Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux.git] / drivers / crypto / ccp / ccp-ops.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Cryptographic Coprocessor (CCP) driver
4  *
5  * Copyright (C) 2013-2019 Advanced Micro Devices, Inc.
6  *
7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8  * Author: Gary R Hook <gary.hook@amd.com>
9  */
10
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/pci.h>
14 #include <linux/interrupt.h>
15 #include <crypto/scatterwalk.h>
16 #include <crypto/des.h>
17 #include <linux/ccp.h>
18
19 #include "ccp-dev.h"
20
21 /* SHA initial context values */
22 static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
23         cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
24         cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
25         cpu_to_be32(SHA1_H4),
26 };
27
28 static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
29         cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
30         cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
31         cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
32         cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
33 };
34
35 static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
36         cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
37         cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
38         cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
39         cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
40 };
41
42 static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
43         cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
44         cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
45         cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
46         cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
47 };
48
49 static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
50         cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
51         cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
52         cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
53         cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
54 };
55
56 #define CCP_NEW_JOBID(ccp)      ((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
57                                         ccp_gen_jobid(ccp) : 0)
58
59 static u32 ccp_gen_jobid(struct ccp_device *ccp)
60 {
61         return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
62 }
63
64 static void ccp_sg_free(struct ccp_sg_workarea *wa)
65 {
66         if (wa->dma_count)
67                 dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
68
69         wa->dma_count = 0;
70 }
71
72 static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
73                                 struct scatterlist *sg, u64 len,
74                                 enum dma_data_direction dma_dir)
75 {
76         memset(wa, 0, sizeof(*wa));
77
78         wa->sg = sg;
79         if (!sg)
80                 return 0;
81
82         wa->nents = sg_nents_for_len(sg, len);
83         if (wa->nents < 0)
84                 return wa->nents;
85
86         wa->bytes_left = len;
87         wa->sg_used = 0;
88
89         if (len == 0)
90                 return 0;
91
92         if (dma_dir == DMA_NONE)
93                 return 0;
94
95         wa->dma_sg = sg;
96         wa->dma_dev = dev;
97         wa->dma_dir = dma_dir;
98         wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
99         if (!wa->dma_count)
100                 return -ENOMEM;
101
102         return 0;
103 }
104
105 static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
106 {
107         unsigned int nbytes = min_t(u64, len, wa->bytes_left);
108
109         if (!wa->sg)
110                 return;
111
112         wa->sg_used += nbytes;
113         wa->bytes_left -= nbytes;
114         if (wa->sg_used == wa->sg->length) {
115                 wa->sg = sg_next(wa->sg);
116                 wa->sg_used = 0;
117         }
118 }
119
120 static void ccp_dm_free(struct ccp_dm_workarea *wa)
121 {
122         if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
123                 if (wa->address)
124                         dma_pool_free(wa->dma_pool, wa->address,
125                                       wa->dma.address);
126         } else {
127                 if (wa->dma.address)
128                         dma_unmap_single(wa->dev, wa->dma.address, wa->length,
129                                          wa->dma.dir);
130                 kfree(wa->address);
131         }
132
133         wa->address = NULL;
134         wa->dma.address = 0;
135 }
136
137 static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
138                                 struct ccp_cmd_queue *cmd_q,
139                                 unsigned int len,
140                                 enum dma_data_direction dir)
141 {
142         memset(wa, 0, sizeof(*wa));
143
144         if (!len)
145                 return 0;
146
147         wa->dev = cmd_q->ccp->dev;
148         wa->length = len;
149
150         if (len <= CCP_DMAPOOL_MAX_SIZE) {
151                 wa->dma_pool = cmd_q->dma_pool;
152
153                 wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL,
154                                              &wa->dma.address);
155                 if (!wa->address)
156                         return -ENOMEM;
157
158                 wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
159
160                 memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE);
161         } else {
162                 wa->address = kzalloc(len, GFP_KERNEL);
163                 if (!wa->address)
164                         return -ENOMEM;
165
166                 wa->dma.address = dma_map_single(wa->dev, wa->address, len,
167                                                  dir);
168                 if (dma_mapping_error(wa->dev, wa->dma.address))
169                         return -ENOMEM;
170
171                 wa->dma.length = len;
172         }
173         wa->dma.dir = dir;
174
175         return 0;
176 }
177
178 static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
179                            struct scatterlist *sg, unsigned int sg_offset,
180                            unsigned int len)
181 {
182         WARN_ON(!wa->address);
183
184         if (len > (wa->length - wa_offset))
185                 return -EINVAL;
186
187         scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
188                                  0);
189         return 0;
190 }
191
192 static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
193                             struct scatterlist *sg, unsigned int sg_offset,
194                             unsigned int len)
195 {
196         WARN_ON(!wa->address);
197
198         scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
199                                  1);
200 }
201
202 static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
203                                    unsigned int wa_offset,
204                                    struct scatterlist *sg,
205                                    unsigned int sg_offset,
206                                    unsigned int len)
207 {
208         u8 *p, *q;
209         int     rc;
210
211         rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
212         if (rc)
213                 return rc;
214
215         p = wa->address + wa_offset;
216         q = p + len - 1;
217         while (p < q) {
218                 *p = *p ^ *q;
219                 *q = *p ^ *q;
220                 *p = *p ^ *q;
221                 p++;
222                 q--;
223         }
224         return 0;
225 }
226
227 static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
228                                     unsigned int wa_offset,
229                                     struct scatterlist *sg,
230                                     unsigned int sg_offset,
231                                     unsigned int len)
232 {
233         u8 *p, *q;
234
235         p = wa->address + wa_offset;
236         q = p + len - 1;
237         while (p < q) {
238                 *p = *p ^ *q;
239                 *q = *p ^ *q;
240                 *p = *p ^ *q;
241                 p++;
242                 q--;
243         }
244
245         ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
246 }
247
248 static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
249 {
250         ccp_dm_free(&data->dm_wa);
251         ccp_sg_free(&data->sg_wa);
252 }
253
254 static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
255                          struct scatterlist *sg, u64 sg_len,
256                          unsigned int dm_len,
257                          enum dma_data_direction dir)
258 {
259         int ret;
260
261         memset(data, 0, sizeof(*data));
262
263         ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
264                                    dir);
265         if (ret)
266                 goto e_err;
267
268         ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
269         if (ret)
270                 goto e_err;
271
272         return 0;
273
274 e_err:
275         ccp_free_data(data, cmd_q);
276
277         return ret;
278 }
279
280 static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
281 {
282         struct ccp_sg_workarea *sg_wa = &data->sg_wa;
283         struct ccp_dm_workarea *dm_wa = &data->dm_wa;
284         unsigned int buf_count, nbytes;
285
286         /* Clear the buffer if setting it */
287         if (!from)
288                 memset(dm_wa->address, 0, dm_wa->length);
289
290         if (!sg_wa->sg)
291                 return 0;
292
293         /* Perform the copy operation
294          *   nbytes will always be <= UINT_MAX because dm_wa->length is
295          *   an unsigned int
296          */
297         nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
298         scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
299                                  nbytes, from);
300
301         /* Update the structures and generate the count */
302         buf_count = 0;
303         while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
304                 nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
305                              dm_wa->length - buf_count);
306                 nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
307
308                 buf_count += nbytes;
309                 ccp_update_sg_workarea(sg_wa, nbytes);
310         }
311
312         return buf_count;
313 }
314
315 static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
316 {
317         return ccp_queue_buf(data, 0);
318 }
319
320 static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
321 {
322         return ccp_queue_buf(data, 1);
323 }
324
325 static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
326                              struct ccp_op *op, unsigned int block_size,
327                              bool blocksize_op)
328 {
329         unsigned int sg_src_len, sg_dst_len, op_len;
330
331         /* The CCP can only DMA from/to one address each per operation. This
332          * requires that we find the smallest DMA area between the source
333          * and destination. The resulting len values will always be <= UINT_MAX
334          * because the dma length is an unsigned int.
