hexagon: reset: include linux/reboot.h for prototypes
[linux.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
47
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50                 blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52                 struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54                          struct io_comp_batch *iob, unsigned int flags);
55
56 /*
57  * Check if any of the ctx, dispatch list or elevator
58  * have pending work in this hardware queue.
59  */
60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62         return !list_empty_careful(&hctx->dispatch) ||
63                 sbitmap_any_bit_set(&hctx->ctx_map) ||
64                         blk_mq_sched_has_work(hctx);
65 }
66
67 /*
68  * Mark this ctx as having pending work in this hardware queue
69  */
70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71                                      struct blk_mq_ctx *ctx)
72 {
73         const int bit = ctx->index_hw[hctx->type];
74
75         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76                 sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78
79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80                                       struct blk_mq_ctx *ctx)
81 {
82         const int bit = ctx->index_hw[hctx->type];
83
84         sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86
87 struct mq_inflight {
88         struct block_device *part;
89         unsigned int inflight[2];
90 };
91
92 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 {
94         struct mq_inflight *mi = priv;
95
96         if (rq->part && blk_do_io_stat(rq) &&
97             (!mi->part->bd_partno || rq->part == mi->part) &&
98             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99                 mi->inflight[rq_data_dir(rq)]++;
100
101         return true;
102 }
103
104 unsigned int blk_mq_in_flight(struct request_queue *q,
105                 struct block_device *part)
106 {
107         struct mq_inflight mi = { .part = part };
108
109         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110
111         return mi.inflight[0] + mi.inflight[1];
112 }
113
114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115                 unsigned int inflight[2])
116 {
117         struct mq_inflight mi = { .part = part };
118
119         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120         inflight[0] = mi.inflight[0];
121         inflight[1] = mi.inflight[1];
122 }
123
124 void blk_freeze_queue_start(struct request_queue *q)
125 {
126         mutex_lock(&q->mq_freeze_lock);
127         if (++q->mq_freeze_depth == 1) {
128                 percpu_ref_kill(&q->q_usage_counter);
129                 mutex_unlock(&q->mq_freeze_lock);
130                 if (queue_is_mq(q))
131                         blk_mq_run_hw_queues(q, false);
132         } else {
133                 mutex_unlock(&q->mq_freeze_lock);
134         }
135 }
136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
137
138 void blk_mq_freeze_queue_wait(struct request_queue *q)
139 {
140         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
143
144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
145                                      unsigned long timeout)
146 {
147         return wait_event_timeout(q->mq_freeze_wq,
148                                         percpu_ref_is_zero(&q->q_usage_counter),
149                                         timeout);
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
152
153 /*
154  * Guarantee no request is in use, so we can change any data structure of
155  * the queue afterward.
156  */
157 void blk_freeze_queue(struct request_queue *q)
158 {
159         /*
160          * In the !blk_mq case we are only calling this to kill the
161          * q_usage_counter, otherwise this increases the freeze depth
162          * and waits for it to return to zero.  For this reason there is
163          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
164          * exported to drivers as the only user for unfreeze is blk_mq.
165          */
166         blk_freeze_queue_start(q);
167         blk_mq_freeze_queue_wait(q);
168 }
169
170 void blk_mq_freeze_queue(struct request_queue *q)
171 {
172         /*
173          * ...just an alias to keep freeze and unfreeze actions balanced
174          * in the blk_mq_* namespace
175          */
176         blk_freeze_queue(q);
177 }
178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
179
180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
181 {
182         mutex_lock(&q->mq_freeze_lock);
183         if (force_atomic)
184                 q->q_usage_counter.data->force_atomic = true;
185         q->mq_freeze_depth--;
186         WARN_ON_ONCE(q->mq_freeze_depth < 0);
187         if (!q->mq_freeze_depth) {
188                 percpu_ref_resurrect(&q->q_usage_counter);
189                 wake_up_all(&q->mq_freeze_wq);
190         }
191         mutex_unlock(&q->mq_freeze_lock);
192 }
193
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196         __blk_mq_unfreeze_queue(q, false);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199
200 /*
201  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202  * mpt3sas driver such that this function can be removed.
203  */
204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206         unsigned long flags;
207
208         spin_lock_irqsave(&q->queue_lock, flags);
209         if (!q->quiesce_depth++)
210                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211         spin_unlock_irqrestore(&q->queue_lock, flags);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
214
215 /**
216  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
217  * @set: tag_set to wait on
218  *
219  * Note: it is driver's responsibility for making sure that quiesce has
220  * been started on or more of the request_queues of the tag_set.  This
221  * function only waits for the quiesce on those request_queues that had
222  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223  */
224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
225 {
226         if (set->flags & BLK_MQ_F_BLOCKING)
227                 synchronize_srcu(set->srcu);
228         else
229                 synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
232
233 /**
234  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
235  * @q: request queue.
236  *
237  * Note: this function does not prevent that the struct request end_io()
238  * callback function is invoked. Once this function is returned, we make
239  * sure no dispatch can happen until the queue is unquiesced via
240  * blk_mq_unquiesce_queue().
241  */
242 void blk_mq_quiesce_queue(struct request_queue *q)
243 {
244         blk_mq_quiesce_queue_nowait(q);
245         /* nothing to wait for non-mq queues */
246         if (queue_is_mq(q))
247                 blk_mq_wait_quiesce_done(q->tag_set);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250
251 /*
252  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253  * @q: request queue.
254  *
255  * This function recovers queue into the state before quiescing
256  * which is done by blk_mq_quiesce_queue.
257  */
258 void blk_mq_unquiesce_queue(struct request_queue *q)
259 {
260         unsigned long flags;
261         bool run_queue = false;
262
263         spin_lock_irqsave(&q->queue_lock, flags);
264         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
265                 ;
266         } else if (!--q->quiesce_depth) {
267                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
268                 run_queue = true;
269         }
270         spin_unlock_irqrestore(&q->queue_lock, flags);
271
272         /* dispatch requests which are inserted during quiescing */
273         if (run_queue)
274                 blk_mq_run_hw_queues(q, true);
275 }
276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
277
278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
279 {
280         struct request_queue *q;
281
282         mutex_lock(&set->tag_list_lock);
283         list_for_each_entry(q, &set->tag_list, tag_set_list) {
284                 if (!blk_queue_skip_tagset_quiesce(q))
285                         blk_mq_quiesce_queue_nowait(q);
286         }
287         blk_mq_wait_quiesce_done(set);
288         mutex_unlock(&set->tag_list_lock);
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
291
292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
293 {
294         struct request_queue *q;
295
296         mutex_lock(&set->tag_list_lock);
297         list_for_each_entry(q, &set->tag_list, tag_set_list) {
298                 if (!blk_queue_skip_tagset_quiesce(q))
299                         blk_mq_unquiesce_queue(q);
300         }
301         mutex_unlock(&set->tag_list_lock);
302 }
303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
304
305 void blk_mq_wake_waiters(struct request_queue *q)
306 {
307         struct blk_mq_hw_ctx *hctx;
308         unsigned long i;
309
310         queue_for_each_hw_ctx(q, hctx, i)
311                 if (blk_mq_hw_queue_mapped(hctx))
312                         blk_mq_tag_wakeup_all(hctx->tags, true);
313 }
314
315 void blk_rq_init(struct request_queue *q, struct request *rq)
316 {
317         memset(rq, 0, sizeof(*rq));
318
319         INIT_LIST_HEAD(&rq->queuelist);
320         rq->q = q;
321         rq->__sector = (sector_t) -1;
322         INIT_HLIST_NODE(&rq->hash);
323         RB_CLEAR_NODE(&rq->rb_node);
324         rq->tag = BLK_MQ_NO_TAG;
325         rq->internal_tag = BLK_MQ_NO_TAG;
326         rq->start_time_ns = ktime_get_ns();
327         rq->part = NULL;
328         blk_crypto_rq_set_defaults(rq);
329 }
330 EXPORT_SYMBOL(blk_rq_init);
331
332 /* Set start and alloc time when the allocated request is actually used */
333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
334 {
335         if (blk_mq_need_time_stamp(rq))
336                 rq->start_time_ns = ktime_get_ns();
337         else
338                 rq->start_time_ns = 0;
339
340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
341         if (blk_queue_rq_alloc_time(rq->q))
342                 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
343         else
344                 rq->alloc_time_ns = 0;
345 #endif
346 }
347
348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
349                 struct blk_mq_tags *tags, unsigned int tag)
350 {
351         struct blk_mq_ctx *ctx = data->ctx;
352         struct blk_mq_hw_ctx *hctx = data->hctx;
353         struct request_queue *q = data->q;
354         struct request *rq = tags->static_rqs[tag];
355
356         rq->q = q;
357         rq->mq_ctx = ctx;
358         rq->mq_hctx = hctx;
359         rq->cmd_flags = data->cmd_flags;
360
361         if (data->flags & BLK_MQ_REQ_PM)
362                 data->rq_flags |= RQF_PM;
363         if (blk_queue_io_stat(q))
364                 data->rq_flags |= RQF_IO_STAT;
365         rq->rq_flags = data->rq_flags;
366
367         if (data->rq_flags & RQF_SCHED_TAGS) {
368                 rq->tag = BLK_MQ_NO_TAG;
369                 rq->internal_tag = tag;
370         } else {
371                 rq->tag = tag;
372                 rq->internal_tag = BLK_MQ_NO_TAG;
373         }
374         rq->timeout = 0;
375
376         rq->part = NULL;
377         rq->io_start_time_ns = 0;
378         rq->stats_sectors = 0;
379         rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381         rq->nr_integrity_segments = 0;
382 #endif
383         rq->end_io = NULL;
384         rq->end_io_data = NULL;
385
386         blk_crypto_rq_set_defaults(rq);
387         INIT_LIST_HEAD(&rq->queuelist);
388         /* tag was already set */
389         WRITE_ONCE(rq->deadline, 0);
390         req_ref_set(rq, 1);
391
392         if (rq->rq_flags & RQF_USE_SCHED) {
393                 struct elevator_queue *e = data->q->elevator;
394
395                 INIT_HLIST_NODE(&rq->hash);
396                 RB_CLEAR_NODE(&rq->rb_node);
397
398                 if (e->type->ops.prepare_request)
399                         e->type->ops.prepare_request(rq);
400         }
401
402         return rq;
403 }
404
405 static inline struct request *
406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
407 {
408         unsigned int tag, tag_offset;
409         struct blk_mq_tags *tags;
410         struct request *rq;
411         unsigned long tag_mask;
412         int i, nr = 0;
413
414         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415         if (unlikely(!tag_mask))
416                 return NULL;
417
418         tags = blk_mq_tags_from_data(data);
419         for (i = 0; tag_mask; i++) {
420                 if (!(tag_mask & (1UL << i)))
421                         continue;
422                 tag = tag_offset + i;
423                 prefetch(tags->static_rqs[tag]);
424                 tag_mask &= ~(1UL << i);
425                 rq = blk_mq_rq_ctx_init(data, tags, tag);
426                 rq_list_add(data->cached_rq, rq);
427                 nr++;
428         }
429         if (!(data->rq_flags & RQF_SCHED_TAGS))
430                 blk_mq_add_active_requests(data->hctx, nr);
431         /* caller already holds a reference, add for remainder */
432         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
433         data->nr_tags -= nr;
434
435         return rq_list_pop(data->cached_rq);
436 }
437
438 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
439 {
440         struct request_queue *q = data->q;
441         u64 alloc_time_ns = 0;
442         struct request *rq;
443         unsigned int tag;
444
445         /* alloc_time includes depth and tag waits */
446         if (blk_queue_rq_alloc_time(q))
447                 alloc_time_ns = ktime_get_ns();
448
449         if (data->cmd_flags & REQ_NOWAIT)
450                 data->flags |= BLK_MQ_REQ_NOWAIT;
451
452         if (q->elevator) {
453                 /*
454                  * All requests use scheduler tags when an I/O scheduler is
455                  * enabled for the queue.
456                  */
457                 data->rq_flags |= RQF_SCHED_TAGS;
458
459                 /*
460                  * Flush/passthrough requests are special and go directly to the
461                  * dispatch list.
462                  */
463                 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
464                     !blk_op_is_passthrough(data->cmd_flags)) {
465                         struct elevator_mq_ops *ops = &q->elevator->type->ops;
466
467                         WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
468
469                         data->rq_flags |= RQF_USE_SCHED;
470                         if (ops->limit_depth)
471                                 ops->limit_depth(data->cmd_flags, data);
472                 }
473         }
474
475 retry:
476         data->ctx = blk_mq_get_ctx(q);
477         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
478         if (!(data->rq_flags & RQF_SCHED_TAGS))
479                 blk_mq_tag_busy(data->hctx);
480
481         if (data->flags & BLK_MQ_REQ_RESERVED)
482                 data->rq_flags |= RQF_RESV;
483
484         /*
485          * Try batched alloc if we want more than 1 tag.
486          */
487         if (data->nr_tags > 1) {
488                 rq = __blk_mq_alloc_requests_batch(data);
489                 if (rq) {
490                         blk_mq_rq_time_init(rq, alloc_time_ns);
491                         return rq;
492                 }
493                 data->nr_tags = 1;
494         }
495
496         /*
497          * Waiting allocations only fail because of an inactive hctx.  In that
498          * case just retry the hctx assignment and tag allocation as CPU hotplug
499          * should have migrated us to an online CPU by now.
500          */
501         tag = blk_mq_get_tag(data);
502         if (tag == BLK_MQ_NO_TAG) {
503                 if (data->flags & BLK_MQ_REQ_NOWAIT)
504                         return NULL;
505                 /*
506                  * Give up the CPU and sleep for a random short time to
507                  * ensure that thread using a realtime scheduling class
508                  * are migrated off the CPU, and thus off the hctx that
509                  * is going away.
510                  */
511                 msleep(3);
512                 goto retry;
513         }
514
515         if (!(data->rq_flags & RQF_SCHED_TAGS))
516                 blk_mq_inc_active_requests(data->hctx);
517         rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
518         blk_mq_rq_time_init(rq, alloc_time_ns);
519         return rq;
520 }
521
522 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
523                                             struct blk_plug *plug,
524                                             blk_opf_t opf,
525                                             blk_mq_req_flags_t flags)
526 {
527         struct blk_mq_alloc_data data = {
528                 .q              = q,
529                 .flags          = flags,
530                 .cmd_flags      = opf,
531                 .nr_tags        = plug->nr_ios,
532                 .cached_rq      = &plug->cached_rq,
533         };
534         struct request *rq;
535
536         if (blk_queue_enter(q, flags))
537                 return NULL;
538
539         plug->nr_ios = 1;
540
541         rq = __blk_mq_alloc_requests(&data);
542         if (unlikely(!rq))
543                 blk_queue_exit(q);
544         return rq;
545 }
546
547 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
548                                                    blk_opf_t opf,
549                                                    blk_mq_req_flags_t flags)
550 {
551         struct blk_plug *plug = current->plug;
552         struct request *rq;
553
554         if (!plug)
555                 return NULL;
556
557         if (rq_list_empty(plug->cached_rq)) {
558                 if (plug->nr_ios == 1)
559                         return NULL;
560                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
561                 if (!rq)
562                         return NULL;
563         } else {
564                 rq = rq_list_peek(&plug->cached_rq);
565                 if (!rq || rq->q != q)
566                         return NULL;
567
568                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
569                         return NULL;
570                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
571                         return NULL;
572
573                 plug->cached_rq = rq_list_next(rq);
574                 blk_mq_rq_time_init(rq, 0);
575         }
576
577         rq->cmd_flags = opf;
578         INIT_LIST_HEAD(&rq->queuelist);
579         return rq;
580 }
581
582 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
583                 blk_mq_req_flags_t flags)
584 {
585         struct request *rq;
586
587         rq = blk_mq_alloc_cached_request(q, opf, flags);
588         if (!rq) {
589                 struct blk_mq_alloc_data data = {
590                         .q              = q,
591                         .flags          = flags,
592                         .cmd_flags      = opf,
593                         .nr_tags        = 1,
594                 };
595                 int ret;
596
597                 ret = blk_queue_enter(q, flags);
598                 if (ret)
599                         return ERR_PTR(ret);
600
601                 rq = __blk_mq_alloc_requests(&data);
602                 if (!rq)
603                         goto out_queue_exit;
604         }
605         rq->__data_len = 0;
606         rq->__sector = (sector_t) -1;
607         rq->bio = rq->biotail = NULL;
608         return rq;
609 out_queue_exit:
610         blk_queue_exit(q);
611         return ERR_PTR(-EWOULDBLOCK);
612 }
613 EXPORT_SYMBOL(blk_mq_alloc_request);
614
615 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
616         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
617 {
618         struct blk_mq_alloc_data data = {
619                 .q              = q,
620                 .flags          = flags,
621                 .cmd_flags      = opf,
622                 .nr_tags        = 1,
623         };
624         u64 alloc_time_ns = 0;
625         struct request *rq;
626         unsigned int cpu;
627         unsigned int tag;
628         int ret;
629
630         /* alloc_time includes depth and tag waits */
631         if (blk_queue_rq_alloc_time(q))
632                 alloc_time_ns = ktime_get_ns();
633
634         /*
635          * If the tag allocator sleeps we could get an allocation for a
636          * different hardware context.  No need to complicate the low level
637          * allocator for this for the rare use case of a command tied to
638          * a specific queue.
639          */
640         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
641             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
642                 return ERR_PTR(-EINVAL);
643
644         if (hctx_idx >= q->nr_hw_queues)
645                 return ERR_PTR(-EIO);
646
647         ret = blk_queue_enter(q, flags);
648         if (ret)
649                 return ERR_PTR(ret);
650
651         /*
652          * Check if the hardware context is actually mapped to anything.
653          * If not tell the caller that it should skip this queue.
