Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/scs.h>
35 #include <linux/percpu-rwsem.h>
36 #include <linux/cpuset.h>
37
38 #include <trace/events/power.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/cpuhp.h>
41
42 #include "smpboot.h"
43
44 /**
45  * struct cpuhp_cpu_state - Per cpu hotplug state storage
46  * @state:      The current cpu state
47  * @target:     The target state
48  * @fail:       Current CPU hotplug callback state
49  * @thread:     Pointer to the hotplug thread
50  * @should_run: Thread should execute
51  * @rollback:   Perform a rollback
52  * @single:     Single callback invocation
53  * @bringup:    Single callback bringup or teardown selector
54  * @cpu:        CPU number
55  * @node:       Remote CPU node; for multi-instance, do a
56  *              single entry callback for install/remove
57  * @last:       For multi-instance rollback, remember how far we got
58  * @cb_state:   The state for a single callback (install/uninstall)
59  * @result:     Result of the operation
60  * @done_up:    Signal completion to the issuer of the task for cpu-up
61  * @done_down:  Signal completion to the issuer of the task for cpu-down
62  */
63 struct cpuhp_cpu_state {
64         enum cpuhp_state        state;
65         enum cpuhp_state        target;
66         enum cpuhp_state        fail;
67 #ifdef CONFIG_SMP
68         struct task_struct      *thread;
69         bool                    should_run;
70         bool                    rollback;
71         bool                    single;
72         bool                    bringup;
73         int                     cpu;
74         struct hlist_node       *node;
75         struct hlist_node       *last;
76         enum cpuhp_state        cb_state;
77         int                     result;
78         struct completion       done_up;
79         struct completion       done_down;
80 #endif
81 };
82
83 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
84         .fail = CPUHP_INVALID,
85 };
86
87 #ifdef CONFIG_SMP
88 cpumask_t cpus_booted_once_mask;
89 #endif
90
91 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
92 static struct lockdep_map cpuhp_state_up_map =
93         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
94 static struct lockdep_map cpuhp_state_down_map =
95         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
96
97
98 static inline void cpuhp_lock_acquire(bool bringup)
99 {
100         lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
101 }
102
103 static inline void cpuhp_lock_release(bool bringup)
104 {
105         lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
106 }
107 #else
108
109 static inline void cpuhp_lock_acquire(bool bringup) { }
110 static inline void cpuhp_lock_release(bool bringup) { }
111
112 #endif
113
114 /**
115  * struct cpuhp_step - Hotplug state machine step
116  * @name:       Name of the step
117  * @startup:    Startup function of the step
118  * @teardown:   Teardown function of the step
119  * @cant_stop:  Bringup/teardown can't be stopped at this step
120  * @multi_instance:     State has multiple instances which get added afterwards
121  */
122 struct cpuhp_step {
123         const char              *name;
124         union {
125                 int             (*single)(unsigned int cpu);
126                 int             (*multi)(unsigned int cpu,
127                                          struct hlist_node *node);
128         } startup;
129         union {
130                 int             (*single)(unsigned int cpu);
131                 int             (*multi)(unsigned int cpu,
132                                          struct hlist_node *node);
133         } teardown;
134         /* private: */
135         struct hlist_head       list;
136         /* public: */
137         bool                    cant_stop;
138         bool                    multi_instance;
139 };
140
141 static DEFINE_MUTEX(cpuhp_state_mutex);
142 static struct cpuhp_step cpuhp_hp_states[];
143
144 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
145 {
146         return cpuhp_hp_states + state;
147 }
148
149 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
150 {
151         return bringup ? !step->startup.single : !step->teardown.single;
152 }
153
154 /**
155  * cpuhp_invoke_callback - Invoke the callbacks for a given state
156  * @cpu:        The cpu for which the callback should be invoked
157  * @state:      The state to do callbacks for
158  * @bringup:    True if the bringup callback should be invoked
159  * @node:       For multi-instance, do a single entry callback for install/remove
160  * @lastp:      For multi-instance rollback, remember how far we got
161  *
162  * Called from cpu hotplug and from the state register machinery.
163  *
164  * Return: %0 on success or a negative errno code
165  */
166 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
167                                  bool bringup, struct hlist_node *node,
168                                  struct hlist_node **lastp)
169 {
170         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
171         struct cpuhp_step *step = cpuhp_get_step(state);
172         int (*cbm)(unsigned int cpu, struct hlist_node *node);
173         int (*cb)(unsigned int cpu);
174         int ret, cnt;
175
176         if (st->fail == state) {
177                 st->fail = CPUHP_INVALID;
178                 return -EAGAIN;
179         }
180
181         if (cpuhp_step_empty(bringup, step)) {
182                 WARN_ON_ONCE(1);
183                 return 0;
184         }
185
186         if (!step->multi_instance) {
187                 WARN_ON_ONCE(lastp && *lastp);
188                 cb = bringup ? step->startup.single : step->teardown.single;
189
190                 trace_cpuhp_enter(cpu, st->target, state, cb);
191                 ret = cb(cpu);
192                 trace_cpuhp_exit(cpu, st->state, state, ret);
193                 return ret;
194         }
195         cbm = bringup ? step->startup.multi : step->teardown.multi;
196
197         /* Single invocation for instance add/remove */
198         if (node) {
199                 WARN_ON_ONCE(lastp && *lastp);
200                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
201                 ret = cbm(cpu, node);
202                 trace_cpuhp_exit(cpu, st->state, state, ret);
203                 return ret;
204         }
205
206         /* State transition. Invoke on all instances */
207         cnt = 0;
208         hlist_for_each(node, &step->list) {
209                 if (lastp && node == *lastp)
210                         break;
211
212                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
213                 ret = cbm(cpu, node);
214                 trace_cpuhp_exit(cpu, st->state, state, ret);
215                 if (ret) {
216                         if (!lastp)
217                                 goto err;
218
219                         *lastp = node;
220                         return ret;
221                 }
222                 cnt++;
223         }
224         if (lastp)
225                 *lastp = NULL;
226         return 0;
227 err:
228         /* Rollback the instances if one failed */
229         cbm = !bringup ? step->startup.multi : step->teardown.multi;
230         if (!cbm)
231                 return ret;
232
233         hlist_for_each(node, &step->list) {
234                 if (!cnt--)
235                         break;
236
237                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
238                 ret = cbm(cpu, node);
239                 trace_cpuhp_exit(cpu, st->state, state, ret);
240                 /*
241                  * Rollback must not fail,
242                  */
243                 WARN_ON_ONCE(ret);
244         }
245         return ret;
246 }
247
248 #ifdef CONFIG_SMP
249 static bool cpuhp_is_ap_state(enum cpuhp_state state)
250 {
251         /*
252          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
253          * purposes as that state is handled explicitly in cpu_down.
254          */
255         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
256 }
257
258 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
259 {
260         struct completion *done = bringup ? &st->done_up : &st->done_down;
261         wait_for_completion(done);
262 }
263
264 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
265 {
266         struct completion *done = bringup ? &st->done_up : &st->done_down;
267         complete(done);
268 }
269
270 /*
271  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
272  */
273 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
274 {
275         return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
276 }
277
278 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
279 static DEFINE_MUTEX(cpu_add_remove_lock);
280 bool cpuhp_tasks_frozen;
281 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
282
283 /*
284  * The following two APIs (cpu_maps_update_begin/done) must be used when
285  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
286  */
287 void cpu_maps_update_begin(void)
288 {
289         mutex_lock(&cpu_add_remove_lock);
290 }
291
292 void cpu_maps_update_done(void)
293 {
294         mutex_unlock(&cpu_add_remove_lock);
295 }
296
297 /*
298  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
299  * Should always be manipulated under cpu_add_remove_lock
300  */
301 static int cpu_hotplug_disabled;
302
303 #ifdef CONFIG_HOTPLUG_CPU
304
305 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
306
307 void cpus_read_lock(void)
308 {
309         percpu_down_read(&cpu_hotplug_lock);
310 }
311 EXPORT_SYMBOL_GPL(cpus_read_lock);
312
313 int cpus_read_trylock(void)
314 {
315         return percpu_down_read_trylock(&cpu_hotplug_lock);
316 }
317 EXPORT_SYMBOL_GPL(cpus_read_trylock);
318
319 void cpus_read_unlock(void)
320 {
321         percpu_up_read(&cpu_hotplug_lock);
322 }
323 EXPORT_SYMBOL_GPL(cpus_read_unlock);
324
325 void cpus_write_lock(void)
326 {
327         percpu_down_write(&cpu_hotplug_lock);
328 }
329
330 void cpus_write_unlock(void)
331 {
332         percpu_up_write(&cpu_hotplug_lock);
333 }
334
335 void lockdep_assert_cpus_held(void)
336 {
337         /*
338          * We can't have hotplug operations before userspace starts running,
339          * and some init codepaths will knowingly not take the hotplug lock.
340          * This is all valid, so mute lockdep until it makes sense to report
341          * unheld locks.
342          */
343         if (system_state < SYSTEM_RUNNING)
344                 return;
345
346         percpu_rwsem_assert_held(&cpu_hotplug_lock);
347 }
348
349 #ifdef CONFIG_LOCKDEP
350 int lockdep_is_cpus_held(void)
351 {
352         return percpu_rwsem_is_held(&cpu_hotplug_lock);
353 }
354 #endif
355
356 static void lockdep_acquire_cpus_lock(void)
357 {
358         rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
359 }
360
361 static void lockdep_release_cpus_lock(void)
362 {
363         rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
364 }
365
366 /*
367  * Wait for currently running CPU hotplug operations to complete (if any) and
368  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
369  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
370  * hotplug path before performing hotplug operations. So acquiring that lock
371  * guarantees mutual exclusion from any currently running hotplug operations.
