Merge tag 'irqchip-fixes-6.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
49                 struct list_head *list);
50
51 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
52                 blk_qc_t qc)
53 {
54         return xa_load(&q->hctx_table, qc);
55 }
56
57 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
58 {
59         return rq->mq_hctx->queue_num;
60 }
61
62 /*
63  * Check if any of the ctx, dispatch list or elevator
64  * have pending work in this hardware queue.
65  */
66 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67 {
68         return !list_empty_careful(&hctx->dispatch) ||
69                 sbitmap_any_bit_set(&hctx->ctx_map) ||
70                         blk_mq_sched_has_work(hctx);
71 }
72
73 /*
74  * Mark this ctx as having pending work in this hardware queue
75  */
76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77                                      struct blk_mq_ctx *ctx)
78 {
79         const int bit = ctx->index_hw[hctx->type];
80
81         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
82                 sbitmap_set_bit(&hctx->ctx_map, bit);
83 }
84
85 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
86                                       struct blk_mq_ctx *ctx)
87 {
88         const int bit = ctx->index_hw[hctx->type];
89
90         sbitmap_clear_bit(&hctx->ctx_map, bit);
91 }
92
93 struct mq_inflight {
94         struct block_device *part;
95         unsigned int inflight[2];
96 };
97
98 static bool blk_mq_check_inflight(struct request *rq, void *priv)
99 {
100         struct mq_inflight *mi = priv;
101
102         if (rq->part && blk_do_io_stat(rq) &&
103             (!mi->part->bd_partno || rq->part == mi->part) &&
104             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
105                 mi->inflight[rq_data_dir(rq)]++;
106
107         return true;
108 }
109
110 unsigned int blk_mq_in_flight(struct request_queue *q,
111                 struct block_device *part)
112 {
113         struct mq_inflight mi = { .part = part };
114
115         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116
117         return mi.inflight[0] + mi.inflight[1];
118 }
119
120 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
121                 unsigned int inflight[2])
122 {
123         struct mq_inflight mi = { .part = part };
124
125         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
126         inflight[0] = mi.inflight[0];
127         inflight[1] = mi.inflight[1];
128 }
129
130 void blk_freeze_queue_start(struct request_queue *q)
131 {
132         mutex_lock(&q->mq_freeze_lock);
133         if (++q->mq_freeze_depth == 1) {
134                 percpu_ref_kill(&q->q_usage_counter);
135                 mutex_unlock(&q->mq_freeze_lock);
136                 if (queue_is_mq(q))
137                         blk_mq_run_hw_queues(q, false);
138         } else {
139                 mutex_unlock(&q->mq_freeze_lock);
140         }
141 }
142 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
143
144 void blk_mq_freeze_queue_wait(struct request_queue *q)
145 {
146         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
149
150 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
151                                      unsigned long timeout)
152 {
153         return wait_event_timeout(q->mq_freeze_wq,
154                                         percpu_ref_is_zero(&q->q_usage_counter),
155                                         timeout);
156 }
157 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
158
159 /*
160  * Guarantee no request is in use, so we can change any data structure of
161  * the queue afterward.
162  */
163 void blk_freeze_queue(struct request_queue *q)
164 {
165         /*
166          * In the !blk_mq case we are only calling this to kill the
167          * q_usage_counter, otherwise this increases the freeze depth
168          * and waits for it to return to zero.  For this reason there is
169          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
170          * exported to drivers as the only user for unfreeze is blk_mq.
171          */
172         blk_freeze_queue_start(q);
173         blk_mq_freeze_queue_wait(q);
174 }
175
176 void blk_mq_freeze_queue(struct request_queue *q)
177 {
178         /*
179          * ...just an alias to keep freeze and unfreeze actions balanced
180          * in the blk_mq_* namespace
181          */
182         blk_freeze_queue(q);
183 }
184 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
185
186 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
187 {
188         mutex_lock(&q->mq_freeze_lock);
189         if (force_atomic)
190                 q->q_usage_counter.data->force_atomic = true;
191         q->mq_freeze_depth--;
192         WARN_ON_ONCE(q->mq_freeze_depth < 0);
193         if (!q->mq_freeze_depth) {
194                 percpu_ref_resurrect(&q->q_usage_counter);
195                 wake_up_all(&q->mq_freeze_wq);
196         }
197         mutex_unlock(&q->mq_freeze_lock);
198 }
199
200 void blk_mq_unfreeze_queue(struct request_queue *q)
201 {
202         __blk_mq_unfreeze_queue(q, false);
203 }
204 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
205
206 /*
207  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
208  * mpt3sas driver such that this function can be removed.
209  */
210 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
211 {
212         unsigned long flags;
213
214         spin_lock_irqsave(&q->queue_lock, flags);
215         if (!q->quiesce_depth++)
216                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
217         spin_unlock_irqrestore(&q->queue_lock, flags);
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220
221 /**
222  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
223  * @set: tag_set to wait on
224  *
225  * Note: it is driver's responsibility for making sure that quiesce has
226  * been started on or more of the request_queues of the tag_set.  This
227  * function only waits for the quiesce on those request_queues that had
228  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
229  */
230 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
231 {
232         if (set->flags & BLK_MQ_F_BLOCKING)
233                 synchronize_srcu(set->srcu);
234         else
235                 synchronize_rcu();
236 }
237 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
238
239 /**
240  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
241  * @q: request queue.
242  *
243  * Note: this function does not prevent that the struct request end_io()
244  * callback function is invoked. Once this function is returned, we make
245  * sure no dispatch can happen until the queue is unquiesced via
246  * blk_mq_unquiesce_queue().
247  */
248 void blk_mq_quiesce_queue(struct request_queue *q)
249 {
250         blk_mq_quiesce_queue_nowait(q);
251         /* nothing to wait for non-mq queues */
252         if (queue_is_mq(q))
253                 blk_mq_wait_quiesce_done(q->tag_set);
254 }
255 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
256
257 /*
258  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
259  * @q: request queue.
260  *
261  * This function recovers queue into the state before quiescing
262  * which is done by blk_mq_quiesce_queue.
263  */
264 void blk_mq_unquiesce_queue(struct request_queue *q)
265 {
266         unsigned long flags;
267         bool run_queue = false;
268
269         spin_lock_irqsave(&q->queue_lock, flags);
270         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
271                 ;
272         } else if (!--q->quiesce_depth) {
273                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
274                 run_queue = true;
275         }
276         spin_unlock_irqrestore(&q->queue_lock, flags);
277
278         /* dispatch requests which are inserted during quiescing */
279         if (run_queue)
280                 blk_mq_run_hw_queues(q, true);
281 }
282 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
283
284 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
285 {
286         struct request_queue *q;
287
288         mutex_lock(&set->tag_list_lock);
289         list_for_each_entry(q, &set->tag_list, tag_set_list) {
290                 if (!blk_queue_skip_tagset_quiesce(q))
291                         blk_mq_quiesce_queue_nowait(q);
292         }
293         blk_mq_wait_quiesce_done(set);
294         mutex_unlock(&set->tag_list_lock);
295 }
296 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
297
298 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
299 {
300         struct request_queue *q;
301
302         mutex_lock(&set->tag_list_lock);
303         list_for_each_entry(q, &set->tag_list, tag_set_list) {
304                 if (!blk_queue_skip_tagset_quiesce(q))
305                         blk_mq_unquiesce_queue(q);
306         }
307         mutex_unlock(&set->tag_list_lock);
308 }
309 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
310
311 void blk_mq_wake_waiters(struct request_queue *q)
312 {
313         struct blk_mq_hw_ctx *hctx;
314         unsigned long i;
315
316         queue_for_each_hw_ctx(q, hctx, i)
317                 if (blk_mq_hw_queue_mapped(hctx))
318                         blk_mq_tag_wakeup_all(hctx->tags, true);
319 }
320
321 void blk_rq_init(struct request_queue *q, struct request *rq)
322 {
323         memset(rq, 0, sizeof(*rq));
324
325         INIT_LIST_HEAD(&rq->queuelist);
326         rq->q = q;
327         rq->__sector = (sector_t) -1;
328         INIT_HLIST_NODE(&rq->hash);
329         RB_CLEAR_NODE(&rq->rb_node);
330         rq->tag = BLK_MQ_NO_TAG;
331         rq->internal_tag = BLK_MQ_NO_TAG;
332         rq->start_time_ns = ktime_get_ns();
333         rq->part = NULL;
334         blk_crypto_rq_set_defaults(rq);
335 }
336 EXPORT_SYMBOL(blk_rq_init);
337
338 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
339                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
340 {
341         struct blk_mq_ctx *ctx = data->ctx;
342         struct blk_mq_hw_ctx *hctx = data->hctx;
343         struct request_queue *q = data->q;
344         struct request *rq = tags->static_rqs[tag];
345
346         rq->q = q;
347         rq->mq_ctx = ctx;
348         rq->mq_hctx = hctx;
349         rq->cmd_flags = data->cmd_flags;
350
351         if (data->flags & BLK_MQ_REQ_PM)
352                 data->rq_flags |= RQF_PM;
353         if (blk_queue_io_stat(q))
354                 data->rq_flags |= RQF_IO_STAT;
355         rq->rq_flags = data->rq_flags;
356
357         if (!(data->rq_flags & RQF_ELV)) {
358                 rq->tag = tag;
359                 rq->internal_tag = BLK_MQ_NO_TAG;
360         } else {
361                 rq->tag = BLK_MQ_NO_TAG;
362                 rq->internal_tag = tag;
363         }
364         rq->timeout = 0;
365
366         if (blk_mq_need_time_stamp(rq))
367                 rq->start_time_ns = ktime_get_ns();
368         else
369                 rq->start_time_ns = 0;
370         rq->part = NULL;
371 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
372         rq->alloc_time_ns = alloc_time_ns;
373 #endif
374         rq->io_start_time_ns = 0;
375         rq->stats_sectors = 0;
376         rq->nr_phys_segments = 0;
377 #if defined(CONFIG_BLK_DEV_INTEGRITY)
378         rq->nr_integrity_segments = 0;
379 #endif
380         rq->end_io = NULL;
381         rq->end_io_data = NULL;
382
383         blk_crypto_rq_set_defaults(rq);
384         INIT_LIST_HEAD(&rq->queuelist);
385         /* tag was already set */
386         WRITE_ONCE(rq->deadline, 0);
387         req_ref_set(rq, 1);
388
389         if (rq->rq_flags & RQF_ELV) {
390                 struct elevator_queue *e = data->q->elevator;
391
392                 INIT_HLIST_NODE(&rq->hash);
393                 RB_CLEAR_NODE(&rq->rb_node);
394
395                 if (!op_is_flush(data->cmd_flags) &&
396                     e->type->ops.prepare_request) {
397                         e->type->ops.prepare_request(rq);
398                         rq->rq_flags |= RQF_ELVPRIV;
399                 }
400         }
401
402         return rq;
403 }
404
405 static inline struct request *
406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
407                 u64 alloc_time_ns)
408 {
409         unsigned int tag, tag_offset;
410         struct blk_mq_tags *tags;
411         struct request *rq;
412         unsigned long tag_mask;
413         int i, nr = 0;
414
415         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
416         if (unlikely(!tag_mask))
417                 return NULL;
418
419         tags = blk_mq_tags_from_data(data);
420         for (i = 0; tag_mask; i++) {
421                 if (!(tag_mask & (1UL << i)))
422                         continue;
423                 tag = tag_offset + i;
424                 prefetch(tags->static_rqs[tag]);
425                 tag_mask &= ~(1UL << i);
426                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
427                 rq_list_add(data->cached_rq, rq);
428                 nr++;
429         }
430         /* caller already holds a reference, add for remainder */
431         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
432         data->nr_tags -= nr;
433
434         return rq_list_pop(data->cached_rq);
435 }
436
437 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
438 {
439         struct request_queue *q = data->q;
440         u64 alloc_time_ns = 0;
441         struct request *rq;
442         unsigned int tag;
443
444         /* alloc_time includes depth and tag waits */
445         if (blk_queue_rq_alloc_time(q))
446                 alloc_time_ns = ktime_get_ns();
447
448         if (data->cmd_flags & REQ_NOWAIT)
449                 data->flags |= BLK_MQ_REQ_NOWAIT;
450
451         if (q->elevator) {
452                 struct elevator_queue *e = q->elevator;
453
454                 data->rq_flags |= RQF_ELV;
455
456                 /*
457                  * Flush/passthrough requests are special and go directly to the
458                  * dispatch list. Don't include reserved tags in the
459                  * limiting, as it isn't useful.
460                  */
461                 if (!op_is_flush(data->cmd_flags) &&
462                     !blk_op_is_passthrough(data->cmd_flags) &&
463                     e->type->ops.limit_depth &&
464                     !(data->flags & BLK_MQ_REQ_RESERVED))
465                         e->type->ops.limit_depth(data->cmd_flags, data);
466         }
467
468 retry:
469         data->ctx = blk_mq_get_ctx(q);
470         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
471         if (!(data->rq_flags & RQF_ELV))
472                 blk_mq_tag_busy(data->hctx);
473
474         if (data->flags & BLK_MQ_REQ_RESERVED)
475                 data->rq_flags |= RQF_RESV;
476
477         /*
478          * Try batched alloc if we want more than 1 tag.
479          */
480         if (data->nr_tags > 1) {
481                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
482                 if (rq)
483                         return rq;
484                 data->nr_tags = 1;
485         }
486
487         /*
488          * Waiting allocations only fail because of an inactive hctx.  In that
489          * case just retry the hctx assignment and tag allocation as CPU hotplug
490          * should have migrated us to an online CPU by now.
491          */
492         tag = blk_mq_get_tag(data);
493         if (tag == BLK_MQ_NO_TAG) {
494                 if (data->flags & BLK_MQ_REQ_NOWAIT)
495                         return NULL;
496                 /*
497                  * Give up the CPU and sleep for a random short time to
498                  * ensure that thread using a realtime scheduling class
499                  * are migrated off the CPU, and thus off the hctx that
500                  * is going away.
501                  */
502                 msleep(3);
503                 goto retry;
504         }
505
506         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
507                                         alloc_time_ns);
508 }
509
510 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
511                                             struct blk_plug *plug,
512                                             blk_opf_t opf,
513                                             blk_mq_req_flags_t flags)
514 {
515         struct blk_mq_alloc_data data = {
516                 .q              = q,
517                 .flags          = flags,
518                 .cmd_flags      = opf,
519                 .nr_tags        = plug->nr_ios,
520                 .cached_rq      = &plug->cached_rq,
521         };
522         struct request *rq;
523
524         if (blk_queue_enter(q, flags))
525                 return NULL;
526
527         plug->nr_ios = 1;
528
529         rq = __blk_mq_alloc_requests(&data);
530         if (unlikely(!rq))
531                 blk_queue_exit(q);
532         return rq;
533 }
534
535 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
536                                                    blk_opf_t opf,
537                                                    blk_mq_req_flags_t flags)
538 {
539         struct blk_plug *plug = current->plug;
540         struct request *rq;
541
542         if (!plug)
543                 return NULL;
544
545         if (rq_list_empty(plug->cached_rq)) {
546                 if (plug->nr_ios == 1)
547                         return NULL;
548                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
549                 if (!rq)
550                         return NULL;
551         } else {
552                 rq = rq_list_peek(&plug->cached_rq);
553                 if (!rq || rq->q != q)
554                         return NULL;
555
556                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
557                         return NULL;
558                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
559                         return NULL;
560
561                 plug->cached_rq = rq_list_next(rq);
562         }
563
564         rq->cmd_flags = opf;
565         INIT_LIST_HEAD(&rq->queuelist);
566         return rq;
567 }
568
569 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
570                 blk_mq_req_flags_t flags)
571 {
572         struct request *rq;
573
574         rq = blk_mq_alloc_cached_request(q, opf, flags);
575         if (!rq) {
576                 struct blk_mq_alloc_data data = {
577                         .q              = q,
578                         .flags          = flags,
579                         .cmd_flags      = opf,
580                         .nr_tags        = 1,
581                 };
582                 int ret;
583
584                 ret = blk_queue_enter(q, flags);
585                 if (ret)
586                         return ERR_PTR(ret);
587
588                 rq = __blk_mq_alloc_requests(&data);
589                 if (!rq)
590                         goto out_queue_exit;
591         }
592         rq->__data_len = 0;
593         rq->__sector = (sector_t) -1;
594         rq->bio = rq->biotail = NULL;
595         return rq;
596 out_queue_exit:
597         blk_queue_exit(q);
598         return ERR_PTR(-EWOULDBLOCK);
599 }
600 EXPORT_SYMBOL(blk_mq_alloc_request);
601
602 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
603         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
604 {
605         struct blk_mq_alloc_data data = {
606                 .q              = q,
607                 .flags          = flags,
608                 .cmd_flags      = opf,
609                 .nr_tags        = 1,
610         };
611         u64 alloc_time_ns = 0;
612         struct request *rq;
613         unsigned int cpu;
614         unsigned int tag;
615         int ret;
616
617         /* alloc_time includes depth and tag waits */
618         if (blk_queue_rq_alloc_time(q))
619                 alloc_time_ns = ktime_get_ns();
620
621         /*
622          * If the tag allocator sleeps we could get an allocation for a
623          * different hardware context.  No need to complicate the low level
624          * allocator for this for the rare use case of a command tied to
625          * a specific queue.
626          */
627         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
628             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
629                 return ERR_PTR(-EINVAL);
630
631         if (hctx_idx >= q->nr_hw_queues)
632                 return ERR_PTR(-EIO);
633
634         ret = blk_queue_enter(q, flags);
635         if (ret)
636                 return ERR_PTR(ret);
637
638         /*
639          * Check if the hardware context is actually mapped to anything.
640          * If not tell the caller that it should skip this queue.