654          */
655         ret = -EXDEV;
656         data.hctx = xa_load(&q->hctx_table, hctx_idx);
657         if (!blk_mq_hw_queue_mapped(data.hctx))
658                 goto out_queue_exit;
659         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
660         if (cpu >= nr_cpu_ids)
661                 goto out_queue_exit;
662         data.ctx = __blk_mq_get_ctx(q, cpu);
663
664         if (q->elevator)
665                 data.rq_flags |= RQF_SCHED_TAGS;
666         else
667                 blk_mq_tag_busy(data.hctx);
668
669         if (flags & BLK_MQ_REQ_RESERVED)
670                 data.rq_flags |= RQF_RESV;
671
672         ret = -EWOULDBLOCK;
673         tag = blk_mq_get_tag(&data);
674         if (tag == BLK_MQ_NO_TAG)
675                 goto out_queue_exit;
676         if (!(data.rq_flags & RQF_SCHED_TAGS))
677                 blk_mq_inc_active_requests(data.hctx);
678         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
679         blk_mq_rq_time_init(rq, alloc_time_ns);
680         rq->__data_len = 0;
681         rq->__sector = (sector_t) -1;
682         rq->bio = rq->biotail = NULL;
683         return rq;
684
685 out_queue_exit:
686         blk_queue_exit(q);
687         return ERR_PTR(ret);
688 }
689 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
690
691 static void blk_mq_finish_request(struct request *rq)
692 {
693         struct request_queue *q = rq->q;
694
695         if (rq->rq_flags & RQF_USE_SCHED) {
696                 q->elevator->type->ops.finish_request(rq);
697                 /*
698                  * For postflush request that may need to be
699                  * completed twice, we should clear this flag
700                  * to avoid double finish_request() on the rq.
701                  */
702                 rq->rq_flags &= ~RQF_USE_SCHED;
703         }
704 }
705
706 static void __blk_mq_free_request(struct request *rq)
707 {
708         struct request_queue *q = rq->q;
709         struct blk_mq_ctx *ctx = rq->mq_ctx;
710         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
711         const int sched_tag = rq->internal_tag;
712
713         blk_crypto_free_request(rq);
714         blk_pm_mark_last_busy(rq);
715         rq->mq_hctx = NULL;
716
717         if (rq->tag != BLK_MQ_NO_TAG) {
718                 blk_mq_dec_active_requests(hctx);
719                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
720         }
721         if (sched_tag != BLK_MQ_NO_TAG)
722                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
723         blk_mq_sched_restart(hctx);
724         blk_queue_exit(q);
725 }
726
727 void blk_mq_free_request(struct request *rq)
728 {
729         struct request_queue *q = rq->q;
730
731         blk_mq_finish_request(rq);
732
733         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
734                 laptop_io_completion(q->disk->bdi);
735
736         rq_qos_done(q, rq);
737
738         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
739         if (req_ref_put_and_test(rq))
740                 __blk_mq_free_request(rq);
741 }
742 EXPORT_SYMBOL_GPL(blk_mq_free_request);
743
744 void blk_mq_free_plug_rqs(struct blk_plug *plug)
745 {
746         struct request *rq;
747
748         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
749                 blk_mq_free_request(rq);
750 }
751
752 void blk_dump_rq_flags(struct request *rq, char *msg)
753 {
754         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
755                 rq->q->disk ? rq->q->disk->disk_name : "?",
756                 (__force unsigned long long) rq->cmd_flags);
757
758         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
759                (unsigned long long)blk_rq_pos(rq),
760                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
761         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
762                rq->bio, rq->biotail, blk_rq_bytes(rq));
763 }
764 EXPORT_SYMBOL(blk_dump_rq_flags);
765
766 static void req_bio_endio(struct request *rq, struct bio *bio,
767                           unsigned int nbytes, blk_status_t error)
768 {
769         if (unlikely(error)) {
770                 bio->bi_status = error;
771         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
772                 /*
773                  * Partial zone append completions cannot be supported as the
774                  * BIO fragments may end up not being written sequentially.
775                  */
776                 if (bio->bi_iter.bi_size != nbytes)
777                         bio->bi_status = BLK_STS_IOERR;
778                 else
779                         bio->bi_iter.bi_sector = rq->__sector;
780         }
781
782         bio_advance(bio, nbytes);
783
784         if (unlikely(rq->rq_flags & RQF_QUIET))
785                 bio_set_flag(bio, BIO_QUIET);
786         /* don't actually finish bio if it's part of flush sequence */
787         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
788                 bio_endio(bio);
789 }
790
791 static void blk_account_io_completion(struct request *req, unsigned int bytes)
792 {
793         if (req->part && blk_do_io_stat(req)) {
794                 const int sgrp = op_stat_group(req_op(req));
795
796                 part_stat_lock();
797                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
798                 part_stat_unlock();
799         }
800 }
801
802 static void blk_print_req_error(struct request *req, blk_status_t status)
803 {
804         printk_ratelimited(KERN_ERR
805                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
806                 "phys_seg %u prio class %u\n",
807                 blk_status_to_str(status),
808                 req->q->disk ? req->q->disk->disk_name : "?",
809                 blk_rq_pos(req), (__force u32)req_op(req),
810                 blk_op_str(req_op(req)),
811                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
812                 req->nr_phys_segments,
813                 IOPRIO_PRIO_CLASS(req->ioprio));
814 }
815
816 /*
817  * Fully end IO on a request. Does not support partial completions, or
818  * errors.
819  */
820 static void blk_complete_request(struct request *req)
821 {
822         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
823         int total_bytes = blk_rq_bytes(req);
824         struct bio *bio = req->bio;
825
826         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
827
828         if (!bio)
829                 return;
830
831 #ifdef CONFIG_BLK_DEV_INTEGRITY
832         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
833                 req->q->integrity.profile->complete_fn(req, total_bytes);
834 #endif
835
836         /*
837          * Upper layers may call blk_crypto_evict_key() anytime after the last
838          * bio_endio().  Therefore, the keyslot must be released before that.
839          */
840         blk_crypto_rq_put_keyslot(req);
841
842         blk_account_io_completion(req, total_bytes);
843
844         do {
845                 struct bio *next = bio->bi_next;
846
847                 /* Completion has already been traced */
848                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
849
850                 if (req_op(req) == REQ_OP_ZONE_APPEND)
851                         bio->bi_iter.bi_sector = req->__sector;
852
853                 if (!is_flush)
854                         bio_endio(bio);
855                 bio = next;
856         } while (bio);
857
858         /*
859          * Reset counters so that the request stacking driver
860          * can find how many bytes remain in the request
861          * later.
862          */
863         if (!req->end_io) {
864                 req->bio = NULL;
865                 req->__data_len = 0;
866         }
867 }
868
869 /**
870  * blk_update_request - Complete multiple bytes without completing the request
871  * @req:      the request being processed
872  * @error:    block status code
873  * @nr_bytes: number of bytes to complete for @req
874  *
875  * Description:
876  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
877  *     the request structure even if @req doesn't have leftover.
878  *     If @req has leftover, sets it up for the next range of segments.
879  *
880  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
881  *     %false return from this function.
882  *
883  * Note:
884  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
885  *      except in the consistency check at the end of this function.
886  *
887  * Return:
888  *     %false - this request doesn't have any more data
889  *     %true  - this request has more data
890  **/
891 bool blk_update_request(struct request *req, blk_status_t error,
892                 unsigned int nr_bytes)
893 {
894         int total_bytes;
895
896         trace_block_rq_complete(req, error, nr_bytes);
897
898         if (!req->bio)
899                 return false;
900
901 #ifdef CONFIG_BLK_DEV_INTEGRITY
902         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
903             error == BLK_STS_OK)
904                 req->q->integrity.profile->complete_fn(req, nr_bytes);
905 #endif
906
907         /*
908          * Upper layers may call blk_crypto_evict_key() anytime after the last
909          * bio_endio().  Therefore, the keyslot must be released before that.
910          */
911         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
912                 __blk_crypto_rq_put_keyslot(req);
913
914         if (unlikely(error && !blk_rq_is_passthrough(req) &&
915                      !(req->rq_flags & RQF_QUIET)) &&
916                      !test_bit(GD_DEAD, &req->q->disk->state)) {
917                 blk_print_req_error(req, error);
918                 trace_block_rq_error(req, error, nr_bytes);
919         }
920
921         blk_account_io_completion(req, nr_bytes);
922
923         total_bytes = 0;
924         while (req->bio) {
925                 struct bio *bio = req->bio;
926                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
927
928                 if (bio_bytes == bio->bi_iter.bi_size)
929                         req->bio = bio->bi_next;
930
931                 /* Completion has already been traced */
932                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
933                 req_bio_endio(req, bio, bio_bytes, error);
934
935                 total_bytes += bio_bytes;
936                 nr_bytes -= bio_bytes;
937
938                 if (!nr_bytes)
939                         break;
940         }
941
942         /*
943          * completely done
944          */
945         if (!req->bio) {
946                 /*
947                  * Reset counters so that the request stacking driver
948                  * can find how many bytes remain in the request
949                  * later.
950                  */
951                 req->__data_len = 0;
952                 return false;
953         }
954
955         req->__data_len -= total_bytes;
956
957         /* update sector only for requests with clear definition of sector */
958         if (!blk_rq_is_passthrough(req))
959                 req->__sector += total_bytes >> 9;
960
961         /* mixed attributes always follow the first bio */
962         if (req->rq_flags & RQF_MIXED_MERGE) {
963                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
964                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
965         }
966
967         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
968                 /*
969                  * If total number of sectors is less than the first segment
970                  * size, something has gone terribly wrong.
971                  */
972                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
973                         blk_dump_rq_flags(req, "request botched");
974                         req->__data_len = blk_rq_cur_bytes(req);
975                 }
976
977                 /* recalculate the number of segments */
978                 req->nr_phys_segments = blk_recalc_rq_segments(req);
979         }
980
981         return true;
982 }
983 EXPORT_SYMBOL_GPL(blk_update_request);
984
985 static inline void blk_account_io_done(struct request *req, u64 now)
986 {
987         trace_block_io_done(req);
988
989         /*
990          * Account IO completion.  flush_rq isn't accounted as a
991          * normal IO on queueing nor completion.  Accounting the
992          * containing request is enough.
993          */
994         if (blk_do_io_stat(req) && req->part &&
995             !(req->rq_flags & RQF_FLUSH_SEQ)) {
996                 const int sgrp = op_stat_group(req_op(req));
997
998                 part_stat_lock();
999                 update_io_ticks(req->part, jiffies, true);
1000                 part_stat_inc(req->part, ios[sgrp]);
1001                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1002                 part_stat_unlock();
1003         }
1004 }
1005
1006 static inline void blk_account_io_start(struct request *req)
1007 {
1008         trace_block_io_start(req);
1009
1010         if (blk_do_io_stat(req)) {
1011                 /*
1012                  * All non-passthrough requests are created from a bio with one
1013                  * exception: when a flush command that is part of a flush sequence
1014                  * generated by the state machine in blk-flush.c is cloned onto the
1015                  * lower device by dm-multipath we can get here without a bio.
1016                  */
1017                 if (req->bio)
1018                         req->part = req->bio->bi_bdev;
1019                 else
1020                         req->part = req->q->disk->part0;
1021
1022                 part_stat_lock();
1023                 update_io_ticks(req->part, jiffies, false);
1024                 part_stat_unlock();
1025         }
1026 }
1027
1028 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1029 {
1030         if (rq->rq_flags & RQF_STATS)
1031                 blk_stat_add(rq, now);
1032
1033         blk_mq_sched_completed_request(rq, now);
1034         blk_account_io_done(rq, now);
1035 }
1036
1037 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1038 {
1039         if (blk_mq_need_time_stamp(rq))
1040                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1041
1042         blk_mq_finish_request(rq);
1043
1044         if (rq->end_io) {
1045                 rq_qos_done(rq->q, rq);
1046                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1047                         blk_mq_free_request(rq);
1048         } else {
1049                 blk_mq_free_request(rq);
1050         }
1051 }
1052 EXPORT_SYMBOL(__blk_mq_end_request);
1053
1054 void blk_mq_end_request(struct request *rq, blk_status_t error)
1055 {
1056         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1057                 BUG();
1058         __blk_mq_end_request(rq, error);
1059 }
1060 EXPORT_SYMBOL(blk_mq_end_request);
1061
1062 #define TAG_COMP_BATCH          32
1063
1064 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1065                                           int *tag_array, int nr_tags)
1066 {
1067         struct request_queue *q = hctx->queue;
1068
1069         blk_mq_sub_active_requests(hctx, nr_tags);
1070
1071         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1072         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1073 }
1074
1075 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1076 {
1077         int tags[TAG_COMP_BATCH], nr_tags = 0;
1078         struct blk_mq_hw_ctx *cur_hctx = NULL;
1079         struct request *rq;
1080         u64 now = 0;
1081
1082         if (iob->need_ts)
1083                 now = ktime_get_ns();
1084
1085         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1086                 prefetch(rq->bio);
1087                 prefetch(rq->rq_next);
1088
1089                 blk_complete_request(rq);
1090                 if (iob->need_ts)
1091                         __blk_mq_end_request_acct(rq, now);
1092
1093                 blk_mq_finish_request(rq);
1094
1095                 rq_qos_done(rq->q, rq);
1096
1097                 /*
1098                  * If end_io handler returns NONE, then it still has
1099                  * ownership of the request.
1100                  */
1101                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1102                         continue;
1103
1104                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1105                 if (!req_ref_put_and_test(rq))
1106                         continue;
1107
1108                 blk_crypto_free_request(rq);
1109                 blk_pm_mark_last_busy(rq);
1110
1111                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1112                         if (cur_hctx)
1113                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1114                         nr_tags = 0;
1115                         cur_hctx = rq->mq_hctx;
1116                 }
1117                 tags[nr_tags++] = rq->tag;
1118         }
1119
1120         if (nr_tags)
1121                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1122 }
1123 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1124
1125 static void blk_complete_reqs(struct llist_head *list)
1126 {
1127         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1128         struct request *rq, *next;
1129
1130         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1131                 rq->q->mq_ops->complete(rq);
1132 }
1133
1134 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1135 {
1136         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1137 }
1138
1139 static int blk_softirq_cpu_dead(unsigned int cpu)
1140 {
1141         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1142         return 0;
1143 }
1144
1145 static void __blk_mq_complete_request_remote(void *data)
1146 {
1147         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1148 }
1149
1150 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1151 {
1152         int cpu = raw_smp_processor_id();
1153
1154         if (!IS_ENABLED(CONFIG_SMP) ||
1155             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1156                 return false;
1157         /*
1158          * With force threaded interrupts enabled, raising softirq from an SMP
1159          * function call will always result in waking the ksoftirqd thread.
1160          * This is probably worse than completing the request on a different
1161          * cache domain.
1162          */
1163         if (force_irqthreads())
1164                 return false;
1165
1166         /* same CPU or cache domain?  Complete locally */
1167         if (cpu == rq->mq_ctx->cpu ||
1168             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1169              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1170                 return false;
1171
1172         /* don't try to IPI to an offline CPU */
1173         return cpu_online(rq->mq_ctx->cpu);
1174 }
1175
1176 static void blk_mq_complete_send_ipi(struct request *rq)
1177 {
1178         unsigned int cpu;
1179
1180         cpu = rq->mq_ctx->cpu;
1181         if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1182                 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1183 }
1184
1185 static void blk_mq_raise_softirq(struct request *rq)
1186 {
1187         struct llist_head *list;
1188
1189         preempt_disable();
1190         list = this_cpu_ptr(&blk_cpu_done);
1191         if (llist_add(&rq->ipi_list, list))
1192                 raise_softirq(BLOCK_SOFTIRQ);
1193         preempt_enable();
1194 }
1195
1196 bool blk_mq_complete_request_remote(struct request *rq)
1197 {
1198         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1199
1200         /*
1201          * For request which hctx has only one ctx mapping,
1202          * or a polled request, always complete locally,
1203          * it's pointless to redirect the completion.
1204          */
1205         if ((rq->mq_hctx->nr_ctx == 1 &&
1206              rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1207              rq->cmd_flags & REQ_POLLED)
1208                 return false;
1209
1210         if (blk_mq_complete_need_ipi(rq)) {
1211                 blk_mq_complete_send_ipi(rq);
1212                 return true;
1213         }
1214
1215         if (rq->q->nr_hw_queues == 1) {
1216                 blk_mq_raise_softirq(rq);
1217                 return true;
1218         }
1219         return false;
1220 }
1221 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1222
1223 /**
1224  * blk_mq_complete_request - end I/O on a request
1225  * @rq:         the request being processed
1226  *
1227  * Description:
1228  *      Complete a request by scheduling the ->complete_rq operation.
1229  **/
1230 void blk_mq_complete_request(struct request *rq)
1231 {
1232         if (!blk_mq_complete_request_remote(rq))
1233                 rq->q->mq_ops->complete(rq);
1234 }
1235 EXPORT_SYMBOL(blk_mq_complete_request);
1236
1237 /**
1238  * blk_mq_start_request - Start processing a request
1239  * @rq: Pointer to request to be started
1240  *
1241  * Function used by device drivers to notify the block layer that a request
1242  * is going to be processed now, so blk layer can do proper initializations
1243  * such as starting the timeout timer.
1244  */
1245 void blk_mq_start_request(struct request *rq)
1246 {
1247         struct request_queue *q = rq->q;
1248
1249         trace_block_rq_issue(rq);
1250
1251         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1252                 rq->io_start_time_ns = ktime_get_ns();
1253                 rq->stats_sectors = blk_rq_sectors(rq);
1254                 rq->rq_flags |= RQF_STATS;
1255                 rq_qos_issue(q, rq);
1256         }
1257
1258         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1259
1260         blk_add_timer(rq);
1261         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1262         rq->mq_hctx->tags->rqs[rq->tag] = rq;
1263
1264 #ifdef CONFIG_BLK_DEV_INTEGRITY
1265         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1266                 q->integrity.profile->prepare_fn(rq);
1267 #endif
1268         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1269                 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1270 }
1271 EXPORT_SYMBOL(blk_mq_start_request);
1272
1273 /*
1274  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1275  * queues. This is important for md arrays to benefit from merging
1276  * requests.
