Merge branches 'hammer2' and 'master' of ssh://crater.dragonflybsd.org/repository...
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  */
35
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  * 
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  * 
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72
73 #include "opt_polling.h"
74
75 #include <sys/param.h>
76 #include <sys/bus.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/ktr.h>
80 #include <sys/interrupt.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/queue.h>
84 #include <sys/rman.h>
85 #include <sys/serialize.h>
86 #include <sys/socket.h>
87 #include <sys/sockio.h>
88 #include <sys/sysctl.h>
89
90 #include <netinet/ip.h>
91 #include <netinet/tcp.h>
92
93 #include <net/bpf.h>
94 #include <net/ethernet.h>
95 #include <net/if.h>
96 #include <net/if_arp.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_types.h>
100 #include <net/ifq_var.h>
101 #include <net/vlan/if_vlan_var.h>
102 #include <net/vlan/if_vlan_ether.h>
103
104 #include <dev/netif/mii_layer/mii.h>
105 #include <dev/netif/mii_layer/miivar.h>
106 #include <dev/netif/mii_layer/brgphyreg.h>
107
108 #include <bus/pci/pcidevs.h>
109 #include <bus/pci/pcireg.h>
110 #include <bus/pci/pcivar.h>
111
112 #include <dev/netif/bge/if_bgereg.h>
113 #include <dev/netif/bge/if_bgevar.h>
114
115 /* "device miibus" required.  See GENERIC if you get errors here. */
116 #include "miibus_if.h"
117
118 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP)
119
120 static const struct bge_type {
121         uint16_t                bge_vid;
122         uint16_t                bge_did;
123         char                    *bge_name;
124 } bge_devs[] = {
125         { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
126                 "3COM 3C996 Gigabit Ethernet" },
127
128         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
129                 "Alteon BCM5700 Gigabit Ethernet" },
130         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
131                 "Alteon BCM5701 Gigabit Ethernet" },
132
133         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
134                 "Altima AC1000 Gigabit Ethernet" },
135         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
136                 "Altima AC1002 Gigabit Ethernet" },
137         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
138                 "Altima AC9100 Gigabit Ethernet" },
139
140         { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
141                 "Apple BCM5701 Gigabit Ethernet" },
142
143         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
144                 "Broadcom BCM5700 Gigabit Ethernet" },
145         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
146                 "Broadcom BCM5701 Gigabit Ethernet" },
147         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
148                 "Broadcom BCM5702 Gigabit Ethernet" },
149         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
150                 "Broadcom BCM5702X Gigabit Ethernet" },
151         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
152                 "Broadcom BCM5702 Gigabit Ethernet" },
153         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
154                 "Broadcom BCM5703 Gigabit Ethernet" },
155         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
156                 "Broadcom BCM5703X Gigabit Ethernet" },
157         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
158                 "Broadcom BCM5703 Gigabit Ethernet" },
159         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
160                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
161         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
162                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
163         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
164                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
165         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
166                 "Broadcom BCM5705 Gigabit Ethernet" },
167         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
168                 "Broadcom BCM5705F Gigabit Ethernet" },
169         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
170                 "Broadcom BCM5705K Gigabit Ethernet" },
171         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
172                 "Broadcom BCM5705M Gigabit Ethernet" },
173         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
174                 "Broadcom BCM5705M Gigabit Ethernet" },
175         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
176                 "Broadcom BCM5714C Gigabit Ethernet" },
177         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
178                 "Broadcom BCM5714S Gigabit Ethernet" },
179         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
180                 "Broadcom BCM5715 Gigabit Ethernet" },
181         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
182                 "Broadcom BCM5715S Gigabit Ethernet" },
183         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
184                 "Broadcom BCM5720 Gigabit Ethernet" },
185         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
186                 "Broadcom BCM5721 Gigabit Ethernet" },
187         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
188                 "Broadcom BCM5722 Gigabit Ethernet" },
189         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723,
190                 "Broadcom BCM5723 Gigabit Ethernet" },
191         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
192                 "Broadcom BCM5750 Gigabit Ethernet" },
193         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
194                 "Broadcom BCM5750M Gigabit Ethernet" },
195         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
196                 "Broadcom BCM5751 Gigabit Ethernet" },
197         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
198                 "Broadcom BCM5751F Gigabit Ethernet" },
199         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
200                 "Broadcom BCM5751M Gigabit Ethernet" },
201         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
202                 "Broadcom BCM5752 Gigabit Ethernet" },
203         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
204                 "Broadcom BCM5752M Gigabit Ethernet" },
205         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
206                 "Broadcom BCM5753 Gigabit Ethernet" },
207         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
208                 "Broadcom BCM5753F Gigabit Ethernet" },
209         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
210                 "Broadcom BCM5753M Gigabit Ethernet" },
211         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
212                 "Broadcom BCM5754 Gigabit Ethernet" },
213         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
214                 "Broadcom BCM5754M Gigabit Ethernet" },
215         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
216                 "Broadcom BCM5755 Gigabit Ethernet" },
217         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
218                 "Broadcom BCM5755M Gigabit Ethernet" },
219         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
220                 "Broadcom BCM5756 Gigabit Ethernet" },
221         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761,
222                 "Broadcom BCM5761 Gigabit Ethernet" },
223         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E,
224                 "Broadcom BCM5761E Gigabit Ethernet" },
225         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S,
226                 "Broadcom BCM5761S Gigabit Ethernet" },
227         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE,
228                 "Broadcom BCM5761SE Gigabit Ethernet" },
229         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764,
230                 "Broadcom BCM5764 Gigabit Ethernet" },
231         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
232                 "Broadcom BCM5780 Gigabit Ethernet" },
233         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
234                 "Broadcom BCM5780S Gigabit Ethernet" },
235         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
236                 "Broadcom BCM5781 Gigabit Ethernet" },
237         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
238                 "Broadcom BCM5782 Gigabit Ethernet" },
239         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784,
240                 "Broadcom BCM5784 Gigabit Ethernet" },
241         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F,
242                 "Broadcom BCM5785F Gigabit Ethernet" },
243         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G,
244                 "Broadcom BCM5785G Gigabit Ethernet" },
245         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
246                 "Broadcom BCM5786 Gigabit Ethernet" },
247         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
248                 "Broadcom BCM5787 Gigabit Ethernet" },
249         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
250                 "Broadcom BCM5787F Gigabit Ethernet" },
251         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
252                 "Broadcom BCM5787M Gigabit Ethernet" },
253         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
254                 "Broadcom BCM5788 Gigabit Ethernet" },
255         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
256                 "Broadcom BCM5789 Gigabit Ethernet" },
257         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
258                 "Broadcom BCM5901 Fast Ethernet" },
259         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
260                 "Broadcom BCM5901A2 Fast Ethernet" },
261         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
262                 "Broadcom BCM5903M Fast Ethernet" },
263         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906,
264                 "Broadcom BCM5906 Fast Ethernet"},
265         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M,
266                 "Broadcom BCM5906M Fast Ethernet"},
267         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760,
268                 "Broadcom BCM57760 Gigabit Ethernet"},
269         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780,
270                 "Broadcom BCM57780 Gigabit Ethernet"},
271         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788,
272                 "Broadcom BCM57788 Gigabit Ethernet"},
273         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790,
274                 "Broadcom BCM57790 Gigabit Ethernet"},
275         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
276                 "SysKonnect Gigabit Ethernet" },
277
278         { 0, 0, NULL }
279 };
280
281 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
282 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
283 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
284 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
285 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
286 #define BGE_IS_5755_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
287 #define BGE_IS_5788(sc)                 ((sc)->bge_flags & BGE_FLAG_5788)
288
289 #define BGE_IS_CRIPPLED(sc)             \
290         (BGE_IS_5788((sc)) || (sc)->bge_asicrev == BGE_ASICREV_BCM5700)
291
292 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
293
294 static int      bge_probe(device_t);
295 static int      bge_attach(device_t);
296 static int      bge_detach(device_t);
297 static void     bge_txeof(struct bge_softc *, uint16_t);
298 static void     bge_rxeof(struct bge_softc *, uint16_t);
299
300 static void     bge_tick(void *);
301 static void     bge_stats_update(struct bge_softc *);
302 static void     bge_stats_update_regs(struct bge_softc *);
303 static struct mbuf *
304                 bge_defrag_shortdma(struct mbuf *);
305 static int      bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
306 static int      bge_setup_tso(struct bge_softc *, struct mbuf **,
307                     uint16_t *, uint16_t *);
308
309 #ifdef DEVICE_POLLING
310 static void     bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
311 #endif
312 static void     bge_intr_crippled(void *);
313 static void     bge_intr_legacy(void *);
314 static void     bge_msi(void *);
315 static void     bge_msi_oneshot(void *);
316 static void     bge_intr(struct bge_softc *);
317 static void     bge_enable_intr(struct bge_softc *);
318 static void     bge_disable_intr(struct bge_softc *);
319 static void     bge_start(struct ifnet *);
320 static int      bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
321 static void     bge_init(void *);
322 static void     bge_stop(struct bge_softc *);
323 static void     bge_watchdog(struct ifnet *);
324 static void     bge_shutdown(device_t);
325 static int      bge_suspend(device_t);
326 static int      bge_resume(device_t);
327 static int      bge_ifmedia_upd(struct ifnet *);
328 static void     bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
329
330 static uint8_t  bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
331 static int      bge_read_nvram(struct bge_softc *, caddr_t, int, int);
332
333 static uint8_t  bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
334 static int      bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
335
336 static void     bge_setmulti(struct bge_softc *);
337 static void     bge_setpromisc(struct bge_softc *);
338 static void     bge_enable_msi(struct bge_softc *sc);
339
340 static int      bge_alloc_jumbo_mem(struct bge_softc *);
341 static void     bge_free_jumbo_mem(struct bge_softc *);
342 static struct bge_jslot
343                 *bge_jalloc(struct bge_softc *);
344 static void     bge_jfree(void *);
345 static void     bge_jref(void *);
346 static int      bge_newbuf_std(struct bge_softc *, int, int);
347 static int      bge_newbuf_jumbo(struct bge_softc *, int, int);
348 static void     bge_setup_rxdesc_std(struct bge_softc *, int);
349 static void     bge_setup_rxdesc_jumbo(struct bge_softc *, int);
350 static int      bge_init_rx_ring_std(struct bge_softc *);
351 static void     bge_free_rx_ring_std(struct bge_softc *);
352 static int      bge_init_rx_ring_jumbo(struct bge_softc *);
353 static void     bge_free_rx_ring_jumbo(struct bge_softc *);
354 static void     bge_free_tx_ring(struct bge_softc *);
355 static int      bge_init_tx_ring(struct bge_softc *);
356
357 static int      bge_chipinit(struct bge_softc *);
358 static int      bge_blockinit(struct bge_softc *);
359 static void     bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
360
361 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
362 static void     bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
363 #ifdef notdef
364 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
365 #endif
366 static void     bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
367 static void     bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
368 static void     bge_writembx(struct bge_softc *, int, int);
369
370 static int      bge_miibus_readreg(device_t, int, int);
371 static int      bge_miibus_writereg(device_t, int, int, int);
372 static void     bge_miibus_statchg(device_t);
373 static void     bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
374 static void     bge_tbi_link_upd(struct bge_softc *, uint32_t);
375 static void     bge_copper_link_upd(struct bge_softc *, uint32_t);
376 static void     bge_autopoll_link_upd(struct bge_softc *, uint32_t);
377 static void     bge_link_poll(struct bge_softc *);
378
379 static void     bge_reset(struct bge_softc *);
380
381 static int      bge_dma_alloc(struct bge_softc *);
382 static void     bge_dma_free(struct bge_softc *);
383 static int      bge_dma_block_alloc(struct bge_softc *, bus_size_t,
384                                     bus_dma_tag_t *, bus_dmamap_t *,
385                                     void **, bus_addr_t *);
386 static void     bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
387
388 static int      bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
389 static int      bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
390 static int      bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
391 static int      bge_get_eaddr(struct bge_softc *, uint8_t[]);
392
393 static void     bge_coal_change(struct bge_softc *);
394 static int      bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
395 static int      bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
396 static int      bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
397 static int      bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
398 static int      bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
399 static int      bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
400 static int      bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
401 static int      bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
402 static int      bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
403                     int, int, uint32_t);
404
405 /*
406  * Set following tunable to 1 for some IBM blade servers with the DNLK
407  * switch module. Auto negotiation is broken for those configurations.
408  */
409 static int      bge_fake_autoneg = 0;
410 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
411
412 static int      bge_msi_enable = 1;
413 TUNABLE_INT("hw.bge.msi.enable", &bge_msi_enable);
414
415 #if !defined(KTR_IF_BGE)
416 #define KTR_IF_BGE      KTR_ALL
417 #endif
418 KTR_INFO_MASTER(if_bge);
419 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr");
420 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt");
421 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt");
422 #define logif(name)     KTR_LOG(if_bge_ ## name)
423
424 static device_method_t bge_methods[] = {
425         /* Device interface */
426         DEVMETHOD(device_probe,         bge_probe),
427         DEVMETHOD(device_attach,        bge_attach),
428         DEVMETHOD(device_detach,        bge_detach),
429         DEVMETHOD(device_shutdown,      bge_shutdown),
430         DEVMETHOD(device_suspend,       bge_suspend),
431         DEVMETHOD(device_resume,        bge_resume),
432
433         /* bus interface */
434         DEVMETHOD(bus_print_child,      bus_generic_print_child),
435         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
436
437         /* MII interface */
438         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
439         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
440         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
441
442         { 0, 0 }
443 };
444
445 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
446 static devclass_t bge_devclass;
447
448 DECLARE_DUMMY_MODULE(if_bge);
449 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, NULL, NULL);
450 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, NULL, NULL);
451
452 static uint32_t
453 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
454 {
455         device_t dev = sc->bge_dev;
456         uint32_t val;
457
458         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
459             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
460                 return 0;
461
462         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
463         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
464         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
465         return (val);
466 }
467
468 static void
469 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
470 {
471         device_t dev = sc->bge_dev;
472
473         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
474             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
475                 return;
476
477         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
478         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
479         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
480 }
481
482 #ifdef notdef
483 static uint32_t
484 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
485 {
486         device_t dev = sc->bge_dev;
487
488         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
489         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
490 }
491 #endif
492
493 static void
494 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
495 {
496         device_t dev = sc->bge_dev;
497
498         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
499         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
500 }
501
502 static void
503 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
504 {
505         CSR_WRITE_4(sc, off, val);
506 }
507
508 static void
509 bge_writembx(struct bge_softc *sc, int off, int val)
510 {
511         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
512                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
513
514         CSR_WRITE_4(sc, off, val);
515         if (sc->bge_mbox_reorder)
516                 CSR_READ_4(sc, off);
517 }
518
519 static uint8_t
520 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
521 {
522         uint32_t access, byte = 0;
523         int i;
524
525         /* Lock. */
526         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
527         for (i = 0; i < 8000; i++) {
528                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
529                         break;
530                 DELAY(20);
531         }
532         if (i == 8000)
533                 return (1);
534
535         /* Enable access. */
536         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
537         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
538
539         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
540         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
541         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
542                 DELAY(10);
543                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
544                         DELAY(10);
545                         break;
546                 }
547         }
548
549         if (i == BGE_TIMEOUT * 10) {
550                 if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
551                 return (1);
552         }
553
554         /* Get result. */
555         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
556
557         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
558
559         /* Disable access. */
560         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
561
562         /* Unlock. */
563         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
564         CSR_READ_4(sc, BGE_NVRAM_SWARB);
565
566         return (0);
567 }
568
569 /*
570  * Read a sequence of bytes from NVRAM.
571  */
572 static int
573 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
574 {
575         int err = 0, i;
576         uint8_t byte = 0;
577
578         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
579                 return (1);
580
581         for (i = 0; i < cnt; i++) {
582                 err = bge_nvram_getbyte(sc, off + i, &byte);
583                 if (err)
584                         break;
585                 *(dest + i) = byte;
586         }
587
588         return (err ? 1 : 0);
589 }
590
591 /*
592  * Read a byte of data stored in the EEPROM at address 'addr.' The
593  * BCM570x supports both the traditional bitbang interface and an
594  * auto access interface for reading the EEPROM. We use the auto
595  * access method.
596  */
597 static uint8_t
598 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
599 {
600         int i;
601         uint32_t byte = 0;
602
603         /*
604          * Enable use of auto EEPROM access so we can avoid
605          * having to use the bitbang method.
606          */
607         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
608
609         /* Reset the EEPROM, load the clock period. */
610         CSR_WRITE_4(sc, BGE_EE_ADDR,
611             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
612         DELAY(20);
613
614         /* Issue the read EEPROM command. */
615         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
616
617         /* Wait for completion */
618         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
619                 DELAY(10);
620                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
621                         break;
622         }
623
624         if (i == BGE_TIMEOUT) {
625                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
626                 return(1);
627         }
628
629         /* Get result. */
630         byte = CSR_READ_4(sc, BGE_EE_DATA);
631
632         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
633
634         return(0);
635 }
636
637 /*
638  * Read a sequence of bytes from the EEPROM.
