Merge branch 'acpi-numa'
[linux.git] / net / core / filter.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *      Jay Schulist <jschlst@samba.org>
13  *      Alexei Starovoitov <ast@plumgrid.com>
14  *      Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/fcntl.h>
24 #include <linux/socket.h>
25 #include <linux/sock_diag.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/netdevice.h>
29 #include <linux/if_packet.h>
30 #include <linux/if_arp.h>
31 #include <linux/gfp.h>
32 #include <net/inet_common.h>
33 #include <net/ip.h>
34 #include <net/protocol.h>
35 #include <net/netlink.h>
36 #include <linux/skbuff.h>
37 #include <linux/skmsg.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <linux/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <asm/cmpxchg.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79
80 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
81 {
82         if (in_compat_syscall()) {
83                 struct compat_sock_fprog f32;
84
85                 if (len != sizeof(f32))
86                         return -EINVAL;
87                 if (copy_from_sockptr(&f32, src, sizeof(f32)))
88                         return -EFAULT;
89                 memset(dst, 0, sizeof(*dst));
90                 dst->len = f32.len;
91                 dst->filter = compat_ptr(f32.filter);
92         } else {
93                 if (len != sizeof(*dst))
94                         return -EINVAL;
95                 if (copy_from_sockptr(dst, src, sizeof(*dst)))
96                         return -EFAULT;
97         }
98
99         return 0;
100 }
101 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
102
103 /**
104  *      sk_filter_trim_cap - run a packet through a socket filter
105  *      @sk: sock associated with &sk_buff
106  *      @skb: buffer to filter
107  *      @cap: limit on how short the eBPF program may trim the packet
108  *
109  * Run the eBPF program and then cut skb->data to correct size returned by
110  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
111  * than pkt_len we keep whole skb->data. This is the socket level
112  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
113  * be accepted or -EPERM if the packet should be tossed.
114  *
115  */
116 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
117 {
118         int err;
119         struct sk_filter *filter;
120
121         /*
122          * If the skb was allocated from pfmemalloc reserves, only
123          * allow SOCK_MEMALLOC sockets to use it as this socket is
124          * helping free memory
125          */
126         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
127                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
128                 return -ENOMEM;
129         }
130         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
131         if (err)
132                 return err;
133
134         err = security_sock_rcv_skb(sk, skb);
135         if (err)
136                 return err;
137
138         rcu_read_lock();
139         filter = rcu_dereference(sk->sk_filter);
140         if (filter) {
141                 struct sock *save_sk = skb->sk;
142                 unsigned int pkt_len;
143
144                 skb->sk = sk;
145                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
146                 skb->sk = save_sk;
147                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
148         }
149         rcu_read_unlock();
150
151         return err;
152 }
153 EXPORT_SYMBOL(sk_filter_trim_cap);
154
155 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
156 {
157         return skb_get_poff(skb);
158 }
159
160 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
161 {
162         struct nlattr *nla;
163
164         if (skb_is_nonlinear(skb))
165                 return 0;
166
167         if (skb->len < sizeof(struct nlattr))
168                 return 0;
169
170         if (a > skb->len - sizeof(struct nlattr))
171                 return 0;
172
173         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
174         if (nla)
175                 return (void *) nla - (void *) skb->data;
176
177         return 0;
178 }
179
180 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
181 {
182         struct nlattr *nla;
183
184         if (skb_is_nonlinear(skb))
185                 return 0;
186
187         if (skb->len < sizeof(struct nlattr))
188                 return 0;
189
190         if (a > skb->len - sizeof(struct nlattr))
191                 return 0;
192
193         nla = (struct nlattr *) &skb->data[a];
194         if (nla->nla_len > skb->len - a)
195                 return 0;
196
197         nla = nla_find_nested(nla, x);
198         if (nla)
199                 return (void *) nla - (void *) skb->data;
200
201         return 0;
202 }
203
204 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
205            data, int, headlen, int, offset)
206 {
207         u8 tmp, *ptr;
208         const int len = sizeof(tmp);
209
210         if (offset >= 0) {
211                 if (headlen - offset >= len)
212                         return *(u8 *)(data + offset);
213                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
214                         return tmp;
215         } else {
216                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
217                 if (likely(ptr))
218                         return *(u8 *)ptr;
219         }
220
221         return -EFAULT;
222 }
223
224 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
225            int, offset)
226 {
227         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
228                                          offset);
229 }
230
231 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
232            data, int, headlen, int, offset)
233 {
234         u16 tmp, *ptr;
235         const int len = sizeof(tmp);
236
237         if (offset >= 0) {
238                 if (headlen - offset >= len)
239                         return get_unaligned_be16(data + offset);
240                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
241                         return be16_to_cpu(tmp);
242         } else {
243                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
244                 if (likely(ptr))
245                         return get_unaligned_be16(ptr);
246         }
247
248         return -EFAULT;
249 }
250
251 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
252            int, offset)
253 {
254         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
255                                           offset);
256 }
257
258 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
259            data, int, headlen, int, offset)
260 {
261         u32 tmp, *ptr;
262         const int len = sizeof(tmp);
263
264         if (likely(offset >= 0)) {
265                 if (headlen - offset >= len)
