398         error = bge_dma_block_alloc(sc,
4399             BGE_RX_RTN_RING_SZ(sc->bge_return_ring_cnt),
4400             &sc->bge_cdata.bge_rx_return_ring_tag,
4401             &sc->bge_cdata.bge_rx_return_ring_map,
4402             (void *)&sc->bge_ldata.bge_rx_return_ring,
4403             &sc->bge_ldata.bge_rx_return_ring_paddr);
4404         if (error) {
4405                 if_printf(ifp, "could not create RX ret ring\n");
4406                 return error;
4407         }
4408
4409         /*
4410          * Create DMA stuffs for TX ring.
4411          */
4412         error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
4413                                     &sc->bge_cdata.bge_tx_ring_tag,
4414                                     &sc->bge_cdata.bge_tx_ring_map,
4415                                     (void *)&sc->bge_ldata.bge_tx_ring,
4416                                     &sc->bge_ldata.bge_tx_ring_paddr);
4417         if (error) {
4418                 if_printf(ifp, "could not create TX ring\n");
4419                 return error;
4420         }
4421
4422         /*
4423          * Create DMA stuffs for status block.
4424          */
4425         error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
4426                                     &sc->bge_cdata.bge_status_tag,
4427                                     &sc->bge_cdata.bge_status_map,
4428                                     (void *)&sc->bge_ldata.bge_status_block,
4429                                     &sc->bge_ldata.bge_status_block_paddr);
4430         if (error) {
4431                 if_printf(ifp, "could not create status block\n");
4432                 return error;
4433         }
4434
4435         /*
4436          * Create DMA stuffs for statistics block.
4437          */
4438         error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
4439                                     &sc->bge_cdata.bge_stats_tag,
4440                                     &sc->bge_cdata.bge_stats_map,
4441                                     (void *)&sc->bge_ldata.bge_stats,
4442                                     &sc->bge_ldata.bge_stats_paddr);
4443         if (error) {
4444                 if_printf(ifp, "could not create stats block\n");
4445                 return error;
4446         }
4447         return 0;
4448 }
4449
4450 static int
4451 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
4452                     bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
4453 {
4454         bus_dmamem_t dmem;
4455         int error;
4456
4457         error = bus_dmamem_coherent(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
4458                                     BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4459                                     size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
4460         if (error)
4461                 return error;
4462
4463         *tag = dmem.dmem_tag;
4464         *map = dmem.dmem_map;
4465         *addr = dmem.dmem_addr;
4466         *paddr = dmem.dmem_busaddr;
4467
4468         return 0;
4469 }
4470
4471 static void
4472 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
4473 {
4474         if (tag != NULL) {
4475                 bus_dmamap_unload(tag, map);
4476                 bus_dmamem_free(tag, addr, map);
4477                 bus_dma_tag_destroy(tag);
4478         }
4479 }
4480
4481 /*
4482  * Grrr. The link status word in the status block does
4483  * not work correctly on the BCM5700 rev AX and BX chips,
4484  * according to all available information. Hence, we have
4485  * to enable MII interrupts in order to properly obtain
4486  * async link changes. Unfortunately, this also means that
4487  * we have to read the MAC status register to detect link
4488  * changes, thereby adding an additional register access to
4489  * the interrupt handler.
4490  *
4491  * XXX: perhaps link state detection procedure used for
4492  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4493  */
4494 static void
4495 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
4496 {
4497         struct ifnet *ifp = &sc->arpcom.ac_if;
4498         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4499
4500         mii_pollstat(mii);
4501
4502         if (!sc->bge_link &&
4503             (mii->mii_media_status & IFM_ACTIVE) &&
4504             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4505                 sc->bge_link++;
4506                 if (bootverbose)
4507                         if_printf(ifp, "link UP\n");
4508         } else if (sc->bge_link &&
4509             (!(mii->mii_media_status & IFM_ACTIVE) ||
4510             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4511                 sc->bge_link = 0;
4512                 if (bootverbose)
4513                         if_printf(ifp, "link DOWN\n");
4514         }
4515
4516         /* Clear the interrupt. */
4517         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
4518         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4519         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
4520 }
4521
4522 static void
4523 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
4524 {
4525         struct ifnet *ifp = &sc->arpcom.ac_if;
4526
4527 #define PCS_ENCODE_ERR  (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
4528
4529         /*
4530          * Sometimes PCS encoding errors are detected in
4531          * TBI mode (on fiber NICs), and for some reason
4532          * the chip will signal them as link changes.