639  */
640 static int
641 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
642 {
643         size_t i;
644         int err;
645         uint8_t byte;
646
647         for (byte = 0, err = 0, i = 0; i < len; i++) {
648                 err = bge_eeprom_getbyte(sc, off + i, &byte);
649                 if (err)
650                         break;
651                 *(dest + i) = byte;
652         }
653
654         return(err ? 1 : 0);
655 }
656
657 static int
658 bge_miibus_readreg(device_t dev, int phy, int reg)
659 {
660         struct bge_softc *sc = device_get_softc(dev);
661         uint32_t val;
662         int i;
663
664         KASSERT(phy == sc->bge_phyno,
665             ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
666
667         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
668         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
669                 CSR_WRITE_4(sc, BGE_MI_MODE,
670                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
671                 DELAY(80);
672         }
673
674         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
675             BGE_MIPHY(phy) | BGE_MIREG(reg));
676
677         /* Poll for the PHY register access to complete. */
678         for (i = 0; i < BGE_TIMEOUT; i++) {
679                 DELAY(10);
680                 val = CSR_READ_4(sc, BGE_MI_COMM);
681                 if ((val & BGE_MICOMM_BUSY) == 0) {
682                         DELAY(5);
683                         val = CSR_READ_4(sc, BGE_MI_COMM);
684                         break;
685                 }
686         }
687         if (i == BGE_TIMEOUT) {
688                 if_printf(&sc->arpcom.ac_if, "PHY read timed out "
689                     "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
690                 val = 0;
691         }
692
693         /* Restore the autopoll bit if necessary. */
694         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
695                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
696                 DELAY(80);
697         }
698
699         if (val & BGE_MICOMM_READFAIL)
700                 return 0;
701
702         return (val & 0xFFFF);
703 }
704
705 static int
706 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
707 {
708         struct bge_softc *sc = device_get_softc(dev);
709         int i;
710
711         KASSERT(phy == sc->bge_phyno,
712             ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
713
714         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
715             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
716                return 0;
717
718         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
719         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
720                 CSR_WRITE_4(sc, BGE_MI_MODE,
721                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
722                 DELAY(80);
723         }
724
725         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
726             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
727
728         for (i = 0; i < BGE_TIMEOUT; i++) {
729                 DELAY(10);
730                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
731                         DELAY(5);
732                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
733                         break;
734                 }
735         }
736         if (i == BGE_TIMEOUT) {
737                 if_printf(&sc->arpcom.ac_if, "PHY write timed out "
738                     "(phy %d, reg %d, val %d)\n", phy, reg, val);
739         }
740
741         /* Restore the autopoll bit if necessary. */
742         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
743                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
744                 DELAY(80);
745         }
746
747         return 0;
748 }
749
750 static void
751 bge_miibus_statchg(device_t dev)
752 {
753         struct bge_softc *sc;
754         struct mii_data *mii;
755
756         sc = device_get_softc(dev);
757         mii = device_get_softc(sc->bge_miibus);
758
759         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
760             (IFM_ACTIVE | IFM_AVALID)) {
761                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
762                 case IFM_10_T:
763                 case IFM_100_TX:
764                         sc->bge_link = 1;
765                         break;
766                 case IFM_1000_T:
767                 case IFM_1000_SX:
768                 case IFM_2500_SX:
769                         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
770                                 sc->bge_link = 1;
771                         else
772                                 sc->bge_link = 0;
773                         break;
774                 default:
775                         sc->bge_link = 0;
776                         break;
777                 }
778         } else {
779                 sc->bge_link = 0;
780         }
781         if (sc->bge_link == 0)
782                 return;
783
784         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
785         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
786             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
787                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
788         } else {
789                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
790         }
791
792         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
793                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
794         } else {
795                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
796         }
797 }
798
799 /*
800  * Memory management for jumbo frames.
801  */
802 static int
803 bge_alloc_jumbo_mem(struct bge_softc *sc)
804 {
805         struct ifnet *ifp = &sc->arpcom.ac_if;
806         struct bge_jslot *entry;
807         uint8_t *ptr;
808         bus_addr_t paddr;
809         int i, error;
810
811         /*
812          * Create tag for jumbo mbufs.
813          * This is really a bit of a kludge. We allocate a special
814          * jumbo buffer pool which (thanks to the way our DMA
815          * memory allocation works) will consist of contiguous
816          * pages. This means that even though a jumbo buffer might
817          * be larger than a page size, we don't really need to
818          * map it into more than one DMA segment. However, the
819          * default mbuf tag will result in multi-segment mappings,
820          * so we have to create a special jumbo mbuf tag that
821          * lets us get away with mapping the jumbo buffers as
822          * a single segment. I think eventually the driver should
823          * be changed so that it uses ordinary mbufs and cluster
824          * buffers, i.e. jumbo frames can span multiple DMA
825          * descriptors. But that's a project for another day.
826          */
827
828         /*
829          * Create DMA stuffs for jumbo RX ring.
830          */
831         error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
832                                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
833                                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
834                                     (void *)&sc->bge_ldata.bge_rx_jumbo_ring,
835                                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
836         if (error) {
837                 if_printf(ifp, "could not create jumbo RX ring\n");
838                 return error;
839         }
840
841         /*
842          * Create DMA stuffs for jumbo buffer block.
843          */
844         error = bge_dma_block_alloc(sc, BGE_JMEM,
845                                     &sc->bge_cdata.bge_jumbo_tag,
846                                     &sc->bge_cdata.bge_jumbo_map,
847                                     (void **)&sc->bge_ldata.bge_jumbo_buf,
848                                     &paddr);
849         if (error) {
850                 if_printf(ifp, "could not create jumbo buffer\n");
851                 return error;
852         }
853
854         SLIST_INIT(&sc->bge_jfree_listhead);
855
856         /*
857          * Now divide it up into 9K pieces and save the addresses
858          * in an array. Note that we play an evil trick here by using
859          * the first few bytes in the buffer to hold the the address
860          * of the softc structure for this interface. This is because
861          * bge_jfree() needs it, but it is called by the mbuf management
862          * code which will not pass it to us explicitly.
863          */
864         for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
865                 entry = &sc->bge_cdata.bge_jslots[i];
866                 entry->bge_sc = sc;
867                 entry->bge_buf = ptr;
868                 entry->bge_paddr = paddr;
869                 entry->bge_inuse = 0;
870                 entry->bge_slot = i;
871                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
872
873                 ptr += BGE_JLEN;
874                 paddr += BGE_JLEN;
875         }
876         return 0;
877 }
878
879 static void
880 bge_free_jumbo_mem(struct bge_softc *sc)
881 {
882         /* Destroy jumbo RX ring. */
883         bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
884                            sc->bge_cdata.bge_rx_jumbo_ring_map,
885                            sc->bge_ldata.bge_rx_jumbo_ring);
886
887         /* Destroy jumbo buffer block. */
888         bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
889                            sc->bge_cdata.bge_jumbo_map,
890                            sc->bge_ldata.bge_jumbo_buf);
891 }
892
893 /*
894  * Allocate a jumbo buffer.
895  */
896 static struct bge_jslot *
897 bge_jalloc(struct bge_softc *sc)
898 {
899         struct bge_jslot *entry;
900
901         lwkt_serialize_enter(&sc->bge_jslot_serializer);
902         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
903         if (entry) {
904                 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
905                 entry->bge_inuse = 1;
906         } else {
907                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
908         }
909         lwkt_serialize_exit(&sc->bge_jslot_serializer);
910         return(entry);
911 }
912
913 /*
914  * Adjust usage count on a jumbo buffer.
915  */
916 static void
917 bge_jref(void *arg)
918 {
919         struct bge_jslot *entry = (struct bge_jslot *)arg;
920         struct bge_softc *sc = entry->bge_sc;
921
922         if (sc == NULL)
923                 panic("bge_jref: can't find softc pointer!");
924
925         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
926                 panic("bge_jref: asked to reference buffer "
927                     "that we don't manage!");
928         } else if (entry->bge_inuse == 0) {
929                 panic("bge_jref: buffer already free!");
930         } else {
931                 atomic_add_int(&entry->bge_inuse, 1);
932         }
933 }
934
935 /*
936  * Release a jumbo buffer.
937  */
938 static void
939 bge_jfree(void *arg)
940 {
941         struct bge_jslot *entry = (struct bge_jslot *)arg;
942         struct bge_softc *sc = entry->bge_sc;
943
944         if (sc == NULL)
945                 panic("bge_jfree: can't find softc pointer!");
946
947         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
948                 panic("bge_jfree: asked to free buffer that we don't manage!");
949         } else if (entry->bge_inuse == 0) {
950                 panic("bge_jfree: buffer already free!");
951         } else {
952                 /*
953                  * Possible MP race to 0, use the serializer.  The atomic insn
954                  * is still needed for races against bge_jref().
955                  */
956                 lwkt_serialize_enter(&sc->bge_jslot_serializer);
957                 atomic_subtract_int(&entry->bge_inuse, 1);
958                 if (entry->bge_inuse == 0) {
959                         SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 
960                                           entry, jslot_link);
961                 }
962                 lwkt_serialize_exit(&sc->bge_jslot_serializer);
963         }
964 }
965
966
967 /*
968  * Intialize a standard receive ring descriptor.
969  */
970 static int
971 bge_newbuf_std(struct bge_softc *sc, int i, int init)
972 {
973         struct mbuf *m_new = NULL;
974         bus_dma_segment_t seg;
975         bus_dmamap_t map;
976         int error, nsegs;
977
978         m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
979         if (m_new == NULL)
980                 return ENOBUFS;
981         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
982
983         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
984                 m_adj(m_new, ETHER_ALIGN);
985
986         error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag,
987                         sc->bge_cdata.bge_rx_tmpmap, m_new,
988                         &seg, 1, &nsegs, BUS_DMA_NOWAIT);
989         if (error) {
990                 m_freem(m_new);
991                 return error;
992         }
993
994         if (!init) {
995                 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
996                                 sc->bge_cdata.bge_rx_std_dmamap[i],
997                                 BUS_DMASYNC_POSTREAD);
998                 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
999                         sc->bge_cdata.bge_rx_std_dmamap[i]);
1000         }
1001
1002         map = sc->bge_cdata.bge_rx_tmpmap;
1003         sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i];
1004         sc->bge_cdata.bge_rx_std_dmamap[i] = map;
1005
1006         sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new;
1007         sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr;
1008
1009         bge_setup_rxdesc_std(sc, i);
1010         return 0;
1011 }
1012
1013 static void
1014 bge_setup_rxdesc_std(struct bge_softc *sc, int i)
1015 {
1016         struct bge_rxchain *rc;
1017         struct bge_rx_bd *r;
1018
1019         rc = &sc->bge_cdata.bge_rx_std_chain[i];
1020         r = &sc->bge_ldata.bge_rx_std_ring[i];
1021
1022         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1023         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1024         r->bge_len = rc->bge_mbuf->m_len;
1025         r->bge_idx = i;
1026         r->bge_flags = BGE_RXBDFLAG_END;
1027 }
1028
1029 /*
1030  * Initialize a jumbo receive ring descriptor. This allocates
1031  * a jumbo buffer from the pool managed internally by the driver.
1032  */
1033 static int
1034 bge_newbuf_jumbo(struct bge_softc *sc, int i, int init)
1035 {
1036         struct mbuf *m_new = NULL;
1037         struct bge_jslot *buf;
1038         bus_addr_t paddr;
1039
1040         /* Allocate the mbuf. */
1041         MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1042         if (m_new == NULL)
1043                 return ENOBUFS;
1044
1045         /* Allocate the jumbo buffer */
1046         buf = bge_jalloc(sc);
1047         if (buf == NULL) {
1048                 m_freem(m_new);
1049                 return ENOBUFS;
1050         }
1051
1052         /* Attach the buffer to the mbuf. */
1053         m_new->m_ext.ext_arg = buf;
1054         m_new->m_ext.ext_buf = buf->bge_buf;
1055         m_new->m_ext.ext_free = bge_jfree;
1056         m_new->m_ext.ext_ref = bge_jref;
1057         m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1058
1059         m_new->m_flags |= M_EXT;
1060
1061         m_new->m_data = m_new->m_ext.ext_buf;
1062         m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1063
1064         paddr = buf->bge_paddr;
1065         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
1066                 m_adj(m_new, ETHER_ALIGN);
1067                 paddr += ETHER_ALIGN;
1068         }
1069
1070         /* Save necessary information */
1071         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new;
1072         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr;
1073
1074         /* Set up the descriptor. */
1075         bge_setup_rxdesc_jumbo(sc, i);
1076         return 0;
1077 }
1078
1079 static void
1080 bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i)
1081 {
1082         struct bge_rx_bd *r;
1083         struct bge_rxchain *rc;
1084
1085         r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
1086         rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1087
1088         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1089         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1090         r->bge_len = rc->bge_mbuf->m_len;
1091         r->bge_idx = i;
1092         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1093 }
1094
1095 static int
1096 bge_init_rx_ring_std(struct bge_softc *sc)
1097 {
1098         int i, error;
1099
1100         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1101                 error = bge_newbuf_std(sc, i, 1);
1102                 if (error)
1103                         return error;
1104         };
1105
1106         sc->bge_std = BGE_STD_RX_RING_CNT - 1;
1107         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1108
1109         return(0);
1110 }
1111
1112 static void
1113 bge_free_rx_ring_std(struct bge_softc *sc)
1114 {
1115         int i;
1116
1117         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1118                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i];
1119
1120                 if (rc->bge_mbuf != NULL) {
1121                         bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1122                                           sc->bge_cdata.bge_rx_std_dmamap[i]);
1123                         m_freem(rc->bge_mbuf);
1124                         rc->bge_mbuf = NULL;
1125                 }
1126                 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
1127                     sizeof(struct bge_rx_bd));
1128         }
1129 }
1130
1131 static int
1132 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1133 {
1134         struct bge_rcb *rcb;
1135         int i, error;
1136
1137         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1138                 error = bge_newbuf_jumbo(sc, i, 1);
1139                 if (error)
1140                         return error;
1141         };
1142
1143         sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
1144
1145         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1146         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1147         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1148
1149         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1150
1151         return(0);
1152 }
1153
1154 static void
1155 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1156 {
1157         int i;
1158
1159         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1160                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1161
1162                 if (rc->bge_mbuf != NULL) {
1163                         m_freem(rc->bge_mbuf);
1164                         rc->bge_mbuf = NULL;
1165                 }
1166                 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1167                     sizeof(struct bge_rx_bd));
1168         }
1169 }
1170
1171 static void
1172 bge_free_tx_ring(struct bge_softc *sc)
1173 {
1174         int i;
1175
1176         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1177                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1178                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1179                                           sc->bge_cdata.bge_tx_dmamap[i]);
1180                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1181                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1182                 }
1183                 bzero(&sc->bge_ldata.bge_tx_ring[i],
1184                     sizeof(struct bge_tx_bd));
1185         }
1186 }
1187
1188 static int
1189 bge_init_tx_ring(struct bge_softc *sc)
1190 {
1191         sc->bge_txcnt = 0;
1192         sc->bge_tx_saved_considx = 0;
1193         sc->bge_tx_prodidx = 0;
1194
1195         /* Initialize transmit producer index for host-memory send ring. */
1196         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1197
1198         /* 5700 b2 errata */
1199         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1200                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1201
1202         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1203         /* 5700 b2 errata */
1204         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1205                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1206
1207         return(0);
1208 }
1209
1210 static void
1211 bge_setmulti(struct bge_softc *sc)
1212 {
1213         struct ifnet *ifp;
1214         struct ifmultiaddr *ifma;
1215         uint32_t hashes[4] = { 0, 0, 0, 0 };
1216         int h, i;
1217
1218         ifp = &sc->arpcom.ac_if;
1219
1220         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1221                 for (i = 0; i < 4; i++)
1222                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1223                 return;
1224         }
1225
1226         /* First, zot all the existing filters. */
1227         for (i = 0; i < 4; i++)
1228                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1229
1230         /* Now program new ones. */
1231         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1232                 if (ifma->ifma_addr->sa_family != AF_LINK)
1233                         continue;
1234                 h = ether_crc32_le(
1235                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1236                     ETHER_ADDR_LEN) & 0x7f;
1237                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1238         }
1239
1240         for (i = 0; i < 4; i++)
1241                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1242 }
1243
1244 /*
1245  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1246  * self-test results.
1247  */
1248 static int
1249 bge_chipinit(struct bge_softc *sc)
1250 {
1251         int i;
1252         uint32_t dma_rw_ctl;
1253         uint16_t val;
1254
1255         /* Set endian type before we access any non-PCI registers. */
1256         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1257             BGE_INIT | sc->bge_pci_miscctl, 4);
1258
1259         /* Clear the MAC control register */
1260         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1261
1262         /*
1263          * Clear the MAC statistics block in the NIC's
1264          * internal memory.
1265          */
1266         for (i = BGE_STATS_BLOCK;
1267             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1268                 BGE_MEMWIN_WRITE(sc, i, 0);
1269
1270         for (i = BGE_STATUS_BLOCK;
1271             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1272                 BGE_MEMWIN_WRITE(sc, i, 0);
1273
1274         if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1275                 /*
1276                  * Fix data corruption caused by non-qword write with WB.
1277                  * Fix master abort in PCI mode.
1278                  * Fix PCI latency timer.
1279                  */
1280                 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1281                 val |= (1 << 10) | (1 << 12) | (1 << 13);
1282                 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1283         }
1284
1285         /* Set up the PCI DMA control register. */
1286         dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1287         if (sc->bge_flags & BGE_FLAG_PCIE) {
1288                 /* PCI-E bus */
1289                 /* DMA read watermark not used on PCI-E */
1290                 dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1291         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1292                 /* PCI-X bus */
1293                 if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1294                         dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1295                             (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1296                         dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1297                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5714) {
1298                         dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1299                             (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1300                         dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1301                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1302                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1303                         uint32_t rd_wat = 0x7;
1304                         uint32_t clkctl;
1305
1306                         clkctl = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1307                         if ((sc->bge_flags & BGE_FLAG_MAXADDR_40BIT) &&
1308                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1309                                 dma_rw_ctl |=
1310                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1311                         } else if (clkctl == 0x6 || clkctl == 0x7) {
1312                                 dma_rw_ctl |=
1313                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1314                         }
1315                         if (sc->bge_asicrev == BGE_ASICREV_BCM5703)
1316                                 rd_wat = 0x4;
1317
1318                         dma_rw_ctl |= (rd_wat << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1319                             (3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1320                         dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1321                 } else {
1322                         dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1323                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1324                         dma_rw_ctl |= 0xf;
1325                 }
1326         } else {
1327                 /* Conventional PCI bus */
1328                 dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1329                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1330                 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1331                     sc->bge_asicrev != BGE_ASICREV_BCM5750)
1332                         dma_rw_ctl |= 0xf;
1333         }
1334
1335         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1336             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1337                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1338         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1339             sc->bge_asicrev == BGE_ASICREV_BCM5701) {
1340                 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1341                     BGE_PCIDMARWCTL_ASRT_ALL_BE;
1342         }
1343         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1344
1345         /*
1346          * Set up general mode register.
1347          */
1348         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1349             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1350             BGE_MODECTL_TX_NO_PHDR_CSUM);
1351
1352         /*
1353          * BCM5701 B5 have a bug causing data corruption when using
1354          * 64-bit DMA reads, which can be terminated early and then
1355          * completed later as 32-bit accesses, in combination with
1356          * certain bridges.
1357          */
1358         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1359             sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1360                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1361
1362         /*
1363          * Disable memory write invalidate.  Apparently it is not supported
1364          * properly by these devices.  Also ensure that INTx isn't disabled,
1365          * as these chips need it even when using MSI.