372  */
373 void cpu_hotplug_disable(void)
374 {
375         cpu_maps_update_begin();
376         cpu_hotplug_disabled++;
377         cpu_maps_update_done();
378 }
379 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
380
381 static void __cpu_hotplug_enable(void)
382 {
383         if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
384                 return;
385         cpu_hotplug_disabled--;
386 }
387
388 void cpu_hotplug_enable(void)
389 {
390         cpu_maps_update_begin();
391         __cpu_hotplug_enable();
392         cpu_maps_update_done();
393 }
394 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
395
396 #else
397
398 static void lockdep_acquire_cpus_lock(void)
399 {
400 }
401
402 static void lockdep_release_cpus_lock(void)
403 {
404 }
405
406 #endif  /* CONFIG_HOTPLUG_CPU */
407
408 /*
409  * Architectures that need SMT-specific errata handling during SMT hotplug
410  * should override this.
411  */
412 void __weak arch_smt_update(void) { }
413
414 #ifdef CONFIG_HOTPLUG_SMT
415 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
416
417 void __init cpu_smt_disable(bool force)
418 {
419         if (!cpu_smt_possible())
420                 return;
421
422         if (force) {
423                 pr_info("SMT: Force disabled\n");
424                 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
425         } else {
426                 pr_info("SMT: disabled\n");
427                 cpu_smt_control = CPU_SMT_DISABLED;
428         }
429 }
430
431 /*
432  * The decision whether SMT is supported can only be done after the full
433  * CPU identification. Called from architecture code.
434  */
435 void __init cpu_smt_check_topology(void)
436 {
437         if (!topology_smt_supported())
438                 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
439 }
440
441 static int __init smt_cmdline_disable(char *str)
442 {
443         cpu_smt_disable(str && !strcmp(str, "force"));
444         return 0;
445 }
446 early_param("nosmt", smt_cmdline_disable);
447
448 static inline bool cpu_smt_allowed(unsigned int cpu)
449 {
450         if (cpu_smt_control == CPU_SMT_ENABLED)
451                 return true;
452
453         if (topology_is_primary_thread(cpu))
454                 return true;
455
456         /*
457          * On x86 it's required to boot all logical CPUs at least once so
458          * that the init code can get a chance to set CR4.MCE on each
459          * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
460          * core will shutdown the machine.
461          */
462         return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
463 }
464
465 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
466 bool cpu_smt_possible(void)
467 {
468         return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
469                 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
470 }
471 EXPORT_SYMBOL_GPL(cpu_smt_possible);
472 #else
473 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
474 #endif
475
476 static inline enum cpuhp_state
477 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
478 {
479         enum cpuhp_state prev_state = st->state;
480         bool bringup = st->state < target;
481
482         st->rollback = false;
483         st->last = NULL;
484
485         st->target = target;
486         st->single = false;
487         st->bringup = bringup;
488         if (cpu_dying(st->cpu) != !bringup)
489                 set_cpu_dying(st->cpu, !bringup);
490
491         return prev_state;
492 }
493
494 static inline void
495 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
496 {
497         bool bringup = !st->bringup;
498
499         st->target = prev_state;
500
501         /*
502          * Already rolling back. No need invert the bringup value or to change
503          * the current state.
504          */
505         if (st->rollback)
506                 return;
507
508         st->rollback = true;
509
510         /*
511          * If we have st->last we need to undo partial multi_instance of this
512          * state first. Otherwise start undo at the previous state.
513          */
514         if (!st->last) {
515                 if (st->bringup)
516                         st->state--;
517                 else
518                         st->state++;
519         }
520
521         st->bringup = bringup;
522         if (cpu_dying(st->cpu) != !bringup)
523                 set_cpu_dying(st->cpu, !bringup);
524 }
525
526 /* Regular hotplug invocation of the AP hotplug thread */
527 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
528 {
529         if (!st->single && st->state == st->target)
530                 return;
531
532         st->result = 0;
533         /*
534          * Make sure the above stores are visible before should_run becomes
535          * true. Paired with the mb() above in cpuhp_thread_fun()
536          */
537         smp_mb();
538         st->should_run = true;
539         wake_up_process(st->thread);
540         wait_for_ap_thread(st, st->bringup);
541 }
542
543 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
544 {
545         enum cpuhp_state prev_state;
546         int ret;
547
548         prev_state = cpuhp_set_state(st, target);
549         __cpuhp_kick_ap(st);
550         if ((ret = st->result)) {
551                 cpuhp_reset_state(st, prev_state);
552                 __cpuhp_kick_ap(st);
553         }
554
555         return ret;
556 }
557
558 static int bringup_wait_for_ap(unsigned int cpu)
559 {
560         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
561
562         /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
563         wait_for_ap_thread(st, true);
564         if (WARN_ON_ONCE((!cpu_online(cpu))))
565                 return -ECANCELED;
566
567         /* Unpark the hotplug thread of the target cpu */
568         kthread_unpark(st->thread);
569
570         /*
571          * SMT soft disabling on X86 requires to bring the CPU out of the
572          * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
573          * CPU marked itself as booted_once in notify_cpu_starting() so the
574          * cpu_smt_allowed() check will now return false if this is not the
575          * primary sibling.
576          */
577         if (!cpu_smt_allowed(cpu))
578                 return -ECANCELED;
579
580         if (st->target <= CPUHP_AP_ONLINE_IDLE)
581                 return 0;
582
583         return cpuhp_kick_ap(st, st->target);
584 }
585
586 static int bringup_cpu(unsigned int cpu)
587 {
588         struct task_struct *idle = idle_thread_get(cpu);
589         int ret;
590
591         /*
592          * Reset stale stack state from the last time this CPU was online.
593          */
594         scs_task_reset(idle);
595         kasan_unpoison_task_stack(idle);
596
597         /*
598          * Some architectures have to walk the irq descriptors to
599          * setup the vector space for the cpu which comes online.
600          * Prevent irq alloc/free across the bringup.
601          */
602         irq_lock_sparse();
603
604         /* Arch-specific enabling code. */
605         ret = __cpu_up(cpu, idle);
606         irq_unlock_sparse();
607         if (ret)
608                 return ret;
609         return bringup_wait_for_ap(cpu);
610 }
611
612 static int finish_cpu(unsigned int cpu)
613 {
614         struct task_struct *idle = idle_thread_get(cpu);
615         struct mm_struct *mm = idle->active_mm;
616
617         /*
618          * idle_task_exit() will have switched to &init_mm, now
619          * clean up any remaining active_mm state.
620          */
621         if (mm != &init_mm)
622                 idle->active_mm = &init_mm;
623         mmdrop(mm);
624         return 0;
625 }
626
627 /*
628  * Hotplug state machine related functions
629  */
630
631 /*
632  * Get the next state to run. Empty ones will be skipped. Returns true if a
633  * state must be run.
634  *
635  * st->state will be modified ahead of time, to match state_to_run, as if it
636  * has already ran.
637  */
638 static bool cpuhp_next_state(bool bringup,
639                              enum cpuhp_state *state_to_run,
640                              struct cpuhp_cpu_state *st,
641                              enum cpuhp_state target)
642 {
643         do {
644                 if (bringup) {
645                         if (st->state >= target)
646                                 return false;
647
648                         *state_to_run = ++st->state;
649                 } else {
650                         if (st->state <= target)
651                                 return false;
652
653                         *state_to_run = st->state--;
654                 }
655
656                 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
657                         break;
658         } while (true);
659
660         return true;
661 }
662
663 static int cpuhp_invoke_callback_range(bool bringup,
664                                        unsigned int cpu,
665                                        struct cpuhp_cpu_state *st,
666                                        enum cpuhp_state target)
667 {
668         enum cpuhp_state state;
669         int err = 0;
670
671         while (cpuhp_next_state(bringup, &state, st, target)) {
672                 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
673                 if (err)
674                         break;
675         }
676
677         return err;
678 }
679
680 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
681 {
682         if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
683                 return true;
684         /*
685          * When CPU hotplug is disabled, then taking the CPU down is not
686          * possible because takedown_cpu() and the architecture and
687          * subsystem specific mechanisms are not available. So the CPU
688          * which would be completely unplugged again needs to stay around
689          * in the current state.
690          */
691         return st->state <= CPUHP_BRINGUP_CPU;
692 }
693
694 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
695                               enum cpuhp_state target)
696 {
697         enum cpuhp_state prev_state = st->state;
698         int ret = 0;
699
700         ret = cpuhp_invoke_callback_range(true, cpu, st, target);
701         if (ret) {
702                 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
703                          ret, cpu, cpuhp_get_step(st->state)->name,
704                          st->state);
705
706                 cpuhp_reset_state(st, prev_state);
707                 if (can_rollback_cpu(st))
708                         WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
709                                                             prev_state));
710         }
711         return ret;
712 }
713
714 /*
715  * The cpu hotplug threads manage the bringup and teardown of the cpus
716  */
717 static void cpuhp_create(unsigned int cpu)
718 {
719         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
720
721         init_completion(&st->done_up);
722         init_completion(&st->done_down);
723         st->cpu = cpu;
724 }
725
726 static int cpuhp_should_run(unsigned int cpu)
727 {
728         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
729
730         return st->should_run;
731 }
732
733 /*
734  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
735  * callbacks when a state gets [un]installed at runtime.
736  *
737  * Each invocation of this function by the smpboot thread does a single AP
738  * state callback.
739  *
740  * It has 3 modes of operation:
741  *  - single: runs st->cb_state
742  *  - up:     runs ++st->state, while st->state < st->target
743  *  - down:   runs st->state--, while st->state > st->target
744  *
745  * When complete or on error, should_run is cleared and the completion is fired.
746  */
747 static void cpuhp_thread_fun(unsigned int cpu)
748 {
749         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
750         bool bringup = st->bringup;
751         enum cpuhp_state state;
752
753         if (WARN_ON_ONCE(!st->should_run))
754                 return;
755
756         /*
757          * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
758          * that if we see ->should_run we also see the rest of the state.
