Merge tag 'kbuild-v4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[linux.git] / lib / rational.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * rational fractions
4  *
5  * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com>
6  *
7  * helper functions when coping with rational numbers
8  */
9
10 #include <linux/rational.h>
11 #include <linux/compiler.h>
12 #include <linux/export.h>
13
14 /*
15  * calculate best rational approximation for a given fraction
16  * taking into account restricted register size, e.g. to find
17  * appropriate values for a pll with 5 bit denominator and
18  * 8 bit numerator register fields, trying to set up with a
19  * frequency ratio of 3.1415, one would say:
20  *
21  * rational_best_approximation(31415, 10000,
22  *              (1 << 8) - 1, (1 << 5) - 1, &n, &d);
23  *
24  * you may look at given_numerator as a fixed point number,
25  * with the fractional part size described in given_denominator.
26  *
27  * for theoretical background, see:
28  * http://en.wikipedia.org/wiki/Continued_fraction
29  */
30
31 void rational_best_approximation(
32         unsigned long given_numerator, unsigned long given_denominator,
33         unsigned long max_numerator, unsigned long max_denominator,
34         unsigned long *best_numerator, unsigned long *best_denominator)
35 {
36         unsigned long n, d, n0, d0, n1, d1;
37         n = given_numerator;
38         d = given_denominator;
39         n0 = d1 = 0;
40         n1 = d0 = 1;
41         for (;;) {
42                 unsigned long t, a;
43                 if ((n1 > max_numerator) || (d1 > max_denominator)) {
44                         n1 = n0;
45                         d1 = d0;
46                         break;
47                 }
48                 if (d == 0)
49                         break;
50                 t = d;
51                 a = n / d;
52                 d = n % d;
53                 n = t;
54                 t = n0 + a * n1;
55                 n0 = n1;
56                 n1 = t;
57                 t = d0 + a * d1;
58                 d0 = d1;
59                 d1 = t;
60         }
61         *best_numerator = n1;
62         *best_denominator = d1;
63 }
64
65 EXPORT_SYMBOL(rational_best_approximation);