266                         return get_unaligned_be32(data + offset);
267                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
268                         return be32_to_cpu(tmp);
269         } else {
270                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
271                 if (likely(ptr))
272                         return get_unaligned_be32(ptr);
273         }
274
275         return -EFAULT;
276 }
277
278 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
279            int, offset)
280 {
281         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
282                                           offset);
283 }
284
285 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
286                               struct bpf_insn *insn_buf)
287 {
288         struct bpf_insn *insn = insn_buf;
289
290         switch (skb_field) {
291         case SKF_AD_MARK:
292                 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
293
294                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
295                                       offsetof(struct sk_buff, mark));
296                 break;
297
298         case SKF_AD_PKTTYPE:
299                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
300                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
301 #ifdef __BIG_ENDIAN_BITFIELD
302                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
303 #endif
304                 break;
305
306         case SKF_AD_QUEUE:
307                 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
308
309                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
310                                       offsetof(struct sk_buff, queue_mapping));
311                 break;
312
313         case SKF_AD_VLAN_TAG:
314                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
315
316                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
317                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
318                                       offsetof(struct sk_buff, vlan_tci));
319                 break;
320         case SKF_AD_VLAN_TAG_PRESENT:
321                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
322                 if (PKT_VLAN_PRESENT_BIT)
323                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
324                 if (PKT_VLAN_PRESENT_BIT < 7)
325                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
326                 break;
327         }
328
329         return insn - insn_buf;
330 }
331
332 static bool convert_bpf_extensions(struct sock_filter *fp,
333                                    struct bpf_insn **insnp)
334 {
335         struct bpf_insn *insn = *insnp;
336         u32 cnt;
337
338         switch (fp->k) {
339         case SKF_AD_OFF + SKF_AD_PROTOCOL:
340                 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
341
342                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
343                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
344                                       offsetof(struct sk_buff, protocol));
345                 /* A = ntohs(A) [emitting a nop or swap16] */
346                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
347                 break;
348
349         case SKF_AD_OFF + SKF_AD_PKTTYPE:
350                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
351                 insn += cnt - 1;
352                 break;
353
354         case SKF_AD_OFF + SKF_AD_IFINDEX:
355         case SKF_AD_OFF + SKF_AD_HATYPE:
356                 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
357                 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
358
359                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
360                                       BPF_REG_TMP, BPF_REG_CTX,
361                                       offsetof(struct sk_buff, dev));
362                 /* if (tmp != 0) goto pc + 1 */
363                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
364                 *insn++ = BPF_EXIT_INSN();
365                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
366                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
367                                             offsetof(struct net_device, ifindex));
368                 else
369                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
370                                             offsetof(struct net_device, type));
371                 break;
372
373         case SKF_AD_OFF + SKF_AD_MARK:
374                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
375                 insn += cnt - 1;
376                 break;
377
378         case SKF_AD_OFF + SKF_AD_RXHASH:
379                 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
380
381                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
382                                     offsetof(struct sk_buff, hash));
383                 break;
384
385         case SKF_AD_OFF + SKF_AD_QUEUE:
386                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
387                 insn += cnt - 1;
388                 break;
389
390         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
391                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
392                                          BPF_REG_A, BPF_REG_CTX, insn);
393                 insn += cnt - 1;
394                 break;
395
396         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
397                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
398                                          BPF_REG_A, BPF_REG_CTX, insn);
399                 insn += cnt - 1;
400                 break;
401
402         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
403                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
404
405                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
406                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
407                                       offsetof(struct sk_buff, vlan_proto));
408                 /* A = ntohs(A) [emitting a nop or swap16] */
409                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
410                 break;
411
412         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
413         case SKF_AD_OFF + SKF_AD_NLATTR:
414         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
415         case SKF_AD_OFF + SKF_AD_CPU:
416         case SKF_AD_OFF + SKF_AD_RANDOM:
417                 /* arg1 = CTX */
418                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
419                 /* arg2 = A */
420                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