335          */
336         sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
337         sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
338
339         if (dst) {
340                 sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
341                 sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
342                 op_len = min(sg_src_len, sg_dst_len);
343         } else {
344                 op_len = sg_src_len;
345         }
346
347         /* The data operation length will be at least block_size in length
348          * or the smaller of available sg room remaining for the source or
349          * the destination
350          */
351         op_len = max(op_len, block_size);
352
353         /* Unless we have to buffer data, there's no reason to wait */
354         op->soc = 0;
355
356         if (sg_src_len < block_size) {
357                 /* Not enough data in the sg element, so it
358                  * needs to be buffered into a blocksize chunk
359                  */
360                 int cp_len = ccp_fill_queue_buf(src);
361
362                 op->soc = 1;
363                 op->src.u.dma.address = src->dm_wa.dma.address;
364                 op->src.u.dma.offset = 0;
365                 op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
366         } else {
367                 /* Enough data in the sg element, but we need to
368                  * adjust for any previously copied data
369                  */
370                 op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
371                 op->src.u.dma.offset = src->sg_wa.sg_used;
372                 op->src.u.dma.length = op_len & ~(block_size - 1);
373
374                 ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
375         }
376
377         if (dst) {
378                 if (sg_dst_len < block_size) {
379                         /* Not enough room in the sg element or we're on the
380                          * last piece of data (when using padding), so the
381                          * output needs to be buffered into a blocksize chunk
382                          */
383                         op->soc = 1;
384                         op->dst.u.dma.address = dst->dm_wa.dma.address;
385                         op->dst.u.dma.offset = 0;
386                         op->dst.u.dma.length = op->src.u.dma.length;
387                 } else {
388                         /* Enough room in the sg element, but we need to
389                          * adjust for any previously used area
390                          */
391                         op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
392                         op->dst.u.dma.offset = dst->sg_wa.sg_used;
393                         op->dst.u.dma.length = op->src.u.dma.length;
394                 }
395         }
396 }
397
398 static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
399                              struct ccp_op *op)
400 {
401         op->init = 0;
402
403         if (dst) {
404                 if (op->dst.u.dma.address == dst->dm_wa.dma.address)
405                         ccp_empty_queue_buf(dst);
406                 else
407                         ccp_update_sg_workarea(&dst->sg_wa,
408                                                op->dst.u.dma.length);
409         }
410 }
411
412 static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
413                                struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
414                                u32 byte_swap, bool from)
415 {
416         struct ccp_op op;
417
418         memset(&op, 0, sizeof(op));
419
420         op.cmd_q = cmd_q;
421         op.jobid = jobid;
422         op.eom = 1;
423
424         if (from) {
425                 op.soc = 1;
426                 op.src.type = CCP_MEMTYPE_SB;
427                 op.src.u.sb = sb;
428                 op.dst.type = CCP_MEMTYPE_SYSTEM;
429                 op.dst.u.dma.address = wa->dma.address;
430                 op.dst.u.dma.length = wa->length;
431         } else {
432                 op.src.type = CCP_MEMTYPE_SYSTEM;
433                 op.src.u.dma.address = wa->dma.address;
434                 op.src.u.dma.length = wa->length;
435                 op.dst.type = CCP_MEMTYPE_SB;
436                 op.dst.u.sb = sb;
437         }
438
439         op.u.passthru.byte_swap = byte_swap;
440
441         return cmd_q->ccp->vdata->perform->passthru(&op);
442 }
443
444 static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
445                           struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
446                           u32 byte_swap)
447 {
448         return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
449 }
450
451 static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
452                             struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
453                             u32 byte_swap)
454 {
455         return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
456 }
457
458 static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
459                                 struct ccp_cmd *cmd)
460 {
461         struct ccp_aes_engine *aes = &cmd->u.aes;
462         struct ccp_dm_workarea key, ctx;
463         struct ccp_data src;
464         struct ccp_op op;
465         unsigned int dm_offset;
466         int ret;
467
468         if (!((aes->key_len == AES_KEYSIZE_128) ||
469               (aes->key_len == AES_KEYSIZE_192) ||
470               (aes->key_len == AES_KEYSIZE_256)))
471                 return -EINVAL;
472
473         if (aes->src_len & (AES_BLOCK_SIZE - 1))
474                 return -EINVAL;
475
476         if (aes->iv_len != AES_BLOCK_SIZE)
477                 return -EINVAL;
478
479         if (!aes->key || !aes->iv || !aes->src)
480                 return -EINVAL;
481
482         if (aes->cmac_final) {
483                 if (aes->cmac_key_len != AES_BLOCK_SIZE)
484                         return -EINVAL;
485
486                 if (!aes->cmac_key)
487                         return -EINVAL;
488         }
489
490         BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
491         BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
492
493         ret = -EIO;
494         memset(&op, 0, sizeof(op));
495         op.cmd_q = cmd_q;
496         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
497         op.sb_key = cmd_q->sb_key;
498         op.sb_ctx = cmd_q->sb_ctx;
499         op.init = 1;
500         op.u.aes.type = aes->type;
501         op.u.aes.mode = aes->mode;
502         op.u.aes.action = aes->action;
503
504         /* All supported key sizes fit in a single (32-byte) SB entry
505          * and must be in little endian format. Use the 256-bit byte
506          * swap passthru option to convert from big endian to little
507          * endian.
508          */
509         ret = ccp_init_dm_workarea(&key, cmd_q,
510                                    CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
511                                    DMA_TO_DEVICE);
512         if (ret)
513                 return ret;
514
515         dm_offset = CCP_SB_BYTES - aes->key_len;
516         ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
517         if (ret)
518                 goto e_key;
519         ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
520                              CCP_PASSTHRU_BYTESWAP_256BIT);
521         if (ret) {
522                 cmd->engine_error = cmd_q->cmd_error;
523                 goto e_key;
524         }
525
526         /* The AES context fits in a single (32-byte) SB entry and
527          * must be in little endian format. Use the 256-bit byte swap
528          * passthru option to convert from big endian to little endian.
529          */
530         ret = ccp_init_dm_workarea(&ctx, cmd_q,
531                                    CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
532                                    DMA_BIDIRECTIONAL);
533         if (ret)
534                 goto e_key;
535
536         dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
537         ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
538         if (ret)
539                 goto e_ctx;
540         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
541                              CCP_PASSTHRU_BYTESWAP_256BIT);
542         if (ret) {
543                 cmd->engine_error = cmd_q->cmd_error;
544                 goto e_ctx;
545         }
546
547         /* Send data to the CCP AES engine */
548         ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
549                             AES_BLOCK_SIZE, DMA_TO_DEVICE);
550         if (ret)
551                 goto e_ctx;
552
553         while (src.sg_wa.bytes_left) {
554                 ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
555                 if (aes->cmac_final && !src.sg_wa.bytes_left) {
556                         op.eom = 1;
557
558                         /* Push the K1/K2 key to the CCP now */
559                         ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
560                                                op.sb_ctx,
561                                                CCP_PASSTHRU_BYTESWAP_256BIT);
562                         if (ret) {
563                                 cmd->engine_error = cmd_q->cmd_error;
564                                 goto e_src;
565                         }
566
567                         ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
568                                               aes->cmac_key_len);
569                         if (ret)
570                                 goto e_src;
571                         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
572                                              CCP_PASSTHRU_BYTESWAP_256BIT);
573                         if (ret) {
574                                 cmd->engine_error = cmd_q->cmd_error;
575                                 goto e_src;
576                         }
577                 }
578
579                 ret = cmd_q->ccp->vdata->perform->aes(&op);
580                 if (ret) {
581                         cmd->engine_error = cmd_q->cmd_error;
582                         goto e_src;
583                 }
584
585                 ccp_process_data(&src, NULL, &op);
586         }
587
588         /* Retrieve the AES context - convert from LE to BE using
589          * 32-byte (256-bit) byteswapping
590          */
591         ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
592                                CCP_PASSTHRU_BYTESWAP_256BIT);
593         if (ret) {
594                 cmd->engine_error = cmd_q->cmd_error;
595                 goto e_src;
596         }
597
598         /* ...but we only need AES_BLOCK_SIZE bytes */
599         dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
600         ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
601
602 e_src:
603         ccp_free_data(&src, cmd_q);
604
605 e_ctx:
606         ccp_dm_free(&ctx);
607
608 e_key:
609         ccp_dm_free(&key);
610
611         return ret;
612 }
613
614 static int ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q,
615                                struct ccp_cmd *cmd)
616 {
617         struct ccp_aes_engine *aes = &cmd->u.aes;
618         struct ccp_dm_workarea key, ctx, final_wa, tag;
619         struct ccp_data src, dst;
620         struct ccp_data aad;
621         struct ccp_op op;
622
623         unsigned long long *final;
624         unsigned int dm_offset;
625         unsigned int jobid;
626         unsigned int ilen;
627         bool in_place = true; /* Default value */
628         int ret;
629
630         struct scatterlist *p_inp, sg_inp[2];
631         struct scatterlist *p_tag, sg_tag[2];
632         struct scatterlist *p_outp, sg_outp[2];
633         struct scatterlist *p_aad;
634
635         if (!aes->iv)
636                 return -EINVAL;
637
638         if (!((aes->key_len == AES_KEYSIZE_128) ||
639                 (aes->key_len == AES_KEYSIZE_192) ||
640                 (aes->key_len == AES_KEYSIZE_256)))
641                 return -EINVAL;
642
643         if (!aes->key) /* Gotta have a key SGL */
644                 return -EINVAL;
645
646         /* First, decompose the source buffer into AAD & PT,
647          * and the destination buffer into AAD, CT & tag, or
648          * the input into CT & tag.
649          * It is expected that the input and output SGs will
650          * be valid, even if the AAD and input lengths are 0.
651          */
652         p_aad = aes->src;
653         p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
654         p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
655         if (aes->action == CCP_AES_ACTION_ENCRYPT) {
656                 ilen = aes->src_len;
657                 p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
658         } else {
659                 /* Input length for decryption includes tag */
660                 ilen = aes->src_len - AES_BLOCK_SIZE;
661                 p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
662         }
663
664         jobid = CCP_NEW_JOBID(cmd_q->ccp);
665
666         memset(&op, 0, sizeof(op));
667         op.cmd_q = cmd_q;
668         op.jobid = jobid;
669         op.sb_key = cmd_q->sb_key; /* Pre-allocated */
670         op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
671         op.init = 1;
672         op.u.aes.type = aes->type;
673
674         /* Copy the key to the LSB */
675         ret = ccp_init_dm_workarea(&key, cmd_q,
676                                    CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
677                                    DMA_TO_DEVICE);
678         if (ret)
679                 return ret;
680
681         dm_offset = CCP_SB_BYTES - aes->key_len;
682         ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
683         if (ret)
684                 goto e_key;
685         ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
686                              CCP_PASSTHRU_BYTESWAP_256BIT);
687         if (ret) {
688                 cmd->engine_error = cmd_q->cmd_error;
689                 goto e_key;
690         }
691
692         /* Copy the context (IV) to the LSB.