641          */
642         ret = -EXDEV;
643         data.hctx = xa_load(&q->hctx_table, hctx_idx);
644         if (!blk_mq_hw_queue_mapped(data.hctx))
645                 goto out_queue_exit;
646         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
647         if (cpu >= nr_cpu_ids)
648                 goto out_queue_exit;
649         data.ctx = __blk_mq_get_ctx(q, cpu);
650
651         if (!q->elevator)
652                 blk_mq_tag_busy(data.hctx);
653         else
654                 data.rq_flags |= RQF_ELV;
655
656         if (flags & BLK_MQ_REQ_RESERVED)
657                 data.rq_flags |= RQF_RESV;
658
659         ret = -EWOULDBLOCK;
660         tag = blk_mq_get_tag(&data);
661         if (tag == BLK_MQ_NO_TAG)
662                 goto out_queue_exit;
663         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
664                                         alloc_time_ns);
665         rq->__data_len = 0;
666         rq->__sector = (sector_t) -1;
667         rq->bio = rq->biotail = NULL;
668         return rq;
669
670 out_queue_exit:
671         blk_queue_exit(q);
672         return ERR_PTR(ret);
673 }
674 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
675
676 static void __blk_mq_free_request(struct request *rq)
677 {
678         struct request_queue *q = rq->q;
679         struct blk_mq_ctx *ctx = rq->mq_ctx;
680         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
681         const int sched_tag = rq->internal_tag;
682
683         blk_crypto_free_request(rq);
684         blk_pm_mark_last_busy(rq);
685         rq->mq_hctx = NULL;
686         if (rq->tag != BLK_MQ_NO_TAG)
687                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
688         if (sched_tag != BLK_MQ_NO_TAG)
689                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
690         blk_mq_sched_restart(hctx);
691         blk_queue_exit(q);
692 }
693
694 void blk_mq_free_request(struct request *rq)
695 {
696         struct request_queue *q = rq->q;
697         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
698
699         if ((rq->rq_flags & RQF_ELVPRIV) &&
700             q->elevator->type->ops.finish_request)
701                 q->elevator->type->ops.finish_request(rq);
702
703         if (rq->rq_flags & RQF_MQ_INFLIGHT)
704                 __blk_mq_dec_active_requests(hctx);
705
706         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
707                 laptop_io_completion(q->disk->bdi);
708
709         rq_qos_done(q, rq);
710
711         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
712         if (req_ref_put_and_test(rq))
713                 __blk_mq_free_request(rq);
714 }
715 EXPORT_SYMBOL_GPL(blk_mq_free_request);
716
717 void blk_mq_free_plug_rqs(struct blk_plug *plug)
718 {
719         struct request *rq;
720
721         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
722                 blk_mq_free_request(rq);
723 }
724
725 void blk_dump_rq_flags(struct request *rq, char *msg)
726 {
727         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
728                 rq->q->disk ? rq->q->disk->disk_name : "?",
729                 (__force unsigned long long) rq->cmd_flags);
730
731         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
732                (unsigned long long)blk_rq_pos(rq),
733                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
734         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
735                rq->bio, rq->biotail, blk_rq_bytes(rq));
736 }
737 EXPORT_SYMBOL(blk_dump_rq_flags);
738
739 static void req_bio_endio(struct request *rq, struct bio *bio,
740                           unsigned int nbytes, blk_status_t error)
741 {
742         if (unlikely(error)) {
743                 bio->bi_status = error;
744         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
745                 /*
746                  * Partial zone append completions cannot be supported as the
747                  * BIO fragments may end up not being written sequentially.
748                  */
749                 if (bio->bi_iter.bi_size != nbytes)
750                         bio->bi_status = BLK_STS_IOERR;
751                 else
752                         bio->bi_iter.bi_sector = rq->__sector;
753         }
754
755         bio_advance(bio, nbytes);
756
757         if (unlikely(rq->rq_flags & RQF_QUIET))
758                 bio_set_flag(bio, BIO_QUIET);
759         /* don't actually finish bio if it's part of flush sequence */
760         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
761                 bio_endio(bio);
762 }
763
764 static void blk_account_io_completion(struct request *req, unsigned int bytes)
765 {
766         if (req->part && blk_do_io_stat(req)) {
767                 const int sgrp = op_stat_group(req_op(req));
768
769                 part_stat_lock();
770                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
771                 part_stat_unlock();
772         }
773 }
774
775 static void blk_print_req_error(struct request *req, blk_status_t status)
776 {
777         printk_ratelimited(KERN_ERR
778                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
779                 "phys_seg %u prio class %u\n",
780                 blk_status_to_str(status),
781                 req->q->disk ? req->q->disk->disk_name : "?",
782                 blk_rq_pos(req), (__force u32)req_op(req),
783                 blk_op_str(req_op(req)),
784                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
785                 req->nr_phys_segments,
786                 IOPRIO_PRIO_CLASS(req->ioprio));
787 }
788
789 /*
790  * Fully end IO on a request. Does not support partial completions, or
791  * errors.
792  */
793 static void blk_complete_request(struct request *req)
794 {
795         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
796         int total_bytes = blk_rq_bytes(req);
797         struct bio *bio = req->bio;
798
799         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
800
801         if (!bio)
802                 return;
803
804 #ifdef CONFIG_BLK_DEV_INTEGRITY
805         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
806                 req->q->integrity.profile->complete_fn(req, total_bytes);
807 #endif
808
809         /*
810          * Upper layers may call blk_crypto_evict_key() anytime after the last
811          * bio_endio().  Therefore, the keyslot must be released before that.
812          */
813         blk_crypto_rq_put_keyslot(req);
814
815         blk_account_io_completion(req, total_bytes);
816
817         do {
818                 struct bio *next = bio->bi_next;
819
820                 /* Completion has already been traced */
821                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
822
823                 if (req_op(req) == REQ_OP_ZONE_APPEND)
824                         bio->bi_iter.bi_sector = req->__sector;
825
826                 if (!is_flush)
827                         bio_endio(bio);
828                 bio = next;
829         } while (bio);
830
831         /*
832          * Reset counters so that the request stacking driver
833          * can find how many bytes remain in the request
834          * later.
835          */
836         if (!req->end_io) {
837                 req->bio = NULL;
838                 req->__data_len = 0;
839         }
840 }
841
842 /**
843  * blk_update_request - Complete multiple bytes without completing the request
844  * @req:      the request being processed
845  * @error:    block status code
846  * @nr_bytes: number of bytes to complete for @req
847  *
848  * Description:
849  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
850  *     the request structure even if @req doesn't have leftover.
851  *     If @req has leftover, sets it up for the next range of segments.
852  *
853  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
854  *     %false return from this function.
855  *
856  * Note:
857  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
858  *      except in the consistency check at the end of this function.
859  *
860  * Return:
861  *     %false - this request doesn't have any more data
862  *     %true  - this request has more data
863  **/
864 bool blk_update_request(struct request *req, blk_status_t error,
865                 unsigned int nr_bytes)
866 {
867         int total_bytes;
868
869         trace_block_rq_complete(req, error, nr_bytes);
870
871         if (!req->bio)
872                 return false;
873
874 #ifdef CONFIG_BLK_DEV_INTEGRITY
875         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
876             error == BLK_STS_OK)
877                 req->q->integrity.profile->complete_fn(req, nr_bytes);
878 #endif
879
880         /*
881          * Upper layers may call blk_crypto_evict_key() anytime after the last
882          * bio_endio().  Therefore, the keyslot must be released before that.
883          */
884         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
885                 __blk_crypto_rq_put_keyslot(req);
886
887         if (unlikely(error && !blk_rq_is_passthrough(req) &&
888                      !(req->rq_flags & RQF_QUIET)) &&
889                      !test_bit(GD_DEAD, &req->q->disk->state)) {
890                 blk_print_req_error(req, error);
891                 trace_block_rq_error(req, error, nr_bytes);
892         }
893
894         blk_account_io_completion(req, nr_bytes);
895
896         total_bytes = 0;
897         while (req->bio) {
898                 struct bio *bio = req->bio;
899                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
900
901                 if (bio_bytes == bio->bi_iter.bi_size)
902                         req->bio = bio->bi_next;
903
904                 /* Completion has already been traced */
905                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
906                 req_bio_endio(req, bio, bio_bytes, error);
907
908                 total_bytes += bio_bytes;
909                 nr_bytes -= bio_bytes;
910
911                 if (!nr_bytes)
912                         break;
913         }
914
915         /*
916          * completely done
917          */
918         if (!req->bio) {
919                 /*
920                  * Reset counters so that the request stacking driver
921                  * can find how many bytes remain in the request
922                  * later.
923                  */
924                 req->__data_len = 0;
925                 return false;
926         }
927
928         req->__data_len -= total_bytes;
929
930         /* update sector only for requests with clear definition of sector */
931         if (!blk_rq_is_passthrough(req))
932                 req->__sector += total_bytes >> 9;
933
934         /* mixed attributes always follow the first bio */
935         if (req->rq_flags & RQF_MIXED_MERGE) {
936                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
937                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
938         }
939
940         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
941                 /*
942                  * If total number of sectors is less than the first segment
943                  * size, something has gone terribly wrong.
944                  */
945                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
946                         blk_dump_rq_flags(req, "request botched");
947                         req->__data_len = blk_rq_cur_bytes(req);
948                 }
949
950                 /* recalculate the number of segments */
951                 req->nr_phys_segments = blk_recalc_rq_segments(req);
952         }
953
954         return true;
955 }
956 EXPORT_SYMBOL_GPL(blk_update_request);
957
958 static inline void blk_account_io_done(struct request *req, u64 now)
959 {
960         /*
961          * Account IO completion.  flush_rq isn't accounted as a
962          * normal IO on queueing nor completion.  Accounting the
963          * containing request is enough.
964          */
965         if (blk_do_io_stat(req) && req->part &&
966             !(req->rq_flags & RQF_FLUSH_SEQ)) {
967                 const int sgrp = op_stat_group(req_op(req));
968
969                 part_stat_lock();
970                 update_io_ticks(req->part, jiffies, true);
971                 part_stat_inc(req->part, ios[sgrp]);
972                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
973                 part_stat_unlock();
974         }
975 }
976
977 static inline void blk_account_io_start(struct request *req)
978 {
979         if (blk_do_io_stat(req)) {
980                 /*
981                  * All non-passthrough requests are created from a bio with one
982                  * exception: when a flush command that is part of a flush sequence
983                  * generated by the state machine in blk-flush.c is cloned onto the
984                  * lower device by dm-multipath we can get here without a bio.
985                  */
986                 if (req->bio)
987                         req->part = req->bio->bi_bdev;
988                 else
989                         req->part = req->q->disk->part0;
990
991                 part_stat_lock();
992                 update_io_ticks(req->part, jiffies, false);
993                 part_stat_unlock();
994         }
995 }
996
997 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
998 {
999         if (rq->rq_flags & RQF_STATS)
1000                 blk_stat_add(rq, now);
1001
1002         blk_mq_sched_completed_request(rq, now);
1003         blk_account_io_done(rq, now);
1004 }
1005
1006 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1007 {
1008         if (blk_mq_need_time_stamp(rq))
1009                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1010
1011         if (rq->end_io) {
1012                 rq_qos_done(rq->q, rq);
1013                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1014                         blk_mq_free_request(rq);
1015         } else {
1016                 blk_mq_free_request(rq);
1017         }
1018 }
1019 EXPORT_SYMBOL(__blk_mq_end_request);
1020
1021 void blk_mq_end_request(struct request *rq, blk_status_t error)
1022 {
1023         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1024                 BUG();
1025         __blk_mq_end_request(rq, error);
1026 }
1027 EXPORT_SYMBOL(blk_mq_end_request);
1028
1029 #define TAG_COMP_BATCH          32
1030
1031 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1032                                           int *tag_array, int nr_tags)
1033 {
1034         struct request_queue *q = hctx->queue;
1035
1036         /*
1037          * All requests should have been marked as RQF_MQ_INFLIGHT, so
1038          * update hctx->nr_active in batch
1039          */
1040         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1041                 __blk_mq_sub_active_requests(hctx, nr_tags);
1042
1043         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1044         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1045 }
1046
1047 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1048 {
1049         int tags[TAG_COMP_BATCH], nr_tags = 0;
1050         struct blk_mq_hw_ctx *cur_hctx = NULL;
1051         struct request *rq;
1052         u64 now = 0;
1053
1054         if (iob->need_ts)
1055                 now = ktime_get_ns();
1056
1057         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1058                 prefetch(rq->bio);
1059                 prefetch(rq->rq_next);
1060
1061                 blk_complete_request(rq);
1062                 if (iob->need_ts)
1063                         __blk_mq_end_request_acct(rq, now);
1064
1065                 rq_qos_done(rq->q, rq);
1066
1067                 /*
1068                  * If end_io handler returns NONE, then it still has
1069                  * ownership of the request.
1070                  */
1071                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1072                         continue;
1073
1074                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1075                 if (!req_ref_put_and_test(rq))
1076                         continue;
1077
1078                 blk_crypto_free_request(rq);
1079                 blk_pm_mark_last_busy(rq);
1080
1081                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1082                         if (cur_hctx)
1083                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1084                         nr_tags = 0;
1085                         cur_hctx = rq->mq_hctx;
1086                 }
1087                 tags[nr_tags++] = rq->tag;
1088         }
1089
1090         if (nr_tags)
1091                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1092 }
1093 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1094
1095 static void blk_complete_reqs(struct llist_head *list)
1096 {
1097         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1098         struct request *rq, *next;
1099
1100         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1101                 rq->q->mq_ops->complete(rq);
1102 }
1103
1104 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1105 {
1106         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1107 }
1108
1109 static int blk_softirq_cpu_dead(unsigned int cpu)
1110 {
1111         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1112         return 0;
1113 }
1114
1115 static void __blk_mq_complete_request_remote(void *data)
1116 {
1117         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1118 }
1119
1120 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1121 {
1122         int cpu = raw_smp_processor_id();
1123
1124         if (!IS_ENABLED(CONFIG_SMP) ||
1125             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1126                 return false;
1127         /*
1128          * With force threaded interrupts enabled, raising softirq from an SMP
1129          * function call will always result in waking the ksoftirqd thread.
1130          * This is probably worse than completing the request on a different
1131          * cache domain.
1132          */
1133         if (force_irqthreads())
1134                 return false;
1135
1136         /* same CPU or cache domain?  Complete locally */
1137         if (cpu == rq->mq_ctx->cpu ||
1138             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1139              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1140                 return false;
1141
1142         /* don't try to IPI to an offline CPU */
1143         return cpu_online(rq->mq_ctx->cpu);
1144 }
1145
1146 static void blk_mq_complete_send_ipi(struct request *rq)
1147 {
1148         struct llist_head *list;
1149         unsigned int cpu;
1150
1151         cpu = rq->mq_ctx->cpu;
1152         list = &per_cpu(blk_cpu_done, cpu);
1153         if (llist_add(&rq->ipi_list, list)) {
1154                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1155                 smp_call_function_single_async(cpu, &rq->csd);
1156         }
1157 }
1158
1159 static void blk_mq_raise_softirq(struct request *rq)
1160 {
1161         struct llist_head *list;
1162
1163         preempt_disable();
1164         list = this_cpu_ptr(&blk_cpu_done);
1165         if (llist_add(&rq->ipi_list, list))
1166                 raise_softirq(BLOCK_SOFTIRQ);
1167         preempt_enable();
1168 }
1169
1170 bool blk_mq_complete_request_remote(struct request *rq)
1171 {
1172         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1173
1174         /*
1175          * For request which hctx has only one ctx mapping,
1176          * or a polled request, always complete locally,
1177          * it's pointless to redirect the completion.
1178          */
1179         if (rq->mq_hctx->nr_ctx == 1 ||
1180                 rq->cmd_flags & REQ_POLLED)
1181                 return false;
1182
1183         if (blk_mq_complete_need_ipi(rq)) {
1184                 blk_mq_complete_send_ipi(rq);
1185                 return true;
1186         }
1187
1188         if (rq->q->nr_hw_queues == 1) {
1189                 blk_mq_raise_softirq(rq);
1190                 return true;
1191         }
1192         return false;
1193 }
1194 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1195
1196 /**
1197  * blk_mq_complete_request - end I/O on a request
1198  * @rq:         the request being processed
1199  *
1200  * Description:
1201  *      Complete a request by scheduling the ->complete_rq operation.
1202  **/
1203 void blk_mq_complete_request(struct request *rq)
1204 {
1205         if (!blk_mq_complete_request_remote(rq))
1206                 rq->q->mq_ops->complete(rq);
1207 }
1208 EXPORT_SYMBOL(blk_mq_complete_request);
1209
1210 /**
1211  * blk_mq_start_request - Start processing a request
1212  * @rq: Pointer to request to be started
1213  *
1214  * Function used by device drivers to notify the block layer that a request
1215  * is going to be processed now, so blk layer can do proper initializations
1216  * such as starting the timeout timer.
1217  */
1218 void blk_mq_start_request(struct request *rq)
1219 {
1220         struct request_queue *q = rq->q;
1221
1222         trace_block_rq_issue(rq);
1223
1224         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1225                 rq->io_start_time_ns = ktime_get_ns();
1226                 rq->stats_sectors = blk_rq_sectors(rq);
1227                 rq->rq_flags |= RQF_STATS;
1228                 rq_qos_issue(q, rq);
1229         }
1230
1231         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1232
1233         blk_add_timer(rq);
1234         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1235
1236 #ifdef CONFIG_BLK_DEV_INTEGRITY
1237         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1238                 q->integrity.profile->prepare_fn(rq);
1239 #endif
1240         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1241                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1242 }
1243 EXPORT_SYMBOL(blk_mq_start_request);
1244
1245 /*
1246  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1247  * queues. This is important for md arrays to benefit from merging
1248  * requests.
