Merge tag 'block-5.9-2020-09-22' of git://git.kernel.dk/linux-block
[linux.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u32 csum;
56         __u16 dummy_csum = 0;
57         int offset = offsetof(struct ext4_inode, i_checksum_lo);
58         unsigned int csum_size = sizeof(dummy_csum);
59
60         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62         offset += csum_size;
63         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64                            EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67                 offset = offsetof(struct ext4_inode, i_checksum_hi);
68                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69                                    EXT4_GOOD_OLD_INODE_SIZE,
70                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
71                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73                                            csum_size);
74                         offset += csum_size;
75                 }
76                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
78         }
79
80         return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84                                   struct ext4_inode_info *ei)
85 {
86         __u32 provided, calculated;
87
88         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89             cpu_to_le32(EXT4_OS_LINUX) ||
90             !ext4_has_metadata_csum(inode->i_sb))
91                 return 1;
92
93         provided = le16_to_cpu(raw->i_checksum_lo);
94         calculated = ext4_inode_csum(inode, raw, ei);
95         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98         else
99                 calculated &= 0xFFFF;
100
101         return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105                                 struct ext4_inode_info *ei)
106 {
107         __u32 csum;
108
109         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110             cpu_to_le32(EXT4_OS_LINUX) ||
111             !ext4_has_metadata_csum(inode->i_sb))
112                 return;
113
114         csum = ext4_inode_csum(inode, raw, ei);
115         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122                                               loff_t new_size)
123 {
124         trace_ext4_begin_ordered_truncate(inode, new_size);
125         /*
126          * If jinode is zero, then we never opened the file for
127          * writing, so there's no need to call
128          * jbd2_journal_begin_ordered_truncate() since there's no
129          * outstanding writes we need to flush.
130          */
131         if (!EXT4_I(inode)->jinode)
132                 return 0;
133         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134                                                    EXT4_I(inode)->jinode,
135                                                    new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139                                 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143                                   int pextents);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
153                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154
155                 if (ext4_has_inline_data(inode))
156                         return 0;
157
158                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159         }
160         return S_ISLNK(inode->i_mode) && inode->i_size &&
161                (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
167 void ext4_evict_inode(struct inode *inode)
168 {
169         handle_t *handle;
170         int err;
171         /*
172          * Credits for final inode cleanup and freeing:
173          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174          * (xattr block freeing), bitmap, group descriptor (inode freeing)
175          */
176         int extra_credits = 6;
177         struct ext4_xattr_inode_array *ea_inode_array = NULL;
178
179         trace_ext4_evict_inode(inode);
180
181         if (inode->i_nlink) {
182                 /*
183                  * When journalling data dirty buffers are tracked only in the
184                  * journal. So although mm thinks everything is clean and
185                  * ready for reaping the inode might still have some pages to
186                  * write in the running transaction or waiting to be
187                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
188                  * (via truncate_inode_pages()) to discard these buffers can
189                  * cause data loss. Also even if we did not discard these
190                  * buffers, we would have no way to find them after the inode
191                  * is reaped and thus user could see stale data if he tries to
192                  * read them before the transaction is checkpointed. So be
193                  * careful and force everything to disk here... We use
194                  * ei->i_datasync_tid to store the newest transaction
195                  * containing inode's data.
196                  *
197                  * Note that directories do not have this problem because they
198                  * don't use page cache.
199                  */
200                 if (inode->i_ino != EXT4_JOURNAL_INO &&
201                     ext4_should_journal_data(inode) &&
202                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
203                     inode->i_data.nrpages) {
204                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206
207                         jbd2_complete_transaction(journal, commit_tid);
208                         filemap_write_and_wait(&inode->i_data);
209                 }
210                 truncate_inode_pages_final(&inode->i_data);
211
212                 goto no_delete;
213         }
214
215         if (is_bad_inode(inode))
216                 goto no_delete;
217         dquot_initialize(inode);
218
219         if (ext4_should_order_data(inode))
220                 ext4_begin_ordered_truncate(inode, 0);
221         truncate_inode_pages_final(&inode->i_data);
222
223         /*
224          * For inodes with journalled data, transaction commit could have
225          * dirtied the inode. Flush worker is ignoring it because of I_FREEING
226          * flag but we still need to remove the inode from the writeback lists.
227          */
228         if (!list_empty_careful(&inode->i_io_list)) {
229                 WARN_ON_ONCE(!ext4_should_journal_data(inode));
230                 inode_io_list_del(inode);
231         }
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it
236          */
237         sb_start_intwrite(inode->i_sb);
238
239         if (!IS_NOQUOTA(inode))
240                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
241
242         /*
243          * Block bitmap, group descriptor, and inode are accounted in both
244          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
245          */
246         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
247                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
248         if (IS_ERR(handle)) {
249                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
250                 /*
251                  * If we're going to skip the normal cleanup, we still need to
252                  * make sure that the in-core orphan linked list is properly
253                  * cleaned up.
254                  */
255                 ext4_orphan_del(NULL, inode);
256                 sb_end_intwrite(inode->i_sb);
257                 goto no_delete;
258         }
259
260         if (IS_SYNC(inode))
261                 ext4_handle_sync(handle);
262
263         /*
264          * Set inode->i_size to 0 before calling ext4_truncate(). We need
265          * special handling of symlinks here because i_size is used to
266          * determine whether ext4_inode_info->i_data contains symlink data or
267          * block mappings. Setting i_size to 0 will remove its fast symlink
268          * status. Erase i_data so that it becomes a valid empty block map.
269          */
270         if (ext4_inode_is_fast_symlink(inode))
271                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
272         inode->i_size = 0;
273         err = ext4_mark_inode_dirty(handle, inode);
274         if (err) {
275                 ext4_warning(inode->i_sb,
276                              "couldn't mark inode dirty (err %d)", err);
277                 goto stop_handle;
278         }
279         if (inode->i_blocks) {
280                 err = ext4_truncate(inode);
281                 if (err) {
282                         ext4_error_err(inode->i_sb, -err,
283                                        "couldn't truncate inode %lu (err %d)",
284                                        inode->i_ino, err);
285                         goto stop_handle;
286                 }
287         }
288
289         /* Remove xattr references. */
290         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
291                                       extra_credits);
292         if (err) {
293                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
294 stop_handle:
295                 ext4_journal_stop(handle);
296                 ext4_orphan_del(NULL, inode);
297                 sb_end_intwrite(inode->i_sb);
298                 ext4_xattr_inode_array_free(ea_inode_array);
299                 goto no_delete;
300         }
301
302         /*
303          * Kill off the orphan record which ext4_truncate created.
304          * AKPM: I think this can be inside the above `if'.
305          * Note that ext4_orphan_del() has to be able to cope with the
306          * deletion of a non-existent orphan - this is because we don't
307          * know if ext4_truncate() actually created an orphan record.
308          * (Well, we could do this if we need to, but heck - it works)
309          */
310         ext4_orphan_del(handle, inode);
311         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
312
313         /*
314          * One subtle ordering requirement: if anything has gone wrong
315          * (transaction abort, IO errors, whatever), then we can still
316          * do these next steps (the fs will already have been marked as
317          * having errors), but we can't free the inode if the mark_dirty
318          * fails.
319          */
320         if (ext4_mark_inode_dirty(handle, inode))
321                 /* If that failed, just do the required in-core inode clear. */
322                 ext4_clear_inode(inode);
323         else
324                 ext4_free_inode(handle, inode);
325         ext4_journal_stop(handle);
326         sb_end_intwrite(inode->i_sb);
327         ext4_xattr_inode_array_free(ea_inode_array);
328         return;
329 no_delete:
330         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
331 }
332
333 #ifdef CONFIG_QUOTA
334 qsize_t *ext4_get_reserved_space(struct inode *inode)
335 {
336         return &EXT4_I(inode)->i_reserved_quota;
337 }
338 #endif
339
340 /*
341  * Called with i_data_sem down, which is important since we can call
342  * ext4_discard_preallocations() from here.
343  */
344 void ext4_da_update_reserve_space(struct inode *inode,
345                                         int used, int quota_claim)
346 {
347         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
348         struct ext4_inode_info *ei = EXT4_I(inode);
349
350         spin_lock(&ei->i_block_reservation_lock);
351         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
352         if (unlikely(used > ei->i_reserved_data_blocks)) {
353                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
354                          "with only %d reserved data blocks",
355                          __func__, inode->i_ino, used,
356                          ei->i_reserved_data_blocks);
357                 WARN_ON(1);
358                 used = ei->i_reserved_data_blocks;
359         }
360
361         /* Update per-inode reservations */
362         ei->i_reserved_data_blocks -= used;
363         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
364
365         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
366
367         /* Update quota subsystem for data blocks */
368         if (quota_claim)
369                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
370         else {
371                 /*
372                  * We did fallocate with an offset that is already delayed
373                  * allocated. So on delayed allocated writeback we should
374                  * not re-claim the quota for fallocated blocks.
375                  */
376                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
377         }
378
379         /*
380          * If we have done all the pending block allocations and if
381          * there aren't any writers on the inode, we can discard the
382          * inode's preallocations.
383          */
384         if ((ei->i_reserved_data_blocks == 0) &&
385             !inode_is_open_for_write(inode))
386                 ext4_discard_preallocations(inode, 0);
387 }
388
389 static int __check_block_validity(struct inode *inode, const char *func,
390                                 unsigned int line,
391                                 struct ext4_map_blocks *map)
392 {
393         if (ext4_has_feature_journal(inode->i_sb) &&
394             (inode->i_ino ==
395              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
396                 return 0;
397         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
398                 ext4_error_inode(inode, func, line, map->m_pblk,
399                                  "lblock %lu mapped to illegal pblock %llu "
400                                  "(length %d)", (unsigned long) map->m_lblk,
401                                  map->m_pblk, map->m_len);
402                 return -EFSCORRUPTED;
403         }
404         return 0;
405 }
406
407 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
408                        ext4_lblk_t len)
409 {
410         int ret;
411
412         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
413                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
414
415         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
416         if (ret > 0)
417                 ret = 0;
418
419         return ret;
420 }
421
422 #define check_block_validity(inode, map)        \
423         __check_block_validity((inode), __func__, __LINE__, (map))
424
425 #ifdef ES_AGGRESSIVE_TEST
426 static void ext4_map_blocks_es_recheck(handle_t *handle,
427                                        struct inode *inode,
428                                        struct ext4_map_blocks *es_map,
429                                        struct ext4_map_blocks *map,
430                                        int flags)
431 {
432         int retval;
433
434         map->m_flags = 0;
435         /*
436          * There is a race window that the result is not the same.
437          * e.g. xfstests #223 when dioread_nolock enables.  The reason
438          * is that we lookup a block mapping in extent status tree with
439          * out taking i_data_sem.  So at the time the unwritten extent
440          * could be converted.
441          */
442         down_read(&EXT4_I(inode)->i_data_sem);
443         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
444                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
445         } else {
446                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
447         }
448         up_read((&EXT4_I(inode)->i_data_sem));
449
450         /*
451          * We don't check m_len because extent will be collpased in status
452          * tree.  So the m_len might not equal.
453          */
454         if (es_map->m_lblk != map->m_lblk ||
455             es_map->m_flags != map->m_flags ||
456             es_map->m_pblk != map->m_pblk) {
457                 printk("ES cache assertion failed for inode: %lu "
458                        "es_cached ex [%d/%d/%llu/%x] != "
459                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
460                        inode->i_ino, es_map->m_lblk, es_map->m_len,
461                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
462                        map->m_len, map->m_pblk, map->m_flags,
463                        retval, flags);
464         }
465 }
466 #endif /* ES_AGGRESSIVE_TEST */
467
468 /*
469  * The ext4_map_blocks() function tries to look up the requested blocks,
470  * and returns if the blocks are already mapped.
471  *
472  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
473  * and store the allocated blocks in the result buffer head and mark it
474  * mapped.
475  *
476  * If file type is extents based, it will call ext4_ext_map_blocks(),
477  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
478  * based files
479  *
480  * On success, it returns the number of blocks being mapped or allocated.  if
481  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
482  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
483  *
484  * It returns 0 if plain look up failed (blocks have not been allocated), in
485  * that case, @map is returned as unmapped but we still do fill map->m_len to
486  * indicate the length of a hole starting at map->m_lblk.
487  *
488  * It returns the error in case of allocation failure.
489  */
490 int ext4_map_blocks(handle_t *handle, struct inode *inode,
491                     struct ext4_map_blocks *map, int flags)
492 {
493         struct extent_status es;
494         int retval;
495         int ret = 0;
496 #ifdef ES_AGGRESSIVE_TEST
497         struct ext4_map_blocks orig_map;
498
499         memcpy(&orig_map, map, sizeof(*map));
500 #endif
501
502         map->m_flags = 0;
503         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
504                   flags, map->m_len, (unsigned long) map->m_lblk);
505
506         /*
507          * ext4_map_blocks returns an int, and m_len is an unsigned int
508          */
509         if (unlikely(map->m_len > INT_MAX))
510                 map->m_len = INT_MAX;
511
512         /* We can handle the block number less than EXT_MAX_BLOCKS */
513         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
514                 return -EFSCORRUPTED;
515
516         /* Lookup extent status tree firstly */
517         if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
518                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
519                         map->m_pblk = ext4_es_pblock(&es) +
520                                         map->m_lblk - es.es_lblk;
521                         map->m_flags |= ext4_es_is_written(&es) ?
522                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
523                         retval = es.es_len - (map->m_lblk - es.es_lblk);
524                         if (retval > map->m_len)
525                                 retval = map->m_len;
526                         map->m_len = retval;
527                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
528                         map->m_pblk = 0;
529                         retval = es.es_len - (map->m_lblk - es.es_lblk);
530                         if (retval > map->m_len)
531                                 retval = map->m_len;
532                         map->m_len = retval;
533                         retval = 0;
534                 } else {
535                         BUG();
536                 }
537 #ifdef ES_AGGRESSIVE_TEST
538                 ext4_map_blocks_es_recheck(handle, inode, map,
539                                            &orig_map, flags);
540 #endif
541                 goto found;
542         }
543
544         /*
545          * Try to see if we can get the block without requesting a new
546          * file system block.
547          */
548         down_read(&EXT4_I(inode)->i_data_sem);
549         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
550                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
551         } else {
552                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
553         }
554         if (retval > 0) {
555                 unsigned int status;
556
557                 if (unlikely(retval != map->m_len)) {
558                         ext4_warning(inode->i_sb,
559                                      "ES len assertion failed for inode "
560                                      "%lu: retval %d != map->m_len %d",
561                                      inode->i_ino, retval, map->m_len);
562                         WARN_ON(1);
563                 }
564
565                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
566                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
567                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
568                     !(status & EXTENT_STATUS_WRITTEN) &&
569                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
570                                        map->m_lblk + map->m_len - 1))
571                         status |= EXTENT_STATUS_DELAYED;
572                 ret = ext4_es_insert_extent(inode, map->m_lblk,
573                                             map->m_len, map->m_pblk, status);
574                 if (ret < 0)
575                         retval = ret;
576         }
577         up_read((&EXT4_I(inode)->i_data_sem));
578
579 found:
580         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
581                 ret = check_block_validity(inode, map);
582                 if (ret != 0)
583                         return ret;
584         }
585
586         /* If it is only a block(s) look up */
587         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
588                 return retval;
589
590         /*
591          * Returns if the blocks have already allocated
592          *
593          * Note that if blocks have been preallocated
594          * ext4_ext_get_block() returns the create = 0
595          * with buffer head unmapped.
596          */
597         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
598                 /*
599                  * If we need to convert extent to unwritten
600                  * we continue and do the actual work in
601                  * ext4_ext_map_blocks()
602                  */
603                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
604                         return retval;
605
606         /*
607          * Here we clear m_flags because after allocating an new extent,
608          * it will be set again.
609          */
610         map->m_flags &= ~EXT4_MAP_FLAGS;
611
612         /*
613          * New blocks allocate and/or writing to unwritten extent
614          * will possibly result in updating i_data, so we take
615          * the write lock of i_data_sem, and call get_block()
616          * with create == 1 flag.
617          */
618         down_write(&EXT4_I(inode)->i_data_sem);
619
620         /*
621          * We need to check for EXT4 here because migrate
622          * could have changed the inode type in between
623          */
624         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
625                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
626         } else {
627                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
628
629                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
630                         /*
631                          * We allocated new blocks which will result in
632                          * i_data's format changing.  Force the migrate
633                          * to fail by clearing migrate flags
634                          */
635                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
636                 }
637
638                 /*
639                  * Update reserved blocks/metadata blocks after successful
640                  * block allocation which had been deferred till now. We don't
641                  * support fallocate for non extent files. So we can update
642                  * reserve space here.
643                  */
644                 if ((retval > 0) &&
645                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
646                         ext4_da_update_reserve_space(inode, retval, 1);
647         }
648
649         if (retval > 0) {
650                 unsigned int status;
651
652                 if (unlikely(retval != map->m_len)) {
653                         ext4_warning(inode->i_sb,
654                                      "ES len assertion failed for inode "
655                                      "%lu: retval %d != map->m_len %d",
656                                      inode->i_ino, retval, map->m_len);
657                         WARN_ON(1);
658                 }
659
660                 /*
661                  * We have to zeroout blocks before inserting them into extent
662                  * status tree. Otherwise someone could look them up there and
663                  * use them before they are really zeroed. We also have to
664                  * unmap metadata before zeroing as otherwise writeback can
665                  * overwrite zeros with stale data from block device.
666                  */
667                 if (flags & EXT4_GET_BLOCKS_ZERO &&
668                     map->m_flags & EXT4_MAP_MAPPED &&
669                     map->m_flags & EXT4_MAP_NEW) {
670                         ret = ext4_issue_zeroout(inode, map->m_lblk,
671                                                  map->m_pblk, map->m_len);
672                         if (ret) {
673                                 retval = ret;
674                                 goto out_sem;
675                         }
676                 }
677
678                 /*
679                  * If the extent has been zeroed out, we don't need to update
680                  * extent status tree.
681                  */
682                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
683                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
684                         if (ext4_es_is_written(&es))
685                                 goto out_sem;
686                 }
687                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
688                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
689                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
690                     !(status & EXTENT_STATUS_WRITTEN) &&
691                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
692                                        map->m_lblk + map->m_len - 1))
693                         status |= EXTENT_STATUS_DELAYED;
694                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
695                                             map->m_pblk, status);
696                 if (ret < 0) {
697                         retval = ret;
698                         goto out_sem;
699                 }
700         }
701
702 out_sem:
703         up_write((&EXT4_I(inode)->i_data_sem));
704         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
705                 ret = check_block_validity(inode, map);
706                 if (ret != 0)
707                         return ret;
708
709                 /*
710                  * Inodes with freshly allocated blocks where contents will be
711                  * visible after transaction commit must be on transaction's
712                  * ordered data list.
713                  */
714                 if (map->m_flags & EXT4_MAP_NEW &&
715                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
716                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
717                     !ext4_is_quota_file(inode) &&
718                     ext4_should_order_data(inode)) {
719                         loff_t start_byte =
720                                 (loff_t)map->m_lblk << inode->i_blkbits;
721                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
722
723                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
724                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
725                                                 start_byte, length);
726                         else
727                                 ret = ext4_jbd2_inode_add_write(handle, inode,
728                                                 start_byte, length);
729                         if (ret)
730                                 return ret;
731                 }
732         }
733
734         if (retval < 0)
735                 ext_debug(inode, "failed with err %d\n", retval);
736         return retval;
737 }
738
739 /*
740  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
741  * we have to be careful as someone else may be manipulating b_state as well.
742  */
743 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
744 {
745         unsigned long old_state;
746         unsigned long new_state;
747
748         flags &= EXT4_MAP_FLAGS;
749
750         /* Dummy buffer_head? Set non-atomically. */
751         if (!bh->b_page) {
752                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
753                 return;
754         }
755         /*
756          * Someone else may be modifying b_state. Be careful! This is ugly but
757          * once we get rid of using bh as a container for mapping information
758          * to pass to / from get_block functions, this can go away.
759          */
760         do {
761                 old_state = READ_ONCE(bh->b_state);
762                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
763         } while (unlikely(
764                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
765 }
766
767 static int _ext4_get_block(struct inode *inode, sector_t iblock,
768                            struct buffer_head *bh, int flags)
769 {
770         struct ext4_map_blocks map;
771         int ret = 0;
772
773         if (ext4_has_inline_data(inode))
774                 return -ERANGE;
775
776         map.m_lblk = iblock;
777         map.m_len = bh->b_size >> inode->i_blkbits;
778
779         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
780                               flags);
781         if (ret > 0) {
782                 map_bh(bh, inode->i_sb, map.m_pblk);
783                 ext4_update_bh_state(bh, map.m_flags);
784                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
785                 ret = 0;
786         } else if (ret == 0) {
787                 /* hole case, need to fill in bh->b_size */
788                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
789         }
790         return ret;
791 }
792
793 int ext4_get_block(struct inode *inode, sector_t iblock,
794                    struct buffer_head *bh, int create)
795 {
796         return _ext4_get_block(inode, iblock, bh,
797                                create ? EXT4_GET_BLOCKS_CREATE : 0);
798 }
799
800 /*
801  * Get block function used when preparing for buffered write if we require
802  * creating an unwritten extent if blocks haven't been allocated.  The extent
803  * will be converted to written after the IO is complete.
804  */
805 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
806                              struct buffer_head *bh_result, int create)
807 {
808         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
809                    inode->i_ino, create);
810         return _ext4_get_block(inode, iblock, bh_result,
811                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
812 }
813
814 /* Maximum number of blocks we map for direct IO at once. */
815 #define DIO_MAX_BLOCKS 4096
816
817 /*
818  * `handle' can be NULL if create is zero
819  */
820 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
821                                 ext4_lblk_t block, int map_flags)
822 {
823         struct ext4_map_blocks map;
824         struct buffer_head *bh;
825         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
826         int err;
827
828         J_ASSERT(handle != NULL || create == 0);
829
830         map.m_lblk = block;
831         map.m_len = 1;
832         err = ext4_map_blocks(handle, inode, &map, map_flags);
833
834         if (err == 0)
835                 return create ? ERR_PTR(-ENOSPC) : NULL;
836         if (err < 0)
837                 return ERR_PTR(err);
838
839         bh = sb_getblk(inode->i_sb, map.m_pblk);
840         if (unlikely(!bh))
841                 return ERR_PTR(-ENOMEM);
842         if (map.m_flags & EXT4_MAP_NEW) {
843                 J_ASSERT(create != 0);
844                 J_ASSERT(handle != NULL);
845
846                 /*
847                  * Now that we do not always journal data, we should
848                  * keep in mind whether this should always journal the
849                  * new buffer as metadata.  For now, regular file
850                  * writes use ext4_get_block instead, so it's not a
851                  * problem.
