Merge tag 'for-6.12/block-20240925' of git://git.kernel.dk/linux
[linux.git] / kernel / rcu / refscale.c
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Scalability test comparing RCU vs other mechanisms
4 // for acquiring references on objects.
5 //
6 // Copyright (C) Google, 2020.
7 //
8 // Author: Joel Fernandes <joel@joelfernandes.org>
9
10 #define pr_fmt(fmt) fmt
11
12 #include <linux/atomic.h>
13 #include <linux/bitops.h>
14 #include <linux/completion.h>
15 #include <linux/cpu.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/kthread.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/notifier.h>
26 #include <linux/percpu.h>
27 #include <linux/rcupdate.h>
28 #include <linux/rcupdate_trace.h>
29 #include <linux/reboot.h>
30 #include <linux/sched.h>
31 #include <linux/seq_buf.h>
32 #include <linux/spinlock.h>
33 #include <linux/smp.h>
34 #include <linux/stat.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/torture.h>
38 #include <linux/types.h>
39
40 #include "rcu.h"
41
42 #define SCALE_FLAG "-ref-scale: "
43
44 #define SCALEOUT(s, x...) \
45         pr_alert("%s" SCALE_FLAG s, scale_type, ## x)
46
47 #define VERBOSE_SCALEOUT(s, x...) \
48         do { \
49                 if (verbose) \
50                         pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x); \
51         } while (0)
52
53 static atomic_t verbose_batch_ctr;
54
55 #define VERBOSE_SCALEOUT_BATCH(s, x...)                                                 \
56 do {                                                                                    \
57         if (verbose &&                                                                  \
58             (verbose_batched <= 0 ||                                                    \
59              !(atomic_inc_return(&verbose_batch_ctr) % verbose_batched))) {             \
60                 schedule_timeout_uninterruptible(1);                                    \
61                 pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x);                     \
62         }                                                                               \
63 } while (0)
64
65 #define SCALEOUT_ERRSTRING(s, x...) pr_alert("%s" SCALE_FLAG "!!! " s "\n", scale_type, ## x)
66
67 MODULE_DESCRIPTION("Scalability test for object reference mechanisms");
68 MODULE_LICENSE("GPL");
69 MODULE_AUTHOR("Joel Fernandes (Google) <joel@joelfernandes.org>");
70
71 static char *scale_type = "rcu";
72 module_param(scale_type, charp, 0444);
73 MODULE_PARM_DESC(scale_type, "Type of test (rcu, srcu, refcnt, rwsem, rwlock.");
74
75 torture_param(int, verbose, 0, "Enable verbose debugging printk()s");
76 torture_param(int, verbose_batched, 0, "Batch verbose debugging printk()s");
77
78 // Wait until there are multiple CPUs before starting test.
79 torture_param(int, holdoff, IS_BUILTIN(CONFIG_RCU_REF_SCALE_TEST) ? 10 : 0,
80               "Holdoff time before test start (s)");
81 // Number of typesafe_lookup structures, that is, the degree of concurrency.
82 torture_param(long, lookup_instances, 0, "Number of typesafe_lookup structures.");
83 // Number of loops per experiment, all readers execute operations concurrently.
84 torture_param(long, loops, 10000, "Number of loops per experiment.");
85 // Number of readers, with -1 defaulting to about 75% of the CPUs.
86 torture_param(int, nreaders, -1, "Number of readers, -1 for 75% of CPUs.");
87 // Number of runs.
88 torture_param(int, nruns, 30, "Number of experiments to run.");
89 // Reader delay in nanoseconds, 0 for no delay.
90 torture_param(int, readdelay, 0, "Read-side delay in nanoseconds.");
91
92 #ifdef MODULE
93 # define REFSCALE_SHUTDOWN 0
94 #else
95 # define REFSCALE_SHUTDOWN 1
96 #endif
97
98 torture_param(bool, shutdown, REFSCALE_SHUTDOWN,
99               "Shutdown at end of scalability tests.");
100
101 struct reader_task {
102         struct task_struct *task;
103         int start_reader;
104         wait_queue_head_t wq;
105         u64 last_duration_ns;
106 };
107
108 static struct task_struct *shutdown_task;
109 static wait_queue_head_t shutdown_wq;
110
111 static struct task_struct *main_task;
112 static wait_queue_head_t main_wq;
113 static int shutdown_start;
114
115 static struct reader_task *reader_tasks;
116
117 // Number of readers that are part of the current experiment.
118 static atomic_t nreaders_exp;
119
120 // Use to wait for all threads to start.
121 static atomic_t n_init;
122 static atomic_t n_started;
123 static atomic_t n_warmedup;
124 static atomic_t n_cooleddown;
125
126 // Track which experiment is currently running.
127 static int exp_idx;
128
129 // Operations vector for selecting different types of tests.
