Merge tag 'pci-v6.4-fixes-1' of git://git.kernel.org/pub/scm/linux/kernel/git/pci/pci
[linux.git] / drivers / md / dm-thin.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011-2012 Red Hat UK.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm-thin-metadata.h"
9 #include "dm-bio-prison-v1.h"
10 #include "dm.h"
11
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/jiffies.h>
16 #include <linux/log2.h>
17 #include <linux/list.h>
18 #include <linux/rculist.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sort.h>
24 #include <linux/rbtree.h>
25
26 #define DM_MSG_PREFIX   "thin"
27
28 /*
29  * Tunable constants
30  */
31 #define ENDIO_HOOK_POOL_SIZE 1024
32 #define MAPPING_POOL_SIZE 1024
33 #define COMMIT_PERIOD HZ
34 #define NO_SPACE_TIMEOUT_SECS 60
35
36 static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
37
38 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
39                 "A percentage of time allocated for copy on write");
40
41 /*
42  * The block size of the device holding pool data must be
43  * between 64KB and 1GB.
44  */
45 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
46 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
47
48 /*
49  * Device id is restricted to 24 bits.
50  */
51 #define MAX_DEV_ID ((1 << 24) - 1)
52
53 /*
54  * How do we handle breaking sharing of data blocks?
55  * =================================================
56  *
57  * We use a standard copy-on-write btree to store the mappings for the
58  * devices (note I'm talking about copy-on-write of the metadata here, not
59  * the data).  When you take an internal snapshot you clone the root node
60  * of the origin btree.  After this there is no concept of an origin or a
61  * snapshot.  They are just two device trees that happen to point to the
62  * same data blocks.
63  *
64  * When we get a write in we decide if it's to a shared data block using
65  * some timestamp magic.  If it is, we have to break sharing.
66  *
67  * Let's say we write to a shared block in what was the origin.  The
68  * steps are:
69  *
70  * i) plug io further to this physical block. (see bio_prison code).
71  *
72  * ii) quiesce any read io to that shared data block.  Obviously
73  * including all devices that share this block.  (see dm_deferred_set code)
74  *
75  * iii) copy the data block to a newly allocate block.  This step can be
76  * missed out if the io covers the block. (schedule_copy).
77  *
78  * iv) insert the new mapping into the origin's btree
79  * (process_prepared_mapping).  This act of inserting breaks some
80  * sharing of btree nodes between the two devices.  Breaking sharing only
81  * effects the btree of that specific device.  Btrees for the other
82  * devices that share the block never change.  The btree for the origin
83  * device as it was after the last commit is untouched, ie. we're using
84  * persistent data structures in the functional programming sense.
85  *
86  * v) unplug io to this physical block, including the io that triggered
87  * the breaking of sharing.
88  *
89  * Steps (ii) and (iii) occur in parallel.
90  *
91  * The metadata _doesn't_ need to be committed before the io continues.  We
92  * get away with this because the io is always written to a _new_ block.
93  * If there's a crash, then:
94  *
95  * - The origin mapping will point to the old origin block (the shared
96  * one).  This will contain the data as it was before the io that triggered
97  * the breaking of sharing came in.
98  *
99  * - The snap mapping still points to the old block.  As it would after
100  * the commit.
101  *
102  * The downside of this scheme is the timestamp magic isn't perfect, and
103  * will continue to think that data block in the snapshot device is shared
104  * even after the write to the origin has broken sharing.  I suspect data
105  * blocks will typically be shared by many different devices, so we're
106  * breaking sharing n + 1 times, rather than n, where n is the number of
107  * devices that reference this data block.  At the moment I think the
108  * benefits far, far outweigh the disadvantages.
109  */
110
111 /*----------------------------------------------------------------*/
112
113 /*
114  * Key building.
115  */
116 enum lock_space {
117         VIRTUAL,
118         PHYSICAL
119 };
120
121 static bool build_key(struct dm_thin_device *td, enum lock_space ls,
122                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
123 {
124         key->virtual = (ls == VIRTUAL);
125         key->dev = dm_thin_dev_id(td);
126         key->block_begin = b;
127         key->block_end = e;
128
129         return dm_cell_key_has_valid_range(key);
130 }
131
132 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
133                            struct dm_cell_key *key)
134 {
135         (void) build_key(td, PHYSICAL, b, b + 1llu, key);
136 }
137
138 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
139                               struct dm_cell_key *key)
140 {
141         (void) build_key(td, VIRTUAL, b, b + 1llu, key);
142 }
143
144 /*----------------------------------------------------------------*/
145
146 #define THROTTLE_THRESHOLD (1 * HZ)
147
148 struct throttle {
149         struct rw_semaphore lock;
150         unsigned long threshold;
151         bool throttle_applied;
152 };
153
154 static void throttle_init(struct throttle *t)
155 {
156         init_rwsem(&t->lock);
157         t->throttle_applied = false;
158 }
159
160 static void throttle_work_start(struct throttle *t)
161 {
162         t->threshold = jiffies + THROTTLE_THRESHOLD;
163 }
164
165 static void throttle_work_update(struct throttle *t)
166 {
167         if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
168                 down_write(&t->lock);
169                 t->throttle_applied = true;
170         }
171 }
172
173 static void throttle_work_complete(struct throttle *t)
174 {
175         if (t->throttle_applied) {
176                 t->throttle_applied = false;
177                 up_write(&t->lock);
178         }
179 }
180
181 static void throttle_lock(struct throttle *t)
182 {
183         down_read(&t->lock);
184 }
185
186 static void throttle_unlock(struct throttle *t)
187 {
188         up_read(&t->lock);
189 }
190
191 /*----------------------------------------------------------------*/
192
193 /*
194  * A pool device ties together a metadata device and a data device.  It
195  * also provides the interface for creating and destroying internal
196  * devices.
197  */
198 struct dm_thin_new_mapping;
199
200 /*
201  * The pool runs in various modes.  Ordered in degraded order for comparisons.
202  */
203 enum pool_mode {
204         PM_WRITE,               /* metadata may be changed */
205         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
206
207         /*
208          * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
209          */
210         PM_OUT_OF_METADATA_SPACE,
211         PM_READ_ONLY,           /* metadata may not be changed */
212
213         PM_FAIL,                /* all I/O fails */
214 };
215
216 struct pool_features {
217         enum pool_mode mode;
218
219         bool zero_new_blocks:1;
220         bool discard_enabled:1;
221         bool discard_passdown:1;
222         bool error_if_no_space:1;
223 };
224
225 struct thin_c;
226 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
227 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
228 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
229
230 #define CELL_SORT_ARRAY_SIZE 8192
231
232 struct pool {
233         struct list_head list;
234         struct dm_target *ti;   /* Only set if a pool target is bound */
235
236         struct mapped_device *pool_md;
237         struct block_device *data_dev;
238         struct block_device *md_dev;
239         struct dm_pool_metadata *pmd;
240
241         dm_block_t low_water_blocks;
242         uint32_t sectors_per_block;
243         int sectors_per_block_shift;
244
245         struct pool_features pf;
246         bool low_water_triggered:1;     /* A dm event has been sent */
247         bool suspended:1;
248         bool out_of_data_space:1;
249
250         struct dm_bio_prison *prison;
251         struct dm_kcopyd_client *copier;
252
253         struct work_struct worker;
254         struct workqueue_struct *wq;
255         struct throttle throttle;
256         struct delayed_work waker;
257         struct delayed_work no_space_timeout;
258
259         unsigned long last_commit_jiffies;
260         unsigned int ref_count;
261
262         spinlock_t lock;
263         struct bio_list deferred_flush_bios;
264         struct bio_list deferred_flush_completions;
265         struct list_head prepared_mappings;
266         struct list_head prepared_discards;
267         struct list_head prepared_discards_pt2;
268         struct list_head active_thins;
269
270         struct dm_deferred_set *shared_read_ds;
271         struct dm_deferred_set *all_io_ds;
272
273         struct dm_thin_new_mapping *next_mapping;
274
275         process_bio_fn process_bio;
276         process_bio_fn process_discard;
277
278         process_cell_fn process_cell;
279         process_cell_fn process_discard_cell;
280
281         process_mapping_fn process_prepared_mapping;
282         process_mapping_fn process_prepared_discard;
283         process_mapping_fn process_prepared_discard_pt2;
284
285         struct dm_bio_prison_cell **cell_sort_array;
286
287         mempool_t mapping_pool;
288 };
289
290 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
291
292 static enum pool_mode get_pool_mode(struct pool *pool)
293 {
294         return pool->pf.mode;
295 }
296
297 static void notify_of_pool_mode_change(struct pool *pool)
298 {
299         static const char *descs[] = {
300                 "write",
301                 "out-of-data-space",
302                 "read-only",
303                 "read-only",
304                 "fail"
305         };
306         const char *extra_desc = NULL;
307         enum pool_mode mode = get_pool_mode(pool);
308
309         if (mode == PM_OUT_OF_DATA_SPACE) {
310                 if (!pool->pf.error_if_no_space)
311                         extra_desc = " (queue IO)";
312                 else
313                         extra_desc = " (error IO)";
314         }
315
316         dm_table_event(pool->ti->table);
317         DMINFO("%s: switching pool to %s%s mode",
318                dm_device_name(pool->pool_md),
319                descs[(int)mode], extra_desc ? : "");
320 }
321
322 /*
323  * Target context for a pool.
324  */
325 struct pool_c {
326         struct dm_target *ti;
327         struct pool *pool;
328         struct dm_dev *data_dev;
329         struct dm_dev *metadata_dev;
330
331         dm_block_t low_water_blocks;
332         struct pool_features requested_pf; /* Features requested during table load */
333         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
334 };
335
336 /*
337  * Target context for a thin.
338  */
339 struct thin_c {
340         struct list_head list;
341         struct dm_dev *pool_dev;
342         struct dm_dev *origin_dev;
343         sector_t origin_size;
344         dm_thin_id dev_id;
345
346         struct pool *pool;
347         struct dm_thin_device *td;
348         struct mapped_device *thin_md;
349
350         bool requeue_mode:1;
351         spinlock_t lock;
352         struct list_head deferred_cells;
353         struct bio_list deferred_bio_list;
354         struct bio_list retry_on_resume_list;
355         struct rb_root sort_bio_list; /* sorted list of deferred bios */
356
357         /*
358          * Ensures the thin is not destroyed until the worker has finished
359          * iterating the active_thins list.
360          */
361         refcount_t refcount;
362         struct completion can_destroy;
363 };
364
365 /*----------------------------------------------------------------*/
366
367 static bool block_size_is_power_of_two(struct pool *pool)
368 {
369         return pool->sectors_per_block_shift >= 0;
370 }
371
372 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
373 {
374         return block_size_is_power_of_two(pool) ?
375                 (b << pool->sectors_per_block_shift) :
376                 (b * pool->sectors_per_block);
377 }
378
379 /*----------------------------------------------------------------*/
380
381 struct discard_op {
382         struct thin_c *tc;
383         struct blk_plug plug;
384         struct bio *parent_bio;
385         struct bio *bio;
386 };
387
388 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
389 {
390         BUG_ON(!parent);
391
392         op->tc = tc;
393         blk_start_plug(&op->plug);
394         op->parent_bio = parent;
395         op->bio = NULL;
396 }
397
398 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
399 {
400         struct thin_c *tc = op->tc;
401         sector_t s = block_to_sectors(tc->pool, data_b);
402         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
403
404         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOWAIT,
405                                       &op->bio);
406 }
407
408 static void end_discard(struct discard_op *op, int r)
409 {
410         if (op->bio) {
411                 /*
412                  * Even if one of the calls to issue_discard failed, we
413                  * need to wait for the chain to complete.
414                  */
415                 bio_chain(op->bio, op->parent_bio);
416                 op->bio->bi_opf = REQ_OP_DISCARD;
417                 submit_bio(op->bio);
418         }
419
420         blk_finish_plug(&op->plug);
421
422         /*
423          * Even if r is set, there could be sub discards in flight that we
424          * need to wait for.
425          */
426         if (r && !op->parent_bio->bi_status)
427                 op->parent_bio->bi_status = errno_to_blk_status(r);
428         bio_endio(op->parent_bio);
429 }
430
431 /*----------------------------------------------------------------*/
432
433 /*
434  * wake_worker() is used when new work is queued and when pool_resume is
435  * ready to continue deferred IO processing.
436  */
437 static void wake_worker(struct pool *pool)
438 {
439         queue_work(pool->wq, &pool->worker);
440 }
441
442 /*----------------------------------------------------------------*/
443
444 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
445                       struct dm_bio_prison_cell **cell_result)
446 {
447         int r;
448         struct dm_bio_prison_cell *cell_prealloc;
449
450         /*
451          * Allocate a cell from the prison's mempool.
452          * This might block but it can't fail.
453          */
454         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
455
456         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
457         if (r)
458                 /*
459                  * We reused an old cell; we can get rid of
460                  * the new one.
461                  */
462                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
463
464         return r;
465 }
466
467 static void cell_release(struct pool *pool,
468                          struct dm_bio_prison_cell *cell,
469                          struct bio_list *bios)
470 {
471         dm_cell_release(pool->prison, cell, bios);
472         dm_bio_prison_free_cell(pool->prison, cell);
473 }
474
475 static void cell_visit_release(struct pool *pool,
476                                void (*fn)(void *, struct dm_bio_prison_cell *),
477                                void *context,
478                                struct dm_bio_prison_cell *cell)
479 {
480         dm_cell_visit_release(pool->prison, fn, context, cell);
481         dm_bio_prison_free_cell(pool->prison, cell);
482 }
483
484 static void cell_release_no_holder(struct pool *pool,
485                                    struct dm_bio_prison_cell *cell,
486                                    struct bio_list *bios)
487 {
488         dm_cell_release_no_holder(pool->prison, cell, bios);
489         dm_bio_prison_free_cell(pool->prison, cell);
490 }
491
492 static void cell_error_with_code(struct pool *pool,
493                 struct dm_bio_prison_cell *cell, blk_status_t error_code)
494 {
495         dm_cell_error(pool->prison, cell, error_code);
496         dm_bio_prison_free_cell(pool->prison, cell);
497 }
498
499 static blk_status_t get_pool_io_error_code(struct pool *pool)
500 {
501         return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
502 }
503
504 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
505 {
506         cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
507 }
508
509 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
510 {
511         cell_error_with_code(pool, cell, 0);
512 }
513
514 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
515 {
516         cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
517 }
518
519 /*----------------------------------------------------------------*/
520
521 /*
522  * A global list of pools that uses a struct mapped_device as a key.
