Merge tag 'sched-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / md / raid10.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72                                 int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76
77 #define raid10_log(md, fmt, args...)                            \
78         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80 #include "raid1-10.c"
81
82 #define NULL_CMD
83 #define cmd_before(conf, cmd) \
84         do { \
85                 write_sequnlock_irq(&(conf)->resync_lock); \
86                 cmd; \
87         } while (0)
88 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
89
90 #define wait_event_barrier_cmd(conf, cond, cmd) \
91         wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
92                        cmd_after(conf))
93
94 #define wait_event_barrier(conf, cond) \
95         wait_event_barrier_cmd(conf, cond, NULL_CMD)
96
97 /*
98  * for resync bio, r10bio pointer can be retrieved from the per-bio
99  * 'struct resync_pages'.
100  */
101 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
102 {
103         return get_resync_pages(bio)->raid_bio;
104 }
105
106 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
107 {
108         struct r10conf *conf = data;
109         int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
110
111         /* allocate a r10bio with room for raid_disks entries in the
112          * bios array */
113         return kzalloc(size, gfp_flags);
114 }
115
116 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
117 /* amount of memory to reserve for resync requests */
118 #define RESYNC_WINDOW (1024*1024)
119 /* maximum number of concurrent requests, memory permitting */
120 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
121 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
122 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
123
124 /*
125  * When performing a resync, we need to read and compare, so
126  * we need as many pages are there are copies.
127  * When performing a recovery, we need 2 bios, one for read,
128  * one for write (we recover only one drive per r10buf)
129  *
130  */
131 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
132 {
133         struct r10conf *conf = data;
134         struct r10bio *r10_bio;
135         struct bio *bio;
136         int j;
137         int nalloc, nalloc_rp;
138         struct resync_pages *rps;
139
140         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
141         if (!r10_bio)
142                 return NULL;
143
144         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
145             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
146                 nalloc = conf->copies; /* resync */
147         else
148                 nalloc = 2; /* recovery */
149
150         /* allocate once for all bios */
151         if (!conf->have_replacement)
152                 nalloc_rp = nalloc;
153         else
154                 nalloc_rp = nalloc * 2;
155         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
156         if (!rps)
157                 goto out_free_r10bio;
158
159         /*
160          * Allocate bios.
161          */
162         for (j = nalloc ; j-- ; ) {
163                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
164                 if (!bio)
165                         goto out_free_bio;
166                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
167                 r10_bio->devs[j].bio = bio;
168                 if (!conf->have_replacement)
169                         continue;
170                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
171                 if (!bio)
172                         goto out_free_bio;
173                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
174                 r10_bio->devs[j].repl_bio = bio;
175         }
176         /*
177          * Allocate RESYNC_PAGES data pages and attach them
178          * where needed.
179          */
180         for (j = 0; j < nalloc; j++) {
181                 struct bio *rbio = r10_bio->devs[j].repl_bio;
182                 struct resync_pages *rp, *rp_repl;
183
184                 rp = &rps[j];
185                 if (rbio)
186                         rp_repl = &rps[nalloc + j];
187
188                 bio = r10_bio->devs[j].bio;
189
190                 if (!j || test_bit(MD_RECOVERY_SYNC,
191                                    &conf->mddev->recovery)) {
192                         if (resync_alloc_pages(rp, gfp_flags))
193                                 goto out_free_pages;
194                 } else {
195                         memcpy(rp, &rps[0], sizeof(*rp));
196                         resync_get_all_pages(rp);
197                 }
198
199                 rp->raid_bio = r10_bio;
200                 bio->bi_private = rp;
201                 if (rbio) {
202                         memcpy(rp_repl, rp, sizeof(*rp));
203                         rbio->bi_private = rp_repl;
204                 }
205         }
206
207         return r10_bio;
208
209 out_free_pages:
210         while (--j >= 0)
211                 resync_free_pages(&rps[j]);
212
213         j = 0;
214 out_free_bio:
215         for ( ; j < nalloc; j++) {
216                 if (r10_bio->devs[j].bio)
217                         bio_uninit(r10_bio->devs[j].bio);
218                 kfree(r10_bio->devs[j].bio);
219                 if (r10_bio->devs[j].repl_bio)
220                         bio_uninit(r10_bio->devs[j].repl_bio);
221                 kfree(r10_bio->devs[j].repl_bio);
222         }
223         kfree(rps);
224 out_free_r10bio:
225         rbio_pool_free(r10_bio, conf);
226         return NULL;
227 }
228
229 static void r10buf_pool_free(void *__r10_bio, void *data)
230 {
231         struct r10conf *conf = data;
232         struct r10bio *r10bio = __r10_bio;
233         int j;
234         struct resync_pages *rp = NULL;
235
236         for (j = conf->copies; j--; ) {
237                 struct bio *bio = r10bio->devs[j].bio;
238
239                 if (bio) {
240                         rp = get_resync_pages(bio);
241                         resync_free_pages(rp);
242                         bio_uninit(bio);
243                         kfree(bio);
244                 }
245
246                 bio = r10bio->devs[j].repl_bio;
247                 if (bio) {
248                         bio_uninit(bio);
249                         kfree(bio);
250                 }
251         }
252
253         /* resync pages array stored in the 1st bio's .bi_private */
254         kfree(rp);
255
256         rbio_pool_free(r10bio, conf);
257 }
258
259 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
260 {
261         int i;
262
263         for (i = 0; i < conf->geo.raid_disks; i++) {
264                 struct bio **bio = & r10_bio->devs[i].bio;
265                 if (!BIO_SPECIAL(*bio))
266                         bio_put(*bio);
267                 *bio = NULL;
268                 bio = &r10_bio->devs[i].repl_bio;
269                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
270                         bio_put(*bio);
271                 *bio = NULL;
272         }
273 }
274
275 static void free_r10bio(struct r10bio *r10_bio)
276 {
277         struct r10conf *conf = r10_bio->mddev->private;
278
279         put_all_bios(conf, r10_bio);
280         mempool_free(r10_bio, &conf->r10bio_pool);
281 }
282
283 static void put_buf(struct r10bio *r10_bio)
284 {
285         struct r10conf *conf = r10_bio->mddev->private;
286
287         mempool_free(r10_bio, &conf->r10buf_pool);
288
289         lower_barrier(conf);
290 }
291
292 static void wake_up_barrier(struct r10conf *conf)
293 {
294         if (wq_has_sleeper(&conf->wait_barrier))
295                 wake_up(&conf->wait_barrier);
296 }
297
298 static void reschedule_retry(struct r10bio *r10_bio)
299 {
300         unsigned long flags;
301         struct mddev *mddev = r10_bio->mddev;
302         struct r10conf *conf = mddev->private;
303
304         spin_lock_irqsave(&conf->device_lock, flags);
305         list_add(&r10_bio->retry_list, &conf->retry_list);
306         conf->nr_queued ++;
307         spin_unlock_irqrestore(&conf->device_lock, flags);
308
309         /* wake up frozen array... */
310         wake_up(&conf->wait_barrier);
311
312         md_wakeup_thread(mddev->thread);
313 }
314
315 /*
316  * raid_end_bio_io() is called when we have finished servicing a mirrored
317  * operation and are ready to return a success/failure code to the buffer
318  * cache layer.
319  */
320 static void raid_end_bio_io(struct r10bio *r10_bio)
321 {
322         struct bio *bio = r10_bio->master_bio;
323         struct r10conf *conf = r10_bio->mddev->private;
324
325         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
326                 bio->bi_status = BLK_STS_IOERR;
327
328         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
329                 bio_end_io_acct(bio, r10_bio->start_time);
330         bio_endio(bio);
331         /*
332          * Wake up any possible resync thread that waits for the device
333          * to go idle.
334          */
335         allow_barrier(conf);
336
337         free_r10bio(r10_bio);
338 }
339
340 /*
341  * Update disk head position estimator based on IRQ completion info.
342  */
343 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
344 {
345         struct r10conf *conf = r10_bio->mddev->private;
346
347         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
348                 r10_bio->devs[slot].addr + (r10_bio->sectors);
349 }
350
351 /*
352  * Find the disk number which triggered given bio
353  */
354 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
355                          struct bio *bio, int *slotp, int *replp)
356 {
357         int slot;
358         int repl = 0;
359
360         for (slot = 0; slot < conf->geo.raid_disks; slot++) {
361                 if (r10_bio->devs[slot].bio == bio)
362                         break;
363                 if (r10_bio->devs[slot].repl_bio == bio) {
364                         repl = 1;
365                         break;
366                 }
367         }
368
369         update_head_pos(slot, r10_bio);
370
371         if (slotp)
372                 *slotp = slot;
373         if (replp)
374                 *replp = repl;
375         return r10_bio->devs[slot].devnum;
376 }
377
378 static void raid10_end_read_request(struct bio *bio)
379 {
380         int uptodate = !bio->bi_status;
381         struct r10bio *r10_bio = bio->bi_private;
382         int slot;
383         struct md_rdev *rdev;
384         struct r10conf *conf = r10_bio->mddev->private;
385
386         slot = r10_bio->read_slot;
387         rdev = r10_bio->devs[slot].rdev;
388         /*
389          * this branch is our 'one mirror IO has finished' event handler:
390          */
391         update_head_pos(slot, r10_bio);
392
393         if (uptodate) {
394                 /*
395                  * Set R10BIO_Uptodate in our master bio, so that
396                  * we will return a good error code to the higher
397                  * levels even if IO on some other mirrored buffer fails.
398                  *
399                  * The 'master' represents the composite IO operation to
400                  * user-side. So if something waits for IO, then it will
401                  * wait for the 'master' bio.
402                  */
403                 set_bit(R10BIO_Uptodate, &r10_bio->state);
404         } else {
405                 /* If all other devices that store this block have
406                  * failed, we want to return the error upwards rather
407                  * than fail the last device.  Here we redefine
408                  * "uptodate" to mean "Don't want to retry"
409                  */
410                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
411                              rdev->raid_disk))
412                         uptodate = 1;
413         }
414         if (uptodate) {
415                 raid_end_bio_io(r10_bio);
416                 rdev_dec_pending(rdev, conf->mddev);
417         } else {
418                 /*
419                  * oops, read error - keep the refcount on the rdev
420                  */
421                 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
422                                    mdname(conf->mddev),
423                                    rdev->bdev,
424                                    (unsigned long long)r10_bio->sector);
425                 set_bit(R10BIO_ReadError, &r10_bio->state);
426                 reschedule_retry(r10_bio);
427         }
428 }
429
430 static void close_write(struct r10bio *r10_bio)
431 {
432         /* clear the bitmap if all writes complete successfully */
433         md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
434                            r10_bio->sectors,
435                            !test_bit(R10BIO_Degraded, &r10_bio->state),
436                            0);
437         md_write_end(r10_bio->mddev);
438 }
439
440 static void one_write_done(struct r10bio *r10_bio)
441 {
442         if (atomic_dec_and_test(&r10_bio->remaining)) {
443                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
444                         reschedule_retry(r10_bio);
445                 else {
446                         close_write(r10_bio);
447                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
448                                 reschedule_retry(r10_bio);
449                         else
450                                 raid_end_bio_io(r10_bio);
451                 }
452         }
453 }
454
455 static void raid10_end_write_request(struct bio *bio)
456 {
457         struct r10bio *r10_bio = bio->bi_private;
458         int dev;
459         int dec_rdev = 1;
460         struct r10conf *conf = r10_bio->mddev->private;
461         int slot, repl;
462         struct md_rdev *rdev = NULL;
463         struct bio *to_put = NULL;
464         bool discard_error;
465
466         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
467
468         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
469
470         if (repl)
471                 rdev = conf->mirrors[dev].replacement;
472         if (!rdev) {
473                 smp_rmb();
474                 repl = 0;
475                 rdev = conf->mirrors[dev].rdev;
476         }
477         /*
478          * this branch is our 'one mirror IO has finished' event handler:
479          */
480         if (bio->bi_status && !discard_error) {
481                 if (repl)
482                         /* Never record new bad blocks to replacement,
483                          * just fail it.
484                          */
485                         md_error(rdev->mddev, rdev);
486                 else {
487                         set_bit(WriteErrorSeen, &rdev->flags);
488                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
489                                 set_bit(MD_RECOVERY_NEEDED,
490                                         &rdev->mddev->recovery);
491
492                         dec_rdev = 0;
493                         if (test_bit(FailFast, &rdev->flags) &&
494                             (bio->bi_opf & MD_FAILFAST)) {
495                                 md_error(rdev->mddev, rdev);
496                         }
497
498                         /*
499                          * When the device is faulty, it is not necessary to
500                          * handle write error.
501                          */
502                         if (!test_bit(Faulty, &rdev->flags))
503                                 set_bit(R10BIO_WriteError, &r10_bio->state);
504                         else {
505                                 /* Fail the request */
506                                 set_bit(R10BIO_Degraded, &r10_bio->state);
507                                 r10_bio->devs[slot].bio = NULL;
508                                 to_put = bio;
509                                 dec_rdev = 1;
510                         }
511                 }
512         } else {
513                 /*
514                  * Set R10BIO_Uptodate in our master bio, so that
515                  * we will return a good error code for to the higher
516                  * levels even if IO on some other mirrored buffer fails.
517                  *
518                  * The 'master' represents the composite IO operation to
519                  * user-side. So if something waits for IO, then it will
520                  * wait for the 'master' bio.
521                  */
522                 sector_t first_bad;
523                 int bad_sectors;
524
525                 /*
526                  * Do not set R10BIO_Uptodate if the current device is
527                  * rebuilding or Faulty. This is because we cannot use
528                  * such device for properly reading the data back (we could
529                  * potentially use it, if the current write would have felt
530                  * before rdev->recovery_offset, but for simplicity we don't
531                  * check this here.
532                  */
533                 if (test_bit(In_sync, &rdev->flags) &&
534                     !test_bit(Faulty, &rdev->flags))
535                         set_bit(R10BIO_Uptodate, &r10_bio->state);
536
537                 /* Maybe we can clear some bad blocks. */
538                 if (is_badblock(rdev,
539                                 r10_bio->devs[slot].addr,
540                                 r10_bio->sectors,
541                                 &first_bad, &bad_sectors) && !discard_error) {
542                         bio_put(bio);
543                         if (repl)
544                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
545                         else
546                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
547                         dec_rdev = 0;
548                         set_bit(R10BIO_MadeGood, &r10_bio->state);
549                 }
550         }
551
552         /*
553          *
554          * Let's see if all mirrored write operations have finished
555          * already.
556          */
557         one_write_done(r10_bio);
558         if (dec_rdev)
559                 rdev_dec_pending(rdev, conf->mddev);
560         if (to_put)
561                 bio_put(to_put);
562 }
563
564 /*
565  * RAID10 layout manager
566  * As well as the chunksize and raid_disks count, there are two
567  * parameters: near_copies and far_copies.
568  * near_copies * far_copies must be <= raid_disks.
569  * Normally one of these will be 1.
570  * If both are 1, we get raid0.
571  * If near_copies == raid_disks, we get raid1.
572  *
573  * Chunks are laid out in raid0 style with near_copies copies of the
574  * first chunk, followed by near_copies copies of the next chunk and
575  * so on.
576  * If far_copies > 1, then after 1/far_copies of the array has been assigned
577  * as described above, we start again with a device offset of near_copies.
578  * So we effectively have another copy of the whole array further down all
579  * the drives, but with blocks on different drives.
580  * With this layout, and block is never stored twice on the one device.
581  *
582  * raid10_find_phys finds the sector offset of a given virtual sector
583  * on each device that it is on.
584  *
585  * raid10_find_virt does the reverse mapping, from a device and a
586  * sector offset to a virtual address
587  */
588
589 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
590 {
591         int n,f;
592         sector_t sector;
593         sector_t chunk;
594         sector_t stripe;
595         int dev;
596         int slot = 0;
597         int last_far_set_start, last_far_set_size;
598
599         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
600         last_far_set_start *= geo->far_set_size;
601
602         last_far_set_size = geo->far_set_size;
603         last_far_set_size += (geo->raid_disks % geo->far_set_size);
604
605         /* now calculate first sector/dev */
606         chunk = r10bio->sector >> geo->chunk_shift;
607         sector = r10bio->sector & geo->chunk_mask;
608
609         chunk *= geo->near_copies;
610         stripe = chunk;
611         dev = sector_div(stripe, geo->raid_disks);
612         if (geo->far_offset)
613                 stripe *= geo->far_copies;
614
615         sector += stripe << geo->chunk_shift;
616
617         /* and calculate all the others */
618         for (n = 0; n < geo->near_copies; n++) {
619                 int d = dev;
620                 int set;
621                 sector_t s = sector;
622                 r10bio->devs[slot].devnum = d;
623                 r10bio->devs[slot].addr = s;
624                 slot++;
625
626                 for (f = 1; f < geo->far_copies; f++) {
627                         set = d / geo->far_set_size;
628                         d += geo->near_copies;
629
630                         if ((geo->raid_disks % geo->far_set_size) &&
631                             (d > last_far_set_start)) {
632                                 d -= last_far_set_start;
633                                 d %= last_far_set_size;
634                                 d += last_far_set_start;
635                         } else {
636                                 d %= geo->far_set_size;
637                                 d += geo->far_set_size * set;
638                         }
639                         s += geo->stride;
640                         r10bio->devs[slot].devnum = d;
641                         r10bio->devs[slot].addr = s;
642                         slot++;
643                 }
644                 dev++;
645                 if (dev >= geo->raid_disks) {
646                         dev = 0;
647                         sector += (geo->chunk_mask + 1);
648                 }
649         }
650 }
651
652 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
653 {
654         struct geom *geo = &conf->geo;
655
656         if (conf->reshape_progress != MaxSector &&
657             ((r10bio->sector >= conf->reshape_progress) !=
658              conf->mddev->reshape_backwards)) {
659                 set_bit(R10BIO_Previous, &r10bio->state);
660                 geo = &conf->prev;
661         } else
662                 clear_bit(R10BIO_Previous, &r10bio->state);
663
664         __raid10_find_phys(geo, r10bio);
665 }
666
667 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
668 {
669         sector_t offset, chunk, vchunk;
670         /* Never use conf->prev as this is only called during resync
671          * or recovery, so reshape isn't happening
672          */
673         struct geom *geo = &conf->geo;
674         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
675         int far_set_size = geo->far_set_size;
676         int last_far_set_start;
677
678         if (geo->raid_disks % geo->far_set_size) {
679                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
680                 last_far_set_start *= geo->far_set_size;
681
682                 if (dev >= last_far_set_start) {
683                         far_set_size = geo->far_set_size;
684                         far_set_size += (geo->raid_disks % geo->far_set_size);
685                         far_set_start = last_far_set_start;
686                 }
687         }
688
689         offset = sector & geo->chunk_mask;
690         if (geo->far_offset) {
691                 int fc;
692                 chunk = sector >> geo->chunk_shift;
693                 fc = sector_div(chunk, geo->far_copies);
694                 dev -= fc * geo->near_copies;
695                 if (dev < far_set_start)
696                         dev += far_set_size;
697         } else {
698                 while (sector >= geo->stride) {
699                         sector -= geo->stride;
700                         if (dev < (geo->near_copies + far_set_start))
701                                 dev += far_set_size - geo->near_copies;
702                         else
703                                 dev -= geo->near_copies;
704                 }
705                 chunk = sector >> geo->chunk_shift;
706         }
707         vchunk = chunk * geo->raid_disks + dev;
708         sector_div(vchunk, geo->near_copies);
709         return (vchunk << geo->chunk_shift) + offset;
710 }
711
712 /*
713  * This routine returns the disk from which the requested read should
714  * be done. There is a per-array 'next expected sequential IO' sector
715  * number - if this matches on the next IO then we use the last disk.
716  * There is also a per-disk 'last know head position' sector that is
717  * maintained from IRQ contexts, both the normal and the resync IO
718  * completion handlers update this position correctly. If there is no
719  * perfect sequential match then we pick the disk whose head is closest.
720  *
721  * If there are 2 mirrors in the same 2 devices, performance degrades
722  * because position is mirror, not device based.
723  *
724  * The rdev for the device selected will have nr_pending incremented.
725  */
726
727 /*
728  * FIXME: possibly should rethink readbalancing and do it differently
729  * depending on near_copies / far_copies geometry.
730  */
731 static struct md_rdev *read_balance(struct r10conf *conf,
732                                     struct r10bio *r10_bio,
733                                     int *max_sectors)
734 {
735         const sector_t this_sector = r10_bio->sector;
736         int disk, slot;
737         int sectors = r10_bio->sectors;
738         int best_good_sectors;
739         sector_t new_distance, best_dist;
740         struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
741         int do_balance;
742         int best_dist_slot, best_pending_slot;
743         bool has_nonrot_disk = false;
744         unsigned int min_pending;
745         struct geom *geo = &conf->geo;
746
747         raid10_find_phys(conf, r10_bio);
748         rcu_read_lock();
749         best_dist_slot = -1;
750         min_pending = UINT_MAX;
751         best_dist_rdev = NULL;
752         best_pending_rdev = NULL;
753         best_dist = MaxSector;
754         best_good_sectors = 0;
755         do_balance = 1;
756         clear_bit(R10BIO_FailFast, &r10_bio->state);
757         /*
758          * Check if we can balance. We can balance on the whole
759          * device if no resync is going on (recovery is ok), or below
760          * the resync window. We take the first readable disk when
761          * above the resync window.
762          */
763         if ((conf->mddev->recovery_cp < MaxSector
764              && (this_sector + sectors >= conf->next_resync)) ||
765             (mddev_is_clustered(conf->mddev) &&
766              md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
767                                             this_sector + sectors)))
768                 do_balance = 0;
769
770         for (slot = 0; slot < conf->copies ; slot++) {
771                 sector_t first_bad;
772                 int bad_sectors;
773                 sector_t dev_sector;
774                 unsigned int pending;
775                 bool nonrot;
776
777                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
778                         continue;
779                 disk = r10_bio->devs[slot].devnum;
780                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
781                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
782                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
783                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
784                 if (rdev == NULL ||
785                     test_bit(Faulty, &rdev->flags))
786                         continue;
787                 if (!test_bit(In_sync, &rdev->flags) &&
788                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
789                         continue;
790
791                 dev_sector = r10_bio->devs[slot].addr;
792                 if (is_badblock(rdev, dev_sector, sectors,
793                                 &first_bad, &bad_sectors)) {
794                         if (best_dist < MaxSector)
795                                 /* Already have a better slot */
796                                 continue;
797                         if (first_bad <= dev_sector) {
798                                 /* Cannot read here.  If this is the
799                                  * 'primary' device, then we must not read
800                                  * beyond 'bad_sectors' from another device.