693          * There is an assumption here that the IV is 96 bits in length, plus
694          * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
695          */
696         ret = ccp_init_dm_workarea(&ctx, cmd_q,
697                                    CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
698                                    DMA_BIDIRECTIONAL);
699         if (ret)
700                 goto e_key;
701
702         dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
703         ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
704         if (ret)
705                 goto e_ctx;
706
707         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
708                              CCP_PASSTHRU_BYTESWAP_256BIT);
709         if (ret) {
710                 cmd->engine_error = cmd_q->cmd_error;
711                 goto e_ctx;
712         }
713
714         op.init = 1;
715         if (aes->aad_len > 0) {
716                 /* Step 1: Run a GHASH over the Additional Authenticated Data */
717                 ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
718                                     AES_BLOCK_SIZE,
719                                     DMA_TO_DEVICE);
720                 if (ret)
721                         goto e_ctx;
722
723                 op.u.aes.mode = CCP_AES_MODE_GHASH;
724                 op.u.aes.action = CCP_AES_GHASHAAD;
725
726                 while (aad.sg_wa.bytes_left) {
727                         ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
728
729                         ret = cmd_q->ccp->vdata->perform->aes(&op);
730                         if (ret) {
731                                 cmd->engine_error = cmd_q->cmd_error;
732                                 goto e_aad;
733                         }
734
735                         ccp_process_data(&aad, NULL, &op);
736                         op.init = 0;
737                 }
738         }
739
740         op.u.aes.mode = CCP_AES_MODE_GCTR;
741         op.u.aes.action = aes->action;
742
743         if (ilen > 0) {
744                 /* Step 2: Run a GCTR over the plaintext */
745                 in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
746
747                 ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
748                                     AES_BLOCK_SIZE,
749                                     in_place ? DMA_BIDIRECTIONAL
750                                              : DMA_TO_DEVICE);
751                 if (ret)
752                         goto e_ctx;
753
754                 if (in_place) {
755                         dst = src;
756                 } else {
757                         ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
758                                             AES_BLOCK_SIZE, DMA_FROM_DEVICE);
759                         if (ret)
760                                 goto e_src;
761                 }
762
763                 op.soc = 0;
764                 op.eom = 0;
765                 op.init = 1;
766                 while (src.sg_wa.bytes_left) {
767                         ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
768                         if (!src.sg_wa.bytes_left) {
769                                 unsigned int nbytes = aes->src_len
770                                                       % AES_BLOCK_SIZE;
771
772                                 if (nbytes) {
773                                         op.eom = 1;
774                                         op.u.aes.size = (nbytes * 8) - 1;
775                                 }
776                         }
777
778                         ret = cmd_q->ccp->vdata->perform->aes(&op);
779                         if (ret) {
780                                 cmd->engine_error = cmd_q->cmd_error;
781                                 goto e_dst;
782                         }
783
784                         ccp_process_data(&src, &dst, &op);
785                         op.init = 0;
786                 }
787         }
788
789         /* Step 3: Update the IV portion of the context with the original IV */
790         ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
791                                CCP_PASSTHRU_BYTESWAP_256BIT);
792         if (ret) {
793                 cmd->engine_error = cmd_q->cmd_error;
794                 goto e_dst;
795         }
796
797         ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
798         if (ret)
799                 goto e_dst;
800
801         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
802                              CCP_PASSTHRU_BYTESWAP_256BIT);
803         if (ret) {
804                 cmd->engine_error = cmd_q->cmd_error;
805                 goto e_dst;
806         }
807
808         /* Step 4: Concatenate the lengths of the AAD and source, and
809          * hash that 16 byte buffer.
810          */
811         ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
812                                    DMA_BIDIRECTIONAL);
813         if (ret)
814                 goto e_dst;
815         final = (unsigned long long *) final_wa.address;
816         final[0] = cpu_to_be64(aes->aad_len * 8);
817         final[1] = cpu_to_be64(ilen * 8);
818
819         memset(&op, 0, sizeof(op));
820         op.cmd_q = cmd_q;
821         op.jobid = jobid;
822         op.sb_key = cmd_q->sb_key; /* Pre-allocated */
823         op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
824         op.init = 1;
825         op.u.aes.type = aes->type;
826         op.u.aes.mode = CCP_AES_MODE_GHASH;
827         op.u.aes.action = CCP_AES_GHASHFINAL;
828         op.src.type = CCP_MEMTYPE_SYSTEM;
829         op.src.u.dma.address = final_wa.dma.address;
830         op.src.u.dma.length = AES_BLOCK_SIZE;
831         op.dst.type = CCP_MEMTYPE_SYSTEM;
832         op.dst.u.dma.address = final_wa.dma.address;
833         op.dst.u.dma.length = AES_BLOCK_SIZE;
834         op.eom = 1;
835         op.u.aes.size = 0;
836         ret = cmd_q->ccp->vdata->perform->aes(&op);
837         if (ret)
838                 goto e_dst;
839
840         if (aes->action == CCP_AES_ACTION_ENCRYPT) {
841                 /* Put the ciphered tag after the ciphertext. */
842                 ccp_get_dm_area(&final_wa, 0, p_tag, 0, AES_BLOCK_SIZE);
843         } else {
844                 /* Does this ciphered tag match the input? */
845                 ret = ccp_init_dm_workarea(&tag, cmd_q, AES_BLOCK_SIZE,
846                                            DMA_BIDIRECTIONAL);
847                 if (ret)
848                         goto e_tag;
849                 ret = ccp_set_dm_area(&tag, 0, p_tag, 0, AES_BLOCK_SIZE);
850                 if (ret)
851                         goto e_tag;
852
853                 ret = crypto_memneq(tag.address, final_wa.address,
854                                     AES_BLOCK_SIZE) ? -EBADMSG : 0;
855                 ccp_dm_free(&tag);
856         }
857
858 e_tag:
859         ccp_dm_free(&final_wa);
860
861 e_dst:
862         if (aes->src_len && !in_place)
863                 ccp_free_data(&dst, cmd_q);
864
865 e_src:
866         if (aes->src_len)
867                 ccp_free_data(&src, cmd_q);
868
869 e_aad:
870         if (aes->aad_len)
871                 ccp_free_data(&aad, cmd_q);
872
873 e_ctx:
874         ccp_dm_free(&ctx);
875
876 e_key:
877         ccp_dm_free(&key);
878
879         return ret;
880 }
881
882 static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
883 {
884         struct ccp_aes_engine *aes = &cmd->u.aes;
885         struct ccp_dm_workarea key, ctx;
886         struct ccp_data src, dst;
887         struct ccp_op op;
888         unsigned int dm_offset;
889         bool in_place = false;
890         int ret;
891
892         if (aes->mode == CCP_AES_MODE_CMAC)
893                 return ccp_run_aes_cmac_cmd(cmd_q, cmd);
894
895         if (aes->mode == CCP_AES_MODE_GCM)
896                 return ccp_run_aes_gcm_cmd(cmd_q, cmd);
897
898         if (!((aes->key_len == AES_KEYSIZE_128) ||
899               (aes->key_len == AES_KEYSIZE_192) ||
900               (aes->key_len == AES_KEYSIZE_256)))
901                 return -EINVAL;
902
903         if (((aes->mode == CCP_AES_MODE_ECB) ||
904              (aes->mode == CCP_AES_MODE_CBC)) &&
905             (aes->src_len & (AES_BLOCK_SIZE - 1)))
906                 return -EINVAL;
907
908         if (!aes->key || !aes->src || !aes->dst)
909                 return -EINVAL;
910
911         if (aes->mode != CCP_AES_MODE_ECB) {
912                 if (aes->iv_len != AES_BLOCK_SIZE)
913                         return -EINVAL;
914
915                 if (!aes->iv)
916                         return -EINVAL;
917         }
918
919         BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
920         BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
921
922         ret = -EIO;
923         memset(&op, 0, sizeof(op));
924         op.cmd_q = cmd_q;
925         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
926         op.sb_key = cmd_q->sb_key;
927         op.sb_ctx = cmd_q->sb_ctx;
928         op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
929         op.u.aes.type = aes->type;
930         op.u.aes.mode = aes->mode;
931         op.u.aes.action = aes->action;
932
933         /* All supported key sizes fit in a single (32-byte) SB entry
934          * and must be in little endian format. Use the 256-bit byte
935          * swap passthru option to convert from big endian to little
936          * endian.
937          */
938         ret = ccp_init_dm_workarea(&key, cmd_q,
939                                    CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
940                                    DMA_TO_DEVICE);
941         if (ret)
942                 return ret;
943
944         dm_offset = CCP_SB_BYTES - aes->key_len;
945         ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
946         if (ret)
947                 goto e_key;
948         ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
949                              CCP_PASSTHRU_BYTESWAP_256BIT);
950         if (ret) {
951                 cmd->engine_error = cmd_q->cmd_error;
952                 goto e_key;
953         }
954
955         /* The AES context fits in a single (32-byte) SB entry and
956          * must be in little endian format. Use the 256-bit byte swap
957          * passthru option to convert from big endian to little endian.
958          */
959         ret = ccp_init_dm_workarea(&ctx, cmd_q,
960                                    CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
961                                    DMA_BIDIRECTIONAL);
962         if (ret)
963                 goto e_key;
964
965         if (aes->mode != CCP_AES_MODE_ECB) {
966                 /* Load the AES context - convert to LE */
967                 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
968                 ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
969                 if (ret)
970                         goto e_ctx;
971                 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
972                                      CCP_PASSTHRU_BYTESWAP_256BIT);
973                 if (ret) {
974                         cmd->engine_error = cmd_q->cmd_error;
975                         goto e_ctx;
976                 }
977         }
978         switch (aes->mode) {
979         case CCP_AES_MODE_CFB: /* CFB128 only */
980         case CCP_AES_MODE_CTR:
981                 op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
982                 break;
983         default:
984                 op.u.aes.size = 0;
985         }
986
987         /* Prepare the input and output data workareas. For in-place
988          * operations we need to set the dma direction to BIDIRECTIONAL
989          * and copy the src workarea to the dst workarea.