1249  */
1250 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1251 {
1252         if (plug->multiple_queues)
1253                 return BLK_MAX_REQUEST_COUNT * 2;
1254         return BLK_MAX_REQUEST_COUNT;
1255 }
1256
1257 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1258 {
1259         struct request *last = rq_list_peek(&plug->mq_list);
1260
1261         if (!plug->rq_count) {
1262                 trace_block_plug(rq->q);
1263         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1264                    (!blk_queue_nomerges(rq->q) &&
1265                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1266                 blk_mq_flush_plug_list(plug, false);
1267                 last = NULL;
1268                 trace_block_plug(rq->q);
1269         }
1270
1271         if (!plug->multiple_queues && last && last->q != rq->q)
1272                 plug->multiple_queues = true;
1273         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1274                 plug->has_elevator = true;
1275         rq->rq_next = NULL;
1276         rq_list_add(&plug->mq_list, rq);
1277         plug->rq_count++;
1278 }
1279
1280 /**
1281  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1282  * @rq:         request to insert
1283  * @at_head:    insert request at head or tail of queue
1284  *
1285  * Description:
1286  *    Insert a fully prepared request at the back of the I/O scheduler queue
1287  *    for execution.  Don't wait for completion.
1288  *
1289  * Note:
1290  *    This function will invoke @done directly if the queue is dead.
1291  */
1292 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1293 {
1294         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1295
1296         WARN_ON(irqs_disabled());
1297         WARN_ON(!blk_rq_is_passthrough(rq));
1298
1299         blk_account_io_start(rq);
1300
1301         /*
1302          * As plugging can be enabled for passthrough requests on a zoned
1303          * device, directly accessing the plug instead of using blk_mq_plug()
1304          * should not have any consequences.
1305          */
1306         if (current->plug && !at_head) {
1307                 blk_add_rq_to_plug(current->plug, rq);
1308                 return;
1309         }
1310
1311         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1312         blk_mq_run_hw_queue(hctx, false);
1313 }
1314 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1315
1316 struct blk_rq_wait {
1317         struct completion done;
1318         blk_status_t ret;
1319 };
1320
1321 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1322 {
1323         struct blk_rq_wait *wait = rq->end_io_data;
1324
1325         wait->ret = ret;
1326         complete(&wait->done);
1327         return RQ_END_IO_NONE;
1328 }
1329
1330 bool blk_rq_is_poll(struct request *rq)
1331 {
1332         if (!rq->mq_hctx)
1333                 return false;
1334         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1335                 return false;
1336         return true;
1337 }
1338 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1339
1340 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1341 {
1342         do {
1343                 blk_mq_poll(rq->q, blk_rq_to_qc(rq), NULL, 0);
1344                 cond_resched();
1345         } while (!completion_done(wait));
1346 }
1347
1348 /**
1349  * blk_execute_rq - insert a request into queue for execution
1350  * @rq:         request to insert
1351  * @at_head:    insert request at head or tail of queue
1352  *
1353  * Description:
1354  *    Insert a fully prepared request at the back of the I/O scheduler queue
1355  *    for execution and wait for completion.
1356  * Return: The blk_status_t result provided to blk_mq_end_request().
1357  */
1358 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1359 {
1360         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1361         struct blk_rq_wait wait = {
1362                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1363         };
1364
1365         WARN_ON(irqs_disabled());
1366         WARN_ON(!blk_rq_is_passthrough(rq));
1367
1368         rq->end_io_data = &wait;
1369         rq->end_io = blk_end_sync_rq;
1370
1371         blk_account_io_start(rq);
1372         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1373         blk_mq_run_hw_queue(hctx, false);
1374
1375         if (blk_rq_is_poll(rq)) {
1376                 blk_rq_poll_completion(rq, &wait.done);
1377         } else {
1378                 /*
1379                  * Prevent hang_check timer from firing at us during very long
1380                  * I/O
1381                  */
1382                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1383
1384                 if (hang_check)
1385                         while (!wait_for_completion_io_timeout(&wait.done,
1386                                         hang_check * (HZ/2)))
1387                                 ;
1388                 else
1389                         wait_for_completion_io(&wait.done);
1390         }
1391
1392         return wait.ret;
1393 }
1394 EXPORT_SYMBOL(blk_execute_rq);
1395
1396 static void __blk_mq_requeue_request(struct request *rq)
1397 {
1398         struct request_queue *q = rq->q;
1399
1400         blk_mq_put_driver_tag(rq);
1401
1402         trace_block_rq_requeue(rq);
1403         rq_qos_requeue(q, rq);
1404
1405         if (blk_mq_request_started(rq)) {
1406                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1407                 rq->rq_flags &= ~RQF_TIMED_OUT;
1408         }
1409 }
1410
1411 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1412 {
1413         struct request_queue *q = rq->q;
1414
1415         __blk_mq_requeue_request(rq);
1416
1417         /* this request will be re-inserted to io scheduler queue */
1418         blk_mq_sched_requeue_request(rq);
1419
1420         blk_mq_add_to_requeue_list(rq, BLK_MQ_INSERT_AT_HEAD);
1421
1422         if (kick_requeue_list)
1423                 blk_mq_kick_requeue_list(q);
1424 }
1425 EXPORT_SYMBOL(blk_mq_requeue_request);
1426
1427 static void blk_mq_requeue_work(struct work_struct *work)
1428 {
1429         struct request_queue *q =
1430                 container_of(work, struct request_queue, requeue_work.work);
1431         LIST_HEAD(rq_list);
1432         struct request *rq, *next;
1433
1434         spin_lock_irq(&q->requeue_lock);
1435         list_splice_init(&q->requeue_list, &rq_list);
1436         spin_unlock_irq(&q->requeue_lock);
1437
1438         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1439                 /*
1440                  * If RQF_DONTPREP ist set, the request has been started by the
1441                  * driver already and might have driver-specific data allocated
1442                  * already.  Insert it into the hctx dispatch list to avoid
1443                  * block layer merges for the request.
1444                  */
1445                 if (rq->rq_flags & RQF_DONTPREP) {
1446                         rq->rq_flags &= ~RQF_SOFTBARRIER;
1447                         list_del_init(&rq->queuelist);
1448                         blk_mq_request_bypass_insert(rq, 0);
1449                 } else if (rq->rq_flags & RQF_SOFTBARRIER) {
1450                         rq->rq_flags &= ~RQF_SOFTBARRIER;
1451                         list_del_init(&rq->queuelist);
1452                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1453                 }
1454         }
1455
1456         while (!list_empty(&rq_list)) {
1457                 rq = list_entry(rq_list.next, struct request, queuelist);
1458                 list_del_init(&rq->queuelist);
1459                 blk_mq_insert_request(rq, 0);
1460         }
1461
1462         blk_mq_run_hw_queues(q, false);
1463 }
1464
1465 void blk_mq_add_to_requeue_list(struct request *rq, blk_insert_t insert_flags)
1466 {
1467         struct request_queue *q = rq->q;
1468         unsigned long flags;
1469
1470         /*
1471          * We abuse this flag that is otherwise used by the I/O scheduler to
1472          * request head insertion from the workqueue.
1473          */
1474         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1475
1476         spin_lock_irqsave(&q->requeue_lock, flags);
1477         if (insert_flags & BLK_MQ_INSERT_AT_HEAD) {
1478                 rq->rq_flags |= RQF_SOFTBARRIER;
1479                 list_add(&rq->queuelist, &q->requeue_list);
1480         } else {
1481                 list_add_tail(&rq->queuelist, &q->requeue_list);
1482         }
1483         spin_unlock_irqrestore(&q->requeue_lock, flags);
1484 }
1485
1486 void blk_mq_kick_requeue_list(struct request_queue *q)
1487 {
1488         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1489 }
1490 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1491
1492 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1493                                     unsigned long msecs)
1494 {
1495         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1496                                     msecs_to_jiffies(msecs));
1497 }
1498 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1499
1500 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1501 {
1502         /*
1503          * If we find a request that isn't idle we know the queue is busy
1504          * as it's checked in the iter.
1505          * Return false to stop the iteration.
1506          */
1507         if (blk_mq_request_started(rq)) {
1508                 bool *busy = priv;
1509
1510                 *busy = true;
1511                 return false;
1512         }
1513
1514         return true;
1515 }
1516
1517 bool blk_mq_queue_inflight(struct request_queue *q)
1518 {
1519         bool busy = false;
1520
1521         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1522         return busy;
1523 }
1524 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1525
1526 static void blk_mq_rq_timed_out(struct request *req)
1527 {
1528         req->rq_flags |= RQF_TIMED_OUT;
1529         if (req->q->mq_ops->timeout) {
1530                 enum blk_eh_timer_return ret;
1531
1532                 ret = req->q->mq_ops->timeout(req);
1533                 if (ret == BLK_EH_DONE)
1534                         return;
1535                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1536         }
1537
1538         blk_add_timer(req);
1539 }
1540
1541 struct blk_expired_data {
1542         bool has_timedout_rq;
1543         unsigned long next;
1544         unsigned long timeout_start;
1545 };
1546
1547 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1548 {
1549         unsigned long deadline;
1550
1551         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1552                 return false;
1553         if (rq->rq_flags & RQF_TIMED_OUT)
1554                 return false;
1555
1556         deadline = READ_ONCE(rq->deadline);
1557         if (time_after_eq(expired->timeout_start, deadline))
1558                 return true;
1559
1560         if (expired->next == 0)
1561                 expired->next = deadline;
1562         else if (time_after(expired->next, deadline))
1563                 expired->next = deadline;
1564         return false;
1565 }
1566
1567 void blk_mq_put_rq_ref(struct request *rq)
1568 {
1569         if (is_flush_rq(rq)) {
1570                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1571                         blk_mq_free_request(rq);
1572         } else if (req_ref_put_and_test(rq)) {
1573                 __blk_mq_free_request(rq);
1574         }
1575 }
1576
1577 static bool blk_mq_check_expired(struct request *rq, void *priv)
1578 {
1579         struct blk_expired_data *expired = priv;
1580
1581         /*
1582          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1583          * be reallocated underneath the timeout handler's processing, then
1584          * the expire check is reliable. If the request is not expired, then
1585          * it was completed and reallocated as a new request after returning
1586          * from blk_mq_check_expired().
1587          */
1588         if (blk_mq_req_expired(rq, expired)) {
1589                 expired->has_timedout_rq = true;
1590                 return false;
1591         }
1592         return true;
1593 }
1594
1595 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1596 {
1597         struct blk_expired_data *expired = priv;
1598
1599         if (blk_mq_req_expired(rq, expired))
1600                 blk_mq_rq_timed_out(rq);
1601         return true;
1602 }
1603
1604 static void blk_mq_timeout_work(struct work_struct *work)
1605 {
1606         struct request_queue *q =
1607                 container_of(work, struct request_queue, timeout_work);
1608         struct blk_expired_data expired = {
1609                 .timeout_start = jiffies,
1610         };
1611         struct blk_mq_hw_ctx *hctx;
1612         unsigned long i;
1613
1614         /* A deadlock might occur if a request is stuck requiring a
1615          * timeout at the same time a queue freeze is waiting
1616          * completion, since the timeout code would not be able to
1617          * acquire the queue reference here.
1618          *
1619          * That's why we don't use blk_queue_enter here; instead, we use
1620          * percpu_ref_tryget directly, because we need to be able to
1621          * obtain a reference even in the short window between the queue
1622          * starting to freeze, by dropping the first reference in
1623          * blk_freeze_queue_start, and the moment the last request is
1624          * consumed, marked by the instant q_usage_counter reaches
1625          * zero.
1626          */
1627         if (!percpu_ref_tryget(&q->q_usage_counter))
1628                 return;
1629
1630         /* check if there is any timed-out request */
1631         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1632         if (expired.has_timedout_rq) {
1633                 /*
1634                  * Before walking tags, we must ensure any submit started
1635                  * before the current time has finished. Since the submit
1636                  * uses srcu or rcu, wait for a synchronization point to
1637                  * ensure all running submits have finished
1638                  */
1639                 blk_mq_wait_quiesce_done(q->tag_set);
1640
1641                 expired.next = 0;
1642                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1643         }
1644
1645         if (expired.next != 0) {
1646                 mod_timer(&q->timeout, expired.next);
1647         } else {
1648                 /*
1649                  * Request timeouts are handled as a forward rolling timer. If
1650                  * we end up here it means that no requests are pending and
1651                  * also that no request has been pending for a while. Mark
1652                  * each hctx as idle.
1653                  */
1654                 queue_for_each_hw_ctx(q, hctx, i) {
1655                         /* the hctx may be unmapped, so check it here */
1656                         if (blk_mq_hw_queue_mapped(hctx))
1657                                 blk_mq_tag_idle(hctx);
1658                 }
1659         }
1660         blk_queue_exit(q);
1661 }
1662
1663 struct flush_busy_ctx_data {
1664         struct blk_mq_hw_ctx *hctx;
1665         struct list_head *list;
1666 };
1667
1668 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1669 {
1670         struct flush_busy_ctx_data *flush_data = data;
1671         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1672         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1673         enum hctx_type type = hctx->type;
1674
1675         spin_lock(&ctx->lock);
1676         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1677         sbitmap_clear_bit(sb, bitnr);
1678         spin_unlock(&ctx->lock);
1679         return true;
1680 }
1681
1682 /*
1683  * Process software queues that have been marked busy, splicing them
1684  * to the for-dispatch
1685  */
1686 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1687 {
1688         struct flush_busy_ctx_data data = {
1689                 .hctx = hctx,
1690                 .list = list,
1691         };
1692
1693         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1694 }
1695 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1696
1697 struct dispatch_rq_data {
1698         struct blk_mq_hw_ctx *hctx;
1699         struct request *rq;
1700 };
1701
1702 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1703                 void *data)
1704 {
1705         struct dispatch_rq_data *dispatch_data = data;
1706         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1707         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1708         enum hctx_type type = hctx->type;
1709
1710         spin_lock(&ctx->lock);
1711         if (!list_empty(&ctx->rq_lists[type])) {
1712                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1713                 list_del_init(&dispatch_data->rq->queuelist);
1714                 if (list_empty(&ctx->rq_lists[type]))
1715                         sbitmap_clear_bit(sb, bitnr);
1716         }
1717         spin_unlock(&ctx->lock);
1718
1719         return !dispatch_data->rq;
1720 }
1721
1722 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1723                                         struct blk_mq_ctx *start)
1724 {
1725         unsigned off = start ? start->index_hw[hctx->type] : 0;
1726         struct dispatch_rq_data data = {
1727                 .hctx = hctx,
1728                 .rq   = NULL,
1729         };
1730
1731         __sbitmap_for_each_set(&hctx->ctx_map, off,
1732                                dispatch_rq_from_ctx, &data);
1733
1734         return data.rq;
1735 }
1736
1737 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1738 {
1739         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1740         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1741         int tag;
1742
1743         blk_mq_tag_busy(rq->mq_hctx);
1744
1745         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1746                 bt = &rq->mq_hctx->tags->breserved_tags;
1747                 tag_offset = 0;
1748         } else {
1749                 if (!hctx_may_queue(rq->mq_hctx, bt))
1750                         return false;
1751         }
1752
1753         tag = __sbitmap_queue_get(bt);
1754         if (tag == BLK_MQ_NO_TAG)
1755                 return false;
1756
1757         rq->tag = tag + tag_offset;
1758         return true;
1759 }
1760
1761 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1762 {
1763         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1764                 return false;
1765
1766         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1767                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1768                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1769                 __blk_mq_inc_active_requests(hctx);
1770         }
1771         hctx->tags->rqs[rq->tag] = rq;
1772         return true;
1773 }
1774
1775 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1776                                 int flags, void *key)
1777 {
1778         struct blk_mq_hw_ctx *hctx;
1779
1780         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1781
1782         spin_lock(&hctx->dispatch_wait_lock);
1783         if (!list_empty(&wait->entry)) {
1784                 struct sbitmap_queue *sbq;
1785
1786                 list_del_init(&wait->entry);
1787                 sbq = &hctx->tags->bitmap_tags;
1788                 atomic_dec(&sbq->ws_active);
1789         }
1790         spin_unlock(&hctx->dispatch_wait_lock);
1791
1792         blk_mq_run_hw_queue(hctx, true);
1793         return 1;
1794 }
1795
1796 /*
1797  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1798  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1799  * restart. For both cases, take care to check the condition again after
1800  * marking us as waiting.
1801  */
1802 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1803                                  struct request *rq)
1804 {
1805         struct sbitmap_queue *sbq;
1806         struct wait_queue_head *wq;
1807         wait_queue_entry_t *wait;
1808         bool ret;
1809
1810         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1811             !(blk_mq_is_shared_tags(hctx->flags))) {
1812                 blk_mq_sched_mark_restart_hctx(hctx);
1813
1814                 /*
1815                  * It's possible that a tag was freed in the window between the
1816                  * allocation failure and adding the hardware queue to the wait
1817                  * queue.
1818                  *
1819                  * Don't clear RESTART here, someone else could have set it.
1820                  * At most this will cost an extra queue run.
1821                  */
1822                 return blk_mq_get_driver_tag(rq);
1823         }
1824
1825         wait = &hctx->dispatch_wait;
1826         if (!list_empty_careful(&wait->entry))
1827                 return false;
1828
1829         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1830                 sbq = &hctx->tags->breserved_tags;
1831         else
1832                 sbq = &hctx->tags->bitmap_tags;
1833         wq = &bt_wait_ptr(sbq, hctx)->wait;
1834
1835         spin_lock_irq(&wq->lock);
1836         spin_lock(&hctx->dispatch_wait_lock);
1837         if (!list_empty(&wait->entry)) {
1838                 spin_unlock(&hctx->dispatch_wait_lock);
1839                 spin_unlock_irq(&wq->lock);
1840                 return false;
1841         }
1842
1843         atomic_inc(&sbq->ws_active);
1844         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1845         __add_wait_queue(wq, wait);
1846
1847         /*
1848          * It's possible that a tag was freed in the window between the
1849          * allocation failure and adding the hardware queue to the wait
1850          * queue.