130 struct ref_scale_ops {
131         bool (*init)(void);
132         void (*cleanup)(void);
133         void (*readsection)(const int nloops);
134         void (*delaysection)(const int nloops, const int udl, const int ndl);
135         const char *name;
136 };
137
138 static const struct ref_scale_ops *cur_ops;
139
140 static void un_delay(const int udl, const int ndl)
141 {
142         if (udl)
143                 udelay(udl);
144         if (ndl)
145                 ndelay(ndl);
146 }
147
148 static void ref_rcu_read_section(const int nloops)
149 {
150         int i;
151
152         for (i = nloops; i >= 0; i--) {
153                 rcu_read_lock();
154                 rcu_read_unlock();
155         }
156 }
157
158 static void ref_rcu_delay_section(const int nloops, const int udl, const int ndl)
159 {
160         int i;
161
162         for (i = nloops; i >= 0; i--) {
163                 rcu_read_lock();
164                 un_delay(udl, ndl);
165                 rcu_read_unlock();
166         }
167 }
168
169 static bool rcu_sync_scale_init(void)
170 {
171         return true;
172 }
173
174 static const struct ref_scale_ops rcu_ops = {
175         .init           = rcu_sync_scale_init,
176         .readsection    = ref_rcu_read_section,
177         .delaysection   = ref_rcu_delay_section,
178         .name           = "rcu"
179 };
180
181 // Definitions for SRCU ref scale testing.
182 DEFINE_STATIC_SRCU(srcu_refctl_scale);
183 static struct srcu_struct *srcu_ctlp = &srcu_refctl_scale;
184
185 static void srcu_ref_scale_read_section(const int nloops)
186 {
187         int i;
188         int idx;
189
190         for (i = nloops; i >= 0; i--) {
191                 idx = srcu_read_lock(srcu_ctlp);
192                 srcu_read_unlock(srcu_ctlp, idx);
193         }
194 }
195
196 static void srcu_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
197 {
198         int i;
199         int idx;
200
201         for (i = nloops; i >= 0; i--) {
202                 idx = srcu_read_lock(srcu_ctlp);
203                 un_delay(udl, ndl);
204                 srcu_read_unlock(srcu_ctlp, idx);
205         }
206 }
207
208 static const struct ref_scale_ops srcu_ops = {
209         .init           = rcu_sync_scale_init,
210         .readsection    = srcu_ref_scale_read_section,
211         .delaysection   = srcu_ref_scale_delay_section,
212         .name           = "srcu"
213 };
214
215 #ifdef CONFIG_TASKS_RCU
216
217 // Definitions for RCU Tasks ref scale testing: Empty read markers.
218 // These definitions also work for RCU Rude readers.
219 static void rcu_tasks_ref_scale_read_section(const int nloops)
220 {
221         int i;
222
223         for (i = nloops; i >= 0; i--)
224                 continue;
225 }
226
227 static void rcu_tasks_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
228 {
229         int i;
230
231         for (i = nloops; i >= 0; i--)
232                 un_delay(udl, ndl);
233 }
234
235 static const struct ref_scale_ops rcu_tasks_ops = {
236         .init           = rcu_sync_scale_init,
237         .readsection    = rcu_tasks_ref_scale_read_section,
238         .delaysection   = rcu_tasks_ref_scale_delay_section,
239         .name           = "rcu-tasks"
240 };
241
242 #define RCU_TASKS_OPS &rcu_tasks_ops,
243
244 #else // #ifdef CONFIG_TASKS_RCU
245
246 #define RCU_TASKS_OPS
247
248 #endif // #else // #ifdef CONFIG_TASKS_RCU
249
250 #ifdef CONFIG_TASKS_TRACE_RCU
251
252 // Definitions for RCU Tasks Trace ref scale testing.
253 static void rcu_trace_ref_scale_read_section(const int nloops)
254 {
255         int i;
256
257         for (i = nloops; i >= 0; i--) {
258                 rcu_read_lock_trace();
259                 rcu_read_unlock_trace();
260         }
261 }
262
263 static void rcu_trace_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
264 {
265         int i;
266
267         for (i = nloops; i >= 0; i--) {
268                 rcu_read_lock_trace();
269                 un_delay(udl, ndl);
270                 rcu_read_unlock_trace();
271         }
272 }
273
274 static const struct ref_scale_ops rcu_trace_ops = {
275         .init           = rcu_sync_scale_init,
276         .readsection    = rcu_trace_ref_scale_read_section,
277         .delaysection   = rcu_trace_ref_scale_delay_section,
278         .name           = "rcu-trace"
279 };
280
281 #define RCU_TRACE_OPS &rcu_trace_ops,
282
283 #else // #ifdef CONFIG_TASKS_TRACE_RCU
284
285 #define RCU_TRACE_OPS
286
287 #endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU
288
289 // Definitions for reference count
290 static atomic_t refcnt;
291
292 static void ref_refcnt_section(const int nloops)
293 {
294         int i;
295
296         for (i = nloops; i >= 0; i--) {