1277  */
1278 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1279 {
1280         if (plug->multiple_queues)
1281                 return BLK_MAX_REQUEST_COUNT * 2;
1282         return BLK_MAX_REQUEST_COUNT;
1283 }
1284
1285 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1286 {
1287         struct request *last = rq_list_peek(&plug->mq_list);
1288
1289         if (!plug->rq_count) {
1290                 trace_block_plug(rq->q);
1291         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1292                    (!blk_queue_nomerges(rq->q) &&
1293                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1294                 blk_mq_flush_plug_list(plug, false);
1295                 last = NULL;
1296                 trace_block_plug(rq->q);
1297         }
1298
1299         if (!plug->multiple_queues && last && last->q != rq->q)
1300                 plug->multiple_queues = true;
1301         /*
1302          * Any request allocated from sched tags can't be issued to
1303          * ->queue_rqs() directly
1304          */
1305         if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1306                 plug->has_elevator = true;
1307         rq->rq_next = NULL;
1308         rq_list_add(&plug->mq_list, rq);
1309         plug->rq_count++;
1310 }
1311
1312 /**
1313  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1314  * @rq:         request to insert
1315  * @at_head:    insert request at head or tail of queue
1316  *
1317  * Description:
1318  *    Insert a fully prepared request at the back of the I/O scheduler queue
1319  *    for execution.  Don't wait for completion.
1320  *
1321  * Note:
1322  *    This function will invoke @done directly if the queue is dead.
1323  */
1324 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1325 {
1326         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1327
1328         WARN_ON(irqs_disabled());
1329         WARN_ON(!blk_rq_is_passthrough(rq));
1330
1331         blk_account_io_start(rq);
1332
1333         /*
1334          * As plugging can be enabled for passthrough requests on a zoned
1335          * device, directly accessing the plug instead of using blk_mq_plug()
1336          * should not have any consequences.
1337          */
1338         if (current->plug && !at_head) {
1339                 blk_add_rq_to_plug(current->plug, rq);
1340                 return;
1341         }
1342
1343         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1344         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1345 }
1346 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1347
1348 struct blk_rq_wait {
1349         struct completion done;
1350         blk_status_t ret;
1351 };
1352
1353 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1354 {
1355         struct blk_rq_wait *wait = rq->end_io_data;
1356
1357         wait->ret = ret;
1358         complete(&wait->done);
1359         return RQ_END_IO_NONE;
1360 }
1361
1362 bool blk_rq_is_poll(struct request *rq)
1363 {
1364         if (!rq->mq_hctx)
1365                 return false;
1366         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1367                 return false;
1368         return true;
1369 }
1370 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1371
1372 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1373 {
1374         do {
1375                 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1376                 cond_resched();
1377         } while (!completion_done(wait));
1378 }
1379
1380 /**
1381  * blk_execute_rq - insert a request into queue for execution
1382  * @rq:         request to insert
1383  * @at_head:    insert request at head or tail of queue
1384  *
1385  * Description:
1386  *    Insert a fully prepared request at the back of the I/O scheduler queue
1387  *    for execution and wait for completion.
1388  * Return: The blk_status_t result provided to blk_mq_end_request().
1389  */
1390 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1391 {
1392         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1393         struct blk_rq_wait wait = {
1394                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1395         };
1396
1397         WARN_ON(irqs_disabled());
1398         WARN_ON(!blk_rq_is_passthrough(rq));
1399
1400         rq->end_io_data = &wait;
1401         rq->end_io = blk_end_sync_rq;
1402
1403         blk_account_io_start(rq);
1404         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1405         blk_mq_run_hw_queue(hctx, false);
1406
1407         if (blk_rq_is_poll(rq)) {
1408                 blk_rq_poll_completion(rq, &wait.done);
1409         } else {
1410                 /*
1411                  * Prevent hang_check timer from firing at us during very long
1412                  * I/O
1413                  */
1414                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1415
1416                 if (hang_check)
1417                         while (!wait_for_completion_io_timeout(&wait.done,
1418                                         hang_check * (HZ/2)))
1419                                 ;
1420                 else
1421                         wait_for_completion_io(&wait.done);
1422         }
1423
1424         return wait.ret;
1425 }
1426 EXPORT_SYMBOL(blk_execute_rq);
1427
1428 static void __blk_mq_requeue_request(struct request *rq)
1429 {
1430         struct request_queue *q = rq->q;
1431
1432         blk_mq_put_driver_tag(rq);
1433
1434         trace_block_rq_requeue(rq);
1435         rq_qos_requeue(q, rq);
1436
1437         if (blk_mq_request_started(rq)) {
1438                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1439                 rq->rq_flags &= ~RQF_TIMED_OUT;
1440         }
1441 }
1442
1443 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1444 {
1445         struct request_queue *q = rq->q;
1446         unsigned long flags;
1447
1448         __blk_mq_requeue_request(rq);
1449
1450         /* this request will be re-inserted to io scheduler queue */
1451         blk_mq_sched_requeue_request(rq);
1452
1453         spin_lock_irqsave(&q->requeue_lock, flags);
1454         list_add_tail(&rq->queuelist, &q->requeue_list);
1455         spin_unlock_irqrestore(&q->requeue_lock, flags);
1456
1457         if (kick_requeue_list)
1458                 blk_mq_kick_requeue_list(q);
1459 }
1460 EXPORT_SYMBOL(blk_mq_requeue_request);
1461
1462 static void blk_mq_requeue_work(struct work_struct *work)
1463 {
1464         struct request_queue *q =
1465                 container_of(work, struct request_queue, requeue_work.work);
1466         LIST_HEAD(rq_list);
1467         LIST_HEAD(flush_list);
1468         struct request *rq;
1469
1470         spin_lock_irq(&q->requeue_lock);
1471         list_splice_init(&q->requeue_list, &rq_list);
1472         list_splice_init(&q->flush_list, &flush_list);
1473         spin_unlock_irq(&q->requeue_lock);
1474
1475         while (!list_empty(&rq_list)) {
1476                 rq = list_entry(rq_list.next, struct request, queuelist);
1477                 /*
1478                  * If RQF_DONTPREP ist set, the request has been started by the
1479                  * driver already and might have driver-specific data allocated
1480                  * already.  Insert it into the hctx dispatch list to avoid
1481                  * block layer merges for the request.
1482                  */
1483                 if (rq->rq_flags & RQF_DONTPREP) {
1484                         list_del_init(&rq->queuelist);
1485                         blk_mq_request_bypass_insert(rq, 0);
1486                 } else {
1487                         list_del_init(&rq->queuelist);
1488                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1489                 }
1490         }
1491
1492         while (!list_empty(&flush_list)) {
1493                 rq = list_entry(flush_list.next, struct request, queuelist);
1494                 list_del_init(&rq->queuelist);
1495                 blk_mq_insert_request(rq, 0);
1496         }
1497
1498         blk_mq_run_hw_queues(q, false);
1499 }
1500
1501 void blk_mq_kick_requeue_list(struct request_queue *q)
1502 {
1503         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1504 }
1505 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1506
1507 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1508                                     unsigned long msecs)
1509 {
1510         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1511                                     msecs_to_jiffies(msecs));
1512 }
1513 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1514
1515 static bool blk_is_flush_data_rq(struct request *rq)
1516 {
1517         return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1518 }
1519
1520 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1521 {
1522         /*
1523          * If we find a request that isn't idle we know the queue is busy
1524          * as it's checked in the iter.
1525          * Return false to stop the iteration.
1526          *
1527          * In case of queue quiesce, if one flush data request is completed,
1528          * don't count it as inflight given the flush sequence is suspended,
1529          * and the original flush data request is invisible to driver, just
1530          * like other pending requests because of quiesce
1531          */
1532         if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1533                                 blk_is_flush_data_rq(rq) &&
1534                                 blk_mq_request_completed(rq))) {
1535                 bool *busy = priv;
1536
1537                 *busy = true;
1538                 return false;
1539         }
1540
1541         return true;
1542 }
1543
1544 bool blk_mq_queue_inflight(struct request_queue *q)
1545 {
1546         bool busy = false;
1547
1548         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1549         return busy;
1550 }
1551 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1552
1553 static void blk_mq_rq_timed_out(struct request *req)
1554 {
1555         req->rq_flags |= RQF_TIMED_OUT;
1556         if (req->q->mq_ops->timeout) {
1557                 enum blk_eh_timer_return ret;
1558
1559                 ret = req->q->mq_ops->timeout(req);
1560                 if (ret == BLK_EH_DONE)
1561                         return;
1562                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1563         }
1564
1565         blk_add_timer(req);
1566 }
1567
1568 struct blk_expired_data {
1569         bool has_timedout_rq;
1570         unsigned long next;
1571         unsigned long timeout_start;
1572 };
1573
1574 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1575 {
1576         unsigned long deadline;
1577
1578         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1579                 return false;
1580         if (rq->rq_flags & RQF_TIMED_OUT)
1581                 return false;
1582
1583         deadline = READ_ONCE(rq->deadline);
1584         if (time_after_eq(expired->timeout_start, deadline))
1585                 return true;
1586
1587         if (expired->next == 0)
1588                 expired->next = deadline;
1589         else if (time_after(expired->next, deadline))
1590                 expired->next = deadline;
1591         return false;
1592 }
1593
1594 void blk_mq_put_rq_ref(struct request *rq)
1595 {
1596         if (is_flush_rq(rq)) {
1597                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1598                         blk_mq_free_request(rq);
1599         } else if (req_ref_put_and_test(rq)) {
1600                 __blk_mq_free_request(rq);
1601         }
1602 }
1603
1604 static bool blk_mq_check_expired(struct request *rq, void *priv)
1605 {
1606         struct blk_expired_data *expired = priv;
1607
1608         /*
1609          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1610          * be reallocated underneath the timeout handler's processing, then
1611          * the expire check is reliable. If the request is not expired, then
1612          * it was completed and reallocated as a new request after returning
1613          * from blk_mq_check_expired().
1614          */
1615         if (blk_mq_req_expired(rq, expired)) {
1616                 expired->has_timedout_rq = true;
1617                 return false;
1618         }
1619         return true;
1620 }
1621
1622 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1623 {
1624         struct blk_expired_data *expired = priv;
1625
1626         if (blk_mq_req_expired(rq, expired))
1627                 blk_mq_rq_timed_out(rq);
1628         return true;
1629 }
1630
1631 static void blk_mq_timeout_work(struct work_struct *work)
1632 {
1633         struct request_queue *q =
1634                 container_of(work, struct request_queue, timeout_work);
1635         struct blk_expired_data expired = {
1636                 .timeout_start = jiffies,
1637         };
1638         struct blk_mq_hw_ctx *hctx;
1639         unsigned long i;
1640
1641         /* A deadlock might occur if a request is stuck requiring a
1642          * timeout at the same time a queue freeze is waiting
1643          * completion, since the timeout code would not be able to
1644          * acquire the queue reference here.
1645          *
1646          * That's why we don't use blk_queue_enter here; instead, we use
1647          * percpu_ref_tryget directly, because we need to be able to
1648          * obtain a reference even in the short window between the queue
1649          * starting to freeze, by dropping the first reference in
1650          * blk_freeze_queue_start, and the moment the last request is
1651          * consumed, marked by the instant q_usage_counter reaches
1652          * zero.
1653          */
1654         if (!percpu_ref_tryget(&q->q_usage_counter))
1655                 return;
1656
1657         /* check if there is any timed-out request */
1658         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1659         if (expired.has_timedout_rq) {
1660                 /*
1661                  * Before walking tags, we must ensure any submit started
1662                  * before the current time has finished. Since the submit
1663                  * uses srcu or rcu, wait for a synchronization point to
1664                  * ensure all running submits have finished
1665                  */
1666                 blk_mq_wait_quiesce_done(q->tag_set);
1667
1668                 expired.next = 0;
1669                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1670         }
1671
1672         if (expired.next != 0) {
1673                 mod_timer(&q->timeout, expired.next);
1674         } else {
1675                 /*
1676                  * Request timeouts are handled as a forward rolling timer. If
1677                  * we end up here it means that no requests are pending and
1678                  * also that no request has been pending for a while. Mark
1679                  * each hctx as idle.
1680                  */
1681                 queue_for_each_hw_ctx(q, hctx, i) {
1682                         /* the hctx may be unmapped, so check it here */
1683                         if (blk_mq_hw_queue_mapped(hctx))
1684                                 blk_mq_tag_idle(hctx);
1685                 }
1686         }
1687         blk_queue_exit(q);
1688 }
1689
1690 struct flush_busy_ctx_data {
1691         struct blk_mq_hw_ctx *hctx;
1692         struct list_head *list;
1693 };
1694
1695 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1696 {
1697         struct flush_busy_ctx_data *flush_data = data;
1698         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1699         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1700         enum hctx_type type = hctx->type;
1701
1702         spin_lock(&ctx->lock);
1703         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1704         sbitmap_clear_bit(sb, bitnr);
1705         spin_unlock(&ctx->lock);
1706         return true;
1707 }
1708
1709 /*
1710  * Process software queues that have been marked busy, splicing them
1711  * to the for-dispatch
1712  */
1713 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1714 {
1715         struct flush_busy_ctx_data data = {
1716                 .hctx = hctx,
1717                 .list = list,
1718         };
1719
1720         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1721 }
1722 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1723
1724 struct dispatch_rq_data {
1725         struct blk_mq_hw_ctx *hctx;
1726         struct request *rq;
1727 };
1728
1729 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1730                 void *data)
1731 {
1732         struct dispatch_rq_data *dispatch_data = data;
1733         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1734         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1735         enum hctx_type type = hctx->type;
1736
1737         spin_lock(&ctx->lock);
1738         if (!list_empty(&ctx->rq_lists[type])) {
1739                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1740                 list_del_init(&dispatch_data->rq->queuelist);
1741                 if (list_empty(&ctx->rq_lists[type]))
1742                         sbitmap_clear_bit(sb, bitnr);
1743         }
1744         spin_unlock(&ctx->lock);
1745
1746         return !dispatch_data->rq;
1747 }
1748
1749 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1750                                         struct blk_mq_ctx *start)
1751 {
1752         unsigned off = start ? start->index_hw[hctx->type] : 0;
1753         struct dispatch_rq_data data = {
1754                 .hctx = hctx,
1755                 .rq   = NULL,
1756         };
1757
1758         __sbitmap_for_each_set(&hctx->ctx_map, off,
1759                                dispatch_rq_from_ctx, &data);
1760
1761         return data.rq;
1762 }
1763
1764 bool __blk_mq_alloc_driver_tag(struct request *rq)
1765 {
1766         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1767         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1768         int tag;
1769
1770         blk_mq_tag_busy(rq->mq_hctx);
1771
1772         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1773                 bt = &rq->mq_hctx->tags->breserved_tags;
1774                 tag_offset = 0;
1775         } else {
1776                 if (!hctx_may_queue(rq->mq_hctx, bt))
1777                         return false;
1778         }
1779
1780         tag = __sbitmap_queue_get(bt);
1781         if (tag == BLK_MQ_NO_TAG)
1782                 return false;
1783
1784         rq->tag = tag + tag_offset;
1785         blk_mq_inc_active_requests(rq->mq_hctx);
1786         return true;
1787 }
1788
1789 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1790                                 int flags, void *key)
1791 {
1792         struct blk_mq_hw_ctx *hctx;
1793
1794         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1795
1796         spin_lock(&hctx->dispatch_wait_lock);
1797         if (!list_empty(&wait->entry)) {
1798                 struct sbitmap_queue *sbq;
1799
1800                 list_del_init(&wait->entry);
1801                 sbq = &hctx->tags->bitmap_tags;
1802                 atomic_dec(&sbq->ws_active);
1803         }
1804         spin_unlock(&hctx->dispatch_wait_lock);
1805
1806         blk_mq_run_hw_queue(hctx, true);
1807         return 1;
1808 }
1809
1810 /*
1811  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1812  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1813  * restart. For both cases, take care to check the condition again after
1814  * marking us as waiting.
1815  */
1816 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1817                                  struct request *rq)
1818 {
1819         struct sbitmap_queue *sbq;
1820         struct wait_queue_head *wq;
1821         wait_queue_entry_t *wait;
1822         bool ret;
1823
1824         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1825             !(blk_mq_is_shared_tags(hctx->flags))) {
1826                 blk_mq_sched_mark_restart_hctx(hctx);
1827
1828                 /*
1829                  * It's possible that a tag was freed in the window between the
1830                  * allocation failure and adding the hardware queue to the wait
1831                  * queue.
1832                  *
1833                  * Don't clear RESTART here, someone else could have set it.
1834                  * At most this will cost an extra queue run.
1835                  */
1836                 return blk_mq_get_driver_tag(rq);
1837         }
1838
1839         wait = &hctx->dispatch_wait;
1840         if (!list_empty_careful(&wait->entry))
1841                 return false;
1842
1843         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1844                 sbq = &hctx->tags->breserved_tags;
1845         else
1846                 sbq = &hctx->tags->bitmap_tags;
1847         wq = &bt_wait_ptr(sbq, hctx)->wait;
1848
1849         spin_lock_irq(&wq->lock);
1850         spin_lock(&hctx->dispatch_wait_lock);
1851         if (!list_empty(&wait->entry)) {
1852                 spin_unlock(&hctx->dispatch_wait_lock);
1853                 spin_unlock_irq(&wq->lock);
1854                 return false;
1855         }
1856
1857         atomic_inc(&sbq->ws_active);
1858         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1859         __add_wait_queue(wq, wait);
1860
1861         /*
1862          * It's possible that a tag was freed in the window between the
1863          * allocation failure and adding the hardware queue to the wait
1864          * queue.
1865          */
1866         ret = blk_mq_get_driver_tag(rq);
1867         if (!ret) {
1868                 spin_unlock(&hctx->dispatch_wait_lock);
1869                 spin_unlock_irq(&wq->lock);
1870                 return false;
1871         }
1872
1873         /*
1874          * We got a tag, remove ourselves from the wait queue to ensure
1875          * someone else gets the wakeup.