990          */
991         if (sg_virt(aes->src) == sg_virt(aes->dst))
992                 in_place = true;
993
994         ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
995                             AES_BLOCK_SIZE,
996                             in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
997         if (ret)
998                 goto e_ctx;
999
1000         if (in_place) {
1001                 dst = src;
1002         } else {
1003                 ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
1004                                     AES_BLOCK_SIZE, DMA_FROM_DEVICE);
1005                 if (ret)
1006                         goto e_src;
1007         }
1008
1009         /* Send data to the CCP AES engine */
1010         while (src.sg_wa.bytes_left) {
1011                 ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
1012                 if (!src.sg_wa.bytes_left) {
1013                         op.eom = 1;
1014
1015                         /* Since we don't retrieve the AES context in ECB
1016                          * mode we have to wait for the operation to complete
1017                          * on the last piece of data
1018                          */
1019                         if (aes->mode == CCP_AES_MODE_ECB)
1020                                 op.soc = 1;
1021                 }
1022
1023                 ret = cmd_q->ccp->vdata->perform->aes(&op);
1024                 if (ret) {
1025                         cmd->engine_error = cmd_q->cmd_error;
1026                         goto e_dst;
1027                 }
1028
1029                 ccp_process_data(&src, &dst, &op);
1030         }
1031
1032         if (aes->mode != CCP_AES_MODE_ECB) {
1033                 /* Retrieve the AES context - convert from LE to BE using
1034                  * 32-byte (256-bit) byteswapping
1035                  */
1036                 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1037                                        CCP_PASSTHRU_BYTESWAP_256BIT);
1038                 if (ret) {
1039                         cmd->engine_error = cmd_q->cmd_error;
1040                         goto e_dst;
1041                 }
1042
1043                 /* ...but we only need AES_BLOCK_SIZE bytes */
1044                 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1045                 ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
1046         }
1047
1048 e_dst:
1049         if (!in_place)
1050                 ccp_free_data(&dst, cmd_q);
1051
1052 e_src:
1053         ccp_free_data(&src, cmd_q);
1054
1055 e_ctx:
1056         ccp_dm_free(&ctx);
1057
1058 e_key:
1059         ccp_dm_free(&key);
1060
1061         return ret;
1062 }
1063
1064 static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
1065                                struct ccp_cmd *cmd)
1066 {
1067         struct ccp_xts_aes_engine *xts = &cmd->u.xts;
1068         struct ccp_dm_workarea key, ctx;
1069         struct ccp_data src, dst;
1070         struct ccp_op op;
1071         unsigned int unit_size, dm_offset;
1072         bool in_place = false;
1073         unsigned int sb_count;
1074         enum ccp_aes_type aestype;
1075         int ret;
1076
1077         switch (xts->unit_size) {
1078         case CCP_XTS_AES_UNIT_SIZE_16:
1079                 unit_size = 16;
1080                 break;
1081         case CCP_XTS_AES_UNIT_SIZE_512:
1082                 unit_size = 512;
1083                 break;
1084         case CCP_XTS_AES_UNIT_SIZE_1024:
1085                 unit_size = 1024;
1086                 break;
1087         case CCP_XTS_AES_UNIT_SIZE_2048:
1088                 unit_size = 2048;
1089                 break;
1090         case CCP_XTS_AES_UNIT_SIZE_4096:
1091                 unit_size = 4096;
1092                 break;
1093
1094         default:
1095                 return -EINVAL;
1096         }
1097
1098         if (xts->key_len == AES_KEYSIZE_128)
1099                 aestype = CCP_AES_TYPE_128;
1100         else if (xts->key_len == AES_KEYSIZE_256)
1101                 aestype = CCP_AES_TYPE_256;
1102         else
1103                 return -EINVAL;
1104
1105         if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
1106                 return -EINVAL;
1107
1108         if (xts->iv_len != AES_BLOCK_SIZE)
1109                 return -EINVAL;
1110
1111         if (!xts->key || !xts->iv || !xts->src || !xts->dst)
1112                 return -EINVAL;
1113
1114         BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
1115         BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
1116
1117         ret = -EIO;
1118         memset(&op, 0, sizeof(op));
1119         op.cmd_q = cmd_q;
1120         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1121         op.sb_key = cmd_q->sb_key;
1122         op.sb_ctx = cmd_q->sb_ctx;
1123         op.init = 1;
1124         op.u.xts.type = aestype;
1125         op.u.xts.action = xts->action;
1126         op.u.xts.unit_size = xts->unit_size;
1127
1128         /* A version 3 device only supports 128-bit keys, which fits into a
1129          * single SB entry. A version 5 device uses a 512-bit vector, so two
1130          * SB entries.
1131          */
1132         if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1133                 sb_count = CCP_XTS_AES_KEY_SB_COUNT;
1134         else
1135                 sb_count = CCP5_XTS_AES_KEY_SB_COUNT;
1136         ret = ccp_init_dm_workarea(&key, cmd_q,
1137                                    sb_count * CCP_SB_BYTES,
1138                                    DMA_TO_DEVICE);
1139         if (ret)
1140                 return ret;
1141
1142         if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1143                 /* All supported key sizes must be in little endian format.
1144                  * Use the 256-bit byte swap passthru option to convert from
1145                  * big endian to little endian.
1146                  */
1147                 dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
1148                 ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
1149                 if (ret)
1150                         goto e_key;
1151                 ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len);
1152                 if (ret)
1153                         goto e_key;
1154         } else {
1155                 /* Version 5 CCPs use a 512-bit space for the key: each portion
1156                  * occupies 256 bits, or one entire slot, and is zero-padded.
1157                  */
1158                 unsigned int pad;
1159
1160                 dm_offset = CCP_SB_BYTES;
1161                 pad = dm_offset - xts->key_len;
1162                 ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len);
1163                 if (ret)
1164                         goto e_key;
1165                 ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key,
1166                                       xts->key_len, xts->key_len);
1167                 if (ret)
1168                         goto e_key;
1169         }
1170         ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1171                              CCP_PASSTHRU_BYTESWAP_256BIT);
1172         if (ret) {
1173                 cmd->engine_error = cmd_q->cmd_error;
1174                 goto e_key;
1175         }
1176
1177         /* The AES context fits in a single (32-byte) SB entry and
1178          * for XTS is already in little endian format so no byte swapping
1179          * is needed.
1180          */
1181         ret = ccp_init_dm_workarea(&ctx, cmd_q,
1182                                    CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
1183                                    DMA_BIDIRECTIONAL);
1184         if (ret)
1185                 goto e_key;
1186
1187         ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
1188         if (ret)
1189                 goto e_ctx;
1190         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1191                              CCP_PASSTHRU_BYTESWAP_NOOP);
1192         if (ret) {
1193                 cmd->engine_error = cmd_q->cmd_error;
1194                 goto e_ctx;
1195         }
1196
1197         /* Prepare the input and output data workareas. For in-place
1198          * operations we need to set the dma direction to BIDIRECTIONAL
1199          * and copy the src workarea to the dst workarea.
1200          */
1201         if (sg_virt(xts->src) == sg_virt(xts->dst))
1202                 in_place = true;
1203
1204         ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
1205                             unit_size,
1206                             in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1207         if (ret)
1208                 goto e_ctx;
1209
1210         if (in_place) {
1211                 dst = src;
1212         } else {
1213                 ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
1214                                     unit_size, DMA_FROM_DEVICE);
1215                 if (ret)
1216                         goto e_src;
1217         }
1218
1219         /* Send data to the CCP AES engine */
1220         while (src.sg_wa.bytes_left) {
1221                 ccp_prepare_data(&src, &dst, &op, unit_size, true);
1222                 if (!src.sg_wa.bytes_left)
1223                         op.eom = 1;
1224
1225                 ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
1226                 if (ret) {
1227                         cmd->engine_error = cmd_q->cmd_error;
1228                         goto e_dst;
1229                 }
1230
1231                 ccp_process_data(&src, &dst, &op);
1232         }
1233
1234         /* Retrieve the AES context - convert from LE to BE using
1235          * 32-byte (256-bit) byteswapping
1236          */
1237         ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1238                                CCP_PASSTHRU_BYTESWAP_256BIT);
1239         if (ret) {
1240                 cmd->engine_error = cmd_q->cmd_error;
1241                 goto e_dst;
1242         }
1243
1244         /* ...but we only need AES_BLOCK_SIZE bytes */
1245         dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1246         ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
1247
1248 e_dst:
1249         if (!in_place)
1250                 ccp_free_data(&dst, cmd_q);
1251
1252 e_src:
1253         ccp_free_data(&src, cmd_q);
1254
1255 e_ctx:
1256         ccp_dm_free(&ctx);
1257
1258 e_key:
1259         ccp_dm_free(&key);
1260
1261         return ret;
1262 }
1263
1264 static int ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1265 {
1266         struct ccp_des3_engine *des3 = &cmd->u.des3;
1267
1268         struct ccp_dm_workarea key, ctx;
1269         struct ccp_data src, dst;
1270         struct ccp_op op;
1271         unsigned int dm_offset;
1272         unsigned int len_singlekey;
1273         bool in_place = false;
1274         int ret;
1275
1276         /* Error checks */
1277         if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0))
1278                 return -EINVAL;
1279
1280         if (!cmd_q->ccp->vdata->perform->des3)
1281                 return -EINVAL;
1282
1283         if (des3->key_len != DES3_EDE_KEY_SIZE)
1284                 return -EINVAL;
1285
1286         if (((des3->mode == CCP_DES3_MODE_ECB) ||
1287                 (des3->mode == CCP_DES3_MODE_CBC)) &&
1288                 (des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
1289                 return -EINVAL;
1290
1291         if (!des3->key || !des3->src || !des3->dst)
1292                 return -EINVAL;
1293
1294         if (des3->mode != CCP_DES3_MODE_ECB) {
1295                 if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
1296                         return -EINVAL;
1297
1298                 if (!des3->iv)
1299                         return -EINVAL;
1300         }
1301
1302         ret = -EIO;
1303         /* Zero out all the fields of the command desc */
1304         memset(&op, 0, sizeof(op));
1305
1306         /* Set up the Function field */
1307         op.cmd_q = cmd_q;
1308         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1309         op.sb_key = cmd_q->sb_key;
1310
1311         op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
1312         op.u.des3.type = des3->type;
1313         op.u.des3.mode = des3->mode;
1314         op.u.des3.action = des3->action;
1315
1316         /*
1317          * All supported key sizes fit in a single (32-byte) KSB entry and
1318          * (like AES) must be in little endian format. Use the 256-bit byte
1319          * swap passthru option to convert from big endian to little endian.