297                 atomic_inc(&refcnt);
298                 atomic_dec(&refcnt);
299         }
300 }
301
302 static void ref_refcnt_delay_section(const int nloops, const int udl, const int ndl)
303 {
304         int i;
305
306         for (i = nloops; i >= 0; i--) {
307                 atomic_inc(&refcnt);
308                 un_delay(udl, ndl);
309                 atomic_dec(&refcnt);
310         }
311 }
312
313 static const struct ref_scale_ops refcnt_ops = {
314         .init           = rcu_sync_scale_init,
315         .readsection    = ref_refcnt_section,
316         .delaysection   = ref_refcnt_delay_section,
317         .name           = "refcnt"
318 };
319
320 // Definitions for rwlock
321 static rwlock_t test_rwlock;
322
323 static bool ref_rwlock_init(void)
324 {
325         rwlock_init(&test_rwlock);
326         return true;
327 }
328
329 static void ref_rwlock_section(const int nloops)
330 {
331         int i;
332
333         for (i = nloops; i >= 0; i--) {
334                 read_lock(&test_rwlock);
335                 read_unlock(&test_rwlock);
336         }
337 }
338
339 static void ref_rwlock_delay_section(const int nloops, const int udl, const int ndl)
340 {
341         int i;
342
343         for (i = nloops; i >= 0; i--) {
344                 read_lock(&test_rwlock);
345                 un_delay(udl, ndl);
346                 read_unlock(&test_rwlock);
347         }
348 }
349
350 static const struct ref_scale_ops rwlock_ops = {
351         .init           = ref_rwlock_init,
352         .readsection    = ref_rwlock_section,
353         .delaysection   = ref_rwlock_delay_section,
354         .name           = "rwlock"
355 };
356
357 // Definitions for rwsem
358 static struct rw_semaphore test_rwsem;
359
360 static bool ref_rwsem_init(void)
361 {
362         init_rwsem(&test_rwsem);
363         return true;
364 }
365
366 static void ref_rwsem_section(const int nloops)
367 {
368         int i;
369
370         for (i = nloops; i >= 0; i--) {
371                 down_read(&test_rwsem);
372                 up_read(&test_rwsem);
373         }
374 }
375
376 static void ref_rwsem_delay_section(const int nloops, const int udl, const int ndl)
377 {
378         int i;
379
380         for (i = nloops; i >= 0; i--) {
381                 down_read(&test_rwsem);
382                 un_delay(udl, ndl);
383                 up_read(&test_rwsem);
384         }
385 }
386
387 static const struct ref_scale_ops rwsem_ops = {
388         .init           = ref_rwsem_init,
389         .readsection    = ref_rwsem_section,
390         .delaysection   = ref_rwsem_delay_section,
391         .name           = "rwsem"
392 };
393
394 // Definitions for global spinlock
395 static DEFINE_RAW_SPINLOCK(test_lock);
396
397 static void ref_lock_section(const int nloops)
398 {
399         int i;
400
401         preempt_disable();
402         for (i = nloops; i >= 0; i--) {
403                 raw_spin_lock(&test_lock);
404                 raw_spin_unlock(&test_lock);
405         }
406         preempt_enable();
407 }
408
409 static void ref_lock_delay_section(const int nloops, const int udl, const int ndl)
410 {
411         int i;
412
413         preempt_disable();
414         for (i = nloops; i >= 0; i--) {
415                 raw_spin_lock(&test_lock);
416                 un_delay(udl, ndl);
417                 raw_spin_unlock(&test_lock);
418         }
419         preempt_enable();
420 }
421
422 static const struct ref_scale_ops lock_ops = {
423         .readsection    = ref_lock_section,
424         .delaysection   = ref_lock_delay_section,
425         .name           = "lock"
426 };
427
428 // Definitions for global irq-save spinlock
429
430 static void ref_lock_irq_section(const int nloops)
431 {
432         unsigned long flags;
433         int i;
434
435         preempt_disable();
436         for (i = nloops; i >= 0; i--) {
437                 raw_spin_lock_irqsave(&test_lock, flags);
438                 raw_spin_unlock_irqrestore(&test_lock, flags);
439         }
440         preempt_enable();
441 }
442
443 static void ref_lock_irq_delay_section(const int nloops, const int udl, const int ndl)
444 {
445         unsigned long flags;
446         int i;
447
448         preempt_disable();
449         for (i = nloops; i >= 0; i--) {
450                 raw_spin_lock_irqsave(&test_lock, flags);
451                 un_delay(udl, ndl);
452                 raw_spin_unlock_irqrestore(&test_lock, flags);
453         }
454         preempt_enable();
455 }
456
457 static const struct ref_scale_ops lock_irq_ops = {
458         .readsection    = ref_lock_irq_section,
459         .delaysection   = ref_lock_irq_delay_section,
460         .name           = "lock-irq"
461 };
462
463 // Definitions acquire-release.