4533          * If we get a link change event, but the 'PCS
4534          * encoding error' bit in the MAC status register
4535          * is set, don't bother doing a link check.
4536          * This avoids spurious "gigabit link up" messages
4537          * that sometimes appear on fiber NICs during
4538          * periods of heavy traffic.
4539          */
4540         if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4541                 if (!sc->bge_link) {
4542                         sc->bge_link++;
4543                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4544                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
4545                                     BGE_MACMODE_TBI_SEND_CFGS);
4546                                 DELAY(40);
4547                         }
4548                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4549
4550                         if (bootverbose)
4551                                 if_printf(ifp, "link UP\n");
4552
4553                         ifp->if_link_state = LINK_STATE_UP;
4554                         if_link_state_change(ifp);
4555                 }
4556         } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
4557                 if (sc->bge_link) {
4558                         sc->bge_link = 0;
4559
4560                         if (bootverbose)
4561                                 if_printf(ifp, "link DOWN\n");
4562
4563                         ifp->if_link_state = LINK_STATE_DOWN;
4564                         if_link_state_change(ifp);
4565                 }
4566         }
4567
4568 #undef PCS_ENCODE_ERR
4569
4570         /* Clear the attention. */
4571         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4572             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4573             BGE_MACSTAT_LINK_CHANGED);
4574 }
4575
4576 static void
4577 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
4578 {
4579         struct ifnet *ifp = &sc->arpcom.ac_if;
4580         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4581
4582         mii_pollstat(mii);
4583         bge_miibus_statchg(sc->bge_dev);
4584
4585         if (bootverbose) {
4586                 if (sc->bge_link)
4587                         if_printf(ifp, "link UP\n");
4588                 else
4589                         if_printf(ifp, "link DOWN\n");
4590         }
4591
4592         /* Clear the attention. */
4593         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4594             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4595             BGE_MACSTAT_LINK_CHANGED);
4596 }
4597
4598 static void
4599 bge_autopoll_link_upd(struct bge_softc *sc, uint32_t status __unused)
4600 {
4601         struct ifnet *ifp = &sc->arpcom.ac_if;
4602         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4603
4604         mii_pollstat(mii);
4605
4606         if (!sc->bge_link &&
4607             (mii->mii_media_status & IFM_ACTIVE) &&
4608             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4609                 sc->bge_link++;
4610                 if (bootverbose)
4611                         if_printf(ifp, "link UP\n");
4612         } else if (sc->bge_link &&
4613             (!(mii->mii_media_status & IFM_ACTIVE) ||
4614             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4615                 sc->bge_link = 0;
4616                 if (bootverbose)
4617                         if_printf(ifp, "link DOWN\n");
4618         }
4619
4620         /* Clear the attention. */
4621         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4622             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4623             BGE_MACSTAT_LINK_CHANGED);
4624 }
4625
4626 static int
4627 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
4628 {
4629         struct bge_softc *sc = arg1;
4630
4631         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4632             &sc->bge_rx_coal_ticks,
4633             BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4634             BGE_RX_COAL_TICKS_CHG);
4635 }
4636
4637 static int
4638 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
4639 {
4640         struct bge_softc *sc = arg1;
4641
4642         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4643             &sc->bge_tx_coal_ticks,
4644             BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4645             BGE_TX_COAL_TICKS_CHG);
4646 }
4647
4648 static int
4649 bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
4650 {
4651         struct bge_softc *sc = arg1;
4652
4653         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4654             &sc->bge_rx_coal_bds,
4655             BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4656             BGE_RX_COAL_BDS_CHG);
4657 }
4658
4659 static int
4660 bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
4661 {
4662         struct bge_softc *sc = arg1;
4663
4664         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4665             &sc->bge_tx_coal_bds,
4666             BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4667             BGE_TX_COAL_BDS_CHG);
4668 }
4669
4670 static int
4671 bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4672 {
4673         struct bge_softc *sc = arg1;
4674
4675         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4676             &sc->bge_rx_coal_ticks_int,