852                  */
853                 lock_buffer(bh);
854                 BUFFER_TRACE(bh, "call get_create_access");
855                 err = ext4_journal_get_create_access(handle, bh);
856                 if (unlikely(err)) {
857                         unlock_buffer(bh);
858                         goto errout;
859                 }
860                 if (!buffer_uptodate(bh)) {
861                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
862                         set_buffer_uptodate(bh);
863                 }
864                 unlock_buffer(bh);
865                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
866                 err = ext4_handle_dirty_metadata(handle, inode, bh);
867                 if (unlikely(err))
868                         goto errout;
869         } else
870                 BUFFER_TRACE(bh, "not a new buffer");
871         return bh;
872 errout:
873         brelse(bh);
874         return ERR_PTR(err);
875 }
876
877 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
878                                ext4_lblk_t block, int map_flags)
879 {
880         struct buffer_head *bh;
881
882         bh = ext4_getblk(handle, inode, block, map_flags);
883         if (IS_ERR(bh))
884                 return bh;
885         if (!bh || ext4_buffer_uptodate(bh))
886                 return bh;
887         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
888         wait_on_buffer(bh);
889         if (buffer_uptodate(bh))
890                 return bh;
891         put_bh(bh);
892         return ERR_PTR(-EIO);
893 }
894
895 /* Read a contiguous batch of blocks. */
896 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
897                      bool wait, struct buffer_head **bhs)
898 {
899         int i, err;
900
901         for (i = 0; i < bh_count; i++) {
902                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
903                 if (IS_ERR(bhs[i])) {
904                         err = PTR_ERR(bhs[i]);
905                         bh_count = i;
906                         goto out_brelse;
907                 }
908         }
909
910         for (i = 0; i < bh_count; i++)
911                 /* Note that NULL bhs[i] is valid because of holes. */
912                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
913                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
914                                     &bhs[i]);
915
916         if (!wait)
917                 return 0;
918
919         for (i = 0; i < bh_count; i++)
920                 if (bhs[i])
921                         wait_on_buffer(bhs[i]);
922
923         for (i = 0; i < bh_count; i++) {
924                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
925                         err = -EIO;
926                         goto out_brelse;
927                 }
928         }
929         return 0;
930
931 out_brelse:
932         for (i = 0; i < bh_count; i++) {
933                 brelse(bhs[i]);
934                 bhs[i] = NULL;
935         }
936         return err;
937 }
938
939 int ext4_walk_page_buffers(handle_t *handle,
940                            struct buffer_head *head,
941                            unsigned from,
942                            unsigned to,
943                            int *partial,
944                            int (*fn)(handle_t *handle,
945                                      struct buffer_head *bh))
946 {
947         struct buffer_head *bh;
948         unsigned block_start, block_end;
949         unsigned blocksize = head->b_size;
950         int err, ret = 0;
951         struct buffer_head *next;
952
953         for (bh = head, block_start = 0;
954              ret == 0 && (bh != head || !block_start);
955              block_start = block_end, bh = next) {
956                 next = bh->b_this_page;
957                 block_end = block_start + blocksize;
958                 if (block_end <= from || block_start >= to) {
959                         if (partial && !buffer_uptodate(bh))
960                                 *partial = 1;
961                         continue;
962                 }
963                 err = (*fn)(handle, bh);
964                 if (!ret)
965                         ret = err;
966         }
967         return ret;
968 }
969
970 /*
971  * To preserve ordering, it is essential that the hole instantiation and
972  * the data write be encapsulated in a single transaction.  We cannot
973  * close off a transaction and start a new one between the ext4_get_block()
974  * and the commit_write().  So doing the jbd2_journal_start at the start of
975  * prepare_write() is the right place.
976  *
977  * Also, this function can nest inside ext4_writepage().  In that case, we
978  * *know* that ext4_writepage() has generated enough buffer credits to do the
979  * whole page.  So we won't block on the journal in that case, which is good,
980  * because the caller may be PF_MEMALLOC.
981  *
982  * By accident, ext4 can be reentered when a transaction is open via
983  * quota file writes.  If we were to commit the transaction while thus
984  * reentered, there can be a deadlock - we would be holding a quota
985  * lock, and the commit would never complete if another thread had a
986  * transaction open and was blocking on the quota lock - a ranking
987  * violation.
988  *
989  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
990  * will _not_ run commit under these circumstances because handle->h_ref
991  * is elevated.  We'll still have enough credits for the tiny quotafile
992  * write.
993  */
994 int do_journal_get_write_access(handle_t *handle,
995                                 struct buffer_head *bh)
996 {
997         int dirty = buffer_dirty(bh);
998         int ret;
999
1000         if (!buffer_mapped(bh) || buffer_freed(bh))
1001                 return 0;
1002         /*
1003          * __block_write_begin() could have dirtied some buffers. Clean
1004          * the dirty bit as jbd2_journal_get_write_access() could complain
1005          * otherwise about fs integrity issues. Setting of the dirty bit
1006          * by __block_write_begin() isn't a real problem here as we clear
1007          * the bit before releasing a page lock and thus writeback cannot
1008          * ever write the buffer.
1009          */
1010         if (dirty)
1011                 clear_buffer_dirty(bh);
1012         BUFFER_TRACE(bh, "get write access");
1013         ret = ext4_journal_get_write_access(handle, bh);
1014         if (!ret && dirty)
1015                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1016         return ret;
1017 }
1018
1019 #ifdef CONFIG_FS_ENCRYPTION
1020 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1021                                   get_block_t *get_block)
1022 {
1023         unsigned from = pos & (PAGE_SIZE - 1);
1024         unsigned to = from + len;
1025         struct inode *inode = page->mapping->host;
1026         unsigned block_start, block_end;
1027         sector_t block;
1028         int err = 0;
1029         unsigned blocksize = inode->i_sb->s_blocksize;
1030         unsigned bbits;
1031         struct buffer_head *bh, *head, *wait[2];
1032         int nr_wait = 0;
1033         int i;
1034
1035         BUG_ON(!PageLocked(page));
1036         BUG_ON(from > PAGE_SIZE);
1037         BUG_ON(to > PAGE_SIZE);
1038         BUG_ON(from > to);
1039
1040         if (!page_has_buffers(page))
1041                 create_empty_buffers(page, blocksize, 0);
1042         head = page_buffers(page);
1043         bbits = ilog2(blocksize);
1044         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1045
1046         for (bh = head, block_start = 0; bh != head || !block_start;
1047             block++, block_start = block_end, bh = bh->b_this_page) {
1048                 block_end = block_start + blocksize;
1049                 if (block_end <= from || block_start >= to) {
1050                         if (PageUptodate(page)) {
1051                                 if (!buffer_uptodate(bh))
1052                                         set_buffer_uptodate(bh);
1053                         }
1054                         continue;
1055                 }
1056                 if (buffer_new(bh))
1057                         clear_buffer_new(bh);
1058                 if (!buffer_mapped(bh)) {
1059                         WARN_ON(bh->b_size != blocksize);
1060                         err = get_block(inode, block, bh, 1);
1061                         if (err)
1062                                 break;
1063                         if (buffer_new(bh)) {
1064                                 if (PageUptodate(page)) {
1065                                         clear_buffer_new(bh);
1066                                         set_buffer_uptodate(bh);
1067                                         mark_buffer_dirty(bh);
1068                                         continue;
1069                                 }
1070                                 if (block_end > to || block_start < from)
1071                                         zero_user_segments(page, to, block_end,
1072                                                            block_start, from);
1073                                 continue;
1074                         }
1075                 }
1076                 if (PageUptodate(page)) {
1077                         if (!buffer_uptodate(bh))
1078                                 set_buffer_uptodate(bh);
1079                         continue;
1080                 }
1081                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1082                     !buffer_unwritten(bh) &&
1083                     (block_start < from || block_end > to)) {
1084                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1085                         wait[nr_wait++] = bh;
1086                 }
1087         }
1088         /*
1089          * If we issued read requests, let them complete.
1090          */
1091         for (i = 0; i < nr_wait; i++) {
1092                 wait_on_buffer(wait[i]);
1093                 if (!buffer_uptodate(wait[i]))
1094                         err = -EIO;
1095         }
1096         if (unlikely(err)) {
1097                 page_zero_new_buffers(page, from, to);
1098         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1099                 for (i = 0; i < nr_wait; i++) {
1100                         int err2;
1101
1102                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1103                                                                 bh_offset(wait[i]));
1104                         if (err2) {
1105                                 clear_buffer_uptodate(wait[i]);
1106                                 err = err2;
1107                         }
1108                 }
1109         }
1110
1111         return err;
1112 }
1113 #endif
1114
1115 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1116                             loff_t pos, unsigned len, unsigned flags,
1117                             struct page **pagep, void **fsdata)
1118 {
1119         struct inode *inode = mapping->host;
1120         int ret, needed_blocks;
1121         handle_t *handle;
1122         int retries = 0;
1123         struct page *page;
1124         pgoff_t index;
1125         unsigned from, to;
1126
1127         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1128                 return -EIO;
1129
1130         trace_ext4_write_begin(inode, pos, len, flags);
1131         /*
1132          * Reserve one block more for addition to orphan list in case
1133          * we allocate blocks but write fails for some reason
1134          */
1135         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1136         index = pos >> PAGE_SHIFT;
1137         from = pos & (PAGE_SIZE - 1);
1138         to = from + len;
1139
1140         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1141                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1142                                                     flags, pagep);
1143                 if (ret < 0)
1144                         return ret;
1145                 if (ret == 1)
1146                         return 0;
1147         }
1148
1149         /*
1150          * grab_cache_page_write_begin() can take a long time if the
1151          * system is thrashing due to memory pressure, or if the page
1152          * is being written back.  So grab it first before we start
1153          * the transaction handle.  This also allows us to allocate
1154          * the page (if needed) without using GFP_NOFS.
1155          */
1156 retry_grab:
1157         page = grab_cache_page_write_begin(mapping, index, flags);
1158         if (!page)
1159                 return -ENOMEM;
1160         unlock_page(page);
1161
1162 retry_journal:
1163         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1164         if (IS_ERR(handle)) {
1165                 put_page(page);
1166                 return PTR_ERR(handle);
1167         }
1168
1169         lock_page(page);
1170         if (page->mapping != mapping) {
1171                 /* The page got truncated from under us */
1172                 unlock_page(page);
1173                 put_page(page);
1174                 ext4_journal_stop(handle);
1175                 goto retry_grab;
1176         }
1177         /* In case writeback began while the page was unlocked */
1178         wait_for_stable_page(page);
1179
1180 #ifdef CONFIG_FS_ENCRYPTION
1181         if (ext4_should_dioread_nolock(inode))
1182                 ret = ext4_block_write_begin(page, pos, len,
1183                                              ext4_get_block_unwritten);
1184         else
1185                 ret = ext4_block_write_begin(page, pos, len,
1186                                              ext4_get_block);
1187 #else
1188         if (ext4_should_dioread_nolock(inode))
1189                 ret = __block_write_begin(page, pos, len,
1190                                           ext4_get_block_unwritten);
1191         else
1192                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1193 #endif
1194         if (!ret && ext4_should_journal_data(inode)) {
1195                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1196                                              from, to, NULL,
1197                                              do_journal_get_write_access);
1198         }
1199
1200         if (ret) {
1201                 bool extended = (pos + len > inode->i_size) &&
1202                                 !ext4_verity_in_progress(inode);
1203
1204                 unlock_page(page);
1205                 /*
1206                  * __block_write_begin may have instantiated a few blocks
1207                  * outside i_size.  Trim these off again. Don't need
1208                  * i_size_read because we hold i_mutex.
1209                  *
1210                  * Add inode to orphan list in case we crash before
1211                  * truncate finishes
1212                  */
1213                 if (extended && ext4_can_truncate(inode))
1214                         ext4_orphan_add(handle, inode);
1215
1216                 ext4_journal_stop(handle);
1217                 if (extended) {
1218                         ext4_truncate_failed_write(inode);
1219                         /*
1220                          * If truncate failed early the inode might
1221                          * still be on the orphan list; we need to
1222                          * make sure the inode is removed from the
1223                          * orphan list in that case.
1224                          */
1225                         if (inode->i_nlink)
1226                                 ext4_orphan_del(NULL, inode);
1227                 }
1228
1229                 if (ret == -ENOSPC &&
1230                     ext4_should_retry_alloc(inode->i_sb, &retries))
1231                         goto retry_journal;
1232                 put_page(page);
1233                 return ret;
1234         }
1235         *pagep = page;
1236         return ret;
1237 }
1238
1239 /* For write_end() in data=journal mode */
1240 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1241 {
1242         int ret;
1243         if (!buffer_mapped(bh) || buffer_freed(bh))
1244                 return 0;
1245         set_buffer_uptodate(bh);
1246         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1247         clear_buffer_meta(bh);
1248         clear_buffer_prio(bh);
1249         return ret;
1250 }
1251
1252 /*
1253  * We need to pick up the new inode size which generic_commit_write gave us
1254  * `file' can be NULL - eg, when called from page_symlink().
1255  *
1256  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1257  * buffers are managed internally.
1258  */
1259 static int ext4_write_end(struct file *file,
1260                           struct address_space *mapping,
1261                           loff_t pos, unsigned len, unsigned copied,
1262                           struct page *page, void *fsdata)
1263 {
1264         handle_t *handle = ext4_journal_current_handle();
1265         struct inode *inode = mapping->host;
1266         loff_t old_size = inode->i_size;
1267         int ret = 0, ret2;
1268         int i_size_changed = 0;
1269         int inline_data = ext4_has_inline_data(inode);
1270         bool verity = ext4_verity_in_progress(inode);
1271
1272         trace_ext4_write_end(inode, pos, len, copied);
1273         if (inline_data) {
1274                 ret = ext4_write_inline_data_end(inode, pos, len,
1275                                                  copied, page);
1276                 if (ret < 0) {
1277                         unlock_page(page);
1278                         put_page(page);
1279                         goto errout;
1280                 }
1281                 copied = ret;
1282         } else
1283                 copied = block_write_end(file, mapping, pos,
1284                                          len, copied, page, fsdata);
1285         /*
1286          * it's important to update i_size while still holding page lock:
1287          * page writeout could otherwise come in and zero beyond i_size.
1288          *
1289          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1290          * blocks are being written past EOF, so skip the i_size update.
1291          */
1292         if (!verity)
1293                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1294         unlock_page(page);
1295         put_page(page);
1296
1297         if (old_size < pos && !verity)
1298                 pagecache_isize_extended(inode, old_size, pos);
1299         /*
1300          * Don't mark the inode dirty under page lock. First, it unnecessarily
1301          * makes the holding time of page lock longer. Second, it forces lock
1302          * ordering of page lock and transaction start for journaling
1303          * filesystems.
1304          */
1305         if (i_size_changed || inline_data)
1306                 ret = ext4_mark_inode_dirty(handle, inode);
1307
1308         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1309                 /* if we have allocated more blocks and copied
1310                  * less. We will have blocks allocated outside
1311                  * inode->i_size. So truncate them
1312                  */
1313                 ext4_orphan_add(handle, inode);
1314 errout:
1315         ret2 = ext4_journal_stop(handle);
1316         if (!ret)
1317                 ret = ret2;
1318
1319         if (pos + len > inode->i_size && !verity) {
1320                 ext4_truncate_failed_write(inode);
1321                 /*
1322                  * If truncate failed early the inode might still be
1323                  * on the orphan list; we need to make sure the inode
1324                  * is removed from the orphan list in that case.
1325                  */
1326                 if (inode->i_nlink)
1327                         ext4_orphan_del(NULL, inode);
1328         }
1329
1330         return ret ? ret : copied;
1331 }
1332
1333 /*
1334  * This is a private version of page_zero_new_buffers() which doesn't
1335  * set the buffer to be dirty, since in data=journalled mode we need
1336  * to call ext4_handle_dirty_metadata() instead.
1337  */
1338 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1339                                             struct page *page,
1340                                             unsigned from, unsigned to)
1341 {
1342         unsigned int block_start = 0, block_end;
1343         struct buffer_head *head, *bh;
1344
1345         bh = head = page_buffers(page);
1346         do {
1347                 block_end = block_start + bh->b_size;
1348                 if (buffer_new(bh)) {
1349                         if (block_end > from && block_start < to) {
1350                                 if (!PageUptodate(page)) {
1351                                         unsigned start, size;
1352
1353                                         start = max(from, block_start);
1354                                         size = min(to, block_end) - start;
1355
1356                                         zero_user(page, start, size);
1357                                         write_end_fn(handle, bh);
1358                                 }
1359                                 clear_buffer_new(bh);
1360                         }
1361                 }
1362                 block_start = block_end;
1363                 bh = bh->b_this_page;
1364         } while (bh != head);
1365 }
1366
1367 static int ext4_journalled_write_end(struct file *file,
1368                                      struct address_space *mapping,
1369                                      loff_t pos, unsigned len, unsigned copied,
1370                                      struct page *page, void *fsdata)
1371 {
1372         handle_t *handle = ext4_journal_current_handle();
1373         struct inode *inode = mapping->host;
1374         loff_t old_size = inode->i_size;
1375         int ret = 0, ret2;
1376         int partial = 0;
1377         unsigned from, to;
1378         int size_changed = 0;
1379         int inline_data = ext4_has_inline_data(inode);
1380         bool verity = ext4_verity_in_progress(inode);
1381
1382         trace_ext4_journalled_write_end(inode, pos, len, copied);
1383         from = pos & (PAGE_SIZE - 1);
1384         to = from + len;
1385
1386         BUG_ON(!ext4_handle_valid(handle));
1387
1388         if (inline_data) {
1389                 ret = ext4_write_inline_data_end(inode, pos, len,
1390                                                  copied, page);
1391                 if (ret < 0) {
1392                         unlock_page(page);
1393                         put_page(page);
1394                         goto errout;
1395                 }
1396                 copied = ret;
1397         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1398                 copied = 0;
1399                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1400         } else {
1401                 if (unlikely(copied < len))
1402                         ext4_journalled_zero_new_buffers(handle, page,
1403                                                          from + copied, to);
1404                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1405                                              from + copied, &partial,
1406                                              write_end_fn);
1407                 if (!partial)
1408                         SetPageUptodate(page);
1409         }
1410         if (!verity)
1411                 size_changed = ext4_update_inode_size(inode, pos + copied);
1412         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1413         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1414         unlock_page(page);
1415         put_page(page);
1416
1417         if (old_size < pos && !verity)
1418                 pagecache_isize_extended(inode, old_size, pos);
1419
1420         if (size_changed || inline_data) {
1421                 ret2 = ext4_mark_inode_dirty(handle, inode);
1422                 if (!ret)
1423                         ret = ret2;
1424         }
1425
1426         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1427                 /* if we have allocated more blocks and copied
1428                  * less. We will have blocks allocated outside
1429                  * inode->i_size. So truncate them
1430                  */
1431                 ext4_orphan_add(handle, inode);
1432
1433 errout:
1434         ret2 = ext4_journal_stop(handle);
1435         if (!ret)
1436                 ret = ret2;
1437         if (pos + len > inode->i_size && !verity) {
1438                 ext4_truncate_failed_write(inode);
1439                 /*
1440                  * If truncate failed early the inode might still be
1441                  * on the orphan list; we need to make sure the inode
1442                  * is removed from the orphan list in that case.
1443                  */
1444                 if (inode->i_nlink)
1445                         ext4_orphan_del(NULL, inode);
1446         }
1447
1448         return ret ? ret : copied;
1449 }
1450
1451 /*
1452  * Reserve space for a single cluster
1453  */
1454 static int ext4_da_reserve_space(struct inode *inode)
1455 {
1456         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1457         struct ext4_inode_info *ei = EXT4_I(inode);
1458         int ret;
1459
1460         /*
1461          * We will charge metadata quota at writeout time; this saves
1462          * us from metadata over-estimation, though we may go over by
1463          * a small amount in the end.  Here we just reserve for data.
1464          */
1465         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1466         if (ret)
1467                 return ret;
1468
1469         spin_lock(&ei->i_block_reservation_lock);
1470         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1471                 spin_unlock(&ei->i_block_reservation_lock);
1472                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1473                 return -ENOSPC;
1474         }
1475         ei->i_reserved_data_blocks++;
1476         trace_ext4_da_reserve_space(inode);
1477         spin_unlock(&ei->i_block_reservation_lock);
1478
1479         return 0;       /* success */
1480 }
1481
1482 void ext4_da_release_space(struct inode *inode, int to_free)
1483 {
1484         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1485         struct ext4_inode_info *ei = EXT4_I(inode);
1486
1487         if (!to_free)
1488                 return;         /* Nothing to release, exit */
1489
1490         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1491
1492         trace_ext4_da_release_space(inode, to_free);
1493         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1494                 /*
1495                  * if there aren't enough reserved blocks, then the
1496                  * counter is messed up somewhere.  Since this
1497                  * function is called from invalidate page, it's
1498                  * harmless to return without any action.
1499                  */
1500                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1501                          "ino %lu, to_free %d with only %d reserved "
1502                          "data blocks", inode->i_ino, to_free,
1503                          ei->i_reserved_data_blocks);
1504                 WARN_ON(1);
1505                 to_free = ei->i_reserved_data_blocks;
1506         }
1507         ei->i_reserved_data_blocks -= to_free;
1508
1509         /* update fs dirty data blocks counter */
1510         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1511
1512         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1513
1514         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1515 }
1516
1517 /*
1518  * Delayed allocation stuff
1519  */
1520
1521 struct mpage_da_data {
1522         struct inode *inode;
1523         struct writeback_control *wbc;
1524
1525         pgoff_t first_page;     /* The first page to write */
1526         pgoff_t next_page;      /* Current page to examine */
1527         pgoff_t last_page;      /* Last page to examine */
1528         /*
1529          * Extent to map - this can be after first_page because that can be
1530          * fully mapped. We somewhat abuse m_flags to store whether the extent
1531          * is delalloc or unwritten.
1532          */
1533         struct ext4_map_blocks map;
1534         struct ext4_io_submit io_submit;        /* IO submission data */
1535         unsigned int do_map:1;
1536         unsigned int scanned_until_end:1;
1537 };
1538
1539 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1540                                        bool invalidate)
1541 {
1542         int nr_pages, i;
1543         pgoff_t index, end;
1544         struct pagevec pvec;
1545         struct inode *inode = mpd->inode;
1546         struct address_space *mapping = inode->i_mapping;
1547
1548         /* This is necessary when next_page == 0. */
1549         if (mpd->first_page >= mpd->next_page)
1550                 return;
1551
1552         mpd->scanned_until_end = 0;
1553         index = mpd->first_page;
1554         end   = mpd->next_page - 1;
1555         if (invalidate) {
1556                 ext4_lblk_t start, last;
1557                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1558                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1559                 ext4_es_remove_extent(inode, start, last - start + 1);
1560         }
1561
1562         pagevec_init(&pvec);
1563         while (index <= end) {
1564                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1565                 if (nr_pages == 0)
1566                         break;
1567                 for (i = 0; i < nr_pages; i++) {
1568                         struct page *page = pvec.pages[i];
1569
1570                         BUG_ON(!PageLocked(page));
1571                         BUG_ON(PageWriteback(page));
1572                         if (invalidate) {
1573                                 if (page_mapped(page))
1574                                         clear_page_dirty_for_io(page);
1575                                 block_invalidatepage(page, 0, PAGE_SIZE);
1576                                 ClearPageUptodate(page);
1577                         }
1578                         unlock_page(page);
1579                 }
1580                 pagevec_release(&pvec);
1581         }
1582 }
1583
1584 static void ext4_print_free_blocks(struct inode *inode)
1585 {
1586         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1587         struct super_block *sb = inode->i_sb;
1588         struct ext4_inode_info *ei = EXT4_I(inode);
1589
1590         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1591                EXT4_C2B(EXT4_SB(inode->i_sb),
1592                         ext4_count_free_clusters(sb)));
1593         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1594         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1595                (long long) EXT4_C2B(EXT4_SB(sb),
1596                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1597         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1598                (long long) EXT4_C2B(EXT4_SB(sb),
1599                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1600         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1601         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1602                  ei->i_reserved_data_blocks);
1603         return;
1604 }
1605
1606 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1607 {
1608         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1609 }
1610
1611 /*
1612  * ext4_insert_delayed_block - adds a delayed block to the extents status
1613  *                             tree, incrementing the reserved cluster/block
1614  *                             count or making a pending reservation
1615  *                             where needed
1616  *
1617  * @inode - file containing the newly added block
1618  * @lblk - logical block to be added
1619  *
1620  * Returns 0 on success, negative error code on failure.
1621  */
1622 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1623 {
1624         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1625         int ret;
1626         bool allocated = false;
1627
1628         /*
1629          * If the cluster containing lblk is shared with a delayed,
1630          * written, or unwritten extent in a bigalloc file system, it's
1631          * already been accounted for and does not need to be reserved.
1632          * A pending reservation must be made for the cluster if it's
1633          * shared with a written or unwritten extent and doesn't already
1634          * have one.  Written and unwritten extents can be purged from the
1635          * extents status tree if the system is under memory pressure, so
1636          * it's necessary to examine the extent tree if a search of the
1637          * extents status tree doesn't get a match.