1876          */
1877         list_del_init(&wait->entry);
1878         atomic_dec(&sbq->ws_active);
1879         spin_unlock(&hctx->dispatch_wait_lock);
1880         spin_unlock_irq(&wq->lock);
1881
1882         return true;
1883 }
1884
1885 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1886 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1887 /*
1888  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1889  * - EWMA is one simple way to compute running average value
1890  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1891  * - take 4 as factor for avoiding to get too small(0) result, and this
1892  *   factor doesn't matter because EWMA decreases exponentially
1893  */
1894 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1895 {
1896         unsigned int ewma;
1897
1898         ewma = hctx->dispatch_busy;
1899
1900         if (!ewma && !busy)
1901                 return;
1902
1903         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1904         if (busy)
1905                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1906         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1907
1908         hctx->dispatch_busy = ewma;
1909 }
1910
1911 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1912
1913 static void blk_mq_handle_dev_resource(struct request *rq,
1914                                        struct list_head *list)
1915 {
1916         list_add(&rq->queuelist, list);
1917         __blk_mq_requeue_request(rq);
1918 }
1919
1920 static void blk_mq_handle_zone_resource(struct request *rq,
1921                                         struct list_head *zone_list)
1922 {
1923         /*
1924          * If we end up here it is because we cannot dispatch a request to a
1925          * specific zone due to LLD level zone-write locking or other zone
1926          * related resource not being available. In this case, set the request
1927          * aside in zone_list for retrying it later.
1928          */
1929         list_add(&rq->queuelist, zone_list);
1930         __blk_mq_requeue_request(rq);
1931 }
1932
1933 enum prep_dispatch {
1934         PREP_DISPATCH_OK,
1935         PREP_DISPATCH_NO_TAG,
1936         PREP_DISPATCH_NO_BUDGET,
1937 };
1938
1939 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1940                                                   bool need_budget)
1941 {
1942         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1943         int budget_token = -1;
1944
1945         if (need_budget) {
1946                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1947                 if (budget_token < 0) {
1948                         blk_mq_put_driver_tag(rq);
1949                         return PREP_DISPATCH_NO_BUDGET;
1950                 }
1951                 blk_mq_set_rq_budget_token(rq, budget_token);
1952         }
1953
1954         if (!blk_mq_get_driver_tag(rq)) {
1955                 /*
1956                  * The initial allocation attempt failed, so we need to
1957                  * rerun the hardware queue when a tag is freed. The
1958                  * waitqueue takes care of that. If the queue is run
1959                  * before we add this entry back on the dispatch list,
1960                  * we'll re-run it below.
1961                  */
1962                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1963                         /*
1964                          * All budgets not got from this function will be put
1965                          * together during handling partial dispatch
1966                          */
1967                         if (need_budget)
1968                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1969                         return PREP_DISPATCH_NO_TAG;
1970                 }
1971         }
1972
1973         return PREP_DISPATCH_OK;
1974 }
1975
1976 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1977 static void blk_mq_release_budgets(struct request_queue *q,
1978                 struct list_head *list)
1979 {
1980         struct request *rq;
1981
1982         list_for_each_entry(rq, list, queuelist) {
1983                 int budget_token = blk_mq_get_rq_budget_token(rq);
1984
1985                 if (budget_token >= 0)
1986                         blk_mq_put_dispatch_budget(q, budget_token);
1987         }
1988 }
1989
1990 /*
1991  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1992  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1993  * details)
1994  * Attention, we should explicitly call this in unusual cases:
1995  *  1) did not queue everything initially scheduled to queue
1996  *  2) the last attempt to queue a request failed
1997  */
1998 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1999                               bool from_schedule)
2000 {
2001         if (hctx->queue->mq_ops->commit_rqs && queued) {
2002                 trace_block_unplug(hctx->queue, queued, !from_schedule);
2003                 hctx->queue->mq_ops->commit_rqs(hctx);
2004         }
2005 }
2006
2007 /*
2008  * Returns true if we did some work AND can potentially do more.
2009  */
2010 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2011                              unsigned int nr_budgets)
2012 {
2013         enum prep_dispatch prep;
2014         struct request_queue *q = hctx->queue;
2015         struct request *rq;
2016         int queued;
2017         blk_status_t ret = BLK_STS_OK;
2018         LIST_HEAD(zone_list);
2019         bool needs_resource = false;
2020
2021         if (list_empty(list))
2022                 return false;
2023
2024         /*
2025          * Now process all the entries, sending them to the driver.
2026          */
2027         queued = 0;
2028         do {
2029                 struct blk_mq_queue_data bd;
2030
2031                 rq = list_first_entry(list, struct request, queuelist);
2032
2033                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2034                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2035                 if (prep != PREP_DISPATCH_OK)
2036                         break;
2037
2038                 list_del_init(&rq->queuelist);
2039
2040                 bd.rq = rq;
2041                 bd.last = list_empty(list);
2042
2043                 /*
2044                  * once the request is queued to lld, no need to cover the
2045                  * budget any more
2046                  */
2047                 if (nr_budgets)
2048                         nr_budgets--;
2049                 ret = q->mq_ops->queue_rq(hctx, &bd);
2050                 switch (ret) {
2051                 case BLK_STS_OK:
2052                         queued++;
2053                         break;
2054                 case BLK_STS_RESOURCE:
2055                         needs_resource = true;
2056                         fallthrough;
2057                 case BLK_STS_DEV_RESOURCE:
2058                         blk_mq_handle_dev_resource(rq, list);
2059                         goto out;
2060                 case BLK_STS_ZONE_RESOURCE:
2061                         /*
2062                          * Move the request to zone_list and keep going through
2063                          * the dispatch list to find more requests the drive can
2064                          * accept.
2065                          */
2066                         blk_mq_handle_zone_resource(rq, &zone_list);
2067                         needs_resource = true;
2068                         break;
2069                 default:
2070                         blk_mq_end_request(rq, ret);
2071                 }
2072         } while (!list_empty(list));
2073 out:
2074         if (!list_empty(&zone_list))
2075                 list_splice_tail_init(&zone_list, list);
2076
2077         /* If we didn't flush the entire list, we could have told the driver
2078          * there was more coming, but that turned out to be a lie.
2079          */
2080         if (!list_empty(list) || ret != BLK_STS_OK)
2081                 blk_mq_commit_rqs(hctx, queued, false);
2082
2083         /*
2084          * Any items that need requeuing? Stuff them into hctx->dispatch,
2085          * that is where we will continue on next queue run.
2086          */
2087         if (!list_empty(list)) {
2088                 bool needs_restart;
2089                 /* For non-shared tags, the RESTART check will suffice */
2090                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2091                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2092                         blk_mq_is_shared_tags(hctx->flags));
2093
2094                 if (nr_budgets)
2095                         blk_mq_release_budgets(q, list);
2096
2097                 spin_lock(&hctx->lock);
2098                 list_splice_tail_init(list, &hctx->dispatch);
2099                 spin_unlock(&hctx->lock);
2100
2101                 /*
2102                  * Order adding requests to hctx->dispatch and checking
2103                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2104                  * in blk_mq_sched_restart(). Avoid restart code path to
2105                  * miss the new added requests to hctx->dispatch, meantime
2106                  * SCHED_RESTART is observed here.
2107                  */
2108                 smp_mb();
2109
2110                 /*
2111                  * If SCHED_RESTART was set by the caller of this function and
2112                  * it is no longer set that means that it was cleared by another
2113                  * thread and hence that a queue rerun is needed.
2114                  *
2115                  * If 'no_tag' is set, that means that we failed getting
2116                  * a driver tag with an I/O scheduler attached. If our dispatch
2117                  * waitqueue is no longer active, ensure that we run the queue
2118                  * AFTER adding our entries back to the list.
2119                  *
2120                  * If no I/O scheduler has been configured it is possible that
2121                  * the hardware queue got stopped and restarted before requests
2122                  * were pushed back onto the dispatch list. Rerun the queue to
2123                  * avoid starvation. Notes:
2124                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2125                  *   been stopped before rerunning a queue.
2126                  * - Some but not all block drivers stop a queue before
2127                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2128                  *   and dm-rq.
2129                  *
2130                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2131                  * bit is set, run queue after a delay to avoid IO stalls
2132                  * that could otherwise occur if the queue is idle.  We'll do
2133                  * similar if we couldn't get budget or couldn't lock a zone
2134                  * and SCHED_RESTART is set.
2135                  */
2136                 needs_restart = blk_mq_sched_needs_restart(hctx);
2137                 if (prep == PREP_DISPATCH_NO_BUDGET)
2138                         needs_resource = true;
2139                 if (!needs_restart ||
2140                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2141                         blk_mq_run_hw_queue(hctx, true);
2142                 else if (needs_resource)
2143                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2144
2145                 blk_mq_update_dispatch_busy(hctx, true);
2146                 return false;
2147         }
2148
2149         blk_mq_update_dispatch_busy(hctx, false);
2150         return true;
2151 }
2152
2153 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2154 {
2155         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2156
2157         if (cpu >= nr_cpu_ids)
2158                 cpu = cpumask_first(hctx->cpumask);
2159         return cpu;
2160 }
2161
2162 /*
2163  * It'd be great if the workqueue API had a way to pass
2164  * in a mask and had some smarts for more clever placement.
2165  * For now we just round-robin here, switching for every
2166  * BLK_MQ_CPU_WORK_BATCH queued items.
2167  */
2168 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2169 {
2170         bool tried = false;
2171         int next_cpu = hctx->next_cpu;
2172
2173         if (hctx->queue->nr_hw_queues == 1)
2174                 return WORK_CPU_UNBOUND;
2175
2176         if (--hctx->next_cpu_batch <= 0) {
2177 select_cpu:
2178                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2179                                 cpu_online_mask);
2180                 if (next_cpu >= nr_cpu_ids)
2181                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2182                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2183         }
2184
2185         /*
2186          * Do unbound schedule if we can't find a online CPU for this hctx,
2187          * and it should only happen in the path of handling CPU DEAD.
2188          */
2189         if (!cpu_online(next_cpu)) {
2190                 if (!tried) {
2191                         tried = true;
2192                         goto select_cpu;
2193                 }
2194
2195                 /*
2196                  * Make sure to re-select CPU next time once after CPUs
2197                  * in hctx->cpumask become online again.
2198                  */
2199                 hctx->next_cpu = next_cpu;
2200                 hctx->next_cpu_batch = 1;
2201                 return WORK_CPU_UNBOUND;
2202         }
2203
2204         hctx->next_cpu = next_cpu;
2205         return next_cpu;
2206 }
2207
2208 /**
2209  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2210  * @hctx: Pointer to the hardware queue to run.
2211  * @msecs: Milliseconds of delay to wait before running the queue.
2212  *
2213  * Run a hardware queue asynchronously with a delay of @msecs.
2214  */
2215 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2216 {
2217         if (unlikely(blk_mq_hctx_stopped(hctx)))
2218                 return;
2219         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2220                                     msecs_to_jiffies(msecs));
2221 }
2222 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2223
2224 /**
2225  * blk_mq_run_hw_queue - Start to run a hardware queue.
2226  * @hctx: Pointer to the hardware queue to run.
2227  * @async: If we want to run the queue asynchronously.
2228  *
2229  * Check if the request queue is not in a quiesced state and if there are
2230  * pending requests to be sent. If this is true, run the queue to send requests
2231  * to hardware.
2232  */
2233 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2234 {
2235         bool need_run;
2236
2237         /*
2238          * We can't run the queue inline with interrupts disabled.
2239          */
2240         WARN_ON_ONCE(!async && in_interrupt());
2241
2242         might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2243
2244         /*
2245          * When queue is quiesced, we may be switching io scheduler, or
2246          * updating nr_hw_queues, or other things, and we can't run queue
2247          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2248          *
2249          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2250          * quiesced.
2251          */
2252         __blk_mq_run_dispatch_ops(hctx->queue, false,
2253                 need_run = !blk_queue_quiesced(hctx->queue) &&
2254                 blk_mq_hctx_has_pending(hctx));
2255
2256         if (!need_run)
2257                 return;
2258
2259         if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2260                 blk_mq_delay_run_hw_queue(hctx, 0);
2261                 return;
2262         }
2263
2264         blk_mq_run_dispatch_ops(hctx->queue,
2265                                 blk_mq_sched_dispatch_requests(hctx));
2266 }
2267 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2268
2269 /*
2270  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2271  * scheduler.
2272  */
2273 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2274 {
2275         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2276         /*
2277          * If the IO scheduler does not respect hardware queues when
2278          * dispatching, we just don't bother with multiple HW queues and
2279          * dispatch from hctx for the current CPU since running multiple queues
2280          * just causes lock contention inside the scheduler and pointless cache
2281          * bouncing.
2282          */
2283         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2284
2285         if (!blk_mq_hctx_stopped(hctx))
2286                 return hctx;
2287         return NULL;
2288 }
2289
2290 /**
2291  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2292  * @q: Pointer to the request queue to run.
2293  * @async: If we want to run the queue asynchronously.
2294  */
2295 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2296 {
2297         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2298         unsigned long i;
2299
2300         sq_hctx = NULL;
2301         if (blk_queue_sq_sched(q))
2302                 sq_hctx = blk_mq_get_sq_hctx(q);
2303         queue_for_each_hw_ctx(q, hctx, i) {
2304                 if (blk_mq_hctx_stopped(hctx))
2305                         continue;
2306                 /*
2307                  * Dispatch from this hctx either if there's no hctx preferred
2308                  * by IO scheduler or if it has requests that bypass the
2309                  * scheduler.
2310                  */
2311                 if (!sq_hctx || sq_hctx == hctx ||
2312                     !list_empty_careful(&hctx->dispatch))
2313                         blk_mq_run_hw_queue(hctx, async);
2314         }
2315 }
2316 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2317
2318 /**
2319  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2320  * @q: Pointer to the request queue to run.
2321  * @msecs: Milliseconds of delay to wait before running the queues.
2322  */
2323 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2324 {
2325         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2326         unsigned long i;
2327
2328         sq_hctx = NULL;
2329         if (blk_queue_sq_sched(q))
2330                 sq_hctx = blk_mq_get_sq_hctx(q);
2331         queue_for_each_hw_ctx(q, hctx, i) {
2332                 if (blk_mq_hctx_stopped(hctx))
2333                         continue;
2334                 /*
2335                  * If there is already a run_work pending, leave the
2336                  * pending delay untouched. Otherwise, a hctx can stall
2337                  * if another hctx is re-delaying the other's work
2338                  * before the work executes.
2339                  */
2340                 if (delayed_work_pending(&hctx->run_work))
2341                         continue;
2342                 /*
2343                  * Dispatch from this hctx either if there's no hctx preferred
2344                  * by IO scheduler or if it has requests that bypass the
2345                  * scheduler.
2346                  */
2347                 if (!sq_hctx || sq_hctx == hctx ||
2348                     !list_empty_careful(&hctx->dispatch))
2349                         blk_mq_delay_run_hw_queue(hctx, msecs);
2350         }
2351 }
2352 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2353
2354 /*
2355  * This function is often used for pausing .queue_rq() by driver when
2356  * there isn't enough resource or some conditions aren't satisfied, and
2357  * BLK_STS_RESOURCE is usually returned.
2358  *
2359  * We do not guarantee that dispatch can be drained or blocked
2360  * after blk_mq_stop_hw_queue() returns. Please use
2361  * blk_mq_quiesce_queue() for that requirement.
2362  */
2363 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2364 {
2365         cancel_delayed_work(&hctx->run_work);
2366
2367         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2368 }
2369 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2370
2371 /*
2372  * This function is often used for pausing .queue_rq() by driver when
2373  * there isn't enough resource or some conditions aren't satisfied, and
2374  * BLK_STS_RESOURCE is usually returned.
2375  *
2376  * We do not guarantee that dispatch can be drained or blocked
2377  * after blk_mq_stop_hw_queues() returns. Please use
2378  * blk_mq_quiesce_queue() for that requirement.
2379  */
2380 void blk_mq_stop_hw_queues(struct request_queue *q)
2381 {
2382         struct blk_mq_hw_ctx *hctx;
2383         unsigned long i;
2384
2385         queue_for_each_hw_ctx(q, hctx, i)
2386                 blk_mq_stop_hw_queue(hctx);
2387 }
2388 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2389
2390 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2391 {
2392         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2393
2394         blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2395 }
2396 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2397
2398 void blk_mq_start_hw_queues(struct request_queue *q)
2399 {
2400         struct blk_mq_hw_ctx *hctx;
2401         unsigned long i;
2402
2403         queue_for_each_hw_ctx(q, hctx, i)
2404                 blk_mq_start_hw_queue(hctx);
2405 }
2406 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2407
2408 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2409 {
2410         if (!blk_mq_hctx_stopped(hctx))
2411                 return;
2412
2413         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2414         blk_mq_run_hw_queue(hctx, async);
2415 }
2416 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2417
2418 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2419 {
2420         struct blk_mq_hw_ctx *hctx;
2421         unsigned long i;
2422
2423         queue_for_each_hw_ctx(q, hctx, i)
2424                 blk_mq_start_stopped_hw_queue(hctx, async ||
2425                                         (hctx->flags & BLK_MQ_F_BLOCKING));
2426 }
2427 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2428
2429 static void blk_mq_run_work_fn(struct work_struct *work)
2430 {
2431         struct blk_mq_hw_ctx *hctx =
2432                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2433
2434         blk_mq_run_dispatch_ops(hctx->queue,
2435                                 blk_mq_sched_dispatch_requests(hctx));
2436 }
2437
2438 /**
2439  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2440  * @rq: Pointer to request to be inserted.
2441  * @flags: BLK_MQ_INSERT_*
2442  *
2443  * Should only be used carefully, when the caller knows we want to
2444  * bypass a potential IO scheduler on the target device.
2445  */
2446 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2447 {
2448         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2449
2450         spin_lock(&hctx->lock);
2451         if (flags & BLK_MQ_INSERT_AT_HEAD)
2452                 list_add(&rq->queuelist, &hctx->dispatch);
2453         else
2454                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2455         spin_unlock(&hctx->lock);
2456 }
2457
2458 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2459                 struct blk_mq_ctx *ctx, struct list_head *list,
2460                 bool run_queue_async)
2461 {
2462         struct request *rq;
2463         enum hctx_type type = hctx->type;
2464
2465         /*
2466          * Try to issue requests directly if the hw queue isn't busy to save an
2467          * extra enqueue & dequeue to the sw queue.