1320          */
1321         ret = ccp_init_dm_workarea(&key, cmd_q,
1322                                    CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
1323                                    DMA_TO_DEVICE);
1324         if (ret)
1325                 return ret;
1326
1327         /*
1328          * The contents of the key triplet are in the reverse order of what
1329          * is required by the engine. Copy the 3 pieces individually to put
1330          * them where they belong.
1331          */
1332         dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
1333
1334         len_singlekey = des3->key_len / 3;
1335         ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
1336                               des3->key, 0, len_singlekey);
1337         if (ret)
1338                 goto e_key;
1339         ret = ccp_set_dm_area(&key, dm_offset + len_singlekey,
1340                               des3->key, len_singlekey, len_singlekey);
1341         if (ret)
1342                 goto e_key;
1343         ret = ccp_set_dm_area(&key, dm_offset,
1344                               des3->key, 2 * len_singlekey, len_singlekey);
1345         if (ret)
1346                 goto e_key;
1347
1348         /* Copy the key to the SB */
1349         ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1350                              CCP_PASSTHRU_BYTESWAP_256BIT);
1351         if (ret) {
1352                 cmd->engine_error = cmd_q->cmd_error;
1353                 goto e_key;
1354         }
1355
1356         /*
1357          * The DES3 context fits in a single (32-byte) KSB entry and
1358          * must be in little endian format. Use the 256-bit byte swap
1359          * passthru option to convert from big endian to little endian.
1360          */
1361         if (des3->mode != CCP_DES3_MODE_ECB) {
1362                 op.sb_ctx = cmd_q->sb_ctx;
1363
1364                 ret = ccp_init_dm_workarea(&ctx, cmd_q,
1365                                            CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
1366                                            DMA_BIDIRECTIONAL);
1367                 if (ret)
1368                         goto e_key;
1369
1370                 /* Load the context into the LSB */
1371                 dm_offset = CCP_SB_BYTES - des3->iv_len;
1372                 ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0,
1373                                       des3->iv_len);
1374                 if (ret)
1375                         goto e_ctx;
1376
1377                 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1378                                      CCP_PASSTHRU_BYTESWAP_256BIT);
1379                 if (ret) {
1380                         cmd->engine_error = cmd_q->cmd_error;
1381                         goto e_ctx;
1382                 }
1383         }
1384
1385         /*
1386          * Prepare the input and output data workareas. For in-place
1387          * operations we need to set the dma direction to BIDIRECTIONAL
1388          * and copy the src workarea to the dst workarea.
1389          */
1390         if (sg_virt(des3->src) == sg_virt(des3->dst))
1391                 in_place = true;
1392
1393         ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
1394                         DES3_EDE_BLOCK_SIZE,
1395                         in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1396         if (ret)
1397                 goto e_ctx;
1398
1399         if (in_place)
1400                 dst = src;
1401         else {
1402                 ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
1403                                 DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
1404                 if (ret)
1405                         goto e_src;
1406         }
1407
1408         /* Send data to the CCP DES3 engine */
1409         while (src.sg_wa.bytes_left) {
1410                 ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
1411                 if (!src.sg_wa.bytes_left) {
1412                         op.eom = 1;
1413
1414                         /* Since we don't retrieve the context in ECB mode
1415                          * we have to wait for the operation to complete
1416                          * on the last piece of data
1417                          */
1418                         op.soc = 0;
1419                 }
1420
1421                 ret = cmd_q->ccp->vdata->perform->des3(&op);
1422                 if (ret) {
1423                         cmd->engine_error = cmd_q->cmd_error;
1424                         goto e_dst;
1425                 }
1426
1427                 ccp_process_data(&src, &dst, &op);
1428         }
1429
1430         if (des3->mode != CCP_DES3_MODE_ECB) {
1431                 /* Retrieve the context and make BE */
1432                 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1433                                        CCP_PASSTHRU_BYTESWAP_256BIT);
1434                 if (ret) {
1435                         cmd->engine_error = cmd_q->cmd_error;
1436                         goto e_dst;
1437                 }
1438
1439                 /* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
1440                 ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
1441                                 DES3_EDE_BLOCK_SIZE);
1442         }
1443 e_dst:
1444         if (!in_place)
1445                 ccp_free_data(&dst, cmd_q);
1446
1447 e_src:
1448         ccp_free_data(&src, cmd_q);
1449
1450 e_ctx:
1451         if (des3->mode != CCP_DES3_MODE_ECB)
1452                 ccp_dm_free(&ctx);
1453
1454 e_key:
1455         ccp_dm_free(&key);
1456
1457         return ret;
1458 }
1459
1460 static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1461 {
1462         struct ccp_sha_engine *sha = &cmd->u.sha;
1463         struct ccp_dm_workarea ctx;
1464         struct ccp_data src;
1465         struct ccp_op op;
1466         unsigned int ioffset, ooffset;
1467         unsigned int digest_size;
1468         int sb_count;
1469         const void *init;
1470         u64 block_size;
1471         int ctx_size;
1472         int ret;
1473
1474         switch (sha->type) {
1475         case CCP_SHA_TYPE_1:
1476                 if (sha->ctx_len < SHA1_DIGEST_SIZE)
1477                         return -EINVAL;
1478                 block_size = SHA1_BLOCK_SIZE;
1479                 break;
1480         case CCP_SHA_TYPE_224:
1481                 if (sha->ctx_len < SHA224_DIGEST_SIZE)
1482                         return -EINVAL;
1483                 block_size = SHA224_BLOCK_SIZE;
1484                 break;
1485         case CCP_SHA_TYPE_256:
1486                 if (sha->ctx_len < SHA256_DIGEST_SIZE)
1487                         return -EINVAL;
1488                 block_size = SHA256_BLOCK_SIZE;
1489                 break;
1490         case CCP_SHA_TYPE_384:
1491                 if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1492                     || sha->ctx_len < SHA384_DIGEST_SIZE)
1493                         return -EINVAL;
1494                 block_size = SHA384_BLOCK_SIZE;
1495                 break;
1496         case CCP_SHA_TYPE_512:
1497                 if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1498                     || sha->ctx_len < SHA512_DIGEST_SIZE)
1499                         return -EINVAL;
1500                 block_size = SHA512_BLOCK_SIZE;
1501                 break;
1502         default:
1503                 return -EINVAL;
1504         }
1505
1506         if (!sha->ctx)
1507                 return -EINVAL;
1508
1509         if (!sha->final && (sha->src_len & (block_size - 1)))
1510                 return -EINVAL;
1511
1512         /* The version 3 device can't handle zero-length input */
1513         if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1514
1515                 if (!sha->src_len) {
1516                         unsigned int digest_len;
1517                         const u8 *sha_zero;
1518
1519                         /* Not final, just return */
1520                         if (!sha->final)
1521                                 return 0;
1522
1523                         /* CCP can't do a zero length sha operation so the
1524                          * caller must buffer the data.
1525                          */
1526                         if (sha->msg_bits)
1527                                 return -EINVAL;
1528
1529                         /* The CCP cannot perform zero-length sha operations
1530                          * so the caller is required to buffer data for the
1531                          * final operation. However, a sha operation for a
1532                          * message with a total length of zero is valid so
1533                          * known values are required to supply the result.