421                 /* arg3 = X */
422                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
423                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
424                 switch (fp->k) {
425                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
426                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
427                         break;
428                 case SKF_AD_OFF + SKF_AD_NLATTR:
429                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
430                         break;
431                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
432                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
433                         break;
434                 case SKF_AD_OFF + SKF_AD_CPU:
435                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
436                         break;
437                 case SKF_AD_OFF + SKF_AD_RANDOM:
438                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
439                         bpf_user_rnd_init_once();
440                         break;
441                 }
442                 break;
443
444         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
445                 /* A ^= X */
446                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
447                 break;
448
449         default:
450                 /* This is just a dummy call to avoid letting the compiler
451                  * evict __bpf_call_base() as an optimization. Placed here
452                  * where no-one bothers.
453                  */
454                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
455                 return false;
456         }
457
458         *insnp = insn;
459         return true;
460 }
461
462 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
463 {
464         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
465         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
466         bool endian = BPF_SIZE(fp->code) == BPF_H ||
467                       BPF_SIZE(fp->code) == BPF_W;
468         bool indirect = BPF_MODE(fp->code) == BPF_IND;
469         const int ip_align = NET_IP_ALIGN;
470         struct bpf_insn *insn = *insnp;
471         int offset = fp->k;
472
473         if (!indirect &&
474             ((unaligned_ok && offset >= 0) ||
475              (!unaligned_ok && offset >= 0 &&
476               offset + ip_align >= 0 &&
477               offset + ip_align % size == 0))) {
478                 bool ldx_off_ok = offset <= S16_MAX;
479
480                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
481                 if (offset)
482                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
483                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
484                                       size, 2 + endian + (!ldx_off_ok * 2));
485                 if (ldx_off_ok) {
486                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
487                                               BPF_REG_D, offset);
488                 } else {
489                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
490                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
491                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
492                                               BPF_REG_TMP, 0);
493                 }
494                 if (endian)
495                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
496                 *insn++ = BPF_JMP_A(8);
497         }
498
499         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
500         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
501         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
502         if (!indirect) {
503                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
504         } else {
505                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
506                 if (fp->k)
507                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
508         }
509
510         switch (BPF_SIZE(fp->code)) {
511         case BPF_B:
512                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
513                 break;
514         case BPF_H:
515                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
516                 break;
517         case BPF_W:
518                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
519                 break;
520         default:
521                 return false;
522         }
523
524         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
525         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
526         *insn   = BPF_EXIT_INSN();
527
528         *insnp = insn;
529         return true;
530 }
531
532 /**
533  *      bpf_convert_filter - convert filter program
534  *      @prog: the user passed filter program
535  *      @len: the length of the user passed filter program
536  *      @new_prog: allocated 'struct bpf_prog' or NULL
537  *      @new_len: pointer to store length of converted program
538  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
539  *
540  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
541  * style extended BPF (eBPF).
542  * Conversion workflow:
543  *
544  * 1) First pass for calculating the new program length:
545  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
546  *
547  * 2) 2nd pass to remap in two passes: 1st pass finds new
548  *    jump offsets, 2nd pass remapping:
549  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
550  */
551 static int bpf_convert_filter(struct sock_filter *prog, int len,
552                               struct bpf_prog *new_prog, int *new_len,
553                               bool *seen_ld_abs)
554 {
555         int new_flen = 0, pass = 0, target, i, stack_off;
556         struct bpf_insn *new_insn, *first_insn = NULL;
557         struct sock_filter *fp;
558         int *addrs = NULL;
559         u8 bpf_src;
560
561         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
562         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
563
564         if (len <= 0 || len > BPF_MAXINSNS)
565                 return -EINVAL;
566
567         if (new_prog) {
568                 first_insn = new_prog->insnsi;
569                 addrs = kcalloc(len, sizeof(*addrs),
570                                 GFP_KERNEL | __GFP_NOWARN);
571                 if (!addrs)
572                         return -ENOMEM;
573         }
574
575 do_pass:
576         new_insn = first_insn;
577         fp = prog;
578
579         /* Classic BPF related prologue emission. */
580         if (new_prog) {
581                 /* Classic BPF expects A and X to be reset first. These need
582                  * to be guaranteed to be the first two instructions.