464 static DEFINE_PER_CPU(unsigned long, test_acqrel);
465
466 static void ref_acqrel_section(const int nloops)
467 {
468         unsigned long x;
469         int i;
470
471         preempt_disable();
472         for (i = nloops; i >= 0; i--) {
473                 x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
474                 smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
475         }
476         preempt_enable();
477 }
478
479 static void ref_acqrel_delay_section(const int nloops, const int udl, const int ndl)
480 {
481         unsigned long x;
482         int i;
483
484         preempt_disable();
485         for (i = nloops; i >= 0; i--) {
486                 x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
487                 un_delay(udl, ndl);
488                 smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
489         }
490         preempt_enable();
491 }
492
493 static const struct ref_scale_ops acqrel_ops = {
494         .readsection    = ref_acqrel_section,
495         .delaysection   = ref_acqrel_delay_section,
496         .name           = "acqrel"
497 };
498
499 static volatile u64 stopopts;
500
501 static void ref_clock_section(const int nloops)
502 {
503         u64 x = 0;
504         int i;
505
506         preempt_disable();
507         for (i = nloops; i >= 0; i--)
508                 x += ktime_get_real_fast_ns();
509         preempt_enable();
510         stopopts = x;
511 }
512
513 static void ref_clock_delay_section(const int nloops, const int udl, const int ndl)
514 {
515         u64 x = 0;
516         int i;
517
518         preempt_disable();
519         for (i = nloops; i >= 0; i--) {
520                 x += ktime_get_real_fast_ns();
521                 un_delay(udl, ndl);
522         }
523         preempt_enable();
524         stopopts = x;
525 }
526
527 static const struct ref_scale_ops clock_ops = {
528         .readsection    = ref_clock_section,
529         .delaysection   = ref_clock_delay_section,
530         .name           = "clock"
531 };
532
533 static void ref_jiffies_section(const int nloops)
534 {
535         u64 x = 0;
536         int i;
537
538         preempt_disable();
539         for (i = nloops; i >= 0; i--)
540                 x += jiffies;
541         preempt_enable();
542         stopopts = x;
543 }
544
545 static void ref_jiffies_delay_section(const int nloops, const int udl, const int ndl)
546 {
547         u64 x = 0;
548         int i;
549
550         preempt_disable();
551         for (i = nloops; i >= 0; i--) {
552                 x += jiffies;
553                 un_delay(udl, ndl);
554         }
555         preempt_enable();
556         stopopts = x;
557 }
558
559 static const struct ref_scale_ops jiffies_ops = {
560         .readsection    = ref_jiffies_section,
561         .delaysection   = ref_jiffies_delay_section,
562         .name           = "jiffies"
563 };
564
565 ////////////////////////////////////////////////////////////////////////
566 //
567 // Methods leveraging SLAB_TYPESAFE_BY_RCU.
568 //
569
570 // Item to look up in a typesafe manner.  Array of pointers to these.
571 struct refscale_typesafe {
572         atomic_t rts_refctr;  // Used by all flavors
573         spinlock_t rts_lock;
574         seqlock_t rts_seqlock;
575         unsigned int a;
576         unsigned int b;
577 };
578
579 static struct kmem_cache *typesafe_kmem_cachep;
580 static struct refscale_typesafe **rtsarray;
581 static long rtsarray_size;
582 static DEFINE_TORTURE_RANDOM_PERCPU(refscale_rand);
583 static bool (*rts_acquire)(struct refscale_typesafe *rtsp, unsigned int *start);
584 static bool (*rts_release)(struct refscale_typesafe *rtsp, unsigned int start);
585
586 // Conditionally acquire an explicit in-structure reference count.
587 static bool typesafe_ref_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
588 {
589         return atomic_inc_not_zero(&rtsp->rts_refctr);
590 }
591
592 // Unconditionally release an explicit in-structure reference count.
593 static bool typesafe_ref_release(struct refscale_typesafe *rtsp, unsigned int start)
594 {
595         if (!atomic_dec_return(&rtsp->rts_refctr)) {
596                 WRITE_ONCE(rtsp->a, rtsp->a + 1);
597                 kmem_cache_free(typesafe_kmem_cachep, rtsp);
598         }
599         return true;
600 }
601
602 // Unconditionally acquire an explicit in-structure spinlock.
603 static bool typesafe_lock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
604 {
605         spin_lock(&rtsp->rts_lock);
606         return true;
607 }
608
609 // Unconditionally release an explicit in-structure spinlock.
610 static bool typesafe_lock_release(struct refscale_typesafe *rtsp, unsigned int start)
611 {
612         spin_unlock(&rtsp->rts_lock);
613         return true;
614 }
615
616 // Unconditionally acquire an explicit in-structure sequence lock.
617 static bool typesafe_seqlock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
618 {
619         *start = read_seqbegin(&rtsp->rts_seqlock);
620         return true;
621 }
622
623 // Conditionally release an explicit in-structure sequence lock.  Return
624 // true if this release was successful, that is, if no retry is required.
625 static bool typesafe_seqlock_release(struct refscale_typesafe *rtsp, unsigned int start)
626 {
627         return !read_seqretry(&rtsp->rts_seqlock, start);
628 }
629
630 // Do a read-side critical section with the specified delay in
631 // microseconds and nanoseconds inserted so as to increase probability
632 // of failure.