4677             BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4678             BGE_RX_COAL_TICKS_INT_CHG);
4679 }
4680
4681 static int
4682 bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4683 {
4684         struct bge_softc *sc = arg1;
4685
4686         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4687             &sc->bge_tx_coal_ticks_int,
4688             BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4689             BGE_TX_COAL_TICKS_INT_CHG);
4690 }
4691
4692 static int
4693 bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4694 {
4695         struct bge_softc *sc = arg1;
4696
4697         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4698             &sc->bge_rx_coal_bds_int,
4699             BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4700             BGE_RX_COAL_BDS_INT_CHG);
4701 }
4702
4703 static int
4704 bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4705 {
4706         struct bge_softc *sc = arg1;
4707
4708         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4709             &sc->bge_tx_coal_bds_int,
4710             BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4711             BGE_TX_COAL_BDS_INT_CHG);
4712 }
4713
4714 static int
4715 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
4716     int coal_min, int coal_max, uint32_t coal_chg_mask)
4717 {
4718         struct bge_softc *sc = arg1;
4719         struct ifnet *ifp = &sc->arpcom.ac_if;
4720         int error = 0, v;
4721
4722         lwkt_serialize_enter(ifp->if_serializer);
4723
4724         v = *coal;
4725         error = sysctl_handle_int(oidp, &v, 0, req);
4726         if (!error && req->newptr != NULL) {
4727                 if (v < coal_min || v > coal_max) {
4728                         error = EINVAL;
4729                 } else {
4730                         *coal = v;
4731                         sc->bge_coal_chg |= coal_chg_mask;
4732                 }
4733         }
4734
4735         lwkt_serialize_exit(ifp->if_serializer);
4736         return error;
4737 }
4738
4739 static void
4740 bge_coal_change(struct bge_softc *sc)
4741 {
4742         struct ifnet *ifp = &sc->arpcom.ac_if;
4743
4744         ASSERT_SERIALIZED(ifp->if_serializer);
4745
4746         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
4747                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
4748                             sc->bge_rx_coal_ticks);
4749                 DELAY(10);
4750                 CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4751
4752                 if (bootverbose) {
4753                         if_printf(ifp, "rx_coal_ticks -> %u\n",
4754                                   sc->bge_rx_coal_ticks);
4755                 }
4756         }
4757
4758         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
4759                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
4760                             sc->bge_tx_coal_ticks);
4761                 DELAY(10);
4762                 CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
4763
4764                 if (bootverbose) {
4765                         if_printf(ifp, "tx_coal_ticks -> %u\n",
4766                                   sc->bge_tx_coal_ticks);
4767                 }
4768         }
4769
4770         if (sc->bge_coal_chg & BGE_RX_COAL_BDS_CHG) {
4771                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
4772                             sc->bge_rx_coal_bds);
4773                 DELAY(10);
4774                 CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4775
4776                 if (bootverbose) {
4777                         if_printf(ifp, "rx_coal_bds -> %u\n",
4778                                   sc->bge_rx_coal_bds);
4779                 }
4780         }
4781
4782         if (sc->bge_coal_chg & BGE_TX_COAL_BDS_CHG) {
4783                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
4784                             sc->bge_tx_coal_bds);
4785                 DELAY(10);
4786                 CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
4787
4788                 if (bootverbose) {
4789                         if_printf(ifp, "tx_max_coal_bds -> %u\n",
4790                                   sc->bge_tx_coal_bds);
4791                 }
4792         }
4793
4794         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_INT_CHG) {
4795                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
4796                     sc->bge_rx_coal_ticks_int);
4797                 DELAY(10);
4798                 CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS_INT);
4799
4800                 if (bootverbose) {
4801                         if_printf(ifp, "rx_coal_ticks_int -> %u\n",
4802                             sc->bge_rx_coal_ticks_int);
4803                 }
4804         }
4805
4806         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_INT_CHG) {
4807                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
4808                     sc->bge_tx_coal_ticks_int);
4809                 DELAY(10);
4810                 CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS_INT);
4811
4812                 if (bootverbose) {
4813                         if_printf(ifp, "tx_coal_ticks_int -> %u\n",
4814                             sc->bge_tx_coal_ticks_int);
4815                 }
4816         }
4817
4818         if (sc->bge_coal_chg & BGE_RX_COAL_BDS_INT_CHG) {