523  */
524 static struct dm_thin_pool_table {
525         struct mutex mutex;
526         struct list_head pools;
527 } dm_thin_pool_table;
528
529 static void pool_table_init(void)
530 {
531         mutex_init(&dm_thin_pool_table.mutex);
532         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
533 }
534
535 static void pool_table_exit(void)
536 {
537         mutex_destroy(&dm_thin_pool_table.mutex);
538 }
539
540 static void __pool_table_insert(struct pool *pool)
541 {
542         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
543         list_add(&pool->list, &dm_thin_pool_table.pools);
544 }
545
546 static void __pool_table_remove(struct pool *pool)
547 {
548         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
549         list_del(&pool->list);
550 }
551
552 static struct pool *__pool_table_lookup(struct mapped_device *md)
553 {
554         struct pool *pool = NULL, *tmp;
555
556         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
557
558         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
559                 if (tmp->pool_md == md) {
560                         pool = tmp;
561                         break;
562                 }
563         }
564
565         return pool;
566 }
567
568 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
569 {
570         struct pool *pool = NULL, *tmp;
571
572         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
573
574         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
575                 if (tmp->md_dev == md_dev) {
576                         pool = tmp;
577                         break;
578                 }
579         }
580
581         return pool;
582 }
583
584 /*----------------------------------------------------------------*/
585
586 struct dm_thin_endio_hook {
587         struct thin_c *tc;
588         struct dm_deferred_entry *shared_read_entry;
589         struct dm_deferred_entry *all_io_entry;
590         struct dm_thin_new_mapping *overwrite_mapping;
591         struct rb_node rb_node;
592         struct dm_bio_prison_cell *cell;
593 };
594
595 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
596 {
597         bio_list_merge(bios, master);
598         bio_list_init(master);
599 }
600
601 static void error_bio_list(struct bio_list *bios, blk_status_t error)
602 {
603         struct bio *bio;
604
605         while ((bio = bio_list_pop(bios))) {
606                 bio->bi_status = error;
607                 bio_endio(bio);
608         }
609 }
610
611 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
612                 blk_status_t error)
613 {
614         struct bio_list bios;
615
616         bio_list_init(&bios);
617
618         spin_lock_irq(&tc->lock);
619         __merge_bio_list(&bios, master);
620         spin_unlock_irq(&tc->lock);
621
622         error_bio_list(&bios, error);
623 }
624
625 static void requeue_deferred_cells(struct thin_c *tc)
626 {
627         struct pool *pool = tc->pool;
628         struct list_head cells;
629         struct dm_bio_prison_cell *cell, *tmp;
630
631         INIT_LIST_HEAD(&cells);
632
633         spin_lock_irq(&tc->lock);
634         list_splice_init(&tc->deferred_cells, &cells);
635         spin_unlock_irq(&tc->lock);
636
637         list_for_each_entry_safe(cell, tmp, &cells, user_list)
638                 cell_requeue(pool, cell);
639 }
640
641 static void requeue_io(struct thin_c *tc)
642 {
643         struct bio_list bios;
644
645         bio_list_init(&bios);
646
647         spin_lock_irq(&tc->lock);
648         __merge_bio_list(&bios, &tc->deferred_bio_list);
649         __merge_bio_list(&bios, &tc->retry_on_resume_list);
650         spin_unlock_irq(&tc->lock);
651
652         error_bio_list(&bios, BLK_STS_DM_REQUEUE);
653         requeue_deferred_cells(tc);
654 }
655
656 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
657 {
658         struct thin_c *tc;
659
660         rcu_read_lock();
661         list_for_each_entry_rcu(tc, &pool->active_thins, list)
662                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
663         rcu_read_unlock();
664 }
665
666 static void error_retry_list(struct pool *pool)
667 {
668         error_retry_list_with_code(pool, get_pool_io_error_code(pool));
669 }
670
671 /*
672  * This section of code contains the logic for processing a thin device's IO.
673  * Much of the code depends on pool object resources (lists, workqueues, etc)
674  * but most is exclusively called from the thin target rather than the thin-pool
675  * target.
676  */
677
678 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
679 {
680         struct pool *pool = tc->pool;
681         sector_t block_nr = bio->bi_iter.bi_sector;
682
683         if (block_size_is_power_of_two(pool))
684                 block_nr >>= pool->sectors_per_block_shift;
685         else
686                 (void) sector_div(block_nr, pool->sectors_per_block);
687
688         return block_nr;
689 }
690
691 /*
692  * Returns the _complete_ blocks that this bio covers.
693  */
694 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
695                                 dm_block_t *begin, dm_block_t *end)
696 {
697         struct pool *pool = tc->pool;
698         sector_t b = bio->bi_iter.bi_sector;
699         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
700
701         b += pool->sectors_per_block - 1ull; /* so we round up */
702
703         if (block_size_is_power_of_two(pool)) {
704                 b >>= pool->sectors_per_block_shift;
705                 e >>= pool->sectors_per_block_shift;
706         } else {
707                 (void) sector_div(b, pool->sectors_per_block);
708                 (void) sector_div(e, pool->sectors_per_block);
709         }
710
711         if (e < b)
712                 /* Can happen if the bio is within a single block. */
713                 e = b;
714
715         *begin = b;
716         *end = e;
717 }
718
719 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
720 {
721         struct pool *pool = tc->pool;
722         sector_t bi_sector = bio->bi_iter.bi_sector;
723
724         bio_set_dev(bio, tc->pool_dev->bdev);
725         if (block_size_is_power_of_two(pool))
726                 bio->bi_iter.bi_sector =
727                         (block << pool->sectors_per_block_shift) |
728                         (bi_sector & (pool->sectors_per_block - 1));
729         else
730                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
731                                  sector_div(bi_sector, pool->sectors_per_block);
732 }
733
734 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
735 {
736         bio_set_dev(bio, tc->origin_dev->bdev);
737 }
738
739 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
740 {
741         return op_is_flush(bio->bi_opf) &&
742                 dm_thin_changed_this_transaction(tc->td);
743 }
744
745 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
746 {
747         struct dm_thin_endio_hook *h;
748
749         if (bio_op(bio) == REQ_OP_DISCARD)
750                 return;
751
752         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
753         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
754 }
755
756 static void issue(struct thin_c *tc, struct bio *bio)
757 {
758         struct pool *pool = tc->pool;
759
760         if (!bio_triggers_commit(tc, bio)) {
761                 dm_submit_bio_remap(bio, NULL);
762                 return;
763         }
764
765         /*
766          * Complete bio with an error if earlier I/O caused changes to
767          * the metadata that can't be committed e.g, due to I/O errors
768          * on the metadata device.
769          */
770         if (dm_thin_aborted_changes(tc->td)) {
771                 bio_io_error(bio);
772                 return;
773         }
774
775         /*
776          * Batch together any bios that trigger commits and then issue a
777          * single commit for them in process_deferred_bios().
778          */
779         spin_lock_irq(&pool->lock);
780         bio_list_add(&pool->deferred_flush_bios, bio);
781         spin_unlock_irq(&pool->lock);
782 }
783
784 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
785 {
786         remap_to_origin(tc, bio);
787         issue(tc, bio);
788 }
789
790 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
791                             dm_block_t block)
792 {
793         remap(tc, bio, block);
794         issue(tc, bio);
795 }
796
797 /*----------------------------------------------------------------*/
798
799 /*
800  * Bio endio functions.
801  */
802 struct dm_thin_new_mapping {
803         struct list_head list;
804
805         bool pass_discard:1;
806         bool maybe_shared:1;
807
808         /*
809          * Track quiescing, copying and zeroing preparation actions.  When this
810          * counter hits zero the block is prepared and can be inserted into the
811          * btree.
812          */
813         atomic_t prepare_actions;
814
815         blk_status_t status;
816         struct thin_c *tc;
817         dm_block_t virt_begin, virt_end;
818         dm_block_t data_block;
819         struct dm_bio_prison_cell *cell;
820
821         /*
822          * If the bio covers the whole area of a block then we can avoid
823          * zeroing or copying.  Instead this bio is hooked.  The bio will
824          * still be in the cell, so care has to be taken to avoid issuing
825          * the bio twice.
826          */
827         struct bio *bio;
828         bio_end_io_t *saved_bi_end_io;
829 };
830
831 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
832 {
833         struct pool *pool = m->tc->pool;
834
835         if (atomic_dec_and_test(&m->prepare_actions)) {
836                 list_add_tail(&m->list, &pool->prepared_mappings);
837                 wake_worker(pool);
838         }
839 }
840
841 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
842 {
843         unsigned long flags;
844         struct pool *pool = m->tc->pool;
845
846         spin_lock_irqsave(&pool->lock, flags);
847         __complete_mapping_preparation(m);
848         spin_unlock_irqrestore(&pool->lock, flags);
849 }
850
851 static void copy_complete(int read_err, unsigned long write_err, void *context)
852 {
853         struct dm_thin_new_mapping *m = context;
854
855         m->status = read_err || write_err ? BLK_STS_IOERR : 0;
856         complete_mapping_preparation(m);
857 }
858
859 static void overwrite_endio(struct bio *bio)
860 {
861         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
862         struct dm_thin_new_mapping *m = h->overwrite_mapping;
863
864         bio->bi_end_io = m->saved_bi_end_io;
865
866         m->status = bio->bi_status;
867         complete_mapping_preparation(m);
868 }
869
870 /*----------------------------------------------------------------*/
871
872 /*
873  * Workqueue.
874  */
875
876 /*
877  * Prepared mapping jobs.
878  */
879
880 /*
881  * This sends the bios in the cell, except the original holder, back
882  * to the deferred_bios list.
883  */
884 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
885 {
886         struct pool *pool = tc->pool;
887         unsigned long flags;
888         struct bio_list bios;
889
890         bio_list_init(&bios);
891         cell_release_no_holder(pool, cell, &bios);
892
893         if (!bio_list_empty(&bios)) {
894                 spin_lock_irqsave(&tc->lock, flags);
895                 bio_list_merge(&tc->deferred_bio_list, &bios);
896                 spin_unlock_irqrestore(&tc->lock, flags);
897                 wake_worker(pool);
898         }
899 }
900
901 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
902
903 struct remap_info {
904         struct thin_c *tc;
905         struct bio_list defer_bios;
906         struct bio_list issue_bios;
907 };
908
909 static void __inc_remap_and_issue_cell(void *context,
910                                        struct dm_bio_prison_cell *cell)
911 {
912         struct remap_info *info = context;
913         struct bio *bio;
914
915         while ((bio = bio_list_pop(&cell->bios))) {
916                 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
917                         bio_list_add(&info->defer_bios, bio);
918                 else {
919                         inc_all_io_entry(info->tc->pool, bio);
920
921                         /*
922                          * We can't issue the bios with the bio prison lock
923                          * held, so we add them to a list to issue on
924                          * return from this function.
925                          */
926                         bio_list_add(&info->issue_bios, bio);
927                 }
928         }
929 }
930
931 static void inc_remap_and_issue_cell(struct thin_c *tc,
932                                      struct dm_bio_prison_cell *cell,
933                                      dm_block_t block)
934 {
935         struct bio *bio;
936         struct remap_info info;
937
938         info.tc = tc;
939         bio_list_init(&info.defer_bios);
940         bio_list_init(&info.issue_bios);
941
942         /*
943          * We have to be careful to inc any bios we're about to issue
944          * before the cell is released, and avoid a race with new bios
945          * being added to the cell.
946          */
947         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
948                            &info, cell);
949
950         while ((bio = bio_list_pop(&info.defer_bios)))
951                 thin_defer_bio(tc, bio);
952
953         while ((bio = bio_list_pop(&info.issue_bios)))
954                 remap_and_issue(info.tc, bio, block);
955 }
956
957 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
958 {
959         cell_error(m->tc->pool, m->cell);
960         list_del(&m->list);
961         mempool_free(m, &m->tc->pool->mapping_pool);
962 }
963
964 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
965 {
966         struct pool *pool = tc->pool;
967
968         /*
969          * If the bio has the REQ_FUA flag set we must commit the metadata
970          * before signaling its completion.
971          */
972         if (!bio_triggers_commit(tc, bio)) {
973                 bio_endio(bio);
974                 return;
975         }
976
977         /*
978          * Complete bio with an error if earlier I/O caused changes to the
979          * metadata that can't be committed, e.g, due to I/O errors on the
980          * metadata device.
981          */
982         if (dm_thin_aborted_changes(tc->td)) {
983                 bio_io_error(bio);
984                 return;
985         }
986
987         /*
988          * Batch together any bios that trigger commits and then issue a
989          * single commit for them in process_deferred_bios().
990          */
991         spin_lock_irq(&pool->lock);
992         bio_list_add(&pool->deferred_flush_completions, bio);
993         spin_unlock_irq(&pool->lock);
994 }
995
996 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
997 {
998         struct thin_c *tc = m->tc;
999         struct pool *pool = tc->pool;
1000         struct bio *bio = m->bio;
1001         int r;
1002
1003         if (m->status) {
1004                 cell_error(pool, m->cell);
1005                 goto out;
1006         }
1007
1008         /*
1009          * Commit the prepared block into the mapping btree.
1010          * Any I/O for this block arriving after this point will get
1011          * remapped to it directly.
1012          */
1013         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1014         if (r) {
1015                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1016                 cell_error(pool, m->cell);
1017                 goto out;
1018         }
1019
1020         /*
1021          * Release any bios held while the block was being provisioned.
1022          * If we are processing a write bio that completely covers the block,
1023          * we already processed it so can ignore it now when processing
1024          * the bios in the cell.
1025          */
1026         if (bio) {
1027                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1028                 complete_overwrite_bio(tc, bio);
1029         } else {
1030                 inc_all_io_entry(tc->pool, m->cell->holder);
1031                 remap_and_issue(tc, m->cell->holder, m->data_block);
1032                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1033         }
1034
1035 out:
1036         list_del(&m->list);
1037         mempool_free(m, &pool->mapping_pool);
1038 }
1039
1040 /*----------------------------------------------------------------*/
1041
1042 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1043 {
1044         struct thin_c *tc = m->tc;
1045
1046         if (m->cell)
1047                 cell_defer_no_holder(tc, m->cell);
1048         mempool_free(m, &tc->pool->mapping_pool);
1049 }
1050
1051 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1052 {
1053         bio_io_error(m->bio);
1054         free_discard_mapping(m);
1055 }
1056
1057 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1058 {
1059         bio_endio(m->bio);
1060         free_discard_mapping(m);
1061 }
1062
1063 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1064 {
1065         int r;
1066         struct thin_c *tc = m->tc;
1067
1068         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1069         if (r) {
1070                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1071                 bio_io_error(m->bio);
1072         } else
1073                 bio_endio(m->bio);
1074
1075         cell_defer_no_holder(tc, m->cell);
1076         mempool_free(m, &tc->pool->mapping_pool);
1077 }
1078
1079 /*----------------------------------------------------------------*/
1080
1081 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1082                                                    struct bio *discard_parent)
1083 {
1084         /*
1085          * We've already unmapped this range of blocks, but before we
1086          * passdown we have to check that these blocks are now unused.
1087          */
1088         int r = 0;
1089         bool shared = true;
1090         struct thin_c *tc = m->tc;
1091         struct pool *pool = tc->pool;
1092         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1093         struct discard_op op;
1094
1095         begin_discard(&op, tc, discard_parent);
1096         while (b != end) {
1097                 /* find start of unmapped run */
1098                 for (; b < end; b++) {
1099                         r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1100                         if (r)
1101                                 goto out;
1102
1103                         if (!shared)
1104                                 break;
1105                 }
1106
1107                 if (b == end)
1108                         break;
1109
1110                 /* find end of run */
1111                 for (e = b + 1; e != end; e++) {
1112                         r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1113                         if (r)
1114                                 goto out;
1115
1116                         if (shared)
1117                                 break;
1118                 }
1119
1120                 r = issue_discard(&op, b, e);
1121                 if (r)
1122                         goto out;
1123
1124                 b = e;
1125         }
1126 out:
1127         end_discard(&op, r);
1128 }
1129
1130 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1131 {
1132         unsigned long flags;
1133         struct pool *pool = m->tc->pool;
1134
1135         spin_lock_irqsave(&pool->lock, flags);
1136         list_add_tail(&m->list, &pool->prepared_discards_pt2);
1137         spin_unlock_irqrestore(&pool->lock, flags);
1138         wake_worker(pool);
1139 }
1140
1141 static void passdown_endio(struct bio *bio)
1142 {
1143         /*
1144          * It doesn't matter if the passdown discard failed, we still want
1145          * to unmap (we ignore err).
1146          */
1147         queue_passdown_pt2(bio->bi_private);
1148         bio_put(bio);
1149 }
1150
1151 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1152 {
1153         int r;
1154         struct thin_c *tc = m->tc;
1155         struct pool *pool = tc->pool;
1156         struct bio *discard_parent;
1157         dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1158
1159         /*
1160          * Only this thread allocates blocks, so we can be sure that the
1161          * newly unmapped blocks will not be allocated before the end of
1162          * the function.
1163          */
1164         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1165         if (r) {
1166                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1167                 bio_io_error(m->bio);
1168                 cell_defer_no_holder(tc, m->cell);
1169                 mempool_free(m, &pool->mapping_pool);
1170                 return;
1171         }
1172
1173         /*
1174          * Increment the unmapped blocks.  This prevents a race between the
1175          * passdown io and reallocation of freed blocks.
1176          */
1177         r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1178         if (r) {
1179                 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1180                 bio_io_error(m->bio);
1181                 cell_defer_no_holder(tc, m->cell);
1182                 mempool_free(m, &pool->mapping_pool);
1183                 return;
1184         }
1185
1186         discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1187         discard_parent->bi_end_io = passdown_endio;
1188         discard_parent->bi_private = m;
1189         if (m->maybe_shared)
1190                 passdown_double_checking_shared_status(m, discard_parent);
1191         else {
1192                 struct discard_op op;
1193
1194                 begin_discard(&op, tc, discard_parent);
1195                 r = issue_discard(&op, m->data_block, data_end);
1196                 end_discard(&op, r);
1197         }
1198 }
1199
1200 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1201 {
1202         int r;
1203         struct thin_c *tc = m->tc;
1204         struct pool *pool = tc->pool;
1205
1206         /*
1207          * The passdown has completed, so now we can decrement all those
1208          * unmapped blocks.