801                                  */
802                                 bad_sectors -= (dev_sector - first_bad);
803                                 if (!do_balance && sectors > bad_sectors)
804                                         sectors = bad_sectors;
805                                 if (best_good_sectors > sectors)
806                                         best_good_sectors = sectors;
807                         } else {
808                                 sector_t good_sectors =
809                                         first_bad - dev_sector;
810                                 if (good_sectors > best_good_sectors) {
811                                         best_good_sectors = good_sectors;
812                                         best_dist_slot = slot;
813                                         best_dist_rdev = rdev;
814                                 }
815                                 if (!do_balance)
816                                         /* Must read from here */
817                                         break;
818                         }
819                         continue;
820                 } else
821                         best_good_sectors = sectors;
822
823                 if (!do_balance)
824                         break;
825
826                 nonrot = bdev_nonrot(rdev->bdev);
827                 has_nonrot_disk |= nonrot;
828                 pending = atomic_read(&rdev->nr_pending);
829                 if (min_pending > pending && nonrot) {
830                         min_pending = pending;
831                         best_pending_slot = slot;
832                         best_pending_rdev = rdev;
833                 }
834
835                 if (best_dist_slot >= 0)
836                         /* At least 2 disks to choose from so failfast is OK */
837                         set_bit(R10BIO_FailFast, &r10_bio->state);
838                 /* This optimisation is debatable, and completely destroys
839                  * sequential read speed for 'far copies' arrays.  So only
840                  * keep it for 'near' arrays, and review those later.
841                  */
842                 if (geo->near_copies > 1 && !pending)
843                         new_distance = 0;
844
845                 /* for far > 1 always use the lowest address */
846                 else if (geo->far_copies > 1)
847                         new_distance = r10_bio->devs[slot].addr;
848                 else
849                         new_distance = abs(r10_bio->devs[slot].addr -
850                                            conf->mirrors[disk].head_position);
851
852                 if (new_distance < best_dist) {
853                         best_dist = new_distance;
854                         best_dist_slot = slot;
855                         best_dist_rdev = rdev;
856                 }
857         }
858         if (slot >= conf->copies) {
859                 if (has_nonrot_disk) {
860                         slot = best_pending_slot;
861                         rdev = best_pending_rdev;
862                 } else {
863                         slot = best_dist_slot;
864                         rdev = best_dist_rdev;
865                 }
866         }
867
868         if (slot >= 0) {
869                 atomic_inc(&rdev->nr_pending);
870                 r10_bio->read_slot = slot;
871         } else
872                 rdev = NULL;
873         rcu_read_unlock();
874         *max_sectors = best_good_sectors;
875
876         return rdev;
877 }
878
879 static void flush_pending_writes(struct r10conf *conf)
880 {
881         /* Any writes that have been queued but are awaiting
882          * bitmap updates get flushed here.
883          */
884         spin_lock_irq(&conf->device_lock);
885
886         if (conf->pending_bio_list.head) {
887                 struct blk_plug plug;
888                 struct bio *bio;
889
890                 bio = bio_list_get(&conf->pending_bio_list);
891                 spin_unlock_irq(&conf->device_lock);
892
893                 /*
894                  * As this is called in a wait_event() loop (see freeze_array),
895                  * current->state might be TASK_UNINTERRUPTIBLE which will
896                  * cause a warning when we prepare to wait again.  As it is
897                  * rare that this path is taken, it is perfectly safe to force
898                  * us to go around the wait_event() loop again, so the warning
899                  * is a false-positive. Silence the warning by resetting
900                  * thread state
901                  */
902                 __set_current_state(TASK_RUNNING);
903
904                 blk_start_plug(&plug);
905                 /* flush any pending bitmap writes to disk
906                  * before proceeding w/ I/O */
907                 md_bitmap_unplug(conf->mddev->bitmap);
908                 wake_up(&conf->wait_barrier);
909
910                 while (bio) { /* submit pending writes */
911                         struct bio *next = bio->bi_next;
912                         struct md_rdev *rdev = (void*)bio->bi_bdev;
913                         bio->bi_next = NULL;
914                         bio_set_dev(bio, rdev->bdev);
915                         if (test_bit(Faulty, &rdev->flags)) {
916                                 bio_io_error(bio);
917                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
918                                             !bdev_max_discard_sectors(bio->bi_bdev)))
919                                 /* Just ignore it */
920                                 bio_endio(bio);
921                         else
922                                 submit_bio_noacct(bio);
923                         bio = next;
924                 }
925                 blk_finish_plug(&plug);
926         } else
927                 spin_unlock_irq(&conf->device_lock);
928 }
929
930 /* Barriers....
931  * Sometimes we need to suspend IO while we do something else,
932  * either some resync/recovery, or reconfigure the array.
933  * To do this we raise a 'barrier'.
934  * The 'barrier' is a counter that can be raised multiple times
935  * to count how many activities are happening which preclude
936  * normal IO.
937  * We can only raise the barrier if there is no pending IO.
938  * i.e. if nr_pending == 0.
939  * We choose only to raise the barrier if no-one is waiting for the
940  * barrier to go down.  This means that as soon as an IO request
941  * is ready, no other operations which require a barrier will start
942  * until the IO request has had a chance.
943  *
944  * So: regular IO calls 'wait_barrier'.  When that returns there
945  *    is no backgroup IO happening,  It must arrange to call
946  *    allow_barrier when it has finished its IO.
947  * backgroup IO calls must call raise_barrier.  Once that returns
948  *    there is no normal IO happeing.  It must arrange to call
949  *    lower_barrier when the particular background IO completes.
950  */
951
952 static void raise_barrier(struct r10conf *conf, int force)
953 {
954         write_seqlock_irq(&conf->resync_lock);
955
956         if (WARN_ON_ONCE(force && !conf->barrier))
957                 force = false;
958
959         /* Wait until no block IO is waiting (unless 'force') */
960         wait_event_barrier(conf, force || !conf->nr_waiting);
961
962         /* block any new IO from starting */
963         WRITE_ONCE(conf->barrier, conf->barrier + 1);
964
965         /* Now wait for all pending IO to complete */
966         wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
967                                  conf->barrier < RESYNC_DEPTH);
968
969         write_sequnlock_irq(&conf->resync_lock);
970 }
971
972 static void lower_barrier(struct r10conf *conf)
973 {
974         unsigned long flags;
975
976         write_seqlock_irqsave(&conf->resync_lock, flags);
977         WRITE_ONCE(conf->barrier, conf->barrier - 1);
978         write_sequnlock_irqrestore(&conf->resync_lock, flags);
979         wake_up(&conf->wait_barrier);
980 }
981
982 static bool stop_waiting_barrier(struct r10conf *conf)
983 {
984         struct bio_list *bio_list = current->bio_list;
985
986         /* barrier is dropped */
987         if (!conf->barrier)
988                 return true;
989
990         /*
991          * If there are already pending requests (preventing the barrier from
992          * rising completely), and the pre-process bio queue isn't empty, then
993          * don't wait, as we need to empty that queue to get the nr_pending
994          * count down.
995          */
996         if (atomic_read(&conf->nr_pending) && bio_list &&
997             (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
998                 return true;
999
1000         /*
1001          * move on if io is issued from raid10d(), nr_pending is not released
1002          * from original io(see handle_read_error()). All raise barrier is
1003          * blocked until this io is done.
1004          */
1005         if (conf->mddev->thread->tsk == current) {
1006                 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
1007                 return true;
1008         }
1009
1010         return false;
1011 }
1012
1013 static bool wait_barrier_nolock(struct r10conf *conf)
1014 {
1015         unsigned int seq = read_seqbegin(&conf->resync_lock);
1016
1017         if (READ_ONCE(conf->barrier))
1018                 return false;
1019
1020         atomic_inc(&conf->nr_pending);
1021         if (!read_seqretry(&conf->resync_lock, seq))
1022                 return true;
1023
1024         if (atomic_dec_and_test(&conf->nr_pending))
1025                 wake_up_barrier(conf);
1026
1027         return false;
1028 }
1029
1030 static bool wait_barrier(struct r10conf *conf, bool nowait)
1031 {
1032         bool ret = true;
1033
1034         if (wait_barrier_nolock(conf))
1035                 return true;
1036
1037         write_seqlock_irq(&conf->resync_lock);
1038         if (conf->barrier) {
1039                 /* Return false when nowait flag is set */
1040                 if (nowait) {
1041                         ret = false;
1042                 } else {
1043                         conf->nr_waiting++;
1044                         raid10_log(conf->mddev, "wait barrier");
1045                         wait_event_barrier(conf, stop_waiting_barrier(conf));
1046                         conf->nr_waiting--;
1047                 }
1048                 if (!conf->nr_waiting)
1049                         wake_up(&conf->wait_barrier);
1050         }
1051         /* Only increment nr_pending when we wait */
1052         if (ret)
1053                 atomic_inc(&conf->nr_pending);
1054         write_sequnlock_irq(&conf->resync_lock);
1055         return ret;
1056 }
1057
1058 static void allow_barrier(struct r10conf *conf)
1059 {
1060         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1061                         (conf->array_freeze_pending))
1062                 wake_up_barrier(conf);
1063 }
1064
1065 static void freeze_array(struct r10conf *conf, int extra)
1066 {
1067         /* stop syncio and normal IO and wait for everything to
1068          * go quiet.
1069          * We increment barrier and nr_waiting, and then
1070          * wait until nr_pending match nr_queued+extra
1071          * This is called in the context of one normal IO request
1072          * that has failed. Thus any sync request that might be pending
1073          * will be blocked by nr_pending, and we need to wait for
1074          * pending IO requests to complete or be queued for re-try.
1075          * Thus the number queued (nr_queued) plus this request (extra)
1076          * must match the number of pending IOs (nr_pending) before
1077          * we continue.
1078          */
1079         write_seqlock_irq(&conf->resync_lock);
1080         conf->array_freeze_pending++;
1081         WRITE_ONCE(conf->barrier, conf->barrier + 1);
1082         conf->nr_waiting++;
1083         wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1084                         conf->nr_queued + extra, flush_pending_writes(conf));
1085         conf->array_freeze_pending--;
1086         write_sequnlock_irq(&conf->resync_lock);
1087 }
1088
1089 static void unfreeze_array(struct r10conf *conf)
1090 {
1091         /* reverse the effect of the freeze */
1092         write_seqlock_irq(&conf->resync_lock);
1093         WRITE_ONCE(conf->barrier, conf->barrier - 1);
1094         conf->nr_waiting--;
1095         wake_up(&conf->wait_barrier);
1096         write_sequnlock_irq(&conf->resync_lock);
1097 }
1098
1099 static sector_t choose_data_offset(struct r10bio *r10_bio,
1100                                    struct md_rdev *rdev)
1101 {
1102         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1103             test_bit(R10BIO_Previous, &r10_bio->state))
1104                 return rdev->data_offset;
1105         else
1106                 return rdev->new_data_offset;
1107 }
1108
1109 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1110 {
1111         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1112         struct mddev *mddev = plug->cb.data;
1113         struct r10conf *conf = mddev->private;
1114         struct bio *bio;
1115
1116         if (from_schedule || current->bio_list) {
1117                 spin_lock_irq(&conf->device_lock);
1118                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1119                 spin_unlock_irq(&conf->device_lock);
1120                 wake_up(&conf->wait_barrier);
1121                 md_wakeup_thread(mddev->thread);
1122                 kfree(plug);
1123                 return;
1124         }
1125
1126         /* we aren't scheduling, so we can do the write-out directly. */
1127         bio = bio_list_get(&plug->pending);
1128         md_bitmap_unplug(mddev->bitmap);
1129         wake_up(&conf->wait_barrier);
1130
1131         while (bio) { /* submit pending writes */
1132                 struct bio *next = bio->bi_next;
1133                 struct md_rdev *rdev = (void*)bio->bi_bdev;
1134                 bio->bi_next = NULL;
1135                 bio_set_dev(bio, rdev->bdev);
1136                 if (test_bit(Faulty, &rdev->flags)) {
1137                         bio_io_error(bio);
1138                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1139                                     !bdev_max_discard_sectors(bio->bi_bdev)))
1140                         /* Just ignore it */
1141                         bio_endio(bio);
1142                 else
1143                         submit_bio_noacct(bio);
1144                 bio = next;
1145         }
1146         kfree(plug);
1147 }
1148
1149 /*
1150  * 1. Register the new request and wait if the reconstruction thread has put
1151  * up a bar for new requests. Continue immediately if no resync is active
1152  * currently.
1153  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1154  */
1155 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1156                                  struct bio *bio, sector_t sectors)
1157 {
1158         /* Bail out if REQ_NOWAIT is set for the bio */
1159         if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1160                 bio_wouldblock_error(bio);
1161                 return false;
1162         }
1163         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1164             bio->bi_iter.bi_sector < conf->reshape_progress &&
1165             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1166                 allow_barrier(conf);
1167                 if (bio->bi_opf & REQ_NOWAIT) {
1168                         bio_wouldblock_error(bio);
1169                         return false;
1170                 }
1171                 raid10_log(conf->mddev, "wait reshape");
1172                 wait_event(conf->wait_barrier,
1173                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1174                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1175                            sectors);
1176                 wait_barrier(conf, false);
1177         }
1178         return true;
1179 }
1180
1181 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1182                                 struct r10bio *r10_bio)
1183 {
1184         struct r10conf *conf = mddev->private;
1185         struct bio *read_bio;
1186         const enum req_op op = bio_op(bio);
1187         const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1188         int max_sectors;
1189         struct md_rdev *rdev;
1190         char b[BDEVNAME_SIZE];
1191         int slot = r10_bio->read_slot;
1192         struct md_rdev *err_rdev = NULL;
1193         gfp_t gfp = GFP_NOIO;
1194
1195         if (slot >= 0 && r10_bio->devs[slot].rdev) {
1196                 /*
1197                  * This is an error retry, but we cannot
1198                  * safely dereference the rdev in the r10_bio,
1199                  * we must use the one in conf.
1200                  * If it has already been disconnected (unlikely)
1201                  * we lose the device name in error messages.
1202                  */
1203                 int disk;
1204                 /*
1205                  * As we are blocking raid10, it is a little safer to
1206                  * use __GFP_HIGH.
1207                  */
1208                 gfp = GFP_NOIO | __GFP_HIGH;
1209
1210                 rcu_read_lock();
1211                 disk = r10_bio->devs[slot].devnum;
1212                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1213                 if (err_rdev)
1214                         snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1215                 else {
1216                         strcpy(b, "???");
1217                         /* This never gets dereferenced */
1218                         err_rdev = r10_bio->devs[slot].rdev;
1219                 }
1220                 rcu_read_unlock();
1221         }
1222
1223         if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1224                 return;
1225         rdev = read_balance(conf, r10_bio, &max_sectors);
1226         if (!rdev) {
1227                 if (err_rdev) {
1228                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1229                                             mdname(mddev), b,
1230                                             (unsigned long long)r10_bio->sector);
1231                 }
1232                 raid_end_bio_io(r10_bio);
1233                 return;
1234         }
1235         if (err_rdev)
1236                 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1237                                    mdname(mddev),
1238                                    rdev->bdev,
1239                                    (unsigned long long)r10_bio->sector);
1240         if (max_sectors < bio_sectors(bio)) {
1241                 struct bio *split = bio_split(bio, max_sectors,
1242                                               gfp, &conf->bio_split);
1243                 bio_chain(split, bio);
1244                 allow_barrier(conf);
1245                 submit_bio_noacct(bio);
1246                 wait_barrier(conf, false);
1247                 bio = split;
1248                 r10_bio->master_bio = bio;
1249                 r10_bio->sectors = max_sectors;
1250         }
1251         slot = r10_bio->read_slot;
1252
1253         if (!r10_bio->start_time &&
1254             blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1255                 r10_bio->start_time = bio_start_io_acct(bio);
1256         read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1257
1258         r10_bio->devs[slot].bio = read_bio;
1259         r10_bio->devs[slot].rdev = rdev;
1260
1261         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1262                 choose_data_offset(r10_bio, rdev);
1263         read_bio->bi_end_io = raid10_end_read_request;
1264         read_bio->bi_opf = op | do_sync;
1265         if (test_bit(FailFast, &rdev->flags) &&
1266             test_bit(R10BIO_FailFast, &r10_bio->state))
1267                 read_bio->bi_opf |= MD_FAILFAST;
1268         read_bio->bi_private = r10_bio;
1269
1270         if (mddev->gendisk)
1271                 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1272                                       r10_bio->sector);
1273         submit_bio_noacct(read_bio);
1274         return;
1275 }
1276
1277 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1278                                   struct bio *bio, bool replacement,
1279                                   int n_copy)
1280 {
1281         const enum req_op op = bio_op(bio);
1282         const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1283         const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1284         unsigned long flags;
1285         struct blk_plug_cb *cb;
1286         struct raid1_plug_cb *plug = NULL;
1287         struct r10conf *conf = mddev->private;
1288         struct md_rdev *rdev;
1289         int devnum = r10_bio->devs[n_copy].devnum;
1290         struct bio *mbio;
1291
1292         if (replacement) {
1293                 rdev = conf->mirrors[devnum].replacement;
1294                 if (rdev == NULL) {
1295                         /* Replacement just got moved to main 'rdev' */
1296                         smp_mb();
1297                         rdev = conf->mirrors[devnum].rdev;
1298                 }
1299         } else
1300                 rdev = conf->mirrors[devnum].rdev;
1301
1302         mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1303         if (replacement)
1304                 r10_bio->devs[n_copy].repl_bio = mbio;
1305         else
1306                 r10_bio->devs[n_copy].bio = mbio;
1307
1308         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1309                                    choose_data_offset(r10_bio, rdev));
1310         mbio->bi_end_io = raid10_end_write_request;
1311         mbio->bi_opf = op | do_sync | do_fua;
1312         if (!replacement && test_bit(FailFast,
1313                                      &conf->mirrors[devnum].rdev->flags)
1314                          && enough(conf, devnum))
1315                 mbio->bi_opf |= MD_FAILFAST;
1316         mbio->bi_private = r10_bio;
1317
1318         if (conf->mddev->gendisk)
1319                 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1320                                       r10_bio->sector);
1321         /* flush_pending_writes() needs access to the rdev so...*/
1322         mbio->bi_bdev = (void *)rdev;
1323
1324         atomic_inc(&r10_bio->remaining);
1325
1326         cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1327         if (cb)
1328                 plug = container_of(cb, struct raid1_plug_cb, cb);
1329         else
1330                 plug = NULL;
1331         if (plug) {
1332                 bio_list_add(&plug->pending, mbio);
1333         } else {
1334                 spin_lock_irqsave(&conf->device_lock, flags);
1335                 bio_list_add(&conf->pending_bio_list, mbio);
1336                 spin_unlock_irqrestore(&conf->device_lock, flags);
1337                 md_wakeup_thread(mddev->thread);
1338         }
1339 }
1340
1341 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1342 {
1343         int i;
1344         struct r10conf *conf = mddev->private;
1345         struct md_rdev *blocked_rdev;
1346
1347 retry_wait:
1348         blocked_rdev = NULL;
1349         rcu_read_lock();
1350         for (i = 0; i < conf->copies; i++) {
1351                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1352                 struct md_rdev *rrdev = rcu_dereference(
1353                         conf->mirrors[i].replacement);
1354                 if (rdev == rrdev)
1355                         rrdev = NULL;
1356                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1357                         atomic_inc(&rdev->nr_pending);
1358                         blocked_rdev = rdev;
1359                         break;
1360                 }
1361                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1362                         atomic_inc(&rrdev->nr_pending);
1363                         blocked_rdev = rrdev;
1364                         break;
1365                 }
1366
1367                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1368                         sector_t first_bad;
1369                         sector_t dev_sector = r10_bio->devs[i].addr;
1370                         int bad_sectors;
1371                         int is_bad;
1372
1373                         /*
1374                          * Discard request doesn't care the write result
1375                          * so it doesn't need to wait blocked disk here.
1376                          */
1377                         if (!r10_bio->sectors)
1378                                 continue;
1379
1380                         is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1381                                              &first_bad, &bad_sectors);
1382                         if (is_bad < 0) {
1383                                 /*
1384                                  * Mustn't write here until the bad block
1385                                  * is acknowledged
1386                                  */
1387                                 atomic_inc(&rdev->nr_pending);
1388                                 set_bit(BlockedBadBlocks, &rdev->flags);
1389                                 blocked_rdev = rdev;
1390                                 break;
1391                         }
1392                 }
1393         }
1394         rcu_read_unlock();
1395
1396         if (unlikely(blocked_rdev)) {
1397                 /* Have to wait for this device to get unblocked, then retry */
1398                 allow_barrier(conf);
1399                 raid10_log(conf->mddev, "%s wait rdev %d blocked",
1400                                 __func__, blocked_rdev->raid_disk);
1401                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1402                 wait_barrier(conf, false);
1403                 goto retry_wait;
1404         }
1405 }
1406
1407 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1408                                  struct r10bio *r10_bio)
1409 {
1410         struct r10conf *conf = mddev->private;
1411         int i;
1412         sector_t sectors;
1413         int max_sectors;
1414
1415         if ((mddev_is_clustered(mddev) &&
1416              md_cluster_ops->area_resyncing(mddev, WRITE,
1417                                             bio->bi_iter.bi_sector,
1418                                             bio_end_sector(bio)))) {
1419                 DEFINE_WAIT(w);
1420                 /* Bail out if REQ_NOWAIT is set for the bio */
1421                 if (bio->bi_opf & REQ_NOWAIT) {
1422                         bio_wouldblock_error(bio);
1423                         return;
1424                 }
1425                 for (;;) {
1426                         prepare_to_wait(&conf->wait_barrier,
1427                                         &w, TASK_IDLE);
1428                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1429                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1430                                 break;
1431                         schedule();
1432                 }
1433                 finish_wait(&conf->wait_barrier, &w);
1434         }
1435
1436         sectors = r10_bio->sectors;
1437         if (!regular_request_wait(mddev, conf, bio, sectors))
1438                 return;
1439         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1440             (mddev->reshape_backwards
1441              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1442                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1443              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1444                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1445                 /* Need to update reshape_position in metadata */
1446                 mddev->reshape_position = conf->reshape_progress;
1447                 set_mask_bits(&mddev->sb_flags, 0,
1448                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1449                 md_wakeup_thread(mddev->thread);
1450                 if (bio->bi_opf & REQ_NOWAIT) {
1451                         allow_barrier(conf);
1452                         bio_wouldblock_error(bio);
1453                         return;
1454                 }
1455                 raid10_log(conf->mddev, "wait reshape metadata");
1456                 wait_event(mddev->sb_wait,
1457                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1458
1459                 conf->reshape_safe = mddev->reshape_position;
1460         }
1461
1462         /* first select target devices under rcu_lock and
1463          * inc refcount on their rdev.  Record them by setting
1464          * bios[x] to bio
1465          * If there are known/acknowledged bad blocks on any device
1466          * on which we have seen a write error, we want to avoid
1467          * writing to those blocks.  This potentially requires several
1468          * writes to write around the bad blocks.  Each set of writes
1469          * gets its own r10_bio with a set of bios attached.