2468          */
2469         if (!hctx->dispatch_busy && !run_queue_async) {
2470                 blk_mq_run_dispatch_ops(hctx->queue,
2471                         blk_mq_try_issue_list_directly(hctx, list));
2472                 if (list_empty(list))
2473                         goto out;
2474         }
2475
2476         /*
2477          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2478          * offline now
2479          */
2480         list_for_each_entry(rq, list, queuelist) {
2481                 BUG_ON(rq->mq_ctx != ctx);
2482                 trace_block_rq_insert(rq);
2483                 if (rq->cmd_flags & REQ_NOWAIT)
2484                         run_queue_async = true;
2485         }
2486
2487         spin_lock(&ctx->lock);
2488         list_splice_tail_init(list, &ctx->rq_lists[type]);
2489         blk_mq_hctx_mark_pending(hctx, ctx);
2490         spin_unlock(&ctx->lock);
2491 out:
2492         blk_mq_run_hw_queue(hctx, run_queue_async);
2493 }
2494
2495 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2496 {
2497         struct request_queue *q = rq->q;
2498         struct blk_mq_ctx *ctx = rq->mq_ctx;
2499         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2500
2501         if (blk_rq_is_passthrough(rq)) {
2502                 /*
2503                  * Passthrough request have to be added to hctx->dispatch
2504                  * directly.  The device may be in a situation where it can't
2505                  * handle FS request, and always returns BLK_STS_RESOURCE for
2506                  * them, which gets them added to hctx->dispatch.
2507                  *
2508                  * If a passthrough request is required to unblock the queues,
2509                  * and it is added to the scheduler queue, there is no chance to
2510                  * dispatch it given we prioritize requests in hctx->dispatch.
2511                  */
2512                 blk_mq_request_bypass_insert(rq, flags);
2513         } else if (req_op(rq) == REQ_OP_FLUSH) {
2514                 /*
2515                  * Firstly normal IO request is inserted to scheduler queue or
2516                  * sw queue, meantime we add flush request to dispatch queue(
2517                  * hctx->dispatch) directly and there is at most one in-flight
2518                  * flush request for each hw queue, so it doesn't matter to add
2519                  * flush request to tail or front of the dispatch queue.
2520                  *
2521                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2522                  * command, and queueing it will fail when there is any
2523                  * in-flight normal IO request(NCQ command). When adding flush
2524                  * rq to the front of hctx->dispatch, it is easier to introduce
2525                  * extra time to flush rq's latency because of S_SCHED_RESTART
2526                  * compared with adding to the tail of dispatch queue, then
2527                  * chance of flush merge is increased, and less flush requests
2528                  * will be issued to controller. It is observed that ~10% time
2529                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2530                  * drive when adding flush rq to the front of hctx->dispatch.
2531                  *
2532                  * Simply queue flush rq to the front of hctx->dispatch so that
2533                  * intensive flush workloads can benefit in case of NCQ HW.
2534                  */
2535                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2536         } else if (q->elevator) {
2537                 LIST_HEAD(list);
2538
2539                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2540
2541                 list_add(&rq->queuelist, &list);
2542                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2543         } else {
2544                 trace_block_rq_insert(rq);
2545
2546                 spin_lock(&ctx->lock);
2547                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2548                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2549                 else
2550                         list_add_tail(&rq->queuelist,
2551                                       &ctx->rq_lists[hctx->type]);
2552                 blk_mq_hctx_mark_pending(hctx, ctx);
2553                 spin_unlock(&ctx->lock);
2554         }
2555 }
2556
2557 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2558                 unsigned int nr_segs)
2559 {
2560         int err;
2561
2562         if (bio->bi_opf & REQ_RAHEAD)
2563                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2564
2565         rq->__sector = bio->bi_iter.bi_sector;
2566         blk_rq_bio_prep(rq, bio, nr_segs);
2567
2568         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2569         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2570         WARN_ON_ONCE(err);
2571
2572         blk_account_io_start(rq);
2573 }
2574
2575 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2576                                             struct request *rq, bool last)
2577 {
2578         struct request_queue *q = rq->q;
2579         struct blk_mq_queue_data bd = {
2580                 .rq = rq,
2581                 .last = last,
2582         };
2583         blk_status_t ret;
2584
2585         /*
2586          * For OK queue, we are done. For error, caller may kill it.
2587          * Any other error (busy), just add it to our list as we
2588          * previously would have done.
2589          */
2590         ret = q->mq_ops->queue_rq(hctx, &bd);
2591         switch (ret) {
2592         case BLK_STS_OK:
2593                 blk_mq_update_dispatch_busy(hctx, false);
2594                 break;
2595         case BLK_STS_RESOURCE:
2596         case BLK_STS_DEV_RESOURCE:
2597                 blk_mq_update_dispatch_busy(hctx, true);
2598                 __blk_mq_requeue_request(rq);
2599                 break;
2600         default:
2601                 blk_mq_update_dispatch_busy(hctx, false);
2602                 break;
2603         }
2604
2605         return ret;
2606 }
2607
2608 static bool blk_mq_get_budget_and_tag(struct request *rq)
2609 {
2610         int budget_token;
2611
2612         budget_token = blk_mq_get_dispatch_budget(rq->q);
2613         if (budget_token < 0)
2614                 return false;
2615         blk_mq_set_rq_budget_token(rq, budget_token);
2616         if (!blk_mq_get_driver_tag(rq)) {
2617                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2618                 return false;
2619         }
2620         return true;
2621 }
2622
2623 /**
2624  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2625  * @hctx: Pointer of the associated hardware queue.
2626  * @rq: Pointer to request to be sent.
2627  *
2628  * If the device has enough resources to accept a new request now, send the
2629  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2630  * we can try send it another time in the future. Requests inserted at this
2631  * queue have higher priority.
2632  */
2633 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2634                 struct request *rq)
2635 {
2636         blk_status_t ret;
2637
2638         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2639                 blk_mq_insert_request(rq, 0);
2640                 return;
2641         }
2642
2643         if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2644                 blk_mq_insert_request(rq, 0);
2645                 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2646                 return;
2647         }
2648
2649         ret = __blk_mq_issue_directly(hctx, rq, true);
2650         switch (ret) {
2651         case BLK_STS_OK:
2652                 break;
2653         case BLK_STS_RESOURCE:
2654         case BLK_STS_DEV_RESOURCE:
2655                 blk_mq_request_bypass_insert(rq, 0);
2656                 blk_mq_run_hw_queue(hctx, false);
2657                 break;
2658         default:
2659                 blk_mq_end_request(rq, ret);
2660                 break;
2661         }
2662 }
2663
2664 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2665 {
2666         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2667
2668         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2669                 blk_mq_insert_request(rq, 0);
2670                 return BLK_STS_OK;
2671         }
2672
2673         if (!blk_mq_get_budget_and_tag(rq))
2674                 return BLK_STS_RESOURCE;
2675         return __blk_mq_issue_directly(hctx, rq, last);
2676 }
2677
2678 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2679 {
2680         struct blk_mq_hw_ctx *hctx = NULL;
2681         struct request *rq;
2682         int queued = 0;
2683         blk_status_t ret = BLK_STS_OK;
2684
2685         while ((rq = rq_list_pop(&plug->mq_list))) {
2686                 bool last = rq_list_empty(plug->mq_list);
2687
2688                 if (hctx != rq->mq_hctx) {
2689                         if (hctx) {
2690                                 blk_mq_commit_rqs(hctx, queued, false);
2691                                 queued = 0;
2692                         }
2693                         hctx = rq->mq_hctx;
2694                 }
2695
2696                 ret = blk_mq_request_issue_directly(rq, last);
2697                 switch (ret) {
2698                 case BLK_STS_OK:
2699                         queued++;
2700                         break;
2701                 case BLK_STS_RESOURCE:
2702                 case BLK_STS_DEV_RESOURCE:
2703                         blk_mq_request_bypass_insert(rq, 0);
2704                         blk_mq_run_hw_queue(hctx, false);
2705                         goto out;
2706                 default:
2707                         blk_mq_end_request(rq, ret);
2708                         break;
2709                 }
2710         }
2711
2712 out:
2713         if (ret != BLK_STS_OK)
2714                 blk_mq_commit_rqs(hctx, queued, false);
2715 }
2716
2717 static void __blk_mq_flush_plug_list(struct request_queue *q,
2718                                      struct blk_plug *plug)
2719 {
2720         if (blk_queue_quiesced(q))
2721                 return;
2722         q->mq_ops->queue_rqs(&plug->mq_list);
2723 }
2724
2725 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2726 {
2727         struct blk_mq_hw_ctx *this_hctx = NULL;
2728         struct blk_mq_ctx *this_ctx = NULL;
2729         struct request *requeue_list = NULL;
2730         struct request **requeue_lastp = &requeue_list;
2731         unsigned int depth = 0;
2732         bool is_passthrough = false;
2733         LIST_HEAD(list);
2734
2735         do {
2736                 struct request *rq = rq_list_pop(&plug->mq_list);
2737
2738                 if (!this_hctx) {
2739                         this_hctx = rq->mq_hctx;
2740                         this_ctx = rq->mq_ctx;
2741                         is_passthrough = blk_rq_is_passthrough(rq);
2742                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2743                            is_passthrough != blk_rq_is_passthrough(rq)) {
2744                         rq_list_add_tail(&requeue_lastp, rq);
2745                         continue;
2746                 }
2747                 list_add(&rq->queuelist, &list);
2748                 depth++;
2749         } while (!rq_list_empty(plug->mq_list));
2750
2751         plug->mq_list = requeue_list;
2752         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2753
2754         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2755         /* passthrough requests should never be issued to the I/O scheduler */
2756         if (is_passthrough) {
2757                 spin_lock(&this_hctx->lock);
2758                 list_splice_tail_init(&list, &this_hctx->dispatch);
2759                 spin_unlock(&this_hctx->lock);
2760                 blk_mq_run_hw_queue(this_hctx, from_sched);
2761         } else if (this_hctx->queue->elevator) {
2762                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2763                                 &list, 0);
2764                 blk_mq_run_hw_queue(this_hctx, from_sched);
2765         } else {
2766                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2767         }
2768         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2769 }
2770
2771 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2772 {
2773         struct request *rq;
2774
2775         /*
2776          * We may have been called recursively midway through handling
2777          * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2778          * To avoid mq_list changing under our feet, clear rq_count early and
2779          * bail out specifically if rq_count is 0 rather than checking
2780          * whether the mq_list is empty.
2781          */
2782         if (plug->rq_count == 0)
2783                 return;
2784         plug->rq_count = 0;
2785
2786         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2787                 struct request_queue *q;
2788
2789                 rq = rq_list_peek(&plug->mq_list);
2790                 q = rq->q;
2791
2792                 /*
2793                  * Peek first request and see if we have a ->queue_rqs() hook.
2794                  * If we do, we can dispatch the whole plug list in one go. We
2795                  * already know at this point that all requests belong to the
2796                  * same queue, caller must ensure that's the case.
2797                  */
2798                 if (q->mq_ops->queue_rqs) {
2799                         blk_mq_run_dispatch_ops(q,
2800                                 __blk_mq_flush_plug_list(q, plug));
2801                         if (rq_list_empty(plug->mq_list))
2802                                 return;
2803                 }
2804
2805                 blk_mq_run_dispatch_ops(q,
2806                                 blk_mq_plug_issue_direct(plug));
2807                 if (rq_list_empty(plug->mq_list))
2808                         return;
2809         }
2810
2811         do {
2812                 blk_mq_dispatch_plug_list(plug, from_schedule);
2813         } while (!rq_list_empty(plug->mq_list));
2814 }
2815
2816 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2817                 struct list_head *list)
2818 {
2819         int queued = 0;
2820         blk_status_t ret = BLK_STS_OK;
2821
2822         while (!list_empty(list)) {
2823                 struct request *rq = list_first_entry(list, struct request,
2824                                 queuelist);
2825
2826                 list_del_init(&rq->queuelist);
2827                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2828                 switch (ret) {
2829                 case BLK_STS_OK:
2830                         queued++;
2831                         break;
2832                 case BLK_STS_RESOURCE:
2833                 case BLK_STS_DEV_RESOURCE:
2834                         blk_mq_request_bypass_insert(rq, 0);
2835                         if (list_empty(list))
2836                                 blk_mq_run_hw_queue(hctx, false);
2837                         goto out;
2838                 default:
2839                         blk_mq_end_request(rq, ret);
2840                         break;
2841                 }
2842         }
2843
2844 out:
2845         if (ret != BLK_STS_OK)
2846                 blk_mq_commit_rqs(hctx, queued, false);
2847 }
2848
2849 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2850                                      struct bio *bio, unsigned int nr_segs)
2851 {
2852         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2853                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2854                         return true;
2855                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2856                         return true;
2857         }
2858         return false;
2859 }
2860
2861 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2862                                                struct blk_plug *plug,
2863                                                struct bio *bio,
2864                                                unsigned int nsegs)
2865 {
2866         struct blk_mq_alloc_data data = {
2867                 .q              = q,
2868                 .nr_tags        = 1,
2869                 .cmd_flags      = bio->bi_opf,
2870         };
2871         struct request *rq;
2872
2873         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2874                 return NULL;
2875
2876         rq_qos_throttle(q, bio);
2877
2878         if (plug) {
2879                 data.nr_tags = plug->nr_ios;
2880                 plug->nr_ios = 1;
2881                 data.cached_rq = &plug->cached_rq;
2882         }
2883
2884         rq = __blk_mq_alloc_requests(&data);
2885         if (rq)
2886                 return rq;
2887         rq_qos_cleanup(q, bio);
2888         if (bio->bi_opf & REQ_NOWAIT)
2889                 bio_wouldblock_error(bio);
2890         return NULL;
2891 }
2892
2893 /* return true if this @rq can be used for @bio */
2894 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug,
2895                 struct bio *bio)
2896 {
2897         enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2898         enum hctx_type hctx_type = rq->mq_hctx->type;
2899
2900         WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2901
2902         if (type != hctx_type &&
2903             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2904                 return false;
2905         if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2906                 return false;
2907
2908         /*
2909          * If any qos ->throttle() end up blocking, we will have flushed the
2910          * plug and hence killed the cached_rq list as well. Pop this entry
2911          * before we throttle.
2912          */
2913         plug->cached_rq = rq_list_next(rq);
2914         rq_qos_throttle(rq->q, bio);
2915
2916         blk_mq_rq_time_init(rq, 0);
2917         rq->cmd_flags = bio->bi_opf;
2918         INIT_LIST_HEAD(&rq->queuelist);
2919         return true;
2920 }
2921
2922 static void bio_set_ioprio(struct bio *bio)
2923 {
2924         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2925         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2926                 bio->bi_ioprio = get_current_ioprio();
2927         blkcg_set_ioprio(bio);
2928 }
2929
2930 /**
2931  * blk_mq_submit_bio - Create and send a request to block device.
2932  * @bio: Bio pointer.
2933  *
2934  * Builds up a request structure from @q and @bio and send to the device. The
2935  * request may not be queued directly to hardware if:
2936  * * This request can be merged with another one
2937  * * We want to place request at plug queue for possible future merging
2938  * * There is an IO scheduler active at this queue
2939  *
2940  * It will not queue the request if there is an error with the bio, or at the
2941  * request creation.
2942  */
2943 void blk_mq_submit_bio(struct bio *bio)
2944 {
2945         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2946         struct blk_plug *plug = blk_mq_plug(bio);
2947         const int is_sync = op_is_sync(bio->bi_opf);
2948         struct blk_mq_hw_ctx *hctx;
2949         struct request *rq = NULL;
2950         unsigned int nr_segs = 1;
2951         blk_status_t ret;
2952
2953         bio = blk_queue_bounce(bio, q);
2954         if (bio_may_exceed_limits(bio, &q->limits)) {
2955                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2956                 if (!bio)
2957                         return;
2958         }
2959
2960         bio_set_ioprio(bio);
2961
2962         if (plug) {
2963                 rq = rq_list_peek(&plug->cached_rq);
2964                 if (rq && rq->q != q)
2965                         rq = NULL;
2966         }
2967         if (rq) {
2968                 if (!bio_integrity_prep(bio))
2969                         return;
2970                 if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2971                         return;
2972                 if (blk_mq_can_use_cached_rq(rq, plug, bio))
2973                         goto done;
2974                 percpu_ref_get(&q->q_usage_counter);
2975         } else {
2976                 if (unlikely(bio_queue_enter(bio)))
2977                         return;
2978                 if (!bio_integrity_prep(bio))
2979                         goto fail;
2980         }
2981
2982         rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2983         if (unlikely(!rq)) {
2984 fail:
2985                 blk_queue_exit(q);
2986                 return;
2987         }
2988
2989 done:
2990         trace_block_getrq(bio);
2991
2992         rq_qos_track(q, rq, bio);
2993
2994         blk_mq_bio_to_request(rq, bio, nr_segs);
2995
2996         ret = blk_crypto_rq_get_keyslot(rq);
2997         if (ret != BLK_STS_OK) {
2998                 bio->bi_status = ret;
2999                 bio_endio(bio);
3000                 blk_mq_free_request(rq);
3001                 return;
3002         }
3003
3004         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3005                 return;
3006
3007         if (plug) {
3008                 blk_add_rq_to_plug(plug, rq);
3009                 return;
3010         }
3011
3012         hctx = rq->mq_hctx;
3013         if ((rq->rq_flags & RQF_USE_SCHED) ||
3014             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3015                 blk_mq_insert_request(rq, 0);
3016                 blk_mq_run_hw_queue(hctx, true);
3017         } else {
3018                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3019         }
3020 }
3021
3022 #ifdef CONFIG_BLK_MQ_STACKING
3023 /**
3024  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3025  * @rq: the request being queued
3026  */
3027 blk_status_t blk_insert_cloned_request(struct request *rq)
3028 {
3029         struct request_queue *q = rq->q;
3030         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3031         unsigned int max_segments = blk_rq_get_max_segments(rq);
3032         blk_status_t ret;
3033
3034         if (blk_rq_sectors(rq) > max_sectors) {
3035                 /*
3036                  * SCSI device does not have a good way to return if
3037                  * Write Same/Zero is actually supported. If a device rejects
3038                  * a non-read/write command (discard, write same,etc.) the
3039                  * low-level device driver will set the relevant queue limit to
3040                  * 0 to prevent blk-lib from issuing more of the offending
3041                  * operations. Commands queued prior to the queue limit being
3042                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3043                  * errors being propagated to upper layers.