1209          */
1210         r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1211                                    m->data_block + (m->virt_end - m->virt_begin));
1212         if (r) {
1213                 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1214                 bio_io_error(m->bio);
1215         } else
1216                 bio_endio(m->bio);
1217
1218         cell_defer_no_holder(tc, m->cell);
1219         mempool_free(m, &pool->mapping_pool);
1220 }
1221
1222 static void process_prepared(struct pool *pool, struct list_head *head,
1223                              process_mapping_fn *fn)
1224 {
1225         struct list_head maps;
1226         struct dm_thin_new_mapping *m, *tmp;
1227
1228         INIT_LIST_HEAD(&maps);
1229         spin_lock_irq(&pool->lock);
1230         list_splice_init(head, &maps);
1231         spin_unlock_irq(&pool->lock);
1232
1233         list_for_each_entry_safe(m, tmp, &maps, list)
1234                 (*fn)(m);
1235 }
1236
1237 /*
1238  * Deferred bio jobs.
1239  */
1240 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1241 {
1242         return bio->bi_iter.bi_size ==
1243                 (pool->sectors_per_block << SECTOR_SHIFT);
1244 }
1245
1246 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1247 {
1248         return (bio_data_dir(bio) == WRITE) &&
1249                 io_overlaps_block(pool, bio);
1250 }
1251
1252 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1253                                bio_end_io_t *fn)
1254 {
1255         *save = bio->bi_end_io;
1256         bio->bi_end_io = fn;
1257 }
1258
1259 static int ensure_next_mapping(struct pool *pool)
1260 {
1261         if (pool->next_mapping)
1262                 return 0;
1263
1264         pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1265
1266         return pool->next_mapping ? 0 : -ENOMEM;
1267 }
1268
1269 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1270 {
1271         struct dm_thin_new_mapping *m = pool->next_mapping;
1272
1273         BUG_ON(!pool->next_mapping);
1274
1275         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1276         INIT_LIST_HEAD(&m->list);
1277         m->bio = NULL;
1278
1279         pool->next_mapping = NULL;
1280
1281         return m;
1282 }
1283
1284 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1285                     sector_t begin, sector_t end)
1286 {
1287         struct dm_io_region to;
1288
1289         to.bdev = tc->pool_dev->bdev;
1290         to.sector = begin;
1291         to.count = end - begin;
1292
1293         dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1294 }
1295
1296 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1297                                       dm_block_t data_begin,
1298                                       struct dm_thin_new_mapping *m)
1299 {
1300         struct pool *pool = tc->pool;
1301         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1302
1303         h->overwrite_mapping = m;
1304         m->bio = bio;
1305         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1306         inc_all_io_entry(pool, bio);
1307         remap_and_issue(tc, bio, data_begin);
1308 }
1309
1310 /*
1311  * A partial copy also needs to zero the uncopied region.
1312  */
1313 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1314                           struct dm_dev *origin, dm_block_t data_origin,
1315                           dm_block_t data_dest,
1316                           struct dm_bio_prison_cell *cell, struct bio *bio,
1317                           sector_t len)
1318 {
1319         struct pool *pool = tc->pool;
1320         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1321
1322         m->tc = tc;
1323         m->virt_begin = virt_block;
1324         m->virt_end = virt_block + 1u;
1325         m->data_block = data_dest;
1326         m->cell = cell;
1327
1328         /*
1329          * quiesce action + copy action + an extra reference held for the
1330          * duration of this function (we may need to inc later for a
1331          * partial zero).
1332          */
1333         atomic_set(&m->prepare_actions, 3);
1334
1335         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1336                 complete_mapping_preparation(m); /* already quiesced */
1337
1338         /*
1339          * IO to pool_dev remaps to the pool target's data_dev.
1340          *
1341          * If the whole block of data is being overwritten, we can issue the
1342          * bio immediately. Otherwise we use kcopyd to clone the data first.
1343          */
1344         if (io_overwrites_block(pool, bio))
1345                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1346         else {
1347                 struct dm_io_region from, to;
1348
1349                 from.bdev = origin->bdev;
1350                 from.sector = data_origin * pool->sectors_per_block;
1351                 from.count = len;
1352
1353                 to.bdev = tc->pool_dev->bdev;
1354                 to.sector = data_dest * pool->sectors_per_block;
1355                 to.count = len;
1356
1357                 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1358                                0, copy_complete, m);
1359
1360                 /*
1361                  * Do we need to zero a tail region?
1362                  */
1363                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1364                         atomic_inc(&m->prepare_actions);
1365                         ll_zero(tc, m,
1366                                 data_dest * pool->sectors_per_block + len,
1367                                 (data_dest + 1) * pool->sectors_per_block);
1368                 }
1369         }
1370
1371         complete_mapping_preparation(m); /* drop our ref */
1372 }
1373
1374 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1375                                    dm_block_t data_origin, dm_block_t data_dest,
1376                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1377 {
1378         schedule_copy(tc, virt_block, tc->pool_dev,
1379                       data_origin, data_dest, cell, bio,
1380                       tc->pool->sectors_per_block);
1381 }
1382
1383 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1384                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1385                           struct bio *bio)
1386 {
1387         struct pool *pool = tc->pool;
1388         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1389
1390         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1391         m->tc = tc;
1392         m->virt_begin = virt_block;
1393         m->virt_end = virt_block + 1u;
1394         m->data_block = data_block;
1395         m->cell = cell;
1396
1397         /*
1398          * If the whole block of data is being overwritten or we are not
1399          * zeroing pre-existing data, we can issue the bio immediately.
1400          * Otherwise we use kcopyd to zero the data first.
1401          */
1402         if (pool->pf.zero_new_blocks) {
1403                 if (io_overwrites_block(pool, bio))
1404                         remap_and_issue_overwrite(tc, bio, data_block, m);
1405                 else
1406                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1407                                 (data_block + 1) * pool->sectors_per_block);
1408         } else
1409                 process_prepared_mapping(m);
1410 }
1411
1412 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1413                                    dm_block_t data_dest,
1414                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1415 {
1416         struct pool *pool = tc->pool;
1417         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1418         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1419
1420         if (virt_block_end <= tc->origin_size)
1421                 schedule_copy(tc, virt_block, tc->origin_dev,
1422                               virt_block, data_dest, cell, bio,
1423                               pool->sectors_per_block);
1424
1425         else if (virt_block_begin < tc->origin_size)
1426                 schedule_copy(tc, virt_block, tc->origin_dev,
1427                               virt_block, data_dest, cell, bio,
1428                               tc->origin_size - virt_block_begin);
1429
1430         else
1431                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1432 }
1433
1434 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1435
1436 static void requeue_bios(struct pool *pool);
1437
1438 static bool is_read_only_pool_mode(enum pool_mode mode)
1439 {
1440         return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1441 }
1442
1443 static bool is_read_only(struct pool *pool)
1444 {
1445         return is_read_only_pool_mode(get_pool_mode(pool));
1446 }
1447
1448 static void check_for_metadata_space(struct pool *pool)
1449 {
1450         int r;
1451         const char *ooms_reason = NULL;
1452         dm_block_t nr_free;
1453
1454         r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1455         if (r)
1456                 ooms_reason = "Could not get free metadata blocks";
1457         else if (!nr_free)
1458                 ooms_reason = "No free metadata blocks";
1459
1460         if (ooms_reason && !is_read_only(pool)) {
1461                 DMERR("%s", ooms_reason);
1462                 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1463         }
1464 }
1465
1466 static void check_for_data_space(struct pool *pool)
1467 {
1468         int r;
1469         dm_block_t nr_free;
1470
1471         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1472                 return;
1473
1474         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1475         if (r)
1476                 return;
1477
1478         if (nr_free) {
1479                 set_pool_mode(pool, PM_WRITE);
1480                 requeue_bios(pool);
1481         }
1482 }
1483
1484 /*
1485  * A non-zero return indicates read_only or fail_io mode.
1486  * Many callers don't care about the return value.
1487  */
1488 static int commit(struct pool *pool)
1489 {
1490         int r;
1491
1492         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1493                 return -EINVAL;
1494
1495         r = dm_pool_commit_metadata(pool->pmd);
1496         if (r)
1497                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1498         else {
1499                 check_for_metadata_space(pool);
1500                 check_for_data_space(pool);
1501         }
1502
1503         return r;
1504 }
1505
1506 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1507 {
1508         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1509                 DMWARN("%s: reached low water mark for data device: sending event.",
1510                        dm_device_name(pool->pool_md));
1511                 spin_lock_irq(&pool->lock);
1512                 pool->low_water_triggered = true;
1513                 spin_unlock_irq(&pool->lock);
1514                 dm_table_event(pool->ti->table);
1515         }
1516 }
1517
1518 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1519 {
1520         int r;
1521         dm_block_t free_blocks;
1522         struct pool *pool = tc->pool;
1523
1524         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1525                 return -EINVAL;
1526
1527         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1528         if (r) {
1529                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1530                 return r;
1531         }
1532
1533         check_low_water_mark(pool, free_blocks);
1534
1535         if (!free_blocks) {
1536                 /*
1537                  * Try to commit to see if that will free up some
1538                  * more space.
1539                  */
1540                 r = commit(pool);
1541                 if (r)
1542                         return r;
1543
1544                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1545                 if (r) {
1546                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1547                         return r;
1548                 }
1549
1550                 if (!free_blocks) {
1551                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1552                         return -ENOSPC;
1553                 }
1554         }
1555
1556         r = dm_pool_alloc_data_block(pool->pmd, result);
1557         if (r) {
1558                 if (r == -ENOSPC)
1559                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1560                 else
1561                         metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1562                 return r;
1563         }
1564
1565         r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1566         if (r) {
1567                 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1568                 return r;
1569         }
1570
1571         if (!free_blocks) {
1572                 /* Let's commit before we use up the metadata reserve. */
1573                 r = commit(pool);
1574                 if (r)
1575                         return r;
1576         }
1577
1578         return 0;
1579 }
1580
1581 /*
1582  * If we have run out of space, queue bios until the device is
1583  * resumed, presumably after having been reloaded with more space.
1584  */
1585 static void retry_on_resume(struct bio *bio)
1586 {
1587         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1588         struct thin_c *tc = h->tc;
1589
1590         spin_lock_irq(&tc->lock);
1591         bio_list_add(&tc->retry_on_resume_list, bio);
1592         spin_unlock_irq(&tc->lock);
1593 }
1594
1595 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1596 {
1597         enum pool_mode m = get_pool_mode(pool);
1598
1599         switch (m) {
1600         case PM_WRITE:
1601                 /* Shouldn't get here */
1602                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1603                 return BLK_STS_IOERR;
1604
1605         case PM_OUT_OF_DATA_SPACE:
1606                 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1607
1608         case PM_OUT_OF_METADATA_SPACE:
1609         case PM_READ_ONLY:
1610         case PM_FAIL:
1611                 return BLK_STS_IOERR;
1612         default:
1613                 /* Shouldn't get here */
1614                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1615                 return BLK_STS_IOERR;
1616         }
1617 }
1618
1619 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1620 {
1621         blk_status_t error = should_error_unserviceable_bio(pool);
1622
1623         if (error) {
1624                 bio->bi_status = error;
1625                 bio_endio(bio);
1626         } else
1627                 retry_on_resume(bio);
1628 }
1629
1630 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1631 {
1632         struct bio *bio;
1633         struct bio_list bios;
1634         blk_status_t error;
1635
1636         error = should_error_unserviceable_bio(pool);
1637         if (error) {
1638                 cell_error_with_code(pool, cell, error);
1639                 return;
1640         }
1641
1642         bio_list_init(&bios);
1643         cell_release(pool, cell, &bios);
1644
1645         while ((bio = bio_list_pop(&bios)))
1646                 retry_on_resume(bio);
1647 }
1648
1649 static void process_discard_cell_no_passdown(struct thin_c *tc,
1650                                              struct dm_bio_prison_cell *virt_cell)
1651 {
1652         struct pool *pool = tc->pool;
1653         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1654
1655         /*
1656          * We don't need to lock the data blocks, since there's no
1657          * passdown.  We only lock data blocks for allocation and breaking sharing.
1658          */
1659         m->tc = tc;
1660         m->virt_begin = virt_cell->key.block_begin;
1661         m->virt_end = virt_cell->key.block_end;
1662         m->cell = virt_cell;
1663         m->bio = virt_cell->holder;
1664
1665         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1666                 pool->process_prepared_discard(m);
1667 }
1668
1669 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1670                                  struct bio *bio)
1671 {
1672         struct pool *pool = tc->pool;
1673
1674         int r;
1675         bool maybe_shared;
1676         struct dm_cell_key data_key;
1677         struct dm_bio_prison_cell *data_cell;
1678         struct dm_thin_new_mapping *m;
1679         dm_block_t virt_begin, virt_end, data_begin, data_end;
1680         dm_block_t len, next_boundary;
1681
1682         while (begin != end) {
1683                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1684                                               &data_begin, &maybe_shared);
1685                 if (r) {
1686                         /*
1687                          * Silently fail, letting any mappings we've
1688                          * created complete.
1689                          */
1690                         break;
1691                 }
1692
1693                 data_end = data_begin + (virt_end - virt_begin);
1694
1695                 /*
1696                  * Make sure the data region obeys the bio prison restrictions.
1697                  */
1698                 while (data_begin < data_end) {
1699                         r = ensure_next_mapping(pool);
1700                         if (r)
1701                                 return; /* we did our best */
1702
1703                         next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1)
1704                                 << BIO_PRISON_MAX_RANGE_SHIFT;
1705                         len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin);
1706
1707                         /* This key is certainly within range given the above splitting */
1708                         (void) build_key(tc->td, PHYSICAL, data_begin, data_begin + len, &data_key);
1709                         if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1710                                 /* contention, we'll give up with this range */
1711                                 data_begin += len;
1712                                 continue;
1713                         }
1714
1715                         /*
1716                          * IO may still be going to the destination block.  We must
1717                          * quiesce before we can do the removal.
1718                          */
1719                         m = get_next_mapping(pool);
1720                         m->tc = tc;
1721                         m->maybe_shared = maybe_shared;
1722                         m->virt_begin = virt_begin;
1723                         m->virt_end = virt_begin + len;
1724                         m->data_block = data_begin;
1725                         m->cell = data_cell;
1726                         m->bio = bio;
1727
1728                         /*
1729                          * The parent bio must not complete before sub discard bios are
1730                          * chained to it (see end_discard's bio_chain)!
1731                          *
1732                          * This per-mapping bi_remaining increment is paired with
1733                          * the implicit decrement that occurs via bio_endio() in
1734                          * end_discard().
1735                          */
1736                         bio_inc_remaining(bio);
1737                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1738                                 pool->process_prepared_discard(m);
1739
1740                         virt_begin += len;
1741                         data_begin += len;
1742                 }
1743
1744                 begin = virt_end;
1745         }
1746 }
1747
1748 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1749 {
1750         struct bio *bio = virt_cell->holder;
1751         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1752
1753         /*
1754          * The virt_cell will only get freed once the origin bio completes.
1755          * This means it will remain locked while all the individual
1756          * passdown bios are in flight.
1757          */
1758         h->cell = virt_cell;
1759         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1760
1761         /*
1762          * We complete the bio now, knowing that the bi_remaining field
1763          * will prevent completion until the sub range discards have
1764          * completed.
1765          */
1766         bio_endio(bio);
1767 }
1768
1769 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1770 {
1771         dm_block_t begin, end;
1772         struct dm_cell_key virt_key;
1773         struct dm_bio_prison_cell *virt_cell;
1774
1775         get_bio_block_range(tc, bio, &begin, &end);
1776         if (begin == end) {
1777                 /*
1778                  * The discard covers less than a block.
1779                  */
1780                 bio_endio(bio);
1781                 return;
1782         }
1783
1784         if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) {
1785                 DMERR_LIMIT("Discard doesn't respect bio prison limits");
1786                 bio_endio(bio);
1787                 return;
1788         }
1789
1790         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) {
1791                 /*
1792                  * Potential starvation issue: We're relying on the
1793                  * fs/application being well behaved, and not trying to
1794                  * send IO to a region at the same time as discarding it.
1795                  * If they do this persistently then it's possible this
1796                  * cell will never be granted.