1470          */
1471
1472         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1473         raid10_find_phys(conf, r10_bio);
1474
1475         wait_blocked_dev(mddev, r10_bio);
1476
1477         rcu_read_lock();
1478         max_sectors = r10_bio->sectors;
1479
1480         for (i = 0;  i < conf->copies; i++) {
1481                 int d = r10_bio->devs[i].devnum;
1482                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1483                 struct md_rdev *rrdev = rcu_dereference(
1484                         conf->mirrors[d].replacement);
1485                 if (rdev == rrdev)
1486                         rrdev = NULL;
1487                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1488                         rdev = NULL;
1489                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1490                         rrdev = NULL;
1491
1492                 r10_bio->devs[i].bio = NULL;
1493                 r10_bio->devs[i].repl_bio = NULL;
1494
1495                 if (!rdev && !rrdev) {
1496                         set_bit(R10BIO_Degraded, &r10_bio->state);
1497                         continue;
1498                 }
1499                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1500                         sector_t first_bad;
1501                         sector_t dev_sector = r10_bio->devs[i].addr;
1502                         int bad_sectors;
1503                         int is_bad;
1504
1505                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1506                                              &first_bad, &bad_sectors);
1507                         if (is_bad && first_bad <= dev_sector) {
1508                                 /* Cannot write here at all */
1509                                 bad_sectors -= (dev_sector - first_bad);
1510                                 if (bad_sectors < max_sectors)
1511                                         /* Mustn't write more than bad_sectors
1512                                          * to other devices yet
1513                                          */
1514                                         max_sectors = bad_sectors;
1515                                 /* We don't set R10BIO_Degraded as that
1516                                  * only applies if the disk is missing,
1517                                  * so it might be re-added, and we want to
1518                                  * know to recover this chunk.
1519                                  * In this case the device is here, and the
1520                                  * fact that this chunk is not in-sync is
1521                                  * recorded in the bad block log.
1522                                  */
1523                                 continue;
1524                         }
1525                         if (is_bad) {
1526                                 int good_sectors = first_bad - dev_sector;
1527                                 if (good_sectors < max_sectors)
1528                                         max_sectors = good_sectors;
1529                         }
1530                 }
1531                 if (rdev) {
1532                         r10_bio->devs[i].bio = bio;
1533                         atomic_inc(&rdev->nr_pending);
1534                 }
1535                 if (rrdev) {
1536                         r10_bio->devs[i].repl_bio = bio;
1537                         atomic_inc(&rrdev->nr_pending);
1538                 }
1539         }
1540         rcu_read_unlock();
1541
1542         if (max_sectors < r10_bio->sectors)
1543                 r10_bio->sectors = max_sectors;
1544
1545         if (r10_bio->sectors < bio_sectors(bio)) {
1546                 struct bio *split = bio_split(bio, r10_bio->sectors,
1547                                               GFP_NOIO, &conf->bio_split);
1548                 bio_chain(split, bio);
1549                 allow_barrier(conf);
1550                 submit_bio_noacct(bio);
1551                 wait_barrier(conf, false);
1552                 bio = split;
1553                 r10_bio->master_bio = bio;
1554         }
1555
1556         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1557                 r10_bio->start_time = bio_start_io_acct(bio);
1558         atomic_set(&r10_bio->remaining, 1);
1559         md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1560
1561         for (i = 0; i < conf->copies; i++) {
1562                 if (r10_bio->devs[i].bio)
1563                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1564                 if (r10_bio->devs[i].repl_bio)
1565                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1566         }
1567         one_write_done(r10_bio);
1568 }
1569
1570 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1571 {
1572         struct r10conf *conf = mddev->private;
1573         struct r10bio *r10_bio;
1574
1575         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1576
1577         r10_bio->master_bio = bio;
1578         r10_bio->sectors = sectors;
1579
1580         r10_bio->mddev = mddev;
1581         r10_bio->sector = bio->bi_iter.bi_sector;
1582         r10_bio->state = 0;
1583         r10_bio->read_slot = -1;
1584         r10_bio->start_time = 0;
1585         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1586                         conf->geo.raid_disks);
1587
1588         if (bio_data_dir(bio) == READ)
1589                 raid10_read_request(mddev, bio, r10_bio);
1590         else
1591                 raid10_write_request(mddev, bio, r10_bio);
1592 }
1593
1594 static void raid_end_discard_bio(struct r10bio *r10bio)
1595 {
1596         struct r10conf *conf = r10bio->mddev->private;
1597         struct r10bio *first_r10bio;
1598
1599         while (atomic_dec_and_test(&r10bio->remaining)) {
1600
1601                 allow_barrier(conf);
1602
1603                 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1604                         first_r10bio = (struct r10bio *)r10bio->master_bio;
1605                         free_r10bio(r10bio);
1606                         r10bio = first_r10bio;
1607                 } else {
1608                         md_write_end(r10bio->mddev);
1609                         bio_endio(r10bio->master_bio);
1610                         free_r10bio(r10bio);
1611                         break;
1612                 }
1613         }
1614 }
1615
1616 static void raid10_end_discard_request(struct bio *bio)
1617 {
1618         struct r10bio *r10_bio = bio->bi_private;
1619         struct r10conf *conf = r10_bio->mddev->private;
1620         struct md_rdev *rdev = NULL;
1621         int dev;
1622         int slot, repl;
1623
1624         /*
1625          * We don't care the return value of discard bio
1626          */
1627         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1628                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1629
1630         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1631         if (repl)
1632                 rdev = conf->mirrors[dev].replacement;
1633         if (!rdev) {
1634                 /*
1635                  * raid10_remove_disk uses smp_mb to make sure rdev is set to
1636                  * replacement before setting replacement to NULL. It can read
1637                  * rdev first without barrier protect even replacement is NULL
1638                  */
1639                 smp_rmb();
1640                 rdev = conf->mirrors[dev].rdev;
1641         }
1642
1643         raid_end_discard_bio(r10_bio);
1644         rdev_dec_pending(rdev, conf->mddev);
1645 }
1646
1647 /*
1648  * There are some limitations to handle discard bio
1649  * 1st, the discard size is bigger than stripe_size*2.
1650  * 2st, if the discard bio spans reshape progress, we use the old way to
1651  * handle discard bio
1652  */
1653 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1654 {
1655         struct r10conf *conf = mddev->private;
1656         struct geom *geo = &conf->geo;
1657         int far_copies = geo->far_copies;
1658         bool first_copy = true;
1659         struct r10bio *r10_bio, *first_r10bio;
1660         struct bio *split;
1661         int disk;
1662         sector_t chunk;
1663         unsigned int stripe_size;
1664         unsigned int stripe_data_disks;
1665         sector_t split_size;
1666         sector_t bio_start, bio_end;
1667         sector_t first_stripe_index, last_stripe_index;
1668         sector_t start_disk_offset;
1669         unsigned int start_disk_index;
1670         sector_t end_disk_offset;
1671         unsigned int end_disk_index;
1672         unsigned int remainder;
1673
1674         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1675                 return -EAGAIN;
1676
1677         if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1678                 bio_wouldblock_error(bio);
1679                 return 0;
1680         }
1681         wait_barrier(conf, false);
1682
1683         /*
1684          * Check reshape again to avoid reshape happens after checking
1685          * MD_RECOVERY_RESHAPE and before wait_barrier
1686          */
1687         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1688                 goto out;
1689
1690         if (geo->near_copies)
1691                 stripe_data_disks = geo->raid_disks / geo->near_copies +
1692                                         geo->raid_disks % geo->near_copies;
1693         else
1694                 stripe_data_disks = geo->raid_disks;
1695
1696         stripe_size = stripe_data_disks << geo->chunk_shift;
1697
1698         bio_start = bio->bi_iter.bi_sector;
1699         bio_end = bio_end_sector(bio);
1700
1701         /*
1702          * Maybe one discard bio is smaller than strip size or across one
1703          * stripe and discard region is larger than one stripe size. For far
1704          * offset layout, if the discard region is not aligned with stripe
1705          * size, there is hole when we submit discard bio to member disk.
1706          * For simplicity, we only handle discard bio which discard region
1707          * is bigger than stripe_size * 2
1708          */
1709         if (bio_sectors(bio) < stripe_size*2)
1710                 goto out;
1711
1712         /*
1713          * Keep bio aligned with strip size.
1714          */
1715         div_u64_rem(bio_start, stripe_size, &remainder);
1716         if (remainder) {
1717                 split_size = stripe_size - remainder;
1718                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1719                 bio_chain(split, bio);
1720                 allow_barrier(conf);
1721                 /* Resend the fist split part */
1722                 submit_bio_noacct(split);
1723                 wait_barrier(conf, false);
1724         }
1725         div_u64_rem(bio_end, stripe_size, &remainder);
1726         if (remainder) {
1727                 split_size = bio_sectors(bio) - remainder;
1728                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1729                 bio_chain(split, bio);
1730                 allow_barrier(conf);
1731                 /* Resend the second split part */
1732                 submit_bio_noacct(bio);
1733                 bio = split;
1734                 wait_barrier(conf, false);
1735         }
1736
1737         bio_start = bio->bi_iter.bi_sector;
1738         bio_end = bio_end_sector(bio);
1739
1740         /*
1741          * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1742          * One stripe contains the chunks from all member disk (one chunk from
1743          * one disk at the same HBA address). For layout detail, see 'man md 4'
1744          */
1745         chunk = bio_start >> geo->chunk_shift;
1746         chunk *= geo->near_copies;
1747         first_stripe_index = chunk;
1748         start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1749         if (geo->far_offset)
1750                 first_stripe_index *= geo->far_copies;
1751         start_disk_offset = (bio_start & geo->chunk_mask) +
1752                                 (first_stripe_index << geo->chunk_shift);
1753
1754         chunk = bio_end >> geo->chunk_shift;
1755         chunk *= geo->near_copies;
1756         last_stripe_index = chunk;
1757         end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1758         if (geo->far_offset)
1759                 last_stripe_index *= geo->far_copies;
1760         end_disk_offset = (bio_end & geo->chunk_mask) +
1761                                 (last_stripe_index << geo->chunk_shift);
1762
1763 retry_discard:
1764         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1765         r10_bio->mddev = mddev;
1766         r10_bio->state = 0;
1767         r10_bio->sectors = 0;
1768         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1769         wait_blocked_dev(mddev, r10_bio);
1770
1771         /*
1772          * For far layout it needs more than one r10bio to cover all regions.
1773          * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1774          * to record the discard bio. Other r10bio->master_bio record the first
1775          * r10bio. The first r10bio only release after all other r10bios finish.
1776          * The discard bio returns only first r10bio finishes
1777          */
1778         if (first_copy) {
1779                 r10_bio->master_bio = bio;
1780                 set_bit(R10BIO_Discard, &r10_bio->state);
1781                 first_copy = false;
1782                 first_r10bio = r10_bio;
1783         } else
1784                 r10_bio->master_bio = (struct bio *)first_r10bio;
1785
1786         /*
1787          * first select target devices under rcu_lock and
1788          * inc refcount on their rdev.  Record them by setting
1789          * bios[x] to bio
1790          */
1791         rcu_read_lock();
1792         for (disk = 0; disk < geo->raid_disks; disk++) {
1793                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1794                 struct md_rdev *rrdev = rcu_dereference(
1795                         conf->mirrors[disk].replacement);
1796
1797                 r10_bio->devs[disk].bio = NULL;
1798                 r10_bio->devs[disk].repl_bio = NULL;
1799
1800                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1801                         rdev = NULL;
1802                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1803                         rrdev = NULL;
1804                 if (!rdev && !rrdev)
1805                         continue;
1806
1807                 if (rdev) {
1808                         r10_bio->devs[disk].bio = bio;
1809                         atomic_inc(&rdev->nr_pending);
1810                 }
1811                 if (rrdev) {
1812                         r10_bio->devs[disk].repl_bio = bio;
1813                         atomic_inc(&rrdev->nr_pending);
1814                 }
1815         }
1816         rcu_read_unlock();
1817
1818         atomic_set(&r10_bio->remaining, 1);
1819         for (disk = 0; disk < geo->raid_disks; disk++) {
1820                 sector_t dev_start, dev_end;
1821                 struct bio *mbio, *rbio = NULL;
1822
1823                 /*
1824                  * Now start to calculate the start and end address for each disk.
1825                  * The space between dev_start and dev_end is the discard region.
1826                  *
1827                  * For dev_start, it needs to consider three conditions:
1828                  * 1st, the disk is before start_disk, you can imagine the disk in
1829                  * the next stripe. So the dev_start is the start address of next
1830                  * stripe.
1831                  * 2st, the disk is after start_disk, it means the disk is at the
1832                  * same stripe of first disk
1833                  * 3st, the first disk itself, we can use start_disk_offset directly
1834                  */
1835                 if (disk < start_disk_index)
1836                         dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1837                 else if (disk > start_disk_index)
1838                         dev_start = first_stripe_index * mddev->chunk_sectors;
1839                 else
1840                         dev_start = start_disk_offset;
1841
1842                 if (disk < end_disk_index)
1843                         dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1844                 else if (disk > end_disk_index)
1845                         dev_end = last_stripe_index * mddev->chunk_sectors;
1846                 else
1847                         dev_end = end_disk_offset;
1848
1849                 /*
1850                  * It only handles discard bio which size is >= stripe size, so
1851                  * dev_end > dev_start all the time.
1852                  * It doesn't need to use rcu lock to get rdev here. We already
1853                  * add rdev->nr_pending in the first loop.
1854                  */
1855                 if (r10_bio->devs[disk].bio) {
1856                         struct md_rdev *rdev = conf->mirrors[disk].rdev;
1857                         mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1858                                                &mddev->bio_set);
1859                         mbio->bi_end_io = raid10_end_discard_request;
1860                         mbio->bi_private = r10_bio;
1861                         r10_bio->devs[disk].bio = mbio;
1862                         r10_bio->devs[disk].devnum = disk;
1863                         atomic_inc(&r10_bio->remaining);
1864                         md_submit_discard_bio(mddev, rdev, mbio,
1865                                         dev_start + choose_data_offset(r10_bio, rdev),
1866                                         dev_end - dev_start);
1867                         bio_endio(mbio);
1868                 }
1869                 if (r10_bio->devs[disk].repl_bio) {
1870                         struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1871                         rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1872                                                &mddev->bio_set);
1873                         rbio->bi_end_io = raid10_end_discard_request;
1874                         rbio->bi_private = r10_bio;
1875                         r10_bio->devs[disk].repl_bio = rbio;
1876                         r10_bio->devs[disk].devnum = disk;
1877                         atomic_inc(&r10_bio->remaining);
1878                         md_submit_discard_bio(mddev, rrdev, rbio,
1879                                         dev_start + choose_data_offset(r10_bio, rrdev),
1880                                         dev_end - dev_start);
1881                         bio_endio(rbio);
1882                 }
1883         }
1884
1885         if (!geo->far_offset && --far_copies) {
1886                 first_stripe_index += geo->stride >> geo->chunk_shift;
1887                 start_disk_offset += geo->stride;
1888                 last_stripe_index += geo->stride >> geo->chunk_shift;
1889                 end_disk_offset += geo->stride;
1890                 atomic_inc(&first_r10bio->remaining);
1891                 raid_end_discard_bio(r10_bio);
1892                 wait_barrier(conf, false);
1893                 goto retry_discard;
1894         }
1895
1896         raid_end_discard_bio(r10_bio);
1897
1898         return 0;
1899 out:
1900         allow_barrier(conf);
1901         return -EAGAIN;
1902 }
1903
1904 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1905 {
1906         struct r10conf *conf = mddev->private;
1907         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1908         int chunk_sects = chunk_mask + 1;
1909         int sectors = bio_sectors(bio);
1910
1911         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1912             && md_flush_request(mddev, bio))
1913                 return true;
1914
1915         if (!md_write_start(mddev, bio))
1916                 return false;
1917
1918         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1919                 if (!raid10_handle_discard(mddev, bio))
1920                         return true;
1921
1922         /*
1923          * If this request crosses a chunk boundary, we need to split
1924          * it.
1925          */
1926         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1927                      sectors > chunk_sects
1928                      && (conf->geo.near_copies < conf->geo.raid_disks
1929                          || conf->prev.near_copies <
1930                          conf->prev.raid_disks)))
1931                 sectors = chunk_sects -
1932                         (bio->bi_iter.bi_sector &
1933                          (chunk_sects - 1));
1934         __make_request(mddev, bio, sectors);
1935
1936         /* In case raid10d snuck in to freeze_array */
1937         wake_up_barrier(conf);
1938         return true;
1939 }
1940
1941 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1942 {
1943         struct r10conf *conf = mddev->private;
1944         int i;
1945
1946         if (conf->geo.near_copies < conf->geo.raid_disks)
1947                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1948         if (conf->geo.near_copies > 1)
1949                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1950         if (conf->geo.far_copies > 1) {
1951                 if (conf->geo.far_offset)
1952                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1953                 else
1954                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1955                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1956                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1957         }
1958         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1959                                         conf->geo.raid_disks - mddev->degraded);
1960         rcu_read_lock();
1961         for (i = 0; i < conf->geo.raid_disks; i++) {
1962                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1963                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1964         }
1965         rcu_read_unlock();
1966         seq_printf(seq, "]");
1967 }
1968
1969 /* check if there are enough drives for
1970  * every block to appear on atleast one.
1971  * Don't consider the device numbered 'ignore'
1972  * as we might be about to remove it.
1973  */
1974 static int _enough(struct r10conf *conf, int previous, int ignore)
1975 {
1976         int first = 0;
1977         int has_enough = 0;
1978         int disks, ncopies;
1979         if (previous) {
1980                 disks = conf->prev.raid_disks;
1981                 ncopies = conf->prev.near_copies;
1982         } else {
1983                 disks = conf->geo.raid_disks;
1984                 ncopies = conf->geo.near_copies;
1985         }
1986
1987         rcu_read_lock();
1988         do {
1989                 int n = conf->copies;
1990                 int cnt = 0;
1991                 int this = first;
1992                 while (n--) {
1993                         struct md_rdev *rdev;
1994                         if (this != ignore &&
1995                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1996                             test_bit(In_sync, &rdev->flags))
1997                                 cnt++;
1998                         this = (this+1) % disks;
1999                 }
2000                 if (cnt == 0)
2001                         goto out;
2002                 first = (first + ncopies) % disks;
2003         } while (first != 0);
2004         has_enough = 1;
2005 out:
2006         rcu_read_unlock();
2007         return has_enough;
2008 }
2009
2010 static int enough(struct r10conf *conf, int ignore)
2011 {
2012         /* when calling 'enough', both 'prev' and 'geo' must
2013          * be stable.
2014          * This is ensured if ->reconfig_mutex or ->device_lock
2015          * is held.
2016          */
2017         return _enough(conf, 0, ignore) &&
2018                 _enough(conf, 1, ignore);
2019 }
2020
2021 /**
2022  * raid10_error() - RAID10 error handler.
2023  * @mddev: affected md device.
2024  * @rdev: member device to fail.
2025  *
2026  * The routine acknowledges &rdev failure and determines new @mddev state.
2027  * If it failed, then:
2028  *      - &MD_BROKEN flag is set in &mddev->flags.
2029  * Otherwise, it must be degraded:
2030  *      - recovery is interrupted.
2031  *      - &mddev->degraded is bumped.
2032  *
2033  * @rdev is marked as &Faulty excluding case when array is failed and
2034  * &mddev->fail_last_dev is off.