1366          */
1367         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1368             (PCIM_CMD_MWRICEN | PCIM_CMD_INTxDIS), 4);
1369
1370         /* Set the timer prescaler (always 66Mhz) */
1371         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1372
1373         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1374                 DELAY(40);      /* XXX */
1375
1376                 /* Put PHY into ready state */
1377                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1378                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1379                 DELAY(40);
1380         }
1381
1382         return(0);
1383 }
1384
1385 static int
1386 bge_blockinit(struct bge_softc *sc)
1387 {
1388         struct bge_rcb *rcb;
1389         bus_size_t vrcb;
1390         bge_hostaddr taddr;
1391         uint32_t val;
1392         int i, limit;
1393
1394         /*
1395          * Initialize the memory window pointer register so that
1396          * we can access the first 32K of internal NIC RAM. This will
1397          * allow us to set up the TX send ring RCBs and the RX return
1398          * ring RCBs, plus other things which live in NIC memory.
1399          */
1400         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1401
1402         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1403
1404         if (!BGE_IS_5705_PLUS(sc)) {
1405                 /* Configure mbuf memory pool */
1406                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1407                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1408                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1409                 else
1410                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1411
1412                 /* Configure DMA resource pool */
1413                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1414                     BGE_DMA_DESCRIPTORS);
1415                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1416         }
1417
1418         /* Configure mbuf pool watermarks */
1419         if (!BGE_IS_5705_PLUS(sc)) {
1420                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1421                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1422                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1423         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1424                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1425                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1426                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1427         } else {
1428                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1429                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1430                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1431         }
1432
1433         /* Configure DMA resource watermarks */
1434         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1435         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1436
1437         /* Enable buffer manager */
1438         CSR_WRITE_4(sc, BGE_BMAN_MODE,
1439             BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1440
1441         /* Poll for buffer manager start indication */
1442         for (i = 0; i < BGE_TIMEOUT; i++) {
1443                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1444                         break;
1445                 DELAY(10);
1446         }
1447
1448         if (i == BGE_TIMEOUT) {
1449                 if_printf(&sc->arpcom.ac_if,
1450                           "buffer manager failed to start\n");
1451                 return(ENXIO);
1452         }
1453
1454         /* Enable flow-through queues */
1455         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1456         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1457
1458         /* Wait until queue initialization is complete */
1459         for (i = 0; i < BGE_TIMEOUT; i++) {
1460                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1461                         break;
1462                 DELAY(10);
1463         }
1464
1465         if (i == BGE_TIMEOUT) {
1466                 if_printf(&sc->arpcom.ac_if,
1467                           "flow-through queue init failed\n");
1468                 return(ENXIO);
1469         }
1470
1471         /*
1472          * Summary of rings supported by the controller:
1473          *
1474          * Standard Receive Producer Ring
1475          * - This ring is used to feed receive buffers for "standard"
1476          *   sized frames (typically 1536 bytes) to the controller.
1477          *
1478          * Jumbo Receive Producer Ring
1479          * - This ring is used to feed receive buffers for jumbo sized
1480          *   frames (i.e. anything bigger than the "standard" frames)
1481          *   to the controller.
1482          *
1483          * Mini Receive Producer Ring
1484          * - This ring is used to feed receive buffers for "mini"
1485          *   sized frames to the controller.
1486          * - This feature required external memory for the controller
1487          *   but was never used in a production system.  Should always
1488          *   be disabled.
1489          *
1490          * Receive Return Ring
1491          * - After the controller has placed an incoming frame into a
1492          *   receive buffer that buffer is moved into a receive return
1493          *   ring.  The driver is then responsible to passing the
1494          *   buffer up to the stack.  Many versions of the controller
1495          *   support multiple RR rings.
1496          *
1497          * Send Ring
1498          * - This ring is used for outgoing frames.  Many versions of
1499          *   the controller support multiple send rings.
1500          */
1501
1502         /* Initialize the standard receive producer ring control block. */
1503         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1504         rcb->bge_hostaddr.bge_addr_lo =
1505             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1506         rcb->bge_hostaddr.bge_addr_hi =
1507             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1508         if (BGE_IS_5705_PLUS(sc)) {
1509                 /*
1510                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1511                  * Bits 15-2 : Reserved (should be 0)
1512                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1513                  * Bit 0     : Reserved
1514                  */
1515                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1516         } else {
1517                 /*
1518                  * Ring size is always XXX entries
1519                  * Bits 31-16: Maximum RX frame size
1520                  * Bits 15-2 : Reserved (should be 0)
1521                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1522                  * Bit 0     : Reserved
1523                  */
1524                 rcb->bge_maxlen_flags =
1525                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1526         }
1527         rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1528         /* Write the standard receive producer ring control block. */
1529         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1530         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1531         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1532         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1533         /* Reset the standard receive producer ring producer index. */
1534         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1535
1536         /*
1537          * Initialize the jumbo RX producer ring control
1538          * block.  We set the 'ring disabled' bit in the
1539          * flags field until we're actually ready to start
1540          * using this ring (i.e. once we set the MTU
1541          * high enough to require it).
1542          */
1543         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1544                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1545                 /* Get the jumbo receive producer ring RCB parameters. */
1546                 rcb->bge_hostaddr.bge_addr_lo =
1547                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1548                 rcb->bge_hostaddr.bge_addr_hi =
1549                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1550                 rcb->bge_maxlen_flags =
1551                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1552                     BGE_RCB_FLAG_RING_DISABLED);
1553                 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1554                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1555                     rcb->bge_hostaddr.bge_addr_hi);
1556                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1557                     rcb->bge_hostaddr.bge_addr_lo);
1558                 /* Program the jumbo receive producer ring RCB parameters. */
1559                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1560                     rcb->bge_maxlen_flags);
1561                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1562                 /* Reset the jumbo receive producer ring producer index. */
1563                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1564         }
1565
1566         /* Disable the mini receive producer ring RCB. */
1567         if (BGE_IS_5700_FAMILY(sc)) {
1568                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1569                 rcb->bge_maxlen_flags =
1570                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1571                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1572                     rcb->bge_maxlen_flags);
1573                 /* Reset the mini receive producer ring producer index. */
1574                 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1575         }
1576
1577         /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1578         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1579             (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1580              sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1581              sc->bge_chipid == BGE_CHIPID_BCM5906_A2)) {
1582                 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1583                     (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1584         }
1585
1586         /*
1587          * The BD ring replenish thresholds control how often the
1588          * hardware fetches new BD's from the producer rings in host
1589          * memory.  Setting the value too low on a busy system can
1590          * starve the hardware and recue the throughpout.
1591          *
1592          * Set the BD ring replentish thresholds. The recommended
1593          * values are 1/8th the number of descriptors allocated to
1594          * each ring.
1595          */
1596         if (BGE_IS_5705_PLUS(sc))
1597                 val = 8;
1598         else
1599                 val = BGE_STD_RX_RING_CNT / 8;
1600         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1601         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1602                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1603                     BGE_JUMBO_RX_RING_CNT/8);
1604         }
1605
1606         /*
1607          * Disable all send rings by setting the 'ring disabled' bit
1608          * in the flags field of all the TX send ring control blocks,
1609          * located in NIC memory.
1610          */
1611         if (!BGE_IS_5705_PLUS(sc)) {
1612                 /* 5700 to 5704 had 16 send rings. */
1613                 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1614         } else {
1615                 limit = 1;
1616         }
1617         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1618         for (i = 0; i < limit; i++) {
1619                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1620                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1621                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1622                 vrcb += sizeof(struct bge_rcb);
1623         }
1624
1625         /* Configure send ring RCB 0 (we use only the first ring) */
1626         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1627         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1628         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1629         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1630         RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1631             BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1632         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1633             BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1634
1635         /*
1636          * Disable all receive return rings by setting the
1637          * 'ring diabled' bit in the flags field of all the receive
1638          * return ring control blocks, located in NIC memory.
1639          */
1640         if (!BGE_IS_5705_PLUS(sc))
1641                 limit = BGE_RX_RINGS_MAX;
1642         else if (sc->bge_asicrev == BGE_ASICREV_BCM5755)
1643                 limit = 4;
1644         else
1645                 limit = 1;
1646         /* Disable all receive return rings. */
1647         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1648         for (i = 0; i < limit; i++) {
1649                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1650                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1651                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1652                     BGE_RCB_FLAG_RING_DISABLED);
1653                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1654                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1655                     (i * (sizeof(uint64_t))), 0);
1656                 vrcb += sizeof(struct bge_rcb);
1657         }
1658
1659         /*
1660          * Set up receive return ring 0.  Note that the NIC address
1661          * for RX return rings is 0x0.  The return rings live entirely
1662          * within the host, so the nicaddr field in the RCB isn't used.
1663          */
1664         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1665         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1666         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1667         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1668         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1669         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1670             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1671
1672         /* Set random backoff seed for TX */
1673         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1674             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1675             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1676             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1677             BGE_TX_BACKOFF_SEED_MASK);
1678
1679         /* Set inter-packet gap */
1680         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1681
1682         /*
1683          * Specify which ring to use for packets that don't match
1684          * any RX rules.
1685          */
1686         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1687
1688         /*
1689          * Configure number of RX lists. One interrupt distribution
1690          * list, sixteen active lists, one bad frames class.
1691          */
1692         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1693
1694         /* Inialize RX list placement stats mask. */
1695         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1696         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1697
1698         /* Disable host coalescing until we get it set up */
1699         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1700
1701         /* Poll to make sure it's shut down. */
1702         for (i = 0; i < BGE_TIMEOUT; i++) {
1703                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1704                         break;
1705                 DELAY(10);
1706         }
1707
1708         if (i == BGE_TIMEOUT) {
1709                 if_printf(&sc->arpcom.ac_if,
1710                           "host coalescing engine failed to idle\n");
1711                 return(ENXIO);
1712         }
1713
1714         /* Set up host coalescing defaults */
1715         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1716         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1717         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_coal_bds);
1718         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_coal_bds);
1719         if (!BGE_IS_5705_PLUS(sc)) {
1720                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
1721                     sc->bge_rx_coal_ticks_int);
1722                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
1723                     sc->bge_tx_coal_ticks_int);
1724         }
1725         /*
1726          * NOTE:
1727          * The datasheet (57XX-PG105-R) says BCM5705+ do not
1728          * have following two registers; obviously it is wrong.
1729          */
1730         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, sc->bge_rx_coal_bds_int);
1731         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, sc->bge_tx_coal_bds_int);
1732
1733         /* Set up address of statistics block */
1734         if (!BGE_IS_5705_PLUS(sc)) {
1735                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1736                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1737                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1738                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1739
1740                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1741                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1742                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1743         }
1744
1745         /* Set up address of status block */
1746         bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1747         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1748             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1749         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1750             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1751
1752         /*
1753          * Set up status block partail update size.
1754          *
1755          * Because only single TX ring, RX produce ring and Rx return ring
1756          * are used, ask device to update only minimum part of status block
1757          * except for BCM5700 AX/BX, whose status block partial update size
1758          * can't be configured.
1759          */
1760         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1761             sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1762                 /* XXX Actually reserved on BCM5700 AX/BX */
1763                 val = BGE_STATBLKSZ_FULL;
1764         } else {
1765                 val = BGE_STATBLKSZ_32BYTE;
1766         }
1767 #if 0
1768         /*
1769          * Does not seem to have visible effect in both
1770          * bulk data (1472B UDP datagram) and tiny data
1771          * (18B UDP datagram) TX tests.
1772          */
1773         if (!BGE_IS_CRIPPLED(sc))
1774                 val |= BGE_HCCMODE_CLRTICK_TX;
1775 #endif
1776
1777         /* Turn on host coalescing state machine */
1778         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1779
1780         /* Turn on RX BD completion state machine and enable attentions */
1781         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1782             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1783
1784         /* Turn on RX list placement state machine */
1785         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1786
1787         /* Turn on RX list selector state machine. */
1788         if (!BGE_IS_5705_PLUS(sc))
1789                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1790
1791         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1792             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1793             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1794             BGE_MACMODE_FRMHDR_DMA_ENB;
1795
1796         if (sc->bge_flags & BGE_FLAG_TBI)
1797                 val |= BGE_PORTMODE_TBI;
1798         else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1799                 val |= BGE_PORTMODE_GMII;
1800         else
1801                 val |= BGE_PORTMODE_MII;
1802
1803         /* Turn on DMA, clear stats */
1804         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1805
1806         /* Set misc. local control, enable interrupts on attentions */
1807         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1808
1809 #ifdef notdef
1810         /* Assert GPIO pins for PHY reset */
1811         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1812             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1813         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1814             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1815 #endif
1816
1817         /* Turn on DMA completion state machine */
1818         if (!BGE_IS_5705_PLUS(sc))
1819                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1820
1821         /* Turn on write DMA state machine */
1822         val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1823         if (BGE_IS_5755_PLUS(sc)) {
1824                 /* Enable host coalescing bug fix. */
1825                 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1826         }
1827         if (sc->bge_asicrev == BGE_ASICREV_BCM5785) {
1828                 /* Request larger DMA burst size to get better performance. */
1829                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
1830         }
1831         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1832         DELAY(40);
1833
1834         if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
1835             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1836             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1837             sc->bge_asicrev == BGE_ASICREV_BCM57780) {
1838                 /*
1839                  * Enable fix for read DMA FIFO overruns.
1840                  * The fix is to limit the number of RX BDs
1841                  * the hardware would fetch at a fime.
1842                  */
1843                 val = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
1844                 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL,
1845                     val| BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1846         }
1847
1848         /* Turn on read DMA state machine */
1849         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1850         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1851             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1852             sc->bge_asicrev == BGE_ASICREV_BCM57780)
1853                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1854                   BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1855                   BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1856         if (sc->bge_flags & BGE_FLAG_PCIE)
1857                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1858         if (sc->bge_flags & BGE_FLAG_TSO)
1859                 val |= BGE_RDMAMODE_TSO4_ENABLE;
1860         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1861         DELAY(40);
1862
1863         /* Turn on RX data completion state machine */
1864         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1865
1866         /* Turn on RX BD initiator state machine */
1867         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1868
1869         /* Turn on RX data and RX BD initiator state machine */
1870         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1871
1872         /* Turn on Mbuf cluster free state machine */
1873         if (!BGE_IS_5705_PLUS(sc))
1874                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1875
1876         /* Turn on send BD completion state machine */
1877         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1878
1879         /* Turn on send data completion state machine */
1880         val = BGE_SDCMODE_ENABLE;
1881         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1882                 val |= BGE_SDCMODE_CDELAY; 
1883         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1884
1885         /* Turn on send data initiator state machine */
1886         if (sc->bge_flags & BGE_FLAG_TSO)
1887                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
1888                     BGE_SDIMODE_HW_LSO_PRE_DMA);
1889         else
1890                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1891
1892         /* Turn on send BD initiator state machine */
1893         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1894
1895         /* Turn on send BD selector state machine */
1896         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1897
1898         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1899         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1900             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1901
1902         /* ack/clear link change events */
1903         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1904             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1905             BGE_MACSTAT_LINK_CHANGED);
1906         CSR_WRITE_4(sc, BGE_MI_STS, 0);
1907
1908         /*
1909          * Enable attention when the link has changed state for
1910          * devices that use auto polling.
1911          */
1912         if (sc->bge_flags & BGE_FLAG_TBI) {
1913                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1914         } else {
1915                 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
1916                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1917                         DELAY(80);
1918                 }
1919                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1920                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1921                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1922                             BGE_EVTENB_MI_INTERRUPT);
1923                 }
1924         }
1925
1926         /*
1927          * Clear any pending link state attention.
1928          * Otherwise some link state change events may be lost until attention
1929          * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1930          * It's not necessary on newer BCM chips - perhaps enabling link
1931          * state change attentions implies clearing pending attention.
1932          */
1933         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1934             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1935             BGE_MACSTAT_LINK_CHANGED);
1936
1937         /* Enable link state change attentions. */
1938         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1939
1940         return(0);
1941 }
1942
1943 /*
1944  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1945  * against our list and return its name if we find a match. Note
1946  * that since the Broadcom controller contains VPD support, we
1947  * can get the device name string from the controller itself instead
1948  * of the compiled-in string. This is a little slow, but it guarantees
1949  * we'll always announce the right product name.
1950  */
1951 static int
1952 bge_probe(device_t dev)
1953 {
1954         const struct bge_type *t;
1955         uint16_t product, vendor;
1956
1957         product = pci_get_device(dev);
1958         vendor = pci_get_vendor(dev);
1959
1960         for (t = bge_devs; t->bge_name != NULL; t++) {
1961                 if (vendor == t->bge_vid && product == t->bge_did)
1962                         break;
1963         }
1964         if (t->bge_name == NULL)
1965                 return(ENXIO);
1966
1967         device_set_desc(dev, t->bge_name);
1968         return(0);
1969 }
1970
1971 static int
1972 bge_attach(device_t dev)
1973 {
1974         struct ifnet *ifp;
1975         struct bge_softc *sc;
1976         uint32_t hwcfg = 0, misccfg;
1977         int error = 0, rid, capmask;
1978         uint8_t ether_addr[ETHER_ADDR_LEN];
1979         uint16_t product, vendor;
1980         driver_intr_t *intr_func;
1981         uintptr_t mii_priv = 0;
1982         u_int intr_flags;
1983         int msi_enable;
1984
1985         sc = device_get_softc(dev);
1986         sc->bge_dev = dev;
1987         callout_init(&sc->bge_stat_timer);
1988         lwkt_serialize_init(&sc->bge_jslot_serializer);
1989
1990         product = pci_get_device(dev);
1991         vendor = pci_get_vendor(dev);
1992
1993 #ifndef BURN_BRIDGES
1994         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1995                 uint32_t irq, mem;
1996
1997                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
1998                 mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
1999
2000                 device_printf(dev, "chip is in D%d power mode "
2001                     "-- setting to D0\n", pci_get_powerstate(dev));
2002
2003                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
2004
2005                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
2006                 pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
2007         }
2008 #endif  /* !BURN_BRIDGE */
2009
2010         /*
2011          * Map control/status registers.