1797                  */
1798                 return;
1799         }
1800
1801         tc->pool->process_discard_cell(tc, virt_cell);
1802 }
1803
1804 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1805                           struct dm_cell_key *key,
1806                           struct dm_thin_lookup_result *lookup_result,
1807                           struct dm_bio_prison_cell *cell)
1808 {
1809         int r;
1810         dm_block_t data_block;
1811         struct pool *pool = tc->pool;
1812
1813         r = alloc_data_block(tc, &data_block);
1814         switch (r) {
1815         case 0:
1816                 schedule_internal_copy(tc, block, lookup_result->block,
1817                                        data_block, cell, bio);
1818                 break;
1819
1820         case -ENOSPC:
1821                 retry_bios_on_resume(pool, cell);
1822                 break;
1823
1824         default:
1825                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1826                             __func__, r);
1827                 cell_error(pool, cell);
1828                 break;
1829         }
1830 }
1831
1832 static void __remap_and_issue_shared_cell(void *context,
1833                                           struct dm_bio_prison_cell *cell)
1834 {
1835         struct remap_info *info = context;
1836         struct bio *bio;
1837
1838         while ((bio = bio_list_pop(&cell->bios))) {
1839                 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1840                     bio_op(bio) == REQ_OP_DISCARD)
1841                         bio_list_add(&info->defer_bios, bio);
1842                 else {
1843                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1844
1845                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1846                         inc_all_io_entry(info->tc->pool, bio);
1847                         bio_list_add(&info->issue_bios, bio);
1848                 }
1849         }
1850 }
1851
1852 static void remap_and_issue_shared_cell(struct thin_c *tc,
1853                                         struct dm_bio_prison_cell *cell,
1854                                         dm_block_t block)
1855 {
1856         struct bio *bio;
1857         struct remap_info info;
1858
1859         info.tc = tc;
1860         bio_list_init(&info.defer_bios);
1861         bio_list_init(&info.issue_bios);
1862
1863         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1864                            &info, cell);
1865
1866         while ((bio = bio_list_pop(&info.defer_bios)))
1867                 thin_defer_bio(tc, bio);
1868
1869         while ((bio = bio_list_pop(&info.issue_bios)))
1870                 remap_and_issue(tc, bio, block);
1871 }
1872
1873 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1874                                dm_block_t block,
1875                                struct dm_thin_lookup_result *lookup_result,
1876                                struct dm_bio_prison_cell *virt_cell)
1877 {
1878         struct dm_bio_prison_cell *data_cell;
1879         struct pool *pool = tc->pool;
1880         struct dm_cell_key key;
1881
1882         /*
1883          * If cell is already occupied, then sharing is already in the process
1884          * of being broken so we have nothing further to do here.
1885          */
1886         build_data_key(tc->td, lookup_result->block, &key);
1887         if (bio_detain(pool, &key, bio, &data_cell)) {
1888                 cell_defer_no_holder(tc, virt_cell);
1889                 return;
1890         }
1891
1892         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1893                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1894                 cell_defer_no_holder(tc, virt_cell);
1895         } else {
1896                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1897
1898                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1899                 inc_all_io_entry(pool, bio);
1900                 remap_and_issue(tc, bio, lookup_result->block);
1901
1902                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1903                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1904         }
1905 }
1906
1907 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1908                             struct dm_bio_prison_cell *cell)
1909 {
1910         int r;
1911         dm_block_t data_block;
1912         struct pool *pool = tc->pool;
1913
1914         /*
1915          * Remap empty bios (flushes) immediately, without provisioning.
1916          */
1917         if (!bio->bi_iter.bi_size) {
1918                 inc_all_io_entry(pool, bio);
1919                 cell_defer_no_holder(tc, cell);
1920
1921                 remap_and_issue(tc, bio, 0);
1922                 return;
1923         }
1924
1925         /*
1926          * Fill read bios with zeroes and complete them immediately.
1927          */
1928         if (bio_data_dir(bio) == READ) {
1929                 zero_fill_bio(bio);
1930                 cell_defer_no_holder(tc, cell);
1931                 bio_endio(bio);
1932                 return;
1933         }
1934
1935         r = alloc_data_block(tc, &data_block);
1936         switch (r) {
1937         case 0:
1938                 if (tc->origin_dev)
1939                         schedule_external_copy(tc, block, data_block, cell, bio);
1940                 else
1941                         schedule_zero(tc, block, data_block, cell, bio);
1942                 break;
1943
1944         case -ENOSPC:
1945                 retry_bios_on_resume(pool, cell);
1946                 break;
1947
1948         default:
1949                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1950                             __func__, r);
1951                 cell_error(pool, cell);
1952                 break;
1953         }
1954 }
1955
1956 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1957 {
1958         int r;
1959         struct pool *pool = tc->pool;
1960         struct bio *bio = cell->holder;
1961         dm_block_t block = get_bio_block(tc, bio);
1962         struct dm_thin_lookup_result lookup_result;
1963
1964         if (tc->requeue_mode) {
1965                 cell_requeue(pool, cell);
1966                 return;
1967         }
1968
1969         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1970         switch (r) {
1971         case 0:
1972                 if (lookup_result.shared)
1973                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1974                 else {
1975                         inc_all_io_entry(pool, bio);
1976                         remap_and_issue(tc, bio, lookup_result.block);
1977                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1978                 }
1979                 break;
1980
1981         case -ENODATA:
1982                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1983                         inc_all_io_entry(pool, bio);
1984                         cell_defer_no_holder(tc, cell);
1985
1986                         if (bio_end_sector(bio) <= tc->origin_size)
1987                                 remap_to_origin_and_issue(tc, bio);
1988
1989                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1990                                 zero_fill_bio(bio);
1991                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1992                                 remap_to_origin_and_issue(tc, bio);
1993
1994                         } else {
1995                                 zero_fill_bio(bio);
1996                                 bio_endio(bio);
1997                         }
1998                 } else
1999                         provision_block(tc, bio, block, cell);
2000                 break;
2001
2002         default:
2003                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2004                             __func__, r);
2005                 cell_defer_no_holder(tc, cell);
2006                 bio_io_error(bio);
2007                 break;
2008         }
2009 }
2010
2011 static void process_bio(struct thin_c *tc, struct bio *bio)
2012 {
2013         struct pool *pool = tc->pool;
2014         dm_block_t block = get_bio_block(tc, bio);
2015         struct dm_bio_prison_cell *cell;
2016         struct dm_cell_key key;
2017
2018         /*
2019          * If cell is already occupied, then the block is already
2020          * being provisioned so we have nothing further to do here.
2021          */
2022         build_virtual_key(tc->td, block, &key);
2023         if (bio_detain(pool, &key, bio, &cell))
2024                 return;
2025
2026         process_cell(tc, cell);
2027 }
2028
2029 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2030                                     struct dm_bio_prison_cell *cell)
2031 {
2032         int r;
2033         int rw = bio_data_dir(bio);
2034         dm_block_t block = get_bio_block(tc, bio);
2035         struct dm_thin_lookup_result lookup_result;
2036
2037         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2038         switch (r) {
2039         case 0:
2040                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2041                         handle_unserviceable_bio(tc->pool, bio);
2042                         if (cell)
2043                                 cell_defer_no_holder(tc, cell);
2044                 } else {
2045                         inc_all_io_entry(tc->pool, bio);
2046                         remap_and_issue(tc, bio, lookup_result.block);
2047                         if (cell)
2048                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2049                 }
2050                 break;
2051
2052         case -ENODATA:
2053                 if (cell)
2054                         cell_defer_no_holder(tc, cell);
2055                 if (rw != READ) {
2056                         handle_unserviceable_bio(tc->pool, bio);
2057                         break;
2058                 }
2059
2060                 if (tc->origin_dev) {
2061                         inc_all_io_entry(tc->pool, bio);
2062                         remap_to_origin_and_issue(tc, bio);
2063                         break;
2064                 }
2065
2066                 zero_fill_bio(bio);
2067                 bio_endio(bio);
2068                 break;
2069
2070         default:
2071                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2072                             __func__, r);
2073                 if (cell)
2074                         cell_defer_no_holder(tc, cell);
2075                 bio_io_error(bio);
2076                 break;
2077         }
2078 }
2079
2080 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2081 {
2082         __process_bio_read_only(tc, bio, NULL);
2083 }
2084
2085 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2086 {
2087         __process_bio_read_only(tc, cell->holder, cell);
2088 }
2089
2090 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2091 {
2092         bio_endio(bio);
2093 }
2094
2095 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2096 {
2097         bio_io_error(bio);
2098 }
2099
2100 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2101 {
2102         cell_success(tc->pool, cell);
2103 }
2104
2105 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2106 {
2107         cell_error(tc->pool, cell);
2108 }
2109
2110 /*
2111  * FIXME: should we also commit due to size of transaction, measured in
2112  * metadata blocks?
2113  */
2114 static int need_commit_due_to_time(struct pool *pool)
2115 {
2116         return !time_in_range(jiffies, pool->last_commit_jiffies,
2117                               pool->last_commit_jiffies + COMMIT_PERIOD);
2118 }
2119
2120 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2121 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2122
2123 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2124 {
2125         struct rb_node **rbp, *parent;
2126         struct dm_thin_endio_hook *pbd;
2127         sector_t bi_sector = bio->bi_iter.bi_sector;
2128
2129         rbp = &tc->sort_bio_list.rb_node;
2130         parent = NULL;
2131         while (*rbp) {
2132                 parent = *rbp;
2133                 pbd = thin_pbd(parent);
2134
2135                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2136                         rbp = &(*rbp)->rb_left;
2137                 else
2138                         rbp = &(*rbp)->rb_right;
2139         }
2140
2141         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2142         rb_link_node(&pbd->rb_node, parent, rbp);
2143         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2144 }
2145
2146 static void __extract_sorted_bios(struct thin_c *tc)
2147 {
2148         struct rb_node *node;
2149         struct dm_thin_endio_hook *pbd;
2150         struct bio *bio;
2151
2152         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2153                 pbd = thin_pbd(node);
2154                 bio = thin_bio(pbd);
2155
2156                 bio_list_add(&tc->deferred_bio_list, bio);
2157                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2158         }
2159
2160         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2161 }
2162
2163 static void __sort_thin_deferred_bios(struct thin_c *tc)
2164 {
2165         struct bio *bio;
2166         struct bio_list bios;
2167
2168         bio_list_init(&bios);
2169         bio_list_merge(&bios, &tc->deferred_bio_list);
2170         bio_list_init(&tc->deferred_bio_list);
2171
2172         /* Sort deferred_bio_list using rb-tree */
2173         while ((bio = bio_list_pop(&bios)))
2174                 __thin_bio_rb_add(tc, bio);
2175
2176         /*
2177          * Transfer the sorted bios in sort_bio_list back to
2178          * deferred_bio_list to allow lockless submission of
2179          * all bios.
2180          */
2181         __extract_sorted_bios(tc);
2182 }
2183
2184 static void process_thin_deferred_bios(struct thin_c *tc)
2185 {
2186         struct pool *pool = tc->pool;
2187         struct bio *bio;
2188         struct bio_list bios;
2189         struct blk_plug plug;
2190         unsigned int count = 0;
2191
2192         if (tc->requeue_mode) {
2193                 error_thin_bio_list(tc, &tc->deferred_bio_list,
2194                                 BLK_STS_DM_REQUEUE);
2195                 return;
2196         }
2197
2198         bio_list_init(&bios);
2199
2200         spin_lock_irq(&tc->lock);
2201
2202         if (bio_list_empty(&tc->deferred_bio_list)) {
2203                 spin_unlock_irq(&tc->lock);
2204                 return;
2205         }
2206
2207         __sort_thin_deferred_bios(tc);
2208
2209         bio_list_merge(&bios, &tc->deferred_bio_list);
2210         bio_list_init(&tc->deferred_bio_list);
2211
2212         spin_unlock_irq(&tc->lock);
2213
2214         blk_start_plug(&plug);
2215         while ((bio = bio_list_pop(&bios))) {
2216                 /*
2217                  * If we've got no free new_mapping structs, and processing
2218                  * this bio might require one, we pause until there are some
2219                  * prepared mappings to process.
2220                  */
2221                 if (ensure_next_mapping(pool)) {
2222                         spin_lock_irq(&tc->lock);
2223                         bio_list_add(&tc->deferred_bio_list, bio);
2224                         bio_list_merge(&tc->deferred_bio_list, &bios);
2225                         spin_unlock_irq(&tc->lock);
2226                         break;
2227                 }
2228
2229                 if (bio_op(bio) == REQ_OP_DISCARD)
2230                         pool->process_discard(tc, bio);
2231                 else
2232                         pool->process_bio(tc, bio);
2233
2234                 if ((count++ & 127) == 0) {
2235                         throttle_work_update(&pool->throttle);
2236                         dm_pool_issue_prefetches(pool->pmd);
2237                 }
2238                 cond_resched();
2239         }
2240         blk_finish_plug(&plug);
2241 }
2242
2243 static int cmp_cells(const void *lhs, const void *rhs)
2244 {
2245         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2246         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2247
2248         BUG_ON(!lhs_cell->holder);
2249         BUG_ON(!rhs_cell->holder);
2250
2251         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2252                 return -1;
2253
2254         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2255                 return 1;
2256
2257         return 0;
2258 }
2259
2260 static unsigned int sort_cells(struct pool *pool, struct list_head *cells)
2261 {
2262         unsigned int count = 0;
2263         struct dm_bio_prison_cell *cell, *tmp;
2264
2265         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2266                 if (count >= CELL_SORT_ARRAY_SIZE)
2267                         break;
2268
2269                 pool->cell_sort_array[count++] = cell;
2270                 list_del(&cell->user_list);
2271         }
2272
2273         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2274
2275         return count;
2276 }
2277
2278 static void process_thin_deferred_cells(struct thin_c *tc)
2279 {
2280         struct pool *pool = tc->pool;
2281         struct list_head cells;
2282         struct dm_bio_prison_cell *cell;
2283         unsigned int i, j, count;
2284
2285         INIT_LIST_HEAD(&cells);
2286
2287         spin_lock_irq(&tc->lock);
2288         list_splice_init(&tc->deferred_cells, &cells);
2289         spin_unlock_irq(&tc->lock);
2290
2291         if (list_empty(&cells))
2292                 return;
2293
2294         do {
2295                 count = sort_cells(tc->pool, &cells);
2296
2297                 for (i = 0; i < count; i++) {
2298                         cell = pool->cell_sort_array[i];
2299                         BUG_ON(!cell->holder);
2300
2301                         /*
2302                          * If we've got no free new_mapping structs, and processing
2303                          * this bio might require one, we pause until there are some
2304                          * prepared mappings to process.
2305                          */
2306                         if (ensure_next_mapping(pool)) {
2307                                 for (j = i; j < count; j++)
2308                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2309
2310                                 spin_lock_irq(&tc->lock);
2311                                 list_splice(&cells, &tc->deferred_cells);
2312                                 spin_unlock_irq(&tc->lock);
2313                                 return;
2314                         }
2315
2316                         if (bio_op(cell->holder) == REQ_OP_DISCARD)
2317                                 pool->process_discard_cell(tc, cell);
2318                         else
2319                                 pool->process_cell(tc, cell);
2320                 }
2321                 cond_resched();
2322         } while (!list_empty(&cells));
2323 }
2324
2325 static void thin_get(struct thin_c *tc);
2326 static void thin_put(struct thin_c *tc);
2327
2328 /*
2329  * We can't hold rcu_read_lock() around code that can block.  So we
2330  * find a thin with the rcu lock held; bump a refcount; then drop
2331  * the lock.
2332  */
2333 static struct thin_c *get_first_thin(struct pool *pool)
2334 {
2335         struct thin_c *tc = NULL;
2336
2337         rcu_read_lock();
2338         if (!list_empty(&pool->active_thins)) {
2339                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2340                 thin_get(tc);
2341         }
2342         rcu_read_unlock();
2343
2344         return tc;
2345 }
2346
2347 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2348 {
2349         struct thin_c *old_tc = tc;
2350
2351         rcu_read_lock();
2352         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2353                 thin_get(tc);
2354                 thin_put(old_tc);
2355                 rcu_read_unlock();
2356                 return tc;
2357         }
2358         thin_put(old_tc);
2359         rcu_read_unlock();
2360
2361         return NULL;
2362 }
2363
2364 static void process_deferred_bios(struct pool *pool)
2365 {
2366         struct bio *bio;
2367         struct bio_list bios, bio_completions;
2368         struct thin_c *tc;
2369
2370         tc = get_first_thin(pool);
2371         while (tc) {
2372                 process_thin_deferred_cells(tc);
2373                 process_thin_deferred_bios(tc);
2374                 tc = get_next_thin(pool, tc);
2375         }
2376
2377         /*
2378          * If there are any deferred flush bios, we must commit the metadata
2379          * before issuing them or signaling their completion.