1851          */
1852         ret = blk_mq_get_driver_tag(rq);
1853         if (!ret) {
1854                 spin_unlock(&hctx->dispatch_wait_lock);
1855                 spin_unlock_irq(&wq->lock);
1856                 return false;
1857         }
1858
1859         /*
1860          * We got a tag, remove ourselves from the wait queue to ensure
1861          * someone else gets the wakeup.
1862          */
1863         list_del_init(&wait->entry);
1864         atomic_dec(&sbq->ws_active);
1865         spin_unlock(&hctx->dispatch_wait_lock);
1866         spin_unlock_irq(&wq->lock);
1867
1868         return true;
1869 }
1870
1871 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1872 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1873 /*
1874  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1875  * - EWMA is one simple way to compute running average value
1876  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1877  * - take 4 as factor for avoiding to get too small(0) result, and this
1878  *   factor doesn't matter because EWMA decreases exponentially
1879  */
1880 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1881 {
1882         unsigned int ewma;
1883
1884         ewma = hctx->dispatch_busy;
1885
1886         if (!ewma && !busy)
1887                 return;
1888
1889         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1890         if (busy)
1891                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1892         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1893
1894         hctx->dispatch_busy = ewma;
1895 }
1896
1897 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1898
1899 static void blk_mq_handle_dev_resource(struct request *rq,
1900                                        struct list_head *list)
1901 {
1902         list_add(&rq->queuelist, list);
1903         __blk_mq_requeue_request(rq);
1904 }
1905
1906 static void blk_mq_handle_zone_resource(struct request *rq,
1907                                         struct list_head *zone_list)
1908 {
1909         /*
1910          * If we end up here it is because we cannot dispatch a request to a
1911          * specific zone due to LLD level zone-write locking or other zone
1912          * related resource not being available. In this case, set the request
1913          * aside in zone_list for retrying it later.
1914          */
1915         list_add(&rq->queuelist, zone_list);
1916         __blk_mq_requeue_request(rq);
1917 }
1918
1919 enum prep_dispatch {
1920         PREP_DISPATCH_OK,
1921         PREP_DISPATCH_NO_TAG,
1922         PREP_DISPATCH_NO_BUDGET,
1923 };
1924
1925 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1926                                                   bool need_budget)
1927 {
1928         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1929         int budget_token = -1;
1930
1931         if (need_budget) {
1932                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1933                 if (budget_token < 0) {
1934                         blk_mq_put_driver_tag(rq);
1935                         return PREP_DISPATCH_NO_BUDGET;
1936                 }
1937                 blk_mq_set_rq_budget_token(rq, budget_token);
1938         }
1939
1940         if (!blk_mq_get_driver_tag(rq)) {
1941                 /*
1942                  * The initial allocation attempt failed, so we need to
1943                  * rerun the hardware queue when a tag is freed. The
1944                  * waitqueue takes care of that. If the queue is run
1945                  * before we add this entry back on the dispatch list,
1946                  * we'll re-run it below.
1947                  */
1948                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1949                         /*
1950                          * All budgets not got from this function will be put
1951                          * together during handling partial dispatch
1952                          */
1953                         if (need_budget)
1954                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1955                         return PREP_DISPATCH_NO_TAG;
1956                 }
1957         }
1958
1959         return PREP_DISPATCH_OK;
1960 }
1961
1962 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1963 static void blk_mq_release_budgets(struct request_queue *q,
1964                 struct list_head *list)
1965 {
1966         struct request *rq;
1967
1968         list_for_each_entry(rq, list, queuelist) {
1969                 int budget_token = blk_mq_get_rq_budget_token(rq);
1970
1971                 if (budget_token >= 0)
1972                         blk_mq_put_dispatch_budget(q, budget_token);
1973         }
1974 }
1975
1976 /*
1977  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1978  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1979  * details)
1980  * Attention, we should explicitly call this in unusual cases:
1981  *  1) did not queue everything initially scheduled to queue
1982  *  2) the last attempt to queue a request failed
1983  */
1984 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1985                               bool from_schedule)
1986 {
1987         if (hctx->queue->mq_ops->commit_rqs && queued) {
1988                 trace_block_unplug(hctx->queue, queued, !from_schedule);
1989                 hctx->queue->mq_ops->commit_rqs(hctx);
1990         }
1991 }
1992
1993 /*
1994  * Returns true if we did some work AND can potentially do more.
1995  */
1996 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1997                              unsigned int nr_budgets)
1998 {
1999         enum prep_dispatch prep;
2000         struct request_queue *q = hctx->queue;
2001         struct request *rq;
2002         int queued;
2003         blk_status_t ret = BLK_STS_OK;
2004         LIST_HEAD(zone_list);
2005         bool needs_resource = false;
2006
2007         if (list_empty(list))
2008                 return false;
2009
2010         /*
2011          * Now process all the entries, sending them to the driver.
2012          */
2013         queued = 0;
2014         do {
2015                 struct blk_mq_queue_data bd;
2016
2017                 rq = list_first_entry(list, struct request, queuelist);
2018
2019                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2020                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2021                 if (prep != PREP_DISPATCH_OK)
2022                         break;
2023
2024                 list_del_init(&rq->queuelist);
2025
2026                 bd.rq = rq;
2027                 bd.last = list_empty(list);
2028
2029                 /*
2030                  * once the request is queued to lld, no need to cover the
2031                  * budget any more
2032                  */
2033                 if (nr_budgets)
2034                         nr_budgets--;
2035                 ret = q->mq_ops->queue_rq(hctx, &bd);
2036                 switch (ret) {
2037                 case BLK_STS_OK:
2038                         queued++;
2039                         break;
2040                 case BLK_STS_RESOURCE:
2041                         needs_resource = true;
2042                         fallthrough;
2043                 case BLK_STS_DEV_RESOURCE:
2044                         blk_mq_handle_dev_resource(rq, list);
2045                         goto out;
2046                 case BLK_STS_ZONE_RESOURCE:
2047                         /*
2048                          * Move the request to zone_list and keep going through
2049                          * the dispatch list to find more requests the drive can
2050                          * accept.
2051                          */
2052                         blk_mq_handle_zone_resource(rq, &zone_list);
2053                         needs_resource = true;
2054                         break;
2055                 default:
2056                         blk_mq_end_request(rq, ret);
2057                 }
2058         } while (!list_empty(list));
2059 out:
2060         if (!list_empty(&zone_list))
2061                 list_splice_tail_init(&zone_list, list);
2062
2063         /* If we didn't flush the entire list, we could have told the driver
2064          * there was more coming, but that turned out to be a lie.
2065          */
2066         if (!list_empty(list) || ret != BLK_STS_OK)
2067                 blk_mq_commit_rqs(hctx, queued, false);
2068
2069         /*
2070          * Any items that need requeuing? Stuff them into hctx->dispatch,
2071          * that is where we will continue on next queue run.
2072          */
2073         if (!list_empty(list)) {
2074                 bool needs_restart;
2075                 /* For non-shared tags, the RESTART check will suffice */
2076                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2077                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2078                         blk_mq_is_shared_tags(hctx->flags));
2079
2080                 if (nr_budgets)
2081                         blk_mq_release_budgets(q, list);
2082
2083                 spin_lock(&hctx->lock);
2084                 list_splice_tail_init(list, &hctx->dispatch);
2085                 spin_unlock(&hctx->lock);
2086
2087                 /*
2088                  * Order adding requests to hctx->dispatch and checking
2089                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2090                  * in blk_mq_sched_restart(). Avoid restart code path to
2091                  * miss the new added requests to hctx->dispatch, meantime
2092                  * SCHED_RESTART is observed here.
2093                  */
2094                 smp_mb();
2095
2096                 /*
2097                  * If SCHED_RESTART was set by the caller of this function and
2098                  * it is no longer set that means that it was cleared by another
2099                  * thread and hence that a queue rerun is needed.
2100                  *
2101                  * If 'no_tag' is set, that means that we failed getting
2102                  * a driver tag with an I/O scheduler attached. If our dispatch
2103                  * waitqueue is no longer active, ensure that we run the queue
2104                  * AFTER adding our entries back to the list.
2105                  *
2106                  * If no I/O scheduler has been configured it is possible that
2107                  * the hardware queue got stopped and restarted before requests
2108                  * were pushed back onto the dispatch list. Rerun the queue to
2109                  * avoid starvation. Notes:
2110                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2111                  *   been stopped before rerunning a queue.
2112                  * - Some but not all block drivers stop a queue before
2113                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2114                  *   and dm-rq.
2115                  *
2116                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2117                  * bit is set, run queue after a delay to avoid IO stalls
2118                  * that could otherwise occur if the queue is idle.  We'll do
2119                  * similar if we couldn't get budget or couldn't lock a zone
2120                  * and SCHED_RESTART is set.
2121                  */
2122                 needs_restart = blk_mq_sched_needs_restart(hctx);
2123                 if (prep == PREP_DISPATCH_NO_BUDGET)
2124                         needs_resource = true;
2125                 if (!needs_restart ||
2126                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2127                         blk_mq_run_hw_queue(hctx, true);
2128                 else if (needs_resource)
2129                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2130
2131                 blk_mq_update_dispatch_busy(hctx, true);
2132                 return false;
2133         }
2134
2135         blk_mq_update_dispatch_busy(hctx, false);
2136         return true;
2137 }
2138
2139 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2140 {
2141         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2142
2143         if (cpu >= nr_cpu_ids)
2144                 cpu = cpumask_first(hctx->cpumask);
2145         return cpu;
2146 }
2147
2148 /*
2149  * It'd be great if the workqueue API had a way to pass
2150  * in a mask and had some smarts for more clever placement.
2151  * For now we just round-robin here, switching for every
2152  * BLK_MQ_CPU_WORK_BATCH queued items.
2153  */
2154 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2155 {
2156         bool tried = false;
2157         int next_cpu = hctx->next_cpu;
2158
2159         if (hctx->queue->nr_hw_queues == 1)
2160                 return WORK_CPU_UNBOUND;
2161
2162         if (--hctx->next_cpu_batch <= 0) {
2163 select_cpu:
2164                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2165                                 cpu_online_mask);
2166                 if (next_cpu >= nr_cpu_ids)
2167                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2168                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2169         }
2170
2171         /*
2172          * Do unbound schedule if we can't find a online CPU for this hctx,
2173          * and it should only happen in the path of handling CPU DEAD.
2174          */
2175         if (!cpu_online(next_cpu)) {
2176                 if (!tried) {
2177                         tried = true;
2178                         goto select_cpu;
2179                 }
2180
2181                 /*
2182                  * Make sure to re-select CPU next time once after CPUs
2183                  * in hctx->cpumask become online again.
2184                  */
2185                 hctx->next_cpu = next_cpu;
2186                 hctx->next_cpu_batch = 1;
2187                 return WORK_CPU_UNBOUND;
2188         }
2189
2190         hctx->next_cpu = next_cpu;
2191         return next_cpu;
2192 }
2193
2194 /**
2195  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2196  * @hctx: Pointer to the hardware queue to run.
2197  * @msecs: Milliseconds of delay to wait before running the queue.
2198  *
2199  * Run a hardware queue asynchronously with a delay of @msecs.
2200  */
2201 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2202 {
2203         if (unlikely(blk_mq_hctx_stopped(hctx)))
2204                 return;
2205         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2206                                     msecs_to_jiffies(msecs));
2207 }
2208 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2209
2210 /**
2211  * blk_mq_run_hw_queue - Start to run a hardware queue.
2212  * @hctx: Pointer to the hardware queue to run.
2213  * @async: If we want to run the queue asynchronously.
2214  *
2215  * Check if the request queue is not in a quiesced state and if there are
2216  * pending requests to be sent. If this is true, run the queue to send requests
2217  * to hardware.
2218  */
2219 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2220 {
2221         bool need_run;
2222
2223         /*
2224          * We can't run the queue inline with interrupts disabled.
2225          */
2226         WARN_ON_ONCE(!async && in_interrupt());
2227
2228         /*
2229          * When queue is quiesced, we may be switching io scheduler, or
2230          * updating nr_hw_queues, or other things, and we can't run queue
2231          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2232          *
2233          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2234          * quiesced.
2235          */
2236         __blk_mq_run_dispatch_ops(hctx->queue, false,
2237                 need_run = !blk_queue_quiesced(hctx->queue) &&
2238                 blk_mq_hctx_has_pending(hctx));
2239
2240         if (!need_run)
2241                 return;
2242
2243         if (async || (hctx->flags & BLK_MQ_F_BLOCKING) ||
2244             !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2245                 blk_mq_delay_run_hw_queue(hctx, 0);
2246                 return;
2247         }
2248
2249         blk_mq_run_dispatch_ops(hctx->queue,
2250                                 blk_mq_sched_dispatch_requests(hctx));
2251 }
2252 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2253
2254 /*
2255  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2256  * scheduler.
2257  */
2258 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2259 {
2260         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2261         /*
2262          * If the IO scheduler does not respect hardware queues when
2263          * dispatching, we just don't bother with multiple HW queues and
2264          * dispatch from hctx for the current CPU since running multiple queues
2265          * just causes lock contention inside the scheduler and pointless cache
2266          * bouncing.
2267          */
2268         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2269
2270         if (!blk_mq_hctx_stopped(hctx))
2271                 return hctx;
2272         return NULL;
2273 }
2274
2275 /**
2276  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2277  * @q: Pointer to the request queue to run.
2278  * @async: If we want to run the queue asynchronously.
2279  */
2280 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2281 {
2282         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2283         unsigned long i;
2284
2285         sq_hctx = NULL;
2286         if (blk_queue_sq_sched(q))
2287                 sq_hctx = blk_mq_get_sq_hctx(q);
2288         queue_for_each_hw_ctx(q, hctx, i) {
2289                 if (blk_mq_hctx_stopped(hctx))
2290                         continue;
2291                 /*
2292                  * Dispatch from this hctx either if there's no hctx preferred
2293                  * by IO scheduler or if it has requests that bypass the
2294                  * scheduler.
2295                  */
2296                 if (!sq_hctx || sq_hctx == hctx ||
2297                     !list_empty_careful(&hctx->dispatch))
2298                         blk_mq_run_hw_queue(hctx, async);
2299         }
2300 }
2301 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2302
2303 /**
2304  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2305  * @q: Pointer to the request queue to run.
2306  * @msecs: Milliseconds of delay to wait before running the queues.
2307  */
2308 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2309 {
2310         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2311         unsigned long i;
2312
2313         sq_hctx = NULL;
2314         if (blk_queue_sq_sched(q))
2315                 sq_hctx = blk_mq_get_sq_hctx(q);
2316         queue_for_each_hw_ctx(q, hctx, i) {
2317                 if (blk_mq_hctx_stopped(hctx))
2318                         continue;
2319                 /*
2320                  * If there is already a run_work pending, leave the
2321                  * pending delay untouched. Otherwise, a hctx can stall
2322                  * if another hctx is re-delaying the other's work
2323                  * before the work executes.
2324                  */
2325                 if (delayed_work_pending(&hctx->run_work))
2326                         continue;
2327                 /*
2328                  * Dispatch from this hctx either if there's no hctx preferred
2329                  * by IO scheduler or if it has requests that bypass the
2330                  * scheduler.
2331                  */
2332                 if (!sq_hctx || sq_hctx == hctx ||
2333                     !list_empty_careful(&hctx->dispatch))
2334                         blk_mq_delay_run_hw_queue(hctx, msecs);
2335         }
2336 }
2337 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2338
2339 /*
2340  * This function is often used for pausing .queue_rq() by driver when
2341  * there isn't enough resource or some conditions aren't satisfied, and
2342  * BLK_STS_RESOURCE is usually returned.
2343  *
2344  * We do not guarantee that dispatch can be drained or blocked
2345  * after blk_mq_stop_hw_queue() returns. Please use
2346  * blk_mq_quiesce_queue() for that requirement.
2347  */
2348 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2349 {
2350         cancel_delayed_work(&hctx->run_work);
2351
2352         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2353 }
2354 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2355
2356 /*
2357  * This function is often used for pausing .queue_rq() by driver when
2358  * there isn't enough resource or some conditions aren't satisfied, and
2359  * BLK_STS_RESOURCE is usually returned.
2360  *
2361  * We do not guarantee that dispatch can be drained or blocked
2362  * after blk_mq_stop_hw_queues() returns. Please use
2363  * blk_mq_quiesce_queue() for that requirement.
2364  */
2365 void blk_mq_stop_hw_queues(struct request_queue *q)
2366 {
2367         struct blk_mq_hw_ctx *hctx;
2368         unsigned long i;
2369
2370         queue_for_each_hw_ctx(q, hctx, i)
2371                 blk_mq_stop_hw_queue(hctx);
2372 }
2373 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2374
2375 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2376 {
2377         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2378
2379         blk_mq_run_hw_queue(hctx, false);
2380 }
2381 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2382
2383 void blk_mq_start_hw_queues(struct request_queue *q)
2384 {
2385         struct blk_mq_hw_ctx *hctx;
2386         unsigned long i;
2387
2388         queue_for_each_hw_ctx(q, hctx, i)
2389                 blk_mq_start_hw_queue(hctx);
2390 }
2391 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2392
2393 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2394 {
2395         if (!blk_mq_hctx_stopped(hctx))
2396                 return;
2397
2398         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2399         blk_mq_run_hw_queue(hctx, async);
2400 }
2401 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2402
2403 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2404 {
2405         struct blk_mq_hw_ctx *hctx;
2406         unsigned long i;
2407
2408         queue_for_each_hw_ctx(q, hctx, i)
2409                 blk_mq_start_stopped_hw_queue(hctx, async);
2410 }
2411 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2412
2413 static void blk_mq_run_work_fn(struct work_struct *work)
2414 {
2415         struct blk_mq_hw_ctx *hctx =
2416                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2417
2418         blk_mq_run_dispatch_ops(hctx->queue,
2419                                 blk_mq_sched_dispatch_requests(hctx));
2420 }
2421
2422 /**
2423  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2424  * @rq: Pointer to request to be inserted.