2012          */
2013         pci_enable_busmaster(dev);
2014
2015         rid = BGE_PCI_BAR0;
2016         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2017             RF_ACTIVE);
2018
2019         if (sc->bge_res == NULL) {
2020                 device_printf(dev, "couldn't map memory\n");
2021                 return ENXIO;
2022         }
2023
2024         sc->bge_btag = rman_get_bustag(sc->bge_res);
2025         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
2026
2027         /* Save various chip information */
2028         sc->bge_chipid =
2029             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2030             BGE_PCIMISCCTL_ASICREV_SHIFT;
2031         if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2032                 /* All chips, which use BGE_PCI_PRODID_ASICREV, have CPMU */
2033                 sc->bge_flags |= BGE_FLAG_CPMU;
2034                 sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2035         }
2036         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2037         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2038
2039         /* Save chipset family. */
2040         switch (sc->bge_asicrev) {
2041         case BGE_ASICREV_BCM5755:
2042         case BGE_ASICREV_BCM5761:
2043         case BGE_ASICREV_BCM5784:
2044         case BGE_ASICREV_BCM5785:
2045         case BGE_ASICREV_BCM5787:
2046         case BGE_ASICREV_BCM57780:
2047             sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2048                 BGE_FLAG_5705_PLUS;
2049             break;
2050
2051         case BGE_ASICREV_BCM5700:
2052         case BGE_ASICREV_BCM5701:
2053         case BGE_ASICREV_BCM5703:
2054         case BGE_ASICREV_BCM5704:
2055                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2056                 break;
2057
2058         case BGE_ASICREV_BCM5714_A0:
2059         case BGE_ASICREV_BCM5780:
2060         case BGE_ASICREV_BCM5714:
2061                 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
2062                 /* Fall through */
2063
2064         case BGE_ASICREV_BCM5750:
2065         case BGE_ASICREV_BCM5752:
2066         case BGE_ASICREV_BCM5906:
2067                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
2068                 /* Fall through */
2069
2070         case BGE_ASICREV_BCM5705:
2071                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
2072                 break;
2073         }
2074
2075         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2076                 sc->bge_flags |= BGE_FLAG_NO_EEPROM;
2077
2078         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
2079         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2080             (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2081              misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2082                 sc->bge_flags |= BGE_FLAG_5788;
2083
2084         /* BCM5755 or higher and BCM5906 have short DMA bug. */
2085         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
2086                 sc->bge_flags |= BGE_FLAG_SHORTDMA;
2087
2088         /*
2089          * Check if this is a PCI-X or PCI Express device.
2090          */
2091         if (BGE_IS_5705_PLUS(sc)) {
2092                 if (pci_is_pcie(dev)) {
2093                         sc->bge_flags |= BGE_FLAG_PCIE;
2094                         sc->bge_pciecap = pci_get_pciecap_ptr(sc->bge_dev);
2095                         pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
2096                 }
2097         } else {
2098                 /*
2099                  * Check if the device is in PCI-X Mode.
2100                  * (This bit is not valid on PCI Express controllers.)
2101                  */
2102                 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
2103                     BGE_PCISTATE_PCI_BUSMODE) == 0) {
2104                         sc->bge_flags |= BGE_FLAG_PCIX;
2105                         sc->bge_pcixcap = pci_get_pcixcap_ptr(sc->bge_dev);
2106                         sc->bge_mbox_reorder = device_getenv_int(sc->bge_dev,
2107                             "mbox_reorder", 0);
2108                 }
2109         }
2110         device_printf(dev, "CHIP ID 0x%08x; "
2111                       "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2112                       sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2113                       (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
2114                       : ((sc->bge_flags & BGE_FLAG_PCIE) ?
2115                         "PCI-E" : "PCI"));
2116
2117         /*
2118          * The 40bit DMA bug applies to the 5714/5715 controllers and is
2119          * not actually a MAC controller bug but an issue with the embedded
2120          * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2121          */
2122         if ((sc->bge_flags & BGE_FLAG_PCIX) &&
2123             (BGE_IS_5714_FAMILY(sc) || device_getenv_int(dev, "dma40b", 0)))
2124                 sc->bge_flags |= BGE_FLAG_MAXADDR_40BIT;
2125
2126         /*
2127          * When using the BCM5701 in PCI-X mode, data corruption has
2128          * been observed in the first few bytes of some received packets.
2129          * Aligning the packet buffer in memory eliminates the corruption.
2130          * Unfortunately, this misaligns the packet payloads.  On platforms
2131          * which do not support unaligned accesses, we will realign the
2132          * payloads by copying the received packets.
2133          */
2134         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2135             (sc->bge_flags & BGE_FLAG_PCIX))
2136                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2137
2138         if (!BGE_IS_CRIPPLED(sc)) {
2139                 if (device_getenv_int(dev, "status_tag", 1)) {
2140                         sc->bge_flags |= BGE_FLAG_STATUS_TAG;
2141                         sc->bge_pci_miscctl = BGE_PCIMISCCTL_TAGGED_STATUS;
2142                         if (bootverbose)
2143                                 device_printf(dev, "enable status tag\n");
2144                 }
2145         }
2146
2147         if (BGE_IS_5755_PLUS(sc)) {
2148                 /*
2149                  * BCM5754 and BCM5787 shares the same ASIC id so
2150                  * explicit device id check is required.
2151                  * Due to unknown reason TSO does not work on BCM5755M.
2152                  */
2153                 if (product != PCI_PRODUCT_BROADCOM_BCM5754 &&
2154                     product != PCI_PRODUCT_BROADCOM_BCM5754M &&
2155                     product != PCI_PRODUCT_BROADCOM_BCM5755M)
2156                         sc->bge_flags |= BGE_FLAG_TSO;
2157         }
2158
2159         /*
2160          * Set various PHY quirk flags.
2161          */
2162
2163         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2164              sc->bge_asicrev == BGE_ASICREV_BCM5701) &&
2165             pci_get_subvendor(dev) == PCI_VENDOR_DELL)
2166                 mii_priv |= BRGPHY_FLAG_NO_3LED;
2167
2168         capmask = MII_CAPMASK_DEFAULT;
2169         if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2170              (misccfg == 0x4000 || misccfg == 0x8000)) ||
2171             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2172              vendor == PCI_VENDOR_BROADCOM &&
2173              (product == PCI_PRODUCT_BROADCOM_BCM5901 ||
2174               product == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2175               product == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2176             (vendor == PCI_VENDOR_BROADCOM &&
2177              (product == PCI_PRODUCT_BROADCOM_BCM5751F ||
2178               product == PCI_PRODUCT_BROADCOM_BCM5753F ||
2179               product == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2180             product == PCI_PRODUCT_BROADCOM_BCM57790 ||
2181             sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2182                 /* 10/100 only */
2183                 capmask &= ~BMSR_EXTSTAT;
2184         }
2185
2186         mii_priv |= BRGPHY_FLAG_WIRESPEED;
2187         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2188             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2189              (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2190               sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2191             sc->bge_asicrev == BGE_ASICREV_BCM5906)
2192                 mii_priv &= ~BRGPHY_FLAG_WIRESPEED;
2193
2194         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2195             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2196                 mii_priv |= BRGPHY_FLAG_CRC_BUG;
2197
2198         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2199             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2200                 mii_priv |= BRGPHY_FLAG_ADC_BUG;
2201
2202         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2203                 mii_priv |= BRGPHY_FLAG_5704_A0;
2204
2205         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2206                 mii_priv |= BRGPHY_FLAG_5906;
2207
2208         if (BGE_IS_5705_PLUS(sc) &&
2209             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2210             /* sc->bge_asicrev != BGE_ASICREV_BCM5717 && */
2211             sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2212             /* sc->bge_asicrev != BGE_ASICREV_BCM57765 && */
2213             sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2214                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2215                     sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2216                     sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2217                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2218                         if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
2219                             product != PCI_PRODUCT_BROADCOM_BCM5756)
2220                                 mii_priv |= BRGPHY_FLAG_JITTER_BUG;
2221                         if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
2222                                 mii_priv |= BRGPHY_FLAG_ADJUST_TRIM;
2223                 } else {
2224                         mii_priv |= BRGPHY_FLAG_BER_BUG;
2225                 }
2226         }
2227
2228         /*
2229          * Allocate interrupt
2230          */
2231         msi_enable = bge_msi_enable;
2232         if ((sc->bge_flags & BGE_FLAG_STATUS_TAG) == 0) {
2233                 /* If "tagged status" is disabled, don't enable MSI */
2234                 msi_enable = 0;
2235         } else if (msi_enable) {
2236                 msi_enable = 0; /* Disable by default */
2237                 if (BGE_IS_575X_PLUS(sc)) {
2238                         msi_enable = 1;
2239                         /* XXX we filter all 5714 chips */
2240                         if (sc->bge_asicrev == BGE_ASICREV_BCM5714 ||
2241                             (sc->bge_asicrev == BGE_ASICREV_BCM5750 &&
2242                              (sc->bge_chiprev == BGE_CHIPREV_5750_AX ||
2243                               sc->bge_chiprev == BGE_CHIPREV_5750_BX)))
2244                                 msi_enable = 0;
2245                         else if (BGE_IS_5755_PLUS(sc) ||
2246                             sc->bge_asicrev == BGE_ASICREV_BCM5906)
2247                                 sc->bge_flags |= BGE_FLAG_ONESHOT_MSI;
2248                 }
2249         }
2250         if (msi_enable) {
2251                 if (pci_find_extcap(dev, PCIY_MSI, &sc->bge_msicap)) {
2252                         device_printf(dev, "no MSI capability\n");
2253                         msi_enable = 0;
2254                 }
2255         }
2256
2257         sc->bge_irq_type = pci_alloc_1intr(dev, msi_enable, &sc->bge_irq_rid,
2258             &intr_flags);
2259
2260         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->bge_irq_rid,
2261             intr_flags);
2262         if (sc->bge_irq == NULL) {
2263                 device_printf(dev, "couldn't map interrupt\n");
2264                 error = ENXIO;
2265                 goto fail;
2266         }
2267
2268         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2269                 bge_enable_msi(sc);
2270         else
2271                 sc->bge_flags &= ~BGE_FLAG_ONESHOT_MSI;
2272
2273         /* Initialize if_name earlier, so if_printf could be used */
2274         ifp = &sc->arpcom.ac_if;
2275         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2276
2277         /* Try to reset the chip. */
2278         bge_reset(sc);
2279
2280         if (bge_chipinit(sc)) {
2281                 device_printf(dev, "chip initialization failed\n");
2282                 error = ENXIO;
2283                 goto fail;
2284         }
2285
2286         /*
2287          * Get station address
2288          */
2289         error = bge_get_eaddr(sc, ether_addr);
2290         if (error) {
2291                 device_printf(dev, "failed to read station address\n");
2292                 goto fail;
2293         }
2294
2295         /* 5705/5750 limits RX return ring to 512 entries. */
2296         if (BGE_IS_5705_PLUS(sc))
2297                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2298         else
2299                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2300
2301         error = bge_dma_alloc(sc);
2302         if (error)
2303                 goto fail;
2304
2305         /* Set default tuneable values. */
2306         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2307         sc->bge_rx_coal_ticks = BGE_RX_COAL_TICKS_DEF;
2308         sc->bge_tx_coal_ticks = BGE_TX_COAL_TICKS_DEF;
2309         sc->bge_rx_coal_bds = BGE_RX_COAL_BDS_DEF;
2310         sc->bge_tx_coal_bds = BGE_TX_COAL_BDS_DEF;
2311         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2312                 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_DEF;
2313                 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_DEF;
2314                 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_DEF;
2315                 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_DEF;
2316         } else {
2317                 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_MIN;
2318                 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_MIN;
2319                 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_MIN;
2320                 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_MIN;
2321         }
2322
2323         /* Set up TX spare and reserved descriptor count */
2324         if (sc->bge_flags & BGE_FLAG_TSO) {
2325                 sc->bge_txspare = BGE_NSEG_SPARE_TSO;
2326                 sc->bge_txrsvd = BGE_NSEG_RSVD_TSO;
2327         } else {
2328                 sc->bge_txspare = BGE_NSEG_SPARE;
2329                 sc->bge_txrsvd = BGE_NSEG_RSVD;
2330         }
2331
2332         /* Set up ifnet structure */
2333         ifp->if_softc = sc;
2334         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2335         ifp->if_ioctl = bge_ioctl;
2336         ifp->if_start = bge_start;
2337 #ifdef DEVICE_POLLING
2338         ifp->if_poll = bge_poll;
2339 #endif
2340         ifp->if_watchdog = bge_watchdog;
2341         ifp->if_init = bge_init;
2342         ifp->if_mtu = ETHERMTU;
2343         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2344         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2345         ifq_set_ready(&ifp->if_snd);
2346
2347         /*
2348          * 5700 B0 chips do not support checksumming correctly due
2349          * to hardware bugs.
2350          */
2351         if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
2352                 ifp->if_capabilities |= IFCAP_HWCSUM;
2353                 ifp->if_hwassist |= BGE_CSUM_FEATURES;
2354         }
2355         if (sc->bge_flags & BGE_FLAG_TSO) {
2356                 ifp->if_capabilities |= IFCAP_TSO;
2357                 ifp->if_hwassist |= CSUM_TSO;
2358         }
2359         ifp->if_capenable = ifp->if_capabilities;
2360
2361         /*
2362          * Figure out what sort of media we have by checking the
2363          * hardware config word in the first 32k of NIC internal memory,
2364          * or fall back to examining the EEPROM if necessary.
2365          * Note: on some BCM5700 cards, this value appears to be unset.
2366          * If that's the case, we have to rely on identifying the NIC
2367          * by its PCI subsystem ID, as we do below for the SysKonnect
2368          * SK-9D41.
2369          */
2370         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2371                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2372         } else {
2373                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2374                                     sizeof(hwcfg))) {
2375                         device_printf(dev, "failed to read EEPROM\n");
2376                         error = ENXIO;
2377                         goto fail;
2378                 }
2379                 hwcfg = ntohl(hwcfg);
2380         }
2381
2382         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2383         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2384             (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2385                 if (BGE_IS_5714_FAMILY(sc))
2386                         sc->bge_flags |= BGE_FLAG_MII_SERDES;
2387                 else
2388                         sc->bge_flags |= BGE_FLAG_TBI;
2389         }
2390
2391         /* Setup MI MODE */
2392         if (sc->bge_flags & BGE_FLAG_CPMU)
2393                 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2394         else
2395                 sc->bge_mi_mode = BGE_MIMODE_BASE;
2396         if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2397                 /* Enable auto polling for BCM570[0-5]. */
2398                 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2399         }
2400
2401         /* Setup link status update stuffs */
2402         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2403             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
2404                 sc->bge_link_upd = bge_bcm5700_link_upd;
2405                 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
2406         } else if (sc->bge_flags & BGE_FLAG_TBI) {
2407                 sc->bge_link_upd = bge_tbi_link_upd;
2408                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2409         } else if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2410                 sc->bge_link_upd = bge_autopoll_link_upd;
2411                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2412         } else {
2413                 sc->bge_link_upd = bge_copper_link_upd;
2414                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2415         }
2416
2417         /*
2418          * Broadcom's own driver always assumes the internal
2419          * PHY is at GMII address 1.  On some chips, the PHY responds
2420          * to accesses at all addresses, which could cause us to
2421          * bogusly attach the PHY 32 times at probe type.  Always
2422          * restricting the lookup to address 1 is simpler than
2423          * trying to figure out which chips revisions should be
2424          * special-cased.
2425          */
2426         sc->bge_phyno = 1;
2427
2428         if (sc->bge_flags & BGE_FLAG_TBI) {
2429                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
2430                     bge_ifmedia_upd, bge_ifmedia_sts);
2431                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2432                 ifmedia_add(&sc->bge_ifmedia,
2433                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2434                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2435                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2436                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2437         } else {
2438                 struct mii_probe_args mii_args;
2439
2440                 mii_probe_args_init(&mii_args, bge_ifmedia_upd, bge_ifmedia_sts);
2441                 mii_args.mii_probemask = 1 << sc->bge_phyno;
2442                 mii_args.mii_capmask = capmask;
2443                 mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2444                 mii_args.mii_priv = mii_priv;
2445
2446                 error = mii_probe(dev, &sc->bge_miibus, &mii_args);
2447                 if (error) {
2448                         device_printf(dev, "MII without any PHY!\n");
2449                         goto fail;
2450                 }
2451         }
2452
2453         /*
2454          * Create sysctl nodes.
2455          */
2456         sysctl_ctx_init(&sc->bge_sysctl_ctx);
2457         sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
2458                                               SYSCTL_STATIC_CHILDREN(_hw),
2459                                               OID_AUTO,
2460                                               device_get_nameunit(dev),
2461                                               CTLFLAG_RD, 0, "");
2462         if (sc->bge_sysctl_tree == NULL) {
2463                 device_printf(dev, "can't add sysctl node\n");
2464                 error = ENXIO;
2465                 goto fail;
2466         }
2467
2468         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2469                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2470                         OID_AUTO, "rx_coal_ticks",
2471                         CTLTYPE_INT | CTLFLAG_RW,
2472                         sc, 0, bge_sysctl_rx_coal_ticks, "I",
2473                         "Receive coalescing ticks (usec).");
2474         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2475                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2476                         OID_AUTO, "tx_coal_ticks",
2477                         CTLTYPE_INT | CTLFLAG_RW,
2478                         sc, 0, bge_sysctl_tx_coal_ticks, "I",
2479                         "Transmit coalescing ticks (usec).");
2480         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2481                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2482                         OID_AUTO, "rx_coal_bds",
2483                         CTLTYPE_INT | CTLFLAG_RW,
2484                         sc, 0, bge_sysctl_rx_coal_bds, "I",
2485                         "Receive max coalesced BD count.");
2486         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2487                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2488                         OID_AUTO, "tx_coal_bds",
2489                         CTLTYPE_INT | CTLFLAG_RW,
2490                         sc, 0, bge_sysctl_tx_coal_bds, "I",
2491                         "Transmit max coalesced BD count.");
2492         if (sc->bge_flags & BGE_FLAG_PCIE) {
2493                 /*
2494                  * A common design characteristic for many Broadcom
2495                  * client controllers is that they only support a
2496                  * single outstanding DMA read operation on the PCIe
2497                  * bus. This means that it will take twice as long to
2498                  * fetch a TX frame that is split into header and
2499                  * payload buffers as it does to fetch a single,
2500                  * contiguous TX frame (2 reads vs. 1 read). For these
2501                  * controllers, coalescing buffers to reduce the number
2502                  * of memory reads is effective way to get maximum
2503                  * performance(about 940Mbps).  Without collapsing TX
2504                  * buffers the maximum TCP bulk transfer performance
2505                  * is about 850Mbps. However forcing coalescing mbufs
2506                  * consumes a lot of CPU cycles, so leave it off by
2507                  * default.
2508                  */
2509                 SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2510                                SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2511                                OID_AUTO, "force_defrag", CTLFLAG_RW,
2512                                &sc->bge_force_defrag, 0,
2513                                "Force defragment on TX path");
2514         }
2515         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2516                 if (!BGE_IS_5705_PLUS(sc)) {
2517                         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2518                             SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2519                             "rx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2520                             sc, 0, bge_sysctl_rx_coal_ticks_int, "I",
2521                             "Receive coalescing ticks "
2522                             "during interrupt (usec).");
2523                         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2524                             SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2525                             "tx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2526                             sc, 0, bge_sysctl_tx_coal_ticks_int, "I",
2527                             "Transmit coalescing ticks "
2528                             "during interrupt (usec).");
2529                 }
2530                 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2531                     SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2532                     "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2533                     sc, 0, bge_sysctl_rx_coal_bds_int, "I",
2534                     "Receive max coalesced BD count during interrupt.");
2535                 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2536                     SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2537                     "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2538                     sc, 0, bge_sysctl_tx_coal_bds_int, "I",
2539                     "Transmit max coalesced BD count during interrupt.");
2540         }
2541
2542         /*
2543          * Call MI attach routine.