2380          */
2381         bio_list_init(&bios);
2382         bio_list_init(&bio_completions);
2383
2384         spin_lock_irq(&pool->lock);
2385         bio_list_merge(&bios, &pool->deferred_flush_bios);
2386         bio_list_init(&pool->deferred_flush_bios);
2387
2388         bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2389         bio_list_init(&pool->deferred_flush_completions);
2390         spin_unlock_irq(&pool->lock);
2391
2392         if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2393             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2394                 return;
2395
2396         if (commit(pool)) {
2397                 bio_list_merge(&bios, &bio_completions);
2398
2399                 while ((bio = bio_list_pop(&bios)))
2400                         bio_io_error(bio);
2401                 return;
2402         }
2403         pool->last_commit_jiffies = jiffies;
2404
2405         while ((bio = bio_list_pop(&bio_completions)))
2406                 bio_endio(bio);
2407
2408         while ((bio = bio_list_pop(&bios))) {
2409                 /*
2410                  * The data device was flushed as part of metadata commit,
2411                  * so complete redundant flushes immediately.
2412                  */
2413                 if (bio->bi_opf & REQ_PREFLUSH)
2414                         bio_endio(bio);
2415                 else
2416                         dm_submit_bio_remap(bio, NULL);
2417         }
2418 }
2419
2420 static void do_worker(struct work_struct *ws)
2421 {
2422         struct pool *pool = container_of(ws, struct pool, worker);
2423
2424         throttle_work_start(&pool->throttle);
2425         dm_pool_issue_prefetches(pool->pmd);
2426         throttle_work_update(&pool->throttle);
2427         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2428         throttle_work_update(&pool->throttle);
2429         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2430         throttle_work_update(&pool->throttle);
2431         process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2432         throttle_work_update(&pool->throttle);
2433         process_deferred_bios(pool);
2434         throttle_work_complete(&pool->throttle);
2435 }
2436
2437 /*
2438  * We want to commit periodically so that not too much
2439  * unwritten data builds up.
2440  */
2441 static void do_waker(struct work_struct *ws)
2442 {
2443         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2444
2445         wake_worker(pool);
2446         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2447 }
2448
2449 /*
2450  * We're holding onto IO to allow userland time to react.  After the
2451  * timeout either the pool will have been resized (and thus back in
2452  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2453  */
2454 static void do_no_space_timeout(struct work_struct *ws)
2455 {
2456         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2457                                          no_space_timeout);
2458
2459         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2460                 pool->pf.error_if_no_space = true;
2461                 notify_of_pool_mode_change(pool);
2462                 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2463         }
2464 }
2465
2466 /*----------------------------------------------------------------*/
2467
2468 struct pool_work {
2469         struct work_struct worker;
2470         struct completion complete;
2471 };
2472
2473 static struct pool_work *to_pool_work(struct work_struct *ws)
2474 {
2475         return container_of(ws, struct pool_work, worker);
2476 }
2477
2478 static void pool_work_complete(struct pool_work *pw)
2479 {
2480         complete(&pw->complete);
2481 }
2482
2483 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2484                            void (*fn)(struct work_struct *))
2485 {
2486         INIT_WORK_ONSTACK(&pw->worker, fn);
2487         init_completion(&pw->complete);
2488         queue_work(pool->wq, &pw->worker);
2489         wait_for_completion(&pw->complete);
2490 }
2491
2492 /*----------------------------------------------------------------*/
2493
2494 struct noflush_work {
2495         struct pool_work pw;
2496         struct thin_c *tc;
2497 };
2498
2499 static struct noflush_work *to_noflush(struct work_struct *ws)
2500 {
2501         return container_of(to_pool_work(ws), struct noflush_work, pw);
2502 }
2503
2504 static void do_noflush_start(struct work_struct *ws)
2505 {
2506         struct noflush_work *w = to_noflush(ws);
2507
2508         w->tc->requeue_mode = true;
2509         requeue_io(w->tc);
2510         pool_work_complete(&w->pw);
2511 }
2512
2513 static void do_noflush_stop(struct work_struct *ws)
2514 {
2515         struct noflush_work *w = to_noflush(ws);
2516
2517         w->tc->requeue_mode = false;
2518         pool_work_complete(&w->pw);
2519 }
2520
2521 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2522 {
2523         struct noflush_work w;
2524
2525         w.tc = tc;
2526         pool_work_wait(&w.pw, tc->pool, fn);
2527 }
2528
2529 /*----------------------------------------------------------------*/
2530
2531 static bool passdown_enabled(struct pool_c *pt)
2532 {
2533         return pt->adjusted_pf.discard_passdown;
2534 }
2535
2536 static void set_discard_callbacks(struct pool *pool)
2537 {
2538         struct pool_c *pt = pool->ti->private;
2539
2540         if (passdown_enabled(pt)) {
2541                 pool->process_discard_cell = process_discard_cell_passdown;
2542                 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2543                 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2544         } else {
2545                 pool->process_discard_cell = process_discard_cell_no_passdown;
2546                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2547         }
2548 }
2549
2550 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2551 {
2552         struct pool_c *pt = pool->ti->private;
2553         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2554         enum pool_mode old_mode = get_pool_mode(pool);
2555         unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2556
2557         /*
2558          * Never allow the pool to transition to PM_WRITE mode if user
2559          * intervention is required to verify metadata and data consistency.
2560          */
2561         if (new_mode == PM_WRITE && needs_check) {
2562                 DMERR("%s: unable to switch pool to write mode until repaired.",
2563                       dm_device_name(pool->pool_md));
2564                 if (old_mode != new_mode)
2565                         new_mode = old_mode;
2566                 else
2567                         new_mode = PM_READ_ONLY;
2568         }
2569         /*
2570          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2571          * not going to recover without a thin_repair.  So we never let the
2572          * pool move out of the old mode.
2573          */
2574         if (old_mode == PM_FAIL)
2575                 new_mode = old_mode;
2576
2577         switch (new_mode) {
2578         case PM_FAIL:
2579                 dm_pool_metadata_read_only(pool->pmd);
2580                 pool->process_bio = process_bio_fail;
2581                 pool->process_discard = process_bio_fail;
2582                 pool->process_cell = process_cell_fail;
2583                 pool->process_discard_cell = process_cell_fail;
2584                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2585                 pool->process_prepared_discard = process_prepared_discard_fail;
2586
2587                 error_retry_list(pool);
2588                 break;
2589
2590         case PM_OUT_OF_METADATA_SPACE:
2591         case PM_READ_ONLY:
2592                 dm_pool_metadata_read_only(pool->pmd);
2593                 pool->process_bio = process_bio_read_only;
2594                 pool->process_discard = process_bio_success;
2595                 pool->process_cell = process_cell_read_only;
2596                 pool->process_discard_cell = process_cell_success;
2597                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2598                 pool->process_prepared_discard = process_prepared_discard_success;
2599
2600                 error_retry_list(pool);
2601                 break;
2602
2603         case PM_OUT_OF_DATA_SPACE:
2604                 /*
2605                  * Ideally we'd never hit this state; the low water mark
2606                  * would trigger userland to extend the pool before we
2607                  * completely run out of data space.  However, many small
2608                  * IOs to unprovisioned space can consume data space at an
2609                  * alarming rate.  Adjust your low water mark if you're
2610                  * frequently seeing this mode.
2611                  */
2612                 pool->out_of_data_space = true;
2613                 pool->process_bio = process_bio_read_only;
2614                 pool->process_discard = process_discard_bio;
2615                 pool->process_cell = process_cell_read_only;
2616                 pool->process_prepared_mapping = process_prepared_mapping;
2617                 set_discard_callbacks(pool);
2618
2619                 if (!pool->pf.error_if_no_space && no_space_timeout)
2620                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2621                 break;
2622
2623         case PM_WRITE:
2624                 if (old_mode == PM_OUT_OF_DATA_SPACE)
2625                         cancel_delayed_work_sync(&pool->no_space_timeout);
2626                 pool->out_of_data_space = false;
2627                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2628                 dm_pool_metadata_read_write(pool->pmd);
2629                 pool->process_bio = process_bio;
2630                 pool->process_discard = process_discard_bio;
2631                 pool->process_cell = process_cell;
2632                 pool->process_prepared_mapping = process_prepared_mapping;
2633                 set_discard_callbacks(pool);
2634                 break;
2635         }
2636
2637         pool->pf.mode = new_mode;
2638         /*
2639          * The pool mode may have changed, sync it so bind_control_target()
2640          * doesn't cause an unexpected mode transition on resume.
2641          */
2642         pt->adjusted_pf.mode = new_mode;
2643
2644         if (old_mode != new_mode)
2645                 notify_of_pool_mode_change(pool);
2646 }
2647
2648 static void abort_transaction(struct pool *pool)
2649 {
2650         const char *dev_name = dm_device_name(pool->pool_md);
2651
2652         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2653         if (dm_pool_abort_metadata(pool->pmd)) {
2654                 DMERR("%s: failed to abort metadata transaction", dev_name);
2655                 set_pool_mode(pool, PM_FAIL);
2656         }
2657
2658         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2659                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2660                 set_pool_mode(pool, PM_FAIL);
2661         }
2662 }
2663
2664 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2665 {
2666         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2667                     dm_device_name(pool->pool_md), op, r);
2668
2669         abort_transaction(pool);
2670         set_pool_mode(pool, PM_READ_ONLY);
2671 }
2672
2673 /*----------------------------------------------------------------*/
2674
2675 /*
2676  * Mapping functions.
2677  */
2678
2679 /*
2680  * Called only while mapping a thin bio to hand it over to the workqueue.
2681  */
2682 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2683 {
2684         struct pool *pool = tc->pool;
2685
2686         spin_lock_irq(&tc->lock);
2687         bio_list_add(&tc->deferred_bio_list, bio);
2688         spin_unlock_irq(&tc->lock);
2689
2690         wake_worker(pool);
2691 }
2692
2693 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2694 {
2695         struct pool *pool = tc->pool;
2696
2697         throttle_lock(&pool->throttle);
2698         thin_defer_bio(tc, bio);
2699         throttle_unlock(&pool->throttle);
2700 }
2701
2702 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2703 {
2704         struct pool *pool = tc->pool;
2705
2706         throttle_lock(&pool->throttle);
2707         spin_lock_irq(&tc->lock);
2708         list_add_tail(&cell->user_list, &tc->deferred_cells);
2709         spin_unlock_irq(&tc->lock);
2710         throttle_unlock(&pool->throttle);
2711
2712         wake_worker(pool);
2713 }
2714
2715 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2716 {
2717         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2718
2719         h->tc = tc;
2720         h->shared_read_entry = NULL;
2721         h->all_io_entry = NULL;
2722         h->overwrite_mapping = NULL;
2723         h->cell = NULL;
2724 }
2725
2726 /*
2727  * Non-blocking function called from the thin target's map function.
2728  */
2729 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2730 {
2731         int r;
2732         struct thin_c *tc = ti->private;
2733         dm_block_t block = get_bio_block(tc, bio);
2734         struct dm_thin_device *td = tc->td;
2735         struct dm_thin_lookup_result result;
2736         struct dm_bio_prison_cell *virt_cell, *data_cell;
2737         struct dm_cell_key key;
2738
2739         thin_hook_bio(tc, bio);
2740
2741         if (tc->requeue_mode) {
2742                 bio->bi_status = BLK_STS_DM_REQUEUE;
2743                 bio_endio(bio);
2744                 return DM_MAPIO_SUBMITTED;
2745         }
2746
2747         if (get_pool_mode(tc->pool) == PM_FAIL) {
2748                 bio_io_error(bio);
2749                 return DM_MAPIO_SUBMITTED;
2750         }
2751
2752         if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2753                 thin_defer_bio_with_throttle(tc, bio);
2754                 return DM_MAPIO_SUBMITTED;
2755         }
2756
2757         /*
2758          * We must hold the virtual cell before doing the lookup, otherwise
2759          * there's a race with discard.
2760          */
2761         build_virtual_key(tc->td, block, &key);
2762         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2763                 return DM_MAPIO_SUBMITTED;
2764
2765         r = dm_thin_find_block(td, block, 0, &result);
2766
2767         /*
2768          * Note that we defer readahead too.
2769          */
2770         switch (r) {
2771         case 0:
2772                 if (unlikely(result.shared)) {
2773                         /*
2774                          * We have a race condition here between the
2775                          * result.shared value returned by the lookup and
2776                          * snapshot creation, which may cause new
2777                          * sharing.
2778                          *
2779                          * To avoid this always quiesce the origin before
2780                          * taking the snap.  You want to do this anyway to
2781                          * ensure a consistent application view
2782                          * (i.e. lockfs).
2783                          *
2784                          * More distant ancestors are irrelevant. The
2785                          * shared flag will be set in their case.
2786                          */
2787                         thin_defer_cell(tc, virt_cell);
2788                         return DM_MAPIO_SUBMITTED;
2789                 }
2790
2791                 build_data_key(tc->td, result.block, &key);
2792                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2793                         cell_defer_no_holder(tc, virt_cell);
2794                         return DM_MAPIO_SUBMITTED;
2795                 }
2796
2797                 inc_all_io_entry(tc->pool, bio);
2798                 cell_defer_no_holder(tc, data_cell);
2799                 cell_defer_no_holder(tc, virt_cell);
2800
2801                 remap(tc, bio, result.block);
2802                 return DM_MAPIO_REMAPPED;
2803
2804         case -ENODATA:
2805         case -EWOULDBLOCK:
2806                 thin_defer_cell(tc, virt_cell);
2807                 return DM_MAPIO_SUBMITTED;
2808
2809         default:
2810                 /*
2811                  * Must always call bio_io_error on failure.
2812                  * dm_thin_find_block can fail with -EINVAL if the
2813                  * pool is switched to fail-io mode.
2814                  */
2815                 bio_io_error(bio);
2816                 cell_defer_no_holder(tc, virt_cell);
2817                 return DM_MAPIO_SUBMITTED;
2818         }
2819 }
2820
2821 static void requeue_bios(struct pool *pool)
2822 {
2823         struct thin_c *tc;
2824
2825         rcu_read_lock();
2826         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2827                 spin_lock_irq(&tc->lock);
2828                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2829                 bio_list_init(&tc->retry_on_resume_list);
2830                 spin_unlock_irq(&tc->lock);
2831         }
2832         rcu_read_unlock();
2833 }
2834
2835 /*
2836  *--------------------------------------------------------------
2837  * Binding of control targets to a pool object
2838  *--------------------------------------------------------------
2839  */
2840 static bool is_factor(sector_t block_size, uint32_t n)
2841 {
2842         return !sector_div(block_size, n);
2843 }
2844
2845 /*
2846  * If discard_passdown was enabled verify that the data device
2847  * supports discards.  Disable discard_passdown if not.
2848  */
2849 static void disable_passdown_if_not_supported(struct pool_c *pt)
2850 {
2851         struct pool *pool = pt->pool;
2852         struct block_device *data_bdev = pt->data_dev->bdev;
2853         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2854         const char *reason = NULL;
2855
2856         if (!pt->adjusted_pf.discard_passdown)
2857                 return;
2858
2859         if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2860                 reason = "discard unsupported";
2861
2862         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2863                 reason = "max discard sectors smaller than a block";
2864
2865         if (reason) {
2866                 DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2867                 pt->adjusted_pf.discard_passdown = false;
2868         }
2869 }
2870
2871 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2872 {
2873         struct pool_c *pt = ti->private;
2874
2875         /*
2876          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2877          */
2878         enum pool_mode old_mode = get_pool_mode(pool);
2879         enum pool_mode new_mode = pt->adjusted_pf.mode;
2880
2881         /*
2882          * Don't change the pool's mode until set_pool_mode() below.
2883          * Otherwise the pool's process_* function pointers may
2884          * not match the desired pool mode.