759          */
760         smp_mb();
761
762         /*
763          * The BP holds the hotplug lock, but we're now running on the AP,
764          * ensure that anybody asserting the lock is held, will actually find
765          * it so.
766          */
767         lockdep_acquire_cpus_lock();
768         cpuhp_lock_acquire(bringup);
769
770         if (st->single) {
771                 state = st->cb_state;
772                 st->should_run = false;
773         } else {
774                 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
775                 if (!st->should_run)
776                         goto end;
777         }
778
779         WARN_ON_ONCE(!cpuhp_is_ap_state(state));
780
781         if (cpuhp_is_atomic_state(state)) {
782                 local_irq_disable();
783                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
784                 local_irq_enable();
785
786                 /*
787                  * STARTING/DYING must not fail!
788                  */
789                 WARN_ON_ONCE(st->result);
790         } else {
791                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
792         }
793
794         if (st->result) {
795                 /*
796                  * If we fail on a rollback, we're up a creek without no
797                  * paddle, no way forward, no way back. We loose, thanks for
798                  * playing.
799                  */
800                 WARN_ON_ONCE(st->rollback);
801                 st->should_run = false;
802         }
803
804 end:
805         cpuhp_lock_release(bringup);
806         lockdep_release_cpus_lock();
807
808         if (!st->should_run)
809                 complete_ap_thread(st, bringup);
810 }
811
812 /* Invoke a single callback on a remote cpu */
813 static int
814 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
815                          struct hlist_node *node)
816 {
817         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
818         int ret;
819
820         if (!cpu_online(cpu))
821                 return 0;
822
823         cpuhp_lock_acquire(false);
824         cpuhp_lock_release(false);
825
826         cpuhp_lock_acquire(true);
827         cpuhp_lock_release(true);
828
829         /*
830          * If we are up and running, use the hotplug thread. For early calls
831          * we invoke the thread function directly.
832          */
833         if (!st->thread)
834                 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
835
836         st->rollback = false;
837         st->last = NULL;
838
839         st->node = node;
840         st->bringup = bringup;
841         st->cb_state = state;
842         st->single = true;
843
844         __cpuhp_kick_ap(st);
845
846         /*
847          * If we failed and did a partial, do a rollback.
848          */
849         if ((ret = st->result) && st->last) {
850                 st->rollback = true;
851                 st->bringup = !bringup;
852
853                 __cpuhp_kick_ap(st);
854         }
855
856         /*
857          * Clean up the leftovers so the next hotplug operation wont use stale
858          * data.
859          */
860         st->node = st->last = NULL;
861         return ret;
862 }
863
864 static int cpuhp_kick_ap_work(unsigned int cpu)
865 {
866         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
867         enum cpuhp_state prev_state = st->state;
868         int ret;
869
870         cpuhp_lock_acquire(false);
871         cpuhp_lock_release(false);
872
873         cpuhp_lock_acquire(true);
874         cpuhp_lock_release(true);
875
876         trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
877         ret = cpuhp_kick_ap(st, st->target);
878         trace_cpuhp_exit(cpu, st->state, prev_state, ret);
879
880         return ret;
881 }
882
883 static struct smp_hotplug_thread cpuhp_threads = {
884         .store                  = &cpuhp_state.thread,
885         .create                 = &cpuhp_create,
886         .thread_should_run      = cpuhp_should_run,
887         .thread_fn              = cpuhp_thread_fun,
888         .thread_comm            = "cpuhp/%u",
889         .selfparking            = true,
890 };
891
892 void __init cpuhp_threads_init(void)
893 {
894         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
895         kthread_unpark(this_cpu_read(cpuhp_state.thread));
896 }
897
898 /*
899  *
900  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
901  * protected region.
902  *
903  * The operation is still serialized against concurrent CPU hotplug via
904  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
905  * serialized against other hotplug related activity like adding or
906  * removing of state callbacks and state instances, which invoke either the
907  * startup or the teardown callback of the affected state.
908  *
909  * This is required for subsystems which are unfixable vs. CPU hotplug and
910  * evade lock inversion problems by scheduling work which has to be
911  * completed _before_ cpu_up()/_cpu_down() returns.
912  *
913  * Don't even think about adding anything to this for any new code or even
914  * drivers. It's only purpose is to keep existing lock order trainwrecks
915  * working.
916  *
917  * For cpu_down() there might be valid reasons to finish cleanups which are
918  * not required to be done under cpu_hotplug_lock, but that's a different
919  * story and would be not invoked via this.
920  */
921 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
922 {
923         /*
924          * cpusets delegate hotplug operations to a worker to "solve" the
925          * lock order problems. Wait for the worker, but only if tasks are
926          * _not_ frozen (suspend, hibernate) as that would wait forever.
927          *
928          * The wait is required because otherwise the hotplug operation
929          * returns with inconsistent state, which could even be observed in
930          * user space when a new CPU is brought up. The CPU plug uevent
931          * would be delivered and user space reacting on it would fail to
932          * move tasks to the newly plugged CPU up to the point where the
933          * work has finished because up to that point the newly plugged CPU
934          * is not assignable in cpusets/cgroups. On unplug that's not
935          * necessarily a visible issue, but it is still inconsistent state,
936          * which is the real problem which needs to be "fixed". This can't
937          * prevent the transient state between scheduling the work and
938          * returning from waiting for it.
939          */
940         if (!tasks_frozen)
941                 cpuset_wait_for_hotplug();
942 }
943
944 #ifdef CONFIG_HOTPLUG_CPU
945 #ifndef arch_clear_mm_cpumask_cpu
946 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
947 #endif
948
949 /**
950  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
951  * @cpu: a CPU id
952  *
953  * This function walks all processes, finds a valid mm struct for each one and
954  * then clears a corresponding bit in mm's cpumask.  While this all sounds
955  * trivial, there are various non-obvious corner cases, which this function
956  * tries to solve in a safe manner.
957  *
958  * Also note that the function uses a somewhat relaxed locking scheme, so it may
959  * be called only for an already offlined CPU.
960  */
961 void clear_tasks_mm_cpumask(int cpu)
962 {
963         struct task_struct *p;
964
965         /*
966          * This function is called after the cpu is taken down and marked
967          * offline, so its not like new tasks will ever get this cpu set in
968          * their mm mask. -- Peter Zijlstra
969          * Thus, we may use rcu_read_lock() here, instead of grabbing
970          * full-fledged tasklist_lock.
971          */
972         WARN_ON(cpu_online(cpu));
973         rcu_read_lock();
974         for_each_process(p) {
975                 struct task_struct *t;
976
977                 /*
978                  * Main thread might exit, but other threads may still have
979                  * a valid mm. Find one.
980                  */
981                 t = find_lock_task_mm(p);
982                 if (!t)
983                         continue;
984                 arch_clear_mm_cpumask_cpu(cpu, t->mm);
985                 task_unlock(t);
986         }
987         rcu_read_unlock();
988 }
989
990 /* Take this CPU down. */
991 static int take_cpu_down(void *_param)
992 {
993         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
994         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
995         int err, cpu = smp_processor_id();
996         int ret;
997
998         /* Ensure this CPU doesn't handle any more interrupts. */
999         err = __cpu_disable();
1000         if (err < 0)
1001                 return err;
1002
1003         /*
1004          * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1005          * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1006          */
1007         WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1008
1009         /* Invoke the former CPU_DYING callbacks */
1010         ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1011
1012         /*
1013          * DYING must not fail!
1014          */
1015         WARN_ON_ONCE(ret);
1016
1017         /* Give up timekeeping duties */
1018         tick_handover_do_timer();
1019         /* Remove CPU from timer broadcasting */
1020         tick_offline_cpu(cpu);
1021         /* Park the stopper thread */
1022         stop_machine_park(cpu);
1023         return 0;
1024 }
1025
1026 static int takedown_cpu(unsigned int cpu)
1027 {
1028         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1029         int err;
1030
1031         /* Park the smpboot threads */
1032         kthread_park(st->thread);
1033
1034         /*
1035          * Prevent irq alloc/free while the dying cpu reorganizes the
1036          * interrupt affinities.
1037          */
1038         irq_lock_sparse();
1039
1040         /*
1041          * So now all preempt/rcu users must observe !cpu_active().
1042          */
1043         err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1044         if (err) {
1045                 /* CPU refused to die */
1046                 irq_unlock_sparse();
1047                 /* Unpark the hotplug thread so we can rollback there */
1048                 kthread_unpark(st->thread);
1049                 return err;
1050         }
1051         BUG_ON(cpu_online(cpu));
1052
1053         /*
1054          * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1055          * all runnable tasks from the CPU, there's only the idle task left now
1056          * that the migration thread is done doing the stop_machine thing.
1057          *
1058          * Wait for the stop thread to go away.
1059          */
1060         wait_for_ap_thread(st, false);
1061         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1062
1063         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1064         irq_unlock_sparse();
1065
1066         hotplug_cpu__broadcast_tick_pull(cpu);
1067         /* This actually kills the CPU. */
1068         __cpu_die(cpu);
1069
1070         tick_cleanup_dead_cpu(cpu);
1071         rcutree_migrate_callbacks(cpu);
1072         return 0;
1073 }
1074
1075 static void cpuhp_complete_idle_dead(void *arg)
1076 {
1077         struct cpuhp_cpu_state *st = arg;
1078
1079         complete_ap_thread(st, false);
1080 }
1081
1082 void cpuhp_report_idle_dead(void)
1083 {
1084         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1085
1086         BUG_ON(st->state != CPUHP_AP_OFFLINE);
1087         rcu_report_dead(smp_processor_id());
1088         st->state = CPUHP_AP_IDLE_DEAD;
1089         /*
1090          * We cannot call complete after rcu_report_dead() so we delegate it
1091          * to an online cpu.