2544          */
2545         ether_ifattach(ifp, ether_addr, NULL);
2546
2547         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2548                 if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
2549                         intr_func = bge_msi_oneshot;
2550                         if (bootverbose)
2551                                 device_printf(dev, "oneshot MSI\n");
2552                 } else {
2553                         intr_func = bge_msi;
2554                 }
2555         } else if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2556                 intr_func = bge_intr_legacy;
2557         } else {
2558                 intr_func = bge_intr_crippled;
2559         }
2560         error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE, intr_func, sc,
2561             &sc->bge_intrhand, ifp->if_serializer);
2562         if (error) {
2563                 ether_ifdetach(ifp);
2564                 device_printf(dev, "couldn't set up irq\n");
2565                 goto fail;
2566         }
2567
2568         ifp->if_cpuid = rman_get_cpuid(sc->bge_irq);
2569         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
2570
2571         return(0);
2572 fail:
2573         bge_detach(dev);
2574         return(error);
2575 }
2576
2577 static int
2578 bge_detach(device_t dev)
2579 {
2580         struct bge_softc *sc = device_get_softc(dev);
2581
2582         if (device_is_attached(dev)) {
2583                 struct ifnet *ifp = &sc->arpcom.ac_if;
2584
2585                 lwkt_serialize_enter(ifp->if_serializer);
2586                 bge_stop(sc);
2587                 bge_reset(sc);
2588                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2589                 lwkt_serialize_exit(ifp->if_serializer);
2590
2591                 ether_ifdetach(ifp);
2592         }
2593
2594         if (sc->bge_flags & BGE_FLAG_TBI)
2595                 ifmedia_removeall(&sc->bge_ifmedia);
2596         if (sc->bge_miibus)
2597                 device_delete_child(dev, sc->bge_miibus);
2598         bus_generic_detach(dev);
2599
2600         if (sc->bge_irq != NULL) {
2601                 bus_release_resource(dev, SYS_RES_IRQ, sc->bge_irq_rid,
2602                     sc->bge_irq);
2603         }
2604         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2605                 pci_release_msi(dev);
2606
2607         if (sc->bge_res != NULL) {
2608                 bus_release_resource(dev, SYS_RES_MEMORY,
2609                     BGE_PCI_BAR0, sc->bge_res);
2610         }
2611
2612         if (sc->bge_sysctl_tree != NULL)
2613                 sysctl_ctx_free(&sc->bge_sysctl_ctx);
2614
2615         bge_dma_free(sc);
2616
2617         return 0;
2618 }
2619
2620 static void
2621 bge_reset(struct bge_softc *sc)
2622 {
2623         device_t dev;
2624         uint32_t cachesize, command, pcistate, reset;
2625         void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2626         int i, val = 0;
2627
2628         dev = sc->bge_dev;
2629
2630         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2631             sc->bge_asicrev != BGE_ASICREV_BCM5906) {
2632                 if (sc->bge_flags & BGE_FLAG_PCIE)
2633                         write_op = bge_writemem_direct;
2634                 else
2635                         write_op = bge_writemem_ind;
2636         } else {
2637                 write_op = bge_writereg_ind;
2638         }
2639
2640         /* Save some important PCI state. */
2641         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2642         command = pci_read_config(dev, BGE_PCI_CMD, 4);
2643         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2644
2645         pci_write_config(dev, BGE_PCI_MISC_CTL,
2646             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2647             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2648             sc->bge_pci_miscctl, 4);
2649
2650         /* Disable fastboot on controllers that support it. */
2651         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2652             BGE_IS_5755_PLUS(sc)) {
2653                 if (bootverbose)
2654                         if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2655                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2656         }
2657
2658         /*
2659          * Write the magic number to SRAM at offset 0xB50.
2660          * When firmware finishes its initialization it will
2661          * write ~BGE_MAGIC_NUMBER to the same location.
2662          */
2663         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2664
2665         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2666
2667         /* XXX: Broadcom Linux driver. */
2668         if (sc->bge_flags & BGE_FLAG_PCIE) {
2669                 /* Force PCI-E 1.0a mode */
2670                 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2671                     CSR_READ_4(sc, BGE_PCIE_PHY_TSTCTL) ==
2672                     (BGE_PCIE_PHY_TSTCTL_PSCRAM |
2673                      BGE_PCIE_PHY_TSTCTL_PCIE10)) {
2674                         CSR_WRITE_4(sc, BGE_PCIE_PHY_TSTCTL,
2675                             BGE_PCIE_PHY_TSTCTL_PSCRAM);
2676                 }
2677                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2678                         /* Prevent PCIE link training during global reset */
2679                         CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2680                         reset |= (1<<29);
2681                 }
2682         }
2683
2684         /* 
2685          * Set GPHY Power Down Override to leave GPHY
2686          * powered up in D0 uninitialized.
2687          */
2688         if (BGE_IS_5705_PLUS(sc) && (sc->bge_flags & BGE_FLAG_CPMU) == 0)
2689                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2690
2691         /* Issue global reset */
2692         write_op(sc, BGE_MISC_CFG, reset);
2693
2694         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2695                 uint32_t status, ctrl;
2696
2697                 status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2698                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2699                     status | BGE_VCPU_STATUS_DRV_RESET);
2700                 ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2701                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2702                     ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2703         }
2704
2705         DELAY(1000);
2706
2707         /* XXX: Broadcom Linux driver. */
2708         if (sc->bge_flags & BGE_FLAG_PCIE) {
2709                 uint16_t devctl;
2710
2711                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2712                         uint32_t v;
2713
2714                         DELAY(500000); /* wait for link training to complete */
2715                         v = pci_read_config(dev, 0xc4, 4);
2716                         pci_write_config(dev, 0xc4, v | (1<<15), 4);
2717                 }
2718
2719                 devctl = pci_read_config(dev,
2720                     sc->bge_pciecap + PCIER_DEVCTRL, 2);
2721
2722                 /* Disable no snoop and disable relaxed ordering. */
2723                 devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2724
2725                 /* Old PCI-E chips only support 128 bytes Max PayLoad Size. */
2726                 if ((sc->bge_flags & BGE_FLAG_CPMU) == 0) {
2727                         devctl &= ~PCIEM_DEVCTL_MAX_PAYLOAD_MASK;
2728                         devctl |= PCIEM_DEVCTL_MAX_PAYLOAD_128;
2729                 }
2730
2731                 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVCTRL,
2732                     devctl, 2);
2733
2734                 /* Clear error status. */
2735                 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVSTS,
2736                     PCIEM_DEVSTS_CORR_ERR |
2737                     PCIEM_DEVSTS_NFATAL_ERR |
2738                     PCIEM_DEVSTS_FATAL_ERR |
2739                     PCIEM_DEVSTS_UNSUPP_REQ, 2);
2740         }
2741
2742         /* Reset some of the PCI state that got zapped by reset */
2743         pci_write_config(dev, BGE_PCI_MISC_CTL,
2744             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2745             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2746             sc->bge_pci_miscctl, 4);
2747         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2748         pci_write_config(dev, BGE_PCI_CMD, command, 4);
2749         write_op(sc, BGE_MISC_CFG, (65 << 1));
2750
2751         /*
2752          * Disable PCI-X relaxed ordering to ensure status block update
2753          * comes first then packet buffer DMA. Otherwise driver may
2754          * read stale status block.
2755          */
2756         if (sc->bge_flags & BGE_FLAG_PCIX) {
2757                 uint16_t devctl;
2758
2759                 devctl = pci_read_config(dev,
2760                     sc->bge_pcixcap + PCIXR_COMMAND, 2);
2761                 devctl &= ~PCIXM_COMMAND_ERO;
2762                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
2763                         devctl &= ~PCIXM_COMMAND_MAX_READ;
2764                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
2765                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2766                         devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
2767                             PCIXM_COMMAND_MAX_READ);
2768                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
2769                 }
2770                 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
2771                     devctl, 2);
2772         }
2773
2774         /*
2775          * Enable memory arbiter and re-enable MSI if necessary.
2776          */
2777         if (BGE_IS_5714_FAMILY(sc)) {
2778                 uint32_t val;
2779
2780                 if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2781                         /*
2782                          * Resetting BCM5714 family will clear MSI
2783                          * enable bit; restore it after resetting.
2784                          */
2785                         PCI_SETBIT(sc->bge_dev, sc->bge_msicap + PCIR_MSI_CTRL,
2786                             PCIM_MSICTRL_MSI_ENABLE, 2);
2787                         BGE_SETBIT(sc, BGE_MSI_MODE, BGE_MSIMODE_ENABLE);
2788                 }
2789                 val = CSR_READ_4(sc, BGE_MARB_MODE);
2790                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2791         } else {
2792                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2793         }
2794
2795         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2796                 for (i = 0; i < BGE_TIMEOUT; i++) {
2797                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2798                         if (val & BGE_VCPU_STATUS_INIT_DONE)
2799                                 break;
2800                         DELAY(100);
2801                 }
2802                 if (i == BGE_TIMEOUT) {
2803                         if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2804                         return;
2805                 }
2806         } else {
2807                 /*
2808                  * Poll until we see the 1's complement of the magic number.
2809                  * This indicates that the firmware initialization
2810                  * is complete.
2811                  */
2812                 for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) {
2813                         val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2814                         if (val == ~BGE_MAGIC_NUMBER)
2815                                 break;
2816                         DELAY(10);
2817                 }
2818                 if (i == BGE_FIRMWARE_TIMEOUT) {
2819                         if_printf(&sc->arpcom.ac_if, "firmware handshake "
2820                                   "timed out, found 0x%08x\n", val);
2821                 }
2822         }
2823
2824         /*
2825          * XXX Wait for the value of the PCISTATE register to
2826          * return to its original pre-reset state. This is a
2827          * fairly good indicator of reset completion. If we don't
2828          * wait for the reset to fully complete, trying to read
2829          * from the device's non-PCI registers may yield garbage
2830          * results.
2831          */
2832         for (i = 0; i < BGE_TIMEOUT; i++) {
2833                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2834                         break;
2835                 DELAY(10);
2836         }
2837
2838         /* Fix up byte swapping */
2839         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2840             BGE_MODECTL_BYTESWAP_DATA);
2841
2842         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2843
2844         /*
2845          * The 5704 in TBI mode apparently needs some special
2846          * adjustment to insure the SERDES drive level is set
2847          * to 1.2V.
2848          */
2849         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2850             (sc->bge_flags & BGE_FLAG_TBI)) {
2851                 uint32_t serdescfg;
2852
2853                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2854                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2855                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2856         }
2857
2858         /* XXX: Broadcom Linux driver. */
2859         if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2860             sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
2861             sc->bge_asicrev != BGE_ASICREV_BCM5785) {
2862                 uint32_t v;
2863
2864                 /* Enable Data FIFO protection. */
2865                 v = CSR_READ_4(sc, BGE_PCIE_TLDLPL_PORT);
2866                 CSR_WRITE_4(sc, BGE_PCIE_TLDLPL_PORT, v | (1 << 25));
2867         }
2868
2869         DELAY(10000);
2870 }
2871
2872 /*
2873  * Frame reception handling. This is called if there's a frame
2874  * on the receive return list.
2875  *
2876  * Note: we have to be able to handle two possibilities here:
2877  * 1) the frame is from the jumbo recieve ring
2878  * 2) the frame is from the standard receive ring
2879  */
2880
2881 static void
2882 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod)
2883 {
2884         struct ifnet *ifp;
2885         int stdcnt = 0, jumbocnt = 0;
2886
2887         ifp = &sc->arpcom.ac_if;
2888
2889         while (sc->bge_rx_saved_considx != rx_prod) {
2890                 struct bge_rx_bd        *cur_rx;
2891                 uint32_t                rxidx;
2892                 struct mbuf             *m = NULL;
2893                 uint16_t                vlan_tag = 0;
2894                 int                     have_tag = 0;
2895
2896                 cur_rx =
2897             &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
2898
2899                 rxidx = cur_rx->bge_idx;
2900                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2901                 logif(rx_pkt);
2902
2903                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2904                         have_tag = 1;
2905                         vlan_tag = cur_rx->bge_vlan_tag;
2906                 }
2907
2908                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2909                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2910                         jumbocnt++;
2911
2912                         if (rxidx != sc->bge_jumbo) {
2913                                 ifp->if_ierrors++;
2914                                 if_printf(ifp, "sw jumbo index(%d) "
2915                                     "and hw jumbo index(%d) mismatch, drop!\n",
2916                                     sc->bge_jumbo, rxidx);
2917                                 bge_setup_rxdesc_jumbo(sc, rxidx);
2918                                 continue;
2919                         }
2920
2921                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf;
2922                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2923                                 ifp->if_ierrors++;
2924                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2925                                 continue;
2926                         }
2927                         if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) {
2928                                 ifp->if_ierrors++;
2929                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2930                                 continue;
2931                         }
2932                 } else {
2933                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2934                         stdcnt++;
2935
2936                         if (rxidx != sc->bge_std) {
2937                                 ifp->if_ierrors++;
2938                                 if_printf(ifp, "sw std index(%d) "
2939                                     "and hw std index(%d) mismatch, drop!\n",
2940                                     sc->bge_std, rxidx);
2941                                 bge_setup_rxdesc_std(sc, rxidx);
2942                                 continue;
2943                         }
2944
2945                         m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf;
2946                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2947                                 ifp->if_ierrors++;
2948                                 bge_setup_rxdesc_std(sc, sc->bge_std);
2949                                 continue;
2950                         }
2951                         if (bge_newbuf_std(sc, sc->bge_std, 0)) {
2952                                 ifp->if_ierrors++;
2953                                 bge_setup_rxdesc_std(sc, sc->bge_std);
2954                                 continue;
2955                         }
2956                 }
2957
2958                 ifp->if_ipackets++;
2959 #if !defined(__i386__) && !defined(__x86_64__)
2960                 /*
2961                  * The x86 allows unaligned accesses, but for other
2962                  * platforms we must make sure the payload is aligned.
2963                  */
2964                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
2965                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2966                             cur_rx->bge_len);
2967                         m->m_data += ETHER_ALIGN;
2968                 }
2969 #endif
2970                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2971                 m->m_pkthdr.rcvif = ifp;
2972
2973                 if (ifp->if_capenable & IFCAP_RXCSUM) {
2974                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2975                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2976                                 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2977                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2978                         }
2979                         if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
2980                             m->m_pkthdr.len >= BGE_MIN_FRAMELEN) {
2981                                 m->m_pkthdr.csum_data =
2982                                         cur_rx->bge_tcp_udp_csum;
2983                                 m->m_pkthdr.csum_flags |=
2984                                         CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2985                         }
2986                 }
2987
2988                 /*
2989                  * If we received a packet with a vlan tag, pass it
2990                  * to vlan_input() instead of ether_input().
2991                  */
2992                 if (have_tag) {
2993                         m->m_flags |= M_VLANTAG;
2994                         m->m_pkthdr.ether_vlantag = vlan_tag;
2995                         have_tag = vlan_tag = 0;
2996                 }
2997                 ifp->if_input(ifp, m);
2998         }
2999
3000         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3001         if (stdcnt)
3002                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3003         if (jumbocnt)
3004                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3005 }
3006
3007 static void
3008 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3009 {
3010         struct ifnet *ifp;
3011
3012         ifp = &sc->arpcom.ac_if;
3013
3014         /*
3015          * Go through our tx ring and free mbufs for those
3016          * frames that have been sent.
3017          */
3018         while (sc->bge_tx_saved_considx != tx_cons) {
3019                 uint32_t idx = 0;
3020
3021                 idx = sc->bge_tx_saved_considx;
3022                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3023                         ifp->if_opackets++;
3024                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3025                             sc->bge_cdata.bge_tx_dmamap[idx]);
3026                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3027                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
3028                 }
3029                 sc->bge_txcnt--;
3030                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3031                 logif(tx_pkt);
3032         }
3033
3034         if ((BGE_TX_RING_CNT - sc->bge_txcnt) >=
3035             (sc->bge_txrsvd + sc->bge_txspare))
3036                 ifp->if_flags &= ~IFF_OACTIVE;
3037
3038         if (sc->bge_txcnt == 0)
3039                 ifp->if_timer = 0;
3040
3041         if (!ifq_is_empty(&ifp->if_snd))
3042                 if_devstart(ifp);
3043 }
3044
3045 #ifdef DEVICE_POLLING
3046
3047 static void
3048 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3049 {
3050         struct bge_softc *sc = ifp->if_softc;
3051         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3052         uint16_t rx_prod, tx_cons;
3053
3054         switch(cmd) {
3055         case POLL_REGISTER:
3056                 bge_disable_intr(sc);
3057                 break;
3058         case POLL_DEREGISTER:
3059                 bge_enable_intr(sc);
3060                 break;
3061         case POLL_AND_CHECK_STATUS:
3062                 /*
3063                  * Process link state changes.
3064                  */
3065                 bge_link_poll(sc);
3066                 /* Fall through */
3067         case POLL_ONLY:
3068                 if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
3069                         sc->bge_status_tag = sblk->bge_status_tag;
3070                         /*
3071                          * Use a load fence to ensure that status_tag
3072                          * is saved  before rx_prod and tx_cons.
3073                          */
3074                         cpu_lfence();
3075                 }
3076                 rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3077                 tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3078                 if (ifp->if_flags & IFF_RUNNING) {
3079                         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3080                         if (sc->bge_rx_saved_considx != rx_prod)
3081                                 bge_rxeof(sc, rx_prod);
3082
3083                         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3084                         if (sc->bge_tx_saved_considx != tx_cons)
3085                                 bge_txeof(sc, tx_cons);
3086                 }
3087                 break;
3088         }
3089 }
3090
3091 #endif
3092
3093 static void
3094 bge_intr_crippled(void *xsc)
3095 {
3096         struct bge_softc *sc = xsc;
3097         struct ifnet *ifp = &sc->arpcom.ac_if;
3098
3099         logif(intr);
3100
3101         /*
3102          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3103          * disable interrupts by writing nonzero like we used to, since with
3104          * our current organization this just gives complications and
3105          * pessimizations for re-enabling interrupts.  We used to have races
3106          * instead of the necessary complications.  Disabling interrupts
3107          * would just reduce the chance of a status update while we are
3108          * running (by switching to the interrupt-mode coalescence
3109          * parameters), but this chance is already very low so it is more
3110          * efficient to get another interrupt than prevent it.