2885          */
2886         pt->adjusted_pf.mode = old_mode;
2887
2888         pool->ti = ti;
2889         pool->pf = pt->adjusted_pf;
2890         pool->low_water_blocks = pt->low_water_blocks;
2891
2892         set_pool_mode(pool, new_mode);
2893
2894         return 0;
2895 }
2896
2897 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2898 {
2899         if (pool->ti == ti)
2900                 pool->ti = NULL;
2901 }
2902
2903 /*
2904  *--------------------------------------------------------------
2905  * Pool creation
2906  *--------------------------------------------------------------
2907  */
2908 /* Initialize pool features. */
2909 static void pool_features_init(struct pool_features *pf)
2910 {
2911         pf->mode = PM_WRITE;
2912         pf->zero_new_blocks = true;
2913         pf->discard_enabled = true;
2914         pf->discard_passdown = true;
2915         pf->error_if_no_space = false;
2916 }
2917
2918 static void __pool_destroy(struct pool *pool)
2919 {
2920         __pool_table_remove(pool);
2921
2922         vfree(pool->cell_sort_array);
2923         if (dm_pool_metadata_close(pool->pmd) < 0)
2924                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2925
2926         dm_bio_prison_destroy(pool->prison);
2927         dm_kcopyd_client_destroy(pool->copier);
2928
2929         cancel_delayed_work_sync(&pool->waker);
2930         cancel_delayed_work_sync(&pool->no_space_timeout);
2931         if (pool->wq)
2932                 destroy_workqueue(pool->wq);
2933
2934         if (pool->next_mapping)
2935                 mempool_free(pool->next_mapping, &pool->mapping_pool);
2936         mempool_exit(&pool->mapping_pool);
2937         dm_deferred_set_destroy(pool->shared_read_ds);
2938         dm_deferred_set_destroy(pool->all_io_ds);
2939         kfree(pool);
2940 }
2941
2942 static struct kmem_cache *_new_mapping_cache;
2943
2944 static struct pool *pool_create(struct mapped_device *pool_md,
2945                                 struct block_device *metadata_dev,
2946                                 struct block_device *data_dev,
2947                                 unsigned long block_size,
2948                                 int read_only, char **error)
2949 {
2950         int r;
2951         void *err_p;
2952         struct pool *pool;
2953         struct dm_pool_metadata *pmd;
2954         bool format_device = read_only ? false : true;
2955
2956         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2957         if (IS_ERR(pmd)) {
2958                 *error = "Error creating metadata object";
2959                 return (struct pool *)pmd;
2960         }
2961
2962         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2963         if (!pool) {
2964                 *error = "Error allocating memory for pool";
2965                 err_p = ERR_PTR(-ENOMEM);
2966                 goto bad_pool;
2967         }
2968
2969         pool->pmd = pmd;
2970         pool->sectors_per_block = block_size;
2971         if (block_size & (block_size - 1))
2972                 pool->sectors_per_block_shift = -1;
2973         else
2974                 pool->sectors_per_block_shift = __ffs(block_size);
2975         pool->low_water_blocks = 0;
2976         pool_features_init(&pool->pf);
2977         pool->prison = dm_bio_prison_create();
2978         if (!pool->prison) {
2979                 *error = "Error creating pool's bio prison";
2980                 err_p = ERR_PTR(-ENOMEM);
2981                 goto bad_prison;
2982         }
2983
2984         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2985         if (IS_ERR(pool->copier)) {
2986                 r = PTR_ERR(pool->copier);
2987                 *error = "Error creating pool's kcopyd client";
2988                 err_p = ERR_PTR(r);
2989                 goto bad_kcopyd_client;
2990         }
2991
2992         /*
2993          * Create singlethreaded workqueue that will service all devices
2994          * that use this metadata.
2995          */
2996         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2997         if (!pool->wq) {
2998                 *error = "Error creating pool's workqueue";
2999                 err_p = ERR_PTR(-ENOMEM);
3000                 goto bad_wq;
3001         }
3002
3003         throttle_init(&pool->throttle);
3004         INIT_WORK(&pool->worker, do_worker);
3005         INIT_DELAYED_WORK(&pool->waker, do_waker);
3006         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
3007         spin_lock_init(&pool->lock);
3008         bio_list_init(&pool->deferred_flush_bios);
3009         bio_list_init(&pool->deferred_flush_completions);
3010         INIT_LIST_HEAD(&pool->prepared_mappings);
3011         INIT_LIST_HEAD(&pool->prepared_discards);
3012         INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3013         INIT_LIST_HEAD(&pool->active_thins);
3014         pool->low_water_triggered = false;
3015         pool->suspended = true;
3016         pool->out_of_data_space = false;
3017
3018         pool->shared_read_ds = dm_deferred_set_create();
3019         if (!pool->shared_read_ds) {
3020                 *error = "Error creating pool's shared read deferred set";
3021                 err_p = ERR_PTR(-ENOMEM);
3022                 goto bad_shared_read_ds;
3023         }
3024
3025         pool->all_io_ds = dm_deferred_set_create();
3026         if (!pool->all_io_ds) {
3027                 *error = "Error creating pool's all io deferred set";
3028                 err_p = ERR_PTR(-ENOMEM);
3029                 goto bad_all_io_ds;
3030         }
3031
3032         pool->next_mapping = NULL;
3033         r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3034                                    _new_mapping_cache);
3035         if (r) {
3036                 *error = "Error creating pool's mapping mempool";
3037                 err_p = ERR_PTR(r);
3038                 goto bad_mapping_pool;
3039         }
3040
3041         pool->cell_sort_array =
3042                 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3043                                    sizeof(*pool->cell_sort_array)));
3044         if (!pool->cell_sort_array) {
3045                 *error = "Error allocating cell sort array";
3046                 err_p = ERR_PTR(-ENOMEM);
3047                 goto bad_sort_array;
3048         }
3049
3050         pool->ref_count = 1;
3051         pool->last_commit_jiffies = jiffies;
3052         pool->pool_md = pool_md;
3053         pool->md_dev = metadata_dev;
3054         pool->data_dev = data_dev;
3055         __pool_table_insert(pool);
3056
3057         return pool;
3058
3059 bad_sort_array:
3060         mempool_exit(&pool->mapping_pool);
3061 bad_mapping_pool:
3062         dm_deferred_set_destroy(pool->all_io_ds);
3063 bad_all_io_ds:
3064         dm_deferred_set_destroy(pool->shared_read_ds);
3065 bad_shared_read_ds:
3066         destroy_workqueue(pool->wq);
3067 bad_wq:
3068         dm_kcopyd_client_destroy(pool->copier);
3069 bad_kcopyd_client:
3070         dm_bio_prison_destroy(pool->prison);
3071 bad_prison:
3072         kfree(pool);
3073 bad_pool:
3074         if (dm_pool_metadata_close(pmd))
3075                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3076
3077         return err_p;
3078 }
3079
3080 static void __pool_inc(struct pool *pool)
3081 {
3082         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3083         pool->ref_count++;
3084 }
3085
3086 static void __pool_dec(struct pool *pool)
3087 {
3088         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3089         BUG_ON(!pool->ref_count);
3090         if (!--pool->ref_count)
3091                 __pool_destroy(pool);
3092 }
3093
3094 static struct pool *__pool_find(struct mapped_device *pool_md,
3095                                 struct block_device *metadata_dev,
3096                                 struct block_device *data_dev,
3097                                 unsigned long block_size, int read_only,
3098                                 char **error, int *created)
3099 {
3100         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3101
3102         if (pool) {
3103                 if (pool->pool_md != pool_md) {
3104                         *error = "metadata device already in use by a pool";
3105                         return ERR_PTR(-EBUSY);
3106                 }
3107                 if (pool->data_dev != data_dev) {
3108                         *error = "data device already in use by a pool";
3109                         return ERR_PTR(-EBUSY);
3110                 }
3111                 __pool_inc(pool);
3112
3113         } else {
3114                 pool = __pool_table_lookup(pool_md);
3115                 if (pool) {
3116                         if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3117                                 *error = "different pool cannot replace a pool";
3118                                 return ERR_PTR(-EINVAL);
3119                         }
3120                         __pool_inc(pool);
3121
3122                 } else {
3123                         pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3124                         *created = 1;
3125                 }
3126         }
3127
3128         return pool;
3129 }
3130
3131 /*
3132  *--------------------------------------------------------------
3133  * Pool target methods
3134  *--------------------------------------------------------------
3135  */
3136 static void pool_dtr(struct dm_target *ti)
3137 {
3138         struct pool_c *pt = ti->private;
3139
3140         mutex_lock(&dm_thin_pool_table.mutex);
3141
3142         unbind_control_target(pt->pool, ti);
3143         __pool_dec(pt->pool);
3144         dm_put_device(ti, pt->metadata_dev);
3145         dm_put_device(ti, pt->data_dev);
3146         kfree(pt);
3147
3148         mutex_unlock(&dm_thin_pool_table.mutex);
3149 }
3150
3151 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3152                                struct dm_target *ti)
3153 {
3154         int r;
3155         unsigned int argc;
3156         const char *arg_name;
3157
3158         static const struct dm_arg _args[] = {
3159                 {0, 4, "Invalid number of pool feature arguments"},
3160         };
3161
3162         /*
3163          * No feature arguments supplied.
3164          */
3165         if (!as->argc)
3166                 return 0;
3167
3168         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3169         if (r)
3170                 return -EINVAL;
3171
3172         while (argc && !r) {
3173                 arg_name = dm_shift_arg(as);
3174                 argc--;
3175
3176                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3177                         pf->zero_new_blocks = false;
3178
3179                 else if (!strcasecmp(arg_name, "ignore_discard"))
3180                         pf->discard_enabled = false;
3181
3182                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3183                         pf->discard_passdown = false;
3184
3185                 else if (!strcasecmp(arg_name, "read_only"))
3186                         pf->mode = PM_READ_ONLY;
3187
3188                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3189                         pf->error_if_no_space = true;
3190
3191                 else {
3192                         ti->error = "Unrecognised pool feature requested";
3193                         r = -EINVAL;
3194                         break;
3195                 }
3196         }
3197
3198         return r;
3199 }
3200
3201 static void metadata_low_callback(void *context)
3202 {
3203         struct pool *pool = context;
3204
3205         DMWARN("%s: reached low water mark for metadata device: sending event.",
3206                dm_device_name(pool->pool_md));
3207
3208         dm_table_event(pool->ti->table);
3209 }
3210
3211 /*
3212  * We need to flush the data device **before** committing the metadata.
3213  *
3214  * This ensures that the data blocks of any newly inserted mappings are
3215  * properly written to non-volatile storage and won't be lost in case of a
3216  * crash.
3217  *
3218  * Failure to do so can result in data corruption in the case of internal or
3219  * external snapshots and in the case of newly provisioned blocks, when block
3220  * zeroing is enabled.
3221  */
3222 static int metadata_pre_commit_callback(void *context)
3223 {
3224         struct pool *pool = context;
3225
3226         return blkdev_issue_flush(pool->data_dev);
3227 }
3228
3229 static sector_t get_dev_size(struct block_device *bdev)
3230 {
3231         return bdev_nr_sectors(bdev);
3232 }
3233
3234 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3235 {
3236         sector_t metadata_dev_size = get_dev_size(bdev);
3237
3238         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3239                 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3240                        bdev, THIN_METADATA_MAX_SECTORS);
3241 }
3242
3243 static sector_t get_metadata_dev_size(struct block_device *bdev)
3244 {
3245         sector_t metadata_dev_size = get_dev_size(bdev);
3246
3247         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3248                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3249
3250         return metadata_dev_size;
3251 }
3252
3253 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3254 {
3255         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3256
3257         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3258
3259         return metadata_dev_size;
3260 }
3261
3262 /*
3263  * When a metadata threshold is crossed a dm event is triggered, and
3264  * userland should respond by growing the metadata device.  We could let
3265  * userland set the threshold, like we do with the data threshold, but I'm
3266  * not sure they know enough to do this well.
3267  */
3268 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3269 {
3270         /*
3271          * 4M is ample for all ops with the possible exception of thin
3272          * device deletion which is harmless if it fails (just retry the
3273          * delete after you've grown the device).
3274          */
3275         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3276
3277         return min((dm_block_t)1024ULL /* 4M */, quarter);
3278 }
3279
3280 /*
3281  * thin-pool <metadata dev> <data dev>
3282  *           <data block size (sectors)>
3283  *           <low water mark (blocks)>
3284  *           [<#feature args> [<arg>]*]
3285  *
3286  * Optional feature arguments are:
3287  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3288  *           ignore_discard: disable discard
3289  *           no_discard_passdown: don't pass discards down to the data device
3290  *           read_only: Don't allow any changes to be made to the pool metadata.
3291  *           error_if_no_space: error IOs, instead of queueing, if no space.
3292  */
3293 static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3294 {
3295         int r, pool_created = 0;
3296         struct pool_c *pt;
3297         struct pool *pool;
3298         struct pool_features pf;
3299         struct dm_arg_set as;
3300         struct dm_dev *data_dev;
3301         unsigned long block_size;
3302         dm_block_t low_water_blocks;
3303         struct dm_dev *metadata_dev;
3304         fmode_t metadata_mode;
3305
3306         /*
3307          * FIXME Remove validation from scope of lock.
3308          */
3309         mutex_lock(&dm_thin_pool_table.mutex);
3310
3311         if (argc < 4) {
3312                 ti->error = "Invalid argument count";
3313                 r = -EINVAL;
3314                 goto out_unlock;
3315         }
3316
3317         as.argc = argc;
3318         as.argv = argv;
3319
3320         /* make sure metadata and data are different devices */
3321         if (!strcmp(argv[0], argv[1])) {
3322                 ti->error = "Error setting metadata or data device";
3323                 r = -EINVAL;
3324                 goto out_unlock;
3325         }
3326
3327         /*
3328          * Set default pool features.
3329          */
3330         pool_features_init(&pf);
3331
3332         dm_consume_args(&as, 4);
3333         r = parse_pool_features(&as, &pf, ti);
3334         if (r)
3335                 goto out_unlock;
3336
3337         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3338         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3339         if (r) {
3340                 ti->error = "Error opening metadata block device";
3341                 goto out_unlock;
3342         }
3343         warn_if_metadata_device_too_big(metadata_dev->bdev);
3344
3345         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3346         if (r) {
3347                 ti->error = "Error getting data device";
3348                 goto out_metadata;
3349         }
3350
3351         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3352             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3353             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3354             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3355                 ti->error = "Invalid block size";
3356                 r = -EINVAL;
3357                 goto out;
3358         }
3359
3360         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3361                 ti->error = "Invalid low water mark";
3362                 r = -EINVAL;
3363                 goto out;
3364         }
3365
3366         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3367         if (!pt) {
3368                 r = -ENOMEM;
3369                 goto out;
3370         }
3371
3372         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3373                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3374         if (IS_ERR(pool)) {
3375                 r = PTR_ERR(pool);
3376                 goto out_free_pt;
3377         }
3378
3379         /*
3380          * 'pool_created' reflects whether this is the first table load.
3381          * Top level discard support is not allowed to be changed after
3382          * initial load.  This would require a pool reload to trigger thin
3383          * device changes.
3384          */
3385         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3386                 ti->error = "Discard support cannot be disabled once enabled";
3387                 r = -EINVAL;
3388                 goto out_flags_changed;
3389         }
3390
3391         pt->pool = pool;
3392         pt->ti = ti;
3393         pt->metadata_dev = metadata_dev;
3394         pt->data_dev = data_dev;
3395         pt->low_water_blocks = low_water_blocks;
3396         pt->adjusted_pf = pt->requested_pf = pf;
3397         ti->num_flush_bios = 1;
3398         ti->limit_swap_bios = true;
3399
3400         /*
3401          * Only need to enable discards if the pool should pass
3402          * them down to the data device.  The thin device's discard
3403          * processing will cause mappings to be removed from the btree.
3404          */
3405         if (pf.discard_enabled && pf.discard_passdown) {
3406                 ti->num_discard_bios = 1;
3407                 /*
3408                  * Setting 'discards_supported' circumvents the normal
3409                  * stacking of discard limits (this keeps the pool and
3410                  * thin devices' discard limits consistent).