3044                  */
3045                 if (max_sectors == 0)
3046                         return BLK_STS_NOTSUPP;
3047
3048                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3049                         __func__, blk_rq_sectors(rq), max_sectors);
3050                 return BLK_STS_IOERR;
3051         }
3052
3053         /*
3054          * The queue settings related to segment counting may differ from the
3055          * original queue.
3056          */
3057         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3058         if (rq->nr_phys_segments > max_segments) {
3059                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3060                         __func__, rq->nr_phys_segments, max_segments);
3061                 return BLK_STS_IOERR;
3062         }
3063
3064         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3065                 return BLK_STS_IOERR;
3066
3067         ret = blk_crypto_rq_get_keyslot(rq);
3068         if (ret != BLK_STS_OK)
3069                 return ret;
3070
3071         blk_account_io_start(rq);
3072
3073         /*
3074          * Since we have a scheduler attached on the top device,
3075          * bypass a potential scheduler on the bottom device for
3076          * insert.
3077          */
3078         blk_mq_run_dispatch_ops(q,
3079                         ret = blk_mq_request_issue_directly(rq, true));
3080         if (ret)
3081                 blk_account_io_done(rq, ktime_get_ns());
3082         return ret;
3083 }
3084 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3085
3086 /**
3087  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3088  * @rq: the clone request to be cleaned up
3089  *
3090  * Description:
3091  *     Free all bios in @rq for a cloned request.
3092  */
3093 void blk_rq_unprep_clone(struct request *rq)
3094 {
3095         struct bio *bio;
3096
3097         while ((bio = rq->bio) != NULL) {
3098                 rq->bio = bio->bi_next;
3099
3100                 bio_put(bio);
3101         }
3102 }
3103 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3104
3105 /**
3106  * blk_rq_prep_clone - Helper function to setup clone request
3107  * @rq: the request to be setup
3108  * @rq_src: original request to be cloned
3109  * @bs: bio_set that bios for clone are allocated from
3110  * @gfp_mask: memory allocation mask for bio
3111  * @bio_ctr: setup function to be called for each clone bio.
3112  *           Returns %0 for success, non %0 for failure.
3113  * @data: private data to be passed to @bio_ctr
3114  *
3115  * Description:
3116  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3117  *     Also, pages which the original bios are pointing to are not copied
3118  *     and the cloned bios just point same pages.
3119  *     So cloned bios must be completed before original bios, which means
3120  *     the caller must complete @rq before @rq_src.
3121  */
3122 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3123                       struct bio_set *bs, gfp_t gfp_mask,
3124                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3125                       void *data)
3126 {
3127         struct bio *bio, *bio_src;
3128
3129         if (!bs)
3130                 bs = &fs_bio_set;
3131
3132         __rq_for_each_bio(bio_src, rq_src) {
3133                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3134                                       bs);
3135                 if (!bio)
3136                         goto free_and_out;
3137
3138                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3139                         goto free_and_out;
3140
3141                 if (rq->bio) {
3142                         rq->biotail->bi_next = bio;
3143                         rq->biotail = bio;
3144                 } else {
3145                         rq->bio = rq->biotail = bio;
3146                 }
3147                 bio = NULL;
3148         }
3149
3150         /* Copy attributes of the original request to the clone request. */
3151         rq->__sector = blk_rq_pos(rq_src);
3152         rq->__data_len = blk_rq_bytes(rq_src);
3153         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3154                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3155                 rq->special_vec = rq_src->special_vec;
3156         }
3157         rq->nr_phys_segments = rq_src->nr_phys_segments;
3158         rq->ioprio = rq_src->ioprio;
3159
3160         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3161                 goto free_and_out;
3162
3163         return 0;
3164
3165 free_and_out:
3166         if (bio)
3167                 bio_put(bio);
3168         blk_rq_unprep_clone(rq);
3169
3170         return -ENOMEM;
3171 }
3172 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3173 #endif /* CONFIG_BLK_MQ_STACKING */
3174
3175 /*
3176  * Steal bios from a request and add them to a bio list.
3177  * The request must not have been partially completed before.
3178  */
3179 void blk_steal_bios(struct bio_list *list, struct request *rq)
3180 {
3181         if (rq->bio) {
3182                 if (list->tail)
3183                         list->tail->bi_next = rq->bio;
3184                 else
3185                         list->head = rq->bio;
3186                 list->tail = rq->biotail;
3187
3188                 rq->bio = NULL;
3189                 rq->biotail = NULL;
3190         }
3191
3192         rq->__data_len = 0;
3193 }
3194 EXPORT_SYMBOL_GPL(blk_steal_bios);
3195
3196 static size_t order_to_size(unsigned int order)
3197 {
3198         return (size_t)PAGE_SIZE << order;
3199 }
3200
3201 /* called before freeing request pool in @tags */
3202 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3203                                     struct blk_mq_tags *tags)
3204 {
3205         struct page *page;
3206         unsigned long flags;
3207
3208         /*
3209          * There is no need to clear mapping if driver tags is not initialized
3210          * or the mapping belongs to the driver tags.
3211          */
3212         if (!drv_tags || drv_tags == tags)
3213                 return;
3214
3215         list_for_each_entry(page, &tags->page_list, lru) {
3216                 unsigned long start = (unsigned long)page_address(page);
3217                 unsigned long end = start + order_to_size(page->private);
3218                 int i;
3219
3220                 for (i = 0; i < drv_tags->nr_tags; i++) {
3221                         struct request *rq = drv_tags->rqs[i];
3222                         unsigned long rq_addr = (unsigned long)rq;
3223
3224                         if (rq_addr >= start && rq_addr < end) {
3225                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3226                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3227                         }
3228                 }
3229         }
3230
3231         /*
3232          * Wait until all pending iteration is done.
3233          *
3234          * Request reference is cleared and it is guaranteed to be observed
3235          * after the ->lock is released.
3236          */
3237         spin_lock_irqsave(&drv_tags->lock, flags);
3238         spin_unlock_irqrestore(&drv_tags->lock, flags);
3239 }
3240
3241 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3242                      unsigned int hctx_idx)
3243 {
3244         struct blk_mq_tags *drv_tags;
3245         struct page *page;
3246
3247         if (list_empty(&tags->page_list))
3248                 return;
3249
3250         if (blk_mq_is_shared_tags(set->flags))
3251                 drv_tags = set->shared_tags;
3252         else
3253                 drv_tags = set->tags[hctx_idx];
3254
3255         if (tags->static_rqs && set->ops->exit_request) {
3256                 int i;
3257
3258                 for (i = 0; i < tags->nr_tags; i++) {
3259                         struct request *rq = tags->static_rqs[i];
3260
3261                         if (!rq)
3262                                 continue;
3263                         set->ops->exit_request(set, rq, hctx_idx);
3264                         tags->static_rqs[i] = NULL;
3265                 }
3266         }
3267
3268         blk_mq_clear_rq_mapping(drv_tags, tags);
3269
3270         while (!list_empty(&tags->page_list)) {
3271                 page = list_first_entry(&tags->page_list, struct page, lru);
3272                 list_del_init(&page->lru);
3273                 /*
3274                  * Remove kmemleak object previously allocated in
3275                  * blk_mq_alloc_rqs().
3276                  */
3277                 kmemleak_free(page_address(page));
3278                 __free_pages(page, page->private);
3279         }
3280 }
3281
3282 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3283 {
3284         kfree(tags->rqs);
3285         tags->rqs = NULL;
3286         kfree(tags->static_rqs);
3287         tags->static_rqs = NULL;
3288
3289         blk_mq_free_tags(tags);
3290 }
3291
3292 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3293                 unsigned int hctx_idx)
3294 {
3295         int i;
3296
3297         for (i = 0; i < set->nr_maps; i++) {
3298                 unsigned int start = set->map[i].queue_offset;
3299                 unsigned int end = start + set->map[i].nr_queues;
3300
3301                 if (hctx_idx >= start && hctx_idx < end)
3302                         break;
3303         }
3304
3305         if (i >= set->nr_maps)
3306                 i = HCTX_TYPE_DEFAULT;
3307
3308         return i;
3309 }
3310
3311 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3312                 unsigned int hctx_idx)
3313 {
3314         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3315
3316         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3317 }
3318
3319 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3320                                                unsigned int hctx_idx,
3321                                                unsigned int nr_tags,
3322                                                unsigned int reserved_tags)
3323 {
3324         int node = blk_mq_get_hctx_node(set, hctx_idx);
3325         struct blk_mq_tags *tags;
3326
3327         if (node == NUMA_NO_NODE)
3328                 node = set->numa_node;
3329
3330         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3331                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3332         if (!tags)
3333                 return NULL;
3334
3335         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3336                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3337                                  node);
3338         if (!tags->rqs)
3339                 goto err_free_tags;
3340
3341         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3342                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3343                                         node);
3344         if (!tags->static_rqs)
3345                 goto err_free_rqs;
3346
3347         return tags;
3348
3349 err_free_rqs:
3350         kfree(tags->rqs);
3351 err_free_tags:
3352         blk_mq_free_tags(tags);
3353         return NULL;
3354 }
3355
3356 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3357                                unsigned int hctx_idx, int node)
3358 {
3359         int ret;
3360
3361         if (set->ops->init_request) {
3362                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3363                 if (ret)
3364                         return ret;
3365         }
3366
3367         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3368         return 0;
3369 }
3370
3371 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3372                             struct blk_mq_tags *tags,
3373                             unsigned int hctx_idx, unsigned int depth)
3374 {
3375         unsigned int i, j, entries_per_page, max_order = 4;
3376         int node = blk_mq_get_hctx_node(set, hctx_idx);
3377         size_t rq_size, left;
3378
3379         if (node == NUMA_NO_NODE)
3380                 node = set->numa_node;
3381
3382         INIT_LIST_HEAD(&tags->page_list);
3383
3384         /*
3385          * rq_size is the size of the request plus driver payload, rounded
3386          * to the cacheline size
3387          */
3388         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3389                                 cache_line_size());
3390         left = rq_size * depth;
3391
3392         for (i = 0; i < depth; ) {
3393                 int this_order = max_order;
3394                 struct page *page;
3395                 int to_do;
3396                 void *p;
3397
3398                 while (this_order && left < order_to_size(this_order - 1))
3399                         this_order--;
3400
3401                 do {
3402                         page = alloc_pages_node(node,
3403                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3404                                 this_order);
3405                         if (page)
3406                                 break;
3407                         if (!this_order--)
3408                                 break;
3409                         if (order_to_size(this_order) < rq_size)
3410                                 break;
3411                 } while (1);
3412
3413                 if (!page)
3414                         goto fail;
3415
3416                 page->private = this_order;
3417                 list_add_tail(&page->lru, &tags->page_list);
3418
3419                 p = page_address(page);
3420                 /*
3421                  * Allow kmemleak to scan these pages as they contain pointers
3422                  * to additional allocations like via ops->init_request().
3423                  */
3424                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3425                 entries_per_page = order_to_size(this_order) / rq_size;
3426                 to_do = min(entries_per_page, depth - i);
3427                 left -= to_do * rq_size;
3428                 for (j = 0; j < to_do; j++) {
3429                         struct request *rq = p;
3430
3431                         tags->static_rqs[i] = rq;
3432                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3433                                 tags->static_rqs[i] = NULL;
3434                                 goto fail;
3435                         }
3436
3437                         p += rq_size;
3438                         i++;
3439                 }
3440         }
3441         return 0;
3442
3443 fail:
3444         blk_mq_free_rqs(set, tags, hctx_idx);
3445         return -ENOMEM;
3446 }
3447
3448 struct rq_iter_data {
3449         struct blk_mq_hw_ctx *hctx;
3450         bool has_rq;
3451 };
3452
3453 static bool blk_mq_has_request(struct request *rq, void *data)
3454 {
3455         struct rq_iter_data *iter_data = data;
3456
3457         if (rq->mq_hctx != iter_data->hctx)
3458                 return true;
3459         iter_data->has_rq = true;
3460         return false;
3461 }
3462
3463 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3464 {
3465         struct blk_mq_tags *tags = hctx->sched_tags ?
3466                         hctx->sched_tags : hctx->tags;
3467         struct rq_iter_data data = {
3468                 .hctx   = hctx,
3469         };
3470
3471         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3472         return data.has_rq;
3473 }
3474
3475 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3476                 struct blk_mq_hw_ctx *hctx)
3477 {
3478         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3479                 return false;
3480         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3481                 return false;
3482         return true;
3483 }
3484
3485 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3486 {
3487         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3488                         struct blk_mq_hw_ctx, cpuhp_online);
3489
3490         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3491             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3492                 return 0;
3493
3494         /*
3495          * Prevent new request from being allocated on the current hctx.
3496          *
3497          * The smp_mb__after_atomic() Pairs with the implied barrier in
3498          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3499          * seen once we return from the tag allocator.
3500          */
3501         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3502         smp_mb__after_atomic();
3503
3504         /*
3505          * Try to grab a reference to the queue and wait for any outstanding
3506          * requests.  If we could not grab a reference the queue has been
3507          * frozen and there are no requests.
3508          */
3509         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3510                 while (blk_mq_hctx_has_requests(hctx))
3511                         msleep(5);
3512                 percpu_ref_put(&hctx->queue->q_usage_counter);
3513         }
3514
3515         return 0;
3516 }
3517
3518 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3519 {
3520         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3521                         struct blk_mq_hw_ctx, cpuhp_online);
3522
3523         if (cpumask_test_cpu(cpu, hctx->cpumask))
3524                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3525         return 0;
3526 }
3527
3528 /*
3529  * 'cpu' is going away. splice any existing rq_list entries from this
3530  * software queue to the hw queue dispatch list, and ensure that it
3531  * gets run.
3532  */
3533 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3534 {
3535         struct blk_mq_hw_ctx *hctx;
3536         struct blk_mq_ctx *ctx;
3537         LIST_HEAD(tmp);
3538         enum hctx_type type;
3539
3540         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3541         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3542                 return 0;
3543
3544         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3545         type = hctx->type;
3546
3547         spin_lock(&ctx->lock);
3548         if (!list_empty(&ctx->rq_lists[type])) {
3549                 list_splice_init(&ctx->rq_lists[type], &tmp);
3550                 blk_mq_hctx_clear_pending(hctx, ctx);
3551         }
3552         spin_unlock(&ctx->lock);
3553
3554         if (list_empty(&tmp))
3555                 return 0;
3556
3557         spin_lock(&hctx->lock);
3558         list_splice_tail_init(&tmp, &hctx->dispatch);
3559         spin_unlock(&hctx->lock);
3560
3561         blk_mq_run_hw_queue(hctx, true);
3562         return 0;
3563 }
3564
3565 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3566 {
3567         if (!(hctx->flags & BLK_MQ_F_STACKING))
3568                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3569                                                     &hctx->cpuhp_online);
3570         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3571                                             &hctx->cpuhp_dead);
3572 }
3573
3574 /*
3575  * Before freeing hw queue, clearing the flush request reference in
3576  * tags->rqs[] for avoiding potential UAF.
3577  */
3578 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3579                 unsigned int queue_depth, struct request *flush_rq)
3580 {
3581         int i;
3582         unsigned long flags;
3583
3584         /* The hw queue may not be mapped yet */
3585         if (!tags)
3586                 return;
3587
3588         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3589
3590         for (i = 0; i < queue_depth; i++)
3591                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3592
3593         /*
3594          * Wait until all pending iteration is done.
3595          *
3596          * Request reference is cleared and it is guaranteed to be observed
3597          * after the ->lock is released.