1638          */
1639         if (sbi->s_cluster_ratio == 1) {
1640                 ret = ext4_da_reserve_space(inode);
1641                 if (ret != 0)   /* ENOSPC */
1642                         goto errout;
1643         } else {   /* bigalloc */
1644                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1645                         if (!ext4_es_scan_clu(inode,
1646                                               &ext4_es_is_mapped, lblk)) {
1647                                 ret = ext4_clu_mapped(inode,
1648                                                       EXT4_B2C(sbi, lblk));
1649                                 if (ret < 0)
1650                                         goto errout;
1651                                 if (ret == 0) {
1652                                         ret = ext4_da_reserve_space(inode);
1653                                         if (ret != 0)   /* ENOSPC */
1654                                                 goto errout;
1655                                 } else {
1656                                         allocated = true;
1657                                 }
1658                         } else {
1659                                 allocated = true;
1660                         }
1661                 }
1662         }
1663
1664         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1665
1666 errout:
1667         return ret;
1668 }
1669
1670 /*
1671  * This function is grabs code from the very beginning of
1672  * ext4_map_blocks, but assumes that the caller is from delayed write
1673  * time. This function looks up the requested blocks and sets the
1674  * buffer delay bit under the protection of i_data_sem.
1675  */
1676 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1677                               struct ext4_map_blocks *map,
1678                               struct buffer_head *bh)
1679 {
1680         struct extent_status es;
1681         int retval;
1682         sector_t invalid_block = ~((sector_t) 0xffff);
1683 #ifdef ES_AGGRESSIVE_TEST
1684         struct ext4_map_blocks orig_map;
1685
1686         memcpy(&orig_map, map, sizeof(*map));
1687 #endif
1688
1689         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1690                 invalid_block = ~0;
1691
1692         map->m_flags = 0;
1693         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1694                   (unsigned long) map->m_lblk);
1695
1696         /* Lookup extent status tree firstly */
1697         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1698                 if (ext4_es_is_hole(&es)) {
1699                         retval = 0;
1700                         down_read(&EXT4_I(inode)->i_data_sem);
1701                         goto add_delayed;
1702                 }
1703
1704                 /*
1705                  * Delayed extent could be allocated by fallocate.
1706                  * So we need to check it.
1707                  */
1708                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1709                         map_bh(bh, inode->i_sb, invalid_block);
1710                         set_buffer_new(bh);
1711                         set_buffer_delay(bh);
1712                         return 0;
1713                 }
1714
1715                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1716                 retval = es.es_len - (iblock - es.es_lblk);
1717                 if (retval > map->m_len)
1718                         retval = map->m_len;
1719                 map->m_len = retval;
1720                 if (ext4_es_is_written(&es))
1721                         map->m_flags |= EXT4_MAP_MAPPED;
1722                 else if (ext4_es_is_unwritten(&es))
1723                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1724                 else
1725                         BUG();
1726
1727 #ifdef ES_AGGRESSIVE_TEST
1728                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1729 #endif
1730                 return retval;
1731         }
1732
1733         /*
1734          * Try to see if we can get the block without requesting a new
1735          * file system block.
1736          */
1737         down_read(&EXT4_I(inode)->i_data_sem);
1738         if (ext4_has_inline_data(inode))
1739                 retval = 0;
1740         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1741                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1742         else
1743                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1744
1745 add_delayed:
1746         if (retval == 0) {
1747                 int ret;
1748
1749                 /*
1750                  * XXX: __block_prepare_write() unmaps passed block,
1751                  * is it OK?
1752                  */
1753
1754                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1755                 if (ret != 0) {
1756                         retval = ret;
1757                         goto out_unlock;
1758                 }
1759
1760                 map_bh(bh, inode->i_sb, invalid_block);
1761                 set_buffer_new(bh);
1762                 set_buffer_delay(bh);
1763         } else if (retval > 0) {
1764                 int ret;
1765                 unsigned int status;
1766
1767                 if (unlikely(retval != map->m_len)) {
1768                         ext4_warning(inode->i_sb,
1769                                      "ES len assertion failed for inode "
1770                                      "%lu: retval %d != map->m_len %d",
1771                                      inode->i_ino, retval, map->m_len);
1772                         WARN_ON(1);
1773                 }
1774
1775                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1776                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1777                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1778                                             map->m_pblk, status);
1779                 if (ret != 0)
1780                         retval = ret;
1781         }
1782
1783 out_unlock:
1784         up_read((&EXT4_I(inode)->i_data_sem));
1785
1786         return retval;
1787 }
1788
1789 /*
1790  * This is a special get_block_t callback which is used by
1791  * ext4_da_write_begin().  It will either return mapped block or
1792  * reserve space for a single block.
1793  *
1794  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1795  * We also have b_blocknr = -1 and b_bdev initialized properly
1796  *
1797  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1798  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1799  * initialized properly.
1800  */
1801 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1802                            struct buffer_head *bh, int create)
1803 {
1804         struct ext4_map_blocks map;
1805         int ret = 0;
1806
1807         BUG_ON(create == 0);
1808         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1809
1810         map.m_lblk = iblock;
1811         map.m_len = 1;
1812
1813         /*
1814          * first, we need to know whether the block is allocated already
1815          * preallocated blocks are unmapped but should treated
1816          * the same as allocated blocks.
1817          */
1818         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1819         if (ret <= 0)
1820                 return ret;
1821
1822         map_bh(bh, inode->i_sb, map.m_pblk);
1823         ext4_update_bh_state(bh, map.m_flags);
1824
1825         if (buffer_unwritten(bh)) {
1826                 /* A delayed write to unwritten bh should be marked
1827                  * new and mapped.  Mapped ensures that we don't do
1828                  * get_block multiple times when we write to the same
1829                  * offset and new ensures that we do proper zero out
1830                  * for partial write.
1831                  */
1832                 set_buffer_new(bh);
1833                 set_buffer_mapped(bh);
1834         }
1835         return 0;
1836 }
1837
1838 static int bget_one(handle_t *handle, struct buffer_head *bh)
1839 {
1840         get_bh(bh);
1841         return 0;
1842 }
1843
1844 static int bput_one(handle_t *handle, struct buffer_head *bh)
1845 {
1846         put_bh(bh);
1847         return 0;
1848 }
1849
1850 static int __ext4_journalled_writepage(struct page *page,
1851                                        unsigned int len)
1852 {
1853         struct address_space *mapping = page->mapping;
1854         struct inode *inode = mapping->host;
1855         struct buffer_head *page_bufs = NULL;
1856         handle_t *handle = NULL;
1857         int ret = 0, err = 0;
1858         int inline_data = ext4_has_inline_data(inode);
1859         struct buffer_head *inode_bh = NULL;
1860
1861         ClearPageChecked(page);
1862
1863         if (inline_data) {
1864                 BUG_ON(page->index != 0);
1865                 BUG_ON(len > ext4_get_max_inline_size(inode));
1866                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1867                 if (inode_bh == NULL)
1868                         goto out;
1869         } else {
1870                 page_bufs = page_buffers(page);
1871                 if (!page_bufs) {
1872                         BUG();
1873                         goto out;
1874                 }
1875                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1876                                        NULL, bget_one);
1877         }
1878         /*
1879          * We need to release the page lock before we start the
1880          * journal, so grab a reference so the page won't disappear
1881          * out from under us.
1882          */
1883         get_page(page);
1884         unlock_page(page);
1885
1886         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1887                                     ext4_writepage_trans_blocks(inode));
1888         if (IS_ERR(handle)) {
1889                 ret = PTR_ERR(handle);
1890                 put_page(page);
1891                 goto out_no_pagelock;
1892         }
1893         BUG_ON(!ext4_handle_valid(handle));
1894
1895         lock_page(page);
1896         put_page(page);
1897         if (page->mapping != mapping) {
1898                 /* The page got truncated from under us */
1899                 ext4_journal_stop(handle);
1900                 ret = 0;
1901                 goto out;
1902         }
1903
1904         if (inline_data) {
1905                 ret = ext4_mark_inode_dirty(handle, inode);
1906         } else {
1907                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1908                                              do_journal_get_write_access);
1909
1910                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1911                                              write_end_fn);
1912         }
1913         if (ret == 0)
1914                 ret = err;
1915         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1916         err = ext4_journal_stop(handle);
1917         if (!ret)
1918                 ret = err;
1919
1920         if (!ext4_has_inline_data(inode))
1921                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1922                                        NULL, bput_one);
1923         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1924 out:
1925         unlock_page(page);
1926 out_no_pagelock:
1927         brelse(inode_bh);
1928         return ret;
1929 }
1930
1931 /*
1932  * Note that we don't need to start a transaction unless we're journaling data
1933  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1934  * need to file the inode to the transaction's list in ordered mode because if
1935  * we are writing back data added by write(), the inode is already there and if
1936  * we are writing back data modified via mmap(), no one guarantees in which
1937  * transaction the data will hit the disk. In case we are journaling data, we
1938  * cannot start transaction directly because transaction start ranks above page
1939  * lock so we have to do some magic.
1940  *
1941  * This function can get called via...
1942  *   - ext4_writepages after taking page lock (have journal handle)
1943  *   - journal_submit_inode_data_buffers (no journal handle)
1944  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1945  *   - grab_page_cache when doing write_begin (have journal handle)
1946  *
1947  * We don't do any block allocation in this function. If we have page with
1948  * multiple blocks we need to write those buffer_heads that are mapped. This
1949  * is important for mmaped based write. So if we do with blocksize 1K
1950  * truncate(f, 1024);
1951  * a = mmap(f, 0, 4096);
1952  * a[0] = 'a';
1953  * truncate(f, 4096);
1954  * we have in the page first buffer_head mapped via page_mkwrite call back
1955  * but other buffer_heads would be unmapped but dirty (dirty done via the
1956  * do_wp_page). So writepage should write the first block. If we modify
1957  * the mmap area beyond 1024 we will again get a page_fault and the
1958  * page_mkwrite callback will do the block allocation and mark the
1959  * buffer_heads mapped.
1960  *
1961  * We redirty the page if we have any buffer_heads that is either delay or
1962  * unwritten in the page.
1963  *
1964  * We can get recursively called as show below.
1965  *
1966  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1967  *              ext4_writepage()
1968  *
1969  * But since we don't do any block allocation we should not deadlock.
1970  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1971  */
1972 static int ext4_writepage(struct page *page,
1973                           struct writeback_control *wbc)
1974 {
1975         int ret = 0;
1976         loff_t size;
1977         unsigned int len;
1978         struct buffer_head *page_bufs = NULL;
1979         struct inode *inode = page->mapping->host;
1980         struct ext4_io_submit io_submit;
1981         bool keep_towrite = false;
1982
1983         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1984                 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1985                 unlock_page(page);
1986                 return -EIO;
1987         }
1988
1989         trace_ext4_writepage(page);
1990         size = i_size_read(inode);
1991         if (page->index == size >> PAGE_SHIFT &&
1992             !ext4_verity_in_progress(inode))
1993                 len = size & ~PAGE_MASK;
1994         else
1995                 len = PAGE_SIZE;
1996
1997         page_bufs = page_buffers(page);
1998         /*
1999          * We cannot do block allocation or other extent handling in this
2000          * function. If there are buffers needing that, we have to redirty
2001          * the page. But we may reach here when we do a journal commit via
2002          * journal_submit_inode_data_buffers() and in that case we must write
2003          * allocated buffers to achieve data=ordered mode guarantees.
2004          *
2005          * Also, if there is only one buffer per page (the fs block
2006          * size == the page size), if one buffer needs block
2007          * allocation or needs to modify the extent tree to clear the
2008          * unwritten flag, we know that the page can't be written at
2009          * all, so we might as well refuse the write immediately.
2010          * Unfortunately if the block size != page size, we can't as
2011          * easily detect this case using ext4_walk_page_buffers(), but
2012          * for the extremely common case, this is an optimization that
2013          * skips a useless round trip through ext4_bio_write_page().
2014          */
2015         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2016                                    ext4_bh_delay_or_unwritten)) {
2017                 redirty_page_for_writepage(wbc, page);
2018                 if ((current->flags & PF_MEMALLOC) ||
2019                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2020                         /*
2021                          * For memory cleaning there's no point in writing only
2022                          * some buffers. So just bail out. Warn if we came here
2023                          * from direct reclaim.
2024                          */
2025                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2026                                                         == PF_MEMALLOC);
2027                         unlock_page(page);
2028                         return 0;
2029                 }
2030                 keep_towrite = true;
2031         }
2032
2033         if (PageChecked(page) && ext4_should_journal_data(inode))
2034                 /*
2035                  * It's mmapped pagecache.  Add buffers and journal it.  There
2036                  * doesn't seem much point in redirtying the page here.
2037                  */
2038                 return __ext4_journalled_writepage(page, len);
2039
2040         ext4_io_submit_init(&io_submit, wbc);
2041         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2042         if (!io_submit.io_end) {
2043                 redirty_page_for_writepage(wbc, page);
2044                 unlock_page(page);
2045                 return -ENOMEM;
2046         }
2047         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2048         ext4_io_submit(&io_submit);
2049         /* Drop io_end reference we got from init */
2050         ext4_put_io_end_defer(io_submit.io_end);
2051         return ret;
2052 }
2053
2054 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2055 {
2056         int len;
2057         loff_t size;
2058         int err;
2059
2060         BUG_ON(page->index != mpd->first_page);
2061         clear_page_dirty_for_io(page);
2062         /*
2063          * We have to be very careful here!  Nothing protects writeback path
2064          * against i_size changes and the page can be writeably mapped into
2065          * page tables. So an application can be growing i_size and writing
2066          * data through mmap while writeback runs. clear_page_dirty_for_io()
2067          * write-protects our page in page tables and the page cannot get
2068          * written to again until we release page lock. So only after
2069          * clear_page_dirty_for_io() we are safe to sample i_size for
2070          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2071          * on the barrier provided by TestClearPageDirty in
2072          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2073          * after page tables are updated.
2074          */
2075         size = i_size_read(mpd->inode);
2076         if (page->index == size >> PAGE_SHIFT &&
2077             !ext4_verity_in_progress(mpd->inode))
2078                 len = size & ~PAGE_MASK;
2079         else
2080                 len = PAGE_SIZE;
2081         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2082         if (!err)
2083                 mpd->wbc->nr_to_write--;
2084         mpd->first_page++;
2085
2086         return err;
2087 }
2088
2089 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2090
2091 /*
2092  * mballoc gives us at most this number of blocks...
2093  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2094  * The rest of mballoc seems to handle chunks up to full group size.
2095  */
2096 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2097
2098 /*
2099  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2100  *
2101  * @mpd - extent of blocks
2102  * @lblk - logical number of the block in the file
2103  * @bh - buffer head we want to add to the extent
2104  *
2105  * The function is used to collect contig. blocks in the same state. If the
2106  * buffer doesn't require mapping for writeback and we haven't started the
2107  * extent of buffers to map yet, the function returns 'true' immediately - the
2108  * caller can write the buffer right away. Otherwise the function returns true
2109  * if the block has been added to the extent, false if the block couldn't be
2110  * added.
2111  */
2112 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2113                                    struct buffer_head *bh)
2114 {
2115         struct ext4_map_blocks *map = &mpd->map;
2116
2117         /* Buffer that doesn't need mapping for writeback? */
2118         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2119             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2120                 /* So far no extent to map => we write the buffer right away */
2121                 if (map->m_len == 0)
2122                         return true;
2123                 return false;
2124         }
2125
2126         /* First block in the extent? */
2127         if (map->m_len == 0) {
2128                 /* We cannot map unless handle is started... */
2129                 if (!mpd->do_map)
2130                         return false;
2131                 map->m_lblk = lblk;
2132                 map->m_len = 1;
2133                 map->m_flags = bh->b_state & BH_FLAGS;
2134                 return true;
2135         }
2136
2137         /* Don't go larger than mballoc is willing to allocate */
2138         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2139                 return false;
2140
2141         /* Can we merge the block to our big extent? */
2142         if (lblk == map->m_lblk + map->m_len &&
2143             (bh->b_state & BH_FLAGS) == map->m_flags) {
2144                 map->m_len++;
2145                 return true;
2146         }
2147         return false;
2148 }
2149
2150 /*
2151  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2152  *
2153  * @mpd - extent of blocks for mapping
2154  * @head - the first buffer in the page
2155  * @bh - buffer we should start processing from
2156  * @lblk - logical number of the block in the file corresponding to @bh
2157  *
2158  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2159  * the page for IO if all buffers in this page were mapped and there's no
2160  * accumulated extent of buffers to map or add buffers in the page to the
2161  * extent of buffers to map. The function returns 1 if the caller can continue
2162  * by processing the next page, 0 if it should stop adding buffers to the
2163  * extent to map because we cannot extend it anymore. It can also return value
2164  * < 0 in case of error during IO submission.
2165  */
2166 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2167                                    struct buffer_head *head,
2168                                    struct buffer_head *bh,
2169                                    ext4_lblk_t lblk)
2170 {
2171         struct inode *inode = mpd->inode;
2172         int err;
2173         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2174                                                         >> inode->i_blkbits;
2175
2176         if (ext4_verity_in_progress(inode))
2177                 blocks = EXT_MAX_BLOCKS;
2178
2179         do {
2180                 BUG_ON(buffer_locked(bh));
2181
2182                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2183                         /* Found extent to map? */
2184                         if (mpd->map.m_len)
2185                                 return 0;
2186                         /* Buffer needs mapping and handle is not started? */
2187                         if (!mpd->do_map)
2188                                 return 0;
2189                         /* Everything mapped so far and we hit EOF */
2190                         break;
2191                 }
2192         } while (lblk++, (bh = bh->b_this_page) != head);
2193         /* So far everything mapped? Submit the page for IO. */
2194         if (mpd->map.m_len == 0) {
2195                 err = mpage_submit_page(mpd, head->b_page);
2196                 if (err < 0)
2197                         return err;
2198         }
2199         if (lblk >= blocks) {
2200                 mpd->scanned_until_end = 1;
2201                 return 0;
2202         }
2203         return 1;
2204 }
2205
2206 /*
2207  * mpage_process_page - update page buffers corresponding to changed extent and
2208  *                     may submit fully mapped page for IO
2209  *
2210  * @mpd         - description of extent to map, on return next extent to map
2211  * @m_lblk      - logical block mapping.
2212  * @m_pblk      - corresponding physical mapping.
2213  * @map_bh      - determines on return whether this page requires any further
2214  *                mapping or not.
2215  * Scan given page buffers corresponding to changed extent and update buffer
2216  * state according to new extent state.
2217  * We map delalloc buffers to their physical location, clear unwritten bits.
2218  * If the given page is not fully mapped, we update @map to the next extent in
2219  * the given page that needs mapping & return @map_bh as true.
2220  */
2221 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2222                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2223                               bool *map_bh)
2224 {
2225         struct buffer_head *head, *bh;
2226         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2227         ext4_lblk_t lblk = *m_lblk;
2228         ext4_fsblk_t pblock = *m_pblk;
2229         int err = 0;
2230         int blkbits = mpd->inode->i_blkbits;
2231         ssize_t io_end_size = 0;
2232         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2233
2234         bh = head = page_buffers(page);
2235         do {
2236                 if (lblk < mpd->map.m_lblk)
2237                         continue;
2238                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2239                         /*
2240                          * Buffer after end of mapped extent.
2241                          * Find next buffer in the page to map.
2242                          */
2243                         mpd->map.m_len = 0;
2244                         mpd->map.m_flags = 0;
2245                         io_end_vec->size += io_end_size;
2246                         io_end_size = 0;
2247
2248                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2249                         if (err > 0)
2250                                 err = 0;
2251                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2252                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2253                                 if (IS_ERR(io_end_vec)) {
2254                                         err = PTR_ERR(io_end_vec);
2255                                         goto out;
2256                                 }
2257                                 io_end_vec->offset = mpd->map.m_lblk << blkbits;
2258                         }
2259                         *map_bh = true;
2260                         goto out;
2261                 }
2262                 if (buffer_delay(bh)) {
2263                         clear_buffer_delay(bh);
2264                         bh->b_blocknr = pblock++;
2265                 }
2266                 clear_buffer_unwritten(bh);
2267                 io_end_size += (1 << blkbits);
2268         } while (lblk++, (bh = bh->b_this_page) != head);
2269
2270         io_end_vec->size += io_end_size;
2271         io_end_size = 0;
2272         *map_bh = false;
2273 out:
2274         *m_lblk = lblk;
2275         *m_pblk = pblock;
2276         return err;
2277 }
2278
2279 /*
2280  * mpage_map_buffers - update buffers corresponding to changed extent and
2281  *                     submit fully mapped pages for IO
2282  *
2283  * @mpd - description of extent to map, on return next extent to map
2284  *
2285  * Scan buffers corresponding to changed extent (we expect corresponding pages
2286  * to be already locked) and update buffer state according to new extent state.
2287  * We map delalloc buffers to their physical location, clear unwritten bits,
2288  * and mark buffers as uninit when we perform writes to unwritten extents
2289  * and do extent conversion after IO is finished. If the last page is not fully
2290  * mapped, we update @map to the next extent in the last page that needs
2291  * mapping. Otherwise we submit the page for IO.
2292  */
2293 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2294 {
2295         struct pagevec pvec;
2296         int nr_pages, i;
2297         struct inode *inode = mpd->inode;
2298         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2299         pgoff_t start, end;
2300         ext4_lblk_t lblk;
2301         ext4_fsblk_t pblock;
2302         int err;
2303         bool map_bh = false;
2304
2305         start = mpd->map.m_lblk >> bpp_bits;
2306         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2307         lblk = start << bpp_bits;
2308         pblock = mpd->map.m_pblk;
2309
2310         pagevec_init(&pvec);
2311         while (start <= end) {
2312                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2313                                                 &start, end);
2314                 if (nr_pages == 0)
2315                         break;
2316                 for (i = 0; i < nr_pages; i++) {
2317                         struct page *page = pvec.pages[i];
2318
2319                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2320                                                  &map_bh);
2321                         /*
2322                          * If map_bh is true, means page may require further bh
2323                          * mapping, or maybe the page was submitted for IO.
2324                          * So we return to call further extent mapping.
2325                          */
2326                         if (err < 0 || map_bh)
2327                                 goto out;
2328                         /* Page fully mapped - let IO run! */
2329                         err = mpage_submit_page(mpd, page);
2330                         if (err < 0)
2331                                 goto out;
2332                 }
2333                 pagevec_release(&pvec);
2334         }
2335         /* Extent fully mapped and matches with page boundary. We are done. */
2336         mpd->map.m_len = 0;
2337         mpd->map.m_flags = 0;
2338         return 0;
2339 out:
2340         pagevec_release(&pvec);
2341         return err;
2342 }
2343
2344 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2345 {
2346         struct inode *inode = mpd->inode;
2347         struct ext4_map_blocks *map = &mpd->map;
2348         int get_blocks_flags;
2349         int err, dioread_nolock;
2350
2351         trace_ext4_da_write_pages_extent(inode, map);
2352         /*
2353          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2354          * to convert an unwritten extent to be initialized (in the case
2355          * where we have written into one or more preallocated blocks).  It is
2356          * possible that we're going to need more metadata blocks than
2357          * previously reserved. However we must not fail because we're in
2358          * writeback and there is nothing we can do about it so it might result
2359          * in data loss.  So use reserved blocks to allocate metadata if
2360          * possible.
2361          *
2362          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2363          * the blocks in question are delalloc blocks.  This indicates
2364          * that the blocks and quotas has already been checked when
2365          * the data was copied into the page cache.
2366          */
2367         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2368                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2369                            EXT4_GET_BLOCKS_IO_SUBMIT;
2370         dioread_nolock = ext4_should_dioread_nolock(inode);
2371         if (dioread_nolock)
2372                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2373         if (map->m_flags & BIT(BH_Delay))
2374                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2375
2376         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2377         if (err < 0)
2378                 return err;
2379         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2380                 if (!mpd->io_submit.io_end->handle &&
2381                     ext4_handle_valid(handle)) {
2382                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2383                         handle->h_rsv_handle = NULL;
2384                 }
2385                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2386         }
2387
2388         BUG_ON(map->m_len == 0);
2389         return 0;
2390 }
2391
2392 /*
2393  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2394  *                               mpd->len and submit pages underlying it for IO
2395  *
2396  * @handle - handle for journal operations
2397  * @mpd - extent to map
2398  * @give_up_on_write - we set this to true iff there is a fatal error and there
2399  *                     is no hope of writing the data. The caller should discard
2400  *                     dirty pages to avoid infinite loops.