3411                  */
3412                 ti->discards_supported = true;
3413                 ti->max_discard_granularity = true;
3414         }
3415         ti->private = pt;
3416
3417         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3418                                                 calc_metadata_threshold(pt),
3419                                                 metadata_low_callback,
3420                                                 pool);
3421         if (r) {
3422                 ti->error = "Error registering metadata threshold";
3423                 goto out_flags_changed;
3424         }
3425
3426         dm_pool_register_pre_commit_callback(pool->pmd,
3427                                              metadata_pre_commit_callback, pool);
3428
3429         mutex_unlock(&dm_thin_pool_table.mutex);
3430
3431         return 0;
3432
3433 out_flags_changed:
3434         __pool_dec(pool);
3435 out_free_pt:
3436         kfree(pt);
3437 out:
3438         dm_put_device(ti, data_dev);
3439 out_metadata:
3440         dm_put_device(ti, metadata_dev);
3441 out_unlock:
3442         mutex_unlock(&dm_thin_pool_table.mutex);
3443
3444         return r;
3445 }
3446
3447 static int pool_map(struct dm_target *ti, struct bio *bio)
3448 {
3449         int r;
3450         struct pool_c *pt = ti->private;
3451         struct pool *pool = pt->pool;
3452
3453         /*
3454          * As this is a singleton target, ti->begin is always zero.
3455          */
3456         spin_lock_irq(&pool->lock);
3457         bio_set_dev(bio, pt->data_dev->bdev);
3458         r = DM_MAPIO_REMAPPED;
3459         spin_unlock_irq(&pool->lock);
3460
3461         return r;
3462 }
3463
3464 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3465 {
3466         int r;
3467         struct pool_c *pt = ti->private;
3468         struct pool *pool = pt->pool;
3469         sector_t data_size = ti->len;
3470         dm_block_t sb_data_size;
3471
3472         *need_commit = false;
3473
3474         (void) sector_div(data_size, pool->sectors_per_block);
3475
3476         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3477         if (r) {
3478                 DMERR("%s: failed to retrieve data device size",
3479                       dm_device_name(pool->pool_md));
3480                 return r;
3481         }
3482
3483         if (data_size < sb_data_size) {
3484                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3485                       dm_device_name(pool->pool_md),
3486                       (unsigned long long)data_size, sb_data_size);
3487                 return -EINVAL;
3488
3489         } else if (data_size > sb_data_size) {
3490                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3491                         DMERR("%s: unable to grow the data device until repaired.",
3492                               dm_device_name(pool->pool_md));
3493                         return 0;
3494                 }
3495
3496                 if (sb_data_size)
3497                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3498                                dm_device_name(pool->pool_md),
3499                                sb_data_size, (unsigned long long)data_size);
3500                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3501                 if (r) {
3502                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3503                         return r;
3504                 }
3505
3506                 *need_commit = true;
3507         }
3508
3509         return 0;
3510 }
3511
3512 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3513 {
3514         int r;
3515         struct pool_c *pt = ti->private;
3516         struct pool *pool = pt->pool;
3517         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3518
3519         *need_commit = false;
3520
3521         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3522
3523         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3524         if (r) {
3525                 DMERR("%s: failed to retrieve metadata device size",
3526                       dm_device_name(pool->pool_md));
3527                 return r;
3528         }
3529
3530         if (metadata_dev_size < sb_metadata_dev_size) {
3531                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3532                       dm_device_name(pool->pool_md),
3533                       metadata_dev_size, sb_metadata_dev_size);
3534                 return -EINVAL;
3535
3536         } else if (metadata_dev_size > sb_metadata_dev_size) {
3537                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3538                         DMERR("%s: unable to grow the metadata device until repaired.",
3539                               dm_device_name(pool->pool_md));
3540                         return 0;
3541                 }
3542
3543                 warn_if_metadata_device_too_big(pool->md_dev);
3544                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3545                        dm_device_name(pool->pool_md),
3546                        sb_metadata_dev_size, metadata_dev_size);
3547
3548                 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3549                         set_pool_mode(pool, PM_WRITE);
3550
3551                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3552                 if (r) {
3553                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3554                         return r;
3555                 }
3556
3557                 *need_commit = true;
3558         }
3559
3560         return 0;
3561 }
3562
3563 /*
3564  * Retrieves the number of blocks of the data device from
3565  * the superblock and compares it to the actual device size,
3566  * thus resizing the data device in case it has grown.
3567  *
3568  * This both copes with opening preallocated data devices in the ctr
3569  * being followed by a resume
3570  * -and-
3571  * calling the resume method individually after userspace has
3572  * grown the data device in reaction to a table event.
3573  */
3574 static int pool_preresume(struct dm_target *ti)
3575 {
3576         int r;
3577         bool need_commit1, need_commit2;
3578         struct pool_c *pt = ti->private;
3579         struct pool *pool = pt->pool;
3580
3581         /*
3582          * Take control of the pool object.
3583          */
3584         r = bind_control_target(pool, ti);
3585         if (r)
3586                 goto out;
3587
3588         r = maybe_resize_data_dev(ti, &need_commit1);
3589         if (r)
3590                 goto out;
3591
3592         r = maybe_resize_metadata_dev(ti, &need_commit2);
3593         if (r)
3594                 goto out;
3595
3596         if (need_commit1 || need_commit2)
3597                 (void) commit(pool);
3598 out:
3599         /*
3600          * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3601          * bio is in deferred list. Therefore need to return 0
3602          * to allow pool_resume() to flush IO.
3603          */
3604         if (r && get_pool_mode(pool) == PM_FAIL)
3605                 r = 0;
3606
3607         return r;
3608 }
3609
3610 static void pool_suspend_active_thins(struct pool *pool)
3611 {
3612         struct thin_c *tc;
3613
3614         /* Suspend all active thin devices */
3615         tc = get_first_thin(pool);
3616         while (tc) {
3617                 dm_internal_suspend_noflush(tc->thin_md);
3618                 tc = get_next_thin(pool, tc);
3619         }
3620 }
3621
3622 static void pool_resume_active_thins(struct pool *pool)
3623 {
3624         struct thin_c *tc;
3625
3626         /* Resume all active thin devices */
3627         tc = get_first_thin(pool);
3628         while (tc) {
3629                 dm_internal_resume(tc->thin_md);
3630                 tc = get_next_thin(pool, tc);
3631         }
3632 }
3633
3634 static void pool_resume(struct dm_target *ti)
3635 {
3636         struct pool_c *pt = ti->private;
3637         struct pool *pool = pt->pool;
3638
3639         /*
3640          * Must requeue active_thins' bios and then resume
3641          * active_thins _before_ clearing 'suspend' flag.
3642          */
3643         requeue_bios(pool);
3644         pool_resume_active_thins(pool);
3645
3646         spin_lock_irq(&pool->lock);
3647         pool->low_water_triggered = false;
3648         pool->suspended = false;
3649         spin_unlock_irq(&pool->lock);
3650
3651         do_waker(&pool->waker.work);
3652 }
3653
3654 static void pool_presuspend(struct dm_target *ti)
3655 {
3656         struct pool_c *pt = ti->private;
3657         struct pool *pool = pt->pool;
3658
3659         spin_lock_irq(&pool->lock);
3660         pool->suspended = true;
3661         spin_unlock_irq(&pool->lock);
3662
3663         pool_suspend_active_thins(pool);
3664 }
3665
3666 static void pool_presuspend_undo(struct dm_target *ti)
3667 {
3668         struct pool_c *pt = ti->private;
3669         struct pool *pool = pt->pool;
3670
3671         pool_resume_active_thins(pool);
3672
3673         spin_lock_irq(&pool->lock);
3674         pool->suspended = false;
3675         spin_unlock_irq(&pool->lock);
3676 }
3677
3678 static void pool_postsuspend(struct dm_target *ti)
3679 {
3680         struct pool_c *pt = ti->private;
3681         struct pool *pool = pt->pool;
3682
3683         cancel_delayed_work_sync(&pool->waker);
3684         cancel_delayed_work_sync(&pool->no_space_timeout);
3685         flush_workqueue(pool->wq);
3686         (void) commit(pool);
3687 }
3688
3689 static int check_arg_count(unsigned int argc, unsigned int args_required)
3690 {
3691         if (argc != args_required) {
3692                 DMWARN("Message received with %u arguments instead of %u.",
3693                        argc, args_required);
3694                 return -EINVAL;
3695         }
3696
3697         return 0;
3698 }
3699
3700 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3701 {
3702         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3703             *dev_id <= MAX_DEV_ID)
3704                 return 0;
3705
3706         if (warning)
3707                 DMWARN("Message received with invalid device id: %s", arg);
3708
3709         return -EINVAL;
3710 }
3711
3712 static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool)
3713 {
3714         dm_thin_id dev_id;
3715         int r;
3716
3717         r = check_arg_count(argc, 2);
3718         if (r)
3719                 return r;
3720
3721         r = read_dev_id(argv[1], &dev_id, 1);
3722         if (r)
3723                 return r;
3724
3725         r = dm_pool_create_thin(pool->pmd, dev_id);
3726         if (r) {
3727                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3728                        argv[1]);
3729                 return r;
3730         }
3731
3732         return 0;
3733 }
3734
3735 static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3736 {
3737         dm_thin_id dev_id;
3738         dm_thin_id origin_dev_id;
3739         int r;
3740
3741         r = check_arg_count(argc, 3);
3742         if (r)
3743                 return r;
3744
3745         r = read_dev_id(argv[1], &dev_id, 1);
3746         if (r)
3747                 return r;
3748
3749         r = read_dev_id(argv[2], &origin_dev_id, 1);
3750         if (r)
3751                 return r;
3752
3753         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3754         if (r) {
3755                 DMWARN("Creation of new snapshot %s of device %s failed.",
3756                        argv[1], argv[2]);
3757                 return r;
3758         }
3759
3760         return 0;
3761 }
3762
3763 static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool)
3764 {
3765         dm_thin_id dev_id;
3766         int r;
3767
3768         r = check_arg_count(argc, 2);
3769         if (r)
3770                 return r;
3771
3772         r = read_dev_id(argv[1], &dev_id, 1);
3773         if (r)
3774                 return r;
3775
3776         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3777         if (r)
3778                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3779
3780         return r;
3781 }
3782
3783 static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool)
3784 {
3785         dm_thin_id old_id, new_id;
3786         int r;
3787
3788         r = check_arg_count(argc, 3);
3789         if (r)
3790                 return r;
3791
3792         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3793                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3794                 return -EINVAL;
3795         }
3796
3797         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3798                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3799                 return -EINVAL;
3800         }
3801
3802         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3803         if (r) {
3804                 DMWARN("Failed to change transaction id from %s to %s.",
3805                        argv[1], argv[2]);
3806                 return r;
3807         }
3808
3809         return 0;
3810 }
3811
3812 static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3813 {
3814         int r;
3815
3816         r = check_arg_count(argc, 1);
3817         if (r)
3818                 return r;
3819
3820         (void) commit(pool);
3821
3822         r = dm_pool_reserve_metadata_snap(pool->pmd);
3823         if (r)
3824                 DMWARN("reserve_metadata_snap message failed.");
3825
3826         return r;
3827 }
3828
3829 static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3830 {
3831         int r;
3832
3833         r = check_arg_count(argc, 1);
3834         if (r)
3835                 return r;
3836
3837         r = dm_pool_release_metadata_snap(pool->pmd);
3838         if (r)
3839                 DMWARN("release_metadata_snap message failed.");
3840
3841         return r;
3842 }
3843
3844 /*
3845  * Messages supported:
3846  *   create_thin        <dev_id>
3847  *   create_snap        <dev_id> <origin_id>
3848  *   delete             <dev_id>
3849  *   set_transaction_id <current_trans_id> <new_trans_id>
3850  *   reserve_metadata_snap
3851  *   release_metadata_snap
3852  */
3853 static int pool_message(struct dm_target *ti, unsigned int argc, char **argv,
3854                         char *result, unsigned int maxlen)
3855 {
3856         int r = -EINVAL;
3857         struct pool_c *pt = ti->private;
3858         struct pool *pool = pt->pool;
3859
3860         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3861                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3862                       dm_device_name(pool->pool_md));
3863                 return -EOPNOTSUPP;
3864         }
3865
3866         if (!strcasecmp(argv[0], "create_thin"))
3867                 r = process_create_thin_mesg(argc, argv, pool);
3868
3869         else if (!strcasecmp(argv[0], "create_snap"))
3870                 r = process_create_snap_mesg(argc, argv, pool);
3871
3872         else if (!strcasecmp(argv[0], "delete"))
3873                 r = process_delete_mesg(argc, argv, pool);
3874
3875         else if (!strcasecmp(argv[0], "set_transaction_id"))
3876                 r = process_set_transaction_id_mesg(argc, argv, pool);
3877
3878         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3879                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3880
3881         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3882                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3883
3884         else
3885                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3886
3887         if (!r)
3888                 (void) commit(pool);
3889
3890         return r;
3891 }
3892
3893 static void emit_flags(struct pool_features *pf, char *result,
3894                        unsigned int sz, unsigned int maxlen)
3895 {
3896         unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled +
3897                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3898                 pf->error_if_no_space;
3899         DMEMIT("%u ", count);
3900
3901         if (!pf->zero_new_blocks)
3902                 DMEMIT("skip_block_zeroing ");
3903
3904         if (!pf->discard_enabled)
3905                 DMEMIT("ignore_discard ");
3906
3907         if (!pf->discard_passdown)
3908                 DMEMIT("no_discard_passdown ");
3909
3910         if (pf->mode == PM_READ_ONLY)
3911                 DMEMIT("read_only ");
3912
3913         if (pf->error_if_no_space)
3914                 DMEMIT("error_if_no_space ");
3915 }
3916
3917 /*
3918  * Status line is:
3919  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3920  *    <used data sectors>/<total data sectors> <held metadata root>
3921  *    <pool mode> <discard config> <no space config> <needs_check>
3922  */
3923 static void pool_status(struct dm_target *ti, status_type_t type,
3924                         unsigned int status_flags, char *result, unsigned int maxlen)
3925 {
3926         int r;
3927         unsigned int sz = 0;
3928         uint64_t transaction_id;
3929         dm_block_t nr_free_blocks_data;
3930         dm_block_t nr_free_blocks_metadata;
3931         dm_block_t nr_blocks_data;
3932         dm_block_t nr_blocks_metadata;
3933         dm_block_t held_root;
3934         enum pool_mode mode;
3935         char buf[BDEVNAME_SIZE];
3936         char buf2[BDEVNAME_SIZE];
3937         struct pool_c *pt = ti->private;
3938         struct pool *pool = pt->pool;
3939
3940         switch (type) {
3941         case STATUSTYPE_INFO:
3942                 if (get_pool_mode(pool) == PM_FAIL) {
3943                         DMEMIT("Fail");
3944                         break;
3945                 }
3946
3947                 /* Commit to ensure statistics aren't out-of-date */
3948                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3949                         (void) commit(pool);
3950
3951                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3952                 if (r) {
3953                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3954                               dm_device_name(pool->pool_md), r);
3955                         goto err;
3956                 }
3957
3958                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3959                 if (r) {
3960                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3961                               dm_device_name(pool->pool_md), r);
3962                         goto err;
3963                 }
3964
3965                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3966                 if (r) {
3967                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3968                               dm_device_name(pool->pool_md), r);
3969                         goto err;
3970                 }
3971
3972                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3973                 if (r) {
3974                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3975                               dm_device_name(pool->pool_md), r);
3976                         goto err;
3977                 }
3978
3979                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3980                 if (r) {
3981                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3982                               dm_device_name(pool->pool_md), r);
3983                         goto err;
3984                 }
3985
3986                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3987                 if (r) {
3988                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3989                               dm_device_name(pool->pool_md), r);
3990                         goto err;
3991                 }
3992
3993                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3994                        (unsigned long long)transaction_id,
3995                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3996                        (unsigned long long)nr_blocks_metadata,
3997                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3998                        (unsigned long long)nr_blocks_data);
3999
4000                 if (held_root)
4001                         DMEMIT("%llu ", held_root);
4002                 else
4003                         DMEMIT("- ");
4004
4005                 mode = get_pool_mode(pool);
4006                 if (mode == PM_OUT_OF_DATA_SPACE)
4007                         DMEMIT("out_of_data_space ");
4008                 else if (is_read_only_pool_mode(mode))
4009                         DMEMIT("ro ");
4010                 else
4011                         DMEMIT("rw ");
4012
4013                 if (!pool->pf.discard_enabled)
4014                         DMEMIT("ignore_discard ");
4015                 else if (pool->pf.discard_passdown)
4016                         DMEMIT("discard_passdown ");
4017                 else
4018                         DMEMIT("no_discard_passdown ");
4019
4020                 if (pool->pf.error_if_no_space)
4021                         DMEMIT("error_if_no_space ");
4022                 else
4023                         DMEMIT("queue_if_no_space ");
4024
4025                 if (dm_pool_metadata_needs_check(pool->pmd))
4026                         DMEMIT("needs_check ");
4027                 else
4028                         DMEMIT("- ");
4029
4030                 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4031
4032                 break;
4033
4034         case STATUSTYPE_TABLE:
4035                 DMEMIT("%s %s %lu %llu ",
4036                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4037                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4038                        (unsigned long)pool->sectors_per_block,
4039                        (unsigned long long)pt->low_water_blocks);
4040                 emit_flags(&pt->requested_pf, result, sz, maxlen);
4041                 break;
4042
4043         case STATUSTYPE_IMA:
4044                 *result = '\0';
4045                 break;
4046         }
4047         return;
4048
4049 err:
4050         DMEMIT("Error");
4051 }
4052
4053 static int pool_iterate_devices(struct dm_target *ti,
4054                                 iterate_devices_callout_fn fn, void *data)
4055 {
4056         struct pool_c *pt = ti->private;
4057
4058         return fn(ti, pt->data_dev, 0, ti->len, data);
4059 }
4060
4061 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4062 {
4063         struct pool_c *pt = ti->private;
4064         struct pool *pool = pt->pool;
4065         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4066
4067         /*
4068          * If max_sectors is smaller than pool->sectors_per_block adjust it
4069          * to the highest possible power-of-2 factor of pool->sectors_per_block.