2035  */
2036 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
2037 {
2038         struct r10conf *conf = mddev->private;
2039         unsigned long flags;
2040
2041         spin_lock_irqsave(&conf->device_lock, flags);
2042
2043         if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
2044                 set_bit(MD_BROKEN, &mddev->flags);
2045
2046                 if (!mddev->fail_last_dev) {
2047                         spin_unlock_irqrestore(&conf->device_lock, flags);
2048                         return;
2049                 }
2050         }
2051         if (test_and_clear_bit(In_sync, &rdev->flags))
2052                 mddev->degraded++;
2053
2054         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2055         set_bit(Blocked, &rdev->flags);
2056         set_bit(Faulty, &rdev->flags);
2057         set_mask_bits(&mddev->sb_flags, 0,
2058                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2059         spin_unlock_irqrestore(&conf->device_lock, flags);
2060         pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2061                 "md/raid10:%s: Operation continuing on %d devices.\n",
2062                 mdname(mddev), rdev->bdev,
2063                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2064 }
2065
2066 static void print_conf(struct r10conf *conf)
2067 {
2068         int i;
2069         struct md_rdev *rdev;
2070
2071         pr_debug("RAID10 conf printout:\n");
2072         if (!conf) {
2073                 pr_debug("(!conf)\n");
2074                 return;
2075         }
2076         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2077                  conf->geo.raid_disks);
2078
2079         /* This is only called with ->reconfix_mutex held, so
2080          * rcu protection of rdev is not needed */
2081         for (i = 0; i < conf->geo.raid_disks; i++) {
2082                 rdev = conf->mirrors[i].rdev;
2083                 if (rdev)
2084                         pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2085                                  i, !test_bit(In_sync, &rdev->flags),
2086                                  !test_bit(Faulty, &rdev->flags),
2087                                  rdev->bdev);
2088         }
2089 }
2090
2091 static void close_sync(struct r10conf *conf)
2092 {
2093         wait_barrier(conf, false);
2094         allow_barrier(conf);
2095
2096         mempool_exit(&conf->r10buf_pool);
2097 }
2098
2099 static int raid10_spare_active(struct mddev *mddev)
2100 {
2101         int i;
2102         struct r10conf *conf = mddev->private;
2103         struct raid10_info *tmp;
2104         int count = 0;
2105         unsigned long flags;
2106
2107         /*
2108          * Find all non-in_sync disks within the RAID10 configuration
2109          * and mark them in_sync
2110          */
2111         for (i = 0; i < conf->geo.raid_disks; i++) {
2112                 tmp = conf->mirrors + i;
2113                 if (tmp->replacement
2114                     && tmp->replacement->recovery_offset == MaxSector
2115                     && !test_bit(Faulty, &tmp->replacement->flags)
2116                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2117                         /* Replacement has just become active */
2118                         if (!tmp->rdev
2119                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2120                                 count++;
2121                         if (tmp->rdev) {
2122                                 /* Replaced device not technically faulty,
2123                                  * but we need to be sure it gets removed
2124                                  * and never re-added.
2125                                  */
2126                                 set_bit(Faulty, &tmp->rdev->flags);
2127                                 sysfs_notify_dirent_safe(
2128                                         tmp->rdev->sysfs_state);
2129                         }
2130                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2131                 } else if (tmp->rdev
2132                            && tmp->rdev->recovery_offset == MaxSector
2133                            && !test_bit(Faulty, &tmp->rdev->flags)
2134                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2135                         count++;
2136                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2137                 }
2138         }
2139         spin_lock_irqsave(&conf->device_lock, flags);
2140         mddev->degraded -= count;
2141         spin_unlock_irqrestore(&conf->device_lock, flags);
2142
2143         print_conf(conf);
2144         return count;
2145 }
2146
2147 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2148 {
2149         struct r10conf *conf = mddev->private;
2150         int err = -EEXIST;
2151         int mirror;
2152         int first = 0;
2153         int last = conf->geo.raid_disks - 1;
2154
2155         if (mddev->recovery_cp < MaxSector)
2156                 /* only hot-add to in-sync arrays, as recovery is
2157                  * very different from resync
2158                  */
2159                 return -EBUSY;
2160         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2161                 return -EINVAL;
2162
2163         if (md_integrity_add_rdev(rdev, mddev))
2164                 return -ENXIO;
2165
2166         if (rdev->raid_disk >= 0)
2167                 first = last = rdev->raid_disk;
2168
2169         if (rdev->saved_raid_disk >= first &&
2170             rdev->saved_raid_disk < conf->geo.raid_disks &&
2171             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2172                 mirror = rdev->saved_raid_disk;
2173         else
2174                 mirror = first;
2175         for ( ; mirror <= last ; mirror++) {
2176                 struct raid10_info *p = &conf->mirrors[mirror];
2177                 if (p->recovery_disabled == mddev->recovery_disabled)
2178                         continue;
2179                 if (p->rdev) {
2180                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
2181                             p->replacement != NULL)
2182                                 continue;
2183                         clear_bit(In_sync, &rdev->flags);
2184                         set_bit(Replacement, &rdev->flags);
2185                         rdev->raid_disk = mirror;
2186                         err = 0;
2187                         if (mddev->gendisk)
2188                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2189                                                   rdev->data_offset << 9);
2190                         conf->fullsync = 1;
2191                         rcu_assign_pointer(p->replacement, rdev);
2192                         break;
2193                 }
2194
2195                 if (mddev->gendisk)
2196                         disk_stack_limits(mddev->gendisk, rdev->bdev,
2197                                           rdev->data_offset << 9);
2198
2199                 p->head_position = 0;
2200                 p->recovery_disabled = mddev->recovery_disabled - 1;
2201                 rdev->raid_disk = mirror;
2202                 err = 0;
2203                 if (rdev->saved_raid_disk != mirror)
2204                         conf->fullsync = 1;
2205                 rcu_assign_pointer(p->rdev, rdev);
2206                 break;
2207         }
2208
2209         print_conf(conf);
2210         return err;
2211 }
2212
2213 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2214 {
2215         struct r10conf *conf = mddev->private;
2216         int err = 0;
2217         int number = rdev->raid_disk;
2218         struct md_rdev **rdevp;
2219         struct raid10_info *p;
2220
2221         print_conf(conf);
2222         if (unlikely(number >= mddev->raid_disks))
2223                 return 0;
2224         p = conf->mirrors + number;
2225         if (rdev == p->rdev)
2226                 rdevp = &p->rdev;
2227         else if (rdev == p->replacement)
2228                 rdevp = &p->replacement;
2229         else
2230                 return 0;
2231
2232         if (test_bit(In_sync, &rdev->flags) ||
2233             atomic_read(&rdev->nr_pending)) {
2234                 err = -EBUSY;
2235                 goto abort;
2236         }
2237         /* Only remove non-faulty devices if recovery
2238          * is not possible.
2239          */
2240         if (!test_bit(Faulty, &rdev->flags) &&
2241             mddev->recovery_disabled != p->recovery_disabled &&
2242             (!p->replacement || p->replacement == rdev) &&
2243             number < conf->geo.raid_disks &&
2244             enough(conf, -1)) {
2245                 err = -EBUSY;
2246                 goto abort;
2247         }
2248         *rdevp = NULL;
2249         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2250                 synchronize_rcu();
2251                 if (atomic_read(&rdev->nr_pending)) {
2252                         /* lost the race, try later */
2253                         err = -EBUSY;
2254                         *rdevp = rdev;
2255                         goto abort;
2256                 }
2257         }
2258         if (p->replacement) {
2259                 /* We must have just cleared 'rdev' */
2260                 p->rdev = p->replacement;
2261                 clear_bit(Replacement, &p->replacement->flags);
2262                 smp_mb(); /* Make sure other CPUs may see both as identical
2263                            * but will never see neither -- if they are careful.
2264                            */
2265                 p->replacement = NULL;
2266         }
2267
2268         clear_bit(WantReplacement, &rdev->flags);
2269         err = md_integrity_register(mddev);
2270
2271 abort:
2272
2273         print_conf(conf);
2274         return err;
2275 }
2276
2277 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2278 {
2279         struct r10conf *conf = r10_bio->mddev->private;
2280
2281         if (!bio->bi_status)
2282                 set_bit(R10BIO_Uptodate, &r10_bio->state);
2283         else
2284                 /* The write handler will notice the lack of
2285                  * R10BIO_Uptodate and record any errors etc
2286                  */
2287                 atomic_add(r10_bio->sectors,
2288                            &conf->mirrors[d].rdev->corrected_errors);
2289
2290         /* for reconstruct, we always reschedule after a read.
2291          * for resync, only after all reads
2292          */
2293         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2294         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2295             atomic_dec_and_test(&r10_bio->remaining)) {
2296                 /* we have read all the blocks,
2297                  * do the comparison in process context in raid10d
2298                  */
2299                 reschedule_retry(r10_bio);
2300         }
2301 }
2302
2303 static void end_sync_read(struct bio *bio)
2304 {
2305         struct r10bio *r10_bio = get_resync_r10bio(bio);
2306         struct r10conf *conf = r10_bio->mddev->private;
2307         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2308
2309         __end_sync_read(r10_bio, bio, d);
2310 }
2311
2312 static void end_reshape_read(struct bio *bio)
2313 {
2314         /* reshape read bio isn't allocated from r10buf_pool */
2315         struct r10bio *r10_bio = bio->bi_private;
2316
2317         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2318 }
2319
2320 static void end_sync_request(struct r10bio *r10_bio)
2321 {
2322         struct mddev *mddev = r10_bio->mddev;
2323
2324         while (atomic_dec_and_test(&r10_bio->remaining)) {
2325                 if (r10_bio->master_bio == NULL) {
2326                         /* the primary of several recovery bios */
2327                         sector_t s = r10_bio->sectors;
2328                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2329                             test_bit(R10BIO_WriteError, &r10_bio->state))
2330                                 reschedule_retry(r10_bio);
2331                         else
2332                                 put_buf(r10_bio);
2333                         md_done_sync(mddev, s, 1);
2334                         break;
2335                 } else {
2336                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2337                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2338                             test_bit(R10BIO_WriteError, &r10_bio->state))
2339                                 reschedule_retry(r10_bio);
2340                         else
2341                                 put_buf(r10_bio);
2342                         r10_bio = r10_bio2;
2343                 }
2344         }
2345 }
2346
2347 static void end_sync_write(struct bio *bio)
2348 {
2349         struct r10bio *r10_bio = get_resync_r10bio(bio);
2350         struct mddev *mddev = r10_bio->mddev;
2351         struct r10conf *conf = mddev->private;
2352         int d;
2353         sector_t first_bad;
2354         int bad_sectors;
2355         int slot;
2356         int repl;
2357         struct md_rdev *rdev = NULL;
2358
2359         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2360         if (repl)
2361                 rdev = conf->mirrors[d].replacement;
2362         else
2363                 rdev = conf->mirrors[d].rdev;
2364
2365         if (bio->bi_status) {
2366                 if (repl)
2367                         md_error(mddev, rdev);
2368                 else {
2369                         set_bit(WriteErrorSeen, &rdev->flags);
2370                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2371                                 set_bit(MD_RECOVERY_NEEDED,
2372                                         &rdev->mddev->recovery);
2373                         set_bit(R10BIO_WriteError, &r10_bio->state);
2374                 }
2375         } else if (is_badblock(rdev,
2376                              r10_bio->devs[slot].addr,
2377                              r10_bio->sectors,
2378                              &first_bad, &bad_sectors))
2379                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2380
2381         rdev_dec_pending(rdev, mddev);
2382
2383         end_sync_request(r10_bio);
2384 }
2385
2386 /*
2387  * Note: sync and recover and handled very differently for raid10
2388  * This code is for resync.
2389  * For resync, we read through virtual addresses and read all blocks.
2390  * If there is any error, we schedule a write.  The lowest numbered
2391  * drive is authoritative.
2392  * However requests come for physical address, so we need to map.
2393  * For every physical address there are raid_disks/copies virtual addresses,
2394  * which is always are least one, but is not necessarly an integer.
2395  * This means that a physical address can span multiple chunks, so we may
2396  * have to submit multiple io requests for a single sync request.
2397  */
2398 /*
2399  * We check if all blocks are in-sync and only write to blocks that
2400  * aren't in sync
2401  */
2402 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2403 {
2404         struct r10conf *conf = mddev->private;
2405         int i, first;
2406         struct bio *tbio, *fbio;
2407         int vcnt;
2408         struct page **tpages, **fpages;
2409
2410         atomic_set(&r10_bio->remaining, 1);
2411
2412         /* find the first device with a block */
2413         for (i=0; i<conf->copies; i++)
2414                 if (!r10_bio->devs[i].bio->bi_status)
2415                         break;
2416
2417         if (i == conf->copies)
2418                 goto done;
2419
2420         first = i;
2421         fbio = r10_bio->devs[i].bio;
2422         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2423         fbio->bi_iter.bi_idx = 0;
2424         fpages = get_resync_pages(fbio)->pages;
2425
2426         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2427         /* now find blocks with errors */
2428         for (i=0 ; i < conf->copies ; i++) {
2429                 int  j, d;
2430                 struct md_rdev *rdev;
2431                 struct resync_pages *rp;
2432
2433                 tbio = r10_bio->devs[i].bio;
2434
2435                 if (tbio->bi_end_io != end_sync_read)
2436                         continue;
2437                 if (i == first)
2438                         continue;
2439
2440                 tpages = get_resync_pages(tbio)->pages;
2441                 d = r10_bio->devs[i].devnum;
2442                 rdev = conf->mirrors[d].rdev;
2443                 if (!r10_bio->devs[i].bio->bi_status) {
2444                         /* We know that the bi_io_vec layout is the same for
2445                          * both 'first' and 'i', so we just compare them.
2446                          * All vec entries are PAGE_SIZE;
2447                          */
2448                         int sectors = r10_bio->sectors;
2449                         for (j = 0; j < vcnt; j++) {
2450                                 int len = PAGE_SIZE;
2451                                 if (sectors < (len / 512))
2452                                         len = sectors * 512;
2453                                 if (memcmp(page_address(fpages[j]),
2454                                            page_address(tpages[j]),
2455                                            len))
2456                                         break;
2457                                 sectors -= len/512;
2458                         }
2459                         if (j == vcnt)
2460                                 continue;
2461                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2462                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2463                                 /* Don't fix anything. */
2464                                 continue;
2465                 } else if (test_bit(FailFast, &rdev->flags)) {
2466                         /* Just give up on this device */
2467                         md_error(rdev->mddev, rdev);
2468                         continue;
2469                 }
2470                 /* Ok, we need to write this bio, either to correct an
2471                  * inconsistency or to correct an unreadable block.
2472                  * First we need to fixup bv_offset, bv_len and
2473                  * bi_vecs, as the read request might have corrupted these
2474                  */
2475                 rp = get_resync_pages(tbio);
2476                 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2477
2478                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2479
2480                 rp->raid_bio = r10_bio;
2481                 tbio->bi_private = rp;
2482                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2483                 tbio->bi_end_io = end_sync_write;
2484
2485                 bio_copy_data(tbio, fbio);
2486
2487                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2488                 atomic_inc(&r10_bio->remaining);
2489                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2490
2491                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2492                         tbio->bi_opf |= MD_FAILFAST;
2493                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2494                 submit_bio_noacct(tbio);
2495         }
2496
2497         /* Now write out to any replacement devices
2498          * that are active
2499          */
2500         for (i = 0; i < conf->copies; i++) {
2501                 int d;
2502
2503                 tbio = r10_bio->devs[i].repl_bio;
2504                 if (!tbio || !tbio->bi_end_io)
2505                         continue;
2506                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2507                     && r10_bio->devs[i].bio != fbio)
2508                         bio_copy_data(tbio, fbio);
2509                 d = r10_bio->devs[i].devnum;
2510                 atomic_inc(&r10_bio->remaining);
2511                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2512                              bio_sectors(tbio));
2513                 submit_bio_noacct(tbio);
2514         }
2515
2516 done:
2517         if (atomic_dec_and_test(&r10_bio->remaining)) {
2518                 md_done_sync(mddev, r10_bio->sectors, 1);
2519                 put_buf(r10_bio);
2520         }
2521 }
2522
2523 /*
2524  * Now for the recovery code.
2525  * Recovery happens across physical sectors.
2526  * We recover all non-is_sync drives by finding the virtual address of
2527  * each, and then choose a working drive that also has that virt address.
2528  * There is a separate r10_bio for each non-in_sync drive.
2529  * Only the first two slots are in use. The first for reading,
2530  * The second for writing.
2531  *
2532  */
2533 static void fix_recovery_read_error(struct r10bio *r10_bio)
2534 {
2535         /* We got a read error during recovery.
2536          * We repeat the read in smaller page-sized sections.
2537          * If a read succeeds, write it to the new device or record
2538          * a bad block if we cannot.
2539          * If a read fails, record a bad block on both old and
2540          * new devices.
2541          */
2542         struct mddev *mddev = r10_bio->mddev;
2543         struct r10conf *conf = mddev->private;
2544         struct bio *bio = r10_bio->devs[0].bio;
2545         sector_t sect = 0;
2546         int sectors = r10_bio->sectors;
2547         int idx = 0;
2548         int dr = r10_bio->devs[0].devnum;
2549         int dw = r10_bio->devs[1].devnum;
2550         struct page **pages = get_resync_pages(bio)->pages;
2551
2552         while (sectors) {
2553                 int s = sectors;
2554                 struct md_rdev *rdev;
2555                 sector_t addr;
2556                 int ok;
2557
2558                 if (s > (PAGE_SIZE>>9))
2559                         s = PAGE_SIZE >> 9;
2560
2561                 rdev = conf->mirrors[dr].rdev;
2562                 addr = r10_bio->devs[0].addr + sect,
2563                 ok = sync_page_io(rdev,
2564                                   addr,
2565                                   s << 9,
2566                                   pages[idx],
2567                                   REQ_OP_READ, false);
2568                 if (ok) {
2569                         rdev = conf->mirrors[dw].rdev;
2570                         addr = r10_bio->devs[1].addr + sect;
2571                         ok = sync_page_io(rdev,
2572                                           addr,
2573                                           s << 9,
2574                                           pages[idx],
2575                                           REQ_OP_WRITE, false);
2576                         if (!ok) {
2577                                 set_bit(WriteErrorSeen, &rdev->flags);
2578                                 if (!test_and_set_bit(WantReplacement,
2579                                                       &rdev->flags))
2580                                         set_bit(MD_RECOVERY_NEEDED,
2581                                                 &rdev->mddev->recovery);
2582                         }
2583                 }
2584                 if (!ok) {
2585                         /* We don't worry if we cannot set a bad block -
2586                          * it really is bad so there is no loss in not
2587                          * recording it yet
2588                          */
2589                         rdev_set_badblocks(rdev, addr, s, 0);
2590
2591                         if (rdev != conf->mirrors[dw].rdev) {
2592                                 /* need bad block on destination too */
2593                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2594                                 addr = r10_bio->devs[1].addr + sect;
2595                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2596                                 if (!ok) {
2597                                         /* just abort the recovery */
2598                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2599                                                   mdname(mddev));
2600
2601                                         conf->mirrors[dw].recovery_disabled
2602                                                 = mddev->recovery_disabled;
2603                                         set_bit(MD_RECOVERY_INTR,
2604                                                 &mddev->recovery);
2605                                         break;
2606                                 }
2607                         }
2608                 }
2609
2610                 sectors -= s;
2611                 sect += s;
2612                 idx++;
2613         }
2614 }
2615
2616 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2617 {
2618         struct r10conf *conf = mddev->private;
2619         int d;
2620         struct bio *wbio = r10_bio->devs[1].bio;
2621         struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2622
2623         /* Need to test wbio2->bi_end_io before we call
2624          * submit_bio_noacct as if the former is NULL,
2625          * the latter is free to free wbio2.
2626          */
2627         if (wbio2 && !wbio2->bi_end_io)
2628                 wbio2 = NULL;
2629
2630         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2631                 fix_recovery_read_error(r10_bio);
2632                 if (wbio->bi_end_io)
2633                         end_sync_request(r10_bio);
2634                 if (wbio2)
2635                         end_sync_request(r10_bio);
2636                 return;
2637         }
2638
2639         /*
2640          * share the pages with the first bio
2641          * and submit the write request
2642          */
2643         d = r10_bio->devs[1].devnum;
2644         if (wbio->bi_end_io) {
2645                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2646                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2647                 submit_bio_noacct(wbio);
2648         }
2649         if (wbio2) {
2650                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2651                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2652                              bio_sectors(wbio2));
2653                 submit_bio_noacct(wbio2);
2654         }
2655 }
2656
2657 /*
2658  * Used by fix_read_error() to decay the per rdev read_errors.
2659  * We halve the read error count for every hour that has elapsed
2660  * since the last recorded read error.
2661  *
2662  */
2663 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2664 {
2665         long cur_time_mon;
2666         unsigned long hours_since_last;
2667         unsigned int read_errors = atomic_read(&rdev->read_errors);
2668
2669         cur_time_mon = ktime_get_seconds();
2670
2671         if (rdev->last_read_error == 0) {
2672                 /* first time we've seen a read error */
2673                 rdev->last_read_error = cur_time_mon;
2674                 return;
2675         }
2676
2677         hours_since_last = (long)(cur_time_mon -
2678                             rdev->last_read_error) / 3600;
2679
2680         rdev->last_read_error = cur_time_mon;
2681
2682         /*
2683          * if hours_since_last is > the number of bits in read_errors
2684          * just set read errors to 0. We do this to avoid
2685          * overflowing the shift of read_errors by hours_since_last.
2686          */
2687         if (hours_since_last >= 8 * sizeof(read_errors))
2688                 atomic_set(&rdev->read_errors, 0);
2689         else
2690                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2691 }
2692
2693 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2694                             int sectors, struct page *page, enum req_op op)
2695 {
2696         sector_t first_bad;
2697         int bad_sectors;
2698
2699         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2700             && (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2701                 return -1;
2702         if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2703                 /* success */
2704                 return 1;
2705         if (op == REQ_OP_WRITE) {
2706                 set_bit(WriteErrorSeen, &rdev->flags);
2707                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2708                         set_bit(MD_RECOVERY_NEEDED,
2709                                 &rdev->mddev->recovery);
2710         }
2711         /* need to record an error - either for the block or the device */
2712         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2713                 md_error(rdev->mddev, rdev);
2714         return 0;
2715 }
2716
2717 /*
2718  * This is a kernel thread which:
2719  *
2720  *      1.      Retries failed read operations on working mirrors.
2721  *      2.      Updates the raid superblock when problems encounter.
2722  *      3.      Performs writes following reads for array synchronising.
2723  */
2724
2725 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2726 {
2727         int sect = 0; /* Offset from r10_bio->sector */
2728         int sectors = r10_bio->sectors;
2729         struct md_rdev *rdev;
2730         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2731         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2732
2733         /* still own a reference to this rdev, so it cannot
2734          * have been cleared recently.