2401  *
2402  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2403  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2404  * them to initialized or split the described range from larger unwritten
2405  * extent. Note that we need not map all the described range since allocation
2406  * can return less blocks or the range is covered by more unwritten extents. We
2407  * cannot map more because we are limited by reserved transaction credits. On
2408  * the other hand we always make sure that the last touched page is fully
2409  * mapped so that it can be written out (and thus forward progress is
2410  * guaranteed). After mapping we submit all mapped pages for IO.
2411  */
2412 static int mpage_map_and_submit_extent(handle_t *handle,
2413                                        struct mpage_da_data *mpd,
2414                                        bool *give_up_on_write)
2415 {
2416         struct inode *inode = mpd->inode;
2417         struct ext4_map_blocks *map = &mpd->map;
2418         int err;
2419         loff_t disksize;
2420         int progress = 0;
2421         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2422         struct ext4_io_end_vec *io_end_vec;
2423
2424         io_end_vec = ext4_alloc_io_end_vec(io_end);
2425         if (IS_ERR(io_end_vec))
2426                 return PTR_ERR(io_end_vec);
2427         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2428         do {
2429                 err = mpage_map_one_extent(handle, mpd);
2430                 if (err < 0) {
2431                         struct super_block *sb = inode->i_sb;
2432
2433                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2434                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2435                                 goto invalidate_dirty_pages;
2436                         /*
2437                          * Let the uper layers retry transient errors.
2438                          * In the case of ENOSPC, if ext4_count_free_blocks()
2439                          * is non-zero, a commit should free up blocks.
2440                          */
2441                         if ((err == -ENOMEM) ||
2442                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2443                                 if (progress)
2444                                         goto update_disksize;
2445                                 return err;
2446                         }
2447                         ext4_msg(sb, KERN_CRIT,
2448                                  "Delayed block allocation failed for "
2449                                  "inode %lu at logical offset %llu with"
2450                                  " max blocks %u with error %d",
2451                                  inode->i_ino,
2452                                  (unsigned long long)map->m_lblk,
2453                                  (unsigned)map->m_len, -err);
2454                         ext4_msg(sb, KERN_CRIT,
2455                                  "This should not happen!! Data will "
2456                                  "be lost\n");
2457                         if (err == -ENOSPC)
2458                                 ext4_print_free_blocks(inode);
2459                 invalidate_dirty_pages:
2460                         *give_up_on_write = true;
2461                         return err;
2462                 }
2463                 progress = 1;
2464                 /*
2465                  * Update buffer state, submit mapped pages, and get us new
2466                  * extent to map
2467                  */
2468                 err = mpage_map_and_submit_buffers(mpd);
2469                 if (err < 0)
2470                         goto update_disksize;
2471         } while (map->m_len);
2472
2473 update_disksize:
2474         /*
2475          * Update on-disk size after IO is submitted.  Races with
2476          * truncate are avoided by checking i_size under i_data_sem.
2477          */
2478         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2479         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2480                 int err2;
2481                 loff_t i_size;
2482
2483                 down_write(&EXT4_I(inode)->i_data_sem);
2484                 i_size = i_size_read(inode);
2485                 if (disksize > i_size)
2486                         disksize = i_size;
2487                 if (disksize > EXT4_I(inode)->i_disksize)
2488                         EXT4_I(inode)->i_disksize = disksize;
2489                 up_write(&EXT4_I(inode)->i_data_sem);
2490                 err2 = ext4_mark_inode_dirty(handle, inode);
2491                 if (err2) {
2492                         ext4_error_err(inode->i_sb, -err2,
2493                                        "Failed to mark inode %lu dirty",
2494                                        inode->i_ino);
2495                 }
2496                 if (!err)
2497                         err = err2;
2498         }
2499         return err;
2500 }
2501
2502 /*
2503  * Calculate the total number of credits to reserve for one writepages
2504  * iteration. This is called from ext4_writepages(). We map an extent of
2505  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2506  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2507  * bpp - 1 blocks in bpp different extents.
2508  */
2509 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2510 {
2511         int bpp = ext4_journal_blocks_per_page(inode);
2512
2513         return ext4_meta_trans_blocks(inode,
2514                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2515 }
2516
2517 /*
2518  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2519  *                               and underlying extent to map
2520  *
2521  * @mpd - where to look for pages
2522  *
2523  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2524  * IO immediately. When we find a page which isn't mapped we start accumulating
2525  * extent of buffers underlying these pages that needs mapping (formed by
2526  * either delayed or unwritten buffers). We also lock the pages containing
2527  * these buffers. The extent found is returned in @mpd structure (starting at
2528  * mpd->lblk with length mpd->len blocks).
2529  *
2530  * Note that this function can attach bios to one io_end structure which are
2531  * neither logically nor physically contiguous. Although it may seem as an
2532  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2533  * case as we need to track IO to all buffers underlying a page in one io_end.
2534  */
2535 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2536 {
2537         struct address_space *mapping = mpd->inode->i_mapping;
2538         struct pagevec pvec;
2539         unsigned int nr_pages;
2540         long left = mpd->wbc->nr_to_write;
2541         pgoff_t index = mpd->first_page;
2542         pgoff_t end = mpd->last_page;
2543         xa_mark_t tag;
2544         int i, err = 0;
2545         int blkbits = mpd->inode->i_blkbits;
2546         ext4_lblk_t lblk;
2547         struct buffer_head *head;
2548
2549         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2550                 tag = PAGECACHE_TAG_TOWRITE;
2551         else
2552                 tag = PAGECACHE_TAG_DIRTY;
2553
2554         pagevec_init(&pvec);
2555         mpd->map.m_len = 0;
2556         mpd->next_page = index;
2557         while (index <= end) {
2558                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2559                                 tag);
2560                 if (nr_pages == 0)
2561                         break;
2562
2563                 for (i = 0; i < nr_pages; i++) {
2564                         struct page *page = pvec.pages[i];
2565
2566                         /*
2567                          * Accumulated enough dirty pages? This doesn't apply
2568                          * to WB_SYNC_ALL mode. For integrity sync we have to
2569                          * keep going because someone may be concurrently
2570                          * dirtying pages, and we might have synced a lot of
2571                          * newly appeared dirty pages, but have not synced all
2572                          * of the old dirty pages.
2573                          */
2574                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2575                                 goto out;
2576
2577                         /* If we can't merge this page, we are done. */
2578                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2579                                 goto out;
2580
2581                         lock_page(page);
2582                         /*
2583                          * If the page is no longer dirty, or its mapping no
2584                          * longer corresponds to inode we are writing (which
2585                          * means it has been truncated or invalidated), or the
2586                          * page is already under writeback and we are not doing
2587                          * a data integrity writeback, skip the page
2588                          */
2589                         if (!PageDirty(page) ||
2590                             (PageWriteback(page) &&
2591                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2592                             unlikely(page->mapping != mapping)) {
2593                                 unlock_page(page);
2594                                 continue;
2595                         }
2596
2597                         wait_on_page_writeback(page);
2598                         BUG_ON(PageWriteback(page));
2599
2600                         if (mpd->map.m_len == 0)
2601                                 mpd->first_page = page->index;
2602                         mpd->next_page = page->index + 1;
2603                         /* Add all dirty buffers to mpd */
2604                         lblk = ((ext4_lblk_t)page->index) <<
2605                                 (PAGE_SHIFT - blkbits);
2606                         head = page_buffers(page);
2607                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2608                         if (err <= 0)
2609                                 goto out;
2610                         err = 0;
2611                         left--;
2612                 }
2613                 pagevec_release(&pvec);
2614                 cond_resched();
2615         }
2616         mpd->scanned_until_end = 1;
2617         return 0;
2618 out:
2619         pagevec_release(&pvec);
2620         return err;
2621 }
2622
2623 static int ext4_writepages(struct address_space *mapping,
2624                            struct writeback_control *wbc)
2625 {
2626         pgoff_t writeback_index = 0;
2627         long nr_to_write = wbc->nr_to_write;
2628         int range_whole = 0;
2629         int cycled = 1;
2630         handle_t *handle = NULL;
2631         struct mpage_da_data mpd;
2632         struct inode *inode = mapping->host;
2633         int needed_blocks, rsv_blocks = 0, ret = 0;
2634         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2635         struct blk_plug plug;
2636         bool give_up_on_write = false;
2637
2638         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2639                 return -EIO;
2640
2641         percpu_down_read(&sbi->s_writepages_rwsem);
2642         trace_ext4_writepages(inode, wbc);
2643
2644         /*
2645          * No pages to write? This is mainly a kludge to avoid starting
2646          * a transaction for special inodes like journal inode on last iput()
2647          * because that could violate lock ordering on umount
2648          */
2649         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2650                 goto out_writepages;
2651
2652         if (ext4_should_journal_data(inode)) {
2653                 ret = generic_writepages(mapping, wbc);
2654                 goto out_writepages;
2655         }
2656
2657         /*
2658          * If the filesystem has aborted, it is read-only, so return
2659          * right away instead of dumping stack traces later on that
2660          * will obscure the real source of the problem.  We test
2661          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2662          * the latter could be true if the filesystem is mounted
2663          * read-only, and in that case, ext4_writepages should
2664          * *never* be called, so if that ever happens, we would want
2665          * the stack trace.
2666          */
2667         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2668                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2669                 ret = -EROFS;
2670                 goto out_writepages;
2671         }
2672
2673         /*
2674          * If we have inline data and arrive here, it means that
2675          * we will soon create the block for the 1st page, so
2676          * we'd better clear the inline data here.
2677          */
2678         if (ext4_has_inline_data(inode)) {
2679                 /* Just inode will be modified... */
2680                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2681                 if (IS_ERR(handle)) {
2682                         ret = PTR_ERR(handle);
2683                         goto out_writepages;
2684                 }
2685                 BUG_ON(ext4_test_inode_state(inode,
2686                                 EXT4_STATE_MAY_INLINE_DATA));
2687                 ext4_destroy_inline_data(handle, inode);
2688                 ext4_journal_stop(handle);
2689         }
2690
2691         if (ext4_should_dioread_nolock(inode)) {
2692                 /*
2693                  * We may need to convert up to one extent per block in
2694                  * the page and we may dirty the inode.
2695                  */
2696                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2697                                                 PAGE_SIZE >> inode->i_blkbits);
2698         }
2699
2700         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2701                 range_whole = 1;
2702
2703         if (wbc->range_cyclic) {
2704                 writeback_index = mapping->writeback_index;
2705                 if (writeback_index)
2706                         cycled = 0;
2707                 mpd.first_page = writeback_index;
2708                 mpd.last_page = -1;
2709         } else {
2710                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2711                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2712         }
2713
2714         mpd.inode = inode;
2715         mpd.wbc = wbc;
2716         ext4_io_submit_init(&mpd.io_submit, wbc);
2717 retry:
2718         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2719                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2720         blk_start_plug(&plug);
2721
2722         /*
2723          * First writeback pages that don't need mapping - we can avoid
2724          * starting a transaction unnecessarily and also avoid being blocked
2725          * in the block layer on device congestion while having transaction
2726          * started.
2727          */
2728         mpd.do_map = 0;
2729         mpd.scanned_until_end = 0;
2730         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2731         if (!mpd.io_submit.io_end) {
2732                 ret = -ENOMEM;
2733                 goto unplug;
2734         }
2735         ret = mpage_prepare_extent_to_map(&mpd);
2736         /* Unlock pages we didn't use */
2737         mpage_release_unused_pages(&mpd, false);
2738         /* Submit prepared bio */
2739         ext4_io_submit(&mpd.io_submit);
2740         ext4_put_io_end_defer(mpd.io_submit.io_end);
2741         mpd.io_submit.io_end = NULL;
2742         if (ret < 0)
2743                 goto unplug;
2744
2745         while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2746                 /* For each extent of pages we use new io_end */
2747                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2748                 if (!mpd.io_submit.io_end) {
2749                         ret = -ENOMEM;
2750                         break;
2751                 }
2752
2753                 /*
2754                  * We have two constraints: We find one extent to map and we
2755                  * must always write out whole page (makes a difference when
2756                  * blocksize < pagesize) so that we don't block on IO when we
2757                  * try to write out the rest of the page. Journalled mode is
2758                  * not supported by delalloc.
2759                  */
2760                 BUG_ON(ext4_should_journal_data(inode));
2761                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2762
2763                 /* start a new transaction */
2764                 handle = ext4_journal_start_with_reserve(inode,
2765                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2766                 if (IS_ERR(handle)) {
2767                         ret = PTR_ERR(handle);
2768                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2769                                "%ld pages, ino %lu; err %d", __func__,
2770                                 wbc->nr_to_write, inode->i_ino, ret);
2771                         /* Release allocated io_end */
2772                         ext4_put_io_end(mpd.io_submit.io_end);
2773                         mpd.io_submit.io_end = NULL;
2774                         break;
2775                 }
2776                 mpd.do_map = 1;
2777
2778                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2779                 ret = mpage_prepare_extent_to_map(&mpd);
2780                 if (!ret && mpd.map.m_len)
2781                         ret = mpage_map_and_submit_extent(handle, &mpd,
2782                                         &give_up_on_write);
2783                 /*
2784                  * Caution: If the handle is synchronous,
2785                  * ext4_journal_stop() can wait for transaction commit
2786                  * to finish which may depend on writeback of pages to
2787                  * complete or on page lock to be released.  In that
2788                  * case, we have to wait until after after we have
2789                  * submitted all the IO, released page locks we hold,
2790                  * and dropped io_end reference (for extent conversion
2791                  * to be able to complete) before stopping the handle.
2792                  */
2793                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2794                         ext4_journal_stop(handle);
2795                         handle = NULL;
2796                         mpd.do_map = 0;
2797                 }
2798                 /* Unlock pages we didn't use */
2799                 mpage_release_unused_pages(&mpd, give_up_on_write);
2800                 /* Submit prepared bio */
2801                 ext4_io_submit(&mpd.io_submit);
2802
2803                 /*
2804                  * Drop our io_end reference we got from init. We have
2805                  * to be careful and use deferred io_end finishing if
2806                  * we are still holding the transaction as we can
2807                  * release the last reference to io_end which may end
2808                  * up doing unwritten extent conversion.
2809                  */
2810                 if (handle) {
2811                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2812                         ext4_journal_stop(handle);
2813                 } else
2814                         ext4_put_io_end(mpd.io_submit.io_end);
2815                 mpd.io_submit.io_end = NULL;
2816
2817                 if (ret == -ENOSPC && sbi->s_journal) {
2818                         /*
2819                          * Commit the transaction which would
2820                          * free blocks released in the transaction
2821                          * and try again
2822                          */
2823                         jbd2_journal_force_commit_nested(sbi->s_journal);
2824                         ret = 0;
2825                         continue;
2826                 }
2827                 /* Fatal error - ENOMEM, EIO... */
2828                 if (ret)
2829                         break;
2830         }
2831 unplug:
2832         blk_finish_plug(&plug);
2833         if (!ret && !cycled && wbc->nr_to_write > 0) {
2834                 cycled = 1;
2835                 mpd.last_page = writeback_index - 1;
2836                 mpd.first_page = 0;
2837                 goto retry;
2838         }
2839
2840         /* Update index */
2841         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2842                 /*
2843                  * Set the writeback_index so that range_cyclic
2844                  * mode will write it back later
2845                  */
2846                 mapping->writeback_index = mpd.first_page;
2847
2848 out_writepages:
2849         trace_ext4_writepages_result(inode, wbc, ret,
2850                                      nr_to_write - wbc->nr_to_write);
2851         percpu_up_read(&sbi->s_writepages_rwsem);
2852         return ret;
2853 }
2854
2855 static int ext4_dax_writepages(struct address_space *mapping,
2856                                struct writeback_control *wbc)
2857 {
2858         int ret;
2859         long nr_to_write = wbc->nr_to_write;
2860         struct inode *inode = mapping->host;
2861         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2862
2863         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2864                 return -EIO;
2865
2866         percpu_down_read(&sbi->s_writepages_rwsem);
2867         trace_ext4_writepages(inode, wbc);
2868
2869         ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2870         trace_ext4_writepages_result(inode, wbc, ret,
2871                                      nr_to_write - wbc->nr_to_write);
2872         percpu_up_read(&sbi->s_writepages_rwsem);
2873         return ret;
2874 }
2875
2876 static int ext4_nonda_switch(struct super_block *sb)
2877 {
2878         s64 free_clusters, dirty_clusters;
2879         struct ext4_sb_info *sbi = EXT4_SB(sb);
2880
2881         /*
2882          * switch to non delalloc mode if we are running low
2883          * on free block. The free block accounting via percpu
2884          * counters can get slightly wrong with percpu_counter_batch getting
2885          * accumulated on each CPU without updating global counters
2886          * Delalloc need an accurate free block accounting. So switch
2887          * to non delalloc when we are near to error range.
2888          */
2889         free_clusters =
2890                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2891         dirty_clusters =
2892                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2893         /*
2894          * Start pushing delalloc when 1/2 of free blocks are dirty.
2895          */
2896         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2897                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2898
2899         if (2 * free_clusters < 3 * dirty_clusters ||
2900             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2901                 /*
2902                  * free block count is less than 150% of dirty blocks
2903                  * or free blocks is less than watermark
2904                  */
2905                 return 1;
2906         }
2907         return 0;
2908 }
2909
2910 /* We always reserve for an inode update; the superblock could be there too */
2911 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2912 {
2913         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2914                 return 1;
2915
2916         if (pos + len <= 0x7fffffffULL)
2917                 return 1;
2918
2919         /* We might need to update the superblock to set LARGE_FILE */
2920         return 2;
2921 }
2922
2923 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2924                                loff_t pos, unsigned len, unsigned flags,
2925                                struct page **pagep, void **fsdata)
2926 {
2927         int ret, retries = 0;
2928         struct page *page;
2929         pgoff_t index;
2930         struct inode *inode = mapping->host;
2931         handle_t *handle;
2932
2933         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2934                 return -EIO;
2935
2936         index = pos >> PAGE_SHIFT;
2937
2938         if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2939             ext4_verity_in_progress(inode)) {
2940                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2941                 return ext4_write_begin(file, mapping, pos,
2942                                         len, flags, pagep, fsdata);
2943         }
2944         *fsdata = (void *)0;
2945         trace_ext4_da_write_begin(inode, pos, len, flags);
2946
2947         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2948                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2949                                                       pos, len, flags,
2950                                                       pagep, fsdata);
2951                 if (ret < 0)
2952                         return ret;
2953                 if (ret == 1)
2954                         return 0;
2955         }
2956
2957         /*
2958          * grab_cache_page_write_begin() can take a long time if the
2959          * system is thrashing due to memory pressure, or if the page
2960          * is being written back.  So grab it first before we start
2961          * the transaction handle.  This also allows us to allocate
2962          * the page (if needed) without using GFP_NOFS.
2963          */
2964 retry_grab:
2965         page = grab_cache_page_write_begin(mapping, index, flags);
2966         if (!page)
2967                 return -ENOMEM;
2968         unlock_page(page);
2969
2970         /*
2971          * With delayed allocation, we don't log the i_disksize update
2972          * if there is delayed block allocation. But we still need
2973          * to journalling the i_disksize update if writes to the end
2974          * of file which has an already mapped buffer.
2975          */
2976 retry_journal:
2977         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2978                                 ext4_da_write_credits(inode, pos, len));
2979         if (IS_ERR(handle)) {
2980                 put_page(page);
2981                 return PTR_ERR(handle);
2982         }
2983
2984         lock_page(page);
2985         if (page->mapping != mapping) {
2986                 /* The page got truncated from under us */
2987                 unlock_page(page);
2988                 put_page(page);
2989                 ext4_journal_stop(handle);
2990                 goto retry_grab;
2991         }
2992         /* In case writeback began while the page was unlocked */
2993         wait_for_stable_page(page);
2994
2995 #ifdef CONFIG_FS_ENCRYPTION
2996         ret = ext4_block_write_begin(page, pos, len,
2997                                      ext4_da_get_block_prep);
2998 #else
2999         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3000 #endif
3001         if (ret < 0) {
3002                 unlock_page(page);
3003                 ext4_journal_stop(handle);
3004                 /*
3005                  * block_write_begin may have instantiated a few blocks
3006                  * outside i_size.  Trim these off again. Don't need
3007                  * i_size_read because we hold i_mutex.
3008                  */
3009                 if (pos + len > inode->i_size)
3010                         ext4_truncate_failed_write(inode);
3011
3012                 if (ret == -ENOSPC &&
3013                     ext4_should_retry_alloc(inode->i_sb, &retries))
3014                         goto retry_journal;
3015
3016                 put_page(page);
3017                 return ret;
3018         }
3019
3020         *pagep = page;
3021         return ret;
3022 }
3023
3024 /*
3025  * Check if we should update i_disksize
3026  * when write to the end of file but not require block allocation
3027  */
3028 static int ext4_da_should_update_i_disksize(struct page *page,
3029                                             unsigned long offset)
3030 {
3031         struct buffer_head *bh;
3032         struct inode *inode = page->mapping->host;
3033         unsigned int idx;
3034         int i;
3035
3036         bh = page_buffers(page);
3037         idx = offset >> inode->i_blkbits;
3038
3039         for (i = 0; i < idx; i++)
3040                 bh = bh->b_this_page;
3041
3042         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3043                 return 0;
3044         return 1;
3045 }
3046
3047 static int ext4_da_write_end(struct file *file,
3048                              struct address_space *mapping,
3049                              loff_t pos, unsigned len, unsigned copied,
3050                              struct page *page, void *fsdata)
3051 {
3052         struct inode *inode = mapping->host;
3053         int ret = 0, ret2;
3054         handle_t *handle = ext4_journal_current_handle();
3055         loff_t new_i_size;
3056         unsigned long start, end;
3057         int write_mode = (int)(unsigned long)fsdata;
3058
3059         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3060                 return ext4_write_end(file, mapping, pos,
3061                                       len, copied, page, fsdata);
3062
3063         trace_ext4_da_write_end(inode, pos, len, copied);
3064         start = pos & (PAGE_SIZE - 1);
3065         end = start + copied - 1;
3066
3067         /*
3068          * generic_write_end() will run mark_inode_dirty() if i_size
3069          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3070          * into that.
3071          */
3072         new_i_size = pos + copied;
3073         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3074                 if (ext4_has_inline_data(inode) ||
3075                     ext4_da_should_update_i_disksize(page, end)) {
3076                         ext4_update_i_disksize(inode, new_i_size);
3077                         /* We need to mark inode dirty even if
3078                          * new_i_size is less that inode->i_size
3079                          * bu greater than i_disksize.(hint delalloc)
3080                          */
3081                         ret = ext4_mark_inode_dirty(handle, inode);
3082                 }
3083         }
3084
3085         if (write_mode != CONVERT_INLINE_DATA &&
3086             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3087             ext4_has_inline_data(inode))
3088                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3089                                                      page);
3090         else
3091                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3092                                                         page, fsdata);
3093
3094         copied = ret2;
3095         if (ret2 < 0)
3096                 ret = ret2;
3097         ret2 = ext4_journal_stop(handle);
3098         if (unlikely(ret2 && !ret))
3099                 ret = ret2;
3100
3101         return ret ? ret : copied;
3102 }
3103
3104 /*
3105  * Force all delayed allocation blocks to be allocated for a given inode.