2425  * @flags: BLK_MQ_INSERT_*
2426  *
2427  * Should only be used carefully, when the caller knows we want to
2428  * bypass a potential IO scheduler on the target device.
2429  */
2430 void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2431 {
2432         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2433
2434         spin_lock(&hctx->lock);
2435         if (flags & BLK_MQ_INSERT_AT_HEAD)
2436                 list_add(&rq->queuelist, &hctx->dispatch);
2437         else
2438                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2439         spin_unlock(&hctx->lock);
2440 }
2441
2442 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2443                 struct blk_mq_ctx *ctx, struct list_head *list,
2444                 bool run_queue_async)
2445 {
2446         struct request *rq;
2447         enum hctx_type type = hctx->type;
2448
2449         /*
2450          * Try to issue requests directly if the hw queue isn't busy to save an
2451          * extra enqueue & dequeue to the sw queue.
2452          */
2453         if (!hctx->dispatch_busy && !run_queue_async) {
2454                 blk_mq_run_dispatch_ops(hctx->queue,
2455                         blk_mq_try_issue_list_directly(hctx, list));
2456                 if (list_empty(list))
2457                         goto out;
2458         }
2459
2460         /*
2461          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2462          * offline now
2463          */
2464         list_for_each_entry(rq, list, queuelist) {
2465                 BUG_ON(rq->mq_ctx != ctx);
2466                 trace_block_rq_insert(rq);
2467         }
2468
2469         spin_lock(&ctx->lock);
2470         list_splice_tail_init(list, &ctx->rq_lists[type]);
2471         blk_mq_hctx_mark_pending(hctx, ctx);
2472         spin_unlock(&ctx->lock);
2473 out:
2474         blk_mq_run_hw_queue(hctx, run_queue_async);
2475 }
2476
2477 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2478 {
2479         struct request_queue *q = rq->q;
2480         struct blk_mq_ctx *ctx = rq->mq_ctx;
2481         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2482
2483         if (blk_rq_is_passthrough(rq)) {
2484                 /*
2485                  * Passthrough request have to be added to hctx->dispatch
2486                  * directly.  The device may be in a situation where it can't
2487                  * handle FS request, and always returns BLK_STS_RESOURCE for
2488                  * them, which gets them added to hctx->dispatch.
2489                  *
2490                  * If a passthrough request is required to unblock the queues,
2491                  * and it is added to the scheduler queue, there is no chance to
2492                  * dispatch it given we prioritize requests in hctx->dispatch.
2493                  */
2494                 blk_mq_request_bypass_insert(rq, flags);
2495         } else if (rq->rq_flags & RQF_FLUSH_SEQ) {
2496                 /*
2497                  * Firstly normal IO request is inserted to scheduler queue or
2498                  * sw queue, meantime we add flush request to dispatch queue(
2499                  * hctx->dispatch) directly and there is at most one in-flight
2500                  * flush request for each hw queue, so it doesn't matter to add
2501                  * flush request to tail or front of the dispatch queue.
2502                  *
2503                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2504                  * command, and queueing it will fail when there is any
2505                  * in-flight normal IO request(NCQ command). When adding flush
2506                  * rq to the front of hctx->dispatch, it is easier to introduce
2507                  * extra time to flush rq's latency because of S_SCHED_RESTART
2508                  * compared with adding to the tail of dispatch queue, then
2509                  * chance of flush merge is increased, and less flush requests
2510                  * will be issued to controller. It is observed that ~10% time
2511                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2512                  * drive when adding flush rq to the front of hctx->dispatch.
2513                  *
2514                  * Simply queue flush rq to the front of hctx->dispatch so that
2515                  * intensive flush workloads can benefit in case of NCQ HW.
2516                  */
2517                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2518         } else if (q->elevator) {
2519                 LIST_HEAD(list);
2520
2521                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2522
2523                 list_add(&rq->queuelist, &list);
2524                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2525         } else {
2526                 trace_block_rq_insert(rq);
2527
2528                 spin_lock(&ctx->lock);
2529                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2530                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2531                 else
2532                         list_add_tail(&rq->queuelist,
2533                                       &ctx->rq_lists[hctx->type]);
2534                 blk_mq_hctx_mark_pending(hctx, ctx);
2535                 spin_unlock(&ctx->lock);
2536         }
2537 }
2538
2539 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2540                 unsigned int nr_segs)
2541 {
2542         int err;
2543
2544         if (bio->bi_opf & REQ_RAHEAD)
2545                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2546
2547         rq->__sector = bio->bi_iter.bi_sector;
2548         blk_rq_bio_prep(rq, bio, nr_segs);
2549
2550         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2551         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2552         WARN_ON_ONCE(err);
2553
2554         blk_account_io_start(rq);
2555 }
2556
2557 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2558                                             struct request *rq, bool last)
2559 {
2560         struct request_queue *q = rq->q;
2561         struct blk_mq_queue_data bd = {
2562                 .rq = rq,
2563                 .last = last,
2564         };
2565         blk_status_t ret;
2566
2567         /*
2568          * For OK queue, we are done. For error, caller may kill it.
2569          * Any other error (busy), just add it to our list as we
2570          * previously would have done.
2571          */
2572         ret = q->mq_ops->queue_rq(hctx, &bd);
2573         switch (ret) {
2574         case BLK_STS_OK:
2575                 blk_mq_update_dispatch_busy(hctx, false);
2576                 break;
2577         case BLK_STS_RESOURCE:
2578         case BLK_STS_DEV_RESOURCE:
2579                 blk_mq_update_dispatch_busy(hctx, true);
2580                 __blk_mq_requeue_request(rq);
2581                 break;
2582         default:
2583                 blk_mq_update_dispatch_busy(hctx, false);
2584                 break;
2585         }
2586
2587         return ret;
2588 }
2589
2590 static bool blk_mq_get_budget_and_tag(struct request *rq)
2591 {
2592         int budget_token;
2593
2594         budget_token = blk_mq_get_dispatch_budget(rq->q);
2595         if (budget_token < 0)
2596                 return false;
2597         blk_mq_set_rq_budget_token(rq, budget_token);
2598         if (!blk_mq_get_driver_tag(rq)) {
2599                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2600                 return false;
2601         }
2602         return true;
2603 }
2604
2605 /**
2606  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2607  * @hctx: Pointer of the associated hardware queue.
2608  * @rq: Pointer to request to be sent.
2609  *
2610  * If the device has enough resources to accept a new request now, send the
2611  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2612  * we can try send it another time in the future. Requests inserted at this
2613  * queue have higher priority.
2614  */
2615 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2616                 struct request *rq)
2617 {
2618         blk_status_t ret;
2619
2620         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2621                 blk_mq_insert_request(rq, 0);
2622                 return;
2623         }
2624
2625         if ((rq->rq_flags & RQF_ELV) || !blk_mq_get_budget_and_tag(rq)) {
2626                 blk_mq_insert_request(rq, 0);
2627                 blk_mq_run_hw_queue(hctx, false);
2628                 return;
2629         }
2630
2631         ret = __blk_mq_issue_directly(hctx, rq, true);
2632         switch (ret) {
2633         case BLK_STS_OK:
2634                 break;
2635         case BLK_STS_RESOURCE:
2636         case BLK_STS_DEV_RESOURCE:
2637                 blk_mq_request_bypass_insert(rq, 0);
2638                 blk_mq_run_hw_queue(hctx, false);
2639                 break;
2640         default:
2641                 blk_mq_end_request(rq, ret);
2642                 break;
2643         }
2644 }
2645
2646 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2647 {
2648         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2649
2650         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2651                 blk_mq_insert_request(rq, 0);
2652                 return BLK_STS_OK;
2653         }
2654
2655         if (!blk_mq_get_budget_and_tag(rq))
2656                 return BLK_STS_RESOURCE;
2657         return __blk_mq_issue_directly(hctx, rq, last);
2658 }
2659
2660 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2661 {
2662         struct blk_mq_hw_ctx *hctx = NULL;
2663         struct request *rq;
2664         int queued = 0;
2665         blk_status_t ret = BLK_STS_OK;
2666
2667         while ((rq = rq_list_pop(&plug->mq_list))) {
2668                 bool last = rq_list_empty(plug->mq_list);
2669
2670                 if (hctx != rq->mq_hctx) {
2671                         if (hctx) {
2672                                 blk_mq_commit_rqs(hctx, queued, false);
2673                                 queued = 0;
2674                         }
2675                         hctx = rq->mq_hctx;
2676                 }
2677
2678                 ret = blk_mq_request_issue_directly(rq, last);
2679                 switch (ret) {
2680                 case BLK_STS_OK:
2681                         queued++;
2682                         break;
2683                 case BLK_STS_RESOURCE:
2684                 case BLK_STS_DEV_RESOURCE:
2685                         blk_mq_request_bypass_insert(rq, 0);
2686                         blk_mq_run_hw_queue(hctx, false);
2687                         goto out;
2688                 default:
2689                         blk_mq_end_request(rq, ret);
2690                         break;
2691                 }
2692         }
2693
2694 out:
2695         if (ret != BLK_STS_OK)
2696                 blk_mq_commit_rqs(hctx, queued, false);
2697 }
2698
2699 static void __blk_mq_flush_plug_list(struct request_queue *q,
2700                                      struct blk_plug *plug)
2701 {
2702         if (blk_queue_quiesced(q))
2703                 return;
2704         q->mq_ops->queue_rqs(&plug->mq_list);
2705 }
2706
2707 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2708 {
2709         struct blk_mq_hw_ctx *this_hctx = NULL;
2710         struct blk_mq_ctx *this_ctx = NULL;
2711         struct request *requeue_list = NULL;
2712         struct request **requeue_lastp = &requeue_list;
2713         unsigned int depth = 0;
2714         LIST_HEAD(list);
2715
2716         do {
2717                 struct request *rq = rq_list_pop(&plug->mq_list);
2718
2719                 if (!this_hctx) {
2720                         this_hctx = rq->mq_hctx;
2721                         this_ctx = rq->mq_ctx;
2722                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2723                         rq_list_add_tail(&requeue_lastp, rq);
2724                         continue;
2725                 }
2726                 list_add(&rq->queuelist, &list);
2727                 depth++;
2728         } while (!rq_list_empty(plug->mq_list));
2729
2730         plug->mq_list = requeue_list;
2731         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2732
2733         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2734         if (this_hctx->queue->elevator) {
2735                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2736                                 &list, 0);
2737                 blk_mq_run_hw_queue(this_hctx, from_sched);
2738         } else {
2739                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2740         }
2741         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2742 }
2743
2744 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2745 {
2746         struct request *rq;
2747
2748         if (rq_list_empty(plug->mq_list))
2749                 return;
2750         plug->rq_count = 0;
2751
2752         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2753                 struct request_queue *q;
2754
2755                 rq = rq_list_peek(&plug->mq_list);
2756                 q = rq->q;
2757
2758                 /*
2759                  * Peek first request and see if we have a ->queue_rqs() hook.
2760                  * If we do, we can dispatch the whole plug list in one go. We
2761                  * already know at this point that all requests belong to the
2762                  * same queue, caller must ensure that's the case.
2763                  *
2764                  * Since we pass off the full list to the driver at this point,
2765                  * we do not increment the active request count for the queue.
2766                  * Bypass shared tags for now because of that.
2767                  */
2768                 if (q->mq_ops->queue_rqs &&
2769                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2770                         blk_mq_run_dispatch_ops(q,
2771                                 __blk_mq_flush_plug_list(q, plug));
2772                         if (rq_list_empty(plug->mq_list))
2773                                 return;
2774                 }
2775
2776                 blk_mq_run_dispatch_ops(q,
2777                                 blk_mq_plug_issue_direct(plug));
2778                 if (rq_list_empty(plug->mq_list))
2779                         return;
2780         }
2781
2782         do {
2783                 blk_mq_dispatch_plug_list(plug, from_schedule);
2784         } while (!rq_list_empty(plug->mq_list));
2785 }
2786
2787 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2788                 struct list_head *list)
2789 {
2790         int queued = 0;
2791         blk_status_t ret = BLK_STS_OK;
2792
2793         while (!list_empty(list)) {
2794                 struct request *rq = list_first_entry(list, struct request,
2795                                 queuelist);
2796
2797                 list_del_init(&rq->queuelist);
2798                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2799                 switch (ret) {
2800                 case BLK_STS_OK:
2801                         queued++;
2802                         break;
2803                 case BLK_STS_RESOURCE:
2804                 case BLK_STS_DEV_RESOURCE:
2805                         blk_mq_request_bypass_insert(rq, 0);
2806                         if (list_empty(list))
2807                                 blk_mq_run_hw_queue(hctx, false);
2808                         goto out;
2809                 default:
2810                         blk_mq_end_request(rq, ret);
2811                         break;
2812                 }
2813         }
2814
2815 out:
2816         if (ret != BLK_STS_OK)
2817                 blk_mq_commit_rqs(hctx, queued, false);
2818 }
2819
2820 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2821                                      struct bio *bio, unsigned int nr_segs)
2822 {
2823         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2824                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2825                         return true;
2826                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2827                         return true;
2828         }
2829         return false;
2830 }
2831
2832 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2833                                                struct blk_plug *plug,
2834                                                struct bio *bio,
2835                                                unsigned int nsegs)
2836 {
2837         struct blk_mq_alloc_data data = {
2838                 .q              = q,
2839                 .nr_tags        = 1,
2840                 .cmd_flags      = bio->bi_opf,
2841         };
2842         struct request *rq;
2843
2844         if (unlikely(bio_queue_enter(bio)))
2845                 return NULL;
2846
2847         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2848                 goto queue_exit;
2849
2850         rq_qos_throttle(q, bio);
2851
2852         if (plug) {
2853                 data.nr_tags = plug->nr_ios;
2854                 plug->nr_ios = 1;
2855                 data.cached_rq = &plug->cached_rq;
2856         }
2857
2858         rq = __blk_mq_alloc_requests(&data);
2859         if (rq)
2860                 return rq;
2861         rq_qos_cleanup(q, bio);
2862         if (bio->bi_opf & REQ_NOWAIT)
2863                 bio_wouldblock_error(bio);
2864 queue_exit:
2865         blk_queue_exit(q);
2866         return NULL;
2867 }
2868
2869 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2870                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2871 {
2872         struct request *rq;
2873         enum hctx_type type, hctx_type;
2874
2875         if (!plug)
2876                 return NULL;
2877         rq = rq_list_peek(&plug->cached_rq);
2878         if (!rq || rq->q != q)
2879                 return NULL;
2880
2881         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2882                 *bio = NULL;
2883                 return NULL;
2884         }
2885
2886         type = blk_mq_get_hctx_type((*bio)->bi_opf);
2887         hctx_type = rq->mq_hctx->type;
2888         if (type != hctx_type &&
2889             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2890                 return NULL;
2891         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2892                 return NULL;
2893
2894         /*
2895          * If any qos ->throttle() end up blocking, we will have flushed the
2896          * plug and hence killed the cached_rq list as well. Pop this entry
2897          * before we throttle.
2898          */
2899         plug->cached_rq = rq_list_next(rq);
2900         rq_qos_throttle(q, *bio);
2901
2902         rq->cmd_flags = (*bio)->bi_opf;
2903         INIT_LIST_HEAD(&rq->queuelist);
2904         return rq;
2905 }
2906
2907 static void bio_set_ioprio(struct bio *bio)
2908 {
2909         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2910         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2911                 bio->bi_ioprio = get_current_ioprio();
2912         blkcg_set_ioprio(bio);
2913 }
2914
2915 /**
2916  * blk_mq_submit_bio - Create and send a request to block device.
2917  * @bio: Bio pointer.
2918  *
2919  * Builds up a request structure from @q and @bio and send to the device. The
2920  * request may not be queued directly to hardware if:
2921  * * This request can be merged with another one
2922  * * We want to place request at plug queue for possible future merging
2923  * * There is an IO scheduler active at this queue
2924  *
2925  * It will not queue the request if there is an error with the bio, or at the
2926  * request creation.
2927  */
2928 void blk_mq_submit_bio(struct bio *bio)
2929 {
2930         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2931         struct blk_plug *plug = blk_mq_plug(bio);
2932         const int is_sync = op_is_sync(bio->bi_opf);
2933         struct blk_mq_hw_ctx *hctx;
2934         struct request *rq;
2935         unsigned int nr_segs = 1;
2936         blk_status_t ret;
2937
2938         bio = blk_queue_bounce(bio, q);
2939         if (bio_may_exceed_limits(bio, &q->limits)) {
2940                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2941                 if (!bio)
2942                         return;
2943         }
2944
2945         if (!bio_integrity_prep(bio))
2946                 return;
2947
2948         bio_set_ioprio(bio);
2949
2950         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2951         if (!rq) {
2952                 if (!bio)
2953                         return;
2954                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2955                 if (unlikely(!rq))
2956                         return;
2957         }
2958
2959         trace_block_getrq(bio);
2960
2961         rq_qos_track(q, rq, bio);
2962
2963         blk_mq_bio_to_request(rq, bio, nr_segs);
2964
2965         ret = blk_crypto_rq_get_keyslot(rq);
2966         if (ret != BLK_STS_OK) {
2967                 bio->bi_status = ret;
2968                 bio_endio(bio);
2969                 blk_mq_free_request(rq);
2970                 return;
2971         }
2972
2973         if (op_is_flush(bio->bi_opf)) {
2974                 blk_insert_flush(rq);
2975                 return;
2976         }
2977
2978         if (plug) {
2979                 blk_add_rq_to_plug(plug, rq);
2980                 return;
2981         }
2982
2983         hctx = rq->mq_hctx;
2984         if ((rq->rq_flags & RQF_ELV) ||
2985             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
2986                 blk_mq_insert_request(rq, 0);
2987                 blk_mq_run_hw_queue(hctx, true);
2988         } else {
2989                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
2990         }
2991 }
2992
2993 #ifdef CONFIG_BLK_MQ_STACKING
2994 /**
2995  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2996  * @rq: the request being queued
2997  */
2998 blk_status_t blk_insert_cloned_request(struct request *rq)
2999 {
3000         struct request_queue *q = rq->q;
3001         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3002         unsigned int max_segments = blk_rq_get_max_segments(rq);
3003         blk_status_t ret;
3004
3005         if (blk_rq_sectors(rq) > max_sectors) {
3006                 /*
3007                  * SCSI device does not have a good way to return if
3008                  * Write Same/Zero is actually supported. If a device rejects
3009                  * a non-read/write command (discard, write same,etc.) the
3010                  * low-level device driver will set the relevant queue limit to
3011                  * 0 to prevent blk-lib from issuing more of the offending
3012                  * operations. Commands queued prior to the queue limit being
3013                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3014                  * errors being propagated to upper layers.