1092          */
1093         smp_call_function_single(cpumask_first(cpu_online_mask),
1094                                  cpuhp_complete_idle_dead, st, 0);
1095 }
1096
1097 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1098                                 enum cpuhp_state target)
1099 {
1100         enum cpuhp_state prev_state = st->state;
1101         int ret = 0;
1102
1103         ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1104         if (ret) {
1105                 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1106                          ret, cpu, cpuhp_get_step(st->state)->name,
1107                          st->state);
1108
1109                 cpuhp_reset_state(st, prev_state);
1110
1111                 if (st->state < prev_state)
1112                         WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1113                                                             prev_state));
1114         }
1115
1116         return ret;
1117 }
1118
1119 /* Requires cpu_add_remove_lock to be held */
1120 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1121                            enum cpuhp_state target)
1122 {
1123         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1124         int prev_state, ret = 0;
1125
1126         if (num_online_cpus() == 1)
1127                 return -EBUSY;
1128
1129         if (!cpu_present(cpu))
1130                 return -EINVAL;
1131
1132         cpus_write_lock();
1133
1134         cpuhp_tasks_frozen = tasks_frozen;
1135
1136         prev_state = cpuhp_set_state(st, target);
1137         /*
1138          * If the current CPU state is in the range of the AP hotplug thread,
1139          * then we need to kick the thread.
1140          */
1141         if (st->state > CPUHP_TEARDOWN_CPU) {
1142                 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1143                 ret = cpuhp_kick_ap_work(cpu);
1144                 /*
1145                  * The AP side has done the error rollback already. Just
1146                  * return the error code..
1147                  */
1148                 if (ret)
1149                         goto out;
1150
1151                 /*
1152                  * We might have stopped still in the range of the AP hotplug
1153                  * thread. Nothing to do anymore.
1154                  */
1155                 if (st->state > CPUHP_TEARDOWN_CPU)
1156                         goto out;
1157
1158                 st->target = target;
1159         }
1160         /*
1161          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1162          * to do the further cleanups.
1163          */
1164         ret = cpuhp_down_callbacks(cpu, st, target);
1165         if (ret && st->state < prev_state) {
1166                 if (st->state == CPUHP_TEARDOWN_CPU) {
1167                         cpuhp_reset_state(st, prev_state);
1168                         __cpuhp_kick_ap(st);
1169                 } else {
1170                         WARN(1, "DEAD callback error for CPU%d", cpu);
1171                 }
1172         }
1173
1174 out:
1175         cpus_write_unlock();
1176         /*
1177          * Do post unplug cleanup. This is still protected against
1178          * concurrent CPU hotplug via cpu_add_remove_lock.
1179          */
1180         lockup_detector_cleanup();
1181         arch_smt_update();
1182         cpu_up_down_serialize_trainwrecks(tasks_frozen);
1183         return ret;
1184 }
1185
1186 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1187 {
1188         if (cpu_hotplug_disabled)
1189                 return -EBUSY;
1190         return _cpu_down(cpu, 0, target);
1191 }
1192
1193 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1194 {
1195         int err;
1196
1197         cpu_maps_update_begin();
1198         err = cpu_down_maps_locked(cpu, target);
1199         cpu_maps_update_done();
1200         return err;
1201 }
1202
1203 /**
1204  * cpu_device_down - Bring down a cpu device
1205  * @dev: Pointer to the cpu device to offline
1206  *
1207  * This function is meant to be used by device core cpu subsystem only.
1208  *
1209  * Other subsystems should use remove_cpu() instead.
1210  *
1211  * Return: %0 on success or a negative errno code
1212  */
1213 int cpu_device_down(struct device *dev)
1214 {
1215         return cpu_down(dev->id, CPUHP_OFFLINE);
1216 }
1217
1218 int remove_cpu(unsigned int cpu)
1219 {
1220         int ret;
1221
1222         lock_device_hotplug();
1223         ret = device_offline(get_cpu_device(cpu));
1224         unlock_device_hotplug();
1225
1226         return ret;
1227 }
1228 EXPORT_SYMBOL_GPL(remove_cpu);
1229
1230 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1231 {
1232         unsigned int cpu;
1233         int error;
1234
1235         cpu_maps_update_begin();
1236
1237         /*
1238          * Make certain the cpu I'm about to reboot on is online.
1239          *
1240          * This is inline to what migrate_to_reboot_cpu() already do.
1241          */
1242         if (!cpu_online(primary_cpu))
1243                 primary_cpu = cpumask_first(cpu_online_mask);
1244
1245         for_each_online_cpu(cpu) {
1246                 if (cpu == primary_cpu)
1247                         continue;
1248
1249                 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1250                 if (error) {
1251                         pr_err("Failed to offline CPU%d - error=%d",
1252                                 cpu, error);
1253                         break;
1254                 }
1255         }
1256
1257         /*
1258          * Ensure all but the reboot CPU are offline.
1259          */
1260         BUG_ON(num_online_cpus() > 1);
1261
1262         /*
1263          * Make sure the CPUs won't be enabled by someone else after this
1264          * point. Kexec will reboot to a new kernel shortly resetting
1265          * everything along the way.
1266          */
1267         cpu_hotplug_disabled++;
1268
1269         cpu_maps_update_done();
1270 }
1271
1272 #else
1273 #define takedown_cpu            NULL
1274 #endif /*CONFIG_HOTPLUG_CPU*/
1275
1276 /**
1277  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1278  * @cpu: cpu that just started
1279  *
1280  * It must be called by the arch code on the new cpu, before the new cpu
1281  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1282  */
1283 void notify_cpu_starting(unsigned int cpu)
1284 {
1285         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1286         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1287         int ret;
1288
1289         rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
1290         cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1291         ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1292
1293         /*
1294          * STARTING must not fail!
1295          */
1296         WARN_ON_ONCE(ret);
1297 }
1298
1299 /*
1300  * Called from the idle task. Wake up the controlling task which brings the
1301  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1302  * online bringup to the hotplug thread.
1303  */
1304 void cpuhp_online_idle(enum cpuhp_state state)
1305 {
1306         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1307
1308         /* Happens for the boot cpu */
1309         if (state != CPUHP_AP_ONLINE_IDLE)
1310                 return;
1311
1312         /*
1313          * Unpart the stopper thread before we start the idle loop (and start
1314          * scheduling); this ensures the stopper task is always available.
1315          */
1316         stop_machine_unpark(smp_processor_id());
1317
1318         st->state = CPUHP_AP_ONLINE_IDLE;
1319         complete_ap_thread(st, true);
1320 }
1321
1322 /* Requires cpu_add_remove_lock to be held */
1323 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1324 {
1325         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1326         struct task_struct *idle;
1327         int ret = 0;
1328
1329         cpus_write_lock();
1330
1331         if (!cpu_present(cpu)) {
1332                 ret = -EINVAL;
1333                 goto out;
1334         }
1335
1336         /*
1337          * The caller of cpu_up() might have raced with another
1338          * caller. Nothing to do.
1339          */
1340         if (st->state >= target)
1341                 goto out;
1342
1343         if (st->state == CPUHP_OFFLINE) {
1344                 /* Let it fail before we try to bring the cpu up */
1345                 idle = idle_thread_get(cpu);
1346                 if (IS_ERR(idle)) {
1347                         ret = PTR_ERR(idle);
1348                         goto out;
1349                 }
1350         }
1351
1352         cpuhp_tasks_frozen = tasks_frozen;
1353
1354         cpuhp_set_state(st, target);
1355         /*
1356          * If the current CPU state is in the range of the AP hotplug thread,
1357          * then we need to kick the thread once more.
1358          */
1359         if (st->state > CPUHP_BRINGUP_CPU) {
1360                 ret = cpuhp_kick_ap_work(cpu);
1361                 /*
1362                  * The AP side has done the error rollback already. Just
1363                  * return the error code..
1364                  */
1365                 if (ret)
1366                         goto out;
1367         }
1368
1369         /*
1370          * Try to reach the target state. We max out on the BP at
1371          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1372          * responsible for bringing it up to the target state.
1373          */
1374         target = min((int)target, CPUHP_BRINGUP_CPU);
1375         ret = cpuhp_up_callbacks(cpu, st, target);
1376 out:
1377         cpus_write_unlock();
1378         arch_smt_update();
1379         cpu_up_down_serialize_trainwrecks(tasks_frozen);
1380         return ret;
1381 }
1382
1383 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1384 {
1385         int err = 0;
1386
1387         if (!cpu_possible(cpu)) {
1388                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1389                        cpu);
1390 #if defined(CONFIG_IA64)
1391                 pr_err("please check additional_cpus= boot parameter\n");
1392 #endif
1393                 return -EINVAL;
1394         }
1395
1396         err = try_online_node(cpu_to_node(cpu));
1397         if (err)
1398                 return err;
1399
1400         cpu_maps_update_begin();
1401
1402         if (cpu_hotplug_disabled) {
1403                 err = -EBUSY;
1404                 goto out;
1405         }
1406         if (!cpu_smt_allowed(cpu)) {
1407                 err = -EPERM;
1408                 goto out;
1409         }
1410
1411         err = _cpu_up(cpu, 0, target);
1412 out:
1413         cpu_maps_update_done();
1414         return err;
1415 }
1416
1417 /**
1418  * cpu_device_up - Bring up a cpu device
1419  * @dev: Pointer to the cpu device to online
1420  *
1421  * This function is meant to be used by device core cpu subsystem only.
1422  *
1423  * Other subsystems should use add_cpu() instead.
1424  *
1425  * Return: %0 on success or a negative errno code
1426  */
1427 int cpu_device_up(struct device *dev)
1428 {
1429         return cpu_up(dev->id, CPUHP_ONLINE);
1430 }
1431
1432 int add_cpu(unsigned int cpu)
1433 {
1434         int ret;
1435
1436         lock_device_hotplug();
1437         ret = device_online(get_cpu_device(cpu));
1438         unlock_device_hotplug();
1439
1440         return ret;
1441 }
1442 EXPORT_SYMBOL_GPL(add_cpu);
1443
1444 /**
1445  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1446  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1447  *
1448  * On some architectures like arm64, we can hibernate on any CPU, but on
1449  * wake up the CPU we hibernated on might be offline as a side effect of
1450  * using maxcpus= for example.