3106  */
3107 int ext4_alloc_da_blocks(struct inode *inode)
3108 {
3109         trace_ext4_alloc_da_blocks(inode);
3110
3111         if (!EXT4_I(inode)->i_reserved_data_blocks)
3112                 return 0;
3113
3114         /*
3115          * We do something simple for now.  The filemap_flush() will
3116          * also start triggering a write of the data blocks, which is
3117          * not strictly speaking necessary (and for users of
3118          * laptop_mode, not even desirable).  However, to do otherwise
3119          * would require replicating code paths in:
3120          *
3121          * ext4_writepages() ->
3122          *    write_cache_pages() ---> (via passed in callback function)
3123          *        __mpage_da_writepage() -->
3124          *           mpage_add_bh_to_extent()
3125          *           mpage_da_map_blocks()
3126          *
3127          * The problem is that write_cache_pages(), located in
3128          * mm/page-writeback.c, marks pages clean in preparation for
3129          * doing I/O, which is not desirable if we're not planning on
3130          * doing I/O at all.
3131          *
3132          * We could call write_cache_pages(), and then redirty all of
3133          * the pages by calling redirty_page_for_writepage() but that
3134          * would be ugly in the extreme.  So instead we would need to
3135          * replicate parts of the code in the above functions,
3136          * simplifying them because we wouldn't actually intend to
3137          * write out the pages, but rather only collect contiguous
3138          * logical block extents, call the multi-block allocator, and
3139          * then update the buffer heads with the block allocations.
3140          *
3141          * For now, though, we'll cheat by calling filemap_flush(),
3142          * which will map the blocks, and start the I/O, but not
3143          * actually wait for the I/O to complete.
3144          */
3145         return filemap_flush(inode->i_mapping);
3146 }
3147
3148 /*
3149  * bmap() is special.  It gets used by applications such as lilo and by
3150  * the swapper to find the on-disk block of a specific piece of data.
3151  *
3152  * Naturally, this is dangerous if the block concerned is still in the
3153  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3154  * filesystem and enables swap, then they may get a nasty shock when the
3155  * data getting swapped to that swapfile suddenly gets overwritten by
3156  * the original zero's written out previously to the journal and
3157  * awaiting writeback in the kernel's buffer cache.
3158  *
3159  * So, if we see any bmap calls here on a modified, data-journaled file,
3160  * take extra steps to flush any blocks which might be in the cache.
3161  */
3162 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3163 {
3164         struct inode *inode = mapping->host;
3165         journal_t *journal;
3166         int err;
3167
3168         /*
3169          * We can get here for an inline file via the FIBMAP ioctl
3170          */
3171         if (ext4_has_inline_data(inode))
3172                 return 0;
3173
3174         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3175                         test_opt(inode->i_sb, DELALLOC)) {
3176                 /*
3177                  * With delalloc we want to sync the file
3178                  * so that we can make sure we allocate
3179                  * blocks for file
3180                  */
3181                 filemap_write_and_wait(mapping);
3182         }
3183
3184         if (EXT4_JOURNAL(inode) &&
3185             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3186                 /*
3187                  * This is a REALLY heavyweight approach, but the use of
3188                  * bmap on dirty files is expected to be extremely rare:
3189                  * only if we run lilo or swapon on a freshly made file
3190                  * do we expect this to happen.
3191                  *
3192                  * (bmap requires CAP_SYS_RAWIO so this does not
3193                  * represent an unprivileged user DOS attack --- we'd be
3194                  * in trouble if mortal users could trigger this path at
3195                  * will.)
3196                  *
3197                  * NB. EXT4_STATE_JDATA is not set on files other than
3198                  * regular files.  If somebody wants to bmap a directory
3199                  * or symlink and gets confused because the buffer
3200                  * hasn't yet been flushed to disk, they deserve
3201                  * everything they get.
3202                  */
3203
3204                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3205                 journal = EXT4_JOURNAL(inode);
3206                 jbd2_journal_lock_updates(journal);
3207                 err = jbd2_journal_flush(journal);
3208                 jbd2_journal_unlock_updates(journal);
3209
3210                 if (err)
3211                         return 0;
3212         }
3213
3214         return iomap_bmap(mapping, block, &ext4_iomap_ops);
3215 }
3216
3217 static int ext4_readpage(struct file *file, struct page *page)
3218 {
3219         int ret = -EAGAIN;
3220         struct inode *inode = page->mapping->host;
3221
3222         trace_ext4_readpage(page);
3223
3224         if (ext4_has_inline_data(inode))
3225                 ret = ext4_readpage_inline(inode, page);
3226
3227         if (ret == -EAGAIN)
3228                 return ext4_mpage_readpages(inode, NULL, page);
3229
3230         return ret;
3231 }
3232
3233 static void ext4_readahead(struct readahead_control *rac)
3234 {
3235         struct inode *inode = rac->mapping->host;
3236
3237         /* If the file has inline data, no need to do readahead. */
3238         if (ext4_has_inline_data(inode))
3239                 return;
3240
3241         ext4_mpage_readpages(inode, rac, NULL);
3242 }
3243
3244 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3245                                 unsigned int length)
3246 {
3247         trace_ext4_invalidatepage(page, offset, length);
3248
3249         /* No journalling happens on data buffers when this function is used */
3250         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3251
3252         block_invalidatepage(page, offset, length);
3253 }
3254
3255 static int __ext4_journalled_invalidatepage(struct page *page,
3256                                             unsigned int offset,
3257                                             unsigned int length)
3258 {
3259         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3260
3261         trace_ext4_journalled_invalidatepage(page, offset, length);
3262
3263         /*
3264          * If it's a full truncate we just forget about the pending dirtying
3265          */
3266         if (offset == 0 && length == PAGE_SIZE)
3267                 ClearPageChecked(page);
3268
3269         return jbd2_journal_invalidatepage(journal, page, offset, length);
3270 }
3271
3272 /* Wrapper for aops... */
3273 static void ext4_journalled_invalidatepage(struct page *page,
3274                                            unsigned int offset,
3275                                            unsigned int length)
3276 {
3277         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3278 }
3279
3280 static int ext4_releasepage(struct page *page, gfp_t wait)
3281 {
3282         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3283
3284         trace_ext4_releasepage(page);
3285
3286         /* Page has dirty journalled data -> cannot release */
3287         if (PageChecked(page))
3288                 return 0;
3289         if (journal)
3290                 return jbd2_journal_try_to_free_buffers(journal, page);
3291         else
3292                 return try_to_free_buffers(page);
3293 }
3294
3295 static bool ext4_inode_datasync_dirty(struct inode *inode)
3296 {
3297         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3298
3299         if (journal)
3300                 return !jbd2_transaction_committed(journal,
3301                                         EXT4_I(inode)->i_datasync_tid);
3302         /* Any metadata buffers to write? */
3303         if (!list_empty(&inode->i_mapping->private_list))
3304                 return true;
3305         return inode->i_state & I_DIRTY_DATASYNC;
3306 }
3307
3308 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3309                            struct ext4_map_blocks *map, loff_t offset,
3310                            loff_t length)
3311 {
3312         u8 blkbits = inode->i_blkbits;
3313
3314         /*
3315          * Writes that span EOF might trigger an I/O size update on completion,
3316          * so consider them to be dirty for the purpose of O_DSYNC, even if
3317          * there is no other metadata changes being made or are pending.
3318          */
3319         iomap->flags = 0;
3320         if (ext4_inode_datasync_dirty(inode) ||
3321             offset + length > i_size_read(inode))
3322                 iomap->flags |= IOMAP_F_DIRTY;
3323
3324         if (map->m_flags & EXT4_MAP_NEW)
3325                 iomap->flags |= IOMAP_F_NEW;
3326
3327         iomap->bdev = inode->i_sb->s_bdev;
3328         iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3329         iomap->offset = (u64) map->m_lblk << blkbits;
3330         iomap->length = (u64) map->m_len << blkbits;
3331
3332         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3333             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3334                 iomap->flags |= IOMAP_F_MERGED;
3335
3336         /*
3337          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3338          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3339          * set. In order for any allocated unwritten extents to be converted
3340          * into written extents correctly within the ->end_io() handler, we
3341          * need to ensure that the iomap->type is set appropriately. Hence, the
3342          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3343          * been set first.
3344          */
3345         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3346                 iomap->type = IOMAP_UNWRITTEN;
3347                 iomap->addr = (u64) map->m_pblk << blkbits;
3348         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3349                 iomap->type = IOMAP_MAPPED;
3350                 iomap->addr = (u64) map->m_pblk << blkbits;
3351         } else {
3352                 iomap->type = IOMAP_HOLE;
3353                 iomap->addr = IOMAP_NULL_ADDR;
3354         }
3355 }
3356
3357 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3358                             unsigned int flags)
3359 {
3360         handle_t *handle;
3361         u8 blkbits = inode->i_blkbits;
3362         int ret, dio_credits, m_flags = 0, retries = 0;
3363
3364         /*
3365          * Trim the mapping request to the maximum value that we can map at
3366          * once for direct I/O.
3367          */
3368         if (map->m_len > DIO_MAX_BLOCKS)
3369                 map->m_len = DIO_MAX_BLOCKS;
3370         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3371
3372 retry:
3373         /*
3374          * Either we allocate blocks and then don't get an unwritten extent, so
3375          * in that case we have reserved enough credits. Or, the blocks are
3376          * already allocated and unwritten. In that case, the extent conversion
3377          * fits into the credits as well.
3378          */
3379         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3380         if (IS_ERR(handle))
3381                 return PTR_ERR(handle);
3382
3383         /*
3384          * DAX and direct I/O are the only two operations that are currently
3385          * supported with IOMAP_WRITE.
3386          */
3387         WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3388         if (IS_DAX(inode))
3389                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3390         /*
3391          * We use i_size instead of i_disksize here because delalloc writeback
3392          * can complete at any point during the I/O and subsequently push the
3393          * i_disksize out to i_size. This could be beyond where direct I/O is
3394          * happening and thus expose allocated blocks to direct I/O reads.
3395          */
3396         else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3397                 m_flags = EXT4_GET_BLOCKS_CREATE;
3398         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3399                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3400
3401         ret = ext4_map_blocks(handle, inode, map, m_flags);
3402
3403         /*
3404          * We cannot fill holes in indirect tree based inodes as that could
3405          * expose stale data in the case of a crash. Use the magic error code
3406          * to fallback to buffered I/O.
3407          */
3408         if (!m_flags && !ret)
3409                 ret = -ENOTBLK;
3410
3411         ext4_journal_stop(handle);
3412         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3413                 goto retry;
3414
3415         return ret;
3416 }
3417
3418
3419 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3420                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3421 {
3422         int ret;
3423         struct ext4_map_blocks map;
3424         u8 blkbits = inode->i_blkbits;
3425
3426         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3427                 return -EINVAL;
3428
3429         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3430                 return -ERANGE;
3431
3432         /*
3433          * Calculate the first and last logical blocks respectively.
3434          */
3435         map.m_lblk = offset >> blkbits;
3436         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3437                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3438
3439         if (flags & IOMAP_WRITE)
3440                 ret = ext4_iomap_alloc(inode, &map, flags);
3441         else
3442                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3443
3444         if (ret < 0)
3445                 return ret;
3446
3447         ext4_set_iomap(inode, iomap, &map, offset, length);
3448
3449         return 0;
3450 }
3451
3452 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3453                 loff_t length, unsigned flags, struct iomap *iomap,
3454                 struct iomap *srcmap)
3455 {
3456         int ret;
3457
3458         /*
3459          * Even for writes we don't need to allocate blocks, so just pretend
3460          * we are reading to save overhead of starting a transaction.
3461          */
3462         flags &= ~IOMAP_WRITE;
3463         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3464         WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3465         return ret;
3466 }
3467
3468 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3469                           ssize_t written, unsigned flags, struct iomap *iomap)
3470 {
3471         /*
3472          * Check to see whether an error occurred while writing out the data to
3473          * the allocated blocks. If so, return the magic error code so that we
3474          * fallback to buffered I/O and attempt to complete the remainder of
3475          * the I/O. Any blocks that may have been allocated in preparation for
3476          * the direct I/O will be reused during buffered I/O.
3477          */
3478         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3479                 return -ENOTBLK;
3480
3481         return 0;
3482 }
3483
3484 const struct iomap_ops ext4_iomap_ops = {
3485         .iomap_begin            = ext4_iomap_begin,
3486         .iomap_end              = ext4_iomap_end,
3487 };
3488
3489 const struct iomap_ops ext4_iomap_overwrite_ops = {
3490         .iomap_begin            = ext4_iomap_overwrite_begin,
3491         .iomap_end              = ext4_iomap_end,
3492 };
3493
3494 static bool ext4_iomap_is_delalloc(struct inode *inode,
3495                                    struct ext4_map_blocks *map)
3496 {
3497         struct extent_status es;
3498         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3499
3500         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3501                                   map->m_lblk, end, &es);
3502
3503         if (!es.es_len || es.es_lblk > end)
3504                 return false;
3505
3506         if (es.es_lblk > map->m_lblk) {
3507                 map->m_len = es.es_lblk - map->m_lblk;
3508                 return false;
3509         }
3510
3511         offset = map->m_lblk - es.es_lblk;
3512         map->m_len = es.es_len - offset;
3513
3514         return true;
3515 }
3516
3517 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3518                                    loff_t length, unsigned int flags,
3519                                    struct iomap *iomap, struct iomap *srcmap)
3520 {
3521         int ret;
3522         bool delalloc = false;
3523         struct ext4_map_blocks map;
3524         u8 blkbits = inode->i_blkbits;
3525
3526         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3527                 return -EINVAL;
3528
3529         if (ext4_has_inline_data(inode)) {
3530                 ret = ext4_inline_data_iomap(inode, iomap);
3531                 if (ret != -EAGAIN) {
3532                         if (ret == 0 && offset >= iomap->length)
3533                                 ret = -ENOENT;
3534                         return ret;
3535                 }
3536         }
3537
3538         /*
3539          * Calculate the first and last logical block respectively.
3540          */
3541         map.m_lblk = offset >> blkbits;
3542         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3543                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3544
3545         /*
3546          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3547          * So handle it here itself instead of querying ext4_map_blocks().
3548          * Since ext4_map_blocks() will warn about it and will return
3549          * -EIO error.
3550          */
3551         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3552                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3553
3554                 if (offset >= sbi->s_bitmap_maxbytes) {
3555                         map.m_flags = 0;
3556                         goto set_iomap;
3557                 }
3558         }
3559
3560         ret = ext4_map_blocks(NULL, inode, &map, 0);
3561         if (ret < 0)
3562                 return ret;
3563         if (ret == 0)
3564                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3565
3566 set_iomap:
3567         ext4_set_iomap(inode, iomap, &map, offset, length);
3568         if (delalloc && iomap->type == IOMAP_HOLE)
3569                 iomap->type = IOMAP_DELALLOC;
3570
3571         return 0;
3572 }
3573
3574 const struct iomap_ops ext4_iomap_report_ops = {
3575         .iomap_begin = ext4_iomap_begin_report,
3576 };
3577
3578 /*
3579  * Pages can be marked dirty completely asynchronously from ext4's journalling
3580  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3581  * much here because ->set_page_dirty is called under VFS locks.  The page is
3582  * not necessarily locked.
3583  *
3584  * We cannot just dirty the page and leave attached buffers clean, because the
3585  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3586  * or jbddirty because all the journalling code will explode.
3587  *
3588  * So what we do is to mark the page "pending dirty" and next time writepage
3589  * is called, propagate that into the buffers appropriately.
3590  */
3591 static int ext4_journalled_set_page_dirty(struct page *page)
3592 {
3593         SetPageChecked(page);
3594         return __set_page_dirty_nobuffers(page);
3595 }
3596
3597 static int ext4_set_page_dirty(struct page *page)
3598 {
3599         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3600         WARN_ON_ONCE(!page_has_buffers(page));
3601         return __set_page_dirty_buffers(page);
3602 }
3603
3604 static const struct address_space_operations ext4_aops = {
3605         .readpage               = ext4_readpage,
3606         .readahead              = ext4_readahead,
3607         .writepage              = ext4_writepage,
3608         .writepages             = ext4_writepages,
3609         .write_begin            = ext4_write_begin,
3610         .write_end              = ext4_write_end,
3611         .set_page_dirty         = ext4_set_page_dirty,
3612         .bmap                   = ext4_bmap,
3613         .invalidatepage         = ext4_invalidatepage,
3614         .releasepage            = ext4_releasepage,
3615         .direct_IO              = noop_direct_IO,
3616         .migratepage            = buffer_migrate_page,
3617         .is_partially_uptodate  = block_is_partially_uptodate,
3618         .error_remove_page      = generic_error_remove_page,
3619 };
3620
3621 static const struct address_space_operations ext4_journalled_aops = {
3622         .readpage               = ext4_readpage,
3623         .readahead              = ext4_readahead,
3624         .writepage              = ext4_writepage,
3625         .writepages             = ext4_writepages,
3626         .write_begin            = ext4_write_begin,
3627         .write_end              = ext4_journalled_write_end,
3628         .set_page_dirty         = ext4_journalled_set_page_dirty,
3629         .bmap                   = ext4_bmap,
3630         .invalidatepage         = ext4_journalled_invalidatepage,
3631         .releasepage            = ext4_releasepage,
3632         .direct_IO              = noop_direct_IO,
3633         .is_partially_uptodate  = block_is_partially_uptodate,
3634         .error_remove_page      = generic_error_remove_page,
3635 };
3636
3637 static const struct address_space_operations ext4_da_aops = {
3638         .readpage               = ext4_readpage,
3639         .readahead              = ext4_readahead,
3640         .writepage              = ext4_writepage,
3641         .writepages             = ext4_writepages,
3642         .write_begin            = ext4_da_write_begin,
3643         .write_end              = ext4_da_write_end,
3644         .set_page_dirty         = ext4_set_page_dirty,
3645         .bmap                   = ext4_bmap,
3646         .invalidatepage         = ext4_invalidatepage,
3647         .releasepage            = ext4_releasepage,
3648         .direct_IO              = noop_direct_IO,
3649         .migratepage            = buffer_migrate_page,
3650         .is_partially_uptodate  = block_is_partially_uptodate,
3651         .error_remove_page      = generic_error_remove_page,
3652 };
3653
3654 static const struct address_space_operations ext4_dax_aops = {
3655         .writepages             = ext4_dax_writepages,
3656         .direct_IO              = noop_direct_IO,
3657         .set_page_dirty         = noop_set_page_dirty,
3658         .bmap                   = ext4_bmap,
3659         .invalidatepage         = noop_invalidatepage,
3660 };
3661
3662 void ext4_set_aops(struct inode *inode)
3663 {
3664         switch (ext4_inode_journal_mode(inode)) {
3665         case EXT4_INODE_ORDERED_DATA_MODE:
3666         case EXT4_INODE_WRITEBACK_DATA_MODE:
3667                 break;
3668         case EXT4_INODE_JOURNAL_DATA_MODE:
3669                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3670                 return;
3671         default:
3672                 BUG();
3673         }
3674         if (IS_DAX(inode))
3675                 inode->i_mapping->a_ops = &ext4_dax_aops;
3676         else if (test_opt(inode->i_sb, DELALLOC))
3677                 inode->i_mapping->a_ops = &ext4_da_aops;
3678         else
3679                 inode->i_mapping->a_ops = &ext4_aops;
3680 }
3681
3682 static int __ext4_block_zero_page_range(handle_t *handle,
3683                 struct address_space *mapping, loff_t from, loff_t length)
3684 {
3685         ext4_fsblk_t index = from >> PAGE_SHIFT;
3686         unsigned offset = from & (PAGE_SIZE-1);
3687         unsigned blocksize, pos;
3688         ext4_lblk_t iblock;
3689         struct inode *inode = mapping->host;
3690         struct buffer_head *bh;
3691         struct page *page;
3692         int err = 0;
3693
3694         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3695                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3696         if (!page)
3697                 return -ENOMEM;
3698
3699         blocksize = inode->i_sb->s_blocksize;
3700
3701         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3702
3703         if (!page_has_buffers(page))
3704                 create_empty_buffers(page, blocksize, 0);
3705
3706         /* Find the buffer that contains "offset" */
3707         bh = page_buffers(page);
3708         pos = blocksize;
3709         while (offset >= pos) {
3710                 bh = bh->b_this_page;
3711                 iblock++;
3712                 pos += blocksize;
3713         }
3714         if (buffer_freed(bh)) {
3715                 BUFFER_TRACE(bh, "freed: skip");
3716                 goto unlock;
3717         }
3718         if (!buffer_mapped(bh)) {
3719                 BUFFER_TRACE(bh, "unmapped");
3720                 ext4_get_block(inode, iblock, bh, 0);
3721                 /* unmapped? It's a hole - nothing to do */
3722                 if (!buffer_mapped(bh)) {
3723                         BUFFER_TRACE(bh, "still unmapped");
3724                         goto unlock;
3725                 }
3726         }
3727
3728         /* Ok, it's mapped. Make sure it's up-to-date */
3729         if (PageUptodate(page))
3730                 set_buffer_uptodate(bh);
3731
3732         if (!buffer_uptodate(bh)) {
3733                 err = -EIO;
3734                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3735                 wait_on_buffer(bh);
3736                 /* Uhhuh. Read error. Complain and punt. */
3737                 if (!buffer_uptodate(bh))
3738                         goto unlock;
3739                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3740                         /* We expect the key to be set. */
3741                         BUG_ON(!fscrypt_has_encryption_key(inode));
3742                         err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3743                                                                bh_offset(bh));
3744                         if (err) {
3745                                 clear_buffer_uptodate(bh);
3746                                 goto unlock;
3747                         }
3748                 }
3749         }
3750         if (ext4_should_journal_data(inode)) {
3751                 BUFFER_TRACE(bh, "get write access");
3752                 err = ext4_journal_get_write_access(handle, bh);
3753                 if (err)
3754                         goto unlock;
3755         }
3756         zero_user(page, offset, length);
3757         BUFFER_TRACE(bh, "zeroed end of block");
3758
3759         if (ext4_should_journal_data(inode)) {
3760                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3761         } else {
3762                 err = 0;
3763                 mark_buffer_dirty(bh);
3764                 if (ext4_should_order_data(inode))
3765                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3766                                         length);
3767         }
3768
3769 unlock:
3770         unlock_page(page);
3771         put_page(page);
3772         return err;
3773 }
3774
3775 /*
3776  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3777  * starting from file offset 'from'.  The range to be zero'd must
3778  * be contained with in one block.  If the specified range exceeds
3779  * the end of the block it will be shortened to end of the block
3780  * that cooresponds to 'from'
3781  */
3782 static int ext4_block_zero_page_range(handle_t *handle,
3783                 struct address_space *mapping, loff_t from, loff_t length)
3784 {
3785         struct inode *inode = mapping->host;
3786         unsigned offset = from & (PAGE_SIZE-1);
3787         unsigned blocksize = inode->i_sb->s_blocksize;
3788         unsigned max = blocksize - (offset & (blocksize - 1));
3789
3790         /*
3791          * correct length if it does not fall between
3792          * 'from' and the end of the block
3793          */
3794         if (length > max || length < 0)
3795                 length = max;
3796
3797         if (IS_DAX(inode)) {
3798                 return iomap_zero_range(inode, from, length, NULL,
3799                                         &ext4_iomap_ops);
3800         }
3801         return __ext4_block_zero_page_range(handle, mapping, from, length);
3802 }
3803
3804 /*
3805  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3806  * up to the end of the block which corresponds to `from'.
3807  * This required during truncate. We need to physically zero the tail end
3808  * of that block so it doesn't yield old data if the file is later grown.