3598          */
3599         spin_lock_irqsave(&tags->lock, flags);
3600         spin_unlock_irqrestore(&tags->lock, flags);
3601 }
3602
3603 /* hctx->ctxs will be freed in queue's release handler */
3604 static void blk_mq_exit_hctx(struct request_queue *q,
3605                 struct blk_mq_tag_set *set,
3606                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3607 {
3608         struct request *flush_rq = hctx->fq->flush_rq;
3609
3610         if (blk_mq_hw_queue_mapped(hctx))
3611                 blk_mq_tag_idle(hctx);
3612
3613         if (blk_queue_init_done(q))
3614                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3615                                 set->queue_depth, flush_rq);
3616         if (set->ops->exit_request)
3617                 set->ops->exit_request(set, flush_rq, hctx_idx);
3618
3619         if (set->ops->exit_hctx)
3620                 set->ops->exit_hctx(hctx, hctx_idx);
3621
3622         blk_mq_remove_cpuhp(hctx);
3623
3624         xa_erase(&q->hctx_table, hctx_idx);
3625
3626         spin_lock(&q->unused_hctx_lock);
3627         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3628         spin_unlock(&q->unused_hctx_lock);
3629 }
3630
3631 static void blk_mq_exit_hw_queues(struct request_queue *q,
3632                 struct blk_mq_tag_set *set, int nr_queue)
3633 {
3634         struct blk_mq_hw_ctx *hctx;
3635         unsigned long i;
3636
3637         queue_for_each_hw_ctx(q, hctx, i) {
3638                 if (i == nr_queue)
3639                         break;
3640                 blk_mq_exit_hctx(q, set, hctx, i);
3641         }
3642 }
3643
3644 static int blk_mq_init_hctx(struct request_queue *q,
3645                 struct blk_mq_tag_set *set,
3646                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3647 {
3648         hctx->queue_num = hctx_idx;
3649
3650         if (!(hctx->flags & BLK_MQ_F_STACKING))
3651                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3652                                 &hctx->cpuhp_online);
3653         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3654
3655         hctx->tags = set->tags[hctx_idx];
3656
3657         if (set->ops->init_hctx &&
3658             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3659                 goto unregister_cpu_notifier;
3660
3661         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3662                                 hctx->numa_node))
3663                 goto exit_hctx;
3664
3665         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3666                 goto exit_flush_rq;
3667
3668         return 0;
3669
3670  exit_flush_rq:
3671         if (set->ops->exit_request)
3672                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3673  exit_hctx:
3674         if (set->ops->exit_hctx)
3675                 set->ops->exit_hctx(hctx, hctx_idx);
3676  unregister_cpu_notifier:
3677         blk_mq_remove_cpuhp(hctx);
3678         return -1;
3679 }
3680
3681 static struct blk_mq_hw_ctx *
3682 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3683                 int node)
3684 {
3685         struct blk_mq_hw_ctx *hctx;
3686         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3687
3688         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3689         if (!hctx)
3690                 goto fail_alloc_hctx;
3691
3692         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3693                 goto free_hctx;
3694
3695         atomic_set(&hctx->nr_active, 0);
3696         if (node == NUMA_NO_NODE)
3697                 node = set->numa_node;
3698         hctx->numa_node = node;
3699
3700         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3701         spin_lock_init(&hctx->lock);
3702         INIT_LIST_HEAD(&hctx->dispatch);
3703         hctx->queue = q;
3704         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3705
3706         INIT_LIST_HEAD(&hctx->hctx_list);
3707
3708         /*
3709          * Allocate space for all possible cpus to avoid allocation at
3710          * runtime
3711          */
3712         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3713                         gfp, node);
3714         if (!hctx->ctxs)
3715                 goto free_cpumask;
3716
3717         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3718                                 gfp, node, false, false))
3719                 goto free_ctxs;
3720         hctx->nr_ctx = 0;
3721
3722         spin_lock_init(&hctx->dispatch_wait_lock);
3723         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3724         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3725
3726         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3727         if (!hctx->fq)
3728                 goto free_bitmap;
3729
3730         blk_mq_hctx_kobj_init(hctx);
3731
3732         return hctx;
3733
3734  free_bitmap:
3735         sbitmap_free(&hctx->ctx_map);
3736  free_ctxs:
3737         kfree(hctx->ctxs);
3738  free_cpumask:
3739         free_cpumask_var(hctx->cpumask);
3740  free_hctx:
3741         kfree(hctx);
3742  fail_alloc_hctx:
3743         return NULL;
3744 }
3745
3746 static void blk_mq_init_cpu_queues(struct request_queue *q,
3747                                    unsigned int nr_hw_queues)
3748 {
3749         struct blk_mq_tag_set *set = q->tag_set;
3750         unsigned int i, j;
3751
3752         for_each_possible_cpu(i) {
3753                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3754                 struct blk_mq_hw_ctx *hctx;
3755                 int k;
3756
3757                 __ctx->cpu = i;
3758                 spin_lock_init(&__ctx->lock);
3759                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3760                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3761
3762                 __ctx->queue = q;
3763
3764                 /*
3765                  * Set local node, IFF we have more than one hw queue. If
3766                  * not, we remain on the home node of the device
3767                  */
3768                 for (j = 0; j < set->nr_maps; j++) {
3769                         hctx = blk_mq_map_queue_type(q, j, i);
3770                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3771                                 hctx->numa_node = cpu_to_node(i);
3772                 }
3773         }
3774 }
3775
3776 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3777                                              unsigned int hctx_idx,
3778                                              unsigned int depth)
3779 {
3780         struct blk_mq_tags *tags;
3781         int ret;
3782
3783         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3784         if (!tags)
3785                 return NULL;
3786
3787         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3788         if (ret) {
3789                 blk_mq_free_rq_map(tags);
3790                 return NULL;
3791         }
3792
3793         return tags;
3794 }
3795
3796 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3797                                        int hctx_idx)
3798 {
3799         if (blk_mq_is_shared_tags(set->flags)) {
3800                 set->tags[hctx_idx] = set->shared_tags;
3801
3802                 return true;
3803         }
3804
3805         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3806                                                        set->queue_depth);
3807
3808         return set->tags[hctx_idx];
3809 }
3810
3811 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3812                              struct blk_mq_tags *tags,
3813                              unsigned int hctx_idx)
3814 {
3815         if (tags) {
3816                 blk_mq_free_rqs(set, tags, hctx_idx);
3817                 blk_mq_free_rq_map(tags);
3818         }
3819 }
3820
3821 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3822                                       unsigned int hctx_idx)
3823 {
3824         if (!blk_mq_is_shared_tags(set->flags))
3825                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3826
3827         set->tags[hctx_idx] = NULL;
3828 }
3829
3830 static void blk_mq_map_swqueue(struct request_queue *q)
3831 {
3832         unsigned int j, hctx_idx;
3833         unsigned long i;
3834         struct blk_mq_hw_ctx *hctx;
3835         struct blk_mq_ctx *ctx;
3836         struct blk_mq_tag_set *set = q->tag_set;
3837
3838         queue_for_each_hw_ctx(q, hctx, i) {
3839                 cpumask_clear(hctx->cpumask);
3840                 hctx->nr_ctx = 0;
3841                 hctx->dispatch_from = NULL;
3842         }
3843
3844         /*
3845          * Map software to hardware queues.
3846          *
3847          * If the cpu isn't present, the cpu is mapped to first hctx.
3848          */
3849         for_each_possible_cpu(i) {
3850
3851                 ctx = per_cpu_ptr(q->queue_ctx, i);
3852                 for (j = 0; j < set->nr_maps; j++) {
3853                         if (!set->map[j].nr_queues) {
3854                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3855                                                 HCTX_TYPE_DEFAULT, i);
3856                                 continue;
3857                         }
3858                         hctx_idx = set->map[j].mq_map[i];
3859                         /* unmapped hw queue can be remapped after CPU topo changed */
3860                         if (!set->tags[hctx_idx] &&
3861                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3862                                 /*
3863                                  * If tags initialization fail for some hctx,
3864                                  * that hctx won't be brought online.  In this
3865                                  * case, remap the current ctx to hctx[0] which
3866                                  * is guaranteed to always have tags allocated
3867                                  */
3868                                 set->map[j].mq_map[i] = 0;
3869                         }
3870
3871                         hctx = blk_mq_map_queue_type(q, j, i);
3872                         ctx->hctxs[j] = hctx;
3873                         /*
3874                          * If the CPU is already set in the mask, then we've
3875                          * mapped this one already. This can happen if
3876                          * devices share queues across queue maps.
3877                          */
3878                         if (cpumask_test_cpu(i, hctx->cpumask))
3879                                 continue;
3880
3881                         cpumask_set_cpu(i, hctx->cpumask);
3882                         hctx->type = j;
3883                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3884                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3885
3886                         /*
3887                          * If the nr_ctx type overflows, we have exceeded the
3888                          * amount of sw queues we can support.
3889                          */
3890                         BUG_ON(!hctx->nr_ctx);
3891                 }
3892
3893                 for (; j < HCTX_MAX_TYPES; j++)
3894                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3895                                         HCTX_TYPE_DEFAULT, i);
3896         }
3897
3898         queue_for_each_hw_ctx(q, hctx, i) {
3899                 /*
3900                  * If no software queues are mapped to this hardware queue,
3901                  * disable it and free the request entries.
3902                  */
3903                 if (!hctx->nr_ctx) {
3904                         /* Never unmap queue 0.  We need it as a
3905                          * fallback in case of a new remap fails
3906                          * allocation
3907                          */
3908                         if (i)
3909                                 __blk_mq_free_map_and_rqs(set, i);
3910
3911                         hctx->tags = NULL;
3912                         continue;
3913                 }
3914
3915                 hctx->tags = set->tags[i];
3916                 WARN_ON(!hctx->tags);
3917
3918                 /*
3919                  * Set the map size to the number of mapped software queues.
3920                  * This is more accurate and more efficient than looping
3921                  * over all possibly mapped software queues.
3922                  */
3923                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3924
3925                 /*
3926                  * Initialize batch roundrobin counts
3927                  */
3928                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3929                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3930         }
3931 }
3932
3933 /*
3934  * Caller needs to ensure that we're either frozen/quiesced, or that
3935  * the queue isn't live yet.
3936  */
3937 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3938 {
3939         struct blk_mq_hw_ctx *hctx;
3940         unsigned long i;
3941
3942         queue_for_each_hw_ctx(q, hctx, i) {
3943                 if (shared) {
3944                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3945                 } else {
3946                         blk_mq_tag_idle(hctx);
3947                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3948                 }
3949         }
3950 }
3951
3952 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3953                                          bool shared)
3954 {
3955         struct request_queue *q;
3956
3957         lockdep_assert_held(&set->tag_list_lock);
3958
3959         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3960                 blk_mq_freeze_queue(q);
3961                 queue_set_hctx_shared(q, shared);
3962                 blk_mq_unfreeze_queue(q);
3963         }
3964 }
3965
3966 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3967 {
3968         struct blk_mq_tag_set *set = q->tag_set;
3969
3970         mutex_lock(&set->tag_list_lock);
3971         list_del(&q->tag_set_list);
3972         if (list_is_singular(&set->tag_list)) {
3973                 /* just transitioned to unshared */
3974                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3975                 /* update existing queue */
3976                 blk_mq_update_tag_set_shared(set, false);
3977         }
3978         mutex_unlock(&set->tag_list_lock);
3979         INIT_LIST_HEAD(&q->tag_set_list);
3980 }
3981
3982 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3983                                      struct request_queue *q)
3984 {
3985         mutex_lock(&set->tag_list_lock);
3986
3987         /*
3988          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3989          */
3990         if (!list_empty(&set->tag_list) &&
3991             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3992                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3993                 /* update existing queue */
3994                 blk_mq_update_tag_set_shared(set, true);
3995         }
3996         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3997                 queue_set_hctx_shared(q, true);
3998         list_add_tail(&q->tag_set_list, &set->tag_list);
3999
4000         mutex_unlock(&set->tag_list_lock);
4001 }
4002
4003 /* All allocations will be freed in release handler of q->mq_kobj */
4004 static int blk_mq_alloc_ctxs(struct request_queue *q)
4005 {
4006         struct blk_mq_ctxs *ctxs;
4007         int cpu;
4008
4009         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4010         if (!ctxs)
4011                 return -ENOMEM;
4012
4013         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4014         if (!ctxs->queue_ctx)
4015                 goto fail;
4016
4017         for_each_possible_cpu(cpu) {
4018                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4019                 ctx->ctxs = ctxs;
4020         }
4021
4022         q->mq_kobj = &ctxs->kobj;
4023         q->queue_ctx = ctxs->queue_ctx;
4024
4025         return 0;
4026  fail:
4027         kfree(ctxs);
4028         return -ENOMEM;
4029 }
4030
4031 /*
4032  * It is the actual release handler for mq, but we do it from
4033  * request queue's release handler for avoiding use-after-free
4034  * and headache because q->mq_kobj shouldn't have been introduced,
4035  * but we can't group ctx/kctx kobj without it.
4036  */
4037 void blk_mq_release(struct request_queue *q)
4038 {
4039         struct blk_mq_hw_ctx *hctx, *next;
4040         unsigned long i;
4041
4042         queue_for_each_hw_ctx(q, hctx, i)
4043                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4044
4045         /* all hctx are in .unused_hctx_list now */
4046         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4047                 list_del_init(&hctx->hctx_list);
4048                 kobject_put(&hctx->kobj);
4049         }
4050
4051         xa_destroy(&q->hctx_table);
4052
4053         /*
4054          * release .mq_kobj and sw queue's kobject now because
4055          * both share lifetime with request queue.
4056          */
4057         blk_mq_sysfs_deinit(q);
4058 }
4059
4060 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4061                 void *queuedata)
4062 {
4063         struct request_queue *q;
4064         int ret;
4065
4066         q = blk_alloc_queue(set->numa_node);
4067         if (!q)
4068                 return ERR_PTR(-ENOMEM);
4069         q->queuedata = queuedata;
4070         ret = blk_mq_init_allocated_queue(set, q);
4071         if (ret) {
4072                 blk_put_queue(q);
4073                 return ERR_PTR(ret);
4074         }
4075         return q;
4076 }
4077
4078 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4079 {
4080         return blk_mq_init_queue_data(set, NULL);
4081 }
4082 EXPORT_SYMBOL(blk_mq_init_queue);
4083
4084 /**
4085  * blk_mq_destroy_queue - shutdown a request queue
4086  * @q: request queue to shutdown
4087  *
4088  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4089  * requests will be failed with -ENODEV. The caller is responsible for dropping
4090  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4091  *
4092  * Context: can sleep
4093  */
4094 void blk_mq_destroy_queue(struct request_queue *q)
4095 {
4096         WARN_ON_ONCE(!queue_is_mq(q));
4097         WARN_ON_ONCE(blk_queue_registered(q));
4098
4099         might_sleep();
4100
4101         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4102         blk_queue_start_drain(q);
4103         blk_mq_freeze_queue_wait(q);
4104
4105         blk_sync_queue(q);
4106         blk_mq_cancel_work_sync(q);
4107         blk_mq_exit_queue(q);
4108 }
4109 EXPORT_SYMBOL(blk_mq_destroy_queue);
4110
4111 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4112                 struct lock_class_key *lkclass)
4113 {
4114         struct request_queue *q;
4115         struct gendisk *disk;
4116
4117         q = blk_mq_init_queue_data(set, queuedata);
4118         if (IS_ERR(q))
4119                 return ERR_CAST(q);
4120
4121         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4122         if (!disk) {
4123                 blk_mq_destroy_queue(q);
4124                 blk_put_queue(q);
4125                 return ERR_PTR(-ENOMEM);
4126         }
4127         set_bit(GD_OWNS_QUEUE, &disk->state);
4128         return disk;
4129 }
4130 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4131
4132 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4133                 struct lock_class_key *lkclass)
4134 {
4135         struct gendisk *disk;
4136
4137         if (!blk_get_queue(q))
4138                 return NULL;
4139         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4140         if (!disk)
4141                 blk_put_queue(q);
4142         return disk;
4143 }
4144 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4145
4146 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4147                 struct blk_mq_tag_set *set, struct request_queue *q,
4148                 int hctx_idx, int node)
4149 {
4150         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4151
4152         /* reuse dead hctx first */
4153         spin_lock(&q->unused_hctx_lock);
4154         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4155                 if (tmp->numa_node == node) {
4156                         hctx = tmp;
4157                         break;
4158                 }
4159         }
4160         if (hctx)
4161                 list_del_init(&hctx->hctx_list);
4162         spin_unlock(&q->unused_hctx_lock);
4163
4164         if (!hctx)
4165                 hctx = blk_mq_alloc_hctx(q, set, node);
4166         if (!hctx)
4167                 goto fail;
4168
4169         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4170                 goto free_hctx;
4171
4172         return hctx;
4173
4174  free_hctx:
4175         kobject_put(&hctx->kobj);
4176  fail:
4177         return NULL;
4178 }
4179
4180 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4181                                                 struct request_queue *q)
4182 {
4183         struct blk_mq_hw_ctx *hctx;
4184         unsigned long i, j;
4185
4186         /* protect against switching io scheduler  */
4187         mutex_lock(&q->sysfs_lock);
4188         for (i = 0; i < set->nr_hw_queues; i++) {
4189                 int old_node;
4190                 int node = blk_mq_get_hctx_node(set, i);
4191                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4192
4193                 if (old_hctx) {
4194                         old_node = old_hctx->numa_node;
4195                         blk_mq_exit_hctx(q, set, old_hctx, i);
4196                 }
4197
4198                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4199                         if (!old_hctx)
4200                                 break;
4201                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4202                                         node, old_node);
4203                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4204                         WARN_ON_ONCE(!hctx);
4205                 }
4206         }
4207         /*
4208          * Increasing nr_hw_queues fails. Free the newly allocated
4209          * hctxs and keep the previous q->nr_hw_queues.
4210          */
4211         if (i != set->nr_hw_queues) {
4212                 j = q->nr_hw_queues;
4213         } else {
4214                 j = i;
4215                 q->nr_hw_queues = set->nr_hw_queues;
4216         }
4217
4218         xa_for_each_start(&q->hctx_table, j, hctx, j)
4219                 blk_mq_exit_hctx(q, set, hctx, j);
4220         mutex_unlock(&q->sysfs_lock);
4221 }
4222
4223 static void blk_mq_update_poll_flag(struct request_queue *q)
4224 {
4225         struct blk_mq_tag_set *set = q->tag_set;
4226
4227         if (set->nr_maps > HCTX_TYPE_POLL &&
4228             set->map[HCTX_TYPE_POLL].nr_queues)
4229                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4230         else
4231                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4232 }
4233
4234 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4235                 struct request_queue *q)
4236 {
4237         /* mark the queue as mq asap */
4238         q->mq_ops = set->ops;
4239
4240         if (blk_mq_alloc_ctxs(q))
4241                 goto err_exit;
4242
4243         /* init q->mq_kobj and sw queues' kobjects */
4244         blk_mq_sysfs_init(q);
4245
4246         INIT_LIST_HEAD(&q->unused_hctx_list);
4247         spin_lock_init(&q->unused_hctx_lock);
4248
4249         xa_init(&q->hctx_table);
4250
4251         blk_mq_realloc_hw_ctxs(set, q);
4252         if (!q->nr_hw_queues)
4253                 goto err_hctxs;
4254
4255         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4256         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4257
4258         q->tag_set = set;
4259
4260         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4261         blk_mq_update_poll_flag(q);
4262
4263         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4264         INIT_LIST_HEAD(&q->flush_list);
4265         INIT_LIST_HEAD(&q->requeue_list);
4266         spin_lock_init(&q->requeue_lock);
4267
4268         q->nr_requests = set->queue_depth;
4269
4270         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4271         blk_mq_add_queue_tag_set(set, q);
4272         blk_mq_map_swqueue(q);
4273         return 0;
4274
4275 err_hctxs:
4276         blk_mq_release(q);
4277 err_exit:
4278         q->mq_ops = NULL;
4279         return -ENOMEM;
4280 }
4281 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4282
4283 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4284 void blk_mq_exit_queue(struct request_queue *q)
4285 {
4286         struct blk_mq_tag_set *set = q->tag_set;
4287
4288         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4289         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4290         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4291         blk_mq_del_queue_tag_set(q);
4292 }
4293
4294 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4295 {
4296         int i;
4297
4298         if (blk_mq_is_shared_tags(set->flags)) {
4299                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4300                                                 BLK_MQ_NO_HCTX_IDX,
4301                                                 set->queue_depth);
4302                 if (!set->shared_tags)
4303                         return -ENOMEM;
4304         }
4305
4306         for (i = 0; i < set->nr_hw_queues; i++) {
4307                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4308                         goto out_unwind;
4309                 cond_resched();
4310         }
4311
4312         return 0;
4313
4314 out_unwind:
4315         while (--i >= 0)
4316                 __blk_mq_free_map_and_rqs(set, i);
4317
4318         if (blk_mq_is_shared_tags(set->flags)) {
4319                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4320                                         BLK_MQ_NO_HCTX_IDX);
4321         }
4322
4323         return -ENOMEM;
4324 }
4325
4326 /*
4327  * Allocate the request maps associated with this tag_set. Note that this
4328  * may reduce the depth asked for, if memory is tight. set->queue_depth
4329  * will be updated to reflect the allocated depth.