583                  */
584                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
585                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
586
587                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
588                  * In eBPF case it's done by the compiler, here we need to
589                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
590                  */
591                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
592                 if (*seen_ld_abs) {
593                         /* For packet access in classic BPF, cache skb->data
594                          * in callee-saved BPF R8 and skb->len - skb->data_len
595                          * (headlen) in BPF R9. Since classic BPF is read-only
596                          * on CTX, we only need to cache it once.
597                          */
598                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
599                                                   BPF_REG_D, BPF_REG_CTX,
600                                                   offsetof(struct sk_buff, data));
601                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
602                                                   offsetof(struct sk_buff, len));
603                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
604                                                   offsetof(struct sk_buff, data_len));
605                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
606                 }
607         } else {
608                 new_insn += 3;
609         }
610
611         for (i = 0; i < len; fp++, i++) {
612                 struct bpf_insn tmp_insns[32] = { };
613                 struct bpf_insn *insn = tmp_insns;
614
615                 if (addrs)
616                         addrs[i] = new_insn - first_insn;
617
618                 switch (fp->code) {
619                 /* All arithmetic insns and skb loads map as-is. */
620                 case BPF_ALU | BPF_ADD | BPF_X:
621                 case BPF_ALU | BPF_ADD | BPF_K:
622                 case BPF_ALU | BPF_SUB | BPF_X:
623                 case BPF_ALU | BPF_SUB | BPF_K:
624                 case BPF_ALU | BPF_AND | BPF_X:
625                 case BPF_ALU | BPF_AND | BPF_K:
626                 case BPF_ALU | BPF_OR | BPF_X:
627                 case BPF_ALU | BPF_OR | BPF_K:
628                 case BPF_ALU | BPF_LSH | BPF_X:
629                 case BPF_ALU | BPF_LSH | BPF_K:
630                 case BPF_ALU | BPF_RSH | BPF_X:
631                 case BPF_ALU | BPF_RSH | BPF_K:
632                 case BPF_ALU | BPF_XOR | BPF_X:
633                 case BPF_ALU | BPF_XOR | BPF_K:
634                 case BPF_ALU | BPF_MUL | BPF_X:
635                 case BPF_ALU | BPF_MUL | BPF_K:
636                 case BPF_ALU | BPF_DIV | BPF_X:
637                 case BPF_ALU | BPF_DIV | BPF_K:
638                 case BPF_ALU | BPF_MOD | BPF_X:
639                 case BPF_ALU | BPF_MOD | BPF_K:
640                 case BPF_ALU | BPF_NEG:
641                 case BPF_LD | BPF_ABS | BPF_W:
642                 case BPF_LD | BPF_ABS | BPF_H:
643                 case BPF_LD | BPF_ABS | BPF_B:
644                 case BPF_LD | BPF_IND | BPF_W:
645                 case BPF_LD | BPF_IND | BPF_H:
646                 case BPF_LD | BPF_IND | BPF_B:
647                         /* Check for overloaded BPF extension and
648                          * directly convert it if found, otherwise
649                          * just move on with mapping.
650                          */
651                         if (BPF_CLASS(fp->code) == BPF_LD &&
652                             BPF_MODE(fp->code) == BPF_ABS &&
653                             convert_bpf_extensions(fp, &insn))
654                                 break;
655                         if (BPF_CLASS(fp->code) == BPF_LD &&
656                             convert_bpf_ld_abs(fp, &insn)) {
657                                 *seen_ld_abs = true;
658                                 break;
659                         }
660
661                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
662                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
663                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
664                                 /* Error with exception code on div/mod by 0.
665                                  * For cBPF programs, this was always return 0.