633 static void typesafe_delay_section(const int nloops, const int udl, const int ndl)
634 {
635         unsigned int a;
636         unsigned int b;
637         int i;
638         long idx;
639         struct refscale_typesafe *rtsp;
640         unsigned int start;
641
642         for (i = nloops; i >= 0; i--) {
643                 preempt_disable();
644                 idx = torture_random(this_cpu_ptr(&refscale_rand)) % rtsarray_size;
645                 preempt_enable();
646 retry:
647                 rcu_read_lock();
648                 rtsp = rcu_dereference(rtsarray[idx]);
649                 a = READ_ONCE(rtsp->a);
650                 if (!rts_acquire(rtsp, &start)) {
651                         rcu_read_unlock();
652                         goto retry;
653                 }
654                 if (a != READ_ONCE(rtsp->a)) {
655                         (void)rts_release(rtsp, start);
656                         rcu_read_unlock();
657                         goto retry;
658                 }
659                 un_delay(udl, ndl);
660                 b = READ_ONCE(rtsp->a);
661                 // Remember, seqlock read-side release can fail.
662                 if (!rts_release(rtsp, start)) {
663                         rcu_read_unlock();
664                         goto retry;
665                 }
666                 WARN_ONCE(a != b, "Re-read of ->a changed from %u to %u.\n", a, b);
667                 b = rtsp->b;
668                 rcu_read_unlock();
669                 WARN_ON_ONCE(a * a != b);
670         }
671 }
672
673 // Because the acquisition and release methods are expensive, there
674 // is no point in optimizing away the un_delay() function's two checks.
675 // Thus simply define typesafe_read_section() as a simple wrapper around
676 // typesafe_delay_section().
677 static void typesafe_read_section(const int nloops)
678 {
679         typesafe_delay_section(nloops, 0, 0);
680 }
681
682 // Allocate and initialize one refscale_typesafe structure.
683 static struct refscale_typesafe *typesafe_alloc_one(void)
684 {
685         struct refscale_typesafe *rtsp;
686
687         rtsp = kmem_cache_alloc(typesafe_kmem_cachep, GFP_KERNEL);
688         if (!rtsp)
689                 return NULL;
690         atomic_set(&rtsp->rts_refctr, 1);
691         WRITE_ONCE(rtsp->a, rtsp->a + 1);
692         WRITE_ONCE(rtsp->b, rtsp->a * rtsp->a);
693         return rtsp;
694 }
695
696 // Slab-allocator constructor for refscale_typesafe structures created
697 // out of a new slab of system memory.
698 static void refscale_typesafe_ctor(void *rtsp_in)
699 {
700         struct refscale_typesafe *rtsp = rtsp_in;
701
702         spin_lock_init(&rtsp->rts_lock);
703         seqlock_init(&rtsp->rts_seqlock);
704         preempt_disable();
705         rtsp->a = torture_random(this_cpu_ptr(&refscale_rand));
706         preempt_enable();
707 }
708
709 static const struct ref_scale_ops typesafe_ref_ops;
710 static const struct ref_scale_ops typesafe_lock_ops;
711 static const struct ref_scale_ops typesafe_seqlock_ops;
712
713 // Initialize for a typesafe test.
714 static bool typesafe_init(void)
715 {
716         long idx;
717         long si = lookup_instances;
718
719         typesafe_kmem_cachep = kmem_cache_create("refscale_typesafe",
720                                                  sizeof(struct refscale_typesafe), sizeof(void *),
721                                                  SLAB_TYPESAFE_BY_RCU, refscale_typesafe_ctor);
722         if (!typesafe_kmem_cachep)
723                 return false;
724         if (si < 0)
725                 si = -si * nr_cpu_ids;
726         else if (si == 0)
727                 si = nr_cpu_ids;
728         rtsarray_size = si;
729         rtsarray = kcalloc(si, sizeof(*rtsarray), GFP_KERNEL);
730         if (!rtsarray)
731                 return false;
732         for (idx = 0; idx < rtsarray_size; idx++) {
733                 rtsarray[idx] = typesafe_alloc_one();
734                 if (!rtsarray[idx])
735                         return false;
736         }
737         if (cur_ops == &typesafe_ref_ops) {
738                 rts_acquire = typesafe_ref_acquire;
739                 rts_release = typesafe_ref_release;
740         } else if (cur_ops == &typesafe_lock_ops) {
741                 rts_acquire = typesafe_lock_acquire;
742                 rts_release = typesafe_lock_release;
743         } else if (cur_ops == &typesafe_seqlock_ops) {
744                 rts_acquire = typesafe_seqlock_acquire;
745                 rts_release = typesafe_seqlock_release;
746         } else {
747                 WARN_ON_ONCE(1);
748                 return false;
749         }
750         return true;
751 }
752
753 // Clean up after a typesafe test.
754 static void typesafe_cleanup(void)
755 {
756         long idx;
757
758         if (rtsarray) {
759                 for (idx = 0; idx < rtsarray_size; idx++)
760                         kmem_cache_free(typesafe_kmem_cachep, rtsarray[idx]);
761                 kfree(rtsarray);
762                 rtsarray = NULL;
763                 rtsarray_size = 0;
764         }
765         kmem_cache_destroy(typesafe_kmem_cachep);
766         typesafe_kmem_cachep = NULL;
767         rts_acquire = NULL;
768         rts_release = NULL;
769 }
770
771 // The typesafe_init() function distinguishes these structures by address.