1534                          */
1535                         switch (sha->type) {
1536                         case CCP_SHA_TYPE_1:
1537                                 sha_zero = sha1_zero_message_hash;
1538                                 digest_len = SHA1_DIGEST_SIZE;
1539                                 break;
1540                         case CCP_SHA_TYPE_224:
1541                                 sha_zero = sha224_zero_message_hash;
1542                                 digest_len = SHA224_DIGEST_SIZE;
1543                                 break;
1544                         case CCP_SHA_TYPE_256:
1545                                 sha_zero = sha256_zero_message_hash;
1546                                 digest_len = SHA256_DIGEST_SIZE;
1547                                 break;
1548                         default:
1549                                 return -EINVAL;
1550                         }
1551
1552                         scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1553                                                  digest_len, 1);
1554
1555                         return 0;
1556                 }
1557         }
1558
1559         /* Set variables used throughout */
1560         switch (sha->type) {
1561         case CCP_SHA_TYPE_1:
1562                 digest_size = SHA1_DIGEST_SIZE;
1563                 init = (void *) ccp_sha1_init;
1564                 ctx_size = SHA1_DIGEST_SIZE;
1565                 sb_count = 1;
1566                 if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1567                         ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
1568                 else
1569                         ooffset = ioffset = 0;
1570                 break;
1571         case CCP_SHA_TYPE_224:
1572                 digest_size = SHA224_DIGEST_SIZE;
1573                 init = (void *) ccp_sha224_init;
1574                 ctx_size = SHA256_DIGEST_SIZE;
1575                 sb_count = 1;
1576                 ioffset = 0;
1577                 if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1578                         ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
1579                 else
1580                         ooffset = 0;
1581                 break;
1582         case CCP_SHA_TYPE_256:
1583                 digest_size = SHA256_DIGEST_SIZE;
1584                 init = (void *) ccp_sha256_init;
1585                 ctx_size = SHA256_DIGEST_SIZE;
1586                 sb_count = 1;
1587                 ooffset = ioffset = 0;
1588                 break;
1589         case CCP_SHA_TYPE_384:
1590                 digest_size = SHA384_DIGEST_SIZE;
1591                 init = (void *) ccp_sha384_init;
1592                 ctx_size = SHA512_DIGEST_SIZE;
1593                 sb_count = 2;
1594                 ioffset = 0;
1595                 ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
1596                 break;
1597         case CCP_SHA_TYPE_512:
1598                 digest_size = SHA512_DIGEST_SIZE;
1599                 init = (void *) ccp_sha512_init;
1600                 ctx_size = SHA512_DIGEST_SIZE;
1601                 sb_count = 2;
1602                 ooffset = ioffset = 0;
1603                 break;
1604         default:
1605                 ret = -EINVAL;
1606                 goto e_data;
1607         }
1608
1609         /* For zero-length plaintext the src pointer is ignored;
1610          * otherwise both parts must be valid
1611          */
1612         if (sha->src_len && !sha->src)
1613                 return -EINVAL;
1614
1615         memset(&op, 0, sizeof(op));
1616         op.cmd_q = cmd_q;
1617         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1618         op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
1619         op.u.sha.type = sha->type;
1620         op.u.sha.msg_bits = sha->msg_bits;
1621
1622         /* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
1623          * SHA384/512 require 2 adjacent SB slots, with the right half in the
1624          * first slot, and the left half in the second. Each portion must then
1625          * be in little endian format: use the 256-bit byte swap option.
1626          */
1627         ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
1628                                    DMA_BIDIRECTIONAL);
1629         if (ret)
1630                 return ret;
1631         if (sha->first) {
1632                 switch (sha->type) {
1633                 case CCP_SHA_TYPE_1:
1634                 case CCP_SHA_TYPE_224:
1635                 case CCP_SHA_TYPE_256:
1636                         memcpy(ctx.address + ioffset, init, ctx_size);
1637                         break;
1638                 case CCP_SHA_TYPE_384:
1639                 case CCP_SHA_TYPE_512:
1640                         memcpy(ctx.address + ctx_size / 2, init,
1641                                ctx_size / 2);
1642                         memcpy(ctx.address, init + ctx_size / 2,
1643                                ctx_size / 2);
1644                         break;
1645                 default:
1646                         ret = -EINVAL;
1647                         goto e_ctx;
1648                 }
1649         } else {
1650                 /* Restore the context */
1651                 ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
1652                                       sb_count * CCP_SB_BYTES);
1653                 if (ret)
1654                         goto e_ctx;
1655         }
1656
1657         ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1658                              CCP_PASSTHRU_BYTESWAP_256BIT);
1659         if (ret) {
1660                 cmd->engine_error = cmd_q->cmd_error;
1661                 goto e_ctx;
1662         }
1663
1664         if (sha->src) {
1665                 /* Send data to the CCP SHA engine; block_size is set above */
1666                 ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1667                                     block_size, DMA_TO_DEVICE);
1668                 if (ret)
1669                         goto e_ctx;
1670
1671                 while (src.sg_wa.bytes_left) {
1672                         ccp_prepare_data(&src, NULL, &op, block_size, false);
1673                         if (sha->final && !src.sg_wa.bytes_left)
1674                                 op.eom = 1;
1675
1676                         ret = cmd_q->ccp->vdata->perform->sha(&op);
1677                         if (ret) {
1678                                 cmd->engine_error = cmd_q->cmd_error;
1679                                 goto e_data;
1680                         }
1681
1682                         ccp_process_data(&src, NULL, &op);
1683                 }
1684         } else {
1685                 op.eom = 1;
1686                 ret = cmd_q->ccp->vdata->perform->sha(&op);
1687                 if (ret) {
1688                         cmd->engine_error = cmd_q->cmd_error;
1689                         goto e_data;
1690                 }
1691         }
1692
1693         /* Retrieve the SHA context - convert from LE to BE using
1694          * 32-byte (256-bit) byteswapping to BE
1695          */
1696         ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1697                                CCP_PASSTHRU_BYTESWAP_256BIT);
1698         if (ret) {
1699                 cmd->engine_error = cmd_q->cmd_error;
1700                 goto e_data;
1701         }
1702
1703         if (sha->final) {
1704                 /* Finishing up, so get the digest */
1705                 switch (sha->type) {
1706                 case CCP_SHA_TYPE_1:
1707                 case CCP_SHA_TYPE_224:
1708                 case CCP_SHA_TYPE_256:
1709                         ccp_get_dm_area(&ctx, ooffset,
1710                                         sha->ctx, 0,
1711                                         digest_size);
1712                         break;
1713                 case CCP_SHA_TYPE_384:
1714                 case CCP_SHA_TYPE_512:
1715                         ccp_get_dm_area(&ctx, 0,
1716                                         sha->ctx, LSB_ITEM_SIZE - ooffset,
1717                                         LSB_ITEM_SIZE);
1718                         ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
1719                                         sha->ctx, 0,
1720                                         LSB_ITEM_SIZE - ooffset);
1721                         break;
1722                 default:
1723                         ret = -EINVAL;
1724                         goto e_ctx;
1725                 }
1726         } else {
1727                 /* Stash the context */
1728                 ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
1729                                 sb_count * CCP_SB_BYTES);
1730         }
1731
1732         if (sha->final && sha->opad) {
1733                 /* HMAC operation, recursively perform final SHA */
1734                 struct ccp_cmd hmac_cmd;
1735                 struct scatterlist sg;
1736                 u8 *hmac_buf;
1737
1738                 if (sha->opad_len != block_size) {
1739                         ret = -EINVAL;
1740                         goto e_data;
1741                 }
1742
1743                 hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1744                 if (!hmac_buf) {
1745                         ret = -ENOMEM;
1746                         goto e_data;
1747                 }
1748                 sg_init_one(&sg, hmac_buf, block_size + digest_size);
1749
1750                 scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1751                 switch (sha->type) {
1752                 case CCP_SHA_TYPE_1:
1753                 case CCP_SHA_TYPE_224:
1754                 case CCP_SHA_TYPE_256:
1755                         memcpy(hmac_buf + block_size,
1756                                ctx.address + ooffset,
1757                                digest_size);
1758                         break;
1759                 case CCP_SHA_TYPE_384:
1760                 case CCP_SHA_TYPE_512:
1761                         memcpy(hmac_buf + block_size,
1762                                ctx.address + LSB_ITEM_SIZE + ooffset,
1763                                LSB_ITEM_SIZE);
1764                         memcpy(hmac_buf + block_size +
1765                                (LSB_ITEM_SIZE - ooffset),
1766                                ctx.address,
1767                                LSB_ITEM_SIZE);
1768                         break;
1769                 default:
1770                         ret = -EINVAL;
1771                         goto e_ctx;
1772                 }
1773
1774                 memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1775                 hmac_cmd.engine = CCP_ENGINE_SHA;
1776                 hmac_cmd.u.sha.type = sha->type;
1777                 hmac_cmd.u.sha.ctx = sha->ctx;
1778                 hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1779                 hmac_cmd.u.sha.src = &sg;
1780                 hmac_cmd.u.sha.src_len = block_size + digest_size;
1781                 hmac_cmd.u.sha.opad = NULL;
1782                 hmac_cmd.u.sha.opad_len = 0;
1783                 hmac_cmd.u.sha.first = 1;
1784                 hmac_cmd.u.sha.final = 1;
1785                 hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1786
1787                 ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1788                 if (ret)
1789                         cmd->engine_error = hmac_cmd.engine_error;
1790
1791                 kfree(hmac_buf);
1792         }
1793
1794 e_data:
1795         if (sha->src)
1796                 ccp_free_data(&src, cmd_q);
1797
1798 e_ctx:
1799         ccp_dm_free(&ctx);
1800
1801         return ret;
1802 }
1803
1804 static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1805 {
1806         struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1807         struct ccp_dm_workarea exp, src, dst;
1808         struct ccp_op op;
1809         unsigned int sb_count, i_len, o_len;
1810         int ret;
1811
1812         /* Check against the maximum allowable size, in bits */
1813         if (rsa->key_size > cmd_q->ccp->vdata->rsamax)
1814                 return -EINVAL;
1815
1816         if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1817                 return -EINVAL;
1818
1819         memset(&op, 0, sizeof(op));
1820         op.cmd_q = cmd_q;
1821         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1822
1823         /* The RSA modulus must precede the message being acted upon, so
1824          * it must be copied to a DMA area where the message and the
1825          * modulus can be concatenated.  Therefore the input buffer
1826          * length required is twice the output buffer length (which
1827          * must be a multiple of 256-bits).  Compute o_len, i_len in bytes.
1828          * Buffer sizes must be a multiple of 32 bytes; rounding up may be
1829          * required.
1830          */
1831         o_len = 32 * ((rsa->key_size + 255) / 256);
1832         i_len = o_len * 2;
1833
1834         sb_count = 0;
1835         if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1836                 /* sb_count is the number of storage block slots required
1837                  * for the modulus.
1838                  */
1839                 sb_count = o_len / CCP_SB_BYTES;
1840                 op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q,
1841                                                                 sb_count);
1842                 if (!op.sb_key)
1843                         return -EIO;
1844         } else {
1845                 /* A version 5 device allows a modulus size that will not fit
1846                  * in the LSB, so the command will transfer it from memory.