4819                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
4820                     sc->bge_rx_coal_bds_int);
4821                 DELAY(10);
4822                 CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT);
4823
4824                 if (bootverbose) {
4825                         if_printf(ifp, "rx_coal_bds_int -> %u\n",
4826                             sc->bge_rx_coal_bds_int);
4827                 }
4828         }
4829
4830         if (sc->bge_coal_chg & BGE_TX_COAL_BDS_INT_CHG) {
4831                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4832                     sc->bge_tx_coal_bds_int);
4833                 DELAY(10);
4834                 CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT);
4835
4836                 if (bootverbose) {
4837                         if_printf(ifp, "tx_coal_bds_int -> %u\n",
4838                             sc->bge_tx_coal_bds_int);
4839                 }
4840         }
4841
4842         sc->bge_coal_chg = 0;
4843 }
4844
4845 static void
4846 bge_enable_intr(struct bge_softc *sc)
4847 {
4848         struct ifnet *ifp = &sc->arpcom.ac_if;
4849
4850         lwkt_serialize_handler_enable(ifp->if_serializer);
4851
4852         /*
4853          * Enable interrupt.
4854          */
4855         bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4856         if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4857                 /* XXX Linux driver */
4858                 bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4859         }
4860
4861         /*
4862          * Unmask the interrupt when we stop polling.
4863          */
4864         PCI_CLRBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4865             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4866
4867         /*
4868          * Trigger another interrupt, since above writing
4869          * to interrupt mailbox0 may acknowledge pending
4870          * interrupt.
4871          */
4872         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4873 }
4874
4875 static void
4876 bge_disable_intr(struct bge_softc *sc)
4877 {
4878         struct ifnet *ifp = &sc->arpcom.ac_if;
4879
4880         /*
4881          * Mask the interrupt when we start polling.
4882          */
4883         PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4884             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4885
4886         /*
4887          * Acknowledge possible asserted interrupt.
4888          */
4889         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4890
4891         sc->bge_npoll.ifpc_stcount = 0;
4892
4893         lwkt_serialize_handler_disable(ifp->if_serializer);
4894 }
4895
4896 static int
4897 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4898 {
4899         uint32_t mac_addr;
4900         int ret = 1;
4901
4902         mac_addr = bge_readmem_ind(sc, 0x0c14);
4903         if ((mac_addr >> 16) == 0x484b) {
4904                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4905                 ether_addr[1] = (uint8_t)mac_addr;
4906                 mac_addr = bge_readmem_ind(sc, 0x0c18);
4907                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4908                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4909                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4910                 ether_addr[5] = (uint8_t)mac_addr;
4911                 ret = 0;
4912         }
4913         return ret;
4914 }
4915
4916 static int
4917 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4918 {
4919         int mac_offset = BGE_EE_MAC_OFFSET;
4920
4921         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4922                 mac_offset = BGE_EE_MAC_OFFSET_5906;
4923
4924         return bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
4925 }
4926
4927 static int
4928 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4929 {
4930         if (sc->bge_flags & BGE_FLAG_NO_EEPROM)
4931                 return 1;
4932
4933         return bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4934                                ETHER_ADDR_LEN);
4935 }
4936
4937 static int
4938 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4939 {
4940         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4941                 /* NOTE: Order is critical */
4942                 bge_get_eaddr_mem,
4943                 bge_get_eaddr_nvram,
4944                 bge_get_eaddr_eeprom,
4945                 NULL
4946         };
4947         const bge_eaddr_fcn_t *func;
4948
4949         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4950                 if ((*func)(sc, eaddr) == 0)
4951                         break;
4952         }
4953         return (*func == NULL ? ENXIO : 0);
4954 }
4955
4956 /*
4957  * NOTE: 'm' is not freed upon failure
4958  */
4959 struct mbuf *
4960 bge_defrag_shortdma(struct mbuf *m)
4961 {
4962         struct mbuf *n;
4963         int found;
4964
4965         /*
4966          * If device receive two back-to-back send BDs with less than
4967          * or equal to 8 total bytes then the device may hang.  The two
4968          * back-to-back send BDs must in the same frame for this failure
4969          * to occur.  Scan mbuf chains and see whether two back-to-back
4970          * send BDs are there.  If this is the case, allocate new mbuf
4971          * and copy the frame to workaround the silicon bug.