3111          *
3112          * We do the ack first to ensure another interrupt if there is a
3113          * status update after the ack.  We don't check for the status
3114          * changing later because it is more efficient to get another
3115          * interrupt than prevent it, not quite as above (not checking is
3116          * a smaller optimization than not toggling the interrupt enable,
3117          * since checking doesn't involve PCI accesses and toggling require
3118          * the status check).  So toggling would probably be a pessimization
3119          * even with MSI.  It would only be needed for using a task queue.
3120          */
3121         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3122
3123         /*
3124          * Process link state changes.
3125          */
3126         bge_link_poll(sc);
3127
3128         if (ifp->if_flags & IFF_RUNNING) {
3129                 struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3130                 uint16_t rx_prod, tx_cons;
3131
3132                 rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3133                 if (sc->bge_rx_saved_considx != rx_prod)
3134                         bge_rxeof(sc, rx_prod);
3135
3136                 tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3137                 if (sc->bge_tx_saved_considx != tx_cons)
3138                         bge_txeof(sc, tx_cons);
3139         }
3140
3141         if (sc->bge_coal_chg)
3142                 bge_coal_change(sc);
3143 }
3144
3145 static void
3146 bge_intr_legacy(void *xsc)
3147 {
3148         struct bge_softc *sc = xsc;
3149         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3150
3151         if (sc->bge_status_tag == sblk->bge_status_tag) {
3152                 uint32_t val;
3153
3154                 val = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3155                 if (val & BGE_PCISTAT_INTR_NOTACT)
3156                         return;
3157         }
3158
3159         /*
3160          * NOTE:
3161          * Interrupt will have to be disabled if tagged status
3162          * is used, else interrupt will always be asserted on
3163          * certain chips (at least on BCM5750 AX/BX).
3164          */
3165         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3166
3167         bge_intr(sc);
3168 }
3169
3170 static void
3171 bge_msi(void *xsc)
3172 {
3173         struct bge_softc *sc = xsc;
3174
3175         /* Disable interrupt first */
3176         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3177         bge_intr(sc);
3178 }
3179
3180 static void
3181 bge_msi_oneshot(void *xsc)
3182 {
3183         bge_intr(xsc);
3184 }
3185
3186 static void
3187 bge_intr(struct bge_softc *sc)
3188 {
3189         struct ifnet *ifp = &sc->arpcom.ac_if;
3190         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3191         uint16_t rx_prod, tx_cons;
3192         uint32_t status;
3193
3194         sc->bge_status_tag = sblk->bge_status_tag;
3195         /*
3196          * Use a load fence to ensure that status_tag is saved 
3197          * before rx_prod, tx_cons and status.
3198          */
3199         cpu_lfence();
3200
3201         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3202         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3203         status = sblk->bge_status;
3204
3205         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bge_link_evt)
3206                 bge_link_poll(sc);
3207
3208         if (ifp->if_flags & IFF_RUNNING) {
3209                 if (sc->bge_rx_saved_considx != rx_prod)
3210                         bge_rxeof(sc, rx_prod);
3211
3212                 if (sc->bge_tx_saved_considx != tx_cons)
3213                         bge_txeof(sc, tx_cons);
3214         }
3215
3216         bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3217
3218         if (sc->bge_coal_chg)
3219                 bge_coal_change(sc);
3220 }
3221
3222 static void
3223 bge_tick(void *xsc)
3224 {
3225         struct bge_softc *sc = xsc;
3226         struct ifnet *ifp = &sc->arpcom.ac_if;
3227
3228         lwkt_serialize_enter(ifp->if_serializer);
3229
3230         if (BGE_IS_5705_PLUS(sc))
3231                 bge_stats_update_regs(sc);
3232         else
3233                 bge_stats_update(sc);
3234
3235         if (sc->bge_flags & BGE_FLAG_TBI) {
3236                 /*
3237                  * Since in TBI mode auto-polling can't be used we should poll
3238                  * link status manually. Here we register pending link event
3239                  * and trigger interrupt.
3240                  */
3241                 sc->bge_link_evt++;
3242                 if (BGE_IS_CRIPPLED(sc))
3243                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3244                 else
3245                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3246         } else if (!sc->bge_link) {
3247                 mii_tick(device_get_softc(sc->bge_miibus));
3248         }
3249
3250         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3251
3252         lwkt_serialize_exit(ifp->if_serializer);
3253 }
3254
3255 static void
3256 bge_stats_update_regs(struct bge_softc *sc)
3257 {
3258         struct ifnet *ifp = &sc->arpcom.ac_if;
3259         struct bge_mac_stats_regs stats;
3260         uint32_t *s;
3261         int i;
3262
3263         s = (uint32_t *)&stats;
3264         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
3265                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
3266                 s++;
3267         }
3268
3269         ifp->if_collisions +=
3270            (stats.dot3StatsSingleCollisionFrames +
3271            stats.dot3StatsMultipleCollisionFrames +
3272            stats.dot3StatsExcessiveCollisions +
3273            stats.dot3StatsLateCollisions) -
3274            ifp->if_collisions;
3275 }
3276
3277 static void
3278 bge_stats_update(struct bge_softc *sc)
3279 {
3280         struct ifnet *ifp = &sc->arpcom.ac_if;
3281         bus_size_t stats;
3282
3283         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3284
3285 #define READ_STAT(sc, stats, stat)      \
3286         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3287
3288         ifp->if_collisions +=
3289            (READ_STAT(sc, stats,
3290                 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
3291             READ_STAT(sc, stats,
3292                 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3293             READ_STAT(sc, stats,
3294                 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
3295             READ_STAT(sc, stats,
3296                 txstats.dot3StatsLateCollisions.bge_addr_lo)) -
3297            ifp->if_collisions;
3298
3299 #undef READ_STAT
3300
3301 #ifdef notdef
3302         ifp->if_collisions +=
3303            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3304            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3305            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3306            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3307            ifp->if_collisions;
3308 #endif
3309 }
3310
3311 /*
3312  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3313  * pointers to descriptors.
3314  */
3315 static int
3316 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx)
3317 {
3318         struct bge_tx_bd *d = NULL, *last_d;
3319         uint16_t csum_flags = 0, mss = 0;
3320         bus_dma_segment_t segs[BGE_NSEG_NEW];
3321         bus_dmamap_t map;
3322         int error, maxsegs, nsegs, idx, i;
3323         struct mbuf *m_head = *m_head0, *m_new;
3324
3325         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3326                 error = bge_setup_tso(sc, m_head0, &mss, &csum_flags);
3327                 if (error)
3328                         return ENOBUFS;
3329                 m_head = *m_head0;
3330         } else if (m_head->m_pkthdr.csum_flags & BGE_CSUM_FEATURES) {
3331                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3332                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3333                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3334                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3335                 if (m_head->m_flags & M_LASTFRAG)
3336                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3337                 else if (m_head->m_flags & M_FRAG)
3338                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3339         }
3340
3341         idx = *txidx;
3342         map = sc->bge_cdata.bge_tx_dmamap[idx];
3343
3344         maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - sc->bge_txrsvd;
3345         KASSERT(maxsegs >= sc->bge_txspare,
3346                 ("not enough segments %d", maxsegs));
3347
3348         if (maxsegs > BGE_NSEG_NEW)
3349                 maxsegs = BGE_NSEG_NEW;
3350
3351         /*
3352          * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
3353          * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
3354          * but when such padded frames employ the bge IP/TCP checksum
3355          * offload, the hardware checksum assist gives incorrect results
3356          * (possibly from incorporating its own padding into the UDP/TCP
3357          * checksum; who knows).  If we pad such runts with zeros, the
3358          * onboard checksum comes out correct.
3359          */
3360         if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
3361             m_head->m_pkthdr.len < BGE_MIN_FRAMELEN) {
3362                 error = m_devpad(m_head, BGE_MIN_FRAMELEN);
3363                 if (error)
3364                         goto back;
3365         }
3366
3367         if ((sc->bge_flags & BGE_FLAG_SHORTDMA) && m_head->m_next != NULL) {
3368                 m_new = bge_defrag_shortdma(m_head);
3369                 if (m_new == NULL) {
3370                         error = ENOBUFS;
3371                         goto back;
3372                 }
3373                 *m_head0 = m_head = m_new;
3374         }
3375         if ((m_head->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3376             sc->bge_force_defrag && (sc->bge_flags & BGE_FLAG_PCIE) &&
3377             m_head->m_next != NULL) {
3378                 /*
3379                  * Forcefully defragment mbuf chain to overcome hardware
3380                  * limitation which only support a single outstanding
3381                  * DMA read operation.  If it fails, keep moving on using
3382                  * the original mbuf chain.
3383                  */
3384                 m_new = m_defrag(m_head, MB_DONTWAIT);
3385                 if (m_new != NULL)
3386                         *m_head0 = m_head = m_new;
3387         }
3388
3389         error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map,
3390                         m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3391         if (error)
3392                 goto back;
3393
3394         m_head = *m_head0;
3395         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3396
3397         for (i = 0; ; i++) {
3398                 d = &sc->bge_ldata.bge_tx_ring[idx];
3399
3400                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3401                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3402                 d->bge_len = segs[i].ds_len;
3403                 d->bge_flags = csum_flags;
3404                 d->bge_mss = mss;
3405
3406                 if (i == nsegs - 1)
3407                         break;
3408                 BGE_INC(idx, BGE_TX_RING_CNT);
3409         }
3410         last_d = d;
3411
3412         /* Set vlan tag to the first segment of the packet. */
3413         d = &sc->bge_ldata.bge_tx_ring[*txidx];
3414         if (m_head->m_flags & M_VLANTAG) {
3415                 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3416                 d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
3417         } else {
3418                 d->bge_vlan_tag = 0;
3419         }
3420
3421         /* Mark the last segment as end of packet... */
3422         last_d->bge_flags |= BGE_TXBDFLAG_END;
3423
3424         /*
3425          * Insure that the map for this transmission is placed at
3426          * the array index of the last descriptor in this chain.
3427          */
3428         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3429         sc->bge_cdata.bge_tx_dmamap[idx] = map;
3430         sc->bge_cdata.bge_tx_chain[idx] = m_head;
3431         sc->bge_txcnt += nsegs;
3432
3433         BGE_INC(idx, BGE_TX_RING_CNT);
3434         *txidx = idx;
3435 back:
3436         if (error) {
3437                 m_freem(*m_head0);
3438                 *m_head0 = NULL;
3439         }
3440         return error;
3441 }
3442
3443 /*
3444  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3445  * to the mbuf data regions directly in the transmit descriptors.
3446  */
3447 static void
3448 bge_start(struct ifnet *ifp)
3449 {
3450         struct bge_softc *sc = ifp->if_softc;
3451         struct mbuf *m_head = NULL;
3452         uint32_t prodidx;
3453         int need_trans;
3454
3455         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3456                 return;
3457
3458         prodidx = sc->bge_tx_prodidx;
3459
3460         need_trans = 0;
3461         while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3462                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
3463                 if (m_head == NULL)
3464                         break;
3465
3466                 /*
3467                  * XXX
3468                  * The code inside the if() block is never reached since we
3469                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
3470                  * requests to checksum TCP/UDP in a fragmented packet.
3471                  * 
3472                  * XXX
3473                  * safety overkill.  If this is a fragmented packet chain
3474                  * with delayed TCP/UDP checksums, then only encapsulate
3475                  * it if we have enough descriptors to handle the entire
3476                  * chain at once.
3477                  * (paranoia -- may not actually be needed)
3478                  */
3479                 if ((m_head->m_flags & M_FIRSTFRAG) &&
3480                     (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
3481                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3482                             m_head->m_pkthdr.csum_data + sc->bge_txrsvd) {
3483                                 ifp->if_flags |= IFF_OACTIVE;
3484                                 ifq_prepend(&ifp->if_snd, m_head);
3485                                 break;
3486                         }
3487                 }
3488
3489                 /*
3490                  * Sanity check: avoid coming within bge_txrsvd
3491                  * descriptors of the end of the ring.  Also make
3492                  * sure there are bge_txspare descriptors for
3493                  * jumbo buffers' defragmentation.
3494                  */
3495                 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3496                     (sc->bge_txrsvd + sc->bge_txspare)) {
3497                         ifp->if_flags |= IFF_OACTIVE;
3498                         ifq_prepend(&ifp->if_snd, m_head);
3499                         break;
3500                 }
3501
3502                 /*
3503                  * Pack the data into the transmit ring. If we
3504                  * don't have room, set the OACTIVE flag and wait
3505                  * for the NIC to drain the ring.
3506                  */
3507                 if (bge_encap(sc, &m_head, &prodidx)) {
3508                         ifp->if_flags |= IFF_OACTIVE;
3509                         ifp->if_oerrors++;
3510                         break;
3511                 }
3512                 need_trans = 1;
3513
3514                 ETHER_BPF_MTAP(ifp, m_head);
3515         }
3516
3517         if (!need_trans)
3518                 return;
3519
3520         /* Transmit */
3521         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3522         /* 5700 b2 errata */
3523         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
3524                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3525
3526         sc->bge_tx_prodidx = prodidx;
3527
3528         /*
3529          * Set a timeout in case the chip goes out to lunch.
3530          */
3531         ifp->if_timer = 5;
3532 }
3533
3534 static void
3535 bge_init(void *xsc)
3536 {
3537         struct bge_softc *sc = xsc;
3538         struct ifnet *ifp = &sc->arpcom.ac_if;
3539         uint16_t *m;
3540         uint32_t mode;
3541
3542         ASSERT_SERIALIZED(ifp->if_serializer);
3543
3544         /* Cancel pending I/O and flush buffers. */
3545         bge_stop(sc);
3546         bge_reset(sc);
3547         bge_chipinit(sc);
3548
3549         /*
3550          * Init the various state machines, ring
3551          * control blocks and firmware.
3552          */
3553         if (bge_blockinit(sc)) {
3554                 if_printf(ifp, "initialization failure\n");
3555                 bge_stop(sc);
3556                 return;
3557         }
3558
3559         /* Specify MTU. */
3560         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3561             ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3562
3563         /* Load our MAC address. */
3564         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3565         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3566         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3567
3568         /* Enable or disable promiscuous mode as needed. */
3569         bge_setpromisc(sc);
3570
3571         /* Program multicast filter. */
3572         bge_setmulti(sc);
3573
3574         /* Init RX ring. */
3575         if (bge_init_rx_ring_std(sc)) {
3576                 if_printf(ifp, "RX ring initialization failed\n");
3577                 bge_stop(sc);
3578                 return;
3579         }
3580
3581         /*
3582          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3583          * memory to insure that the chip has in fact read the first
3584          * entry of the ring.
3585          */
3586         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3587                 uint32_t                v, i;
3588                 for (i = 0; i < 10; i++) {
3589                         DELAY(20);
3590                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3591                         if (v == (MCLBYTES - ETHER_ALIGN))
3592                                 break;
3593                 }
3594                 if (i == 10)
3595                         if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
3596         }
3597
3598         /* Init jumbo RX ring. */
3599         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3600                 if (bge_init_rx_ring_jumbo(sc)) {
3601                         if_printf(ifp, "Jumbo RX ring initialization failed\n");
3602                         bge_stop(sc);
3603                         return;
3604                 }
3605         }
3606
3607         /* Init our RX return ring index */
3608         sc->bge_rx_saved_considx = 0;
3609
3610         /* Init TX ring. */
3611         bge_init_tx_ring(sc);
3612
3613         /* Enable TX MAC state machine lockup fix. */
3614         mode = CSR_READ_4(sc, BGE_TX_MODE);
3615         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3616                 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3617         /* Turn on transmitter */
3618         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3619
3620         /* Turn on receiver */
3621         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3622
3623         /*
3624          * Set the number of good frames to receive after RX MBUF
3625          * Low Watermark has been reached.  After the RX MAC receives
3626          * this number of frames, it will drop subsequent incoming
3627          * frames until the MBUF High Watermark is reached.
3628          */
3629         CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3630
3631         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
3632                 if (bootverbose) {
3633                         if_printf(ifp, "MSI_MODE: %#x\n",
3634                             CSR_READ_4(sc, BGE_MSI_MODE));
3635                 }
3636
3637                 /*
3638                  * XXX
3639                  * Linux driver turns it on for all chips supporting MSI?!
3640                  */
3641                 if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
3642                         /*
3643                          * XXX
3644                          * According to 5722-PG101-R,
3645                          * BGE_PCIE_TRANSACT_ONESHOT_MSI applies only to
3646                          * BCM5906.
3647                          */
3648                         BGE_SETBIT(sc, BGE_PCIE_TRANSACT,
3649                             BGE_PCIE_TRANSACT_ONESHOT_MSI);
3650                 }
3651         }
3652
3653         /* Tell firmware we're alive. */
3654         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3655
3656         /* Enable host interrupts if polling(4) is not enabled. */
3657         PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3658 #ifdef DEVICE_POLLING
3659         if (ifp->if_flags & IFF_POLLING)
3660                 bge_disable_intr(sc);
3661         else
3662 #endif
3663         bge_enable_intr(sc);
3664
3665         bge_ifmedia_upd(ifp);
3666
3667         ifp->if_flags |= IFF_RUNNING;
3668         ifp->if_flags &= ~IFF_OACTIVE;
3669
3670         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3671 }
3672
3673 /*
3674  * Set media options.
3675  */
3676 static int
3677 bge_ifmedia_upd(struct ifnet *ifp)
3678 {
3679         struct bge_softc *sc = ifp->if_softc;
3680
3681         /* If this is a 1000baseX NIC, enable the TBI port. */
3682         if (sc->bge_flags & BGE_FLAG_TBI) {
3683                 struct ifmedia *ifm = &sc->bge_ifmedia;
3684
3685                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3686                         return(EINVAL);
3687
3688                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3689                 case IFM_AUTO:
3690                         /*
3691                          * The BCM5704 ASIC appears to have a special
3692                          * mechanism for programming the autoneg
3693                          * advertisement registers in TBI mode.