1847                  * Set the sb key to the default, even though it's not used.
1848                  */
1849                 op.sb_key = cmd_q->sb_key;
1850         }
1851
1852         /* The RSA exponent must be in little endian format. Reverse its
1853          * byte order.
1854          */
1855         ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1856         if (ret)
1857                 goto e_sb;
1858
1859         ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
1860         if (ret)
1861                 goto e_exp;
1862
1863         if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1864                 /* Copy the exponent to the local storage block, using
1865                  * as many 32-byte blocks as were allocated above. It's
1866                  * already little endian, so no further change is required.
1867                  */
1868                 ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
1869                                      CCP_PASSTHRU_BYTESWAP_NOOP);
1870                 if (ret) {
1871                         cmd->engine_error = cmd_q->cmd_error;
1872                         goto e_exp;
1873                 }
1874         } else {
1875                 /* The exponent can be retrieved from memory via DMA. */
1876                 op.exp.u.dma.address = exp.dma.address;
1877                 op.exp.u.dma.offset = 0;
1878         }
1879
1880         /* Concatenate the modulus and the message. Both the modulus and
1881          * the operands must be in little endian format.  Since the input
1882          * is in big endian format it must be converted.
1883          */
1884         ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1885         if (ret)
1886                 goto e_exp;
1887
1888         ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
1889         if (ret)
1890                 goto e_src;
1891         ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
1892         if (ret)
1893                 goto e_src;
1894
1895         /* Prepare the output area for the operation */
1896         ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE);
1897         if (ret)
1898                 goto e_src;
1899
1900         op.soc = 1;
1901         op.src.u.dma.address = src.dma.address;
1902         op.src.u.dma.offset = 0;
1903         op.src.u.dma.length = i_len;
1904         op.dst.u.dma.address = dst.dma.address;
1905         op.dst.u.dma.offset = 0;
1906         op.dst.u.dma.length = o_len;
1907
1908         op.u.rsa.mod_size = rsa->key_size;
1909         op.u.rsa.input_len = i_len;
1910
1911         ret = cmd_q->ccp->vdata->perform->rsa(&op);
1912         if (ret) {
1913                 cmd->engine_error = cmd_q->cmd_error;
1914                 goto e_dst;
1915         }
1916
1917         ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len);
1918
1919 e_dst:
1920         ccp_dm_free(&dst);
1921
1922 e_src:
1923         ccp_dm_free(&src);
1924
1925 e_exp:
1926         ccp_dm_free(&exp);
1927
1928 e_sb:
1929         if (sb_count)
1930                 cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1931
1932         return ret;
1933 }
1934
1935 static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q,
1936                                 struct ccp_cmd *cmd)
1937 {
1938         struct ccp_passthru_engine *pt = &cmd->u.passthru;
1939         struct ccp_dm_workarea mask;
1940         struct ccp_data src, dst;
1941         struct ccp_op op;
1942         bool in_place = false;
1943         unsigned int i;
1944         int ret = 0;
1945
1946         if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1947                 return -EINVAL;
1948
1949         if (!pt->src || !pt->dst)
1950                 return -EINVAL;
1951
1952         if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1953                 if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1954                         return -EINVAL;
1955                 if (!pt->mask)
1956                         return -EINVAL;
1957         }
1958
1959         BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1960
1961         memset(&op, 0, sizeof(op));
1962         op.cmd_q = cmd_q;
1963         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1964
1965         if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1966                 /* Load the mask */
1967                 op.sb_key = cmd_q->sb_key;
1968
1969                 ret = ccp_init_dm_workarea(&mask, cmd_q,
1970                                            CCP_PASSTHRU_SB_COUNT *
1971                                            CCP_SB_BYTES,
1972                                            DMA_TO_DEVICE);
1973                 if (ret)
1974                         return ret;
1975
1976                 ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
1977                 if (ret)
1978                         goto e_mask;
1979                 ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
1980                                      CCP_PASSTHRU_BYTESWAP_NOOP);
1981                 if (ret) {
1982                         cmd->engine_error = cmd_q->cmd_error;
1983                         goto e_mask;
1984                 }
1985         }
1986
1987         /* Prepare the input and output data workareas. For in-place
1988          * operations we need to set the dma direction to BIDIRECTIONAL
1989          * and copy the src workarea to the dst workarea.
1990          */
1991         if (sg_virt(pt->src) == sg_virt(pt->dst))
1992                 in_place = true;
1993
1994         ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
1995                             CCP_PASSTHRU_MASKSIZE,
1996                             in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1997         if (ret)
1998                 goto e_mask;
1999
2000         if (in_place) {
2001                 dst = src;
2002         } else {
2003                 ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
2004                                     CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
2005                 if (ret)
2006                         goto e_src;
2007         }
2008
2009         /* Send data to the CCP Passthru engine
2010          *   Because the CCP engine works on a single source and destination
2011          *   dma address at a time, each entry in the source scatterlist
2012          *   (after the dma_map_sg call) must be less than or equal to the
2013          *   (remaining) length in the destination scatterlist entry and the
2014          *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
2015          */
2016         dst.sg_wa.sg_used = 0;
2017         for (i = 1; i <= src.sg_wa.dma_count; i++) {
2018                 if (!dst.sg_wa.sg ||
2019                     (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
2020                         ret = -EINVAL;
2021                         goto e_dst;
2022                 }
2023
2024                 if (i == src.sg_wa.dma_count) {
2025                         op.eom = 1;
2026                         op.soc = 1;
2027                 }
2028
2029                 op.src.type = CCP_MEMTYPE_SYSTEM;
2030                 op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
2031                 op.src.u.dma.offset = 0;
2032                 op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
2033
2034                 op.dst.type = CCP_MEMTYPE_SYSTEM;
2035                 op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
2036                 op.dst.u.dma.offset = dst.sg_wa.sg_used;
2037                 op.dst.u.dma.length = op.src.u.dma.length;
2038
2039                 ret = cmd_q->ccp->vdata->perform->passthru(&op);
2040                 if (ret) {
2041                         cmd->engine_error = cmd_q->cmd_error;
2042                         goto e_dst;
2043                 }
2044
2045                 dst.sg_wa.sg_used += src.sg_wa.sg->length;
2046                 if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
2047                         dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
2048                         dst.sg_wa.sg_used = 0;
2049                 }
2050                 src.sg_wa.sg = sg_next(src.sg_wa.sg);
2051         }
2052
2053 e_dst:
2054         if (!in_place)
2055                 ccp_free_data(&dst, cmd_q);
2056
2057 e_src:
2058         ccp_free_data(&src, cmd_q);
2059
2060 e_mask:
2061         if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
2062                 ccp_dm_free(&mask);
2063
2064         return ret;
2065 }
2066
2067 static int ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
2068                                       struct ccp_cmd *cmd)
2069 {
2070         struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
2071         struct ccp_dm_workarea mask;
2072         struct ccp_op op;
2073         int ret;
2074
2075         if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
2076                 return -EINVAL;
2077
2078         if (!pt->src_dma || !pt->dst_dma)
2079                 return -EINVAL;
2080
2081         if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2082                 if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
2083                         return -EINVAL;
2084                 if (!pt->mask)
2085                         return -EINVAL;
2086         }
2087
2088         BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
2089
2090         memset(&op, 0, sizeof(op));
2091         op.cmd_q = cmd_q;
2092         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2093
2094         if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2095                 /* Load the mask */
2096                 op.sb_key = cmd_q->sb_key;
2097
2098                 mask.length = pt->mask_len;
2099                 mask.dma.address = pt->mask;
2100                 mask.dma.length = pt->mask_len;
2101
2102                 ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2103                                      CCP_PASSTHRU_BYTESWAP_NOOP);
2104                 if (ret) {
2105                         cmd->engine_error = cmd_q->cmd_error;
2106                         return ret;
2107                 }
2108         }
2109
2110         /* Send data to the CCP Passthru engine */
2111         op.eom = 1;
2112         op.soc = 1;
2113
2114         op.src.type = CCP_MEMTYPE_SYSTEM;
2115         op.src.u.dma.address = pt->src_dma;
2116         op.src.u.dma.offset = 0;
2117         op.src.u.dma.length = pt->src_len;
2118
2119         op.dst.type = CCP_MEMTYPE_SYSTEM;
2120         op.dst.u.dma.address = pt->dst_dma;
2121         op.dst.u.dma.offset = 0;
2122         op.dst.u.dma.length = pt->src_len;
2123
2124         ret = cmd_q->ccp->vdata->perform->passthru(&op);
2125         if (ret)
2126                 cmd->engine_error = cmd_q->cmd_error;
2127
2128         return ret;
2129 }
2130
2131 static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2132 {
2133         struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2134         struct ccp_dm_workarea src, dst;
2135         struct ccp_op op;
2136         int ret;
2137         u8 *save;
2138
2139         if (!ecc->u.mm.operand_1 ||
2140             (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
2141                 return -EINVAL;
2142
2143         if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
2144                 if (!ecc->u.mm.operand_2 ||
2145                     (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
2146                         return -EINVAL;
2147
2148         if (!ecc->u.mm.result ||
2149             (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
2150                 return -EINVAL;
2151
2152         memset(&op, 0, sizeof(op));
2153         op.cmd_q = cmd_q;
2154         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2155
2156         /* Concatenate the modulus and the operands. Both the modulus and
2157          * the operands must be in little endian format.  Since the input
2158          * is in big endian format it must be converted and placed in a
2159          * fixed length buffer.