2735          */
2736         rdev = conf->mirrors[d].rdev;
2737
2738         if (test_bit(Faulty, &rdev->flags))
2739                 /* drive has already been failed, just ignore any
2740                    more fix_read_error() attempts */
2741                 return;
2742
2743         check_decay_read_errors(mddev, rdev);
2744         atomic_inc(&rdev->read_errors);
2745         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2746                 pr_notice("md/raid10:%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2747                           mdname(mddev), rdev->bdev,
2748                           atomic_read(&rdev->read_errors), max_read_errors);
2749                 pr_notice("md/raid10:%s: %pg: Failing raid device\n",
2750                           mdname(mddev), rdev->bdev);
2751                 md_error(mddev, rdev);
2752                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2753                 return;
2754         }
2755
2756         while(sectors) {
2757                 int s = sectors;
2758                 int sl = r10_bio->read_slot;
2759                 int success = 0;
2760                 int start;
2761
2762                 if (s > (PAGE_SIZE>>9))
2763                         s = PAGE_SIZE >> 9;
2764
2765                 rcu_read_lock();
2766                 do {
2767                         sector_t first_bad;
2768                         int bad_sectors;
2769
2770                         d = r10_bio->devs[sl].devnum;
2771                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2772                         if (rdev &&
2773                             test_bit(In_sync, &rdev->flags) &&
2774                             !test_bit(Faulty, &rdev->flags) &&
2775                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2776                                         &first_bad, &bad_sectors) == 0) {
2777                                 atomic_inc(&rdev->nr_pending);
2778                                 rcu_read_unlock();
2779                                 success = sync_page_io(rdev,
2780                                                        r10_bio->devs[sl].addr +
2781                                                        sect,
2782                                                        s<<9,
2783                                                        conf->tmppage,
2784                                                        REQ_OP_READ, false);
2785                                 rdev_dec_pending(rdev, mddev);
2786                                 rcu_read_lock();
2787                                 if (success)
2788                                         break;
2789                         }
2790                         sl++;
2791                         if (sl == conf->copies)
2792                                 sl = 0;
2793                 } while (!success && sl != r10_bio->read_slot);
2794                 rcu_read_unlock();
2795
2796                 if (!success) {
2797                         /* Cannot read from anywhere, just mark the block
2798                          * as bad on the first device to discourage future
2799                          * reads.
2800                          */
2801                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2802                         rdev = conf->mirrors[dn].rdev;
2803
2804                         if (!rdev_set_badblocks(
2805                                     rdev,
2806                                     r10_bio->devs[r10_bio->read_slot].addr
2807                                     + sect,
2808                                     s, 0)) {
2809                                 md_error(mddev, rdev);
2810                                 r10_bio->devs[r10_bio->read_slot].bio
2811                                         = IO_BLOCKED;
2812                         }
2813                         break;
2814                 }
2815
2816                 start = sl;
2817                 /* write it back and re-read */
2818                 rcu_read_lock();
2819                 while (sl != r10_bio->read_slot) {
2820                         if (sl==0)
2821                                 sl = conf->copies;
2822                         sl--;
2823                         d = r10_bio->devs[sl].devnum;
2824                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2825                         if (!rdev ||
2826                             test_bit(Faulty, &rdev->flags) ||
2827                             !test_bit(In_sync, &rdev->flags))
2828                                 continue;
2829
2830                         atomic_inc(&rdev->nr_pending);
2831                         rcu_read_unlock();
2832                         if (r10_sync_page_io(rdev,
2833                                              r10_bio->devs[sl].addr +
2834                                              sect,
2835                                              s, conf->tmppage, REQ_OP_WRITE)
2836                             == 0) {
2837                                 /* Well, this device is dead */
2838                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2839                                           mdname(mddev), s,
2840                                           (unsigned long long)(
2841                                                   sect +
2842                                                   choose_data_offset(r10_bio,
2843                                                                      rdev)),
2844                                           rdev->bdev);
2845                                 pr_notice("md/raid10:%s: %pg: failing drive\n",
2846                                           mdname(mddev),
2847                                           rdev->bdev);
2848                         }
2849                         rdev_dec_pending(rdev, mddev);
2850                         rcu_read_lock();
2851                 }
2852                 sl = start;
2853                 while (sl != r10_bio->read_slot) {
2854                         if (sl==0)
2855                                 sl = conf->copies;
2856                         sl--;
2857                         d = r10_bio->devs[sl].devnum;
2858                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2859                         if (!rdev ||
2860                             test_bit(Faulty, &rdev->flags) ||
2861                             !test_bit(In_sync, &rdev->flags))
2862                                 continue;
2863
2864                         atomic_inc(&rdev->nr_pending);
2865                         rcu_read_unlock();
2866                         switch (r10_sync_page_io(rdev,
2867                                              r10_bio->devs[sl].addr +
2868                                              sect,
2869                                              s, conf->tmppage, REQ_OP_READ)) {
2870                         case 0:
2871                                 /* Well, this device is dead */
2872                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2873                                        mdname(mddev), s,
2874                                        (unsigned long long)(
2875                                                sect +
2876                                                choose_data_offset(r10_bio, rdev)),
2877                                        rdev->bdev);
2878                                 pr_notice("md/raid10:%s: %pg: failing drive\n",
2879                                        mdname(mddev),
2880                                        rdev->bdev);
2881                                 break;
2882                         case 1:
2883                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2884                                        mdname(mddev), s,
2885                                        (unsigned long long)(
2886                                                sect +
2887                                                choose_data_offset(r10_bio, rdev)),
2888                                        rdev->bdev);
2889                                 atomic_add(s, &rdev->corrected_errors);
2890                         }
2891
2892                         rdev_dec_pending(rdev, mddev);
2893                         rcu_read_lock();
2894                 }
2895                 rcu_read_unlock();
2896
2897                 sectors -= s;
2898                 sect += s;
2899         }
2900 }
2901
2902 static int narrow_write_error(struct r10bio *r10_bio, int i)
2903 {
2904         struct bio *bio = r10_bio->master_bio;
2905         struct mddev *mddev = r10_bio->mddev;
2906         struct r10conf *conf = mddev->private;
2907         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2908         /* bio has the data to be written to slot 'i' where
2909          * we just recently had a write error.
2910          * We repeatedly clone the bio and trim down to one block,
2911          * then try the write.  Where the write fails we record
2912          * a bad block.
2913          * It is conceivable that the bio doesn't exactly align with
2914          * blocks.  We must handle this.
2915          *
2916          * We currently own a reference to the rdev.
2917          */
2918
2919         int block_sectors;
2920         sector_t sector;
2921         int sectors;
2922         int sect_to_write = r10_bio->sectors;
2923         int ok = 1;
2924
2925         if (rdev->badblocks.shift < 0)
2926                 return 0;
2927
2928         block_sectors = roundup(1 << rdev->badblocks.shift,
2929                                 bdev_logical_block_size(rdev->bdev) >> 9);
2930         sector = r10_bio->sector;
2931         sectors = ((r10_bio->sector + block_sectors)
2932                    & ~(sector_t)(block_sectors - 1))
2933                 - sector;
2934
2935         while (sect_to_write) {
2936                 struct bio *wbio;
2937                 sector_t wsector;
2938                 if (sectors > sect_to_write)
2939                         sectors = sect_to_write;
2940                 /* Write at 'sector' for 'sectors' */
2941                 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2942                                        &mddev->bio_set);
2943                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2944                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2945                 wbio->bi_iter.bi_sector = wsector +
2946                                    choose_data_offset(r10_bio, rdev);
2947                 wbio->bi_opf = REQ_OP_WRITE;
2948
2949                 if (submit_bio_wait(wbio) < 0)
2950                         /* Failure! */
2951                         ok = rdev_set_badblocks(rdev, wsector,
2952                                                 sectors, 0)
2953                                 && ok;
2954
2955                 bio_put(wbio);
2956                 sect_to_write -= sectors;
2957                 sector += sectors;
2958                 sectors = block_sectors;
2959         }
2960         return ok;
2961 }
2962
2963 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2964 {
2965         int slot = r10_bio->read_slot;
2966         struct bio *bio;
2967         struct r10conf *conf = mddev->private;
2968         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2969
2970         /* we got a read error. Maybe the drive is bad.  Maybe just
2971          * the block and we can fix it.
2972          * We freeze all other IO, and try reading the block from
2973          * other devices.  When we find one, we re-write
2974          * and check it that fixes the read error.
2975          * This is all done synchronously while the array is
2976          * frozen.
2977          */
2978         bio = r10_bio->devs[slot].bio;
2979         bio_put(bio);
2980         r10_bio->devs[slot].bio = NULL;
2981
2982         if (mddev->ro)
2983                 r10_bio->devs[slot].bio = IO_BLOCKED;
2984         else if (!test_bit(FailFast, &rdev->flags)) {
2985                 freeze_array(conf, 1);
2986                 fix_read_error(conf, mddev, r10_bio);
2987                 unfreeze_array(conf);
2988         } else
2989                 md_error(mddev, rdev);
2990
2991         rdev_dec_pending(rdev, mddev);
2992         r10_bio->state = 0;
2993         raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2994         /*
2995          * allow_barrier after re-submit to ensure no sync io
2996          * can be issued while regular io pending.
2997          */
2998         allow_barrier(conf);
2999 }
3000
3001 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
3002 {
3003         /* Some sort of write request has finished and it
3004          * succeeded in writing where we thought there was a
3005          * bad block.  So forget the bad block.
3006          * Or possibly if failed and we need to record
3007          * a bad block.
3008          */
3009         int m;
3010         struct md_rdev *rdev;
3011
3012         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
3013             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
3014                 for (m = 0; m < conf->copies; m++) {
3015                         int dev = r10_bio->devs[m].devnum;
3016                         rdev = conf->mirrors[dev].rdev;
3017                         if (r10_bio->devs[m].bio == NULL ||
3018                                 r10_bio->devs[m].bio->bi_end_io == NULL)
3019                                 continue;
3020                         if (!r10_bio->devs[m].bio->bi_status) {
3021                                 rdev_clear_badblocks(
3022                                         rdev,
3023                                         r10_bio->devs[m].addr,
3024                                         r10_bio->sectors, 0);
3025                         } else {
3026                                 if (!rdev_set_badblocks(
3027                                             rdev,
3028                                             r10_bio->devs[m].addr,
3029                                             r10_bio->sectors, 0))
3030                                         md_error(conf->mddev, rdev);
3031                         }
3032                         rdev = conf->mirrors[dev].replacement;
3033                         if (r10_bio->devs[m].repl_bio == NULL ||
3034                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
3035                                 continue;
3036
3037                         if (!r10_bio->devs[m].repl_bio->bi_status) {
3038                                 rdev_clear_badblocks(
3039                                         rdev,
3040                                         r10_bio->devs[m].addr,
3041                                         r10_bio->sectors, 0);
3042                         } else {
3043                                 if (!rdev_set_badblocks(
3044                                             rdev,
3045                                             r10_bio->devs[m].addr,
3046                                             r10_bio->sectors, 0))
3047                                         md_error(conf->mddev, rdev);
3048                         }
3049                 }
3050                 put_buf(r10_bio);
3051         } else {
3052                 bool fail = false;
3053                 for (m = 0; m < conf->copies; m++) {
3054                         int dev = r10_bio->devs[m].devnum;
3055                         struct bio *bio = r10_bio->devs[m].bio;
3056                         rdev = conf->mirrors[dev].rdev;
3057                         if (bio == IO_MADE_GOOD) {
3058                                 rdev_clear_badblocks(
3059                                         rdev,
3060                                         r10_bio->devs[m].addr,
3061                                         r10_bio->sectors, 0);
3062                                 rdev_dec_pending(rdev, conf->mddev);
3063                         } else if (bio != NULL && bio->bi_status) {
3064                                 fail = true;
3065                                 if (!narrow_write_error(r10_bio, m)) {
3066                                         md_error(conf->mddev, rdev);
3067                                         set_bit(R10BIO_Degraded,
3068                                                 &r10_bio->state);
3069                                 }
3070                                 rdev_dec_pending(rdev, conf->mddev);
3071                         }
3072                         bio = r10_bio->devs[m].repl_bio;
3073                         rdev = conf->mirrors[dev].replacement;
3074                         if (rdev && bio == IO_MADE_GOOD) {
3075                                 rdev_clear_badblocks(
3076                                         rdev,
3077                                         r10_bio->devs[m].addr,
3078                                         r10_bio->sectors, 0);
3079                                 rdev_dec_pending(rdev, conf->mddev);
3080                         }
3081                 }
3082                 if (fail) {
3083                         spin_lock_irq(&conf->device_lock);
3084                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3085                         conf->nr_queued++;
3086                         spin_unlock_irq(&conf->device_lock);
3087                         /*
3088                          * In case freeze_array() is waiting for condition
3089                          * nr_pending == nr_queued + extra to be true.
3090                          */
3091                         wake_up(&conf->wait_barrier);
3092                         md_wakeup_thread(conf->mddev->thread);
3093                 } else {
3094                         if (test_bit(R10BIO_WriteError,
3095                                      &r10_bio->state))
3096                                 close_write(r10_bio);
3097                         raid_end_bio_io(r10_bio);
3098                 }
3099         }
3100 }
3101
3102 static void raid10d(struct md_thread *thread)
3103 {
3104         struct mddev *mddev = thread->mddev;
3105         struct r10bio *r10_bio;
3106         unsigned long flags;
3107         struct r10conf *conf = mddev->private;
3108         struct list_head *head = &conf->retry_list;
3109         struct blk_plug plug;
3110
3111         md_check_recovery(mddev);
3112
3113         if (!list_empty_careful(&conf->bio_end_io_list) &&
3114             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3115                 LIST_HEAD(tmp);
3116                 spin_lock_irqsave(&conf->device_lock, flags);
3117                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3118                         while (!list_empty(&conf->bio_end_io_list)) {
3119                                 list_move(conf->bio_end_io_list.prev, &tmp);
3120                                 conf->nr_queued--;
3121                         }
3122                 }
3123                 spin_unlock_irqrestore(&conf->device_lock, flags);
3124                 while (!list_empty(&tmp)) {
3125                         r10_bio = list_first_entry(&tmp, struct r10bio,
3126                                                    retry_list);
3127                         list_del(&r10_bio->retry_list);
3128                         if (mddev->degraded)
3129                                 set_bit(R10BIO_Degraded, &r10_bio->state);
3130
3131                         if (test_bit(R10BIO_WriteError,
3132                                      &r10_bio->state))
3133                                 close_write(r10_bio);
3134                         raid_end_bio_io(r10_bio);
3135                 }
3136         }
3137
3138         blk_start_plug(&plug);
3139         for (;;) {
3140
3141                 flush_pending_writes(conf);
3142
3143                 spin_lock_irqsave(&conf->device_lock, flags);
3144                 if (list_empty(head)) {
3145                         spin_unlock_irqrestore(&conf->device_lock, flags);
3146                         break;
3147                 }
3148                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3149                 list_del(head->prev);
3150                 conf->nr_queued--;
3151                 spin_unlock_irqrestore(&conf->device_lock, flags);
3152
3153                 mddev = r10_bio->mddev;
3154                 conf = mddev->private;
3155                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3156                     test_bit(R10BIO_WriteError, &r10_bio->state))
3157                         handle_write_completed(conf, r10_bio);
3158                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3159                         reshape_request_write(mddev, r10_bio);
3160                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3161                         sync_request_write(mddev, r10_bio);
3162                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3163                         recovery_request_write(mddev, r10_bio);
3164                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3165                         handle_read_error(mddev, r10_bio);
3166                 else
3167                         WARN_ON_ONCE(1);
3168
3169                 cond_resched();
3170                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3171                         md_check_recovery(mddev);
3172         }
3173         blk_finish_plug(&plug);
3174 }
3175
3176 static int init_resync(struct r10conf *conf)
3177 {
3178         int ret, buffs, i;
3179
3180         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3181         BUG_ON(mempool_initialized(&conf->r10buf_pool));
3182         conf->have_replacement = 0;
3183         for (i = 0; i < conf->geo.raid_disks; i++)
3184                 if (conf->mirrors[i].replacement)
3185                         conf->have_replacement = 1;
3186         ret = mempool_init(&conf->r10buf_pool, buffs,
3187                            r10buf_pool_alloc, r10buf_pool_free, conf);
3188         if (ret)
3189                 return ret;
3190         conf->next_resync = 0;
3191         return 0;
3192 }
3193
3194 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3195 {
3196         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3197         struct rsync_pages *rp;
3198         struct bio *bio;
3199         int nalloc;
3200         int i;
3201
3202         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3203             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3204                 nalloc = conf->copies; /* resync */
3205         else
3206                 nalloc = 2; /* recovery */
3207
3208         for (i = 0; i < nalloc; i++) {
3209                 bio = r10bio->devs[i].bio;
3210                 rp = bio->bi_private;
3211                 bio_reset(bio, NULL, 0);
3212                 bio->bi_private = rp;
3213                 bio = r10bio->devs[i].repl_bio;
3214                 if (bio) {
3215                         rp = bio->bi_private;
3216                         bio_reset(bio, NULL, 0);
3217                         bio->bi_private = rp;
3218                 }
3219         }
3220         return r10bio;
3221 }
3222
3223 /*
3224  * Set cluster_sync_high since we need other nodes to add the
3225  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3226  */
3227 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3228 {
3229         sector_t window_size;
3230         int extra_chunk, chunks;
3231
3232         /*
3233          * First, here we define "stripe" as a unit which across
3234          * all member devices one time, so we get chunks by use
3235          * raid_disks / near_copies. Otherwise, if near_copies is
3236          * close to raid_disks, then resync window could increases
3237          * linearly with the increase of raid_disks, which means
3238          * we will suspend a really large IO window while it is not
3239          * necessary. If raid_disks is not divisible by near_copies,
3240          * an extra chunk is needed to ensure the whole "stripe" is
3241          * covered.
3242          */
3243
3244         chunks = conf->geo.raid_disks / conf->geo.near_copies;
3245         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3246                 extra_chunk = 0;
3247         else
3248                 extra_chunk = 1;
3249         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3250
3251         /*
3252          * At least use a 32M window to align with raid1's resync window
3253          */
3254         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3255                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3256
3257         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3258 }
3259
3260 /*
3261  * perform a "sync" on one "block"
3262  *
3263  * We need to make sure that no normal I/O request - particularly write
3264  * requests - conflict with active sync requests.
3265  *
3266  * This is achieved by tracking pending requests and a 'barrier' concept
3267  * that can be installed to exclude normal IO requests.
3268  *
3269  * Resync and recovery are handled very differently.
3270  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3271  *
3272  * For resync, we iterate over virtual addresses, read all copies,
3273  * and update if there are differences.  If only one copy is live,
3274  * skip it.
3275  * For recovery, we iterate over physical addresses, read a good
3276  * value for each non-in_sync drive, and over-write.
3277  *
3278  * So, for recovery we may have several outstanding complex requests for a
3279  * given address, one for each out-of-sync device.  We model this by allocating
3280  * a number of r10_bio structures, one for each out-of-sync device.
3281  * As we setup these structures, we collect all bio's together into a list
3282  * which we then process collectively to add pages, and then process again
3283  * to pass to submit_bio_noacct.
3284  *
3285  * The r10_bio structures are linked using a borrowed master_bio pointer.
3286  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3287  * has its remaining count decremented to 0, the whole complex operation
3288  * is complete.
3289  *
3290  */
3291
3292 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3293                              int *skipped)
3294 {
3295         struct r10conf *conf = mddev->private;
3296         struct r10bio *r10_bio;
3297         struct bio *biolist = NULL, *bio;
3298         sector_t max_sector, nr_sectors;
3299         int i;
3300         int max_sync;
3301         sector_t sync_blocks;
3302         sector_t sectors_skipped = 0;
3303         int chunks_skipped = 0;
3304         sector_t chunk_mask = conf->geo.chunk_mask;
3305         int page_idx = 0;
3306
3307         /*
3308          * Allow skipping a full rebuild for incremental assembly
3309          * of a clean array, like RAID1 does.
3310          */
3311         if (mddev->bitmap == NULL &&
3312             mddev->recovery_cp == MaxSector &&
3313             mddev->reshape_position == MaxSector &&
3314             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3315             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3316             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3317             conf->fullsync == 0) {
3318                 *skipped = 1;
3319                 return mddev->dev_sectors - sector_nr;
3320         }
3321
3322         if (!mempool_initialized(&conf->r10buf_pool))
3323                 if (init_resync(conf))
3324                         return 0;
3325
3326  skipped:
3327         max_sector = mddev->dev_sectors;
3328         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3329             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3330                 max_sector = mddev->resync_max_sectors;
3331         if (sector_nr >= max_sector) {
3332                 conf->cluster_sync_low = 0;
3333                 conf->cluster_sync_high = 0;
3334
3335                 /* If we aborted, we need to abort the
3336                  * sync on the 'current' bitmap chucks (there can
3337                  * be several when recovering multiple devices).
3338                  * as we may have started syncing it but not finished.
3339                  * We can find the current address in
3340                  * mddev->curr_resync, but for recovery,
3341                  * we need to convert that to several
3342                  * virtual addresses.
3343                  */
3344                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3345                         end_reshape(conf);
3346                         close_sync(conf);
3347                         return 0;
3348                 }
3349
3350                 if (mddev->curr_resync < max_sector) { /* aborted */
3351                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3352                                 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3353                                                    &sync_blocks, 1);
3354                         else for (i = 0; i < conf->geo.raid_disks; i++) {
3355                                 sector_t sect =
3356                                         raid10_find_virt(conf, mddev->curr_resync, i);
3357                                 md_bitmap_end_sync(mddev->bitmap, sect,
3358                                                    &sync_blocks, 1);
3359                         }
3360                 } else {
3361                         /* completed sync */
3362                         if ((!mddev->bitmap || conf->fullsync)
3363                             && conf->have_replacement
3364                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3365                                 /* Completed a full sync so the replacements
3366                                  * are now fully recovered.
3367                                  */
3368                                 rcu_read_lock();
3369                                 for (i = 0; i < conf->geo.raid_disks; i++) {
3370                                         struct md_rdev *rdev =
3371                                                 rcu_dereference(conf->mirrors[i].replacement);
3372                                         if (rdev)
3373                                                 rdev->recovery_offset = MaxSector;
3374                                 }
3375                                 rcu_read_unlock();
3376                         }
3377                         conf->fullsync = 0;
3378                 }
3379                 md_bitmap_close_sync(mddev->bitmap);
3380                 close_sync(conf);
3381                 *skipped = 1;
3382                 return sectors_skipped;
3383         }
3384
3385         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3386                 return reshape_request(mddev, sector_nr, skipped);
3387
3388         if (chunks_skipped >= conf->geo.raid_disks) {
3389                 /* if there has been nothing to do on any drive,
3390                  * then there is nothing to do at all..