3809  */
3810 static int ext4_block_truncate_page(handle_t *handle,
3811                 struct address_space *mapping, loff_t from)
3812 {
3813         unsigned offset = from & (PAGE_SIZE-1);
3814         unsigned length;
3815         unsigned blocksize;
3816         struct inode *inode = mapping->host;
3817
3818         /* If we are processing an encrypted inode during orphan list handling */
3819         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3820                 return 0;
3821
3822         blocksize = inode->i_sb->s_blocksize;
3823         length = blocksize - (offset & (blocksize - 1));
3824
3825         return ext4_block_zero_page_range(handle, mapping, from, length);
3826 }
3827
3828 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3829                              loff_t lstart, loff_t length)
3830 {
3831         struct super_block *sb = inode->i_sb;
3832         struct address_space *mapping = inode->i_mapping;
3833         unsigned partial_start, partial_end;
3834         ext4_fsblk_t start, end;
3835         loff_t byte_end = (lstart + length - 1);
3836         int err = 0;
3837
3838         partial_start = lstart & (sb->s_blocksize - 1);
3839         partial_end = byte_end & (sb->s_blocksize - 1);
3840
3841         start = lstart >> sb->s_blocksize_bits;
3842         end = byte_end >> sb->s_blocksize_bits;
3843
3844         /* Handle partial zero within the single block */
3845         if (start == end &&
3846             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3847                 err = ext4_block_zero_page_range(handle, mapping,
3848                                                  lstart, length);
3849                 return err;
3850         }
3851         /* Handle partial zero out on the start of the range */
3852         if (partial_start) {
3853                 err = ext4_block_zero_page_range(handle, mapping,
3854                                                  lstart, sb->s_blocksize);
3855                 if (err)
3856                         return err;
3857         }
3858         /* Handle partial zero out on the end of the range */
3859         if (partial_end != sb->s_blocksize - 1)
3860                 err = ext4_block_zero_page_range(handle, mapping,
3861                                                  byte_end - partial_end,
3862                                                  partial_end + 1);
3863         return err;
3864 }
3865
3866 int ext4_can_truncate(struct inode *inode)
3867 {
3868         if (S_ISREG(inode->i_mode))
3869                 return 1;
3870         if (S_ISDIR(inode->i_mode))
3871                 return 1;
3872         if (S_ISLNK(inode->i_mode))
3873                 return !ext4_inode_is_fast_symlink(inode);
3874         return 0;
3875 }
3876
3877 /*
3878  * We have to make sure i_disksize gets properly updated before we truncate
3879  * page cache due to hole punching or zero range. Otherwise i_disksize update
3880  * can get lost as it may have been postponed to submission of writeback but
3881  * that will never happen after we truncate page cache.
3882  */
3883 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3884                                       loff_t len)
3885 {
3886         handle_t *handle;
3887         int ret;
3888
3889         loff_t size = i_size_read(inode);
3890
3891         WARN_ON(!inode_is_locked(inode));
3892         if (offset > size || offset + len < size)
3893                 return 0;
3894
3895         if (EXT4_I(inode)->i_disksize >= size)
3896                 return 0;
3897
3898         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3899         if (IS_ERR(handle))
3900                 return PTR_ERR(handle);
3901         ext4_update_i_disksize(inode, size);
3902         ret = ext4_mark_inode_dirty(handle, inode);
3903         ext4_journal_stop(handle);
3904
3905         return ret;
3906 }
3907
3908 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3909 {
3910         up_write(&ei->i_mmap_sem);
3911         schedule();
3912         down_write(&ei->i_mmap_sem);
3913 }
3914
3915 int ext4_break_layouts(struct inode *inode)
3916 {
3917         struct ext4_inode_info *ei = EXT4_I(inode);
3918         struct page *page;
3919         int error;
3920
3921         if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3922                 return -EINVAL;
3923
3924         do {
3925                 page = dax_layout_busy_page(inode->i_mapping);
3926                 if (!page)
3927                         return 0;
3928
3929                 error = ___wait_var_event(&page->_refcount,
3930                                 atomic_read(&page->_refcount) == 1,
3931                                 TASK_INTERRUPTIBLE, 0, 0,
3932                                 ext4_wait_dax_page(ei));
3933         } while (error == 0);
3934
3935         return error;
3936 }
3937
3938 /*
3939  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3940  * associated with the given offset and length
3941  *
3942  * @inode:  File inode
3943  * @offset: The offset where the hole will begin
3944  * @len:    The length of the hole
3945  *
3946  * Returns: 0 on success or negative on failure
3947  */
3948
3949 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3950 {
3951         struct super_block *sb = inode->i_sb;
3952         ext4_lblk_t first_block, stop_block;
3953         struct address_space *mapping = inode->i_mapping;
3954         loff_t first_block_offset, last_block_offset;
3955         handle_t *handle;
3956         unsigned int credits;
3957         int ret = 0, ret2 = 0;
3958
3959         trace_ext4_punch_hole(inode, offset, length, 0);
3960
3961         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3962         if (ext4_has_inline_data(inode)) {
3963                 down_write(&EXT4_I(inode)->i_mmap_sem);
3964                 ret = ext4_convert_inline_data(inode);
3965                 up_write(&EXT4_I(inode)->i_mmap_sem);
3966                 if (ret)
3967                         return ret;
3968         }
3969
3970         /*
3971          * Write out all dirty pages to avoid race conditions
3972          * Then release them.
3973          */
3974         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3975                 ret = filemap_write_and_wait_range(mapping, offset,
3976                                                    offset + length - 1);
3977                 if (ret)
3978                         return ret;
3979         }
3980
3981         inode_lock(inode);
3982
3983         /* No need to punch hole beyond i_size */
3984         if (offset >= inode->i_size)
3985                 goto out_mutex;
3986
3987         /*
3988          * If the hole extends beyond i_size, set the hole
3989          * to end after the page that contains i_size
3990          */
3991         if (offset + length > inode->i_size) {
3992                 length = inode->i_size +
3993                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3994                    offset;
3995         }
3996
3997         if (offset & (sb->s_blocksize - 1) ||
3998             (offset + length) & (sb->s_blocksize - 1)) {
3999                 /*
4000                  * Attach jinode to inode for jbd2 if we do any zeroing of
4001                  * partial block
4002                  */
4003                 ret = ext4_inode_attach_jinode(inode);
4004                 if (ret < 0)
4005                         goto out_mutex;
4006
4007         }
4008
4009         /* Wait all existing dio workers, newcomers will block on i_mutex */
4010         inode_dio_wait(inode);
4011
4012         /*
4013          * Prevent page faults from reinstantiating pages we have released from
4014          * page cache.
4015          */
4016         down_write(&EXT4_I(inode)->i_mmap_sem);
4017
4018         ret = ext4_break_layouts(inode);
4019         if (ret)
4020                 goto out_dio;
4021
4022         first_block_offset = round_up(offset, sb->s_blocksize);
4023         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4024
4025         /* Now release the pages and zero block aligned part of pages*/
4026         if (last_block_offset > first_block_offset) {
4027                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4028                 if (ret)
4029                         goto out_dio;
4030                 truncate_pagecache_range(inode, first_block_offset,
4031                                          last_block_offset);
4032         }
4033
4034         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4035                 credits = ext4_writepage_trans_blocks(inode);
4036         else
4037                 credits = ext4_blocks_for_truncate(inode);
4038         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4039         if (IS_ERR(handle)) {
4040                 ret = PTR_ERR(handle);
4041                 ext4_std_error(sb, ret);
4042                 goto out_dio;
4043         }
4044
4045         ret = ext4_zero_partial_blocks(handle, inode, offset,
4046                                        length);
4047         if (ret)
4048                 goto out_stop;
4049
4050         first_block = (offset + sb->s_blocksize - 1) >>
4051                 EXT4_BLOCK_SIZE_BITS(sb);
4052         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4053
4054         /* If there are blocks to remove, do it */
4055         if (stop_block > first_block) {
4056
4057                 down_write(&EXT4_I(inode)->i_data_sem);
4058                 ext4_discard_preallocations(inode, 0);
4059
4060                 ret = ext4_es_remove_extent(inode, first_block,
4061                                             stop_block - first_block);
4062                 if (ret) {
4063                         up_write(&EXT4_I(inode)->i_data_sem);
4064                         goto out_stop;
4065                 }
4066
4067                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4068                         ret = ext4_ext_remove_space(inode, first_block,
4069                                                     stop_block - 1);
4070                 else
4071                         ret = ext4_ind_remove_space(handle, inode, first_block,
4072                                                     stop_block);
4073
4074                 up_write(&EXT4_I(inode)->i_data_sem);
4075         }
4076         if (IS_SYNC(inode))
4077                 ext4_handle_sync(handle);
4078
4079         inode->i_mtime = inode->i_ctime = current_time(inode);
4080         ret2 = ext4_mark_inode_dirty(handle, inode);
4081         if (unlikely(ret2))
4082                 ret = ret2;
4083         if (ret >= 0)
4084                 ext4_update_inode_fsync_trans(handle, inode, 1);
4085 out_stop:
4086         ext4_journal_stop(handle);
4087 out_dio:
4088         up_write(&EXT4_I(inode)->i_mmap_sem);
4089 out_mutex:
4090         inode_unlock(inode);
4091         return ret;
4092 }
4093
4094 int ext4_inode_attach_jinode(struct inode *inode)
4095 {
4096         struct ext4_inode_info *ei = EXT4_I(inode);
4097         struct jbd2_inode *jinode;
4098
4099         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4100                 return 0;
4101
4102         jinode = jbd2_alloc_inode(GFP_KERNEL);
4103         spin_lock(&inode->i_lock);
4104         if (!ei->jinode) {
4105                 if (!jinode) {
4106                         spin_unlock(&inode->i_lock);
4107                         return -ENOMEM;
4108                 }
4109                 ei->jinode = jinode;
4110                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4111                 jinode = NULL;
4112         }
4113         spin_unlock(&inode->i_lock);
4114         if (unlikely(jinode != NULL))
4115                 jbd2_free_inode(jinode);
4116         return 0;
4117 }
4118
4119 /*
4120  * ext4_truncate()
4121  *
4122  * We block out ext4_get_block() block instantiations across the entire
4123  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4124  * simultaneously on behalf of the same inode.
4125  *
4126  * As we work through the truncate and commit bits of it to the journal there
4127  * is one core, guiding principle: the file's tree must always be consistent on
4128  * disk.  We must be able to restart the truncate after a crash.
4129  *
4130  * The file's tree may be transiently inconsistent in memory (although it
4131  * probably isn't), but whenever we close off and commit a journal transaction,
4132  * the contents of (the filesystem + the journal) must be consistent and
4133  * restartable.  It's pretty simple, really: bottom up, right to left (although
4134  * left-to-right works OK too).
4135  *
4136  * Note that at recovery time, journal replay occurs *before* the restart of
4137  * truncate against the orphan inode list.
4138  *
4139  * The committed inode has the new, desired i_size (which is the same as
4140  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4141  * that this inode's truncate did not complete and it will again call
4142  * ext4_truncate() to have another go.  So there will be instantiated blocks
4143  * to the right of the truncation point in a crashed ext4 filesystem.  But
4144  * that's fine - as long as they are linked from the inode, the post-crash
4145  * ext4_truncate() run will find them and release them.
4146  */
4147 int ext4_truncate(struct inode *inode)
4148 {
4149         struct ext4_inode_info *ei = EXT4_I(inode);
4150         unsigned int credits;
4151         int err = 0, err2;
4152         handle_t *handle;
4153         struct address_space *mapping = inode->i_mapping;
4154
4155         /*
4156          * There is a possibility that we're either freeing the inode
4157          * or it's a completely new inode. In those cases we might not
4158          * have i_mutex locked because it's not necessary.
4159          */
4160         if (!(inode->i_state & (I_NEW|I_FREEING)))
4161                 WARN_ON(!inode_is_locked(inode));
4162         trace_ext4_truncate_enter(inode);
4163
4164         if (!ext4_can_truncate(inode))
4165                 goto out_trace;
4166
4167         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4168                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4169
4170         if (ext4_has_inline_data(inode)) {
4171                 int has_inline = 1;
4172
4173                 err = ext4_inline_data_truncate(inode, &has_inline);
4174                 if (err || has_inline)
4175                         goto out_trace;
4176         }
4177
4178         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4179         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4180                 if (ext4_inode_attach_jinode(inode) < 0)
4181                         goto out_trace;
4182         }
4183
4184         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4185                 credits = ext4_writepage_trans_blocks(inode);
4186         else
4187                 credits = ext4_blocks_for_truncate(inode);
4188
4189         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4190         if (IS_ERR(handle)) {
4191                 err = PTR_ERR(handle);
4192                 goto out_trace;
4193         }
4194
4195         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4196                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4197
4198         /*
4199          * We add the inode to the orphan list, so that if this
4200          * truncate spans multiple transactions, and we crash, we will
4201          * resume the truncate when the filesystem recovers.  It also
4202          * marks the inode dirty, to catch the new size.
4203          *
4204          * Implication: the file must always be in a sane, consistent
4205          * truncatable state while each transaction commits.
4206          */
4207         err = ext4_orphan_add(handle, inode);
4208         if (err)
4209                 goto out_stop;
4210
4211         down_write(&EXT4_I(inode)->i_data_sem);
4212
4213         ext4_discard_preallocations(inode, 0);
4214
4215         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4216                 err = ext4_ext_truncate(handle, inode);
4217         else
4218                 ext4_ind_truncate(handle, inode);
4219
4220         up_write(&ei->i_data_sem);
4221         if (err)
4222                 goto out_stop;
4223
4224         if (IS_SYNC(inode))
4225                 ext4_handle_sync(handle);
4226
4227 out_stop:
4228         /*
4229          * If this was a simple ftruncate() and the file will remain alive,
4230          * then we need to clear up the orphan record which we created above.
4231          * However, if this was a real unlink then we were called by
4232          * ext4_evict_inode(), and we allow that function to clean up the
4233          * orphan info for us.
4234          */
4235         if (inode->i_nlink)
4236                 ext4_orphan_del(handle, inode);
4237
4238         inode->i_mtime = inode->i_ctime = current_time(inode);
4239         err2 = ext4_mark_inode_dirty(handle, inode);
4240         if (unlikely(err2 && !err))
4241                 err = err2;
4242         ext4_journal_stop(handle);
4243
4244 out_trace:
4245         trace_ext4_truncate_exit(inode);
4246         return err;
4247 }
4248
4249 /*
4250  * ext4_get_inode_loc returns with an extra refcount against the inode's
4251  * underlying buffer_head on success. If 'in_mem' is true, we have all
4252  * data in memory that is needed to recreate the on-disk version of this
4253  * inode.
4254  */
4255 static int __ext4_get_inode_loc(struct inode *inode,
4256                                 struct ext4_iloc *iloc, int in_mem)
4257 {
4258         struct ext4_group_desc  *gdp;
4259         struct buffer_head      *bh;
4260         struct super_block      *sb = inode->i_sb;
4261         ext4_fsblk_t            block;
4262         struct blk_plug         plug;
4263         int                     inodes_per_block, inode_offset;
4264
4265         iloc->bh = NULL;
4266         if (inode->i_ino < EXT4_ROOT_INO ||
4267             inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4268                 return -EFSCORRUPTED;
4269
4270         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4271         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4272         if (!gdp)
4273                 return -EIO;
4274
4275         /*
4276          * Figure out the offset within the block group inode table
4277          */
4278         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4279         inode_offset = ((inode->i_ino - 1) %
4280                         EXT4_INODES_PER_GROUP(sb));
4281         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4282         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4283
4284         bh = sb_getblk(sb, block);
4285         if (unlikely(!bh))
4286                 return -ENOMEM;
4287         if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4288                 goto simulate_eio;
4289         if (!buffer_uptodate(bh)) {
4290                 lock_buffer(bh);
4291
4292                 /*
4293                  * If the buffer has the write error flag, we have failed
4294                  * to write out another inode in the same block.  In this
4295                  * case, we don't have to read the block because we may
4296                  * read the old inode data successfully.
4297                  */
4298                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4299                         set_buffer_uptodate(bh);
4300
4301                 if (buffer_uptodate(bh)) {
4302                         /* someone brought it uptodate while we waited */
4303                         unlock_buffer(bh);
4304                         goto has_buffer;
4305                 }
4306
4307                 /*
4308                  * If we have all information of the inode in memory and this
4309                  * is the only valid inode in the block, we need not read the
4310                  * block.
4311                  */
4312                 if (in_mem) {
4313                         struct buffer_head *bitmap_bh;
4314                         int i, start;
4315
4316                         start = inode_offset & ~(inodes_per_block - 1);
4317
4318                         /* Is the inode bitmap in cache? */
4319                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4320                         if (unlikely(!bitmap_bh))
4321                                 goto make_io;
4322
4323                         /*
4324                          * If the inode bitmap isn't in cache then the
4325                          * optimisation may end up performing two reads instead
4326                          * of one, so skip it.
4327                          */
4328                         if (!buffer_uptodate(bitmap_bh)) {
4329                                 brelse(bitmap_bh);
4330                                 goto make_io;
4331                         }
4332                         for (i = start; i < start + inodes_per_block; i++) {
4333                                 if (i == inode_offset)
4334                                         continue;
4335                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4336                                         break;
4337                         }
4338                         brelse(bitmap_bh);
4339                         if (i == start + inodes_per_block) {
4340                                 /* all other inodes are free, so skip I/O */
4341                                 memset(bh->b_data, 0, bh->b_size);
4342                                 set_buffer_uptodate(bh);
4343                                 unlock_buffer(bh);
4344                                 goto has_buffer;
4345                         }
4346                 }
4347
4348 make_io:
4349                 /*
4350                  * If we need to do any I/O, try to pre-readahead extra
4351                  * blocks from the inode table.
4352                  */
4353                 blk_start_plug(&plug);
4354                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4355                         ext4_fsblk_t b, end, table;
4356                         unsigned num;
4357                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4358
4359                         table = ext4_inode_table(sb, gdp);
4360                         /* s_inode_readahead_blks is always a power of 2 */
4361                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4362                         if (table > b)
4363                                 b = table;
4364                         end = b + ra_blks;
4365                         num = EXT4_INODES_PER_GROUP(sb);
4366                         if (ext4_has_group_desc_csum(sb))
4367                                 num -= ext4_itable_unused_count(sb, gdp);
4368                         table += num / inodes_per_block;
4369                         if (end > table)
4370                                 end = table;
4371                         while (b <= end)
4372                                 sb_breadahead_unmovable(sb, b++);
4373                 }
4374
4375                 /*
4376                  * There are other valid inodes in the buffer, this inode
4377                  * has in-inode xattrs, or we don't have this inode in memory.
4378                  * Read the block from disk.
4379                  */
4380                 trace_ext4_load_inode(inode);
4381                 get_bh(bh);
4382                 bh->b_end_io = end_buffer_read_sync;
4383                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4384                 blk_finish_plug(&plug);
4385                 wait_on_buffer(bh);
4386                 if (!buffer_uptodate(bh)) {
4387                 simulate_eio:
4388                         ext4_error_inode_block(inode, block, EIO,
4389                                                "unable to read itable block");
4390                         brelse(bh);
4391                         return -EIO;
4392                 }
4393         }
4394 has_buffer:
4395         iloc->bh = bh;
4396         return 0;
4397 }
4398
4399 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4400 {
4401         /* We have all inode data except xattrs in memory here. */
4402         return __ext4_get_inode_loc(inode, iloc,
4403                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4404 }
4405
4406 static bool ext4_should_enable_dax(struct inode *inode)
4407 {
4408         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4409
4410         if (test_opt2(inode->i_sb, DAX_NEVER))
4411                 return false;
4412         if (!S_ISREG(inode->i_mode))
4413                 return false;
4414         if (ext4_should_journal_data(inode))
4415                 return false;
4416         if (ext4_has_inline_data(inode))
4417                 return false;
4418         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4419                 return false;
4420         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4421                 return false;
4422         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4423                 return false;
4424         if (test_opt(inode->i_sb, DAX_ALWAYS))
4425                 return true;
4426
4427         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4428 }
4429
4430 void ext4_set_inode_flags(struct inode *inode, bool init)
4431 {
4432         unsigned int flags = EXT4_I(inode)->i_flags;
4433         unsigned int new_fl = 0;
4434
4435         WARN_ON_ONCE(IS_DAX(inode) && init);
4436
4437         if (flags & EXT4_SYNC_FL)
4438                 new_fl |= S_SYNC;
4439         if (flags & EXT4_APPEND_FL)
4440                 new_fl |= S_APPEND;
4441         if (flags & EXT4_IMMUTABLE_FL)
4442                 new_fl |= S_IMMUTABLE;
4443         if (flags & EXT4_NOATIME_FL)
4444                 new_fl |= S_NOATIME;
4445         if (flags & EXT4_DIRSYNC_FL)
4446                 new_fl |= S_DIRSYNC;
4447
4448         /* Because of the way inode_set_flags() works we must preserve S_DAX
4449          * here if already set. */
4450         new_fl |= (inode->i_flags & S_DAX);
4451         if (init && ext4_should_enable_dax(inode))
4452                 new_fl |= S_DAX;
4453
4454         if (flags & EXT4_ENCRYPT_FL)
4455                 new_fl |= S_ENCRYPTED;
4456         if (flags & EXT4_CASEFOLD_FL)
4457                 new_fl |= S_CASEFOLD;
4458         if (flags & EXT4_VERITY_FL)
4459                 new_fl |= S_VERITY;
4460         inode_set_flags(inode, new_fl,
4461                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4462                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4463 }
4464
4465 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4466                                   struct ext4_inode_info *ei)
4467 {
4468         blkcnt_t i_blocks ;
4469         struct inode *inode = &(ei->vfs_inode);
4470         struct super_block *sb = inode->i_sb;
4471
4472         if (ext4_has_feature_huge_file(sb)) {
4473                 /* we are using combined 48 bit field */
4474                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4475                                         le32_to_cpu(raw_inode->i_blocks_lo);
4476                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4477                         /* i_blocks represent file system block size */
4478                         return i_blocks  << (inode->i_blkbits - 9);
4479                 } else {
4480                         return i_blocks;
4481                 }
4482         } else {
4483                 return le32_to_cpu(raw_inode->i_blocks_lo);
4484         }
4485 }
4486
4487 static inline int ext4_iget_extra_inode(struct inode *inode,
4488                                          struct ext4_inode *raw_inode,
4489                                          struct ext4_inode_info *ei)
4490 {
4491         __le32 *magic = (void *)raw_inode +
4492                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4493
4494         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4495             EXT4_INODE_SIZE(inode->i_sb) &&
4496             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4497                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4498                 return ext4_find_inline_data_nolock(inode);
4499         } else
4500                 EXT4_I(inode)->i_inline_off = 0;
4501         return 0;
4502 }
4503
4504 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4505 {
4506         if (!ext4_has_feature_project(inode->i_sb))
4507                 return -EOPNOTSUPP;
4508         *projid = EXT4_I(inode)->i_projid;
4509         return 0;
4510 }
4511
4512 /*
4513  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4514  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4515  * set.