4330  */
4331 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4332 {
4333         unsigned int depth;
4334         int err;
4335
4336         depth = set->queue_depth;
4337         do {
4338                 err = __blk_mq_alloc_rq_maps(set);
4339                 if (!err)
4340                         break;
4341
4342                 set->queue_depth >>= 1;
4343                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4344                         err = -ENOMEM;
4345                         break;
4346                 }
4347         } while (set->queue_depth);
4348
4349         if (!set->queue_depth || err) {
4350                 pr_err("blk-mq: failed to allocate request map\n");
4351                 return -ENOMEM;
4352         }
4353
4354         if (depth != set->queue_depth)
4355                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4356                                                 depth, set->queue_depth);
4357
4358         return 0;
4359 }
4360
4361 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4362 {
4363         /*
4364          * blk_mq_map_queues() and multiple .map_queues() implementations
4365          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4366          * number of hardware queues.
4367          */
4368         if (set->nr_maps == 1)
4369                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4370
4371         if (set->ops->map_queues && !is_kdump_kernel()) {
4372                 int i;
4373
4374                 /*
4375                  * transport .map_queues is usually done in the following
4376                  * way:
4377                  *
4378                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4379                  *      mask = get_cpu_mask(queue)
4380                  *      for_each_cpu(cpu, mask)
4381                  *              set->map[x].mq_map[cpu] = queue;
4382                  * }
4383                  *
4384                  * When we need to remap, the table has to be cleared for
4385                  * killing stale mapping since one CPU may not be mapped
4386                  * to any hw queue.
4387                  */
4388                 for (i = 0; i < set->nr_maps; i++)
4389                         blk_mq_clear_mq_map(&set->map[i]);
4390
4391                 set->ops->map_queues(set);
4392         } else {
4393                 BUG_ON(set->nr_maps > 1);
4394                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4395         }
4396 }
4397
4398 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4399                                        int new_nr_hw_queues)
4400 {
4401         struct blk_mq_tags **new_tags;
4402         int i;
4403
4404         if (set->nr_hw_queues >= new_nr_hw_queues)
4405                 goto done;
4406
4407         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4408                                 GFP_KERNEL, set->numa_node);
4409         if (!new_tags)
4410                 return -ENOMEM;
4411
4412         if (set->tags)
4413                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4414                        sizeof(*set->tags));
4415         kfree(set->tags);
4416         set->tags = new_tags;
4417
4418         for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4419                 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4420                         while (--i >= set->nr_hw_queues)
4421                                 __blk_mq_free_map_and_rqs(set, i);
4422                         return -ENOMEM;
4423                 }
4424                 cond_resched();
4425         }
4426
4427 done:
4428         set->nr_hw_queues = new_nr_hw_queues;
4429         return 0;
4430 }
4431
4432 /*
4433  * Alloc a tag set to be associated with one or more request queues.
4434  * May fail with EINVAL for various error conditions. May adjust the
4435  * requested depth down, if it's too large. In that case, the set
4436  * value will be stored in set->queue_depth.
4437  */
4438 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4439 {
4440         int i, ret;
4441
4442         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4443
4444         if (!set->nr_hw_queues)
4445                 return -EINVAL;
4446         if (!set->queue_depth)
4447                 return -EINVAL;
4448         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4449                 return -EINVAL;
4450
4451         if (!set->ops->queue_rq)
4452                 return -EINVAL;
4453
4454         if (!set->ops->get_budget ^ !set->ops->put_budget)
4455                 return -EINVAL;
4456
4457         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4458                 pr_info("blk-mq: reduced tag depth to %u\n",
4459                         BLK_MQ_MAX_DEPTH);
4460                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4461         }
4462
4463         if (!set->nr_maps)
4464                 set->nr_maps = 1;
4465         else if (set->nr_maps > HCTX_MAX_TYPES)
4466                 return -EINVAL;
4467
4468         /*
4469          * If a crashdump is active, then we are potentially in a very
4470          * memory constrained environment. Limit us to 1 queue and
4471          * 64 tags to prevent using too much memory.
4472          */
4473         if (is_kdump_kernel()) {
4474                 set->nr_hw_queues = 1;
4475                 set->nr_maps = 1;
4476                 set->queue_depth = min(64U, set->queue_depth);
4477         }
4478         /*
4479          * There is no use for more h/w queues than cpus if we just have
4480          * a single map
4481          */
4482         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4483                 set->nr_hw_queues = nr_cpu_ids;
4484
4485         if (set->flags & BLK_MQ_F_BLOCKING) {
4486                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4487                 if (!set->srcu)
4488                         return -ENOMEM;
4489                 ret = init_srcu_struct(set->srcu);
4490                 if (ret)
4491                         goto out_free_srcu;
4492         }
4493
4494         ret = -ENOMEM;
4495         set->tags = kcalloc_node(set->nr_hw_queues,
4496                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4497                                  set->numa_node);
4498         if (!set->tags)
4499                 goto out_cleanup_srcu;
4500
4501         for (i = 0; i < set->nr_maps; i++) {
4502                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4503                                                   sizeof(set->map[i].mq_map[0]),
4504                                                   GFP_KERNEL, set->numa_node);
4505                 if (!set->map[i].mq_map)
4506                         goto out_free_mq_map;
4507                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4508         }
4509
4510         blk_mq_update_queue_map(set);
4511
4512         ret = blk_mq_alloc_set_map_and_rqs(set);
4513         if (ret)
4514                 goto out_free_mq_map;
4515
4516         mutex_init(&set->tag_list_lock);
4517         INIT_LIST_HEAD(&set->tag_list);
4518
4519         return 0;
4520
4521 out_free_mq_map:
4522         for (i = 0; i < set->nr_maps; i++) {
4523                 kfree(set->map[i].mq_map);
4524                 set->map[i].mq_map = NULL;
4525         }
4526         kfree(set->tags);
4527         set->tags = NULL;
4528 out_cleanup_srcu:
4529         if (set->flags & BLK_MQ_F_BLOCKING)
4530                 cleanup_srcu_struct(set->srcu);
4531 out_free_srcu:
4532         if (set->flags & BLK_MQ_F_BLOCKING)
4533                 kfree(set->srcu);
4534         return ret;
4535 }
4536 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4537
4538 /* allocate and initialize a tagset for a simple single-queue device */
4539 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4540                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4541                 unsigned int set_flags)
4542 {
4543         memset(set, 0, sizeof(*set));
4544         set->ops = ops;
4545         set->nr_hw_queues = 1;
4546         set->nr_maps = 1;
4547         set->queue_depth = queue_depth;
4548         set->numa_node = NUMA_NO_NODE;
4549         set->flags = set_flags;
4550         return blk_mq_alloc_tag_set(set);
4551 }
4552 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4553
4554 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4555 {
4556         int i, j;
4557
4558         for (i = 0; i < set->nr_hw_queues; i++)
4559                 __blk_mq_free_map_and_rqs(set, i);
4560
4561         if (blk_mq_is_shared_tags(set->flags)) {
4562                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4563                                         BLK_MQ_NO_HCTX_IDX);
4564         }
4565
4566         for (j = 0; j < set->nr_maps; j++) {
4567                 kfree(set->map[j].mq_map);
4568                 set->map[j].mq_map = NULL;
4569         }
4570
4571         kfree(set->tags);
4572         set->tags = NULL;
4573         if (set->flags & BLK_MQ_F_BLOCKING) {
4574                 cleanup_srcu_struct(set->srcu);
4575                 kfree(set->srcu);
4576         }
4577 }
4578 EXPORT_SYMBOL(blk_mq_free_tag_set);
4579
4580 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4581 {
4582         struct blk_mq_tag_set *set = q->tag_set;
4583         struct blk_mq_hw_ctx *hctx;
4584         int ret;
4585         unsigned long i;
4586
4587         if (!set)
4588                 return -EINVAL;
4589
4590         if (q->nr_requests == nr)
4591                 return 0;
4592
4593         blk_mq_freeze_queue(q);
4594         blk_mq_quiesce_queue(q);
4595
4596         ret = 0;
4597         queue_for_each_hw_ctx(q, hctx, i) {
4598                 if (!hctx->tags)
4599                         continue;
4600                 /*
4601                  * If we're using an MQ scheduler, just update the scheduler
4602                  * queue depth. This is similar to what the old code would do.
4603                  */
4604                 if (hctx->sched_tags) {
4605                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4606                                                       nr, true);
4607                 } else {
4608                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4609                                                       false);
4610                 }
4611                 if (ret)
4612                         break;
4613                 if (q->elevator && q->elevator->type->ops.depth_updated)
4614                         q->elevator->type->ops.depth_updated(hctx);
4615         }
4616         if (!ret) {
4617                 q->nr_requests = nr;
4618                 if (blk_mq_is_shared_tags(set->flags)) {
4619                         if (q->elevator)
4620                                 blk_mq_tag_update_sched_shared_tags(q);
4621                         else
4622                                 blk_mq_tag_resize_shared_tags(set, nr);
4623                 }
4624         }
4625
4626         blk_mq_unquiesce_queue(q);
4627         blk_mq_unfreeze_queue(q);
4628
4629         return ret;
4630 }
4631
4632 /*
4633  * request_queue and elevator_type pair.
4634  * It is just used by __blk_mq_update_nr_hw_queues to cache
4635  * the elevator_type associated with a request_queue.
4636  */
4637 struct blk_mq_qe_pair {
4638         struct list_head node;
4639         struct request_queue *q;
4640         struct elevator_type *type;
4641 };
4642
4643 /*
4644  * Cache the elevator_type in qe pair list and switch the
4645  * io scheduler to 'none'
4646  */
4647 static bool blk_mq_elv_switch_none(struct list_head *head,
4648                 struct request_queue *q)
4649 {
4650         struct blk_mq_qe_pair *qe;
4651
4652         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4653         if (!qe)
4654                 return false;
4655
4656         /* q->elevator needs protection from ->sysfs_lock */
4657         mutex_lock(&q->sysfs_lock);
4658
4659         /* the check has to be done with holding sysfs_lock */
4660         if (!q->elevator) {
4661                 kfree(qe);
4662                 goto unlock;
4663         }
4664
4665         INIT_LIST_HEAD(&qe->node);
4666         qe->q = q;
4667         qe->type = q->elevator->type;
4668         /* keep a reference to the elevator module as we'll switch back */
4669         __elevator_get(qe->type);
4670         list_add(&qe->node, head);
4671         elevator_disable(q);
4672 unlock:
4673         mutex_unlock(&q->sysfs_lock);
4674
4675         return true;
4676 }
4677
4678 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4679                                                 struct request_queue *q)
4680 {
4681         struct blk_mq_qe_pair *qe;
4682
4683         list_for_each_entry(qe, head, node)
4684                 if (qe->q == q)
4685                         return qe;
4686
4687         return NULL;
4688 }
4689
4690 static void blk_mq_elv_switch_back(struct list_head *head,
4691                                   struct request_queue *q)
4692 {
4693         struct blk_mq_qe_pair *qe;
4694         struct elevator_type *t;
4695
4696         qe = blk_lookup_qe_pair(head, q);
4697         if (!qe)
4698                 return;
4699         t = qe->type;
4700         list_del(&qe->node);
4701         kfree(qe);
4702
4703         mutex_lock(&q->sysfs_lock);
4704         elevator_switch(q, t);
4705         /* drop the reference acquired in blk_mq_elv_switch_none */
4706         elevator_put(t);
4707         mutex_unlock(&q->sysfs_lock);
4708 }
4709
4710 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4711                                                         int nr_hw_queues)
4712 {
4713         struct request_queue *q;
4714         LIST_HEAD(head);
4715         int prev_nr_hw_queues = set->nr_hw_queues;
4716         int i;
4717
4718         lockdep_assert_held(&set->tag_list_lock);
4719
4720         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4721                 nr_hw_queues = nr_cpu_ids;
4722         if (nr_hw_queues < 1)
4723                 return;
4724         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4725                 return;
4726
4727         list_for_each_entry(q, &set->tag_list, tag_set_list)
4728                 blk_mq_freeze_queue(q);
4729         /*
4730          * Switch IO scheduler to 'none', cleaning up the data associated
4731          * with the previous scheduler. We will switch back once we are done
4732          * updating the new sw to hw queue mappings.
4733          */
4734         list_for_each_entry(q, &set->tag_list, tag_set_list)
4735                 if (!blk_mq_elv_switch_none(&head, q))
4736                         goto switch_back;
4737
4738         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4739                 blk_mq_debugfs_unregister_hctxs(q);
4740                 blk_mq_sysfs_unregister_hctxs(q);
4741         }
4742
4743         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4744                 goto reregister;
4745
4746 fallback:
4747         blk_mq_update_queue_map(set);
4748         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4749                 blk_mq_realloc_hw_ctxs(set, q);
4750                 blk_mq_update_poll_flag(q);
4751                 if (q->nr_hw_queues != set->nr_hw_queues) {
4752                         int i = prev_nr_hw_queues;
4753
4754                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4755                                         nr_hw_queues, prev_nr_hw_queues);
4756                         for (; i < set->nr_hw_queues; i++)
4757                                 __blk_mq_free_map_and_rqs(set, i);
4758
4759                         set->nr_hw_queues = prev_nr_hw_queues;
4760                         goto fallback;
4761                 }
4762                 blk_mq_map_swqueue(q);
4763         }
4764
4765 reregister:
4766         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4767                 blk_mq_sysfs_register_hctxs(q);
4768                 blk_mq_debugfs_register_hctxs(q);
4769         }
4770
4771 switch_back:
4772         list_for_each_entry(q, &set->tag_list, tag_set_list)
4773                 blk_mq_elv_switch_back(&head, q);
4774
4775         list_for_each_entry(q, &set->tag_list, tag_set_list)
4776                 blk_mq_unfreeze_queue(q);
4777
4778         /* Free the excess tags when nr_hw_queues shrink. */
4779         for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4780                 __blk_mq_free_map_and_rqs(set, i);
4781 }
4782
4783 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4784 {
4785         mutex_lock(&set->tag_list_lock);
4786         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4787         mutex_unlock(&set->tag_list_lock);
4788 }
4789 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4790
4791 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4792                          struct io_comp_batch *iob, unsigned int flags)
4793 {
4794         long state = get_current_state();
4795         int ret;
4796
4797         do {
4798                 ret = q->mq_ops->poll(hctx, iob);
4799                 if (ret > 0) {
4800                         __set_current_state(TASK_RUNNING);
4801                         return ret;
4802                 }
4803
4804                 if (signal_pending_state(state, current))
4805                         __set_current_state(TASK_RUNNING);
4806                 if (task_is_running(current))
4807                         return 1;
4808
4809                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4810                         break;
4811                 cpu_relax();
4812         } while (!need_resched());
4813
4814         __set_current_state(TASK_RUNNING);
4815         return 0;
4816 }
4817
4818 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4819                 struct io_comp_batch *iob, unsigned int flags)
4820 {
4821         struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4822
4823         return blk_hctx_poll(q, hctx, iob, flags);
4824 }
4825
4826 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4827                 unsigned int poll_flags)
4828 {
4829         struct request_queue *q = rq->q;
4830         int ret;
4831
4832         if (!blk_rq_is_poll(rq))
4833                 return 0;
4834         if (!percpu_ref_tryget(&q->q_usage_counter))
4835                 return 0;
4836
4837         ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4838         blk_queue_exit(q);
4839
4840         return ret;
4841 }
4842 EXPORT_SYMBOL_GPL(blk_rq_poll);
4843
4844 unsigned int blk_mq_rq_cpu(struct request *rq)
4845 {
4846         return rq->mq_ctx->cpu;
4847 }
4848 EXPORT_SYMBOL(blk_mq_rq_cpu);
4849
4850 void blk_mq_cancel_work_sync(struct request_queue *q)
4851 {
4852         struct blk_mq_hw_ctx *hctx;
4853         unsigned long i;
4854
4855         cancel_delayed_work_sync(&q->requeue_work);
4856
4857         queue_for_each_hw_ctx(q, hctx, i)
4858                 cancel_delayed_work_sync(&hctx->run_work);
4859 }
4860
4861 static int __init blk_mq_init(void)
4862 {
4863         int i;
4864
4865         for_each_possible_cpu(i)
4866                 init_llist_head(&per_cpu(blk_cpu_done, i));
4867         for_each_possible_cpu(i)
4868                 INIT_CSD(&per_cpu(blk_cpu_csd, i),
4869                          __blk_mq_complete_request_remote, NULL);
4870         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4871
4872         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4873                                   "block/softirq:dead", NULL,
4874                                   blk_softirq_cpu_dead);
4875         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4876                                 blk_mq_hctx_notify_dead);
4877         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4878                                 blk_mq_hctx_notify_online,
4879                                 blk_mq_hctx_notify_offline);
4880         return 0;
4881 }
4882 subsys_initcall(blk_mq_init);