1451  *
1452  * Return: %0 on success or a negative errno code
1453  */
1454 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1455 {
1456         int ret;
1457
1458         if (!cpu_online(sleep_cpu)) {
1459                 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1460                 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1461                 if (ret) {
1462                         pr_err("Failed to bring hibernate-CPU up!\n");
1463                         return ret;
1464                 }
1465         }
1466         return 0;
1467 }
1468
1469 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1470 {
1471         unsigned int cpu;
1472
1473         for_each_present_cpu(cpu) {
1474                 if (num_online_cpus() >= setup_max_cpus)
1475                         break;
1476                 if (!cpu_online(cpu))
1477                         cpu_up(cpu, CPUHP_ONLINE);
1478         }
1479 }
1480
1481 #ifdef CONFIG_PM_SLEEP_SMP
1482 static cpumask_var_t frozen_cpus;
1483
1484 int freeze_secondary_cpus(int primary)
1485 {
1486         int cpu, error = 0;
1487
1488         cpu_maps_update_begin();
1489         if (primary == -1) {
1490                 primary = cpumask_first(cpu_online_mask);
1491                 if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1492                         primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1493         } else {
1494                 if (!cpu_online(primary))
1495                         primary = cpumask_first(cpu_online_mask);
1496         }
1497
1498         /*
1499          * We take down all of the non-boot CPUs in one shot to avoid races
1500          * with the userspace trying to use the CPU hotplug at the same time
1501          */
1502         cpumask_clear(frozen_cpus);
1503
1504         pr_info("Disabling non-boot CPUs ...\n");
1505         for_each_online_cpu(cpu) {
1506                 if (cpu == primary)
1507                         continue;
1508
1509                 if (pm_wakeup_pending()) {
1510                         pr_info("Wakeup pending. Abort CPU freeze\n");
1511                         error = -EBUSY;
1512                         break;
1513                 }
1514
1515                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1516                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1517                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1518                 if (!error)
1519                         cpumask_set_cpu(cpu, frozen_cpus);
1520                 else {
1521                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1522                         break;
1523                 }
1524         }
1525
1526         if (!error)
1527                 BUG_ON(num_online_cpus() > 1);
1528         else
1529                 pr_err("Non-boot CPUs are not disabled\n");
1530
1531         /*
1532          * Make sure the CPUs won't be enabled by someone else. We need to do
1533          * this even in case of failure as all freeze_secondary_cpus() users are
1534          * supposed to do thaw_secondary_cpus() on the failure path.
1535          */
1536         cpu_hotplug_disabled++;
1537
1538         cpu_maps_update_done();
1539         return error;
1540 }
1541
1542 void __weak arch_thaw_secondary_cpus_begin(void)
1543 {
1544 }
1545
1546 void __weak arch_thaw_secondary_cpus_end(void)
1547 {
1548 }
1549
1550 void thaw_secondary_cpus(void)
1551 {
1552         int cpu, error;
1553
1554         /* Allow everyone to use the CPU hotplug again */
1555         cpu_maps_update_begin();
1556         __cpu_hotplug_enable();
1557         if (cpumask_empty(frozen_cpus))
1558                 goto out;
1559
1560         pr_info("Enabling non-boot CPUs ...\n");
1561
1562         arch_thaw_secondary_cpus_begin();
1563
1564         for_each_cpu(cpu, frozen_cpus) {
1565                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1566                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1567                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1568                 if (!error) {
1569                         pr_info("CPU%d is up\n", cpu);
1570                         continue;
1571                 }
1572                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1573         }
1574
1575         arch_thaw_secondary_cpus_end();
1576
1577         cpumask_clear(frozen_cpus);
1578 out:
1579         cpu_maps_update_done();
1580 }
1581
1582 static int __init alloc_frozen_cpus(void)
1583 {
1584         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1585                 return -ENOMEM;
1586         return 0;
1587 }
1588 core_initcall(alloc_frozen_cpus);
1589
1590 /*
1591  * When callbacks for CPU hotplug notifications are being executed, we must
1592  * ensure that the state of the system with respect to the tasks being frozen
1593  * or not, as reported by the notification, remains unchanged *throughout the
1594  * duration* of the execution of the callbacks.
1595  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1596  *
1597  * This synchronization is implemented by mutually excluding regular CPU
1598  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1599  * Hibernate notifications.
1600  */
1601 static int
1602 cpu_hotplug_pm_callback(struct notifier_block *nb,
1603                         unsigned long action, void *ptr)
1604 {
1605         switch (action) {
1606
1607         case PM_SUSPEND_PREPARE:
1608         case PM_HIBERNATION_PREPARE:
1609                 cpu_hotplug_disable();
1610                 break;
1611
1612         case PM_POST_SUSPEND:
1613         case PM_POST_HIBERNATION:
1614                 cpu_hotplug_enable();
1615                 break;
1616
1617         default:
1618                 return NOTIFY_DONE;
1619         }
1620
1621         return NOTIFY_OK;
1622 }
1623
1624
1625 static int __init cpu_hotplug_pm_sync_init(void)
1626 {
1627         /*
1628          * cpu_hotplug_pm_callback has higher priority than x86
1629          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1630          * to disable cpu hotplug to avoid cpu hotplug race.
1631          */
1632         pm_notifier(cpu_hotplug_pm_callback, 0);
1633         return 0;
1634 }
1635 core_initcall(cpu_hotplug_pm_sync_init);
1636
1637 #endif /* CONFIG_PM_SLEEP_SMP */
1638
1639 int __boot_cpu_id;
1640
1641 #endif /* CONFIG_SMP */
1642
1643 /* Boot processor state steps */
1644 static struct cpuhp_step cpuhp_hp_states[] = {
1645         [CPUHP_OFFLINE] = {
1646                 .name                   = "offline",
1647                 .startup.single         = NULL,
1648                 .teardown.single        = NULL,
1649         },
1650 #ifdef CONFIG_SMP
1651         [CPUHP_CREATE_THREADS]= {
1652                 .name                   = "threads:prepare",
1653                 .startup.single         = smpboot_create_threads,
1654                 .teardown.single        = NULL,
1655                 .cant_stop              = true,
1656         },
1657         [CPUHP_PERF_PREPARE] = {
1658                 .name                   = "perf:prepare",
1659                 .startup.single         = perf_event_init_cpu,
1660                 .teardown.single        = perf_event_exit_cpu,
1661         },
1662         [CPUHP_WORKQUEUE_PREP] = {
1663                 .name                   = "workqueue:prepare",
1664                 .startup.single         = workqueue_prepare_cpu,
1665                 .teardown.single        = NULL,
1666         },
1667         [CPUHP_HRTIMERS_PREPARE] = {
1668                 .name                   = "hrtimers:prepare",
1669                 .startup.single         = hrtimers_prepare_cpu,
1670                 .teardown.single        = hrtimers_dead_cpu,
1671         },
1672         [CPUHP_SMPCFD_PREPARE] = {
1673                 .name                   = "smpcfd:prepare",
1674                 .startup.single         = smpcfd_prepare_cpu,
1675                 .teardown.single        = smpcfd_dead_cpu,
1676         },
1677         [CPUHP_RELAY_PREPARE] = {
1678                 .name                   = "relay:prepare",
1679                 .startup.single         = relay_prepare_cpu,
1680                 .teardown.single        = NULL,
1681         },
1682         [CPUHP_SLAB_PREPARE] = {
1683                 .name                   = "slab:prepare",
1684                 .startup.single         = slab_prepare_cpu,
1685                 .teardown.single        = slab_dead_cpu,
1686         },
1687         [CPUHP_RCUTREE_PREP] = {
1688                 .name                   = "RCU/tree:prepare",
1689                 .startup.single         = rcutree_prepare_cpu,
1690                 .teardown.single        = rcutree_dead_cpu,
1691         },
1692         /*
1693          * On the tear-down path, timers_dead_cpu() must be invoked
1694          * before blk_mq_queue_reinit_notify() from notify_dead(),
1695          * otherwise a RCU stall occurs.
1696          */
1697         [CPUHP_TIMERS_PREPARE] = {
1698                 .name                   = "timers:prepare",
1699                 .startup.single         = timers_prepare_cpu,
1700                 .teardown.single        = timers_dead_cpu,
1701         },
1702         /* Kicks the plugged cpu into life */
1703         [CPUHP_BRINGUP_CPU] = {
1704                 .name                   = "cpu:bringup",
1705                 .startup.single         = bringup_cpu,
1706                 .teardown.single        = finish_cpu,
1707                 .cant_stop              = true,
1708         },
1709         /* Final state before CPU kills itself */
1710         [CPUHP_AP_IDLE_DEAD] = {
1711                 .name                   = "idle:dead",
1712         },
1713         /*
1714          * Last state before CPU enters the idle loop to die. Transient state
1715          * for synchronization.
1716          */
1717         [CPUHP_AP_OFFLINE] = {
1718                 .name                   = "ap:offline",
1719                 .cant_stop              = true,
1720         },
1721         /* First state is scheduler control. Interrupts are disabled */
1722         [CPUHP_AP_SCHED_STARTING] = {
1723                 .name                   = "sched:starting",
1724                 .startup.single         = sched_cpu_starting,
1725                 .teardown.single        = sched_cpu_dying,
1726         },
1727         [CPUHP_AP_RCUTREE_DYING] = {
1728                 .name                   = "RCU/tree:dying",
1729                 .startup.single         = NULL,
1730                 .teardown.single        = rcutree_dying_cpu,
1731         },
1732         [CPUHP_AP_SMPCFD_DYING] = {
1733                 .name                   = "smpcfd:dying",
1734                 .startup.single         = NULL,
1735                 .teardown.single        = smpcfd_dying_cpu,
1736         },
1737         /* Entry state on starting. Interrupts enabled from here on. Transient
1738          * state for synchronsization */
1739         [CPUHP_AP_ONLINE] = {
1740                 .name                   = "ap:online",
1741         },
1742         /*
1743          * Handled on control processor until the plugged processor manages
1744          * this itself.