772 static const struct ref_scale_ops typesafe_ref_ops = {
773         .init           = typesafe_init,
774         .cleanup        = typesafe_cleanup,
775         .readsection    = typesafe_read_section,
776         .delaysection   = typesafe_delay_section,
777         .name           = "typesafe_ref"
778 };
779
780 static const struct ref_scale_ops typesafe_lock_ops = {
781         .init           = typesafe_init,
782         .cleanup        = typesafe_cleanup,
783         .readsection    = typesafe_read_section,
784         .delaysection   = typesafe_delay_section,
785         .name           = "typesafe_lock"
786 };
787
788 static const struct ref_scale_ops typesafe_seqlock_ops = {
789         .init           = typesafe_init,
790         .cleanup        = typesafe_cleanup,
791         .readsection    = typesafe_read_section,
792         .delaysection   = typesafe_delay_section,
793         .name           = "typesafe_seqlock"
794 };
795
796 static void rcu_scale_one_reader(void)
797 {
798         if (readdelay <= 0)
799                 cur_ops->readsection(loops);
800         else
801                 cur_ops->delaysection(loops, readdelay / 1000, readdelay % 1000);
802 }
803
804 // Reader kthread.  Repeatedly does empty RCU read-side
805 // critical section, minimizing update-side interference.
806 static int
807 ref_scale_reader(void *arg)
808 {
809         unsigned long flags;
810         long me = (long)arg;
811         struct reader_task *rt = &(reader_tasks[me]);
812         u64 start;
813         s64 duration;
814
815         VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: task started", me);
816         WARN_ON_ONCE(set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)));
817         set_user_nice(current, MAX_NICE);
818         atomic_inc(&n_init);
819         if (holdoff)
820                 schedule_timeout_interruptible(holdoff * HZ);
821 repeat:
822         VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: waiting to start next experiment on cpu %d", me, raw_smp_processor_id());
823
824         // Wait for signal that this reader can start.
825         wait_event(rt->wq, (atomic_read(&nreaders_exp) && smp_load_acquire(&rt->start_reader)) ||
826                            torture_must_stop());
827
828         if (torture_must_stop())
829                 goto end;
830
831         // Make sure that the CPU is affinitized appropriately during testing.
832         WARN_ON_ONCE(raw_smp_processor_id() != me);
833
834         WRITE_ONCE(rt->start_reader, 0);
835         if (!atomic_dec_return(&n_started))
836                 while (atomic_read_acquire(&n_started))
837                         cpu_relax();
838
839         VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d started", me, exp_idx);
840
841
842         // To reduce noise, do an initial cache-warming invocation, check
843         // in, and then keep warming until everyone has checked in.
844         rcu_scale_one_reader();
845         if (!atomic_dec_return(&n_warmedup))
846                 while (atomic_read_acquire(&n_warmedup))
847                         rcu_scale_one_reader();
848         // Also keep interrupts disabled.  This also has the effect
849         // of preventing entries into slow path for rcu_read_unlock().
850         local_irq_save(flags);
851         start = ktime_get_mono_fast_ns();
852
853         rcu_scale_one_reader();
854
855         duration = ktime_get_mono_fast_ns() - start;
856         local_irq_restore(flags);
857
858         rt->last_duration_ns = WARN_ON_ONCE(duration < 0) ? 0 : duration;
859         // To reduce runtime-skew noise, do maintain-load invocations until
860         // everyone is done.
861         if (!atomic_dec_return(&n_cooleddown))
862                 while (atomic_read_acquire(&n_cooleddown))
863                         rcu_scale_one_reader();
864
865         if (atomic_dec_and_test(&nreaders_exp))
866                 wake_up(&main_wq);
867
868         VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d ended, (readers remaining=%d)",
869                                 me, exp_idx, atomic_read(&nreaders_exp));
870
871         if (!torture_must_stop())
872                 goto repeat;
873 end:
874         torture_kthread_stopping("ref_scale_reader");
875         return 0;
876 }
877
878 static void reset_readers(void)
879 {
880         int i;
881         struct reader_task *rt;
882
883         for (i = 0; i < nreaders; i++) {
884                 rt = &(reader_tasks[i]);
885
886                 rt->last_duration_ns = 0;
887         }
888 }
889
890 // Print the results of each reader and return the sum of all their durations.