4070          * This is especially beneficial when the pool's data device is a RAID
4071          * device that has a full stripe width that matches pool->sectors_per_block
4072          * -- because even though partial RAID stripe-sized IOs will be issued to a
4073          *    single RAID stripe; when aggregated they will end on a full RAID stripe
4074          *    boundary.. which avoids additional partial RAID stripe writes cascading
4075          */
4076         if (limits->max_sectors < pool->sectors_per_block) {
4077                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4078                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4079                                 limits->max_sectors--;
4080                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4081                 }
4082         }
4083
4084         /*
4085          * If the system-determined stacked limits are compatible with the
4086          * pool's blocksize (io_opt is a factor) do not override them.
4087          */
4088         if (io_opt_sectors < pool->sectors_per_block ||
4089             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4090                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4091                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4092                 else
4093                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4094                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4095         }
4096
4097         /*
4098          * pt->adjusted_pf is a staging area for the actual features to use.
4099          * They get transferred to the live pool in bind_control_target()
4100          * called from pool_preresume().
4101          */
4102         if (!pt->adjusted_pf.discard_enabled) {
4103                 /*
4104                  * Must explicitly disallow stacking discard limits otherwise the
4105                  * block layer will stack them if pool's data device has support.
4106                  */
4107                 limits->discard_granularity = 0;
4108                 return;
4109         }
4110
4111         disable_passdown_if_not_supported(pt);
4112
4113         /*
4114          * The pool uses the same discard limits as the underlying data
4115          * device.  DM core has already set this up.
4116          */
4117 }
4118
4119 static struct target_type pool_target = {
4120         .name = "thin-pool",
4121         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4122                     DM_TARGET_IMMUTABLE,
4123         .version = {1, 23, 0},
4124         .module = THIS_MODULE,
4125         .ctr = pool_ctr,
4126         .dtr = pool_dtr,
4127         .map = pool_map,
4128         .presuspend = pool_presuspend,
4129         .presuspend_undo = pool_presuspend_undo,
4130         .postsuspend = pool_postsuspend,
4131         .preresume = pool_preresume,
4132         .resume = pool_resume,
4133         .message = pool_message,
4134         .status = pool_status,
4135         .iterate_devices = pool_iterate_devices,
4136         .io_hints = pool_io_hints,
4137 };
4138
4139 /*
4140  *--------------------------------------------------------------
4141  * Thin target methods
4142  *--------------------------------------------------------------
4143  */
4144 static void thin_get(struct thin_c *tc)
4145 {
4146         refcount_inc(&tc->refcount);
4147 }
4148
4149 static void thin_put(struct thin_c *tc)
4150 {
4151         if (refcount_dec_and_test(&tc->refcount))
4152                 complete(&tc->can_destroy);
4153 }
4154
4155 static void thin_dtr(struct dm_target *ti)
4156 {
4157         struct thin_c *tc = ti->private;
4158
4159         spin_lock_irq(&tc->pool->lock);
4160         list_del_rcu(&tc->list);
4161         spin_unlock_irq(&tc->pool->lock);
4162         synchronize_rcu();
4163
4164         thin_put(tc);
4165         wait_for_completion(&tc->can_destroy);
4166
4167         mutex_lock(&dm_thin_pool_table.mutex);
4168
4169         __pool_dec(tc->pool);
4170         dm_pool_close_thin_device(tc->td);
4171         dm_put_device(ti, tc->pool_dev);
4172         if (tc->origin_dev)
4173                 dm_put_device(ti, tc->origin_dev);
4174         kfree(tc);
4175
4176         mutex_unlock(&dm_thin_pool_table.mutex);
4177 }
4178
4179 /*
4180  * Thin target parameters:
4181  *
4182  * <pool_dev> <dev_id> [origin_dev]
4183  *
4184  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4185  * dev_id: the internal device identifier
4186  * origin_dev: a device external to the pool that should act as the origin
4187  *
4188  * If the pool device has discards disabled, they get disabled for the thin
4189  * device as well.
4190  */
4191 static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4192 {
4193         int r;
4194         struct thin_c *tc;
4195         struct dm_dev *pool_dev, *origin_dev;
4196         struct mapped_device *pool_md;
4197
4198         mutex_lock(&dm_thin_pool_table.mutex);
4199
4200         if (argc != 2 && argc != 3) {
4201                 ti->error = "Invalid argument count";
4202                 r = -EINVAL;
4203                 goto out_unlock;
4204         }
4205
4206         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4207         if (!tc) {
4208                 ti->error = "Out of memory";
4209                 r = -ENOMEM;
4210                 goto out_unlock;
4211         }
4212         tc->thin_md = dm_table_get_md(ti->table);
4213         spin_lock_init(&tc->lock);
4214         INIT_LIST_HEAD(&tc->deferred_cells);
4215         bio_list_init(&tc->deferred_bio_list);
4216         bio_list_init(&tc->retry_on_resume_list);
4217         tc->sort_bio_list = RB_ROOT;
4218
4219         if (argc == 3) {
4220                 if (!strcmp(argv[0], argv[2])) {
4221                         ti->error = "Error setting origin device";
4222                         r = -EINVAL;
4223                         goto bad_origin_dev;
4224                 }
4225
4226                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4227                 if (r) {
4228                         ti->error = "Error opening origin device";
4229                         goto bad_origin_dev;
4230                 }
4231                 tc->origin_dev = origin_dev;
4232         }
4233
4234         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4235         if (r) {
4236                 ti->error = "Error opening pool device";
4237                 goto bad_pool_dev;
4238         }
4239         tc->pool_dev = pool_dev;
4240
4241         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4242                 ti->error = "Invalid device id";
4243                 r = -EINVAL;
4244                 goto bad_common;
4245         }
4246
4247         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4248         if (!pool_md) {
4249                 ti->error = "Couldn't get pool mapped device";
4250                 r = -EINVAL;
4251                 goto bad_common;
4252         }
4253
4254         tc->pool = __pool_table_lookup(pool_md);
4255         if (!tc->pool) {
4256                 ti->error = "Couldn't find pool object";
4257                 r = -EINVAL;
4258                 goto bad_pool_lookup;
4259         }
4260         __pool_inc(tc->pool);
4261
4262         if (get_pool_mode(tc->pool) == PM_FAIL) {
4263                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4264                 r = -EINVAL;
4265                 goto bad_pool;
4266         }
4267
4268         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4269         if (r) {
4270                 ti->error = "Couldn't open thin internal device";
4271                 goto bad_pool;
4272         }
4273
4274         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4275         if (r)
4276                 goto bad;
4277
4278         ti->num_flush_bios = 1;
4279         ti->limit_swap_bios = true;
4280         ti->flush_supported = true;
4281         ti->accounts_remapped_io = true;
4282         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4283
4284         /* In case the pool supports discards, pass them on. */
4285         if (tc->pool->pf.discard_enabled) {
4286                 ti->discards_supported = true;
4287                 ti->num_discard_bios = 1;
4288                 ti->max_discard_granularity = true;
4289         }
4290
4291         mutex_unlock(&dm_thin_pool_table.mutex);
4292
4293         spin_lock_irq(&tc->pool->lock);
4294         if (tc->pool->suspended) {
4295                 spin_unlock_irq(&tc->pool->lock);
4296                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4297                 ti->error = "Unable to activate thin device while pool is suspended";
4298                 r = -EINVAL;
4299                 goto bad;
4300         }
4301         refcount_set(&tc->refcount, 1);
4302         init_completion(&tc->can_destroy);
4303         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4304         spin_unlock_irq(&tc->pool->lock);
4305         /*
4306          * This synchronize_rcu() call is needed here otherwise we risk a
4307          * wake_worker() call finding no bios to process (because the newly
4308          * added tc isn't yet visible).  So this reduces latency since we
4309          * aren't then dependent on the periodic commit to wake_worker().
4310          */
4311         synchronize_rcu();
4312
4313         dm_put(pool_md);
4314
4315         return 0;
4316
4317 bad:
4318         dm_pool_close_thin_device(tc->td);
4319 bad_pool:
4320         __pool_dec(tc->pool);
4321 bad_pool_lookup:
4322         dm_put(pool_md);
4323 bad_common:
4324         dm_put_device(ti, tc->pool_dev);
4325 bad_pool_dev:
4326         if (tc->origin_dev)
4327                 dm_put_device(ti, tc->origin_dev);
4328 bad_origin_dev:
4329         kfree(tc);
4330 out_unlock:
4331         mutex_unlock(&dm_thin_pool_table.mutex);
4332
4333         return r;
4334 }
4335
4336 static int thin_map(struct dm_target *ti, struct bio *bio)
4337 {
4338         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4339
4340         return thin_bio_map(ti, bio);
4341 }
4342
4343 static int thin_endio(struct dm_target *ti, struct bio *bio,
4344                 blk_status_t *err)
4345 {
4346         unsigned long flags;
4347         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4348         struct list_head work;
4349         struct dm_thin_new_mapping *m, *tmp;
4350         struct pool *pool = h->tc->pool;
4351
4352         if (h->shared_read_entry) {
4353                 INIT_LIST_HEAD(&work);
4354                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4355
4356                 spin_lock_irqsave(&pool->lock, flags);
4357                 list_for_each_entry_safe(m, tmp, &work, list) {
4358                         list_del(&m->list);
4359                         __complete_mapping_preparation(m);
4360                 }
4361                 spin_unlock_irqrestore(&pool->lock, flags);
4362         }
4363
4364         if (h->all_io_entry) {
4365                 INIT_LIST_HEAD(&work);
4366                 dm_deferred_entry_dec(h->all_io_entry, &work);
4367                 if (!list_empty(&work)) {
4368                         spin_lock_irqsave(&pool->lock, flags);
4369                         list_for_each_entry_safe(m, tmp, &work, list)
4370                                 list_add_tail(&m->list, &pool->prepared_discards);
4371                         spin_unlock_irqrestore(&pool->lock, flags);
4372                         wake_worker(pool);
4373                 }
4374         }
4375
4376         if (h->cell)
4377                 cell_defer_no_holder(h->tc, h->cell);
4378
4379         return DM_ENDIO_DONE;
4380 }
4381
4382 static void thin_presuspend(struct dm_target *ti)
4383 {
4384         struct thin_c *tc = ti->private;
4385
4386         if (dm_noflush_suspending(ti))
4387                 noflush_work(tc, do_noflush_start);
4388 }
4389
4390 static void thin_postsuspend(struct dm_target *ti)
4391 {
4392         struct thin_c *tc = ti->private;
4393
4394         /*
4395          * The dm_noflush_suspending flag has been cleared by now, so
4396          * unfortunately we must always run this.
4397          */
4398         noflush_work(tc, do_noflush_stop);
4399 }
4400
4401 static int thin_preresume(struct dm_target *ti)
4402 {
4403         struct thin_c *tc = ti->private;
4404
4405         if (tc->origin_dev)
4406                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4407
4408         return 0;
4409 }
4410
4411 /*
4412  * <nr mapped sectors> <highest mapped sector>
4413  */
4414 static void thin_status(struct dm_target *ti, status_type_t type,
4415                         unsigned int status_flags, char *result, unsigned int maxlen)
4416 {
4417         int r;
4418         ssize_t sz = 0;
4419         dm_block_t mapped, highest;
4420         char buf[BDEVNAME_SIZE];
4421         struct thin_c *tc = ti->private;
4422
4423         if (get_pool_mode(tc->pool) == PM_FAIL) {
4424                 DMEMIT("Fail");
4425                 return;
4426         }
4427
4428         if (!tc->td)
4429                 DMEMIT("-");
4430         else {
4431                 switch (type) {
4432                 case STATUSTYPE_INFO:
4433                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4434                         if (r) {
4435                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4436                                 goto err;
4437                         }
4438
4439                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4440                         if (r < 0) {
4441                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4442                                 goto err;
4443                         }
4444
4445                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4446                         if (r)
4447                                 DMEMIT("%llu", ((highest + 1) *
4448                                                 tc->pool->sectors_per_block) - 1);
4449                         else
4450                                 DMEMIT("-");
4451                         break;
4452
4453                 case STATUSTYPE_TABLE:
4454                         DMEMIT("%s %lu",
4455                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4456                                (unsigned long) tc->dev_id);
4457                         if (tc->origin_dev)
4458                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4459                         break;
4460
4461                 case STATUSTYPE_IMA:
4462                         *result = '\0';
4463                         break;
4464                 }
4465         }
4466
4467         return;
4468
4469 err:
4470         DMEMIT("Error");
4471 }
4472
4473 static int thin_iterate_devices(struct dm_target *ti,
4474                                 iterate_devices_callout_fn fn, void *data)
4475 {
4476         sector_t blocks;
4477         struct thin_c *tc = ti->private;
4478         struct pool *pool = tc->pool;
4479
4480         /*
4481          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4482          * we follow a more convoluted path through to the pool's target.
4483          */
4484         if (!pool->ti)
4485                 return 0;       /* nothing is bound */
4486
4487         blocks = pool->ti->len;
4488         (void) sector_div(blocks, pool->sectors_per_block);
4489         if (blocks)
4490                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4491
4492         return 0;
4493 }
4494
4495 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4496 {
4497         struct thin_c *tc = ti->private;
4498         struct pool *pool = tc->pool;
4499
4500         if (!pool->pf.discard_enabled)
4501                 return;
4502
4503         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4504         limits->max_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE;
4505 }
4506
4507 static struct target_type thin_target = {
4508         .name = "thin",
4509         .version = {1, 23, 0},
4510         .module = THIS_MODULE,
4511         .ctr = thin_ctr,
4512         .dtr = thin_dtr,
4513         .map = thin_map,
4514         .end_io = thin_endio,
4515         .preresume = thin_preresume,
4516         .presuspend = thin_presuspend,
4517         .postsuspend = thin_postsuspend,
4518         .status = thin_status,
4519         .iterate_devices = thin_iterate_devices,
4520         .io_hints = thin_io_hints,
4521 };
4522
4523 /*----------------------------------------------------------------*/
4524
4525 static int __init dm_thin_init(void)
4526 {
4527         int r = -ENOMEM;
4528
4529         pool_table_init();
4530
4531         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4532         if (!_new_mapping_cache)
4533                 return r;
4534
4535         r = dm_register_target(&thin_target);
4536         if (r)
4537                 goto bad_new_mapping_cache;
4538
4539         r = dm_register_target(&pool_target);
4540         if (r)
4541                 goto bad_thin_target;
4542
4543         return 0;
4544
4545 bad_thin_target:
4546         dm_unregister_target(&thin_target);
4547 bad_new_mapping_cache:
4548         kmem_cache_destroy(_new_mapping_cache);
4549
4550         return r;
4551 }
4552
4553 static void dm_thin_exit(void)
4554 {
4555         dm_unregister_target(&thin_target);
4556         dm_unregister_target(&pool_target);
4557
4558         kmem_cache_destroy(_new_mapping_cache);
4559
4560         pool_table_exit();
4561 }
4562
4563 module_init(dm_thin_init);
4564 module_exit(dm_thin_exit);
4565
4566 module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644);
4567 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4568
4569 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4570 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4571 MODULE_LICENSE("GPL");