1745          */
1746         [CPUHP_TEARDOWN_CPU] = {
1747                 .name                   = "cpu:teardown",
1748                 .startup.single         = NULL,
1749                 .teardown.single        = takedown_cpu,
1750                 .cant_stop              = true,
1751         },
1752
1753         [CPUHP_AP_SCHED_WAIT_EMPTY] = {
1754                 .name                   = "sched:waitempty",
1755                 .startup.single         = NULL,
1756                 .teardown.single        = sched_cpu_wait_empty,
1757         },
1758
1759         /* Handle smpboot threads park/unpark */
1760         [CPUHP_AP_SMPBOOT_THREADS] = {
1761                 .name                   = "smpboot/threads:online",
1762                 .startup.single         = smpboot_unpark_threads,
1763                 .teardown.single        = smpboot_park_threads,
1764         },
1765         [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1766                 .name                   = "irq/affinity:online",
1767                 .startup.single         = irq_affinity_online_cpu,
1768                 .teardown.single        = NULL,
1769         },
1770         [CPUHP_AP_PERF_ONLINE] = {
1771                 .name                   = "perf:online",
1772                 .startup.single         = perf_event_init_cpu,
1773                 .teardown.single        = perf_event_exit_cpu,
1774         },
1775         [CPUHP_AP_WATCHDOG_ONLINE] = {
1776                 .name                   = "lockup_detector:online",
1777                 .startup.single         = lockup_detector_online_cpu,
1778                 .teardown.single        = lockup_detector_offline_cpu,
1779         },
1780         [CPUHP_AP_WORKQUEUE_ONLINE] = {
1781                 .name                   = "workqueue:online",
1782                 .startup.single         = workqueue_online_cpu,
1783                 .teardown.single        = workqueue_offline_cpu,
1784         },
1785         [CPUHP_AP_RCUTREE_ONLINE] = {
1786                 .name                   = "RCU/tree:online",
1787                 .startup.single         = rcutree_online_cpu,
1788                 .teardown.single        = rcutree_offline_cpu,
1789         },
1790 #endif
1791         /*
1792          * The dynamically registered state space is here
1793          */
1794
1795 #ifdef CONFIG_SMP
1796         /* Last state is scheduler control setting the cpu active */
1797         [CPUHP_AP_ACTIVE] = {
1798                 .name                   = "sched:active",
1799                 .startup.single         = sched_cpu_activate,
1800                 .teardown.single        = sched_cpu_deactivate,
1801         },
1802 #endif
1803
1804         /* CPU is fully up and running. */
1805         [CPUHP_ONLINE] = {
1806                 .name                   = "online",
1807                 .startup.single         = NULL,
1808                 .teardown.single        = NULL,
1809         },
1810 };
1811
1812 /* Sanity check for callbacks */
1813 static int cpuhp_cb_check(enum cpuhp_state state)
1814 {
1815         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1816                 return -EINVAL;
1817         return 0;
1818 }
1819
1820 /*
1821  * Returns a free for dynamic slot assignment of the Online state. The states
1822  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1823  * by having no name assigned.
1824  */
1825 static int cpuhp_reserve_state(enum cpuhp_state state)
1826 {
1827         enum cpuhp_state i, end;
1828         struct cpuhp_step *step;
1829
1830         switch (state) {
1831         case CPUHP_AP_ONLINE_DYN:
1832                 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1833                 end = CPUHP_AP_ONLINE_DYN_END;
1834                 break;
1835         case CPUHP_BP_PREPARE_DYN:
1836                 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1837                 end = CPUHP_BP_PREPARE_DYN_END;
1838                 break;
1839         default:
1840                 return -EINVAL;
1841         }
1842
1843         for (i = state; i <= end; i++, step++) {
1844                 if (!step->name)
1845                         return i;
1846         }
1847         WARN(1, "No more dynamic states available for CPU hotplug\n");
1848         return -ENOSPC;
1849 }
1850
1851 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1852                                  int (*startup)(unsigned int cpu),
1853                                  int (*teardown)(unsigned int cpu),
1854                                  bool multi_instance)
1855 {
1856         /* (Un)Install the callbacks for further cpu hotplug operations */
1857         struct cpuhp_step *sp;
1858         int ret = 0;
1859
1860         /*
1861          * If name is NULL, then the state gets removed.
1862          *
1863          * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1864          * the first allocation from these dynamic ranges, so the removal
1865          * would trigger a new allocation and clear the wrong (already
1866          * empty) state, leaving the callbacks of the to be cleared state
1867          * dangling, which causes wreckage on the next hotplug operation.
1868          */
1869         if (name && (state == CPUHP_AP_ONLINE_DYN ||
1870                      state == CPUHP_BP_PREPARE_DYN)) {
1871                 ret = cpuhp_reserve_state(state);
1872                 if (ret < 0)
1873                         return ret;
1874                 state = ret;
1875         }
1876         sp = cpuhp_get_step(state);
1877         if (name && sp->name)
1878                 return -EBUSY;
1879
1880         sp->startup.single = startup;
1881         sp->teardown.single = teardown;
1882         sp->name = name;
1883         sp->multi_instance = multi_instance;
1884         INIT_HLIST_HEAD(&sp->list);
1885         return ret;
1886 }
1887
1888 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1889 {
1890         return cpuhp_get_step(state)->teardown.single;
1891 }
1892
1893 /*
1894  * Call the startup/teardown function for a step either on the AP or
1895  * on the current CPU.
1896  */
1897 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1898                             struct hlist_node *node)
1899 {
1900         struct cpuhp_step *sp = cpuhp_get_step(state);
1901         int ret;
1902
1903         /*
1904          * If there's nothing to do, we done.
1905          * Relies on the union for multi_instance.
1906          */
1907         if (cpuhp_step_empty(bringup, sp))
1908                 return 0;
1909         /*
1910          * The non AP bound callbacks can fail on bringup. On teardown
1911          * e.g. module removal we crash for now.
1912          */
1913 #ifdef CONFIG_SMP
1914         if (cpuhp_is_ap_state(state))
1915                 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1916         else
1917                 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1918 #else
1919         ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1920 #endif
1921         BUG_ON(ret && !bringup);
1922         return ret;
1923 }
1924
1925 /*
1926  * Called from __cpuhp_setup_state on a recoverable failure.
1927  *
1928  * Note: The teardown callbacks for rollback are not allowed to fail!
1929  */
1930 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1931                                    struct hlist_node *node)
1932 {
1933         int cpu;
1934
1935         /* Roll back the already executed steps on the other cpus */
1936         for_each_present_cpu(cpu) {
1937                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1938                 int cpustate = st->state;
1939
1940                 if (cpu >= failedcpu)
1941                         break;
1942
1943                 /* Did we invoke the startup call on that cpu ? */
1944                 if (cpustate >= state)
1945                         cpuhp_issue_call(cpu, state, false, node);
1946         }
1947 }
1948
1949 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1950                                           struct hlist_node *node,
1951                                           bool invoke)
1952 {
1953         struct cpuhp_step *sp;
1954         int cpu;
1955         int ret;
1956
1957         lockdep_assert_cpus_held();
1958
1959         sp = cpuhp_get_step(state);
1960         if (sp->multi_instance == false)
1961                 return -EINVAL;
1962
1963         mutex_lock(&cpuhp_state_mutex);
1964
1965         if (!invoke || !sp->startup.multi)
1966                 goto add_node;
1967
1968         /*
1969          * Try to call the startup callback for each present cpu
1970          * depending on the hotplug state of the cpu.
1971          */
1972         for_each_present_cpu(cpu) {
1973                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1974                 int cpustate = st->state;
1975
1976                 if (cpustate < state)
1977                         continue;
1978
1979                 ret = cpuhp_issue_call(cpu, state, true, node);
1980                 if (ret) {
1981                         if (sp->teardown.multi)
1982                                 cpuhp_rollback_install(cpu, state, node);
1983                         goto unlock;
1984                 }
1985         }
1986 add_node:
1987         ret = 0;
1988         hlist_add_head(node, &sp->list);
1989 unlock:
1990         mutex_unlock(&cpuhp_state_mutex);
1991         return ret;
1992 }
1993
1994 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1995                                bool invoke)
1996 {
1997         int ret;
1998
1999         cpus_read_lock();
2000         ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2001         cpus_read_unlock();
2002         return ret;
2003 }
2004 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2005
2006 /**
2007  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2008  * @state:              The state to setup
2009  * @name:               Name of the step
2010  * @invoke:             If true, the startup function is invoked for cpus where
2011  *                      cpu state >= @state
2012  * @startup:            startup callback function
2013  * @teardown:           teardown callback function
2014  * @multi_instance:     State is set up for multiple instances which get
2015  *                      added afterwards.
2016  *
2017  * The caller needs to hold cpus read locked while calling this function.
2018  * Return:
2019  *   On success:
2020  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2021  *      0 for all other states
2022  *   On failure: proper (negative) error code
2023  */
2024 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2025                                    const char *name, bool invoke,
2026                                    int (*startup)(unsigned int cpu),
2027                                    int (*teardown)(unsigned int cpu),
2028                                    bool multi_instance)
2029 {
2030         int cpu, ret = 0;
2031         bool dynstate;
2032
2033         lockdep_assert_cpus_held();
2034
2035         if (cpuhp_cb_check(state) || !name)
2036                 return -EINVAL;
2037
2038         mutex_lock(&cpuhp_state_mutex);
2039
2040         ret = cpuhp_store_callbacks(state, name, startup, teardown,
2041                                     multi_instance);
2042
2043         dynstate = state == CPUHP_AP_ONLINE_DYN;
2044         if (ret > 0 && dynstate) {
2045                 state = ret;
2046                 ret = 0;
2047         }
2048
2049         if (ret || !invoke || !startup)
2050                 goto out;
2051
2052         /*
2053          * Try to call the startup callback for each present cpu
2054          * depending on the hotplug state of the cpu.