3015                  */
3016                 if (max_sectors == 0)
3017                         return BLK_STS_NOTSUPP;
3018
3019                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3020                         __func__, blk_rq_sectors(rq), max_sectors);
3021                 return BLK_STS_IOERR;
3022         }
3023
3024         /*
3025          * The queue settings related to segment counting may differ from the
3026          * original queue.
3027          */
3028         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3029         if (rq->nr_phys_segments > max_segments) {
3030                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3031                         __func__, rq->nr_phys_segments, max_segments);
3032                 return BLK_STS_IOERR;
3033         }
3034
3035         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3036                 return BLK_STS_IOERR;
3037
3038         ret = blk_crypto_rq_get_keyslot(rq);
3039         if (ret != BLK_STS_OK)
3040                 return ret;
3041
3042         blk_account_io_start(rq);
3043
3044         /*
3045          * Since we have a scheduler attached on the top device,
3046          * bypass a potential scheduler on the bottom device for
3047          * insert.
3048          */
3049         blk_mq_run_dispatch_ops(q,
3050                         ret = blk_mq_request_issue_directly(rq, true));
3051         if (ret)
3052                 blk_account_io_done(rq, ktime_get_ns());
3053         return ret;
3054 }
3055 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3056
3057 /**
3058  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3059  * @rq: the clone request to be cleaned up
3060  *
3061  * Description:
3062  *     Free all bios in @rq for a cloned request.
3063  */
3064 void blk_rq_unprep_clone(struct request *rq)
3065 {
3066         struct bio *bio;
3067
3068         while ((bio = rq->bio) != NULL) {
3069                 rq->bio = bio->bi_next;
3070
3071                 bio_put(bio);
3072         }
3073 }
3074 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3075
3076 /**
3077  * blk_rq_prep_clone - Helper function to setup clone request
3078  * @rq: the request to be setup
3079  * @rq_src: original request to be cloned
3080  * @bs: bio_set that bios for clone are allocated from
3081  * @gfp_mask: memory allocation mask for bio
3082  * @bio_ctr: setup function to be called for each clone bio.
3083  *           Returns %0 for success, non %0 for failure.
3084  * @data: private data to be passed to @bio_ctr
3085  *
3086  * Description:
3087  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3088  *     Also, pages which the original bios are pointing to are not copied
3089  *     and the cloned bios just point same pages.
3090  *     So cloned bios must be completed before original bios, which means
3091  *     the caller must complete @rq before @rq_src.
3092  */
3093 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3094                       struct bio_set *bs, gfp_t gfp_mask,
3095                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3096                       void *data)
3097 {
3098         struct bio *bio, *bio_src;
3099
3100         if (!bs)
3101                 bs = &fs_bio_set;
3102
3103         __rq_for_each_bio(bio_src, rq_src) {
3104                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3105                                       bs);
3106                 if (!bio)
3107                         goto free_and_out;
3108
3109                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3110                         goto free_and_out;
3111
3112                 if (rq->bio) {
3113                         rq->biotail->bi_next = bio;
3114                         rq->biotail = bio;
3115                 } else {
3116                         rq->bio = rq->biotail = bio;
3117                 }
3118                 bio = NULL;
3119         }
3120
3121         /* Copy attributes of the original request to the clone request. */
3122         rq->__sector = blk_rq_pos(rq_src);
3123         rq->__data_len = blk_rq_bytes(rq_src);
3124         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3125                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3126                 rq->special_vec = rq_src->special_vec;
3127         }
3128         rq->nr_phys_segments = rq_src->nr_phys_segments;
3129         rq->ioprio = rq_src->ioprio;
3130
3131         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3132                 goto free_and_out;
3133
3134         return 0;
3135
3136 free_and_out:
3137         if (bio)
3138                 bio_put(bio);
3139         blk_rq_unprep_clone(rq);
3140
3141         return -ENOMEM;
3142 }
3143 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3144 #endif /* CONFIG_BLK_MQ_STACKING */
3145
3146 /*
3147  * Steal bios from a request and add them to a bio list.
3148  * The request must not have been partially completed before.
3149  */
3150 void blk_steal_bios(struct bio_list *list, struct request *rq)
3151 {
3152         if (rq->bio) {
3153                 if (list->tail)
3154                         list->tail->bi_next = rq->bio;
3155                 else
3156                         list->head = rq->bio;
3157                 list->tail = rq->biotail;
3158
3159                 rq->bio = NULL;
3160                 rq->biotail = NULL;
3161         }
3162
3163         rq->__data_len = 0;
3164 }
3165 EXPORT_SYMBOL_GPL(blk_steal_bios);
3166
3167 static size_t order_to_size(unsigned int order)
3168 {
3169         return (size_t)PAGE_SIZE << order;
3170 }
3171
3172 /* called before freeing request pool in @tags */
3173 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3174                                     struct blk_mq_tags *tags)
3175 {
3176         struct page *page;
3177         unsigned long flags;
3178
3179         /*
3180          * There is no need to clear mapping if driver tags is not initialized
3181          * or the mapping belongs to the driver tags.
3182          */
3183         if (!drv_tags || drv_tags == tags)
3184                 return;
3185
3186         list_for_each_entry(page, &tags->page_list, lru) {
3187                 unsigned long start = (unsigned long)page_address(page);
3188                 unsigned long end = start + order_to_size(page->private);
3189                 int i;
3190
3191                 for (i = 0; i < drv_tags->nr_tags; i++) {
3192                         struct request *rq = drv_tags->rqs[i];
3193                         unsigned long rq_addr = (unsigned long)rq;
3194
3195                         if (rq_addr >= start && rq_addr < end) {
3196                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3197                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3198                         }
3199                 }
3200         }
3201
3202         /*
3203          * Wait until all pending iteration is done.
3204          *
3205          * Request reference is cleared and it is guaranteed to be observed
3206          * after the ->lock is released.
3207          */
3208         spin_lock_irqsave(&drv_tags->lock, flags);
3209         spin_unlock_irqrestore(&drv_tags->lock, flags);
3210 }
3211
3212 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3213                      unsigned int hctx_idx)
3214 {
3215         struct blk_mq_tags *drv_tags;
3216         struct page *page;
3217
3218         if (list_empty(&tags->page_list))
3219                 return;
3220
3221         if (blk_mq_is_shared_tags(set->flags))
3222                 drv_tags = set->shared_tags;
3223         else
3224                 drv_tags = set->tags[hctx_idx];
3225
3226         if (tags->static_rqs && set->ops->exit_request) {
3227                 int i;
3228
3229                 for (i = 0; i < tags->nr_tags; i++) {
3230                         struct request *rq = tags->static_rqs[i];
3231
3232                         if (!rq)
3233                                 continue;
3234                         set->ops->exit_request(set, rq, hctx_idx);
3235                         tags->static_rqs[i] = NULL;
3236                 }
3237         }
3238
3239         blk_mq_clear_rq_mapping(drv_tags, tags);
3240
3241         while (!list_empty(&tags->page_list)) {
3242                 page = list_first_entry(&tags->page_list, struct page, lru);
3243                 list_del_init(&page->lru);
3244                 /*
3245                  * Remove kmemleak object previously allocated in
3246                  * blk_mq_alloc_rqs().
3247                  */
3248                 kmemleak_free(page_address(page));
3249                 __free_pages(page, page->private);
3250         }
3251 }
3252
3253 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3254 {
3255         kfree(tags->rqs);
3256         tags->rqs = NULL;
3257         kfree(tags->static_rqs);
3258         tags->static_rqs = NULL;
3259
3260         blk_mq_free_tags(tags);
3261 }
3262
3263 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3264                 unsigned int hctx_idx)
3265 {
3266         int i;
3267
3268         for (i = 0; i < set->nr_maps; i++) {
3269                 unsigned int start = set->map[i].queue_offset;
3270                 unsigned int end = start + set->map[i].nr_queues;
3271
3272                 if (hctx_idx >= start && hctx_idx < end)
3273                         break;
3274         }
3275
3276         if (i >= set->nr_maps)
3277                 i = HCTX_TYPE_DEFAULT;
3278
3279         return i;
3280 }
3281
3282 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3283                 unsigned int hctx_idx)
3284 {
3285         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3286
3287         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3288 }
3289
3290 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3291                                                unsigned int hctx_idx,
3292                                                unsigned int nr_tags,
3293                                                unsigned int reserved_tags)
3294 {
3295         int node = blk_mq_get_hctx_node(set, hctx_idx);
3296         struct blk_mq_tags *tags;
3297
3298         if (node == NUMA_NO_NODE)
3299                 node = set->numa_node;
3300
3301         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3302                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3303         if (!tags)
3304                 return NULL;
3305
3306         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3307                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3308                                  node);
3309         if (!tags->rqs)
3310                 goto err_free_tags;
3311
3312         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3313                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3314                                         node);
3315         if (!tags->static_rqs)
3316                 goto err_free_rqs;
3317
3318         return tags;
3319
3320 err_free_rqs:
3321         kfree(tags->rqs);
3322 err_free_tags:
3323         blk_mq_free_tags(tags);
3324         return NULL;
3325 }
3326
3327 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3328                                unsigned int hctx_idx, int node)
3329 {
3330         int ret;
3331
3332         if (set->ops->init_request) {
3333                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3334                 if (ret)
3335                         return ret;
3336         }
3337
3338         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3339         return 0;
3340 }
3341
3342 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3343                             struct blk_mq_tags *tags,
3344                             unsigned int hctx_idx, unsigned int depth)
3345 {
3346         unsigned int i, j, entries_per_page, max_order = 4;
3347         int node = blk_mq_get_hctx_node(set, hctx_idx);
3348         size_t rq_size, left;
3349
3350         if (node == NUMA_NO_NODE)
3351                 node = set->numa_node;
3352
3353         INIT_LIST_HEAD(&tags->page_list);
3354
3355         /*
3356          * rq_size is the size of the request plus driver payload, rounded
3357          * to the cacheline size
3358          */
3359         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3360                                 cache_line_size());
3361         left = rq_size * depth;
3362
3363         for (i = 0; i < depth; ) {
3364                 int this_order = max_order;
3365                 struct page *page;
3366                 int to_do;
3367                 void *p;
3368
3369                 while (this_order && left < order_to_size(this_order - 1))
3370                         this_order--;
3371
3372                 do {
3373                         page = alloc_pages_node(node,
3374                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3375                                 this_order);
3376                         if (page)
3377                                 break;
3378                         if (!this_order--)
3379                                 break;
3380                         if (order_to_size(this_order) < rq_size)
3381                                 break;
3382                 } while (1);
3383
3384                 if (!page)
3385                         goto fail;
3386
3387                 page->private = this_order;
3388                 list_add_tail(&page->lru, &tags->page_list);
3389
3390                 p = page_address(page);
3391                 /*
3392                  * Allow kmemleak to scan these pages as they contain pointers
3393                  * to additional allocations like via ops->init_request().
3394                  */
3395                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3396                 entries_per_page = order_to_size(this_order) / rq_size;
3397                 to_do = min(entries_per_page, depth - i);
3398                 left -= to_do * rq_size;
3399                 for (j = 0; j < to_do; j++) {
3400                         struct request *rq = p;
3401
3402                         tags->static_rqs[i] = rq;
3403                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3404                                 tags->static_rqs[i] = NULL;
3405                                 goto fail;
3406                         }
3407
3408                         p += rq_size;
3409                         i++;
3410                 }
3411         }
3412         return 0;
3413
3414 fail:
3415         blk_mq_free_rqs(set, tags, hctx_idx);
3416         return -ENOMEM;
3417 }
3418
3419 struct rq_iter_data {
3420         struct blk_mq_hw_ctx *hctx;
3421         bool has_rq;
3422 };
3423
3424 static bool blk_mq_has_request(struct request *rq, void *data)
3425 {
3426         struct rq_iter_data *iter_data = data;
3427
3428         if (rq->mq_hctx != iter_data->hctx)
3429                 return true;
3430         iter_data->has_rq = true;
3431         return false;
3432 }
3433
3434 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3435 {
3436         struct blk_mq_tags *tags = hctx->sched_tags ?
3437                         hctx->sched_tags : hctx->tags;
3438         struct rq_iter_data data = {
3439                 .hctx   = hctx,
3440         };
3441
3442         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3443         return data.has_rq;
3444 }
3445
3446 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3447                 struct blk_mq_hw_ctx *hctx)
3448 {
3449         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3450                 return false;
3451         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3452                 return false;
3453         return true;
3454 }
3455
3456 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3457 {
3458         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3459                         struct blk_mq_hw_ctx, cpuhp_online);
3460
3461         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3462             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3463                 return 0;
3464
3465         /*
3466          * Prevent new request from being allocated on the current hctx.
3467          *
3468          * The smp_mb__after_atomic() Pairs with the implied barrier in
3469          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3470          * seen once we return from the tag allocator.
3471          */
3472         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3473         smp_mb__after_atomic();
3474
3475         /*
3476          * Try to grab a reference to the queue and wait for any outstanding
3477          * requests.  If we could not grab a reference the queue has been
3478          * frozen and there are no requests.
3479          */
3480         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3481                 while (blk_mq_hctx_has_requests(hctx))
3482                         msleep(5);
3483                 percpu_ref_put(&hctx->queue->q_usage_counter);
3484         }
3485
3486         return 0;
3487 }
3488
3489 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3490 {
3491         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3492                         struct blk_mq_hw_ctx, cpuhp_online);
3493
3494         if (cpumask_test_cpu(cpu, hctx->cpumask))
3495                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3496         return 0;
3497 }
3498
3499 /*
3500  * 'cpu' is going away. splice any existing rq_list entries from this
3501  * software queue to the hw queue dispatch list, and ensure that it
3502  * gets run.
3503  */
3504 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3505 {
3506         struct blk_mq_hw_ctx *hctx;
3507         struct blk_mq_ctx *ctx;
3508         LIST_HEAD(tmp);
3509         enum hctx_type type;
3510
3511         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3512         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3513                 return 0;
3514
3515         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3516         type = hctx->type;
3517
3518         spin_lock(&ctx->lock);
3519         if (!list_empty(&ctx->rq_lists[type])) {
3520                 list_splice_init(&ctx->rq_lists[type], &tmp);
3521                 blk_mq_hctx_clear_pending(hctx, ctx);
3522         }
3523         spin_unlock(&ctx->lock);
3524
3525         if (list_empty(&tmp))
3526                 return 0;
3527
3528         spin_lock(&hctx->lock);
3529         list_splice_tail_init(&tmp, &hctx->dispatch);
3530         spin_unlock(&hctx->lock);
3531
3532         blk_mq_run_hw_queue(hctx, true);
3533         return 0;
3534 }
3535
3536 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3537 {
3538         if (!(hctx->flags & BLK_MQ_F_STACKING))
3539                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3540                                                     &hctx->cpuhp_online);
3541         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3542                                             &hctx->cpuhp_dead);
3543 }
3544
3545 /*
3546  * Before freeing hw queue, clearing the flush request reference in
3547  * tags->rqs[] for avoiding potential UAF.
3548  */
3549 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3550                 unsigned int queue_depth, struct request *flush_rq)
3551 {
3552         int i;
3553         unsigned long flags;
3554
3555         /* The hw queue may not be mapped yet */
3556         if (!tags)
3557                 return;
3558
3559         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3560
3561         for (i = 0; i < queue_depth; i++)
3562                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3563
3564         /*
3565          * Wait until all pending iteration is done.
3566          *
3567          * Request reference is cleared and it is guaranteed to be observed
3568          * after the ->lock is released.