4516  */
4517 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4518 {
4519         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4520                 inode_set_iversion_raw(inode, val);
4521         else
4522                 inode_set_iversion_queried(inode, val);
4523 }
4524 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4525 {
4526         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4527                 return inode_peek_iversion_raw(inode);
4528         else
4529                 return inode_peek_iversion(inode);
4530 }
4531
4532 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4533                           ext4_iget_flags flags, const char *function,
4534                           unsigned int line)
4535 {
4536         struct ext4_iloc iloc;
4537         struct ext4_inode *raw_inode;
4538         struct ext4_inode_info *ei;
4539         struct inode *inode;
4540         journal_t *journal = EXT4_SB(sb)->s_journal;
4541         long ret;
4542         loff_t size;
4543         int block;
4544         uid_t i_uid;
4545         gid_t i_gid;
4546         projid_t i_projid;
4547
4548         if ((!(flags & EXT4_IGET_SPECIAL) &&
4549              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4550             (ino < EXT4_ROOT_INO) ||
4551             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4552                 if (flags & EXT4_IGET_HANDLE)
4553                         return ERR_PTR(-ESTALE);
4554                 __ext4_error(sb, function, line, EFSCORRUPTED, 0,
4555                              "inode #%lu: comm %s: iget: illegal inode #",
4556                              ino, current->comm);
4557                 return ERR_PTR(-EFSCORRUPTED);
4558         }
4559
4560         inode = iget_locked(sb, ino);
4561         if (!inode)
4562                 return ERR_PTR(-ENOMEM);
4563         if (!(inode->i_state & I_NEW))
4564                 return inode;
4565
4566         ei = EXT4_I(inode);
4567         iloc.bh = NULL;
4568
4569         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4570         if (ret < 0)
4571                 goto bad_inode;
4572         raw_inode = ext4_raw_inode(&iloc);
4573
4574         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4575                 ext4_error_inode(inode, function, line, 0,
4576                                  "iget: root inode unallocated");
4577                 ret = -EFSCORRUPTED;
4578                 goto bad_inode;
4579         }
4580
4581         if ((flags & EXT4_IGET_HANDLE) &&
4582             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4583                 ret = -ESTALE;
4584                 goto bad_inode;
4585         }
4586
4587         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4588                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4589                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4590                         EXT4_INODE_SIZE(inode->i_sb) ||
4591                     (ei->i_extra_isize & 3)) {
4592                         ext4_error_inode(inode, function, line, 0,
4593                                          "iget: bad extra_isize %u "
4594                                          "(inode size %u)",
4595                                          ei->i_extra_isize,
4596                                          EXT4_INODE_SIZE(inode->i_sb));
4597                         ret = -EFSCORRUPTED;
4598                         goto bad_inode;
4599                 }
4600         } else
4601                 ei->i_extra_isize = 0;
4602
4603         /* Precompute checksum seed for inode metadata */
4604         if (ext4_has_metadata_csum(sb)) {
4605                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4606                 __u32 csum;
4607                 __le32 inum = cpu_to_le32(inode->i_ino);
4608                 __le32 gen = raw_inode->i_generation;
4609                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4610                                    sizeof(inum));
4611                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4612                                               sizeof(gen));
4613         }
4614
4615         if (!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4616             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) {
4617                 ext4_error_inode_err(inode, function, line, 0, EFSBADCRC,
4618                                      "iget: checksum invalid");
4619                 ret = -EFSBADCRC;
4620                 goto bad_inode;
4621         }
4622
4623         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4624         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4625         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4626         if (ext4_has_feature_project(sb) &&
4627             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4628             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4629                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4630         else
4631                 i_projid = EXT4_DEF_PROJID;
4632
4633         if (!(test_opt(inode->i_sb, NO_UID32))) {
4634                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4635                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4636         }
4637         i_uid_write(inode, i_uid);
4638         i_gid_write(inode, i_gid);
4639         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4640         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4641
4642         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4643         ei->i_inline_off = 0;
4644         ei->i_dir_start_lookup = 0;
4645         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4646         /* We now have enough fields to check if the inode was active or not.
4647          * This is needed because nfsd might try to access dead inodes
4648          * the test is that same one that e2fsck uses
4649          * NeilBrown 1999oct15
4650          */
4651         if (inode->i_nlink == 0) {
4652                 if ((inode->i_mode == 0 ||
4653                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4654                     ino != EXT4_BOOT_LOADER_INO) {
4655                         /* this inode is deleted */
4656                         ret = -ESTALE;
4657                         goto bad_inode;
4658                 }
4659                 /* The only unlinked inodes we let through here have
4660                  * valid i_mode and are being read by the orphan
4661                  * recovery code: that's fine, we're about to complete
4662                  * the process of deleting those.
4663                  * OR it is the EXT4_BOOT_LOADER_INO which is
4664                  * not initialized on a new filesystem. */
4665         }
4666         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4667         ext4_set_inode_flags(inode, true);
4668         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4669         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4670         if (ext4_has_feature_64bit(sb))
4671                 ei->i_file_acl |=
4672                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4673         inode->i_size = ext4_isize(sb, raw_inode);
4674         if ((size = i_size_read(inode)) < 0) {
4675                 ext4_error_inode(inode, function, line, 0,
4676                                  "iget: bad i_size value: %lld", size);
4677                 ret = -EFSCORRUPTED;
4678                 goto bad_inode;
4679         }
4680         /*
4681          * If dir_index is not enabled but there's dir with INDEX flag set,
4682          * we'd normally treat htree data as empty space. But with metadata
4683          * checksumming that corrupts checksums so forbid that.
4684          */
4685         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4686             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4687                 ext4_error_inode(inode, function, line, 0,
4688                          "iget: Dir with htree data on filesystem without dir_index feature.");
4689                 ret = -EFSCORRUPTED;
4690                 goto bad_inode;
4691         }
4692         ei->i_disksize = inode->i_size;
4693 #ifdef CONFIG_QUOTA
4694         ei->i_reserved_quota = 0;
4695 #endif
4696         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4697         ei->i_block_group = iloc.block_group;
4698         ei->i_last_alloc_group = ~0;
4699         /*
4700          * NOTE! The in-memory inode i_data array is in little-endian order
4701          * even on big-endian machines: we do NOT byteswap the block numbers!
4702          */
4703         for (block = 0; block < EXT4_N_BLOCKS; block++)
4704                 ei->i_data[block] = raw_inode->i_block[block];
4705         INIT_LIST_HEAD(&ei->i_orphan);
4706
4707         /*
4708          * Set transaction id's of transactions that have to be committed
4709          * to finish f[data]sync. We set them to currently running transaction
4710          * as we cannot be sure that the inode or some of its metadata isn't
4711          * part of the transaction - the inode could have been reclaimed and
4712          * now it is reread from disk.
4713          */
4714         if (journal) {
4715                 transaction_t *transaction;
4716                 tid_t tid;
4717
4718                 read_lock(&journal->j_state_lock);
4719                 if (journal->j_running_transaction)
4720                         transaction = journal->j_running_transaction;
4721                 else
4722                         transaction = journal->j_committing_transaction;
4723                 if (transaction)
4724                         tid = transaction->t_tid;
4725                 else
4726                         tid = journal->j_commit_sequence;
4727                 read_unlock(&journal->j_state_lock);
4728                 ei->i_sync_tid = tid;
4729                 ei->i_datasync_tid = tid;
4730         }
4731
4732         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4733                 if (ei->i_extra_isize == 0) {
4734                         /* The extra space is currently unused. Use it. */
4735                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4736                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4737                                             EXT4_GOOD_OLD_INODE_SIZE;
4738                 } else {
4739                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4740                         if (ret)
4741                                 goto bad_inode;
4742                 }
4743         }
4744
4745         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4746         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4747         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4748         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4749
4750         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4751                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4752
4753                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4754                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4755                                 ivers |=
4756                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4757                 }
4758                 ext4_inode_set_iversion_queried(inode, ivers);
4759         }
4760
4761         ret = 0;
4762         if (ei->i_file_acl &&
4763             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4764                 ext4_error_inode(inode, function, line, 0,
4765                                  "iget: bad extended attribute block %llu",
4766                                  ei->i_file_acl);
4767                 ret = -EFSCORRUPTED;
4768                 goto bad_inode;
4769         } else if (!ext4_has_inline_data(inode)) {
4770                 /* validate the block references in the inode */
4771                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4772                    (S_ISLNK(inode->i_mode) &&
4773                     !ext4_inode_is_fast_symlink(inode))) {
4774                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4775                                 ret = ext4_ext_check_inode(inode);
4776                         else
4777                                 ret = ext4_ind_check_inode(inode);
4778                 }
4779         }
4780         if (ret)
4781                 goto bad_inode;
4782
4783         if (S_ISREG(inode->i_mode)) {
4784                 inode->i_op = &ext4_file_inode_operations;
4785                 inode->i_fop = &ext4_file_operations;
4786                 ext4_set_aops(inode);
4787         } else if (S_ISDIR(inode->i_mode)) {
4788                 inode->i_op = &ext4_dir_inode_operations;
4789                 inode->i_fop = &ext4_dir_operations;
4790         } else if (S_ISLNK(inode->i_mode)) {
4791                 /* VFS does not allow setting these so must be corruption */
4792                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4793                         ext4_error_inode(inode, function, line, 0,
4794                                          "iget: immutable or append flags "
4795                                          "not allowed on symlinks");
4796                         ret = -EFSCORRUPTED;
4797                         goto bad_inode;
4798                 }
4799                 if (IS_ENCRYPTED(inode)) {
4800                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4801                         ext4_set_aops(inode);
4802                 } else if (ext4_inode_is_fast_symlink(inode)) {
4803                         inode->i_link = (char *)ei->i_data;
4804                         inode->i_op = &ext4_fast_symlink_inode_operations;
4805                         nd_terminate_link(ei->i_data, inode->i_size,
4806                                 sizeof(ei->i_data) - 1);
4807                 } else {
4808                         inode->i_op = &ext4_symlink_inode_operations;
4809                         ext4_set_aops(inode);
4810                 }
4811                 inode_nohighmem(inode);
4812         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4813               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4814                 inode->i_op = &ext4_special_inode_operations;
4815                 if (raw_inode->i_block[0])
4816                         init_special_inode(inode, inode->i_mode,
4817                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4818                 else
4819                         init_special_inode(inode, inode->i_mode,
4820                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4821         } else if (ino == EXT4_BOOT_LOADER_INO) {
4822                 make_bad_inode(inode);
4823         } else {
4824                 ret = -EFSCORRUPTED;
4825                 ext4_error_inode(inode, function, line, 0,
4826                                  "iget: bogus i_mode (%o)", inode->i_mode);
4827                 goto bad_inode;
4828         }
4829         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4830                 ext4_error_inode(inode, function, line, 0,
4831                                  "casefold flag without casefold feature");
4832         brelse(iloc.bh);
4833
4834         unlock_new_inode(inode);
4835         return inode;
4836
4837 bad_inode:
4838         brelse(iloc.bh);
4839         iget_failed(inode);
4840         return ERR_PTR(ret);
4841 }
4842
4843 static int ext4_inode_blocks_set(handle_t *handle,
4844                                 struct ext4_inode *raw_inode,
4845                                 struct ext4_inode_info *ei)
4846 {
4847         struct inode *inode = &(ei->vfs_inode);
4848         u64 i_blocks = READ_ONCE(inode->i_blocks);
4849         struct super_block *sb = inode->i_sb;
4850
4851         if (i_blocks <= ~0U) {
4852                 /*
4853                  * i_blocks can be represented in a 32 bit variable
4854                  * as multiple of 512 bytes
4855                  */
4856                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4857                 raw_inode->i_blocks_high = 0;
4858                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4859                 return 0;
4860         }
4861         if (!ext4_has_feature_huge_file(sb))
4862                 return -EFBIG;
4863
4864         if (i_blocks <= 0xffffffffffffULL) {
4865                 /*
4866                  * i_blocks can be represented in a 48 bit variable
4867                  * as multiple of 512 bytes
4868                  */
4869                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4870                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4871                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4872         } else {
4873                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4874                 /* i_block is stored in file system block size */
4875                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4876                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4877                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4878         }
4879         return 0;
4880 }
4881
4882 static void __ext4_update_other_inode_time(struct super_block *sb,
4883                                            unsigned long orig_ino,
4884                                            unsigned long ino,
4885                                            struct ext4_inode *raw_inode)
4886 {
4887         struct inode *inode;
4888
4889         inode = find_inode_by_ino_rcu(sb, ino);
4890         if (!inode)
4891                 return;
4892
4893         if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4894                                I_DIRTY_INODE)) ||
4895             ((inode->i_state & I_DIRTY_TIME) == 0))
4896                 return;
4897
4898         spin_lock(&inode->i_lock);
4899         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4900                                 I_DIRTY_INODE)) == 0) &&
4901             (inode->i_state & I_DIRTY_TIME)) {
4902                 struct ext4_inode_info  *ei = EXT4_I(inode);
4903
4904                 inode->i_state &= ~I_DIRTY_TIME;
4905                 spin_unlock(&inode->i_lock);
4906
4907                 spin_lock(&ei->i_raw_lock);
4908                 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4909                 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4910                 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4911                 ext4_inode_csum_set(inode, raw_inode, ei);
4912                 spin_unlock(&ei->i_raw_lock);
4913                 trace_ext4_other_inode_update_time(inode, orig_ino);
4914                 return;
4915         }
4916         spin_unlock(&inode->i_lock);
4917 }
4918
4919 /*
4920  * Opportunistically update the other time fields for other inodes in
4921  * the same inode table block.
4922  */
4923 static void ext4_update_other_inodes_time(struct super_block *sb,
4924                                           unsigned long orig_ino, char *buf)
4925 {
4926         unsigned long ino;
4927         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4928         int inode_size = EXT4_INODE_SIZE(sb);
4929
4930         /*
4931          * Calculate the first inode in the inode table block.  Inode
4932          * numbers are one-based.  That is, the first inode in a block
4933          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4934          */
4935         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4936         rcu_read_lock();
4937         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4938                 if (ino == orig_ino)
4939                         continue;
4940                 __ext4_update_other_inode_time(sb, orig_ino, ino,
4941                                                (struct ext4_inode *)buf);
4942         }
4943         rcu_read_unlock();
4944 }
4945
4946 /*
4947  * Post the struct inode info into an on-disk inode location in the
4948  * buffer-cache.  This gobbles the caller's reference to the
4949  * buffer_head in the inode location struct.
4950  *
4951  * The caller must have write access to iloc->bh.
4952  */
4953 static int ext4_do_update_inode(handle_t *handle,
4954                                 struct inode *inode,
4955                                 struct ext4_iloc *iloc)
4956 {
4957         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4958         struct ext4_inode_info *ei = EXT4_I(inode);
4959         struct buffer_head *bh = iloc->bh;
4960         struct super_block *sb = inode->i_sb;
4961         int err = 0, rc, block;
4962         int need_datasync = 0, set_large_file = 0;
4963         uid_t i_uid;
4964         gid_t i_gid;
4965         projid_t i_projid;
4966
4967         spin_lock(&ei->i_raw_lock);
4968
4969         /* For fields not tracked in the in-memory inode,
4970          * initialise them to zero for new inodes. */
4971         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4972                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4973
4974         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4975         i_uid = i_uid_read(inode);
4976         i_gid = i_gid_read(inode);
4977         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4978         if (!(test_opt(inode->i_sb, NO_UID32))) {
4979                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4980                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4981 /*
4982  * Fix up interoperability with old kernels. Otherwise, old inodes get
4983  * re-used with the upper 16 bits of the uid/gid intact
4984  */
4985                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4986                         raw_inode->i_uid_high = 0;
4987                         raw_inode->i_gid_high = 0;
4988                 } else {
4989                         raw_inode->i_uid_high =
4990                                 cpu_to_le16(high_16_bits(i_uid));
4991                         raw_inode->i_gid_high =
4992                                 cpu_to_le16(high_16_bits(i_gid));
4993                 }
4994         } else {
4995                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4996                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4997                 raw_inode->i_uid_high = 0;
4998                 raw_inode->i_gid_high = 0;
4999         }
5000         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5001
5002         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5003         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5004         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5005         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5006
5007         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5008         if (err) {
5009                 spin_unlock(&ei->i_raw_lock);
5010                 goto out_brelse;
5011         }
5012         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5013         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5014         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5015                 raw_inode->i_file_acl_high =
5016                         cpu_to_le16(ei->i_file_acl >> 32);
5017         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5018         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5019                 ext4_isize_set(raw_inode, ei->i_disksize);
5020                 need_datasync = 1;
5021         }
5022         if (ei->i_disksize > 0x7fffffffULL) {
5023                 if (!ext4_has_feature_large_file(sb) ||
5024                                 EXT4_SB(sb)->s_es->s_rev_level ==
5025                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5026                         set_large_file = 1;
5027         }
5028         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5029         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5030                 if (old_valid_dev(inode->i_rdev)) {
5031                         raw_inode->i_block[0] =
5032                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5033                         raw_inode->i_block[1] = 0;
5034                 } else {
5035                         raw_inode->i_block[0] = 0;
5036                         raw_inode->i_block[1] =
5037                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5038                         raw_inode->i_block[2] = 0;
5039                 }
5040         } else if (!ext4_has_inline_data(inode)) {
5041                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5042                         raw_inode->i_block[block] = ei->i_data[block];
5043         }
5044
5045         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5046                 u64 ivers = ext4_inode_peek_iversion(inode);
5047
5048                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5049                 if (ei->i_extra_isize) {
5050                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5051                                 raw_inode->i_version_hi =
5052                                         cpu_to_le32(ivers >> 32);
5053                         raw_inode->i_extra_isize =
5054                                 cpu_to_le16(ei->i_extra_isize);
5055                 }
5056         }
5057
5058         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5059                i_projid != EXT4_DEF_PROJID);
5060
5061         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5062             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5063                 raw_inode->i_projid = cpu_to_le32(i_projid);
5064
5065         ext4_inode_csum_set(inode, raw_inode, ei);
5066         spin_unlock(&ei->i_raw_lock);
5067         if (inode->i_sb->s_flags & SB_LAZYTIME)
5068                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5069                                               bh->b_data);
5070
5071         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5072         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5073         if (!err)
5074                 err = rc;
5075         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5076         if (set_large_file) {
5077                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5078                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5079                 if (err)
5080                         goto out_brelse;
5081                 ext4_set_feature_large_file(sb);
5082                 ext4_handle_sync(handle);
5083                 err = ext4_handle_dirty_super(handle, sb);
5084         }
5085         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5086 out_brelse:
5087         brelse(bh);
5088         ext4_std_error(inode->i_sb, err);
5089         return err;
5090 }
5091
5092 /*
5093  * ext4_write_inode()
5094  *
5095  * We are called from a few places:
5096  *
5097  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5098  *   Here, there will be no transaction running. We wait for any running
5099  *   transaction to commit.
5100  *
5101  * - Within flush work (sys_sync(), kupdate and such).
5102  *   We wait on commit, if told to.
5103  *
5104  * - Within iput_final() -> write_inode_now()
5105  *   We wait on commit, if told to.
5106  *
5107  * In all cases it is actually safe for us to return without doing anything,
5108  * because the inode has been copied into a raw inode buffer in
5109  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5110  * writeback.
5111  *
5112  * Note that we are absolutely dependent upon all inode dirtiers doing the
5113  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5114  * which we are interested.
5115  *
5116  * It would be a bug for them to not do this.  The code:
5117  *
5118  *      mark_inode_dirty(inode)
5119  *      stuff();
5120  *      inode->i_size = expr;
5121  *
5122  * is in error because write_inode() could occur while `stuff()' is running,
5123  * and the new i_size will be lost.  Plus the inode will no longer be on the
5124  * superblock's dirty inode list.
5125  */
5126 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5127 {
5128         int err;
5129
5130         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5131             sb_rdonly(inode->i_sb))
5132                 return 0;
5133
5134         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5135                 return -EIO;
5136
5137         if (EXT4_SB(inode->i_sb)->s_journal) {
5138                 if (ext4_journal_current_handle()) {
5139                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5140                         dump_stack();
5141                         return -EIO;
5142                 }
5143
5144                 /*
5145                  * No need to force transaction in WB_SYNC_NONE mode. Also
5146                  * ext4_sync_fs() will force the commit after everything is
5147                  * written.
5148                  */
5149                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5150                         return 0;
5151
5152                 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5153                                                 EXT4_I(inode)->i_sync_tid);
5154         } else {
5155                 struct ext4_iloc iloc;
5156
5157                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5158                 if (err)
5159                         return err;
5160                 /*
5161                  * sync(2) will flush the whole buffer cache. No need to do
5162                  * it here separately for each inode.
5163                  */
5164                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5165                         sync_dirty_buffer(iloc.bh);
5166                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5167                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5168                                                "IO error syncing inode");
5169                         err = -EIO;
5170                 }
5171                 brelse(iloc.bh);
5172         }
5173         return err;
5174 }
5175
5176 /*
5177  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5178  * buffers that are attached to a page stradding i_size and are undergoing
5179  * commit. In that case we have to wait for commit to finish and try again.
5180  */
5181 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5182 {
5183         struct page *page;
5184         unsigned offset;
5185         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5186         tid_t commit_tid = 0;
5187         int ret;
5188
5189         offset = inode->i_size & (PAGE_SIZE - 1);
5190         /*
5191          * If the page is fully truncated, we don't need to wait for any commit
5192          * (and we even should not as __ext4_journalled_invalidatepage() may
5193          * strip all buffers from the page but keep the page dirty which can then
5194          * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5195          * buffers). Also we don't need to wait for any commit if all buffers in
5196          * the page remain valid. This is most beneficial for the common case of
5197          * blocksize == PAGESIZE.
5198          */
5199         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5200                 return;
5201         while (1) {
5202                 page = find_lock_page(inode->i_mapping,
5203                                       inode->i_size >> PAGE_SHIFT);
5204                 if (!page)
5205                         return;
5206                 ret = __ext4_journalled_invalidatepage(page, offset,
5207                                                 PAGE_SIZE - offset);
5208                 unlock_page(page);
5209                 put_page(page);
5210                 if (ret != -EBUSY)
5211                         return;
5212                 commit_tid = 0;
5213                 read_lock(&journal->j_state_lock);
5214                 if (journal->j_committing_transaction)
5215                         commit_tid = journal->j_committing_transaction->t_tid;
5216                 read_unlock(&journal->j_state_lock);
5217                 if (commit_tid)
5218                         jbd2_log_wait_commit(journal, commit_tid);
5219         }
5220 }
5221
5222 /*
5223  * ext4_setattr()
5224  *
5225  * Called from notify_change.
5226  *
5227  * We want to trap VFS attempts to truncate the file as soon as
5228  * possible.  In particular, we want to make sure that when the VFS
5229  * shrinks i_size, we put the inode on the orphan list and modify
5230  * i_disksize immediately, so that during the subsequent flushing of
5231  * dirty pages and freeing of disk blocks, we can guarantee that any
5232  * commit will leave the blocks being flushed in an unused state on
5233  * disk.  (On recovery, the inode will get truncated and the blocks will
5234  * be freed, so we have a strong guarantee that no future commit will
5235  * leave these blocks visible to the user.)
5236  *
5237  * Another thing we have to assure is that if we are in ordered mode
5238  * and inode is still attached to the committing transaction, we must
5239  * we start writeout of all the dirty pages which are being truncated.
5240  * This way we are sure that all the data written in the previous
5241  * transaction are already on disk (truncate waits for pages under
5242  * writeback).
5243  *
5244  * Called with inode->i_mutex down.
5245  */
5246 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5247 {
5248         struct inode *inode = d_inode(dentry);
5249         int error, rc = 0;
5250         int orphan = 0;
5251         const unsigned int ia_valid = attr->ia_valid;
5252
5253         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5254                 return -EIO;
5255
5256         if (unlikely(IS_IMMUTABLE(inode)))
5257                 return -EPERM;
5258
5259         if (unlikely(IS_APPEND(inode) &&
5260                      (ia_valid & (ATTR_MODE | ATTR_UID |
5261                                   ATTR_GID | ATTR_TIMES_SET))))
5262                 return -EPERM;
5263
5264         error = setattr_prepare(dentry, attr);
5265         if (error)
5266                 return error;
5267
5268         error = fscrypt_prepare_setattr(dentry, attr);
5269         if (error)
5270                 return error;
5271
5272         error = fsverity_prepare_setattr(dentry, attr);
5273         if (error)
5274                 return error;
5275
5276         if (is_quota_modification(inode, attr)) {
5277                 error = dquot_initialize(inode);
5278                 if (error)
5279                         return error;
5280         }
5281         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5282             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5283                 handle_t *handle;
5284
5285                 /* (user+group)*(old+new) structure, inode write (sb,
5286                  * inode block, ? - but truncate inode update has it) */
5287                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5288                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5289                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5290                 if (IS_ERR(handle)) {
5291                         error = PTR_ERR(handle);
5292                         goto err_out;
5293                 }
5294
5295                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5296                  * counts xattr inode references.