891 static u64 process_durations(int n)
892 {
893         int i;
894         struct reader_task *rt;
895         struct seq_buf s;
896         char *buf;
897         u64 sum = 0;
898
899         buf = kmalloc(800 + 64, GFP_KERNEL);
900         if (!buf)
901                 return 0;
902         seq_buf_init(&s, buf, 800 + 64);
903
904         seq_buf_printf(&s, "Experiment #%d (Format: <THREAD-NUM>:<Total loop time in ns>)",
905                        exp_idx);
906
907         for (i = 0; i < n && !torture_must_stop(); i++) {
908                 rt = &(reader_tasks[i]);
909
910                 if (i % 5 == 0)
911                         seq_buf_putc(&s, '\n');
912
913                 if (seq_buf_used(&s) >= 800) {
914                         pr_alert("%s", seq_buf_str(&s));
915                         seq_buf_clear(&s);
916                 }
917
918                 seq_buf_printf(&s, "%d: %llu\t", i, rt->last_duration_ns);
919
920                 sum += rt->last_duration_ns;
921         }
922         pr_alert("%s\n", seq_buf_str(&s));
923
924         kfree(buf);
925         return sum;
926 }
927
928 // The main_func is the main orchestrator, it performs a bunch of
929 // experiments.  For every experiment, it orders all the readers
930 // involved to start and waits for them to finish the experiment. It
931 // then reads their timestamps and starts the next experiment. Each
932 // experiment progresses from 1 concurrent reader to N of them at which
933 // point all the timestamps are printed.
934 static int main_func(void *arg)
935 {
936         int exp, r;
937         char buf1[64];
938         char *buf;
939         u64 *result_avg;
940
941         set_cpus_allowed_ptr(current, cpumask_of(nreaders % nr_cpu_ids));
942         set_user_nice(current, MAX_NICE);
943
944         VERBOSE_SCALEOUT("main_func task started");
945         result_avg = kzalloc(nruns * sizeof(*result_avg), GFP_KERNEL);
946         buf = kzalloc(800 + 64, GFP_KERNEL);
947         if (!result_avg || !buf) {
948                 SCALEOUT_ERRSTRING("out of memory");
949                 goto oom_exit;
950         }
951         if (holdoff)
952                 schedule_timeout_interruptible(holdoff * HZ);
953
954         // Wait for all threads to start.
955         atomic_inc(&n_init);
956         while (atomic_read(&n_init) < nreaders + 1)
957                 schedule_timeout_uninterruptible(1);
958
959         // Start exp readers up per experiment
960         for (exp = 0; exp < nruns && !torture_must_stop(); exp++) {
961                 if (torture_must_stop())
962                         goto end;
963
964                 reset_readers();
965                 atomic_set(&nreaders_exp, nreaders);
966                 atomic_set(&n_started, nreaders);
967                 atomic_set(&n_warmedup, nreaders);
968                 atomic_set(&n_cooleddown, nreaders);
969
970                 exp_idx = exp;
971
972                 for (r = 0; r < nreaders; r++) {
973                         smp_store_release(&reader_tasks[r].start_reader, 1);
974                         wake_up(&reader_tasks[r].wq);
975                 }
976
977                 VERBOSE_SCALEOUT("main_func: experiment started, waiting for %d readers",
978                                 nreaders);
979
980                 wait_event(main_wq,
981                            !atomic_read(&nreaders_exp) || torture_must_stop());
982
983                 VERBOSE_SCALEOUT("main_func: experiment ended");
984
985                 if (torture_must_stop())
986                         goto end;
987
988                 result_avg[exp] = div_u64(1000 * process_durations(nreaders), nreaders * loops);
989         }
990
991         // Print the average of all experiments
992         SCALEOUT("END OF TEST. Calculating average duration per loop (nanoseconds)...\n");
993
994         pr_alert("Runs\tTime(ns)\n");
995         for (exp = 0; exp < nruns; exp++) {
996                 u64 avg;
997                 u32 rem;
998
999                 avg = div_u64_rem(result_avg[exp], 1000, &rem);
1000                 sprintf(buf1, "%d\t%llu.%03u\n", exp + 1, avg, rem);
1001                 strcat(buf, buf1);
1002                 if (strlen(buf) >= 800) {
1003                         pr_alert("%s", buf);
1004                         buf[0] = 0;
1005                 }
1006         }
1007
1008         pr_alert("%s", buf);
1009
1010 oom_exit:
1011         // This will shutdown everything including us.
1012         if (shutdown) {
1013                 shutdown_start = 1;
1014                 wake_up(&shutdown_wq);
1015         }
1016
1017         // Wait for torture to stop us
1018         while (!torture_must_stop())
1019                 schedule_timeout_uninterruptible(1);
1020
1021 end:
1022         torture_kthread_stopping("main_func");
1023         kfree(result_avg);
1024         kfree(buf);
1025         return 0;
1026 }
1027
1028 static void
1029 ref_scale_print_module_parms(const struct ref_scale_ops *cur_ops, const char *tag)
1030 {
1031         pr_alert("%s" SCALE_FLAG
1032                  "--- %s:  verbose=%d verbose_batched=%d shutdown=%d holdoff=%d lookup_instances=%ld loops=%ld nreaders=%d nruns=%d readdelay=%d\n", scale_type, tag,
1033                  verbose, verbose_batched, shutdown, holdoff, lookup_instances, loops, nreaders, nruns, readdelay);
1034 }
1035
1036 static void
1037 ref_scale_cleanup(void)
1038 {
1039         int i;
1040
1041         if (torture_cleanup_begin())
1042                 return;
1043
1044         if (!cur_ops) {
1045                 torture_cleanup_end();
1046                 return;
1047         }
1048
1049         if (reader_tasks) {
1050                 for (i = 0; i < nreaders; i++)
1051                         torture_stop_kthread("ref_scale_reader",
1052                                              reader_tasks[i].task);
1053         }
1054         kfree(reader_tasks);
1055
1056         torture_stop_kthread("main_task", main_task);
1057         kfree(main_task);
1058
1059         // Do scale-type-specific cleanup operations.