3391                  */
3392                 *skipped = 1;
3393                 return (max_sector - sector_nr) + sectors_skipped;
3394         }
3395
3396         if (max_sector > mddev->resync_max)
3397                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3398
3399         /* make sure whole request will fit in a chunk - if chunks
3400          * are meaningful
3401          */
3402         if (conf->geo.near_copies < conf->geo.raid_disks &&
3403             max_sector > (sector_nr | chunk_mask))
3404                 max_sector = (sector_nr | chunk_mask) + 1;
3405
3406         /*
3407          * If there is non-resync activity waiting for a turn, then let it
3408          * though before starting on this new sync request.
3409          */
3410         if (conf->nr_waiting)
3411                 schedule_timeout_uninterruptible(1);
3412
3413         /* Again, very different code for resync and recovery.
3414          * Both must result in an r10bio with a list of bios that
3415          * have bi_end_io, bi_sector, bi_bdev set,
3416          * and bi_private set to the r10bio.
3417          * For recovery, we may actually create several r10bios
3418          * with 2 bios in each, that correspond to the bios in the main one.
3419          * In this case, the subordinate r10bios link back through a
3420          * borrowed master_bio pointer, and the counter in the master
3421          * includes a ref from each subordinate.
3422          */
3423         /* First, we decide what to do and set ->bi_end_io
3424          * To end_sync_read if we want to read, and
3425          * end_sync_write if we will want to write.
3426          */
3427
3428         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3429         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3430                 /* recovery... the complicated one */
3431                 int j;
3432                 r10_bio = NULL;
3433
3434                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3435                         int still_degraded;
3436                         struct r10bio *rb2;
3437                         sector_t sect;
3438                         int must_sync;
3439                         int any_working;
3440                         int need_recover = 0;
3441                         int need_replace = 0;
3442                         struct raid10_info *mirror = &conf->mirrors[i];
3443                         struct md_rdev *mrdev, *mreplace;
3444
3445                         rcu_read_lock();
3446                         mrdev = rcu_dereference(mirror->rdev);
3447                         mreplace = rcu_dereference(mirror->replacement);
3448
3449                         if (mrdev != NULL &&
3450                             !test_bit(Faulty, &mrdev->flags) &&
3451                             !test_bit(In_sync, &mrdev->flags))
3452                                 need_recover = 1;
3453                         if (mreplace != NULL &&
3454                             !test_bit(Faulty, &mreplace->flags))
3455                                 need_replace = 1;
3456
3457                         if (!need_recover && !need_replace) {
3458                                 rcu_read_unlock();
3459                                 continue;
3460                         }
3461
3462                         still_degraded = 0;
3463                         /* want to reconstruct this device */
3464                         rb2 = r10_bio;
3465                         sect = raid10_find_virt(conf, sector_nr, i);
3466                         if (sect >= mddev->resync_max_sectors) {
3467                                 /* last stripe is not complete - don't
3468                                  * try to recover this sector.
3469                                  */
3470                                 rcu_read_unlock();
3471                                 continue;
3472                         }
3473                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3474                                 mreplace = NULL;
3475                         /* Unless we are doing a full sync, or a replacement
3476                          * we only need to recover the block if it is set in
3477                          * the bitmap
3478                          */
3479                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3480                                                          &sync_blocks, 1);
3481                         if (sync_blocks < max_sync)
3482                                 max_sync = sync_blocks;
3483                         if (!must_sync &&
3484                             mreplace == NULL &&
3485                             !conf->fullsync) {
3486                                 /* yep, skip the sync_blocks here, but don't assume
3487                                  * that there will never be anything to do here
3488                                  */
3489                                 chunks_skipped = -1;
3490                                 rcu_read_unlock();
3491                                 continue;
3492                         }
3493                         atomic_inc(&mrdev->nr_pending);
3494                         if (mreplace)
3495                                 atomic_inc(&mreplace->nr_pending);
3496                         rcu_read_unlock();
3497
3498                         r10_bio = raid10_alloc_init_r10buf(conf);
3499                         r10_bio->state = 0;
3500                         raise_barrier(conf, rb2 != NULL);
3501                         atomic_set(&r10_bio->remaining, 0);
3502
3503                         r10_bio->master_bio = (struct bio*)rb2;
3504                         if (rb2)
3505                                 atomic_inc(&rb2->remaining);
3506                         r10_bio->mddev = mddev;
3507                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3508                         r10_bio->sector = sect;
3509
3510                         raid10_find_phys(conf, r10_bio);
3511
3512                         /* Need to check if the array will still be
3513                          * degraded
3514                          */
3515                         rcu_read_lock();
3516                         for (j = 0; j < conf->geo.raid_disks; j++) {
3517                                 struct md_rdev *rdev = rcu_dereference(
3518                                         conf->mirrors[j].rdev);
3519                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3520                                         still_degraded = 1;
3521                                         break;
3522                                 }
3523                         }
3524
3525                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3526                                                          &sync_blocks, still_degraded);
3527
3528                         any_working = 0;
3529                         for (j=0; j<conf->copies;j++) {
3530                                 int k;
3531                                 int d = r10_bio->devs[j].devnum;
3532                                 sector_t from_addr, to_addr;
3533                                 struct md_rdev *rdev =
3534                                         rcu_dereference(conf->mirrors[d].rdev);
3535                                 sector_t sector, first_bad;
3536                                 int bad_sectors;
3537                                 if (!rdev ||
3538                                     !test_bit(In_sync, &rdev->flags))
3539                                         continue;
3540                                 /* This is where we read from */
3541                                 any_working = 1;
3542                                 sector = r10_bio->devs[j].addr;
3543
3544                                 if (is_badblock(rdev, sector, max_sync,
3545                                                 &first_bad, &bad_sectors)) {
3546                                         if (first_bad > sector)
3547                                                 max_sync = first_bad - sector;
3548                                         else {
3549                                                 bad_sectors -= (sector
3550                                                                 - first_bad);
3551                                                 if (max_sync > bad_sectors)
3552                                                         max_sync = bad_sectors;
3553                                                 continue;
3554                                         }
3555                                 }
3556                                 bio = r10_bio->devs[0].bio;
3557                                 bio->bi_next = biolist;
3558                                 biolist = bio;
3559                                 bio->bi_end_io = end_sync_read;
3560                                 bio->bi_opf = REQ_OP_READ;
3561                                 if (test_bit(FailFast, &rdev->flags))
3562                                         bio->bi_opf |= MD_FAILFAST;
3563                                 from_addr = r10_bio->devs[j].addr;
3564                                 bio->bi_iter.bi_sector = from_addr +
3565                                         rdev->data_offset;
3566                                 bio_set_dev(bio, rdev->bdev);
3567                                 atomic_inc(&rdev->nr_pending);
3568                                 /* and we write to 'i' (if not in_sync) */
3569
3570                                 for (k=0; k<conf->copies; k++)
3571                                         if (r10_bio->devs[k].devnum == i)
3572                                                 break;
3573                                 BUG_ON(k == conf->copies);
3574                                 to_addr = r10_bio->devs[k].addr;
3575                                 r10_bio->devs[0].devnum = d;
3576                                 r10_bio->devs[0].addr = from_addr;
3577                                 r10_bio->devs[1].devnum = i;
3578                                 r10_bio->devs[1].addr = to_addr;
3579
3580                                 if (need_recover) {
3581                                         bio = r10_bio->devs[1].bio;
3582                                         bio->bi_next = biolist;
3583                                         biolist = bio;
3584                                         bio->bi_end_io = end_sync_write;
3585                                         bio->bi_opf = REQ_OP_WRITE;
3586                                         bio->bi_iter.bi_sector = to_addr
3587                                                 + mrdev->data_offset;
3588                                         bio_set_dev(bio, mrdev->bdev);
3589                                         atomic_inc(&r10_bio->remaining);
3590                                 } else
3591                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3592
3593                                 /* and maybe write to replacement */
3594                                 bio = r10_bio->devs[1].repl_bio;
3595                                 if (bio)
3596                                         bio->bi_end_io = NULL;
3597                                 /* Note: if need_replace, then bio
3598                                  * cannot be NULL as r10buf_pool_alloc will
3599                                  * have allocated it.
3600                                  */
3601                                 if (!need_replace)
3602                                         break;
3603                                 bio->bi_next = biolist;
3604                                 biolist = bio;
3605                                 bio->bi_end_io = end_sync_write;
3606                                 bio->bi_opf = REQ_OP_WRITE;
3607                                 bio->bi_iter.bi_sector = to_addr +
3608                                         mreplace->data_offset;
3609                                 bio_set_dev(bio, mreplace->bdev);
3610                                 atomic_inc(&r10_bio->remaining);
3611                                 break;
3612                         }
3613                         rcu_read_unlock();
3614                         if (j == conf->copies) {
3615                                 /* Cannot recover, so abort the recovery or
3616                                  * record a bad block */
3617                                 if (any_working) {
3618                                         /* problem is that there are bad blocks
3619                                          * on other device(s)
3620                                          */
3621                                         int k;
3622                                         for (k = 0; k < conf->copies; k++)
3623                                                 if (r10_bio->devs[k].devnum == i)
3624                                                         break;
3625                                         if (!test_bit(In_sync,
3626                                                       &mrdev->flags)
3627                                             && !rdev_set_badblocks(
3628                                                     mrdev,
3629                                                     r10_bio->devs[k].addr,
3630                                                     max_sync, 0))
3631                                                 any_working = 0;
3632                                         if (mreplace &&
3633                                             !rdev_set_badblocks(
3634                                                     mreplace,
3635                                                     r10_bio->devs[k].addr,
3636                                                     max_sync, 0))
3637                                                 any_working = 0;
3638                                 }
3639                                 if (!any_working)  {
3640                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3641                                                               &mddev->recovery))
3642                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3643                                                        mdname(mddev));
3644                                         mirror->recovery_disabled
3645                                                 = mddev->recovery_disabled;
3646                                 }
3647                                 put_buf(r10_bio);
3648                                 if (rb2)
3649                                         atomic_dec(&rb2->remaining);
3650                                 r10_bio = rb2;
3651                                 rdev_dec_pending(mrdev, mddev);
3652                                 if (mreplace)
3653                                         rdev_dec_pending(mreplace, mddev);
3654                                 break;
3655                         }
3656                         rdev_dec_pending(mrdev, mddev);
3657                         if (mreplace)
3658                                 rdev_dec_pending(mreplace, mddev);
3659                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3660                                 /* Only want this if there is elsewhere to
3661                                  * read from. 'j' is currently the first
3662                                  * readable copy.
3663                                  */
3664                                 int targets = 1;
3665                                 for (; j < conf->copies; j++) {
3666                                         int d = r10_bio->devs[j].devnum;
3667                                         if (conf->mirrors[d].rdev &&
3668                                             test_bit(In_sync,
3669                                                       &conf->mirrors[d].rdev->flags))
3670                                                 targets++;
3671                                 }
3672                                 if (targets == 1)
3673                                         r10_bio->devs[0].bio->bi_opf
3674                                                 &= ~MD_FAILFAST;
3675                         }
3676                 }
3677                 if (biolist == NULL) {
3678                         while (r10_bio) {
3679                                 struct r10bio *rb2 = r10_bio;
3680                                 r10_bio = (struct r10bio*) rb2->master_bio;
3681                                 rb2->master_bio = NULL;
3682                                 put_buf(rb2);
3683                         }
3684                         goto giveup;
3685                 }
3686         } else {
3687                 /* resync. Schedule a read for every block at this virt offset */
3688                 int count = 0;
3689
3690                 /*
3691                  * Since curr_resync_completed could probably not update in
3692                  * time, and we will set cluster_sync_low based on it.
3693                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3694                  * safety reason, which ensures curr_resync_completed is
3695                  * updated in bitmap_cond_end_sync.
3696                  */
3697                 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3698                                         mddev_is_clustered(mddev) &&
3699                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3700
3701                 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3702                                           &sync_blocks, mddev->degraded) &&
3703                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3704                                                  &mddev->recovery)) {
3705                         /* We can skip this block */
3706                         *skipped = 1;
3707                         return sync_blocks + sectors_skipped;
3708                 }
3709                 if (sync_blocks < max_sync)
3710                         max_sync = sync_blocks;
3711                 r10_bio = raid10_alloc_init_r10buf(conf);
3712                 r10_bio->state = 0;
3713
3714                 r10_bio->mddev = mddev;
3715                 atomic_set(&r10_bio->remaining, 0);
3716                 raise_barrier(conf, 0);
3717                 conf->next_resync = sector_nr;
3718
3719                 r10_bio->master_bio = NULL;
3720                 r10_bio->sector = sector_nr;
3721                 set_bit(R10BIO_IsSync, &r10_bio->state);
3722                 raid10_find_phys(conf, r10_bio);
3723                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3724
3725                 for (i = 0; i < conf->copies; i++) {
3726                         int d = r10_bio->devs[i].devnum;
3727                         sector_t first_bad, sector;
3728                         int bad_sectors;
3729                         struct md_rdev *rdev;
3730
3731                         if (r10_bio->devs[i].repl_bio)
3732                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3733
3734                         bio = r10_bio->devs[i].bio;
3735                         bio->bi_status = BLK_STS_IOERR;
3736                         rcu_read_lock();
3737                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3738                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3739                                 rcu_read_unlock();
3740                                 continue;
3741                         }
3742                         sector = r10_bio->devs[i].addr;
3743                         if (is_badblock(rdev, sector, max_sync,
3744                                         &first_bad, &bad_sectors)) {
3745                                 if (first_bad > sector)
3746                                         max_sync = first_bad - sector;
3747                                 else {
3748                                         bad_sectors -= (sector - first_bad);
3749                                         if (max_sync > bad_sectors)
3750                                                 max_sync = bad_sectors;
3751                                         rcu_read_unlock();
3752                                         continue;
3753                                 }
3754                         }
3755                         atomic_inc(&rdev->nr_pending);
3756                         atomic_inc(&r10_bio->remaining);
3757                         bio->bi_next = biolist;
3758                         biolist = bio;
3759                         bio->bi_end_io = end_sync_read;
3760                         bio->bi_opf = REQ_OP_READ;
3761                         if (test_bit(FailFast, &rdev->flags))
3762                                 bio->bi_opf |= MD_FAILFAST;
3763                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3764                         bio_set_dev(bio, rdev->bdev);
3765                         count++;
3766
3767                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3768                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3769                                 rcu_read_unlock();
3770                                 continue;
3771                         }
3772                         atomic_inc(&rdev->nr_pending);
3773
3774                         /* Need to set up for writing to the replacement */
3775                         bio = r10_bio->devs[i].repl_bio;
3776                         bio->bi_status = BLK_STS_IOERR;
3777
3778                         sector = r10_bio->devs[i].addr;
3779                         bio->bi_next = biolist;
3780                         biolist = bio;
3781                         bio->bi_end_io = end_sync_write;
3782                         bio->bi_opf = REQ_OP_WRITE;
3783                         if (test_bit(FailFast, &rdev->flags))
3784                                 bio->bi_opf |= MD_FAILFAST;
3785                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3786                         bio_set_dev(bio, rdev->bdev);
3787                         count++;
3788                         rcu_read_unlock();
3789                 }
3790
3791                 if (count < 2) {
3792                         for (i=0; i<conf->copies; i++) {
3793                                 int d = r10_bio->devs[i].devnum;
3794                                 if (r10_bio->devs[i].bio->bi_end_io)
3795                                         rdev_dec_pending(conf->mirrors[d].rdev,
3796                                                          mddev);
3797                                 if (r10_bio->devs[i].repl_bio &&
3798                                     r10_bio->devs[i].repl_bio->bi_end_io)
3799                                         rdev_dec_pending(
3800                                                 conf->mirrors[d].replacement,
3801                                                 mddev);
3802                         }
3803                         put_buf(r10_bio);
3804                         biolist = NULL;
3805                         goto giveup;
3806                 }
3807         }
3808
3809         nr_sectors = 0;
3810         if (sector_nr + max_sync < max_sector)
3811                 max_sector = sector_nr + max_sync;
3812         do {
3813                 struct page *page;
3814                 int len = PAGE_SIZE;
3815                 if (sector_nr + (len>>9) > max_sector)
3816                         len = (max_sector - sector_nr) << 9;
3817                 if (len == 0)
3818                         break;
3819                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3820                         struct resync_pages *rp = get_resync_pages(bio);
3821                         page = resync_fetch_page(rp, page_idx);
3822                         /*
3823                          * won't fail because the vec table is big enough
3824                          * to hold all these pages
3825                          */
3826                         bio_add_page(bio, page, len, 0);
3827                 }
3828                 nr_sectors += len>>9;
3829                 sector_nr += len>>9;
3830         } while (++page_idx < RESYNC_PAGES);
3831         r10_bio->sectors = nr_sectors;
3832
3833         if (mddev_is_clustered(mddev) &&
3834             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3835                 /* It is resync not recovery */
3836                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3837                         conf->cluster_sync_low = mddev->curr_resync_completed;
3838                         raid10_set_cluster_sync_high(conf);
3839                         /* Send resync message */
3840                         md_cluster_ops->resync_info_update(mddev,
3841                                                 conf->cluster_sync_low,
3842                                                 conf->cluster_sync_high);
3843                 }
3844         } else if (mddev_is_clustered(mddev)) {
3845                 /* This is recovery not resync */
3846                 sector_t sect_va1, sect_va2;
3847                 bool broadcast_msg = false;
3848
3849                 for (i = 0; i < conf->geo.raid_disks; i++) {
3850                         /*
3851                          * sector_nr is a device address for recovery, so we
3852                          * need translate it to array address before compare
3853                          * with cluster_sync_high.
3854                          */
3855                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3856
3857                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3858                                 broadcast_msg = true;
3859                                 /*
3860                                  * curr_resync_completed is similar as
3861                                  * sector_nr, so make the translation too.
3862                                  */
3863                                 sect_va2 = raid10_find_virt(conf,
3864                                         mddev->curr_resync_completed, i);
3865
3866                                 if (conf->cluster_sync_low == 0 ||
3867                                     conf->cluster_sync_low > sect_va2)
3868                                         conf->cluster_sync_low = sect_va2;
3869                         }
3870                 }
3871                 if (broadcast_msg) {
3872                         raid10_set_cluster_sync_high(conf);
3873                         md_cluster_ops->resync_info_update(mddev,
3874                                                 conf->cluster_sync_low,
3875                                                 conf->cluster_sync_high);
3876                 }
3877         }
3878
3879         while (biolist) {
3880                 bio = biolist;
3881                 biolist = biolist->bi_next;
3882
3883                 bio->bi_next = NULL;
3884                 r10_bio = get_resync_r10bio(bio);
3885                 r10_bio->sectors = nr_sectors;
3886
3887                 if (bio->bi_end_io == end_sync_read) {
3888                         md_sync_acct_bio(bio, nr_sectors);
3889                         bio->bi_status = 0;
3890                         submit_bio_noacct(bio);
3891                 }
3892         }
3893
3894         if (sectors_skipped)
3895                 /* pretend they weren't skipped, it makes
3896                  * no important difference in this case
3897                  */
3898                 md_done_sync(mddev, sectors_skipped, 1);
3899
3900         return sectors_skipped + nr_sectors;
3901  giveup:
3902         /* There is nowhere to write, so all non-sync
3903          * drives must be failed or in resync, all drives
3904          * have a bad block, so try the next chunk...
3905          */
3906         if (sector_nr + max_sync < max_sector)
3907                 max_sector = sector_nr + max_sync;
3908
3909         sectors_skipped += (max_sector - sector_nr);
3910         chunks_skipped ++;
3911         sector_nr = max_sector;
3912         goto skipped;
3913 }
3914
3915 static sector_t
3916 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3917 {
3918         sector_t size;
3919         struct r10conf *conf = mddev->private;
3920
3921         if (!raid_disks)
3922                 raid_disks = min(conf->geo.raid_disks,
3923                                  conf->prev.raid_disks);
3924         if (!sectors)
3925                 sectors = conf->dev_sectors;
3926
3927         size = sectors >> conf->geo.chunk_shift;
3928         sector_div(size, conf->geo.far_copies);
3929         size = size * raid_disks;
3930         sector_div(size, conf->geo.near_copies);
3931
3932         return size << conf->geo.chunk_shift;
3933 }
3934
3935 static void calc_sectors(struct r10conf *conf, sector_t size)
3936 {
3937         /* Calculate the number of sectors-per-device that will
3938          * actually be used, and set conf->dev_sectors and
3939          * conf->stride
3940          */
3941
3942         size = size >> conf->geo.chunk_shift;
3943         sector_div(size, conf->geo.far_copies);
3944         size = size * conf->geo.raid_disks;
3945         sector_div(size, conf->geo.near_copies);
3946         /* 'size' is now the number of chunks in the array */
3947         /* calculate "used chunks per device" */
3948         size = size * conf->copies;
3949
3950         /* We need to round up when dividing by raid_disks to
3951          * get the stride size.