5297                  */
5298                 down_read(&EXT4_I(inode)->xattr_sem);
5299                 error = dquot_transfer(inode, attr);
5300                 up_read(&EXT4_I(inode)->xattr_sem);
5301
5302                 if (error) {
5303                         ext4_journal_stop(handle);
5304                         return error;
5305                 }
5306                 /* Update corresponding info in inode so that everything is in
5307                  * one transaction */
5308                 if (attr->ia_valid & ATTR_UID)
5309                         inode->i_uid = attr->ia_uid;
5310                 if (attr->ia_valid & ATTR_GID)
5311                         inode->i_gid = attr->ia_gid;
5312                 error = ext4_mark_inode_dirty(handle, inode);
5313                 ext4_journal_stop(handle);
5314                 if (unlikely(error))
5315                         return error;
5316         }
5317
5318         if (attr->ia_valid & ATTR_SIZE) {
5319                 handle_t *handle;
5320                 loff_t oldsize = inode->i_size;
5321                 int shrink = (attr->ia_size < inode->i_size);
5322
5323                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5324                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5325
5326                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5327                                 return -EFBIG;
5328                 }
5329                 if (!S_ISREG(inode->i_mode))
5330                         return -EINVAL;
5331
5332                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5333                         inode_inc_iversion(inode);
5334
5335                 if (shrink) {
5336                         if (ext4_should_order_data(inode)) {
5337                                 error = ext4_begin_ordered_truncate(inode,
5338                                                             attr->ia_size);
5339                                 if (error)
5340                                         goto err_out;
5341                         }
5342                         /*
5343                          * Blocks are going to be removed from the inode. Wait
5344                          * for dio in flight.
5345                          */
5346                         inode_dio_wait(inode);
5347                 }
5348
5349                 down_write(&EXT4_I(inode)->i_mmap_sem);
5350
5351                 rc = ext4_break_layouts(inode);
5352                 if (rc) {
5353                         up_write(&EXT4_I(inode)->i_mmap_sem);
5354                         return rc;
5355                 }
5356
5357                 if (attr->ia_size != inode->i_size) {
5358                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5359                         if (IS_ERR(handle)) {
5360                                 error = PTR_ERR(handle);
5361                                 goto out_mmap_sem;
5362                         }
5363                         if (ext4_handle_valid(handle) && shrink) {
5364                                 error = ext4_orphan_add(handle, inode);
5365                                 orphan = 1;
5366                         }
5367                         /*
5368                          * Update c/mtime on truncate up, ext4_truncate() will
5369                          * update c/mtime in shrink case below
5370                          */
5371                         if (!shrink) {
5372                                 inode->i_mtime = current_time(inode);
5373                                 inode->i_ctime = inode->i_mtime;
5374                         }
5375                         down_write(&EXT4_I(inode)->i_data_sem);
5376                         EXT4_I(inode)->i_disksize = attr->ia_size;
5377                         rc = ext4_mark_inode_dirty(handle, inode);
5378                         if (!error)
5379                                 error = rc;
5380                         /*
5381                          * We have to update i_size under i_data_sem together
5382                          * with i_disksize to avoid races with writeback code
5383                          * running ext4_wb_update_i_disksize().
5384                          */
5385                         if (!error)
5386                                 i_size_write(inode, attr->ia_size);
5387                         up_write(&EXT4_I(inode)->i_data_sem);
5388                         ext4_journal_stop(handle);
5389                         if (error)
5390                                 goto out_mmap_sem;
5391                         if (!shrink) {
5392                                 pagecache_isize_extended(inode, oldsize,
5393                                                          inode->i_size);
5394                         } else if (ext4_should_journal_data(inode)) {
5395                                 ext4_wait_for_tail_page_commit(inode);
5396                         }
5397                 }
5398
5399                 /*
5400                  * Truncate pagecache after we've waited for commit
5401                  * in data=journal mode to make pages freeable.
5402                  */
5403                 truncate_pagecache(inode, inode->i_size);
5404                 /*
5405                  * Call ext4_truncate() even if i_size didn't change to
5406                  * truncate possible preallocated blocks.
5407                  */
5408                 if (attr->ia_size <= oldsize) {
5409                         rc = ext4_truncate(inode);
5410                         if (rc)
5411                                 error = rc;
5412                 }
5413 out_mmap_sem:
5414                 up_write(&EXT4_I(inode)->i_mmap_sem);
5415         }
5416
5417         if (!error) {
5418                 setattr_copy(inode, attr);
5419                 mark_inode_dirty(inode);
5420         }
5421
5422         /*
5423          * If the call to ext4_truncate failed to get a transaction handle at
5424          * all, we need to clean up the in-core orphan list manually.
5425          */
5426         if (orphan && inode->i_nlink)
5427                 ext4_orphan_del(NULL, inode);
5428
5429         if (!error && (ia_valid & ATTR_MODE))
5430                 rc = posix_acl_chmod(inode, inode->i_mode);
5431
5432 err_out:
5433         ext4_std_error(inode->i_sb, error);
5434         if (!error)
5435                 error = rc;
5436         return error;
5437 }
5438
5439 int ext4_getattr(const struct path *path, struct kstat *stat,
5440                  u32 request_mask, unsigned int query_flags)
5441 {
5442         struct inode *inode = d_inode(path->dentry);
5443         struct ext4_inode *raw_inode;
5444         struct ext4_inode_info *ei = EXT4_I(inode);
5445         unsigned int flags;
5446
5447         if ((request_mask & STATX_BTIME) &&
5448             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5449                 stat->result_mask |= STATX_BTIME;
5450                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5451                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5452         }
5453
5454         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5455         if (flags & EXT4_APPEND_FL)
5456                 stat->attributes |= STATX_ATTR_APPEND;
5457         if (flags & EXT4_COMPR_FL)
5458                 stat->attributes |= STATX_ATTR_COMPRESSED;
5459         if (flags & EXT4_ENCRYPT_FL)
5460                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5461         if (flags & EXT4_IMMUTABLE_FL)
5462                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5463         if (flags & EXT4_NODUMP_FL)
5464                 stat->attributes |= STATX_ATTR_NODUMP;
5465         if (flags & EXT4_VERITY_FL)
5466                 stat->attributes |= STATX_ATTR_VERITY;
5467
5468         stat->attributes_mask |= (STATX_ATTR_APPEND |
5469                                   STATX_ATTR_COMPRESSED |
5470                                   STATX_ATTR_ENCRYPTED |
5471                                   STATX_ATTR_IMMUTABLE |
5472                                   STATX_ATTR_NODUMP |
5473                                   STATX_ATTR_VERITY);
5474
5475         generic_fillattr(inode, stat);
5476         return 0;
5477 }
5478
5479 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5480                       u32 request_mask, unsigned int query_flags)
5481 {
5482         struct inode *inode = d_inode(path->dentry);
5483         u64 delalloc_blocks;
5484
5485         ext4_getattr(path, stat, request_mask, query_flags);
5486
5487         /*
5488          * If there is inline data in the inode, the inode will normally not
5489          * have data blocks allocated (it may have an external xattr block).
5490          * Report at least one sector for such files, so tools like tar, rsync,
5491          * others don't incorrectly think the file is completely sparse.
5492          */
5493         if (unlikely(ext4_has_inline_data(inode)))
5494                 stat->blocks += (stat->size + 511) >> 9;
5495
5496         /*
5497          * We can't update i_blocks if the block allocation is delayed
5498          * otherwise in the case of system crash before the real block
5499          * allocation is done, we will have i_blocks inconsistent with
5500          * on-disk file blocks.
5501          * We always keep i_blocks updated together with real
5502          * allocation. But to not confuse with user, stat
5503          * will return the blocks that include the delayed allocation
5504          * blocks for this file.
5505          */
5506         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5507                                    EXT4_I(inode)->i_reserved_data_blocks);
5508         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5509         return 0;
5510 }
5511
5512 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5513                                    int pextents)
5514 {
5515         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5516                 return ext4_ind_trans_blocks(inode, lblocks);
5517         return ext4_ext_index_trans_blocks(inode, pextents);
5518 }
5519
5520 /*
5521  * Account for index blocks, block groups bitmaps and block group
5522  * descriptor blocks if modify datablocks and index blocks
5523  * worse case, the indexs blocks spread over different block groups
5524  *
5525  * If datablocks are discontiguous, they are possible to spread over
5526  * different block groups too. If they are contiguous, with flexbg,
5527  * they could still across block group boundary.
5528  *
5529  * Also account for superblock, inode, quota and xattr blocks
5530  */
5531 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5532                                   int pextents)
5533 {
5534         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5535         int gdpblocks;
5536         int idxblocks;
5537         int ret = 0;
5538
5539         /*
5540          * How many index blocks need to touch to map @lblocks logical blocks
5541          * to @pextents physical extents?
5542          */
5543         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5544
5545         ret = idxblocks;
5546
5547         /*
5548          * Now let's see how many group bitmaps and group descriptors need
5549          * to account
5550          */
5551         groups = idxblocks + pextents;
5552         gdpblocks = groups;
5553         if (groups > ngroups)
5554                 groups = ngroups;
5555         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5556                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5557
5558         /* bitmaps and block group descriptor blocks */
5559         ret += groups + gdpblocks;
5560
5561         /* Blocks for super block, inode, quota and xattr blocks */
5562         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5563
5564         return ret;
5565 }
5566
5567 /*
5568  * Calculate the total number of credits to reserve to fit
5569  * the modification of a single pages into a single transaction,
5570  * which may include multiple chunks of block allocations.
5571  *
5572  * This could be called via ext4_write_begin()
5573  *
5574  * We need to consider the worse case, when
5575  * one new block per extent.
5576  */
5577 int ext4_writepage_trans_blocks(struct inode *inode)
5578 {
5579         int bpp = ext4_journal_blocks_per_page(inode);
5580         int ret;
5581
5582         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5583
5584         /* Account for data blocks for journalled mode */
5585         if (ext4_should_journal_data(inode))
5586                 ret += bpp;
5587         return ret;
5588 }
5589
5590 /*
5591  * Calculate the journal credits for a chunk of data modification.
5592  *
5593  * This is called from DIO, fallocate or whoever calling
5594  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5595  *
5596  * journal buffers for data blocks are not included here, as DIO
5597  * and fallocate do no need to journal data buffers.
5598  */
5599 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5600 {
5601         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5602 }
5603
5604 /*
5605  * The caller must have previously called ext4_reserve_inode_write().
5606  * Give this, we know that the caller already has write access to iloc->bh.
5607  */
5608 int ext4_mark_iloc_dirty(handle_t *handle,
5609                          struct inode *inode, struct ext4_iloc *iloc)
5610 {
5611         int err = 0;
5612
5613         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5614                 put_bh(iloc->bh);
5615                 return -EIO;
5616         }
5617         if (IS_I_VERSION(inode))
5618                 inode_inc_iversion(inode);
5619
5620         /* the do_update_inode consumes one bh->b_count */
5621         get_bh(iloc->bh);
5622
5623         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5624         err = ext4_do_update_inode(handle, inode, iloc);
5625         put_bh(iloc->bh);
5626         return err;
5627 }
5628
5629 /*
5630  * On success, We end up with an outstanding reference count against
5631  * iloc->bh.  This _must_ be cleaned up later.
5632  */
5633
5634 int
5635 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5636                          struct ext4_iloc *iloc)
5637 {
5638         int err;
5639
5640         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5641                 return -EIO;
5642
5643         err = ext4_get_inode_loc(inode, iloc);
5644         if (!err) {
5645                 BUFFER_TRACE(iloc->bh, "get_write_access");
5646                 err = ext4_journal_get_write_access(handle, iloc->bh);
5647                 if (err) {
5648                         brelse(iloc->bh);
5649                         iloc->bh = NULL;
5650                 }
5651         }
5652         ext4_std_error(inode->i_sb, err);
5653         return err;
5654 }
5655
5656 static int __ext4_expand_extra_isize(struct inode *inode,
5657                                      unsigned int new_extra_isize,
5658                                      struct ext4_iloc *iloc,
5659                                      handle_t *handle, int *no_expand)
5660 {
5661         struct ext4_inode *raw_inode;
5662         struct ext4_xattr_ibody_header *header;
5663         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5664         struct ext4_inode_info *ei = EXT4_I(inode);
5665         int error;
5666
5667         /* this was checked at iget time, but double check for good measure */
5668         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5669             (ei->i_extra_isize & 3)) {
5670                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5671                                  ei->i_extra_isize,
5672                                  EXT4_INODE_SIZE(inode->i_sb));
5673                 return -EFSCORRUPTED;
5674         }
5675         if ((new_extra_isize < ei->i_extra_isize) ||
5676             (new_extra_isize < 4) ||
5677             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5678                 return -EINVAL; /* Should never happen */
5679
5680         raw_inode = ext4_raw_inode(iloc);
5681
5682         header = IHDR(inode, raw_inode);
5683
5684         /* No extended attributes present */
5685         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5686             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5687                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5688                        EXT4_I(inode)->i_extra_isize, 0,
5689                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5690                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5691                 return 0;
5692         }
5693
5694         /* try to expand with EAs present */
5695         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5696                                            raw_inode, handle);
5697         if (error) {
5698                 /*
5699                  * Inode size expansion failed; don't try again
5700                  */
5701                 *no_expand = 1;
5702         }
5703
5704         return error;
5705 }
5706
5707 /*
5708  * Expand an inode by new_extra_isize bytes.
5709  * Returns 0 on success or negative error number on failure.
5710  */
5711 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5712                                           unsigned int new_extra_isize,
5713                                           struct ext4_iloc iloc,
5714                                           handle_t *handle)
5715 {
5716         int no_expand;
5717         int error;
5718
5719         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5720                 return -EOVERFLOW;
5721
5722         /*
5723          * In nojournal mode, we can immediately attempt to expand
5724          * the inode.  When journaled, we first need to obtain extra
5725          * buffer credits since we may write into the EA block
5726          * with this same handle. If journal_extend fails, then it will
5727          * only result in a minor loss of functionality for that inode.
5728          * If this is felt to be critical, then e2fsck should be run to
5729          * force a large enough s_min_extra_isize.
5730          */
5731         if (ext4_journal_extend(handle,
5732                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5733                 return -ENOSPC;
5734
5735         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5736                 return -EBUSY;
5737
5738         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5739                                           handle, &no_expand);
5740         ext4_write_unlock_xattr(inode, &no_expand);
5741
5742         return error;
5743 }
5744
5745 int ext4_expand_extra_isize(struct inode *inode,
5746                             unsigned int new_extra_isize,
5747                             struct ext4_iloc *iloc)
5748 {
5749         handle_t *handle;
5750         int no_expand;
5751         int error, rc;
5752
5753         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5754                 brelse(iloc->bh);
5755                 return -EOVERFLOW;
5756         }
5757
5758         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5759                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5760         if (IS_ERR(handle)) {
5761                 error = PTR_ERR(handle);
5762                 brelse(iloc->bh);
5763                 return error;
5764         }
5765
5766         ext4_write_lock_xattr(inode, &no_expand);
5767
5768         BUFFER_TRACE(iloc->bh, "get_write_access");
5769         error = ext4_journal_get_write_access(handle, iloc->bh);
5770         if (error) {
5771                 brelse(iloc->bh);
5772                 goto out_unlock;
5773         }
5774
5775         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5776                                           handle, &no_expand);
5777
5778         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5779         if (!error)
5780                 error = rc;
5781
5782 out_unlock:
5783         ext4_write_unlock_xattr(inode, &no_expand);
5784         ext4_journal_stop(handle);
5785         return error;
5786 }
5787
5788 /*
5789  * What we do here is to mark the in-core inode as clean with respect to inode
5790  * dirtiness (it may still be data-dirty).
5791  * This means that the in-core inode may be reaped by prune_icache
5792  * without having to perform any I/O.  This is a very good thing,
5793  * because *any* task may call prune_icache - even ones which
5794  * have a transaction open against a different journal.
5795  *
5796  * Is this cheating?  Not really.  Sure, we haven't written the
5797  * inode out, but prune_icache isn't a user-visible syncing function.
5798  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5799  * we start and wait on commits.
5800  */
5801 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5802                                 const char *func, unsigned int line)
5803 {
5804         struct ext4_iloc iloc;
5805         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5806         int err;
5807
5808         might_sleep();
5809         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5810         err = ext4_reserve_inode_write(handle, inode, &iloc);
5811         if (err)
5812                 goto out;
5813
5814         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5815                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5816                                                iloc, handle);
5817
5818         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5819 out:
5820         if (unlikely(err))
5821                 ext4_error_inode_err(inode, func, line, 0, err,
5822                                         "mark_inode_dirty error");
5823         return err;
5824 }
5825
5826 /*
5827  * ext4_dirty_inode() is called from __mark_inode_dirty()
5828  *
5829  * We're really interested in the case where a file is being extended.
5830  * i_size has been changed by generic_commit_write() and we thus need
5831  * to include the updated inode in the current transaction.
5832  *
5833  * Also, dquot_alloc_block() will always dirty the inode when blocks
5834  * are allocated to the file.
5835  *
5836  * If the inode is marked synchronous, we don't honour that here - doing
5837  * so would cause a commit on atime updates, which we don't bother doing.
5838  * We handle synchronous inodes at the highest possible level.
5839  *
5840  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5841  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5842  * to copy into the on-disk inode structure are the timestamp files.
5843  */
5844 void ext4_dirty_inode(struct inode *inode, int flags)
5845 {
5846         handle_t *handle;
5847
5848         if (flags == I_DIRTY_TIME)
5849                 return;
5850         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5851         if (IS_ERR(handle))
5852                 goto out;
5853
5854         ext4_mark_inode_dirty(handle, inode);
5855
5856         ext4_journal_stop(handle);
5857 out:
5858         return;
5859 }
5860
5861 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5862 {
5863         journal_t *journal;
5864         handle_t *handle;
5865         int err;
5866         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5867
5868         /*
5869          * We have to be very careful here: changing a data block's
5870          * journaling status dynamically is dangerous.  If we write a
5871          * data block to the journal, change the status and then delete
5872          * that block, we risk forgetting to revoke the old log record
5873          * from the journal and so a subsequent replay can corrupt data.
5874          * So, first we make sure that the journal is empty and that
5875          * nobody is changing anything.
5876          */
5877
5878         journal = EXT4_JOURNAL(inode);
5879         if (!journal)
5880                 return 0;
5881         if (is_journal_aborted(journal))
5882                 return -EROFS;
5883
5884         /* Wait for all existing dio workers */
5885         inode_dio_wait(inode);
5886
5887         /*
5888          * Before flushing the journal and switching inode's aops, we have
5889          * to flush all dirty data the inode has. There can be outstanding
5890          * delayed allocations, there can be unwritten extents created by
5891          * fallocate or buffered writes in dioread_nolock mode covered by
5892          * dirty data which can be converted only after flushing the dirty
5893          * data (and journalled aops don't know how to handle these cases).
5894          */
5895         if (val) {
5896                 down_write(&EXT4_I(inode)->i_mmap_sem);
5897                 err = filemap_write_and_wait(inode->i_mapping);
5898                 if (err < 0) {
5899                         up_write(&EXT4_I(inode)->i_mmap_sem);
5900                         return err;
5901                 }
5902         }
5903
5904         percpu_down_write(&sbi->s_writepages_rwsem);
5905         jbd2_journal_lock_updates(journal);
5906
5907         /*
5908          * OK, there are no updates running now, and all cached data is
5909          * synced to disk.  We are now in a completely consistent state
5910          * which doesn't have anything in the journal, and we know that
5911          * no filesystem updates are running, so it is safe to modify
5912          * the inode's in-core data-journaling state flag now.
5913          */
5914
5915         if (val)
5916                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5917         else {
5918                 err = jbd2_journal_flush(journal);
5919                 if (err < 0) {
5920                         jbd2_journal_unlock_updates(journal);
5921                         percpu_up_write(&sbi->s_writepages_rwsem);
5922                         return err;
5923                 }
5924                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5925         }
5926         ext4_set_aops(inode);
5927
5928         jbd2_journal_unlock_updates(journal);
5929         percpu_up_write(&sbi->s_writepages_rwsem);
5930
5931         if (val)
5932                 up_write(&EXT4_I(inode)->i_mmap_sem);
5933
5934         /* Finally we can mark the inode as dirty. */
5935
5936         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5937         if (IS_ERR(handle))
5938                 return PTR_ERR(handle);
5939
5940         err = ext4_mark_inode_dirty(handle, inode);
5941         ext4_handle_sync(handle);
5942         ext4_journal_stop(handle);
5943         ext4_std_error(inode->i_sb, err);
5944
5945         return err;
5946 }
5947
5948 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5949 {
5950         return !buffer_mapped(bh);
5951 }
5952
5953 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
5954 {
5955         struct vm_area_struct *vma = vmf->vma;
5956         struct page *page = vmf->page;
5957         loff_t size;
5958         unsigned long len;
5959         int err;
5960         vm_fault_t ret;
5961         struct file *file = vma->vm_file;
5962         struct inode *inode = file_inode(file);
5963         struct address_space *mapping = inode->i_mapping;
5964         handle_t *handle;
5965         get_block_t *get_block;
5966         int retries = 0;
5967
5968         if (unlikely(IS_IMMUTABLE(inode)))
5969                 return VM_FAULT_SIGBUS;
5970
5971         sb_start_pagefault(inode->i_sb);
5972         file_update_time(vma->vm_file);
5973
5974         down_read(&EXT4_I(inode)->i_mmap_sem);
5975
5976         err = ext4_convert_inline_data(inode);
5977         if (err)
5978                 goto out_ret;
5979
5980         /* Delalloc case is easy... */
5981         if (test_opt(inode->i_sb, DELALLOC) &&
5982             !ext4_should_journal_data(inode) &&
5983             !ext4_nonda_switch(inode->i_sb)) {
5984                 do {
5985                         err = block_page_mkwrite(vma, vmf,
5986                                                    ext4_da_get_block_prep);
5987                 } while (err == -ENOSPC &&
5988                        ext4_should_retry_alloc(inode->i_sb, &retries));
5989                 goto out_ret;
5990         }
5991
5992         lock_page(page);
5993         size = i_size_read(inode);
5994         /* Page got truncated from under us? */
5995         if (page->mapping != mapping || page_offset(page) > size) {
5996                 unlock_page(page);
5997                 ret = VM_FAULT_NOPAGE;
5998                 goto out;
5999         }
6000
6001         if (page->index == size >> PAGE_SHIFT)
6002                 len = size & ~PAGE_MASK;
6003         else
6004                 len = PAGE_SIZE;
6005         /*
6006          * Return if we have all the buffers mapped. This avoids the need to do
6007          * journal_start/journal_stop which can block and take a long time
6008          */
6009         if (page_has_buffers(page)) {
6010                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6011                                             0, len, NULL,
6012                                             ext4_bh_unmapped)) {
6013                         /* Wait so that we don't change page under IO */
6014                         wait_for_stable_page(page);
6015                         ret = VM_FAULT_LOCKED;
6016                         goto out;
6017                 }
6018         }
6019         unlock_page(page);
6020         /* OK, we need to fill the hole... */
6021         if (ext4_should_dioread_nolock(inode))
6022                 get_block = ext4_get_block_unwritten;
6023         else
6024                 get_block = ext4_get_block;
6025 retry_alloc:
6026         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6027                                     ext4_writepage_trans_blocks(inode));
6028         if (IS_ERR(handle)) {
6029                 ret = VM_FAULT_SIGBUS;
6030                 goto out;
6031         }
6032         err = block_page_mkwrite(vma, vmf, get_block);
6033         if (!err && ext4_should_journal_data(inode)) {
6034                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6035                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
6036                         unlock_page(page);
6037                         ret = VM_FAULT_SIGBUS;
6038                         ext4_journal_stop(handle);
6039                         goto out;
6040                 }
6041                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6042         }
6043         ext4_journal_stop(handle);
6044         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6045                 goto retry_alloc;
6046 out_ret:
6047         ret = block_page_mkwrite_return(err);
6048 out:
6049         up_read(&EXT4_I(inode)->i_mmap_sem);
6050         sb_end_pagefault(inode->i_sb);
6051         return ret;
6052 }
6053
6054 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6055 {
6056         struct inode *inode = file_inode(vmf->vma->vm_file);
6057         vm_fault_t ret;
6058
6059         down_read(&EXT4_I(inode)->i_mmap_sem);
6060         ret = filemap_fault(vmf);
6061         up_read(&EXT4_I(inode)->i_mmap_sem);
6062
6063         return ret;
6064 }