2055          */
2056         for_each_present_cpu(cpu) {
2057                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2058                 int cpustate = st->state;
2059
2060                 if (cpustate < state)
2061                         continue;
2062
2063                 ret = cpuhp_issue_call(cpu, state, true, NULL);
2064                 if (ret) {
2065                         if (teardown)
2066                                 cpuhp_rollback_install(cpu, state, NULL);
2067                         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2068                         goto out;
2069                 }
2070         }
2071 out:
2072         mutex_unlock(&cpuhp_state_mutex);
2073         /*
2074          * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2075          * dynamically allocated state in case of success.
2076          */
2077         if (!ret && dynstate)
2078                 return state;
2079         return ret;
2080 }
2081 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2082
2083 int __cpuhp_setup_state(enum cpuhp_state state,
2084                         const char *name, bool invoke,
2085                         int (*startup)(unsigned int cpu),
2086                         int (*teardown)(unsigned int cpu),
2087                         bool multi_instance)
2088 {
2089         int ret;
2090
2091         cpus_read_lock();
2092         ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2093                                              teardown, multi_instance);
2094         cpus_read_unlock();
2095         return ret;
2096 }
2097 EXPORT_SYMBOL(__cpuhp_setup_state);
2098
2099 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2100                                   struct hlist_node *node, bool invoke)
2101 {
2102         struct cpuhp_step *sp = cpuhp_get_step(state);
2103         int cpu;
2104
2105         BUG_ON(cpuhp_cb_check(state));
2106
2107         if (!sp->multi_instance)
2108                 return -EINVAL;
2109
2110         cpus_read_lock();
2111         mutex_lock(&cpuhp_state_mutex);
2112
2113         if (!invoke || !cpuhp_get_teardown_cb(state))
2114                 goto remove;
2115         /*
2116          * Call the teardown callback for each present cpu depending
2117          * on the hotplug state of the cpu. This function is not
2118          * allowed to fail currently!
2119          */
2120         for_each_present_cpu(cpu) {
2121                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2122                 int cpustate = st->state;
2123
2124                 if (cpustate >= state)
2125                         cpuhp_issue_call(cpu, state, false, node);
2126         }
2127
2128 remove:
2129         hlist_del(node);
2130         mutex_unlock(&cpuhp_state_mutex);
2131         cpus_read_unlock();
2132
2133         return 0;
2134 }
2135 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2136
2137 /**
2138  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2139  * @state:      The state to remove
2140  * @invoke:     If true, the teardown function is invoked for cpus where
2141  *              cpu state >= @state
2142  *
2143  * The caller needs to hold cpus read locked while calling this function.
2144  * The teardown callback is currently not allowed to fail. Think
2145  * about module removal!
2146  */
2147 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2148 {
2149         struct cpuhp_step *sp = cpuhp_get_step(state);
2150         int cpu;
2151
2152         BUG_ON(cpuhp_cb_check(state));
2153
2154         lockdep_assert_cpus_held();
2155
2156         mutex_lock(&cpuhp_state_mutex);
2157         if (sp->multi_instance) {
2158                 WARN(!hlist_empty(&sp->list),
2159                      "Error: Removing state %d which has instances left.\n",
2160                      state);
2161                 goto remove;
2162         }
2163
2164         if (!invoke || !cpuhp_get_teardown_cb(state))
2165                 goto remove;
2166
2167         /*
2168          * Call the teardown callback for each present cpu depending
2169          * on the hotplug state of the cpu. This function is not
2170          * allowed to fail currently!
2171          */
2172         for_each_present_cpu(cpu) {
2173                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2174                 int cpustate = st->state;
2175
2176                 if (cpustate >= state)
2177                         cpuhp_issue_call(cpu, state, false, NULL);
2178         }
2179 remove:
2180         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2181         mutex_unlock(&cpuhp_state_mutex);
2182 }
2183 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2184
2185 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2186 {
2187         cpus_read_lock();
2188         __cpuhp_remove_state_cpuslocked(state, invoke);
2189         cpus_read_unlock();
2190 }
2191 EXPORT_SYMBOL(__cpuhp_remove_state);
2192
2193 #ifdef CONFIG_HOTPLUG_SMT
2194 static void cpuhp_offline_cpu_device(unsigned int cpu)
2195 {
2196         struct device *dev = get_cpu_device(cpu);
2197
2198         dev->offline = true;
2199         /* Tell user space about the state change */
2200         kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2201 }
2202
2203 static void cpuhp_online_cpu_device(unsigned int cpu)
2204 {
2205         struct device *dev = get_cpu_device(cpu);
2206
2207         dev->offline = false;
2208         /* Tell user space about the state change */
2209         kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2210 }
2211
2212 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2213 {
2214         int cpu, ret = 0;
2215
2216         cpu_maps_update_begin();
2217         for_each_online_cpu(cpu) {
2218                 if (topology_is_primary_thread(cpu))
2219                         continue;
2220                 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2221                 if (ret)
2222                         break;
2223                 /*
2224                  * As this needs to hold the cpu maps lock it's impossible
2225                  * to call device_offline() because that ends up calling
2226                  * cpu_down() which takes cpu maps lock. cpu maps lock
2227                  * needs to be held as this might race against in kernel
2228                  * abusers of the hotplug machinery (thermal management).
2229                  *
2230                  * So nothing would update device:offline state. That would
2231                  * leave the sysfs entry stale and prevent onlining after
2232                  * smt control has been changed to 'off' again. This is
2233                  * called under the sysfs hotplug lock, so it is properly
2234                  * serialized against the regular offline usage.
2235                  */
2236                 cpuhp_offline_cpu_device(cpu);
2237         }
2238         if (!ret)
2239                 cpu_smt_control = ctrlval;
2240         cpu_maps_update_done();
2241         return ret;
2242 }
2243
2244 int cpuhp_smt_enable(void)
2245 {
2246         int cpu, ret = 0;
2247
2248         cpu_maps_update_begin();
2249         cpu_smt_control = CPU_SMT_ENABLED;
2250         for_each_present_cpu(cpu) {
2251                 /* Skip online CPUs and CPUs on offline nodes */
2252                 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2253                         continue;
2254                 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2255                 if (ret)
2256                         break;
2257                 /* See comment in cpuhp_smt_disable() */
2258                 cpuhp_online_cpu_device(cpu);
2259         }
2260         cpu_maps_update_done();
2261         return ret;
2262 }
2263 #endif
2264
2265 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2266 static ssize_t state_show(struct device *dev,
2267                           struct device_attribute *attr, char *buf)
2268 {
2269         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2270
2271         return sprintf(buf, "%d\n", st->state);
2272 }
2273 static DEVICE_ATTR_RO(state);
2274
2275 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2276                             const char *buf, size_t count)
2277 {
2278         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2279         struct cpuhp_step *sp;
2280         int target, ret;
2281
2282         ret = kstrtoint(buf, 10, &target);
2283         if (ret)
2284                 return ret;
2285
2286 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2287         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2288                 return -EINVAL;
2289 #else
2290         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2291                 return -EINVAL;
2292 #endif
2293
2294         ret = lock_device_hotplug_sysfs();
2295         if (ret)
2296                 return ret;
2297
2298         mutex_lock(&cpuhp_state_mutex);
2299         sp = cpuhp_get_step(target);
2300         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2301         mutex_unlock(&cpuhp_state_mutex);
2302         if (ret)
2303                 goto out;
2304
2305         if (st->state < target)
2306                 ret = cpu_up(dev->id, target);
2307         else
2308                 ret = cpu_down(dev->id, target);
2309 out:
2310         unlock_device_hotplug();
2311         return ret ? ret : count;
2312 }
2313
2314 static ssize_t target_show(struct device *dev,
2315                            struct device_attribute *attr, char *buf)
2316 {
2317         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2318
2319         return sprintf(buf, "%d\n", st->target);
2320 }
2321 static DEVICE_ATTR_RW(target);
2322
2323 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2324                           const char *buf, size_t count)
2325 {
2326         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2327         struct cpuhp_step *sp;
2328         int fail, ret;
2329
2330         ret = kstrtoint(buf, 10, &fail);
2331         if (ret)
2332                 return ret;
2333
2334         if (fail == CPUHP_INVALID) {
2335                 st->fail = fail;
2336                 return count;
2337         }
2338
2339         if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2340                 return -EINVAL;
2341
2342         /*
2343          * Cannot fail STARTING/DYING callbacks.
2344          */
2345         if (cpuhp_is_atomic_state(fail))
2346                 return -EINVAL;
2347
2348         /*
2349          * DEAD callbacks cannot fail...
2350          * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2351          * triggering STARTING callbacks, a failure in this state would
2352          * hinder rollback.
2353          */
2354         if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2355                 return -EINVAL;
2356
2357         /*
2358          * Cannot fail anything that doesn't have callbacks.