3952          */
3953         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3954
3955         conf->dev_sectors = size << conf->geo.chunk_shift;
3956
3957         if (conf->geo.far_offset)
3958                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3959         else {
3960                 sector_div(size, conf->geo.far_copies);
3961                 conf->geo.stride = size << conf->geo.chunk_shift;
3962         }
3963 }
3964
3965 enum geo_type {geo_new, geo_old, geo_start};
3966 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3967 {
3968         int nc, fc, fo;
3969         int layout, chunk, disks;
3970         switch (new) {
3971         case geo_old:
3972                 layout = mddev->layout;
3973                 chunk = mddev->chunk_sectors;
3974                 disks = mddev->raid_disks - mddev->delta_disks;
3975                 break;
3976         case geo_new:
3977                 layout = mddev->new_layout;
3978                 chunk = mddev->new_chunk_sectors;
3979                 disks = mddev->raid_disks;
3980                 break;
3981         default: /* avoid 'may be unused' warnings */
3982         case geo_start: /* new when starting reshape - raid_disks not
3983                          * updated yet. */
3984                 layout = mddev->new_layout;
3985                 chunk = mddev->new_chunk_sectors;
3986                 disks = mddev->raid_disks + mddev->delta_disks;
3987                 break;
3988         }
3989         if (layout >> 19)
3990                 return -1;
3991         if (chunk < (PAGE_SIZE >> 9) ||
3992             !is_power_of_2(chunk))
3993                 return -2;
3994         nc = layout & 255;
3995         fc = (layout >> 8) & 255;
3996         fo = layout & (1<<16);
3997         geo->raid_disks = disks;
3998         geo->near_copies = nc;
3999         geo->far_copies = fc;
4000         geo->far_offset = fo;
4001         switch (layout >> 17) {
4002         case 0: /* original layout.  simple but not always optimal */
4003                 geo->far_set_size = disks;
4004                 break;
4005         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
4006                  * actually using this, but leave code here just in case.*/
4007                 geo->far_set_size = disks/fc;
4008                 WARN(geo->far_set_size < fc,
4009                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
4010                 break;
4011         case 2: /* "improved" layout fixed to match documentation */
4012                 geo->far_set_size = fc * nc;
4013                 break;
4014         default: /* Not a valid layout */
4015                 return -1;
4016         }
4017         geo->chunk_mask = chunk - 1;
4018         geo->chunk_shift = ffz(~chunk);
4019         return nc*fc;
4020 }
4021
4022 static void raid10_free_conf(struct r10conf *conf)
4023 {
4024         if (!conf)
4025                 return;
4026
4027         mempool_exit(&conf->r10bio_pool);
4028         kfree(conf->mirrors);
4029         kfree(conf->mirrors_old);
4030         kfree(conf->mirrors_new);
4031         safe_put_page(conf->tmppage);
4032         bioset_exit(&conf->bio_split);
4033         kfree(conf);
4034 }
4035
4036 static struct r10conf *setup_conf(struct mddev *mddev)
4037 {
4038         struct r10conf *conf = NULL;
4039         int err = -EINVAL;
4040         struct geom geo;
4041         int copies;
4042
4043         copies = setup_geo(&geo, mddev, geo_new);
4044
4045         if (copies == -2) {
4046                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
4047                         mdname(mddev), PAGE_SIZE);
4048                 goto out;
4049         }
4050
4051         if (copies < 2 || copies > mddev->raid_disks) {
4052                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
4053                         mdname(mddev), mddev->new_layout);
4054                 goto out;
4055         }
4056
4057         err = -ENOMEM;
4058         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
4059         if (!conf)
4060                 goto out;
4061
4062         /* FIXME calc properly */
4063         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
4064                                 sizeof(struct raid10_info),
4065                                 GFP_KERNEL);
4066         if (!conf->mirrors)
4067                 goto out;
4068
4069         conf->tmppage = alloc_page(GFP_KERNEL);
4070         if (!conf->tmppage)
4071                 goto out;
4072
4073         conf->geo = geo;
4074         conf->copies = copies;
4075         err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
4076                            rbio_pool_free, conf);
4077         if (err)
4078                 goto out;
4079
4080         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
4081         if (err)
4082                 goto out;
4083
4084         calc_sectors(conf, mddev->dev_sectors);
4085         if (mddev->reshape_position == MaxSector) {
4086                 conf->prev = conf->geo;
4087                 conf->reshape_progress = MaxSector;
4088         } else {
4089                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
4090                         err = -EINVAL;
4091                         goto out;
4092                 }
4093                 conf->reshape_progress = mddev->reshape_position;
4094                 if (conf->prev.far_offset)
4095                         conf->prev.stride = 1 << conf->prev.chunk_shift;
4096                 else
4097                         /* far_copies must be 1 */
4098                         conf->prev.stride = conf->dev_sectors;
4099         }
4100         conf->reshape_safe = conf->reshape_progress;
4101         spin_lock_init(&conf->device_lock);
4102         INIT_LIST_HEAD(&conf->retry_list);
4103         INIT_LIST_HEAD(&conf->bio_end_io_list);
4104
4105         seqlock_init(&conf->resync_lock);
4106         init_waitqueue_head(&conf->wait_barrier);
4107         atomic_set(&conf->nr_pending, 0);
4108
4109         err = -ENOMEM;
4110         conf->thread = md_register_thread(raid10d, mddev, "raid10");
4111         if (!conf->thread)
4112                 goto out;
4113
4114         conf->mddev = mddev;
4115         return conf;
4116
4117  out:
4118         raid10_free_conf(conf);
4119         return ERR_PTR(err);
4120 }
4121
4122 static void raid10_set_io_opt(struct r10conf *conf)
4123 {
4124         int raid_disks = conf->geo.raid_disks;
4125
4126         if (!(conf->geo.raid_disks % conf->geo.near_copies))
4127                 raid_disks /= conf->geo.near_copies;
4128         blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4129                          raid_disks);
4130 }
4131
4132 static int raid10_run(struct mddev *mddev)
4133 {
4134         struct r10conf *conf;
4135         int i, disk_idx;
4136         struct raid10_info *disk;
4137         struct md_rdev *rdev;
4138         sector_t size;
4139         sector_t min_offset_diff = 0;
4140         int first = 1;
4141
4142         if (mddev_init_writes_pending(mddev) < 0)
4143                 return -ENOMEM;
4144
4145         if (mddev->private == NULL) {
4146                 conf = setup_conf(mddev);
4147                 if (IS_ERR(conf))
4148                         return PTR_ERR(conf);
4149                 mddev->private = conf;
4150         }
4151         conf = mddev->private;
4152         if (!conf)
4153                 goto out;
4154
4155         mddev->thread = conf->thread;
4156         conf->thread = NULL;
4157
4158         if (mddev_is_clustered(conf->mddev)) {
4159                 int fc, fo;
4160
4161                 fc = (mddev->layout >> 8) & 255;
4162                 fo = mddev->layout & (1<<16);
4163                 if (fc > 1 || fo > 0) {
4164                         pr_err("only near layout is supported by clustered"
4165                                 " raid10\n");
4166                         goto out_free_conf;
4167                 }
4168         }
4169
4170         if (mddev->queue) {
4171                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4172                 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4173                 raid10_set_io_opt(conf);
4174         }
4175
4176         rdev_for_each(rdev, mddev) {
4177                 long long diff;
4178
4179                 disk_idx = rdev->raid_disk;
4180                 if (disk_idx < 0)
4181                         continue;
4182                 if (disk_idx >= conf->geo.raid_disks &&
4183                     disk_idx >= conf->prev.raid_disks)
4184                         continue;
4185                 disk = conf->mirrors + disk_idx;
4186
4187                 if (test_bit(Replacement, &rdev->flags)) {
4188                         if (disk->replacement)
4189                                 goto out_free_conf;
4190                         disk->replacement = rdev;
4191                 } else {
4192                         if (disk->rdev)
4193                                 goto out_free_conf;
4194                         disk->rdev = rdev;
4195                 }
4196                 diff = (rdev->new_data_offset - rdev->data_offset);
4197                 if (!mddev->reshape_backwards)
4198                         diff = -diff;
4199                 if (diff < 0)
4200                         diff = 0;
4201                 if (first || diff < min_offset_diff)
4202                         min_offset_diff = diff;
4203
4204                 if (mddev->gendisk)
4205                         disk_stack_limits(mddev->gendisk, rdev->bdev,
4206                                           rdev->data_offset << 9);
4207
4208                 disk->head_position = 0;
4209                 first = 0;
4210         }
4211
4212         /* need to check that every block has at least one working mirror */
4213         if (!enough(conf, -1)) {
4214                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4215                        mdname(mddev));
4216                 goto out_free_conf;
4217         }
4218
4219         if (conf->reshape_progress != MaxSector) {
4220                 /* must ensure that shape change is supported */
4221                 if (conf->geo.far_copies != 1 &&
4222                     conf->geo.far_offset == 0)
4223                         goto out_free_conf;
4224                 if (conf->prev.far_copies != 1 &&
4225                     conf->prev.far_offset == 0)
4226                         goto out_free_conf;
4227         }
4228
4229         mddev->degraded = 0;
4230         for (i = 0;
4231              i < conf->geo.raid_disks
4232                      || i < conf->prev.raid_disks;
4233              i++) {
4234
4235                 disk = conf->mirrors + i;
4236
4237                 if (!disk->rdev && disk->replacement) {
4238                         /* The replacement is all we have - use it */
4239                         disk->rdev = disk->replacement;
4240                         disk->replacement = NULL;
4241                         clear_bit(Replacement, &disk->rdev->flags);
4242                 }
4243
4244                 if (!disk->rdev ||
4245                     !test_bit(In_sync, &disk->rdev->flags)) {
4246                         disk->head_position = 0;
4247                         mddev->degraded++;
4248                         if (disk->rdev &&
4249                             disk->rdev->saved_raid_disk < 0)
4250                                 conf->fullsync = 1;
4251                 }
4252
4253                 if (disk->replacement &&
4254                     !test_bit(In_sync, &disk->replacement->flags) &&
4255                     disk->replacement->saved_raid_disk < 0) {
4256                         conf->fullsync = 1;
4257                 }
4258
4259                 disk->recovery_disabled = mddev->recovery_disabled - 1;
4260         }
4261
4262         if (mddev->recovery_cp != MaxSector)
4263                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4264                           mdname(mddev));
4265         pr_info("md/raid10:%s: active with %d out of %d devices\n",
4266                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4267                 conf->geo.raid_disks);
4268         /*
4269          * Ok, everything is just fine now
4270          */
4271         mddev->dev_sectors = conf->dev_sectors;
4272         size = raid10_size(mddev, 0, 0);
4273         md_set_array_sectors(mddev, size);
4274         mddev->resync_max_sectors = size;
4275         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4276
4277         if (md_integrity_register(mddev))
4278                 goto out_free_conf;
4279
4280         if (conf->reshape_progress != MaxSector) {
4281                 unsigned long before_length, after_length;
4282
4283                 before_length = ((1 << conf->prev.chunk_shift) *
4284                                  conf->prev.far_copies);
4285                 after_length = ((1 << conf->geo.chunk_shift) *
4286                                 conf->geo.far_copies);
4287
4288                 if (max(before_length, after_length) > min_offset_diff) {
4289                         /* This cannot work */
4290                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4291                         goto out_free_conf;
4292                 }
4293                 conf->offset_diff = min_offset_diff;
4294
4295                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4296                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4297                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4298                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4299                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4300                                                         "reshape");
4301                 if (!mddev->sync_thread)
4302                         goto out_free_conf;
4303         }
4304
4305         return 0;
4306
4307 out_free_conf:
4308         md_unregister_thread(&mddev->thread);
4309         raid10_free_conf(conf);
4310         mddev->private = NULL;
4311 out:
4312         return -EIO;
4313 }
4314
4315 static void raid10_free(struct mddev *mddev, void *priv)
4316 {
4317         raid10_free_conf(priv);
4318 }
4319
4320 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4321 {
4322         struct r10conf *conf = mddev->private;
4323
4324         if (quiesce)
4325                 raise_barrier(conf, 0);
4326         else
4327                 lower_barrier(conf);
4328 }
4329
4330 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4331 {
4332         /* Resize of 'far' arrays is not supported.
4333          * For 'near' and 'offset' arrays we can set the
4334          * number of sectors used to be an appropriate multiple
4335          * of the chunk size.
4336          * For 'offset', this is far_copies*chunksize.
4337          * For 'near' the multiplier is the LCM of
4338          * near_copies and raid_disks.
4339          * So if far_copies > 1 && !far_offset, fail.
4340          * Else find LCM(raid_disks, near_copy)*far_copies and
4341          * multiply by chunk_size.  Then round to this number.
4342          * This is mostly done by raid10_size()
4343          */
4344         struct r10conf *conf = mddev->private;
4345         sector_t oldsize, size;
4346
4347         if (mddev->reshape_position != MaxSector)
4348                 return -EBUSY;
4349
4350         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4351                 return -EINVAL;
4352
4353         oldsize = raid10_size(mddev, 0, 0);
4354         size = raid10_size(mddev, sectors, 0);
4355         if (mddev->external_size &&
4356             mddev->array_sectors > size)
4357                 return -EINVAL;
4358         if (mddev->bitmap) {
4359                 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4360                 if (ret)
4361                         return ret;
4362         }
4363         md_set_array_sectors(mddev, size);
4364         if (sectors > mddev->dev_sectors &&
4365             mddev->recovery_cp > oldsize) {
4366                 mddev->recovery_cp = oldsize;
4367                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4368         }
4369         calc_sectors(conf, sectors);
4370         mddev->dev_sectors = conf->dev_sectors;
4371         mddev->resync_max_sectors = size;
4372         return 0;
4373 }
4374
4375 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4376 {
4377         struct md_rdev *rdev;
4378         struct r10conf *conf;
4379
4380         if (mddev->degraded > 0) {
4381                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4382                         mdname(mddev));
4383                 return ERR_PTR(-EINVAL);
4384         }
4385         sector_div(size, devs);
4386
4387         /* Set new parameters */
4388         mddev->new_level = 10;
4389         /* new layout: far_copies = 1, near_copies = 2 */
4390         mddev->new_layout = (1<<8) + 2;
4391         mddev->new_chunk_sectors = mddev->chunk_sectors;
4392         mddev->delta_disks = mddev->raid_disks;
4393         mddev->raid_disks *= 2;
4394         /* make sure it will be not marked as dirty */
4395         mddev->recovery_cp = MaxSector;
4396         mddev->dev_sectors = size;
4397
4398         conf = setup_conf(mddev);
4399         if (!IS_ERR(conf)) {
4400                 rdev_for_each(rdev, mddev)
4401                         if (rdev->raid_disk >= 0) {
4402                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4403                                 rdev->sectors = size;
4404                         }
4405                 WRITE_ONCE(conf->barrier, 1);
4406         }
4407
4408         return conf;
4409 }
4410
4411 static void *raid10_takeover(struct mddev *mddev)
4412 {
4413         struct r0conf *raid0_conf;
4414
4415         /* raid10 can take over:
4416          *  raid0 - providing it has only two drives
4417          */
4418         if (mddev->level == 0) {
4419                 /* for raid0 takeover only one zone is supported */
4420                 raid0_conf = mddev->private;
4421                 if (raid0_conf->nr_strip_zones > 1) {
4422                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4423                                 mdname(mddev));
4424                         return ERR_PTR(-EINVAL);
4425                 }
4426                 return raid10_takeover_raid0(mddev,
4427                         raid0_conf->strip_zone->zone_end,
4428                         raid0_conf->strip_zone->nb_dev);
4429         }
4430         return ERR_PTR(-EINVAL);
4431 }
4432
4433 static int raid10_check_reshape(struct mddev *mddev)
4434 {
4435         /* Called when there is a request to change
4436          * - layout (to ->new_layout)
4437          * - chunk size (to ->new_chunk_sectors)
4438          * - raid_disks (by delta_disks)
4439          * or when trying to restart a reshape that was ongoing.
4440          *
4441          * We need to validate the request and possibly allocate
4442          * space if that might be an issue later.
4443          *
4444          * Currently we reject any reshape of a 'far' mode array,
4445          * allow chunk size to change if new is generally acceptable,
4446          * allow raid_disks to increase, and allow
4447          * a switch between 'near' mode and 'offset' mode.
4448          */
4449         struct r10conf *conf = mddev->private;
4450         struct geom geo;
4451
4452         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4453                 return -EINVAL;
4454
4455         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4456                 /* mustn't change number of copies */
4457                 return -EINVAL;
4458         if (geo.far_copies > 1 && !geo.far_offset)
4459                 /* Cannot switch to 'far' mode */
4460                 return -EINVAL;
4461
4462         if (mddev->array_sectors & geo.chunk_mask)
4463                         /* not factor of array size */
4464                         return -EINVAL;
4465
4466         if (!enough(conf, -1))
4467                 return -EINVAL;
4468
4469         kfree(conf->mirrors_new);
4470         conf->mirrors_new = NULL;
4471         if (mddev->delta_disks > 0) {
4472                 /* allocate new 'mirrors' list */
4473                 conf->mirrors_new =
4474                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4475                                 sizeof(struct raid10_info),
4476                                 GFP_KERNEL);
4477                 if (!conf->mirrors_new)
4478                         return -ENOMEM;
4479         }
4480         return 0;
4481 }
4482
4483 /*
4484  * Need to check if array has failed when deciding whether to:
4485  *  - start an array
4486  *  - remove non-faulty devices
4487  *  - add a spare
4488  *  - allow a reshape
4489  * This determination is simple when no reshape is happening.
4490  * However if there is a reshape, we need to carefully check
4491  * both the before and after sections.
4492  * This is because some failed devices may only affect one
4493  * of the two sections, and some non-in_sync devices may
4494  * be insync in the section most affected by failed devices.
4495  */
4496 static int calc_degraded(struct r10conf *conf)
4497 {
4498         int degraded, degraded2;
4499         int i;
4500
4501         rcu_read_lock();
4502         degraded = 0;
4503         /* 'prev' section first */
4504         for (i = 0; i < conf->prev.raid_disks; i++) {
4505                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4506                 if (!rdev || test_bit(Faulty, &rdev->flags))
4507                         degraded++;
4508                 else if (!test_bit(In_sync, &rdev->flags))
4509                         /* When we can reduce the number of devices in
4510                          * an array, this might not contribute to
4511                          * 'degraded'.  It does now.
4512                          */
4513                         degraded++;
4514         }
4515         rcu_read_unlock();
4516         if (conf->geo.raid_disks == conf->prev.raid_disks)
4517                 return degraded;
4518         rcu_read_lock();
4519         degraded2 = 0;
4520         for (i = 0; i < conf->geo.raid_disks; i++) {
4521                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4522                 if (!rdev || test_bit(Faulty, &rdev->flags))
4523                         degraded2++;
4524                 else if (!test_bit(In_sync, &rdev->flags)) {
4525                         /* If reshape is increasing the number of devices,
4526                          * this section has already been recovered, so
4527                          * it doesn't contribute to degraded.
4528                          * else it does.
4529                          */
4530                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4531                                 degraded2++;
4532                 }
4533         }
4534         rcu_read_unlock();
4535         if (degraded2 > degraded)
4536                 return degraded2;
4537         return degraded;
4538 }
4539
4540 static int raid10_start_reshape(struct mddev *mddev)
4541 {
4542         /* A 'reshape' has been requested. This commits
4543          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4544          * This also checks if there are enough spares and adds them
4545          * to the array.
4546          * We currently require enough spares to make the final
4547          * array non-degraded.  We also require that the difference
4548          * between old and new data_offset - on each device - is
4549          * enough that we never risk over-writing.
4550          */
4551
4552         unsigned long before_length, after_length;
4553         sector_t min_offset_diff = 0;
4554         int first = 1;
4555         struct geom new;
4556         struct r10conf *conf = mddev->private;
4557         struct md_rdev *rdev;
4558         int spares = 0;
4559         int ret;
4560
4561         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4562                 return -EBUSY;
4563
4564         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4565                 return -EINVAL;
4566
4567         before_length = ((1 << conf->prev.chunk_shift) *
4568                          conf->prev.far_copies);
4569         after_length = ((1 << conf->geo.chunk_shift) *
4570                         conf->geo.far_copies);
4571
4572         rdev_for_each(rdev, mddev) {
4573                 if (!test_bit(In_sync, &rdev->flags)
4574                     && !test_bit(Faulty, &rdev->flags))
4575                         spares++;
4576                 if (rdev->raid_disk >= 0) {
4577                         long long diff = (rdev->new_data_offset
4578                                           - rdev->data_offset);
4579                         if (!mddev->reshape_backwards)
4580                                 diff = -diff;
4581                         if (diff < 0)
4582                                 diff = 0;
4583                         if (first || diff < min_offset_diff)
4584                                 min_offset_diff = diff;
4585                         first = 0;
4586                 }
4587         }
4588
4589         if (max(before_length, after_length) > min_offset_diff)
4590                 return -EINVAL;
4591
4592         if (spares < mddev->delta_disks)
4593                 return -EINVAL;
4594
4595         conf->offset_diff = min_offset_diff;
4596         spin_lock_irq(&conf->device_lock);
4597         if (conf->mirrors_new) {
4598                 memcpy(conf->mirrors_new, conf->mirrors,
4599                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4600                 smp_mb();
4601                 kfree(conf->mirrors_old);
4602                 conf->mirrors_old = conf->mirrors;
4603                 conf->mirrors = conf->mirrors_new;
4604                 conf->mirrors_new = NULL;
4605         }
4606         setup_geo(&conf->geo, mddev, geo_start);
4607         smp_mb();
4608         if (mddev->reshape_backwards) {
4609                 sector_t size = raid10_size(mddev, 0, 0);
4610                 if (size < mddev->array_sectors) {
4611                         spin_unlock_irq(&conf->device_lock);
4612                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4613                                 mdname(mddev));
4614                         return -EINVAL;
4615                 }
4616                 mddev->resync_max_sectors = size;
4617                 conf->reshape_progress = size;
4618         } else
4619                 conf->reshape_progress = 0;
4620         conf->reshape_safe = conf->reshape_progress;
4621         spin_unlock_irq(&conf->device_lock);
4622
4623         if (mddev->delta_disks && mddev->bitmap) {
4624                 struct mdp_superblock_1 *sb = NULL;
4625                 sector_t oldsize, newsize;
4626
4627                 oldsize = raid10_size(mddev, 0, 0);
4628                 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4629
4630                 if (!mddev_is_clustered(mddev)) {
4631                         ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4632                         if (ret)
4633                                 goto abort;
4634                         else
4635                                 goto out;
4636                 }
4637
4638                 rdev_for_each(rdev, mddev) {
4639                         if (rdev->raid_disk > -1 &&
4640                             !test_bit(Faulty, &rdev->flags))
4641                                 sb = page_address(rdev->sb_page);
4642                 }
4643
4644                 /*
4645                  * some node is already performing reshape, and no need to
4646                  * call md_bitmap_resize again since it should be called when
4647                  * receiving BITMAP_RESIZE msg
4648                  */
4649                 if ((sb && (le32_to_cpu(sb->feature_map) &
4650                             MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4651                         goto out;
4652
4653                 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4654                 if (ret)
4655                         goto abort;
4656
4657                 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4658                 if (ret) {
4659                         md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4660                         goto abort;
4661                 }
4662         }
4663 out:
4664         if (mddev->delta_disks > 0) {
4665                 rdev_for_each(rdev, mddev)
4666                         if (rdev->raid_disk < 0 &&
4667                             !test_bit(Faulty, &rdev->flags)) {
4668                                 if (raid10_add_disk(mddev, rdev) == 0) {
4669                                         if (rdev->raid_disk >=
4670                                             conf->prev.raid_disks)
4671                                                 set_bit(In_sync, &rdev->flags);
4672                                         else
4673                                                 rdev->recovery_offset = 0;
4674
4675                                         /* Failure here is OK */
4676                                         sysfs_link_rdev(mddev, rdev);
4677                                 }
4678                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4679                                    && !test_bit(Faulty, &rdev->flags)) {
4680                                 /* This is a spare that was manually added */
4681                                 set_bit(In_sync, &rdev->flags);
4682                         }
4683         }
4684         /* When a reshape changes the number of devices,
4685          * ->degraded is measured against the larger of the
4686          * pre and  post numbers.