2160          */
2161         ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2162                                    DMA_TO_DEVICE);
2163         if (ret)
2164                 return ret;
2165
2166         /* Save the workarea address since it is updated in order to perform
2167          * the concatenation
2168          */
2169         save = src.address;
2170
2171         /* Copy the ECC modulus */
2172         ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2173         if (ret)
2174                 goto e_src;
2175         src.address += CCP_ECC_OPERAND_SIZE;
2176
2177         /* Copy the first operand */
2178         ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
2179                                       ecc->u.mm.operand_1_len);
2180         if (ret)
2181                 goto e_src;
2182         src.address += CCP_ECC_OPERAND_SIZE;
2183
2184         if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
2185                 /* Copy the second operand */
2186                 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
2187                                               ecc->u.mm.operand_2_len);
2188                 if (ret)
2189                         goto e_src;
2190                 src.address += CCP_ECC_OPERAND_SIZE;
2191         }
2192
2193         /* Restore the workarea address */
2194         src.address = save;
2195
2196         /* Prepare the output area for the operation */
2197         ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2198                                    DMA_FROM_DEVICE);
2199         if (ret)
2200                 goto e_src;
2201
2202         op.soc = 1;
2203         op.src.u.dma.address = src.dma.address;
2204         op.src.u.dma.offset = 0;
2205         op.src.u.dma.length = src.length;
2206         op.dst.u.dma.address = dst.dma.address;
2207         op.dst.u.dma.offset = 0;
2208         op.dst.u.dma.length = dst.length;
2209
2210         op.u.ecc.function = cmd->u.ecc.function;
2211
2212         ret = cmd_q->ccp->vdata->perform->ecc(&op);
2213         if (ret) {
2214                 cmd->engine_error = cmd_q->cmd_error;
2215                 goto e_dst;
2216         }
2217
2218         ecc->ecc_result = le16_to_cpup(
2219                 (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2220         if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2221                 ret = -EIO;
2222                 goto e_dst;
2223         }
2224
2225         /* Save the ECC result */
2226         ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
2227                                 CCP_ECC_MODULUS_BYTES);
2228
2229 e_dst:
2230         ccp_dm_free(&dst);
2231
2232 e_src:
2233         ccp_dm_free(&src);
2234
2235         return ret;
2236 }
2237
2238 static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2239 {
2240         struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2241         struct ccp_dm_workarea src, dst;
2242         struct ccp_op op;
2243         int ret;
2244         u8 *save;
2245
2246         if (!ecc->u.pm.point_1.x ||
2247             (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
2248             !ecc->u.pm.point_1.y ||
2249             (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
2250                 return -EINVAL;
2251
2252         if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2253                 if (!ecc->u.pm.point_2.x ||
2254                     (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
2255                     !ecc->u.pm.point_2.y ||
2256                     (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
2257                         return -EINVAL;
2258         } else {
2259                 if (!ecc->u.pm.domain_a ||
2260                     (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
2261                         return -EINVAL;
2262
2263                 if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
2264                         if (!ecc->u.pm.scalar ||
2265                             (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
2266                                 return -EINVAL;
2267         }
2268
2269         if (!ecc->u.pm.result.x ||
2270             (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
2271             !ecc->u.pm.result.y ||
2272             (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
2273                 return -EINVAL;
2274
2275         memset(&op, 0, sizeof(op));
2276         op.cmd_q = cmd_q;
2277         op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2278
2279         /* Concatenate the modulus and the operands. Both the modulus and
2280          * the operands must be in little endian format.  Since the input
2281          * is in big endian format it must be converted and placed in a
2282          * fixed length buffer.
2283          */
2284         ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2285                                    DMA_TO_DEVICE);
2286         if (ret)
2287                 return ret;
2288
2289         /* Save the workarea address since it is updated in order to perform
2290          * the concatenation
2291          */
2292         save = src.address;
2293
2294         /* Copy the ECC modulus */
2295         ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2296         if (ret)
2297                 goto e_src;
2298         src.address += CCP_ECC_OPERAND_SIZE;
2299
2300         /* Copy the first point X and Y coordinate */
2301         ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
2302                                       ecc->u.pm.point_1.x_len);
2303         if (ret)
2304                 goto e_src;
2305         src.address += CCP_ECC_OPERAND_SIZE;
2306         ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
2307                                       ecc->u.pm.point_1.y_len);
2308         if (ret)
2309                 goto e_src;
2310         src.address += CCP_ECC_OPERAND_SIZE;
2311
2312         /* Set the first point Z coordinate to 1 */
2313         *src.address = 0x01;
2314         src.address += CCP_ECC_OPERAND_SIZE;
2315
2316         if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2317                 /* Copy the second point X and Y coordinate */
2318                 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
2319                                               ecc->u.pm.point_2.x_len);
2320                 if (ret)
2321                         goto e_src;
2322                 src.address += CCP_ECC_OPERAND_SIZE;
2323                 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
2324                                               ecc->u.pm.point_2.y_len);
2325                 if (ret)
2326                         goto e_src;
2327                 src.address += CCP_ECC_OPERAND_SIZE;
2328
2329                 /* Set the second point Z coordinate to 1 */
2330                 *src.address = 0x01;
2331                 src.address += CCP_ECC_OPERAND_SIZE;
2332         } else {
2333                 /* Copy the Domain "a" parameter */
2334                 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
2335                                               ecc->u.pm.domain_a_len);
2336                 if (ret)
2337                         goto e_src;
2338                 src.address += CCP_ECC_OPERAND_SIZE;
2339
2340                 if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
2341                         /* Copy the scalar value */
2342                         ret = ccp_reverse_set_dm_area(&src, 0,
2343                                                       ecc->u.pm.scalar, 0,
2344                                                       ecc->u.pm.scalar_len);
2345                         if (ret)
2346                                 goto e_src;
2347                         src.address += CCP_ECC_OPERAND_SIZE;
2348                 }
2349         }
2350
2351         /* Restore the workarea address */
2352         src.address = save;
2353
2354         /* Prepare the output area for the operation */
2355         ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2356                                    DMA_FROM_DEVICE);
2357         if (ret)
2358                 goto e_src;
2359
2360         op.soc = 1;
2361         op.src.u.dma.address = src.dma.address;
2362         op.src.u.dma.offset = 0;
2363         op.src.u.dma.length = src.length;
2364         op.dst.u.dma.address = dst.dma.address;
2365         op.dst.u.dma.offset = 0;
2366         op.dst.u.dma.length = dst.length;
2367
2368         op.u.ecc.function = cmd->u.ecc.function;
2369
2370         ret = cmd_q->ccp->vdata->perform->ecc(&op);
2371         if (ret) {
2372                 cmd->engine_error = cmd_q->cmd_error;
2373                 goto e_dst;
2374         }
2375
2376         ecc->ecc_result = le16_to_cpup(
2377                 (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2378         if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2379                 ret = -EIO;
2380                 goto e_dst;
2381         }
2382
2383         /* Save the workarea address since it is updated as we walk through
2384          * to copy the point math result
2385          */
2386         save = dst.address;
2387
2388         /* Save the ECC result X and Y coordinates */
2389         ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
2390                                 CCP_ECC_MODULUS_BYTES);
2391         dst.address += CCP_ECC_OUTPUT_SIZE;
2392         ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
2393                                 CCP_ECC_MODULUS_BYTES);
2394         dst.address += CCP_ECC_OUTPUT_SIZE;
2395
2396         /* Restore the workarea address */
2397         dst.address = save;
2398
2399 e_dst:
2400         ccp_dm_free(&dst);
2401
2402 e_src:
2403         ccp_dm_free(&src);
2404
2405         return ret;
2406 }
2407
2408 static int ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2409 {
2410         struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2411
2412         ecc->ecc_result = 0;
2413
2414         if (!ecc->mod ||
2415             (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
2416                 return -EINVAL;
2417
2418         switch (ecc->function) {
2419         case CCP_ECC_FUNCTION_MMUL_384BIT:
2420         case CCP_ECC_FUNCTION_MADD_384BIT:
2421         case CCP_ECC_FUNCTION_MINV_384BIT:
2422                 return ccp_run_ecc_mm_cmd(cmd_q, cmd);
2423
2424         case CCP_ECC_FUNCTION_PADD_384BIT:
2425         case CCP_ECC_FUNCTION_PMUL_384BIT:
2426         case CCP_ECC_FUNCTION_PDBL_384BIT:
2427                 return ccp_run_ecc_pm_cmd(cmd_q, cmd);
2428
2429         default:
2430                 return -EINVAL;
2431         }
2432 }
2433
2434 int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2435 {
2436         int ret;
2437
2438         cmd->engine_error = 0;
2439         cmd_q->cmd_error = 0;
2440         cmd_q->int_rcvd = 0;
2441         cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
2442
2443         switch (cmd->engine) {
2444         case CCP_ENGINE_AES:
2445                 ret = ccp_run_aes_cmd(cmd_q, cmd);
2446                 break;
2447         case CCP_ENGINE_XTS_AES_128:
2448                 ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
2449                 break;
2450         case CCP_ENGINE_DES3:
2451                 ret = ccp_run_des3_cmd(cmd_q, cmd);
2452                 break;
2453         case CCP_ENGINE_SHA:
2454                 ret = ccp_run_sha_cmd(cmd_q, cmd);
2455                 break;
2456         case CCP_ENGINE_RSA:
2457                 ret = ccp_run_rsa_cmd(cmd_q, cmd);
2458                 break;
2459         case CCP_ENGINE_PASSTHRU:
2460                 if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
2461                         ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
2462                 else
2463                         ret = ccp_run_passthru_cmd(cmd_q, cmd);
2464                 break;
2465         case CCP_ENGINE_ECC:
2466                 ret = ccp_run_ecc_cmd(cmd_q, cmd);
2467                 break;
2468         default:
2469                 ret = -EINVAL;
2470         }
2471
2472         return ret;
2473 }