4972          */
4973         for (n = m, found = 0; n != NULL; n = n->m_next) {
4974                 if (n->m_len < 8) {
4975                         found++;
4976                         if (found > 1)
4977                                 break;
4978                         continue;
4979                 }
4980                 found = 0;
4981         }
4982
4983         if (found > 1)
4984                 n = m_defrag(m, MB_DONTWAIT);
4985         else
4986                 n = m;
4987         return n;
4988 }
4989
4990 static void
4991 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
4992 {
4993         int i;
4994
4995         BGE_CLRBIT(sc, reg, bit);
4996         for (i = 0; i < BGE_TIMEOUT; i++) {
4997                 if ((CSR_READ_4(sc, reg) & bit) == 0)
4998                         return;
4999                 DELAY(100);
5000         }
5001 }
5002
5003 static void
5004 bge_link_poll(struct bge_softc *sc)
5005 {
5006         uint32_t status;
5007
5008         status = CSR_READ_4(sc, BGE_MAC_STS);
5009         if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
5010                 sc->bge_link_evt = 0;
5011                 sc->bge_link_upd(sc, status);
5012         }
5013 }
5014
5015 static void
5016 bge_enable_msi(struct bge_softc *sc)
5017 {
5018         uint32_t msi_mode;
5019
5020         msi_mode = CSR_READ_4(sc, BGE_MSI_MODE);
5021         msi_mode |= BGE_MSIMODE_ENABLE;
5022         if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
5023                 /*
5024                  * According to all of the datasheets that are publicly
5025                  * available, bit 5 of the MSI_MODE is defined to be
5026                  * "MSI FIFO Underrun Attn" for BCM5755+ and BCM5906, on
5027                  * which "oneshot MSI" is enabled.  However, it is always
5028                  * safe to clear it here.
5029                  */
5030                 msi_mode &= ~BGE_MSIMODE_ONESHOT_DISABLE;
5031         }
5032         CSR_WRITE_4(sc, BGE_MSI_MODE, msi_mode);
5033 }
5034
5035 static int
5036 bge_setup_tso(struct bge_softc *sc, struct mbuf **mp,
5037     uint16_t *mss0, uint16_t *flags0)
5038 {
5039         struct mbuf *m;
5040         struct ip *ip;
5041         struct tcphdr *th;
5042         int thoff, iphlen, hoff, hlen;
5043         uint16_t flags, mss;
5044
5045         m = *mp;
5046         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
5047
5048         hoff = m->m_pkthdr.csum_lhlen;
5049         iphlen = m->m_pkthdr.csum_iphlen;
5050         thoff = m->m_pkthdr.csum_thlen;
5051
5052         KASSERT(hoff > 0, ("invalid ether header len"));
5053         KASSERT(iphlen > 0, ("invalid ip header len"));
5054         KASSERT(thoff > 0, ("invalid tcp header len"));
5055
5056         if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
5057                 m = m_pullup(m, hoff + iphlen + thoff);
5058                 if (m == NULL) {
5059                         *mp = NULL;
5060                         return ENOBUFS;
5061                 }
5062                 *mp = m;
5063         }
5064         ip = mtodoff(m, struct ip *, hoff);
5065         th = mtodoff(m, struct tcphdr *, hoff + iphlen);
5066
5067         mss = m->m_pkthdr.tso_segsz;
5068         flags = BGE_TXBDFLAG_CPU_PRE_DMA | BGE_TXBDFLAG_CPU_POST_DMA;
5069
5070         ip->ip_len = htons(mss + iphlen + thoff);
5071         th->th_sum = 0;
5072
5073         hlen = (iphlen + thoff) >> 2;
5074         mss |= (hlen << 11);
5075
5076         *mss0 = mss;
5077         *flags0 = flags;
5078
5079         return 0;
5080 }
5081
5082 static void
5083 bge_stop_fw(struct bge_softc *sc)
5084 {
5085         int i;
5086
5087         if (sc->bge_asf_mode) {
5088                 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
5089                 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
5090                     CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
5091
5092                 for (i = 0; i < 100; i++ ) {