4687          */
4688         spin_lock_irq(&conf->device_lock);
4689         mddev->degraded = calc_degraded(conf);
4690         spin_unlock_irq(&conf->device_lock);
4691         mddev->raid_disks = conf->geo.raid_disks;
4692         mddev->reshape_position = conf->reshape_progress;
4693         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4694
4695         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4696         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4697         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4698         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4699         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4700
4701         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4702                                                 "reshape");
4703         if (!mddev->sync_thread) {
4704                 ret = -EAGAIN;
4705                 goto abort;
4706         }
4707         conf->reshape_checkpoint = jiffies;
4708         md_wakeup_thread(mddev->sync_thread);
4709         md_new_event();
4710         return 0;
4711
4712 abort:
4713         mddev->recovery = 0;
4714         spin_lock_irq(&conf->device_lock);
4715         conf->geo = conf->prev;
4716         mddev->raid_disks = conf->geo.raid_disks;
4717         rdev_for_each(rdev, mddev)
4718                 rdev->new_data_offset = rdev->data_offset;
4719         smp_wmb();
4720         conf->reshape_progress = MaxSector;
4721         conf->reshape_safe = MaxSector;
4722         mddev->reshape_position = MaxSector;
4723         spin_unlock_irq(&conf->device_lock);
4724         return ret;
4725 }
4726
4727 /* Calculate the last device-address that could contain
4728  * any block from the chunk that includes the array-address 's'
4729  * and report the next address.
4730  * i.e. the address returned will be chunk-aligned and after
4731  * any data that is in the chunk containing 's'.
4732  */
4733 static sector_t last_dev_address(sector_t s, struct geom *geo)
4734 {
4735         s = (s | geo->chunk_mask) + 1;
4736         s >>= geo->chunk_shift;
4737         s *= geo->near_copies;
4738         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4739         s *= geo->far_copies;
4740         s <<= geo->chunk_shift;
4741         return s;
4742 }
4743
4744 /* Calculate the first device-address that could contain
4745  * any block from the chunk that includes the array-address 's'.
4746  * This too will be the start of a chunk
4747  */
4748 static sector_t first_dev_address(sector_t s, struct geom *geo)
4749 {
4750         s >>= geo->chunk_shift;
4751         s *= geo->near_copies;
4752         sector_div(s, geo->raid_disks);
4753         s *= geo->far_copies;
4754         s <<= geo->chunk_shift;
4755         return s;
4756 }
4757
4758 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4759                                 int *skipped)
4760 {
4761         /* We simply copy at most one chunk (smallest of old and new)
4762          * at a time, possibly less if that exceeds RESYNC_PAGES,
4763          * or we hit a bad block or something.
4764          * This might mean we pause for normal IO in the middle of
4765          * a chunk, but that is not a problem as mddev->reshape_position
4766          * can record any location.
4767          *
4768          * If we will want to write to a location that isn't
4769          * yet recorded as 'safe' (i.e. in metadata on disk) then
4770          * we need to flush all reshape requests and update the metadata.
4771          *
4772          * When reshaping forwards (e.g. to more devices), we interpret
4773          * 'safe' as the earliest block which might not have been copied
4774          * down yet.  We divide this by previous stripe size and multiply
4775          * by previous stripe length to get lowest device offset that we
4776          * cannot write to yet.
4777          * We interpret 'sector_nr' as an address that we want to write to.
4778          * From this we use last_device_address() to find where we might
4779          * write to, and first_device_address on the  'safe' position.
4780          * If this 'next' write position is after the 'safe' position,
4781          * we must update the metadata to increase the 'safe' position.
4782          *
4783          * When reshaping backwards, we round in the opposite direction
4784          * and perform the reverse test:  next write position must not be
4785          * less than current safe position.
4786          *
4787          * In all this the minimum difference in data offsets
4788          * (conf->offset_diff - always positive) allows a bit of slack,
4789          * so next can be after 'safe', but not by more than offset_diff
4790          *
4791          * We need to prepare all the bios here before we start any IO
4792          * to ensure the size we choose is acceptable to all devices.
4793          * The means one for each copy for write-out and an extra one for
4794          * read-in.
4795          * We store the read-in bio in ->master_bio and the others in
4796          * ->devs[x].bio and ->devs[x].repl_bio.
4797          */
4798         struct r10conf *conf = mddev->private;
4799         struct r10bio *r10_bio;
4800         sector_t next, safe, last;
4801         int max_sectors;
4802         int nr_sectors;
4803         int s;
4804         struct md_rdev *rdev;
4805         int need_flush = 0;
4806         struct bio *blist;
4807         struct bio *bio, *read_bio;
4808         int sectors_done = 0;
4809         struct page **pages;
4810
4811         if (sector_nr == 0) {
4812                 /* If restarting in the middle, skip the initial sectors */
4813                 if (mddev->reshape_backwards &&
4814                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4815                         sector_nr = (raid10_size(mddev, 0, 0)
4816                                      - conf->reshape_progress);
4817                 } else if (!mddev->reshape_backwards &&
4818                            conf->reshape_progress > 0)
4819                         sector_nr = conf->reshape_progress;
4820                 if (sector_nr) {
4821                         mddev->curr_resync_completed = sector_nr;
4822                         sysfs_notify_dirent_safe(mddev->sysfs_completed);
4823                         *skipped = 1;
4824                         return sector_nr;
4825                 }
4826         }
4827
4828         /* We don't use sector_nr to track where we are up to
4829          * as that doesn't work well for ->reshape_backwards.
4830          * So just use ->reshape_progress.
4831          */
4832         if (mddev->reshape_backwards) {
4833                 /* 'next' is the earliest device address that we might
4834                  * write to for this chunk in the new layout
4835                  */
4836                 next = first_dev_address(conf->reshape_progress - 1,
4837                                          &conf->geo);
4838
4839                 /* 'safe' is the last device address that we might read from
4840                  * in the old layout after a restart
4841                  */
4842                 safe = last_dev_address(conf->reshape_safe - 1,
4843                                         &conf->prev);
4844
4845                 if (next + conf->offset_diff < safe)
4846                         need_flush = 1;
4847
4848                 last = conf->reshape_progress - 1;
4849                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4850                                                & conf->prev.chunk_mask);
4851                 if (sector_nr + RESYNC_SECTORS < last)
4852                         sector_nr = last + 1 - RESYNC_SECTORS;
4853         } else {
4854                 /* 'next' is after the last device address that we
4855                  * might write to for this chunk in the new layout
4856                  */
4857                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4858
4859                 /* 'safe' is the earliest device address that we might
4860                  * read from in the old layout after a restart
4861                  */
4862                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4863
4864                 /* Need to update metadata if 'next' might be beyond 'safe'
4865                  * as that would possibly corrupt data
4866                  */
4867                 if (next > safe + conf->offset_diff)
4868                         need_flush = 1;
4869
4870                 sector_nr = conf->reshape_progress;
4871                 last  = sector_nr | (conf->geo.chunk_mask
4872                                      & conf->prev.chunk_mask);
4873
4874                 if (sector_nr + RESYNC_SECTORS <= last)
4875                         last = sector_nr + RESYNC_SECTORS - 1;
4876         }
4877
4878         if (need_flush ||
4879             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4880                 /* Need to update reshape_position in metadata */
4881                 wait_barrier(conf, false);
4882                 mddev->reshape_position = conf->reshape_progress;
4883                 if (mddev->reshape_backwards)
4884                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4885                                 - conf->reshape_progress;
4886                 else
4887                         mddev->curr_resync_completed = conf->reshape_progress;
4888                 conf->reshape_checkpoint = jiffies;
4889                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4890                 md_wakeup_thread(mddev->thread);
4891                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4892                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4893                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4894                         allow_barrier(conf);
4895                         return sectors_done;
4896                 }
4897                 conf->reshape_safe = mddev->reshape_position;
4898                 allow_barrier(conf);
4899         }
4900
4901         raise_barrier(conf, 0);
4902 read_more:
4903         /* Now schedule reads for blocks from sector_nr to last */
4904         r10_bio = raid10_alloc_init_r10buf(conf);
4905         r10_bio->state = 0;
4906         raise_barrier(conf, 1);
4907         atomic_set(&r10_bio->remaining, 0);
4908         r10_bio->mddev = mddev;
4909         r10_bio->sector = sector_nr;
4910         set_bit(R10BIO_IsReshape, &r10_bio->state);
4911         r10_bio->sectors = last - sector_nr + 1;
4912         rdev = read_balance(conf, r10_bio, &max_sectors);
4913         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4914
4915         if (!rdev) {
4916                 /* Cannot read from here, so need to record bad blocks
4917                  * on all the target devices.
4918                  */
4919                 // FIXME
4920                 mempool_free(r10_bio, &conf->r10buf_pool);
4921                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4922                 return sectors_done;
4923         }
4924
4925         read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4926                                     GFP_KERNEL, &mddev->bio_set);
4927         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4928                                + rdev->data_offset);
4929         read_bio->bi_private = r10_bio;
4930         read_bio->bi_end_io = end_reshape_read;
4931         r10_bio->master_bio = read_bio;
4932         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4933
4934         /*
4935          * Broadcast RESYNC message to other nodes, so all nodes would not
4936          * write to the region to avoid conflict.
4937         */
4938         if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4939                 struct mdp_superblock_1 *sb = NULL;
4940                 int sb_reshape_pos = 0;
4941
4942                 conf->cluster_sync_low = sector_nr;
4943                 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4944                 sb = page_address(rdev->sb_page);
4945                 if (sb) {
4946                         sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4947                         /*
4948                          * Set cluster_sync_low again if next address for array
4949                          * reshape is less than cluster_sync_low. Since we can't
4950                          * update cluster_sync_low until it has finished reshape.
4951                          */
4952                         if (sb_reshape_pos < conf->cluster_sync_low)
4953                                 conf->cluster_sync_low = sb_reshape_pos;
4954                 }
4955
4956                 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4957                                                           conf->cluster_sync_high);
4958         }
4959
4960         /* Now find the locations in the new layout */
4961         __raid10_find_phys(&conf->geo, r10_bio);
4962
4963         blist = read_bio;
4964         read_bio->bi_next = NULL;
4965
4966         rcu_read_lock();
4967         for (s = 0; s < conf->copies*2; s++) {
4968                 struct bio *b;
4969                 int d = r10_bio->devs[s/2].devnum;
4970                 struct md_rdev *rdev2;
4971                 if (s&1) {
4972                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4973                         b = r10_bio->devs[s/2].repl_bio;
4974                 } else {
4975                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4976                         b = r10_bio->devs[s/2].bio;
4977                 }
4978                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4979                         continue;
4980
4981                 bio_set_dev(b, rdev2->bdev);
4982                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4983                         rdev2->new_data_offset;
4984                 b->bi_end_io = end_reshape_write;
4985                 b->bi_opf = REQ_OP_WRITE;
4986                 b->bi_next = blist;
4987                 blist = b;
4988         }
4989
4990         /* Now add as many pages as possible to all of these bios. */
4991
4992         nr_sectors = 0;
4993         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4994         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4995                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4996                 int len = (max_sectors - s) << 9;
4997                 if (len > PAGE_SIZE)
4998                         len = PAGE_SIZE;
4999                 for (bio = blist; bio ; bio = bio->bi_next) {
5000                         /*
5001                          * won't fail because the vec table is big enough
5002                          * to hold all these pages
5003                          */
5004                         bio_add_page(bio, page, len, 0);
5005                 }
5006                 sector_nr += len >> 9;
5007                 nr_sectors += len >> 9;
5008         }
5009         rcu_read_unlock();
5010         r10_bio->sectors = nr_sectors;
5011
5012         /* Now submit the read */
5013         md_sync_acct_bio(read_bio, r10_bio->sectors);
5014         atomic_inc(&r10_bio->remaining);
5015         read_bio->bi_next = NULL;
5016         submit_bio_noacct(read_bio);
5017         sectors_done += nr_sectors;
5018         if (sector_nr <= last)
5019                 goto read_more;
5020
5021         lower_barrier(conf);
5022
5023         /* Now that we have done the whole section we can
5024          * update reshape_progress
5025          */
5026         if (mddev->reshape_backwards)
5027                 conf->reshape_progress -= sectors_done;
5028         else
5029                 conf->reshape_progress += sectors_done;
5030
5031         return sectors_done;
5032 }
5033
5034 static void end_reshape_request(struct r10bio *r10_bio);
5035 static int handle_reshape_read_error(struct mddev *mddev,
5036                                      struct r10bio *r10_bio);
5037 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
5038 {
5039         /* Reshape read completed.  Hopefully we have a block
5040          * to write out.
5041          * If we got a read error then we do sync 1-page reads from
5042          * elsewhere until we find the data - or give up.
5043          */
5044         struct r10conf *conf = mddev->private;
5045         int s;
5046
5047         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
5048                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
5049                         /* Reshape has been aborted */
5050                         md_done_sync(mddev, r10_bio->sectors, 0);
5051                         return;
5052                 }
5053
5054         /* We definitely have the data in the pages, schedule the
5055          * writes.
5056          */
5057         atomic_set(&r10_bio->remaining, 1);
5058         for (s = 0; s < conf->copies*2; s++) {
5059                 struct bio *b;
5060                 int d = r10_bio->devs[s/2].devnum;
5061                 struct md_rdev *rdev;
5062                 rcu_read_lock();
5063                 if (s&1) {
5064                         rdev = rcu_dereference(conf->mirrors[d].replacement);
5065                         b = r10_bio->devs[s/2].repl_bio;
5066                 } else {
5067                         rdev = rcu_dereference(conf->mirrors[d].rdev);
5068                         b = r10_bio->devs[s/2].bio;
5069                 }
5070                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
5071                         rcu_read_unlock();
5072                         continue;
5073                 }
5074                 atomic_inc(&rdev->nr_pending);
5075                 rcu_read_unlock();
5076                 md_sync_acct_bio(b, r10_bio->sectors);
5077                 atomic_inc(&r10_bio->remaining);
5078                 b->bi_next = NULL;
5079                 submit_bio_noacct(b);
5080         }
5081         end_reshape_request(r10_bio);
5082 }
5083
5084 static void end_reshape(struct r10conf *conf)
5085 {
5086         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5087                 return;
5088
5089         spin_lock_irq(&conf->device_lock);
5090         conf->prev = conf->geo;
5091         md_finish_reshape(conf->mddev);
5092         smp_wmb();
5093         conf->reshape_progress = MaxSector;
5094         conf->reshape_safe = MaxSector;
5095         spin_unlock_irq(&conf->device_lock);
5096
5097         if (conf->mddev->queue)
5098                 raid10_set_io_opt(conf);
5099         conf->fullsync = 0;
5100 }
5101
5102 static void raid10_update_reshape_pos(struct mddev *mddev)
5103 {
5104         struct r10conf *conf = mddev->private;
5105         sector_t lo, hi;
5106
5107         md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5108         if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5109             || mddev->reshape_position == MaxSector)
5110                 conf->reshape_progress = mddev->reshape_position;
5111         else
5112                 WARN_ON_ONCE(1);
5113 }
5114
5115 static int handle_reshape_read_error(struct mddev *mddev,
5116                                      struct r10bio *r10_bio)
5117 {
5118         /* Use sync reads to get the blocks from somewhere else */
5119         int sectors = r10_bio->sectors;
5120         struct r10conf *conf = mddev->private;
5121         struct r10bio *r10b;
5122         int slot = 0;
5123         int idx = 0;
5124         struct page **pages;
5125
5126         r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5127         if (!r10b) {
5128                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5129                 return -ENOMEM;
5130         }
5131
5132         /* reshape IOs share pages from .devs[0].bio */
5133         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5134
5135         r10b->sector = r10_bio->sector;
5136         __raid10_find_phys(&conf->prev, r10b);
5137
5138         while (sectors) {
5139                 int s = sectors;
5140                 int success = 0;
5141                 int first_slot = slot;
5142
5143                 if (s > (PAGE_SIZE >> 9))
5144                         s = PAGE_SIZE >> 9;
5145
5146                 rcu_read_lock();
5147                 while (!success) {
5148                         int d = r10b->devs[slot].devnum;
5149                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5150                         sector_t addr;
5151                         if (rdev == NULL ||
5152                             test_bit(Faulty, &rdev->flags) ||
5153                             !test_bit(In_sync, &rdev->flags))
5154                                 goto failed;
5155
5156                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5157                         atomic_inc(&rdev->nr_pending);
5158                         rcu_read_unlock();
5159                         success = sync_page_io(rdev,
5160                                                addr,
5161                                                s << 9,
5162                                                pages[idx],
5163                                                REQ_OP_READ, false);
5164                         rdev_dec_pending(rdev, mddev);
5165                         rcu_read_lock();
5166                         if (success)
5167                                 break;
5168                 failed:
5169                         slot++;
5170                         if (slot >= conf->copies)
5171                                 slot = 0;
5172                         if (slot == first_slot)
5173                                 break;
5174                 }
5175                 rcu_read_unlock();
5176                 if (!success) {
5177                         /* couldn't read this block, must give up */
5178                         set_bit(MD_RECOVERY_INTR,
5179                                 &mddev->recovery);
5180                         kfree(r10b);
5181                         return -EIO;
5182                 }
5183                 sectors -= s;
5184                 idx++;
5185         }
5186         kfree(r10b);
5187         return 0;
5188 }
5189
5190 static void end_reshape_write(struct bio *bio)
5191 {
5192         struct r10bio *r10_bio = get_resync_r10bio(bio);
5193         struct mddev *mddev = r10_bio->mddev;
5194         struct r10conf *conf = mddev->private;
5195         int d;
5196         int slot;
5197         int repl;
5198         struct md_rdev *rdev = NULL;
5199
5200         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5201         if (repl)
5202                 rdev = conf->mirrors[d].replacement;
5203         if (!rdev) {
5204                 smp_mb();
5205                 rdev = conf->mirrors[d].rdev;
5206         }
5207
5208         if (bio->bi_status) {
5209                 /* FIXME should record badblock */
5210                 md_error(mddev, rdev);
5211         }
5212
5213         rdev_dec_pending(rdev, mddev);
5214         end_reshape_request(r10_bio);
5215 }
5216
5217 static void end_reshape_request(struct r10bio *r10_bio)
5218 {
5219         if (!atomic_dec_and_test(&r10_bio->remaining))
5220                 return;
5221         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5222         bio_put(r10_bio->master_bio);
5223         put_buf(r10_bio);
5224 }
5225
5226 static void raid10_finish_reshape(struct mddev *mddev)
5227 {
5228         struct r10conf *conf = mddev->private;
5229
5230         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5231                 return;
5232
5233         if (mddev->delta_disks > 0) {
5234                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5235                         mddev->recovery_cp = mddev->resync_max_sectors;
5236                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5237                 }
5238                 mddev->resync_max_sectors = mddev->array_sectors;
5239         } else {
5240                 int d;
5241                 rcu_read_lock();
5242                 for (d = conf->geo.raid_disks ;
5243                      d < conf->geo.raid_disks - mddev->delta_disks;
5244                      d++) {
5245                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5246                         if (rdev)
5247                                 clear_bit(In_sync, &rdev->flags);
5248                         rdev = rcu_dereference(conf->mirrors[d].replacement);
5249                         if (rdev)
5250                                 clear_bit(In_sync, &rdev->flags);
5251                 }
5252                 rcu_read_unlock();
5253         }
5254         mddev->layout = mddev->new_layout;
5255         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5256         mddev->reshape_position = MaxSector;
5257         mddev->delta_disks = 0;
5258         mddev->reshape_backwards = 0;
5259 }
5260
5261 static struct md_personality raid10_personality =
5262 {
5263         .name           = "raid10",
5264         .level          = 10,
5265         .owner          = THIS_MODULE,
5266         .make_request   = raid10_make_request,
5267         .run            = raid10_run,
5268         .free           = raid10_free,
5269         .status         = raid10_status,
5270         .error_handler  = raid10_error,
5271         .hot_add_disk   = raid10_add_disk,
5272         .hot_remove_disk= raid10_remove_disk,
5273         .spare_active   = raid10_spare_active,
5274         .sync_request   = raid10_sync_request,
5275         .quiesce        = raid10_quiesce,
5276         .size           = raid10_size,
5277         .resize         = raid10_resize,
5278         .takeover       = raid10_takeover,
5279         .check_reshape  = raid10_check_reshape,
5280         .start_reshape  = raid10_start_reshape,
5281         .finish_reshape = raid10_finish_reshape,
5282         .update_reshape_pos = raid10_update_reshape_pos,
5283 };
5284
5285 static int __init raid_init(void)
5286 {
5287         return register_md_personality(&raid10_personality);
5288 }
5289
5290 static void raid_exit(void)
5291 {
5292         unregister_md_personality(&raid10_personality);
5293 }
5294
5295 module_init(raid_init);
5296 module_exit(raid_exit);
5297 MODULE_LICENSE("GPL");
5298 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5299 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5300 MODULE_ALIAS("md-raid10");
5301 MODULE_ALIAS("md-level-10");