3569          */
3570         spin_lock_irqsave(&tags->lock, flags);
3571         spin_unlock_irqrestore(&tags->lock, flags);
3572 }
3573
3574 /* hctx->ctxs will be freed in queue's release handler */
3575 static void blk_mq_exit_hctx(struct request_queue *q,
3576                 struct blk_mq_tag_set *set,
3577                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3578 {
3579         struct request *flush_rq = hctx->fq->flush_rq;
3580
3581         if (blk_mq_hw_queue_mapped(hctx))
3582                 blk_mq_tag_idle(hctx);
3583
3584         if (blk_queue_init_done(q))
3585                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3586                                 set->queue_depth, flush_rq);
3587         if (set->ops->exit_request)
3588                 set->ops->exit_request(set, flush_rq, hctx_idx);
3589
3590         if (set->ops->exit_hctx)
3591                 set->ops->exit_hctx(hctx, hctx_idx);
3592
3593         blk_mq_remove_cpuhp(hctx);
3594
3595         xa_erase(&q->hctx_table, hctx_idx);
3596
3597         spin_lock(&q->unused_hctx_lock);
3598         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3599         spin_unlock(&q->unused_hctx_lock);
3600 }
3601
3602 static void blk_mq_exit_hw_queues(struct request_queue *q,
3603                 struct blk_mq_tag_set *set, int nr_queue)
3604 {
3605         struct blk_mq_hw_ctx *hctx;
3606         unsigned long i;
3607
3608         queue_for_each_hw_ctx(q, hctx, i) {
3609                 if (i == nr_queue)
3610                         break;
3611                 blk_mq_exit_hctx(q, set, hctx, i);
3612         }
3613 }
3614
3615 static int blk_mq_init_hctx(struct request_queue *q,
3616                 struct blk_mq_tag_set *set,
3617                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3618 {
3619         hctx->queue_num = hctx_idx;
3620
3621         if (!(hctx->flags & BLK_MQ_F_STACKING))
3622                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3623                                 &hctx->cpuhp_online);
3624         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3625
3626         hctx->tags = set->tags[hctx_idx];
3627
3628         if (set->ops->init_hctx &&
3629             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3630                 goto unregister_cpu_notifier;
3631
3632         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3633                                 hctx->numa_node))
3634                 goto exit_hctx;
3635
3636         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3637                 goto exit_flush_rq;
3638
3639         return 0;
3640
3641  exit_flush_rq:
3642         if (set->ops->exit_request)
3643                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3644  exit_hctx:
3645         if (set->ops->exit_hctx)
3646                 set->ops->exit_hctx(hctx, hctx_idx);
3647  unregister_cpu_notifier:
3648         blk_mq_remove_cpuhp(hctx);
3649         return -1;
3650 }
3651
3652 static struct blk_mq_hw_ctx *
3653 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3654                 int node)
3655 {
3656         struct blk_mq_hw_ctx *hctx;
3657         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3658
3659         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3660         if (!hctx)
3661                 goto fail_alloc_hctx;
3662
3663         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3664                 goto free_hctx;
3665
3666         atomic_set(&hctx->nr_active, 0);
3667         if (node == NUMA_NO_NODE)
3668                 node = set->numa_node;
3669         hctx->numa_node = node;
3670
3671         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3672         spin_lock_init(&hctx->lock);
3673         INIT_LIST_HEAD(&hctx->dispatch);
3674         hctx->queue = q;
3675         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3676
3677         INIT_LIST_HEAD(&hctx->hctx_list);
3678
3679         /*
3680          * Allocate space for all possible cpus to avoid allocation at
3681          * runtime
3682          */
3683         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3684                         gfp, node);
3685         if (!hctx->ctxs)
3686                 goto free_cpumask;
3687
3688         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3689                                 gfp, node, false, false))
3690                 goto free_ctxs;
3691         hctx->nr_ctx = 0;
3692
3693         spin_lock_init(&hctx->dispatch_wait_lock);
3694         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3695         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3696
3697         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3698         if (!hctx->fq)
3699                 goto free_bitmap;
3700
3701         blk_mq_hctx_kobj_init(hctx);
3702
3703         return hctx;
3704
3705  free_bitmap:
3706         sbitmap_free(&hctx->ctx_map);
3707  free_ctxs:
3708         kfree(hctx->ctxs);
3709  free_cpumask:
3710         free_cpumask_var(hctx->cpumask);
3711  free_hctx:
3712         kfree(hctx);
3713  fail_alloc_hctx:
3714         return NULL;
3715 }
3716
3717 static void blk_mq_init_cpu_queues(struct request_queue *q,
3718                                    unsigned int nr_hw_queues)
3719 {
3720         struct blk_mq_tag_set *set = q->tag_set;
3721         unsigned int i, j;
3722
3723         for_each_possible_cpu(i) {
3724                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3725                 struct blk_mq_hw_ctx *hctx;
3726                 int k;
3727
3728                 __ctx->cpu = i;
3729                 spin_lock_init(&__ctx->lock);
3730                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3731                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3732
3733                 __ctx->queue = q;
3734
3735                 /*
3736                  * Set local node, IFF we have more than one hw queue. If
3737                  * not, we remain on the home node of the device
3738                  */
3739                 for (j = 0; j < set->nr_maps; j++) {
3740                         hctx = blk_mq_map_queue_type(q, j, i);
3741                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3742                                 hctx->numa_node = cpu_to_node(i);
3743                 }
3744         }
3745 }
3746
3747 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3748                                              unsigned int hctx_idx,
3749                                              unsigned int depth)
3750 {
3751         struct blk_mq_tags *tags;
3752         int ret;
3753
3754         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3755         if (!tags)
3756                 return NULL;
3757
3758         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3759         if (ret) {
3760                 blk_mq_free_rq_map(tags);
3761                 return NULL;
3762         }
3763
3764         return tags;
3765 }
3766
3767 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3768                                        int hctx_idx)
3769 {
3770         if (blk_mq_is_shared_tags(set->flags)) {
3771                 set->tags[hctx_idx] = set->shared_tags;
3772
3773                 return true;
3774         }
3775
3776         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3777                                                        set->queue_depth);
3778
3779         return set->tags[hctx_idx];
3780 }
3781
3782 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3783                              struct blk_mq_tags *tags,
3784                              unsigned int hctx_idx)
3785 {
3786         if (tags) {
3787                 blk_mq_free_rqs(set, tags, hctx_idx);
3788                 blk_mq_free_rq_map(tags);
3789         }
3790 }
3791
3792 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3793                                       unsigned int hctx_idx)
3794 {
3795         if (!blk_mq_is_shared_tags(set->flags))
3796                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3797
3798         set->tags[hctx_idx] = NULL;
3799 }
3800
3801 static void blk_mq_map_swqueue(struct request_queue *q)
3802 {
3803         unsigned int j, hctx_idx;
3804         unsigned long i;
3805         struct blk_mq_hw_ctx *hctx;
3806         struct blk_mq_ctx *ctx;
3807         struct blk_mq_tag_set *set = q->tag_set;
3808
3809         queue_for_each_hw_ctx(q, hctx, i) {
3810                 cpumask_clear(hctx->cpumask);
3811                 hctx->nr_ctx = 0;
3812                 hctx->dispatch_from = NULL;
3813         }
3814
3815         /*
3816          * Map software to hardware queues.
3817          *
3818          * If the cpu isn't present, the cpu is mapped to first hctx.
3819          */
3820         for_each_possible_cpu(i) {
3821
3822                 ctx = per_cpu_ptr(q->queue_ctx, i);
3823                 for (j = 0; j < set->nr_maps; j++) {
3824                         if (!set->map[j].nr_queues) {
3825                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3826                                                 HCTX_TYPE_DEFAULT, i);
3827                                 continue;
3828                         }
3829                         hctx_idx = set->map[j].mq_map[i];
3830                         /* unmapped hw queue can be remapped after CPU topo changed */
3831                         if (!set->tags[hctx_idx] &&
3832                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3833                                 /*
3834                                  * If tags initialization fail for some hctx,
3835                                  * that hctx won't be brought online.  In this
3836                                  * case, remap the current ctx to hctx[0] which
3837                                  * is guaranteed to always have tags allocated
3838                                  */
3839                                 set->map[j].mq_map[i] = 0;
3840                         }
3841
3842                         hctx = blk_mq_map_queue_type(q, j, i);
3843                         ctx->hctxs[j] = hctx;
3844                         /*
3845                          * If the CPU is already set in the mask, then we've
3846                          * mapped this one already. This can happen if
3847                          * devices share queues across queue maps.
3848                          */
3849                         if (cpumask_test_cpu(i, hctx->cpumask))
3850                                 continue;
3851
3852                         cpumask_set_cpu(i, hctx->cpumask);
3853                         hctx->type = j;
3854                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3855                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3856
3857                         /*
3858                          * If the nr_ctx type overflows, we have exceeded the
3859                          * amount of sw queues we can support.
3860                          */
3861                         BUG_ON(!hctx->nr_ctx);
3862                 }
3863
3864                 for (; j < HCTX_MAX_TYPES; j++)
3865                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3866                                         HCTX_TYPE_DEFAULT, i);
3867         }
3868
3869         queue_for_each_hw_ctx(q, hctx, i) {
3870                 /*
3871                  * If no software queues are mapped to this hardware queue,
3872                  * disable it and free the request entries.
3873                  */
3874                 if (!hctx->nr_ctx) {
3875                         /* Never unmap queue 0.  We need it as a
3876                          * fallback in case of a new remap fails
3877                          * allocation
3878                          */
3879                         if (i)
3880                                 __blk_mq_free_map_and_rqs(set, i);
3881
3882                         hctx->tags = NULL;
3883                         continue;
3884                 }
3885
3886                 hctx->tags = set->tags[i];
3887                 WARN_ON(!hctx->tags);
3888
3889                 /*
3890                  * Set the map size to the number of mapped software queues.
3891                  * This is more accurate and more efficient than looping
3892                  * over all possibly mapped software queues.
3893                  */
3894                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3895
3896                 /*
3897                  * Initialize batch roundrobin counts
3898                  */
3899                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3900                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3901         }
3902 }
3903
3904 /*
3905  * Caller needs to ensure that we're either frozen/quiesced, or that
3906  * the queue isn't live yet.
3907  */
3908 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3909 {
3910         struct blk_mq_hw_ctx *hctx;
3911         unsigned long i;
3912
3913         queue_for_each_hw_ctx(q, hctx, i) {
3914                 if (shared) {
3915                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3916                 } else {
3917                         blk_mq_tag_idle(hctx);
3918                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3919                 }
3920         }
3921 }
3922
3923 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3924                                          bool shared)
3925 {
3926         struct request_queue *q;
3927
3928         lockdep_assert_held(&set->tag_list_lock);
3929
3930         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3931                 blk_mq_freeze_queue(q);
3932                 queue_set_hctx_shared(q, shared);
3933                 blk_mq_unfreeze_queue(q);
3934         }
3935 }
3936
3937 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3938 {
3939         struct blk_mq_tag_set *set = q->tag_set;
3940
3941         mutex_lock(&set->tag_list_lock);
3942         list_del(&q->tag_set_list);
3943         if (list_is_singular(&set->tag_list)) {
3944                 /* just transitioned to unshared */
3945                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3946                 /* update existing queue */
3947                 blk_mq_update_tag_set_shared(set, false);
3948         }
3949         mutex_unlock(&set->tag_list_lock);
3950         INIT_LIST_HEAD(&q->tag_set_list);
3951 }
3952
3953 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3954                                      struct request_queue *q)
3955 {
3956         mutex_lock(&set->tag_list_lock);
3957
3958         /*
3959          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3960          */
3961         if (!list_empty(&set->tag_list) &&
3962             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3963                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3964                 /* update existing queue */
3965                 blk_mq_update_tag_set_shared(set, true);
3966         }
3967         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3968                 queue_set_hctx_shared(q, true);
3969         list_add_tail(&q->tag_set_list, &set->tag_list);
3970
3971         mutex_unlock(&set->tag_list_lock);
3972 }
3973
3974 /* All allocations will be freed in release handler of q->mq_kobj */
3975 static int blk_mq_alloc_ctxs(struct request_queue *q)
3976 {
3977         struct blk_mq_ctxs *ctxs;
3978         int cpu;
3979
3980         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3981         if (!ctxs)
3982                 return -ENOMEM;
3983
3984         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3985         if (!ctxs->queue_ctx)
3986                 goto fail;
3987
3988         for_each_possible_cpu(cpu) {
3989                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3990                 ctx->ctxs = ctxs;
3991         }
3992
3993         q->mq_kobj = &ctxs->kobj;
3994         q->queue_ctx = ctxs->queue_ctx;
3995
3996         return 0;
3997  fail:
3998         kfree(ctxs);
3999         return -ENOMEM;
4000 }
4001
4002 /*
4003  * It is the actual release handler for mq, but we do it from
4004  * request queue's release handler for avoiding use-after-free
4005  * and headache because q->mq_kobj shouldn't have been introduced,
4006  * but we can't group ctx/kctx kobj without it.
4007  */
4008 void blk_mq_release(struct request_queue *q)
4009 {
4010         struct blk_mq_hw_ctx *hctx, *next;
4011         unsigned long i;
4012
4013         queue_for_each_hw_ctx(q, hctx, i)
4014                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4015
4016         /* all hctx are in .unused_hctx_list now */
4017         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4018                 list_del_init(&hctx->hctx_list);
4019                 kobject_put(&hctx->kobj);
4020         }
4021
4022         xa_destroy(&q->hctx_table);
4023
4024         /*
4025          * release .mq_kobj and sw queue's kobject now because
4026          * both share lifetime with request queue.
4027          */
4028         blk_mq_sysfs_deinit(q);
4029 }
4030
4031 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4032                 void *queuedata)
4033 {
4034         struct request_queue *q;
4035         int ret;
4036
4037         q = blk_alloc_queue(set->numa_node);
4038         if (!q)
4039                 return ERR_PTR(-ENOMEM);
4040         q->queuedata = queuedata;
4041         ret = blk_mq_init_allocated_queue(set, q);
4042         if (ret) {
4043                 blk_put_queue(q);
4044                 return ERR_PTR(ret);
4045         }
4046         return q;
4047 }
4048
4049 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4050 {
4051         return blk_mq_init_queue_data(set, NULL);
4052 }
4053 EXPORT_SYMBOL(blk_mq_init_queue);
4054
4055 /**
4056  * blk_mq_destroy_queue - shutdown a request queue
4057  * @q: request queue to shutdown
4058  *
4059  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4060  * requests will be failed with -ENODEV. The caller is responsible for dropping
4061  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4062  *
4063  * Context: can sleep
4064  */
4065 void blk_mq_destroy_queue(struct request_queue *q)
4066 {
4067         WARN_ON_ONCE(!queue_is_mq(q));
4068         WARN_ON_ONCE(blk_queue_registered(q));
4069
4070         might_sleep();
4071
4072         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4073         blk_queue_start_drain(q);
4074         blk_mq_freeze_queue_wait(q);
4075
4076         blk_sync_queue(q);
4077         blk_mq_cancel_work_sync(q);
4078         blk_mq_exit_queue(q);
4079 }
4080 EXPORT_SYMBOL(blk_mq_destroy_queue);
4081
4082 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4083                 struct lock_class_key *lkclass)
4084 {
4085         struct request_queue *q;
4086         struct gendisk *disk;
4087
4088         q = blk_mq_init_queue_data(set, queuedata);
4089         if (IS_ERR(q))
4090                 return ERR_CAST(q);
4091
4092         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4093         if (!disk) {
4094                 blk_mq_destroy_queue(q);
4095                 blk_put_queue(q);
4096                 return ERR_PTR(-ENOMEM);
4097         }
4098         set_bit(GD_OWNS_QUEUE, &disk->state);
4099         return disk;
4100 }
4101 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4102
4103 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4104                 struct lock_class_key *lkclass)
4105 {
4106         struct gendisk *disk;
4107
4108         if (!blk_get_queue(q))
4109                 return NULL;
4110         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4111         if (!disk)
4112                 blk_put_queue(q);
4113         return disk;
4114 }
4115 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4116
4117 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4118                 struct blk_mq_tag_set *set, struct request_queue *q,
4119                 int hctx_idx, int node)
4120 {
4121         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4122
4123         /* reuse dead hctx first */
4124         spin_lock(&q->unused_hctx_lock);
4125         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4126                 if (tmp->numa_node == node) {
4127                         hctx = tmp;
4128                         break;
4129                 }
4130         }
4131         if (hctx)
4132                 list_del_init(&hctx->hctx_list);
4133         spin_unlock(&q->unused_hctx_lock);
4134
4135         if (!hctx)
4136                 hctx = blk_mq_alloc_hctx(q, set, node);
4137         if (!hctx)
4138                 goto fail;
4139
4140         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4141                 goto free_hctx;
4142
4143         return hctx;
4144
4145  free_hctx:
4146         kobject_put(&hctx->kobj);
4147  fail:
4148         return NULL;
4149 }
4150
4151 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4152                                                 struct request_queue *q)
4153 {
4154         struct blk_mq_hw_ctx *hctx;
4155         unsigned long i, j;
4156
4157         /* protect against switching io scheduler  */
4158         mutex_lock(&q->sysfs_lock);
4159         for (i = 0; i < set->nr_hw_queues; i++) {
4160                 int old_node;
4161                 int node = blk_mq_get_hctx_node(set, i);
4162                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4163
4164                 if (old_hctx) {
4165                         old_node = old_hctx->numa_node;
4166                         blk_mq_exit_hctx(q, set, old_hctx, i);
4167                 }
4168
4169                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4170                         if (!old_hctx)
4171                                 break;
4172                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4173                                         node, old_node);
4174                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4175                         WARN_ON_ONCE(!hctx);
4176                 }
4177         }
4178         /*
4179          * Increasing nr_hw_queues fails. Free the newly allocated
4180          * hctxs and keep the previous q->nr_hw_queues.