5093                         if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
5094                             BGE_RX_CPU_DRV_EVENT))
5095                                 break;
5096                         DELAY(10);
5097                 }
5098         }
5099 }
5100
5101 static void
5102 bge_sig_pre_reset(struct bge_softc *sc, int type)
5103 {
5104         /*
5105          * Some chips don't like this so only do this if ASF is enabled
5106          */
5107         if (sc->bge_asf_mode)
5108                 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
5109
5110         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
5111                 switch (type) {
5112                 case BGE_RESET_START:
5113                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5114                             BGE_FW_DRV_STATE_START);
5115                         break;
5116                 case BGE_RESET_SHUTDOWN:
5117                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5118                             BGE_FW_DRV_STATE_UNLOAD);
5119                         break;
5120                 case BGE_RESET_SUSPEND:
5121                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5122                             BGE_FW_DRV_STATE_SUSPEND);
5123                         break;
5124                 }
5125         }
5126
5127 #ifdef notyet
5128         if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
5129                 bge_ape_driver_state_change(sc, type);
5130 #endif
5131 }
5132
5133 static void
5134 bge_sig_legacy(struct bge_softc *sc, int type)
5135 {
5136         if (sc->bge_asf_mode) {
5137                 switch (type) {
5138                 case BGE_RESET_START:
5139                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5140                             BGE_FW_DRV_STATE_START);
5141                         break;
5142                 case BGE_RESET_SHUTDOWN:
5143                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5144                             BGE_FW_DRV_STATE_UNLOAD);
5145                         break;
5146                 }
5147         }
5148 }
5149
5150 static void
5151 bge_sig_post_reset(struct bge_softc *sc, int type)
5152 {
5153         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
5154                 switch (type) {
5155                 case BGE_RESET_START:
5156                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5157                             BGE_FW_DRV_STATE_START_DONE);
5158                         /* START DONE */
5159                         break;
5160                 case BGE_RESET_SHUTDOWN:
5161                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5162                             BGE_FW_DRV_STATE_UNLOAD_DONE);
5163                         break;
5164                 }
5165         }
5166 #ifdef notyet
5167         if (type == BGE_RESET_SHUTDOWN)
5168                 bge_ape_driver_state_change(sc, type);
5169 #endif
5170 }
5171
5172 static void
5173 bge_asf_driver_up(struct bge_softc *sc)
5174 {
5175         if (sc->bge_asf_mode & ASF_STACKUP) {
5176                 /* Send ASF heartbeat aprox. every 2s */
5177                 if (sc->bge_asf_count)
5178                         sc->bge_asf_count --;
5179                 else {
5180                         sc->bge_asf_count = 2;
5181                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
5182                             BGE_FW_CMD_DRV_ALIVE);
5183                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
5184                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
5185                             BGE_FW_HB_TIMEOUT_SEC);
5186                         CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
5187                             CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
5188                             BGE_RX_CPU_DRV_EVENT);
5189                 }
5190         }
5191 }