3694                          */
3695                         if (!bge_fake_autoneg &&
3696                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3697                                 uint32_t sgdig;
3698
3699                                 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3700                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3701                                 sgdig |= BGE_SGDIGCFG_AUTO |
3702                                          BGE_SGDIGCFG_PAUSE_CAP |
3703                                          BGE_SGDIGCFG_ASYM_PAUSE;
3704                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3705                                             sgdig | BGE_SGDIGCFG_SEND);
3706                                 DELAY(5);
3707                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3708                         }
3709                         break;
3710                 case IFM_1000_SX:
3711                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3712                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
3713                                     BGE_MACMODE_HALF_DUPLEX);
3714                         } else {
3715                                 BGE_SETBIT(sc, BGE_MAC_MODE,
3716                                     BGE_MACMODE_HALF_DUPLEX);
3717                         }
3718                         break;
3719                 default:
3720                         return(EINVAL);
3721                 }
3722         } else {
3723                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3724
3725                 sc->bge_link_evt++;
3726                 sc->bge_link = 0;
3727                 if (mii->mii_instance) {
3728                         struct mii_softc *miisc;
3729
3730                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3731                                 mii_phy_reset(miisc);
3732                 }
3733                 mii_mediachg(mii);
3734
3735                 /*
3736                  * Force an interrupt so that we will call bge_link_upd
3737                  * if needed and clear any pending link state attention.
3738                  * Without this we are not getting any further interrupts
3739                  * for link state changes and thus will not UP the link and
3740                  * not be able to send in bge_start.  The only way to get
3741                  * things working was to receive a packet and get an RX
3742                  * intr.
3743                  *
3744                  * bge_tick should help for fiber cards and we might not
3745                  * need to do this here if BGE_FLAG_TBI is set but as
3746                  * we poll for fiber anyway it should not harm.
3747                  */
3748                 if (BGE_IS_CRIPPLED(sc))
3749                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3750                 else
3751                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3752         }
3753         return(0);
3754 }
3755
3756 /*
3757  * Report current media status.
3758  */
3759 static void
3760 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3761 {
3762         struct bge_softc *sc = ifp->if_softc;
3763
3764         if (sc->bge_flags & BGE_FLAG_TBI) {
3765                 ifmr->ifm_status = IFM_AVALID;
3766                 ifmr->ifm_active = IFM_ETHER;
3767                 if (CSR_READ_4(sc, BGE_MAC_STS) &
3768                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
3769                         ifmr->ifm_status |= IFM_ACTIVE;
3770                 } else {
3771                         ifmr->ifm_active |= IFM_NONE;
3772                         return;
3773                 }
3774
3775                 ifmr->ifm_active |= IFM_1000_SX;
3776                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3777                         ifmr->ifm_active |= IFM_HDX;    
3778                 else
3779                         ifmr->ifm_active |= IFM_FDX;
3780         } else {
3781                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3782
3783                 mii_pollstat(mii);
3784                 ifmr->ifm_active = mii->mii_media_active;
3785                 ifmr->ifm_status = mii->mii_media_status;
3786         }
3787 }
3788
3789 static int
3790 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3791 {
3792         struct bge_softc *sc = ifp->if_softc;
3793         struct ifreq *ifr = (struct ifreq *)data;
3794         int mask, error = 0;
3795
3796         ASSERT_SERIALIZED(ifp->if_serializer);
3797
3798         switch (command) {
3799         case SIOCSIFMTU:
3800                 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3801                     (BGE_IS_JUMBO_CAPABLE(sc) &&
3802                      ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3803                         error = EINVAL;
3804                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3805                         ifp->if_mtu = ifr->ifr_mtu;
3806                         if (ifp->if_flags & IFF_RUNNING)
3807                                 bge_init(sc);
3808                 }
3809                 break;
3810         case SIOCSIFFLAGS:
3811                 if (ifp->if_flags & IFF_UP) {
3812                         if (ifp->if_flags & IFF_RUNNING) {
3813                                 mask = ifp->if_flags ^ sc->bge_if_flags;
3814
3815                                 /*
3816                                  * If only the state of the PROMISC flag
3817                                  * changed, then just use the 'set promisc
3818                                  * mode' command instead of reinitializing
3819                                  * the entire NIC. Doing a full re-init
3820                                  * means reloading the firmware and waiting
3821                                  * for it to start up, which may take a
3822                                  * second or two.  Similarly for ALLMULTI.
3823                                  */
3824                                 if (mask & IFF_PROMISC)
3825                                         bge_setpromisc(sc);
3826                                 if (mask & IFF_ALLMULTI)
3827                                         bge_setmulti(sc);
3828                         } else {
3829                                 bge_init(sc);
3830                         }
3831                 } else if (ifp->if_flags & IFF_RUNNING) {
3832                         bge_stop(sc);
3833                 }
3834                 sc->bge_if_flags = ifp->if_flags;
3835                 break;
3836         case SIOCADDMULTI:
3837         case SIOCDELMULTI:
3838                 if (ifp->if_flags & IFF_RUNNING)
3839                         bge_setmulti(sc);
3840                 break;
3841         case SIOCSIFMEDIA:
3842         case SIOCGIFMEDIA:
3843                 if (sc->bge_flags & BGE_FLAG_TBI) {
3844                         error = ifmedia_ioctl(ifp, ifr,
3845                             &sc->bge_ifmedia, command);
3846                 } else {
3847                         struct mii_data *mii;
3848
3849                         mii = device_get_softc(sc->bge_miibus);
3850                         error = ifmedia_ioctl(ifp, ifr,
3851                                               &mii->mii_media, command);
3852                 }
3853                 break;
3854         case SIOCSIFCAP:
3855                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3856                 if (mask & IFCAP_HWCSUM) {
3857                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
3858                         if (ifp->if_capenable & IFCAP_TXCSUM)
3859                                 ifp->if_hwassist |= BGE_CSUM_FEATURES;
3860                         else
3861                                 ifp->if_hwassist &= ~BGE_CSUM_FEATURES;
3862                 }
3863                 if (mask & IFCAP_TSO) {
3864                         ifp->if_capenable ^= IFCAP_TSO;
3865                         if (ifp->if_capenable & IFCAP_TSO)
3866                                 ifp->if_hwassist |= CSUM_TSO;
3867                         else
3868                                 ifp->if_hwassist &= ~CSUM_TSO;
3869                 }
3870                 break;
3871         default:
3872                 error = ether_ioctl(ifp, command, data);
3873                 break;
3874         }
3875         return error;
3876 }
3877
3878 static void
3879 bge_watchdog(struct ifnet *ifp)
3880 {
3881         struct bge_softc *sc = ifp->if_softc;
3882
3883         if_printf(ifp, "watchdog timeout -- resetting\n");
3884
3885         bge_init(sc);
3886
3887         ifp->if_oerrors++;
3888
3889         if (!ifq_is_empty(&ifp->if_snd))
3890                 if_devstart(ifp);
3891 }
3892
3893 /*
3894  * Stop the adapter and free any mbufs allocated to the
3895  * RX and TX lists.
3896  */
3897 static void
3898 bge_stop(struct bge_softc *sc)
3899 {
3900         struct ifnet *ifp = &sc->arpcom.ac_if;
3901
3902         ASSERT_SERIALIZED(ifp->if_serializer);
3903
3904         callout_stop(&sc->bge_stat_timer);
3905
3906         /*
3907          * Disable all of the receiver blocks
3908          */
3909         bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3910         bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3911         bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3912         if (BGE_IS_5700_FAMILY(sc))
3913                 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3914         bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3915         bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3916         bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3917
3918         /*
3919          * Disable all of the transmit blocks
3920          */
3921         bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3922         bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3923         bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3924         bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3925         bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3926         if (BGE_IS_5700_FAMILY(sc))
3927                 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3928         bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3929
3930         /*
3931          * Shut down all of the memory managers and related
3932          * state machines.
3933          */
3934         bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3935         bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3936         if (BGE_IS_5700_FAMILY(sc))
3937                 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3938         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3939         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3940         if (!BGE_IS_5705_PLUS(sc)) {
3941                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3942                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3943         }
3944
3945         /* Disable host interrupts. */
3946         bge_disable_intr(sc);
3947
3948         /*
3949          * Tell firmware we're shutting down.
3950          */
3951         BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3952
3953         /* Free the RX lists. */
3954         bge_free_rx_ring_std(sc);
3955
3956         /* Free jumbo RX list. */
3957         if (BGE_IS_JUMBO_CAPABLE(sc))
3958                 bge_free_rx_ring_jumbo(sc);
3959
3960         /* Free TX buffers. */
3961         bge_free_tx_ring(sc);
3962
3963         sc->bge_status_tag = 0;
3964         sc->bge_link = 0;
3965         sc->bge_coal_chg = 0;
3966
3967         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3968
3969         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3970         ifp->if_timer = 0;
3971 }
3972
3973 /*
3974  * Stop all chip I/O so that the kernel's probe routines don't
3975  * get confused by errant DMAs when rebooting.
3976  */
3977 static void
3978 bge_shutdown(device_t dev)
3979 {
3980         struct bge_softc *sc = device_get_softc(dev);
3981         struct ifnet *ifp = &sc->arpcom.ac_if;
3982
3983         lwkt_serialize_enter(ifp->if_serializer);
3984         bge_stop(sc);
3985         bge_reset(sc);
3986         lwkt_serialize_exit(ifp->if_serializer);
3987 }
3988
3989 static int
3990 bge_suspend(device_t dev)
3991 {
3992         struct bge_softc *sc = device_get_softc(dev);
3993         struct ifnet *ifp = &sc->arpcom.ac_if;
3994
3995         lwkt_serialize_enter(ifp->if_serializer);
3996         bge_stop(sc);
3997         lwkt_serialize_exit(ifp->if_serializer);
3998
3999         return 0;
4000 }
4001
4002 static int
4003 bge_resume(device_t dev)
4004 {
4005         struct bge_softc *sc = device_get_softc(dev);
4006         struct ifnet *ifp = &sc->arpcom.ac_if;
4007
4008         lwkt_serialize_enter(ifp->if_serializer);
4009
4010         if (ifp->if_flags & IFF_UP) {
4011                 bge_init(sc);
4012
4013                 if (!ifq_is_empty(&ifp->if_snd))
4014                         if_devstart(ifp);
4015         }
4016
4017         lwkt_serialize_exit(ifp->if_serializer);
4018
4019         return 0;
4020 }
4021
4022 static void
4023 bge_setpromisc(struct bge_softc *sc)
4024 {
4025         struct ifnet *ifp = &sc->arpcom.ac_if;
4026
4027         if (ifp->if_flags & IFF_PROMISC)
4028                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4029         else
4030                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4031 }
4032
4033 static void
4034 bge_dma_free(struct bge_softc *sc)
4035 {
4036         int i;
4037
4038         /* Destroy RX mbuf DMA stuffs. */
4039         if (sc->bge_cdata.bge_rx_mtag != NULL) {
4040                 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4041                         bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4042                             sc->bge_cdata.bge_rx_std_dmamap[i]);
4043                 }
4044                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4045                                    sc->bge_cdata.bge_rx_tmpmap);
4046                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4047         }
4048
4049         /* Destroy TX mbuf DMA stuffs. */
4050         if (sc->bge_cdata.bge_tx_mtag != NULL) {
4051                 for (i = 0; i < BGE_TX_RING_CNT; i++) {
4052                         bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4053                             sc->bge_cdata.bge_tx_dmamap[i]);
4054                 }
4055                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4056         }
4057
4058         /* Destroy standard RX ring */
4059         bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
4060                            sc->bge_cdata.bge_rx_std_ring_map,
4061                            sc->bge_ldata.bge_rx_std_ring);
4062
4063         if (BGE_IS_JUMBO_CAPABLE(sc))
4064                 bge_free_jumbo_mem(sc);
4065
4066         /* Destroy RX return ring */
4067         bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
4068                            sc->bge_cdata.bge_rx_return_ring_map,
4069                            sc->bge_ldata.bge_rx_return_ring);
4070
4071         /* Destroy TX ring */
4072         bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
4073                            sc->bge_cdata.bge_tx_ring_map,
4074                            sc->bge_ldata.bge_tx_ring);
4075
4076         /* Destroy status block */
4077         bge_dma_block_free(sc->bge_cdata.bge_status_tag,
4078                            sc->bge_cdata.bge_status_map,
4079                            sc->bge_ldata.bge_status_block);
4080
4081         /* Destroy statistics block */
4082         bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
4083                            sc->bge_cdata.bge_stats_map,
4084                            sc->bge_ldata.bge_stats);
4085
4086         /* Destroy the parent tag */
4087         if (sc->bge_cdata.bge_parent_tag != NULL)
4088                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
4089 }
4090
4091 static int
4092 bge_dma_alloc(struct bge_softc *sc)
4093 {
4094         struct ifnet *ifp = &sc->arpcom.ac_if;
4095         int i, error;
4096         bus_addr_t lowaddr;
4097         bus_size_t txmaxsz;
4098
4099         lowaddr = BUS_SPACE_MAXADDR;
4100         if (sc->bge_flags & BGE_FLAG_MAXADDR_40BIT)
4101                 lowaddr = BGE_DMA_MAXADDR_40BIT;
4102
4103         /*
4104          * Allocate the parent bus DMA tag appropriate for PCI.
4105          *
4106          * All of the NetExtreme/NetLink controllers have 4GB boundary
4107          * DMA bug.
4108          * Whenever an address crosses a multiple of the 4GB boundary
4109          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
4110          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
4111          * state machine will lockup and cause the device to hang.
4112          */
4113         error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
4114                                    lowaddr, BUS_SPACE_MAXADDR,
4115                                    NULL, NULL,
4116                                    BUS_SPACE_MAXSIZE_32BIT, 0,
4117                                    BUS_SPACE_MAXSIZE_32BIT,
4118                                    0, &sc->bge_cdata.bge_parent_tag);
4119         if (error) {
4120                 if_printf(ifp, "could not allocate parent dma tag\n");
4121                 return error;
4122         }
4123
4124         /*
4125          * Create DMA tag and maps for RX mbufs.
4126          */
4127         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4128                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4129                                    NULL, NULL, MCLBYTES, 1, MCLBYTES,
4130                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
4131                                    &sc->bge_cdata.bge_rx_mtag);
4132         if (error) {
4133                 if_printf(ifp, "could not allocate RX mbuf dma tag\n");
4134                 return error;
4135         }
4136
4137         error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4138                                   BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_tmpmap);
4139         if (error) {
4140                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4141                 sc->bge_cdata.bge_rx_mtag = NULL;
4142                 return error;
4143         }
4144
4145         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4146                 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4147                                           BUS_DMA_WAITOK,
4148                                           &sc->bge_cdata.bge_rx_std_dmamap[i]);
4149                 if (error) {
4150                         int j;
4151
4152                         for (j = 0; j < i; ++j) {
4153                                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4154                                         sc->bge_cdata.bge_rx_std_dmamap[j]);
4155                         }
4156                         bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4157                         sc->bge_cdata.bge_rx_mtag = NULL;
4158
4159                         if_printf(ifp, "could not create DMA map for RX\n");
4160                         return error;
4161                 }
4162         }
4163
4164         /*
4165          * Create DMA tag and maps for TX mbufs.
4166          */
4167         if (sc->bge_flags & BGE_FLAG_TSO)
4168                 txmaxsz = IP_MAXPACKET + sizeof(struct ether_vlan_header);
4169         else
4170                 txmaxsz = BGE_JUMBO_FRAMELEN;
4171         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4172                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4173                                    NULL, NULL,
4174                                    txmaxsz, BGE_NSEG_NEW, PAGE_SIZE,
4175                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
4176                                    BUS_DMA_ONEBPAGE,
4177                                    &sc->bge_cdata.bge_tx_mtag);
4178         if (error) {
4179                 if_printf(ifp, "could not allocate TX mbuf dma tag\n");
4180                 return error;
4181         }
4182
4183         for (i = 0; i < BGE_TX_RING_CNT; i++) {
4184                 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag,
4185                                           BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
4186                                           &sc->bge_cdata.bge_tx_dmamap[i]);
4187                 if (error) {
4188                         int j;
4189
4190                         for (j = 0; j < i; ++j) {
4191                                 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4192                                         sc->bge_cdata.bge_tx_dmamap[j]);
4193                         }
4194                         bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4195                         sc->bge_cdata.bge_tx_mtag = NULL;
4196
4197                         if_printf(ifp, "could not create DMA map for TX\n");
4198                         return error;
4199                 }
4200         }
4201
4202         /*
4203          * Create DMA stuffs for standard RX ring.
4204          */
4205         error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
4206                                     &sc->bge_cdata.bge_rx_std_ring_tag,
4207                                     &sc->bge_cdata.bge_rx_std_ring_map,
4208                                     (void *)&sc->bge_ldata.bge_rx_std_ring,
4209                                     &sc->bge_ldata.bge_rx_std_ring_paddr);
4210         if (error) {
4211                 if_printf(ifp, "could not create std RX ring\n");
4212                 return error;
4213         }
4214
4215         /*
4216          * Create jumbo buffer pool.
4217          */
4218         if (BGE_IS_JUMBO_CAPABLE(sc)) {
4219                 error = bge_alloc_jumbo_mem(sc);
4220                 if (error) {
4221                         if_printf(ifp, "could not create jumbo buffer pool\n");
4222                         return error;
4223                 }
4224         }
4225
4226         /*
4227          * Create DMA stuffs for RX return ring.
4228          */
4229         error = bge_dma_block_alloc(sc,
4230             BGE_RX_RTN_RING_SZ(sc->bge_return_ring_cnt),
4231             &sc->bge_cdata.bge_rx_return_ring_tag,
4232             &sc->bge_cdata.bge_rx_return_ring_map,
4233             (void *)&sc->bge_ldata.bge_rx_return_ring,
4234             &sc->bge_ldata.bge_rx_return_ring_paddr);
4235         if (error) {
4236                 if_printf(ifp, "could not create RX ret ring\n");
4237                 return error;
4238         }
4239
4240         /*
4241          * Create DMA stuffs for TX ring.
4242          */
4243         error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
4244                                     &sc->bge_cdata.bge_tx_ring_tag,
4245                                     &sc->bge_cdata.bge_tx_ring_map,
4246                                     (void *)&sc->bge_ldata.bge_tx_ring,
4247                                     &sc->bge_ldata.bge_tx_ring_paddr);
4248         if (error) {
4249                 if_printf(ifp, "could not create TX ring\n");
4250                 return error;
4251         }
4252
4253         /*
4254          * Create DMA stuffs for status block.
4255          */
4256         error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
4257                                     &sc->bge_cdata.bge_status_tag,
4258                                     &sc->bge_cdata.bge_status_map,
4259                                     (void *)&sc->bge_ldata.bge_status_block,
4260                                     &sc->bge_ldata.bge_status_block_paddr);
4261         if (error) {
4262                 if_printf(ifp, "could not create status block\n");
4263                 return error;
4264         }
4265
4266         /*
4267          * Create DMA stuffs for statistics block.