1060         if (cur_ops->cleanup != NULL)
1061                 cur_ops->cleanup();
1062
1063         torture_cleanup_end();
1064 }
1065
1066 // Shutdown kthread.  Just waits to be awakened, then shuts down system.
1067 static int
1068 ref_scale_shutdown(void *arg)
1069 {
1070         wait_event_idle(shutdown_wq, shutdown_start);
1071
1072         smp_mb(); // Wake before output.
1073         ref_scale_cleanup();
1074         kernel_power_off();
1075
1076         return -EINVAL;
1077 }
1078
1079 static int __init
1080 ref_scale_init(void)
1081 {
1082         long i;
1083         int firsterr = 0;
1084         static const struct ref_scale_ops *scale_ops[] = {
1085                 &rcu_ops, &srcu_ops, RCU_TRACE_OPS RCU_TASKS_OPS &refcnt_ops, &rwlock_ops,
1086                 &rwsem_ops, &lock_ops, &lock_irq_ops, &acqrel_ops, &clock_ops, &jiffies_ops,
1087                 &typesafe_ref_ops, &typesafe_lock_ops, &typesafe_seqlock_ops,
1088         };
1089
1090         if (!torture_init_begin(scale_type, verbose))
1091                 return -EBUSY;
1092
1093         for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
1094                 cur_ops = scale_ops[i];
1095                 if (strcmp(scale_type, cur_ops->name) == 0)
1096                         break;
1097         }
1098         if (i == ARRAY_SIZE(scale_ops)) {
1099                 pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
1100                 pr_alert("rcu-scale types:");
1101                 for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
1102                         pr_cont(" %s", scale_ops[i]->name);
1103                 pr_cont("\n");
1104                 firsterr = -EINVAL;
1105                 cur_ops = NULL;
1106                 goto unwind;
1107         }
1108         if (cur_ops->init)
1109                 if (!cur_ops->init()) {
1110                         firsterr = -EUCLEAN;
1111                         goto unwind;
1112                 }
1113
1114         ref_scale_print_module_parms(cur_ops, "Start of test");
1115
1116         // Shutdown task
1117         if (shutdown) {
1118                 init_waitqueue_head(&shutdown_wq);
1119                 firsterr = torture_create_kthread(ref_scale_shutdown, NULL,
1120                                                   shutdown_task);
1121                 if (torture_init_error(firsterr))
1122                         goto unwind;
1123                 schedule_timeout_uninterruptible(1);
1124         }
1125
1126         // Reader tasks (default to ~75% of online CPUs).
1127         if (nreaders < 0)
1128                 nreaders = (num_online_cpus() >> 1) + (num_online_cpus() >> 2);
1129         if (WARN_ONCE(loops <= 0, "%s: loops = %ld, adjusted to 1\n", __func__, loops))
1130                 loops = 1;
1131         if (WARN_ONCE(nreaders <= 0, "%s: nreaders = %d, adjusted to 1\n", __func__, nreaders))
1132                 nreaders = 1;
1133         if (WARN_ONCE(nruns <= 0, "%s: nruns = %d, adjusted to 1\n", __func__, nruns))
1134                 nruns = 1;
1135         reader_tasks = kcalloc(nreaders, sizeof(reader_tasks[0]),
1136                                GFP_KERNEL);
1137         if (!reader_tasks) {
1138                 SCALEOUT_ERRSTRING("out of memory");
1139                 firsterr = -ENOMEM;
1140                 goto unwind;
1141         }
1142
1143         VERBOSE_SCALEOUT("Starting %d reader threads", nreaders);
1144
1145         for (i = 0; i < nreaders; i++) {
1146                 init_waitqueue_head(&reader_tasks[i].wq);
1147                 firsterr = torture_create_kthread(ref_scale_reader, (void *)i,
1148                                                   reader_tasks[i].task);
1149                 if (torture_init_error(firsterr))
1150                         goto unwind;
1151         }
1152
1153         // Main Task
1154         init_waitqueue_head(&main_wq);
1155         firsterr = torture_create_kthread(main_func, NULL, main_task);
1156         if (torture_init_error(firsterr))
1157                 goto unwind;
1158
1159         torture_init_end();
1160         return 0;
1161
1162 unwind:
1163         torture_init_end();
1164         ref_scale_cleanup();
1165         if (shutdown) {
1166                 WARN_ON(!IS_MODULE(CONFIG_RCU_REF_SCALE_TEST));
1167                 kernel_power_off();
1168         }
1169         return firsterr;
1170 }
1171
1172 module_init(ref_scale_init);
1173 module_exit(ref_scale_cleanup);