4181          */
4182         if (i != set->nr_hw_queues) {
4183                 j = q->nr_hw_queues;
4184         } else {
4185                 j = i;
4186                 q->nr_hw_queues = set->nr_hw_queues;
4187         }
4188
4189         xa_for_each_start(&q->hctx_table, j, hctx, j)
4190                 blk_mq_exit_hctx(q, set, hctx, j);
4191         mutex_unlock(&q->sysfs_lock);
4192 }
4193
4194 static void blk_mq_update_poll_flag(struct request_queue *q)
4195 {
4196         struct blk_mq_tag_set *set = q->tag_set;
4197
4198         if (set->nr_maps > HCTX_TYPE_POLL &&
4199             set->map[HCTX_TYPE_POLL].nr_queues)
4200                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4201         else
4202                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4203 }
4204
4205 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4206                 struct request_queue *q)
4207 {
4208         /* mark the queue as mq asap */
4209         q->mq_ops = set->ops;
4210
4211         if (blk_mq_alloc_ctxs(q))
4212                 goto err_exit;
4213
4214         /* init q->mq_kobj and sw queues' kobjects */
4215         blk_mq_sysfs_init(q);
4216
4217         INIT_LIST_HEAD(&q->unused_hctx_list);
4218         spin_lock_init(&q->unused_hctx_lock);
4219
4220         xa_init(&q->hctx_table);
4221
4222         blk_mq_realloc_hw_ctxs(set, q);
4223         if (!q->nr_hw_queues)
4224                 goto err_hctxs;
4225
4226         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4227         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4228
4229         q->tag_set = set;
4230
4231         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4232         blk_mq_update_poll_flag(q);
4233
4234         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4235         INIT_LIST_HEAD(&q->requeue_list);
4236         spin_lock_init(&q->requeue_lock);
4237
4238         q->nr_requests = set->queue_depth;
4239
4240         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4241         blk_mq_add_queue_tag_set(set, q);
4242         blk_mq_map_swqueue(q);
4243         return 0;
4244
4245 err_hctxs:
4246         blk_mq_release(q);
4247 err_exit:
4248         q->mq_ops = NULL;
4249         return -ENOMEM;
4250 }
4251 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4252
4253 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4254 void blk_mq_exit_queue(struct request_queue *q)
4255 {
4256         struct blk_mq_tag_set *set = q->tag_set;
4257
4258         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4259         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4260         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4261         blk_mq_del_queue_tag_set(q);
4262 }
4263
4264 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4265 {
4266         int i;
4267
4268         if (blk_mq_is_shared_tags(set->flags)) {
4269                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4270                                                 BLK_MQ_NO_HCTX_IDX,
4271                                                 set->queue_depth);
4272                 if (!set->shared_tags)
4273                         return -ENOMEM;
4274         }
4275
4276         for (i = 0; i < set->nr_hw_queues; i++) {
4277                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4278                         goto out_unwind;
4279                 cond_resched();
4280         }
4281
4282         return 0;
4283
4284 out_unwind:
4285         while (--i >= 0)
4286                 __blk_mq_free_map_and_rqs(set, i);
4287
4288         if (blk_mq_is_shared_tags(set->flags)) {
4289                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4290                                         BLK_MQ_NO_HCTX_IDX);
4291         }
4292
4293         return -ENOMEM;
4294 }
4295
4296 /*
4297  * Allocate the request maps associated with this tag_set. Note that this
4298  * may reduce the depth asked for, if memory is tight. set->queue_depth
4299  * will be updated to reflect the allocated depth.
4300  */
4301 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4302 {
4303         unsigned int depth;
4304         int err;
4305
4306         depth = set->queue_depth;
4307         do {
4308                 err = __blk_mq_alloc_rq_maps(set);
4309                 if (!err)
4310                         break;
4311
4312                 set->queue_depth >>= 1;
4313                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4314                         err = -ENOMEM;
4315                         break;
4316                 }
4317         } while (set->queue_depth);
4318
4319         if (!set->queue_depth || err) {
4320                 pr_err("blk-mq: failed to allocate request map\n");
4321                 return -ENOMEM;
4322         }
4323
4324         if (depth != set->queue_depth)
4325                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4326                                                 depth, set->queue_depth);
4327
4328         return 0;
4329 }
4330
4331 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4332 {
4333         /*
4334          * blk_mq_map_queues() and multiple .map_queues() implementations
4335          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4336          * number of hardware queues.
4337          */
4338         if (set->nr_maps == 1)
4339                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4340
4341         if (set->ops->map_queues && !is_kdump_kernel()) {
4342                 int i;
4343
4344                 /*
4345                  * transport .map_queues is usually done in the following
4346                  * way:
4347                  *
4348                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4349                  *      mask = get_cpu_mask(queue)
4350                  *      for_each_cpu(cpu, mask)
4351                  *              set->map[x].mq_map[cpu] = queue;
4352                  * }
4353                  *
4354                  * When we need to remap, the table has to be cleared for
4355                  * killing stale mapping since one CPU may not be mapped
4356                  * to any hw queue.
4357                  */
4358                 for (i = 0; i < set->nr_maps; i++)
4359                         blk_mq_clear_mq_map(&set->map[i]);
4360
4361                 set->ops->map_queues(set);
4362         } else {
4363                 BUG_ON(set->nr_maps > 1);
4364                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4365         }
4366 }
4367
4368 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4369                                        int new_nr_hw_queues)
4370 {
4371         struct blk_mq_tags **new_tags;
4372
4373         if (set->nr_hw_queues >= new_nr_hw_queues)
4374                 goto done;
4375
4376         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4377                                 GFP_KERNEL, set->numa_node);
4378         if (!new_tags)
4379                 return -ENOMEM;
4380
4381         if (set->tags)
4382                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4383                        sizeof(*set->tags));
4384         kfree(set->tags);
4385         set->tags = new_tags;
4386 done:
4387         set->nr_hw_queues = new_nr_hw_queues;
4388         return 0;
4389 }
4390
4391 /*
4392  * Alloc a tag set to be associated with one or more request queues.
4393  * May fail with EINVAL for various error conditions. May adjust the
4394  * requested depth down, if it's too large. In that case, the set
4395  * value will be stored in set->queue_depth.
4396  */
4397 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4398 {
4399         int i, ret;
4400
4401         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4402
4403         if (!set->nr_hw_queues)
4404                 return -EINVAL;
4405         if (!set->queue_depth)
4406                 return -EINVAL;
4407         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4408                 return -EINVAL;
4409
4410         if (!set->ops->queue_rq)
4411                 return -EINVAL;
4412
4413         if (!set->ops->get_budget ^ !set->ops->put_budget)
4414                 return -EINVAL;
4415
4416         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4417                 pr_info("blk-mq: reduced tag depth to %u\n",
4418                         BLK_MQ_MAX_DEPTH);
4419                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4420         }
4421
4422         if (!set->nr_maps)
4423                 set->nr_maps = 1;
4424         else if (set->nr_maps > HCTX_MAX_TYPES)
4425                 return -EINVAL;
4426
4427         /*
4428          * If a crashdump is active, then we are potentially in a very
4429          * memory constrained environment. Limit us to 1 queue and
4430          * 64 tags to prevent using too much memory.
4431          */
4432         if (is_kdump_kernel()) {
4433                 set->nr_hw_queues = 1;
4434                 set->nr_maps = 1;
4435                 set->queue_depth = min(64U, set->queue_depth);
4436         }
4437         /*
4438          * There is no use for more h/w queues than cpus if we just have
4439          * a single map
4440          */
4441         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4442                 set->nr_hw_queues = nr_cpu_ids;
4443
4444         if (set->flags & BLK_MQ_F_BLOCKING) {
4445                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4446                 if (!set->srcu)
4447                         return -ENOMEM;
4448                 ret = init_srcu_struct(set->srcu);
4449                 if (ret)
4450                         goto out_free_srcu;
4451         }
4452
4453         ret = -ENOMEM;
4454         set->tags = kcalloc_node(set->nr_hw_queues,
4455                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4456                                  set->numa_node);
4457         if (!set->tags)
4458                 goto out_cleanup_srcu;
4459
4460         for (i = 0; i < set->nr_maps; i++) {
4461                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4462                                                   sizeof(set->map[i].mq_map[0]),
4463                                                   GFP_KERNEL, set->numa_node);
4464                 if (!set->map[i].mq_map)
4465                         goto out_free_mq_map;
4466                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4467         }
4468
4469         blk_mq_update_queue_map(set);
4470
4471         ret = blk_mq_alloc_set_map_and_rqs(set);
4472         if (ret)
4473                 goto out_free_mq_map;
4474
4475         mutex_init(&set->tag_list_lock);
4476         INIT_LIST_HEAD(&set->tag_list);
4477
4478         return 0;
4479
4480 out_free_mq_map:
4481         for (i = 0; i < set->nr_maps; i++) {
4482                 kfree(set->map[i].mq_map);
4483                 set->map[i].mq_map = NULL;
4484         }
4485         kfree(set->tags);
4486         set->tags = NULL;
4487 out_cleanup_srcu:
4488         if (set->flags & BLK_MQ_F_BLOCKING)
4489                 cleanup_srcu_struct(set->srcu);
4490 out_free_srcu:
4491         if (set->flags & BLK_MQ_F_BLOCKING)
4492                 kfree(set->srcu);
4493         return ret;
4494 }
4495 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4496
4497 /* allocate and initialize a tagset for a simple single-queue device */
4498 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4499                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4500                 unsigned int set_flags)
4501 {
4502         memset(set, 0, sizeof(*set));
4503         set->ops = ops;
4504         set->nr_hw_queues = 1;
4505         set->nr_maps = 1;
4506         set->queue_depth = queue_depth;
4507         set->numa_node = NUMA_NO_NODE;
4508         set->flags = set_flags;
4509         return blk_mq_alloc_tag_set(set);
4510 }
4511 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4512
4513 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4514 {
4515         int i, j;
4516
4517         for (i = 0; i < set->nr_hw_queues; i++)
4518                 __blk_mq_free_map_and_rqs(set, i);
4519
4520         if (blk_mq_is_shared_tags(set->flags)) {
4521                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4522                                         BLK_MQ_NO_HCTX_IDX);
4523         }
4524
4525         for (j = 0; j < set->nr_maps; j++) {
4526                 kfree(set->map[j].mq_map);
4527                 set->map[j].mq_map = NULL;
4528         }
4529
4530         kfree(set->tags);
4531         set->tags = NULL;
4532         if (set->flags & BLK_MQ_F_BLOCKING) {
4533                 cleanup_srcu_struct(set->srcu);
4534                 kfree(set->srcu);
4535         }
4536 }
4537 EXPORT_SYMBOL(blk_mq_free_tag_set);
4538
4539 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4540 {
4541         struct blk_mq_tag_set *set = q->tag_set;
4542         struct blk_mq_hw_ctx *hctx;
4543         int ret;
4544         unsigned long i;
4545
4546         if (!set)
4547                 return -EINVAL;
4548
4549         if (q->nr_requests == nr)
4550                 return 0;
4551
4552         blk_mq_freeze_queue(q);
4553         blk_mq_quiesce_queue(q);
4554
4555         ret = 0;
4556         queue_for_each_hw_ctx(q, hctx, i) {
4557                 if (!hctx->tags)
4558                         continue;
4559                 /*
4560                  * If we're using an MQ scheduler, just update the scheduler
4561                  * queue depth. This is similar to what the old code would do.
4562                  */
4563                 if (hctx->sched_tags) {
4564                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4565                                                       nr, true);
4566                 } else {
4567                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4568                                                       false);
4569                 }
4570                 if (ret)
4571                         break;
4572                 if (q->elevator && q->elevator->type->ops.depth_updated)
4573                         q->elevator->type->ops.depth_updated(hctx);
4574         }
4575         if (!ret) {
4576                 q->nr_requests = nr;
4577                 if (blk_mq_is_shared_tags(set->flags)) {
4578                         if (q->elevator)
4579                                 blk_mq_tag_update_sched_shared_tags(q);
4580                         else
4581                                 blk_mq_tag_resize_shared_tags(set, nr);
4582                 }
4583         }
4584
4585         blk_mq_unquiesce_queue(q);
4586         blk_mq_unfreeze_queue(q);
4587
4588         return ret;
4589 }
4590
4591 /*
4592  * request_queue and elevator_type pair.
4593  * It is just used by __blk_mq_update_nr_hw_queues to cache
4594  * the elevator_type associated with a request_queue.
4595  */
4596 struct blk_mq_qe_pair {
4597         struct list_head node;
4598         struct request_queue *q;
4599         struct elevator_type *type;
4600 };
4601
4602 /*
4603  * Cache the elevator_type in qe pair list and switch the
4604  * io scheduler to 'none'
4605  */
4606 static bool blk_mq_elv_switch_none(struct list_head *head,
4607                 struct request_queue *q)
4608 {
4609         struct blk_mq_qe_pair *qe;
4610
4611         if (!q->elevator)
4612                 return true;
4613
4614         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4615         if (!qe)
4616                 return false;
4617
4618         /* q->elevator needs protection from ->sysfs_lock */
4619         mutex_lock(&q->sysfs_lock);
4620
4621         INIT_LIST_HEAD(&qe->node);
4622         qe->q = q;
4623         qe->type = q->elevator->type;
4624         /* keep a reference to the elevator module as we'll switch back */
4625         __elevator_get(qe->type);
4626         list_add(&qe->node, head);
4627         elevator_disable(q);
4628         mutex_unlock(&q->sysfs_lock);
4629
4630         return true;
4631 }
4632
4633 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4634                                                 struct request_queue *q)
4635 {
4636         struct blk_mq_qe_pair *qe;
4637
4638         list_for_each_entry(qe, head, node)
4639                 if (qe->q == q)
4640                         return qe;
4641
4642         return NULL;
4643 }
4644
4645 static void blk_mq_elv_switch_back(struct list_head *head,
4646                                   struct request_queue *q)
4647 {
4648         struct blk_mq_qe_pair *qe;
4649         struct elevator_type *t;
4650
4651         qe = blk_lookup_qe_pair(head, q);
4652         if (!qe)
4653                 return;
4654         t = qe->type;
4655         list_del(&qe->node);
4656         kfree(qe);
4657
4658         mutex_lock(&q->sysfs_lock);
4659         elevator_switch(q, t);
4660         /* drop the reference acquired in blk_mq_elv_switch_none */
4661         elevator_put(t);
4662         mutex_unlock(&q->sysfs_lock);
4663 }
4664
4665 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4666                                                         int nr_hw_queues)
4667 {
4668         struct request_queue *q;
4669         LIST_HEAD(head);
4670         int prev_nr_hw_queues;
4671
4672         lockdep_assert_held(&set->tag_list_lock);
4673
4674         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4675                 nr_hw_queues = nr_cpu_ids;
4676         if (nr_hw_queues < 1)
4677                 return;
4678         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4679                 return;
4680
4681         list_for_each_entry(q, &set->tag_list, tag_set_list)
4682                 blk_mq_freeze_queue(q);
4683         /*
4684          * Switch IO scheduler to 'none', cleaning up the data associated
4685          * with the previous scheduler. We will switch back once we are done
4686          * updating the new sw to hw queue mappings.
4687          */
4688         list_for_each_entry(q, &set->tag_list, tag_set_list)
4689                 if (!blk_mq_elv_switch_none(&head, q))
4690                         goto switch_back;
4691
4692         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4693                 blk_mq_debugfs_unregister_hctxs(q);
4694                 blk_mq_sysfs_unregister_hctxs(q);
4695         }
4696
4697         prev_nr_hw_queues = set->nr_hw_queues;
4698         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4699                 goto reregister;
4700
4701 fallback:
4702         blk_mq_update_queue_map(set);
4703         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4704                 blk_mq_realloc_hw_ctxs(set, q);
4705                 blk_mq_update_poll_flag(q);
4706                 if (q->nr_hw_queues != set->nr_hw_queues) {
4707                         int i = prev_nr_hw_queues;
4708
4709                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4710                                         nr_hw_queues, prev_nr_hw_queues);
4711                         for (; i < set->nr_hw_queues; i++)
4712                                 __blk_mq_free_map_and_rqs(set, i);
4713
4714                         set->nr_hw_queues = prev_nr_hw_queues;
4715                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4716                         goto fallback;
4717                 }
4718                 blk_mq_map_swqueue(q);
4719         }
4720
4721 reregister:
4722         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4723                 blk_mq_sysfs_register_hctxs(q);
4724                 blk_mq_debugfs_register_hctxs(q);
4725         }
4726
4727 switch_back:
4728         list_for_each_entry(q, &set->tag_list, tag_set_list)
4729                 blk_mq_elv_switch_back(&head, q);
4730
4731         list_for_each_entry(q, &set->tag_list, tag_set_list)
4732                 blk_mq_unfreeze_queue(q);
4733 }
4734
4735 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4736 {
4737         mutex_lock(&set->tag_list_lock);
4738         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4739         mutex_unlock(&set->tag_list_lock);
4740 }
4741 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4742
4743 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4744                 unsigned int flags)
4745 {
4746         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4747         long state = get_current_state();
4748         int ret;
4749
4750         do {
4751                 ret = q->mq_ops->poll(hctx, iob);
4752                 if (ret > 0) {
4753                         __set_current_state(TASK_RUNNING);
4754                         return ret;
4755                 }
4756
4757                 if (signal_pending_state(state, current))
4758                         __set_current_state(TASK_RUNNING);
4759                 if (task_is_running(current))
4760                         return 1;
4761
4762                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4763                         break;
4764                 cpu_relax();
4765         } while (!need_resched());
4766
4767         __set_current_state(TASK_RUNNING);
4768         return 0;
4769 }
4770
4771 unsigned int blk_mq_rq_cpu(struct request *rq)
4772 {
4773         return rq->mq_ctx->cpu;
4774 }
4775 EXPORT_SYMBOL(blk_mq_rq_cpu);
4776
4777 void blk_mq_cancel_work_sync(struct request_queue *q)
4778 {
4779         struct blk_mq_hw_ctx *hctx;
4780         unsigned long i;
4781
4782         cancel_delayed_work_sync(&q->requeue_work);
4783
4784         queue_for_each_hw_ctx(q, hctx, i)
4785                 cancel_delayed_work_sync(&hctx->run_work);
4786 }
4787
4788 static int __init blk_mq_init(void)
4789 {
4790         int i;
4791
4792         for_each_possible_cpu(i)
4793                 init_llist_head(&per_cpu(blk_cpu_done, i));
4794         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4795
4796         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4797                                   "block/softirq:dead", NULL,
4798                                   blk_softirq_cpu_dead);
4799         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4800                                 blk_mq_hctx_notify_dead);
4801         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4802                                 blk_mq_hctx_notify_online,
4803                                 blk_mq_hctx_notify_offline);
4804         return 0;
4805 }
4806 subsys_initcall(blk_mq_init);