4268          */
4269         error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
4270                                     &sc->bge_cdata.bge_stats_tag,
4271                                     &sc->bge_cdata.bge_stats_map,
4272                                     (void *)&sc->bge_ldata.bge_stats,
4273                                     &sc->bge_ldata.bge_stats_paddr);
4274         if (error) {
4275                 if_printf(ifp, "could not create stats block\n");
4276                 return error;
4277         }
4278         return 0;
4279 }
4280
4281 static int
4282 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
4283                     bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
4284 {
4285         bus_dmamem_t dmem;
4286         int error;
4287
4288         error = bus_dmamem_coherent(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
4289                                     BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4290                                     size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
4291         if (error)
4292                 return error;
4293
4294         *tag = dmem.dmem_tag;
4295         *map = dmem.dmem_map;
4296         *addr = dmem.dmem_addr;
4297         *paddr = dmem.dmem_busaddr;
4298
4299         return 0;
4300 }
4301
4302 static void
4303 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
4304 {
4305         if (tag != NULL) {
4306                 bus_dmamap_unload(tag, map);
4307                 bus_dmamem_free(tag, addr, map);
4308                 bus_dma_tag_destroy(tag);
4309         }
4310 }
4311
4312 /*
4313  * Grrr. The link status word in the status block does
4314  * not work correctly on the BCM5700 rev AX and BX chips,
4315  * according to all available information. Hence, we have
4316  * to enable MII interrupts in order to properly obtain
4317  * async link changes. Unfortunately, this also means that
4318  * we have to read the MAC status register to detect link
4319  * changes, thereby adding an additional register access to
4320  * the interrupt handler.
4321  *
4322  * XXX: perhaps link state detection procedure used for
4323  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4324  */
4325 static void
4326 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
4327 {
4328         struct ifnet *ifp = &sc->arpcom.ac_if;
4329         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4330
4331         mii_pollstat(mii);
4332
4333         if (!sc->bge_link &&
4334             (mii->mii_media_status & IFM_ACTIVE) &&
4335             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4336                 sc->bge_link++;
4337                 if (bootverbose)
4338                         if_printf(ifp, "link UP\n");
4339         } else if (sc->bge_link &&
4340             (!(mii->mii_media_status & IFM_ACTIVE) ||
4341             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4342                 sc->bge_link = 0;
4343                 if (bootverbose)
4344                         if_printf(ifp, "link DOWN\n");
4345         }
4346
4347         /* Clear the interrupt. */
4348         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
4349         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4350         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
4351 }
4352
4353 static void
4354 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
4355 {
4356         struct ifnet *ifp = &sc->arpcom.ac_if;
4357
4358 #define PCS_ENCODE_ERR  (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
4359
4360         /*
4361          * Sometimes PCS encoding errors are detected in
4362          * TBI mode (on fiber NICs), and for some reason
4363          * the chip will signal them as link changes.
4364          * If we get a link change event, but the 'PCS
4365          * encoding error' bit in the MAC status register
4366          * is set, don't bother doing a link check.
4367          * This avoids spurious "gigabit link up" messages
4368          * that sometimes appear on fiber NICs during
4369          * periods of heavy traffic.
4370          */
4371         if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4372                 if (!sc->bge_link) {
4373                         sc->bge_link++;
4374                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4375                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
4376                                     BGE_MACMODE_TBI_SEND_CFGS);
4377                         }
4378                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4379
4380                         if (bootverbose)
4381                                 if_printf(ifp, "link UP\n");
4382
4383                         ifp->if_link_state = LINK_STATE_UP;
4384                         if_link_state_change(ifp);
4385                 }
4386         } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
4387                 if (sc->bge_link) {
4388                         sc->bge_link = 0;
4389
4390                         if (bootverbose)
4391                                 if_printf(ifp, "link DOWN\n");
4392
4393                         ifp->if_link_state = LINK_STATE_DOWN;
4394                         if_link_state_change(ifp);
4395                 }
4396         }
4397
4398 #undef PCS_ENCODE_ERR
4399
4400         /* Clear the attention. */
4401         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4402             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4403             BGE_MACSTAT_LINK_CHANGED);
4404 }
4405
4406 static void
4407 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
4408 {
4409         struct ifnet *ifp = &sc->arpcom.ac_if;
4410         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4411
4412         mii_pollstat(mii);
4413         bge_miibus_statchg(sc->bge_dev);
4414
4415         if (bootverbose) {
4416                 if (sc->bge_link)
4417                         if_printf(ifp, "link UP\n");
4418                 else
4419                         if_printf(ifp, "link DOWN\n");
4420         }
4421
4422         /* Clear the attention. */
4423         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4424             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4425             BGE_MACSTAT_LINK_CHANGED);
4426 }
4427
4428 static void
4429 bge_autopoll_link_upd(struct bge_softc *sc, uint32_t status __unused)
4430 {
4431         struct ifnet *ifp = &sc->arpcom.ac_if;
4432         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4433
4434         mii_pollstat(mii);
4435
4436         if (!sc->bge_link &&
4437             (mii->mii_media_status & IFM_ACTIVE) &&
4438             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4439                 sc->bge_link++;
4440                 if (bootverbose)
4441                         if_printf(ifp, "link UP\n");
4442         } else if (sc->bge_link &&
4443             (!(mii->mii_media_status & IFM_ACTIVE) ||
4444             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4445                 sc->bge_link = 0;
4446                 if (bootverbose)
4447                         if_printf(ifp, "link DOWN\n");
4448         }
4449
4450         /* Clear the attention. */
4451         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4452             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4453             BGE_MACSTAT_LINK_CHANGED);
4454 }
4455
4456 static int
4457 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
4458 {
4459         struct bge_softc *sc = arg1;
4460
4461         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4462             &sc->bge_rx_coal_ticks,
4463             BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4464             BGE_RX_COAL_TICKS_CHG);
4465 }
4466
4467 static int
4468 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
4469 {
4470         struct bge_softc *sc = arg1;
4471
4472         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4473             &sc->bge_tx_coal_ticks,
4474             BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4475             BGE_TX_COAL_TICKS_CHG);
4476 }
4477
4478 static int
4479 bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
4480 {
4481         struct bge_softc *sc = arg1;
4482
4483         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4484             &sc->bge_rx_coal_bds,
4485             BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4486             BGE_RX_COAL_BDS_CHG);
4487 }
4488
4489 static int
4490 bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
4491 {
4492         struct bge_softc *sc = arg1;
4493
4494         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4495             &sc->bge_tx_coal_bds,
4496             BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4497             BGE_TX_COAL_BDS_CHG);
4498 }
4499
4500 static int
4501 bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4502 {
4503         struct bge_softc *sc = arg1;
4504
4505         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4506             &sc->bge_rx_coal_ticks_int,
4507             BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4508             BGE_RX_COAL_TICKS_INT_CHG);
4509 }
4510
4511 static int
4512 bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4513 {
4514         struct bge_softc *sc = arg1;
4515
4516         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4517             &sc->bge_tx_coal_ticks_int,
4518             BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4519             BGE_TX_COAL_TICKS_INT_CHG);
4520 }
4521
4522 static int
4523 bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4524 {
4525         struct bge_softc *sc = arg1;
4526
4527         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4528             &sc->bge_rx_coal_bds_int,
4529             BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4530             BGE_RX_COAL_BDS_INT_CHG);
4531 }
4532
4533 static int
4534 bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4535 {
4536         struct bge_softc *sc = arg1;
4537
4538         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4539             &sc->bge_tx_coal_bds_int,
4540             BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4541             BGE_TX_COAL_BDS_INT_CHG);
4542 }
4543
4544 static int
4545 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
4546     int coal_min, int coal_max, uint32_t coal_chg_mask)
4547 {
4548         struct bge_softc *sc = arg1;
4549         struct ifnet *ifp = &sc->arpcom.ac_if;
4550         int error = 0, v;
4551
4552         lwkt_serialize_enter(ifp->if_serializer);
4553
4554         v = *coal;
4555         error = sysctl_handle_int(oidp, &v, 0, req);
4556         if (!error && req->newptr != NULL) {
4557                 if (v < coal_min || v > coal_max) {
4558                         error = EINVAL;
4559                 } else {
4560                         *coal = v;
4561                         sc->bge_coal_chg |= coal_chg_mask;
4562                 }
4563         }
4564
4565         lwkt_serialize_exit(ifp->if_serializer);
4566         return error;
4567 }
4568
4569 static void
4570 bge_coal_change(struct bge_softc *sc)
4571 {
4572         struct ifnet *ifp = &sc->arpcom.ac_if;
4573         uint32_t val;
4574
4575         ASSERT_SERIALIZED(ifp->if_serializer);
4576
4577         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
4578                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
4579                             sc->bge_rx_coal_ticks);
4580                 DELAY(10);
4581                 val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4582
4583                 if (bootverbose) {
4584                         if_printf(ifp, "rx_coal_ticks -> %u\n",
4585                                   sc->bge_rx_coal_ticks);
4586                 }
4587         }
4588
4589         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
4590                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
4591                             sc->bge_tx_coal_ticks);
4592                 DELAY(10);
4593                 val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
4594
4595                 if (bootverbose) {
4596                         if_printf(ifp, "tx_coal_ticks -> %u\n",
4597                                   sc->bge_tx_coal_ticks);
4598                 }
4599         }
4600
4601         if (sc->bge_coal_chg & BGE_RX_COAL_BDS_CHG) {
4602                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
4603                             sc->bge_rx_coal_bds);
4604                 DELAY(10);
4605                 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4606
4607                 if (bootverbose) {
4608                         if_printf(ifp, "rx_coal_bds -> %u\n",
4609                                   sc->bge_rx_coal_bds);
4610                 }
4611         }
4612
4613         if (sc->bge_coal_chg & BGE_TX_COAL_BDS_CHG) {
4614                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
4615                             sc->bge_tx_coal_bds);
4616                 DELAY(10);
4617                 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
4618
4619                 if (bootverbose) {
4620                         if_printf(ifp, "tx_max_coal_bds -> %u\n",
4621                                   sc->bge_tx_coal_bds);
4622                 }
4623         }
4624
4625         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_INT_CHG) {
4626                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
4627                     sc->bge_rx_coal_ticks_int);
4628                 DELAY(10);
4629                 val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS_INT);
4630
4631                 if (bootverbose) {
4632                         if_printf(ifp, "rx_coal_ticks_int -> %u\n",
4633                             sc->bge_rx_coal_ticks_int);
4634                 }
4635         }
4636
4637         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_INT_CHG) {
4638                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
4639                     sc->bge_tx_coal_ticks_int);
4640                 DELAY(10);
4641                 val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS_INT);
4642
4643                 if (bootverbose) {
4644                         if_printf(ifp, "tx_coal_ticks_int -> %u\n",
4645                             sc->bge_tx_coal_ticks_int);
4646                 }
4647         }
4648
4649         if (sc->bge_coal_chg & BGE_RX_COAL_BDS_INT_CHG) {
4650                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
4651                     sc->bge_rx_coal_bds_int);
4652                 DELAY(10);
4653                 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT);
4654
4655                 if (bootverbose) {
4656                         if_printf(ifp, "rx_coal_bds_int -> %u\n",
4657                             sc->bge_rx_coal_bds_int);
4658                 }
4659         }
4660
4661         if (sc->bge_coal_chg & BGE_TX_COAL_BDS_INT_CHG) {
4662                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4663                     sc->bge_tx_coal_bds_int);
4664                 DELAY(10);
4665                 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT);
4666
4667                 if (bootverbose) {
4668                         if_printf(ifp, "tx_coal_bds_int -> %u\n",
4669                             sc->bge_tx_coal_bds_int);
4670                 }
4671         }
4672
4673         sc->bge_coal_chg = 0;
4674 }
4675
4676 static void
4677 bge_enable_intr(struct bge_softc *sc)
4678 {
4679         struct ifnet *ifp = &sc->arpcom.ac_if;
4680
4681         lwkt_serialize_handler_enable(ifp->if_serializer);
4682
4683         /*
4684          * Enable interrupt.
4685          */
4686         bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4687         if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4688                 /* XXX Linux driver */
4689                 bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4690         }
4691
4692         /*
4693          * Unmask the interrupt when we stop polling.
4694          */
4695         PCI_CLRBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4696             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4697
4698         /*
4699          * Trigger another interrupt, since above writing
4700          * to interrupt mailbox0 may acknowledge pending
4701          * interrupt.
4702          */
4703         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4704 }
4705
4706 static void
4707 bge_disable_intr(struct bge_softc *sc)
4708 {
4709         struct ifnet *ifp = &sc->arpcom.ac_if;
4710
4711         /*
4712          * Mask the interrupt when we start polling.
4713          */
4714         PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4715             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4716
4717         /*
4718          * Acknowledge possible asserted interrupt.
4719          */
4720         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4721
4722         lwkt_serialize_handler_disable(ifp->if_serializer);
4723 }
4724
4725 static int
4726 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4727 {
4728         uint32_t mac_addr;
4729         int ret = 1;
4730
4731         mac_addr = bge_readmem_ind(sc, 0x0c14);
4732         if ((mac_addr >> 16) == 0x484b) {
4733                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4734                 ether_addr[1] = (uint8_t)mac_addr;
4735                 mac_addr = bge_readmem_ind(sc, 0x0c18);
4736                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4737                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4738                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4739                 ether_addr[5] = (uint8_t)mac_addr;
4740                 ret = 0;
4741         }
4742         return ret;
4743 }
4744
4745 static int
4746 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4747 {
4748         int mac_offset = BGE_EE_MAC_OFFSET;
4749
4750         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4751                 mac_offset = BGE_EE_MAC_OFFSET_5906;
4752
4753         return bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
4754 }
4755
4756 static int
4757 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4758 {
4759         if (sc->bge_flags & BGE_FLAG_NO_EEPROM)
4760                 return 1;
4761
4762         return bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4763                                ETHER_ADDR_LEN);
4764 }
4765
4766 static int
4767 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4768 {
4769         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4770                 /* NOTE: Order is critical */
4771                 bge_get_eaddr_mem,
4772                 bge_get_eaddr_nvram,
4773                 bge_get_eaddr_eeprom,
4774                 NULL
4775         };
4776         const bge_eaddr_fcn_t *func;
4777
4778         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4779                 if ((*func)(sc, eaddr) == 0)
4780                         break;
4781         }
4782         return (*func == NULL ? ENXIO : 0);
4783 }
4784
4785 /*
4786  * NOTE: 'm' is not freed upon failure
4787  */
4788 struct mbuf *
4789 bge_defrag_shortdma(struct mbuf *m)
4790 {
4791         struct mbuf *n;
4792         int found;
4793
4794         /*
4795          * If device receive two back-to-back send BDs with less than
4796          * or equal to 8 total bytes then the device may hang.  The two
4797          * back-to-back send BDs must in the same frame for this failure
4798          * to occur.  Scan mbuf chains and see whether two back-to-back
4799          * send BDs are there.  If this is the case, allocate new mbuf
4800          * and copy the frame to workaround the silicon bug.
4801          */
4802         for (n = m, found = 0; n != NULL; n = n->m_next) {
4803                 if (n->m_len < 8) {
4804                         found++;
4805                         if (found > 1)
4806                                 break;
4807                         continue;
4808                 }
4809                 found = 0;
4810         }
4811
4812         if (found > 1)
4813                 n = m_defrag(m, MB_DONTWAIT);
4814         else
4815                 n = m;
4816         return n;
4817 }
4818
4819 static void
4820 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
4821 {
4822         int i;
4823
4824         BGE_CLRBIT(sc, reg, bit);
4825         for (i = 0; i < BGE_TIMEOUT; i++) {
4826                 if ((CSR_READ_4(sc, reg) & bit) == 0)
4827                         return;
4828                 DELAY(100);
4829         }
4830 }
4831
4832 static void
4833 bge_link_poll(struct bge_softc *sc)
4834 {
4835         uint32_t status;
4836
4837         status = CSR_READ_4(sc, BGE_MAC_STS);
4838         if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
4839                 sc->bge_link_evt = 0;
4840                 sc->bge_link_upd(sc, status);
4841         }
4842 }
4843
4844 static void
4845 bge_enable_msi(struct bge_softc *sc)
4846 {
4847         uint32_t msi_mode;
4848
4849         msi_mode = CSR_READ_4(sc, BGE_MSI_MODE);
4850         msi_mode |= BGE_MSIMODE_ENABLE;
4851         if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4852                 /*
4853                  * According to all of the datasheets that are publicly
4854                  * available, bit 5 of the MSI_MODE is defined to be
4855                  * "MSI FIFO Underrun Attn" for BCM5755+ and BCM5906, on
4856                  * which "oneshot MSI" is enabled.  However, it is always
4857                  * safe to clear it here.
4858                  */
4859                 msi_mode &= ~BGE_MSIMODE_ONESHOT_DISABLE;
4860         }
4861         CSR_WRITE_4(sc, BGE_MSI_MODE, msi_mode);
4862 }
4863
4864 static int
4865 bge_setup_tso(struct bge_softc *sc, struct mbuf **mp,
4866     uint16_t *mss0, uint16_t *flags0)
4867 {
4868         struct mbuf *m;
4869         struct ip *ip;
4870         struct tcphdr *th;
4871         int thoff, iphlen, hoff, hlen;
4872         uint16_t flags, mss;
4873
4874         m = *mp;
4875         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4876
4877         hoff = m->m_pkthdr.csum_lhlen;
4878         iphlen = m->m_pkthdr.csum_iphlen;
4879         thoff = m->m_pkthdr.csum_thlen;
4880
4881         KASSERT(hoff > 0, ("invalid ether header len"));
4882         KASSERT(iphlen > 0, ("invalid ip header len"));
4883         KASSERT(thoff > 0, ("invalid tcp header len"));
4884
4885         if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4886                 m = m_pullup(m, hoff + iphlen + thoff);
4887                 if (m == NULL) {
4888                         *mp = NULL;
4889                         return ENOBUFS;
4890                 }
4891                 *mp = m;
4892         }
4893         ip = mtodoff(m, struct ip *, hoff);
4894         th = mtodoff(m, struct tcphdr *, hoff + iphlen);
4895
4896         mss = m->m_pkthdr.tso_segsz;
4897         flags = BGE_TXBDFLAG_CPU_PRE_DMA | BGE_TXBDFLAG_CPU_POST_DMA;
4898
4899         ip->ip_len = htons(mss + iphlen + thoff);
4900         th->th_sum = 0;
4901
4902         hlen = (iphlen + thoff) >> 2;
4903         mss |= (hlen << 11);
4904
4905         *mss0 = mss;
4906         *flags0 = flags;
4907
4908         return 0;
4909 }