2359          */
2360         mutex_lock(&cpuhp_state_mutex);
2361         sp = cpuhp_get_step(fail);
2362         if (!sp->startup.single && !sp->teardown.single)
2363                 ret = -EINVAL;
2364         mutex_unlock(&cpuhp_state_mutex);
2365         if (ret)
2366                 return ret;
2367
2368         st->fail = fail;
2369
2370         return count;
2371 }
2372
2373 static ssize_t fail_show(struct device *dev,
2374                          struct device_attribute *attr, char *buf)
2375 {
2376         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2377
2378         return sprintf(buf, "%d\n", st->fail);
2379 }
2380
2381 static DEVICE_ATTR_RW(fail);
2382
2383 static struct attribute *cpuhp_cpu_attrs[] = {
2384         &dev_attr_state.attr,
2385         &dev_attr_target.attr,
2386         &dev_attr_fail.attr,
2387         NULL
2388 };
2389
2390 static const struct attribute_group cpuhp_cpu_attr_group = {
2391         .attrs = cpuhp_cpu_attrs,
2392         .name = "hotplug",
2393         NULL
2394 };
2395
2396 static ssize_t states_show(struct device *dev,
2397                                  struct device_attribute *attr, char *buf)
2398 {
2399         ssize_t cur, res = 0;
2400         int i;
2401
2402         mutex_lock(&cpuhp_state_mutex);
2403         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2404                 struct cpuhp_step *sp = cpuhp_get_step(i);
2405
2406                 if (sp->name) {
2407                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2408                         buf += cur;
2409                         res += cur;
2410                 }
2411         }
2412         mutex_unlock(&cpuhp_state_mutex);
2413         return res;
2414 }
2415 static DEVICE_ATTR_RO(states);
2416
2417 static struct attribute *cpuhp_cpu_root_attrs[] = {
2418         &dev_attr_states.attr,
2419         NULL
2420 };
2421
2422 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2423         .attrs = cpuhp_cpu_root_attrs,
2424         .name = "hotplug",
2425         NULL
2426 };
2427
2428 #ifdef CONFIG_HOTPLUG_SMT
2429
2430 static ssize_t
2431 __store_smt_control(struct device *dev, struct device_attribute *attr,
2432                     const char *buf, size_t count)
2433 {
2434         int ctrlval, ret;
2435
2436         if (sysfs_streq(buf, "on"))
2437                 ctrlval = CPU_SMT_ENABLED;
2438         else if (sysfs_streq(buf, "off"))
2439                 ctrlval = CPU_SMT_DISABLED;
2440         else if (sysfs_streq(buf, "forceoff"))
2441                 ctrlval = CPU_SMT_FORCE_DISABLED;
2442         else
2443                 return -EINVAL;
2444
2445         if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2446                 return -EPERM;
2447
2448         if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2449                 return -ENODEV;
2450
2451         ret = lock_device_hotplug_sysfs();
2452         if (ret)
2453                 return ret;
2454
2455         if (ctrlval != cpu_smt_control) {
2456                 switch (ctrlval) {
2457                 case CPU_SMT_ENABLED:
2458                         ret = cpuhp_smt_enable();
2459                         break;
2460                 case CPU_SMT_DISABLED:
2461                 case CPU_SMT_FORCE_DISABLED:
2462                         ret = cpuhp_smt_disable(ctrlval);
2463                         break;
2464                 }
2465         }
2466
2467         unlock_device_hotplug();
2468         return ret ? ret : count;
2469 }
2470
2471 #else /* !CONFIG_HOTPLUG_SMT */
2472 static ssize_t
2473 __store_smt_control(struct device *dev, struct device_attribute *attr,
2474                     const char *buf, size_t count)
2475 {
2476         return -ENODEV;
2477 }
2478 #endif /* CONFIG_HOTPLUG_SMT */
2479
2480 static const char *smt_states[] = {
2481         [CPU_SMT_ENABLED]               = "on",
2482         [CPU_SMT_DISABLED]              = "off",
2483         [CPU_SMT_FORCE_DISABLED]        = "forceoff",
2484         [CPU_SMT_NOT_SUPPORTED]         = "notsupported",
2485         [CPU_SMT_NOT_IMPLEMENTED]       = "notimplemented",
2486 };
2487
2488 static ssize_t control_show(struct device *dev,
2489                             struct device_attribute *attr, char *buf)
2490 {
2491         const char *state = smt_states[cpu_smt_control];
2492
2493         return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2494 }
2495
2496 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2497                              const char *buf, size_t count)
2498 {
2499         return __store_smt_control(dev, attr, buf, count);
2500 }
2501 static DEVICE_ATTR_RW(control);
2502
2503 static ssize_t active_show(struct device *dev,
2504                            struct device_attribute *attr, char *buf)
2505 {
2506         return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2507 }
2508 static DEVICE_ATTR_RO(active);
2509
2510 static struct attribute *cpuhp_smt_attrs[] = {
2511         &dev_attr_control.attr,
2512         &dev_attr_active.attr,
2513         NULL
2514 };
2515
2516 static const struct attribute_group cpuhp_smt_attr_group = {
2517         .attrs = cpuhp_smt_attrs,
2518         .name = "smt",
2519         NULL
2520 };
2521
2522 static int __init cpu_smt_sysfs_init(void)
2523 {
2524         return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2525                                   &cpuhp_smt_attr_group);
2526 }
2527
2528 static int __init cpuhp_sysfs_init(void)
2529 {
2530         int cpu, ret;
2531
2532         ret = cpu_smt_sysfs_init();
2533         if (ret)
2534                 return ret;
2535
2536         ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2537                                  &cpuhp_cpu_root_attr_group);
2538         if (ret)
2539                 return ret;
2540
2541         for_each_possible_cpu(cpu) {
2542                 struct device *dev = get_cpu_device(cpu);
2543
2544                 if (!dev)
2545                         continue;
2546                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2547                 if (ret)
2548                         return ret;
2549         }
2550         return 0;
2551 }
2552 device_initcall(cpuhp_sysfs_init);
2553 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2554
2555 /*
2556  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2557  * represents all NR_CPUS bits binary values of 1<<nr.
2558  *
2559  * It is used by cpumask_of() to get a constant address to a CPU
2560  * mask value that has a single bit set only.
2561  */
2562
2563 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2564 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
2565 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2566 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2567 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2568
2569 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2570
2571         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
2572         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
2573 #if BITS_PER_LONG > 32
2574         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
2575         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
2576 #endif
2577 };
2578 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2579
2580 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2581 EXPORT_SYMBOL(cpu_all_bits);
2582
2583 #ifdef CONFIG_INIT_ALL_POSSIBLE
2584 struct cpumask __cpu_possible_mask __read_mostly
2585         = {CPU_BITS_ALL};
2586 #else
2587 struct cpumask __cpu_possible_mask __read_mostly;
2588 #endif
2589 EXPORT_SYMBOL(__cpu_possible_mask);
2590
2591 struct cpumask __cpu_online_mask __read_mostly;
2592 EXPORT_SYMBOL(__cpu_online_mask);
2593
2594 struct cpumask __cpu_present_mask __read_mostly;
2595 EXPORT_SYMBOL(__cpu_present_mask);
2596
2597 struct cpumask __cpu_active_mask __read_mostly;
2598 EXPORT_SYMBOL(__cpu_active_mask);
2599
2600 struct cpumask __cpu_dying_mask __read_mostly;
2601 EXPORT_SYMBOL(__cpu_dying_mask);
2602
2603 atomic_t __num_online_cpus __read_mostly;
2604 EXPORT_SYMBOL(__num_online_cpus);
2605
2606 void init_cpu_present(const struct cpumask *src)
2607 {
2608         cpumask_copy(&__cpu_present_mask, src);
2609 }
2610
2611 void init_cpu_possible(const struct cpumask *src)
2612 {
2613         cpumask_copy(&__cpu_possible_mask, src);
2614 }
2615
2616 void init_cpu_online(const struct cpumask *src)
2617 {
2618         cpumask_copy(&__cpu_online_mask, src);
2619 }
2620
2621 void set_cpu_online(unsigned int cpu, bool online)
2622 {
2623         /*
2624          * atomic_inc/dec() is required to handle the horrid abuse of this
2625          * function by the reboot and kexec code which invoke it from
2626          * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2627          * regular CPU hotplug is properly serialized.
2628          *
2629          * Note, that the fact that __num_online_cpus is of type atomic_t
2630          * does not protect readers which are not serialized against
2631          * concurrent hotplug operations.
2632          */
2633         if (online) {
2634                 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2635                         atomic_inc(&__num_online_cpus);
2636         } else {
2637                 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2638                         atomic_dec(&__num_online_cpus);
2639         }
2640 }
2641
2642 /*
2643  * Activate the first processor.
2644  */
2645 void __init boot_cpu_init(void)
2646 {
2647         int cpu = smp_processor_id();
2648
2649         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2650         set_cpu_online(cpu, true);
2651         set_cpu_active(cpu, true);
2652         set_cpu_present(cpu, true);
2653         set_cpu_possible(cpu, true);
2654
2655 #ifdef CONFIG_SMP
2656         __boot_cpu_id = cpu;
2657 #endif
2658 }
2659
2660 /*
2661  * Must be called _AFTER_ setting up the per_cpu areas
2662  */
2663 void __init boot_cpu_hotplug_init(void)
2664 {
2665 #ifdef CONFIG_SMP
2666         cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2667 #endif
2668         this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2669 }
2670
2671 /*
2672  * These are used for a global "mitigations=" cmdline option for toggling
2673  * optional CPU mitigations.
2674  */
2675 enum cpu_mitigations {
2676         CPU_MITIGATIONS_OFF,
2677         CPU_MITIGATIONS_AUTO,
2678         CPU_MITIGATIONS_AUTO_NOSMT,
2679 };
2680
2681 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2682         CPU_MITIGATIONS_AUTO;
2683
2684 static int __init mitigations_parse_cmdline(char *arg)
2685 {
2686         if (!strcmp(arg, "off"))
2687                 cpu_mitigations = CPU_MITIGATIONS_OFF;
2688         else if (!strcmp(arg, "auto"))
2689                 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2690         else if (!strcmp(arg, "auto,nosmt"))
2691                 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2692         else
2693                 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2694                         arg);
2695
2696         return 0;
2697 }
2698 early_param("mitigations", mitigations_parse_cmdline);
2699
2700 /* mitigations=off */
2701 bool cpu_mitigations_off(void)
2702 {
2703         return cpu_mitigations == CPU_MITIGATIONS_OFF;
2704 }
2705 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2706
2707 /* mitigations=auto,nosmt */
2708 bool cpu_mitigations_auto_nosmt(void)
2709 {
2710         return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2711 }
2712 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);