666                                  */
667                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
668                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
669                                 *insn++ = BPF_EXIT_INSN();
670                         }
671
672                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
673                         break;
674
675                 /* Jump transformation cannot use BPF block macros
676                  * everywhere as offset calculation and target updates
677                  * require a bit more work than the rest, i.e. jump
678                  * opcodes map as-is, but offsets need adjustment.
679                  */
680
681 #define BPF_EMIT_JMP                                                    \
682         do {                                                            \
683                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
684                 s32 off;                                                \
685                                                                         \
686                 if (target >= len || target < 0)                        \
687                         goto err;                                       \
688                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
689                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
690                 off -= insn - tmp_insns;                                \
691                 /* Reject anything not fitting into insn->off. */       \
692                 if (off < off_min || off > off_max)                     \
693                         goto err;                                       \
694                 insn->off = off;                                        \
695         } while (0)
696
697                 case BPF_JMP | BPF_JA:
698                         target = i + fp->k + 1;
699                         insn->code = fp->code;
700                         BPF_EMIT_JMP;
701                         break;
702
703                 case BPF_JMP | BPF_JEQ | BPF_K:
704                 case BPF_JMP | BPF_JEQ | BPF_X:
705                 case BPF_JMP | BPF_JSET | BPF_K:
706                 case BPF_JMP | BPF_JSET | BPF_X:
707                 case BPF_JMP | BPF_JGT | BPF_K:
708                 case BPF_JMP | BPF_JGT | BPF_X:
709                 case BPF_JMP | BPF_JGE | BPF_K:
710                 case BPF_JMP | BPF_JGE | BPF_X:
711                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
712                                 /* BPF immediates are signed, zero extend
713                                  * immediate into tmp register and use it
714                                  * in compare insn.
715                                  */
716                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
717
718                                 insn->dst_reg = BPF_REG_A;
719                                 insn->src_reg = BPF_REG_TMP;
720                                 bpf_src = BPF_X;
721                         } else {
722                                 insn->dst_reg = BPF_REG_A;
723                                 insn->imm = fp->k;
724                                 bpf_src = BPF_SRC(fp->code);
725                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
726                         }
727
728                         /* Common case where 'jump_false' is next insn. */
729                         if (fp->jf == 0) {
730                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
731                                 target = i + fp->jt + 1;
732                                 BPF_EMIT_JMP;
733                                 break;
734                         }
735
736                         /* Convert some jumps when 'jump_true' is next insn. */
737                         if (fp->jt == 0) {
738                                 switch (BPF_OP(fp->code)) {
739                                 case BPF_JEQ:
740                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
741                                         break;
742                                 case BPF_JGT:
743                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
744                                         break;
745                                 case BPF_JGE:
746                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
747                                         break;
748                                 default:
749                                         goto jmp_rest;
750                                 }
751
752                                 target = i + fp->jf + 1;
753                                 BPF_EMIT_JMP;
754                                 break;
755                         }
756 jmp_rest:
757                         /* Other jumps are mapped into two insns: Jxx and JA. */
758                         target = i + fp->jt + 1;
759                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
760                         BPF_EMIT_JMP;
761                         insn++;
762
763                         insn->code = BPF_JMP | BPF_JA;
764                         target = i + fp->jf + 1;
765                         BPF_EMIT_JMP;
766                         break;
767
768                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
769                 case BPF_LDX | BPF_MSH | BPF_B: {
770                         struct sock_filter tmp = {
771                                 .code   = BPF_LD | BPF_ABS | BPF_B,
772                                 .k      = fp->k,
773                         };
774
775                         *seen_ld_abs = true;
776
777                         /* X = A */
778                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
779                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
780                         convert_bpf_ld_abs(&tmp, &insn);
781                         insn++;
782                         /* A &= 0xf */
783                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
784                         /* A <<= 2 */
785                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
786                         /* tmp = X */
787                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
788                         /* X = A */
789                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
790                         /* A = tmp */
791                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
792                         break;
793                 }
794                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
795                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
796                  */
797                 case BPF_RET | BPF_A:
798                 case BPF_RET | BPF_K:
799                         if (BPF_RVAL(fp->code) == BPF_K)
800                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
801                                                         0, fp->k);
802                         *insn = BPF_EXIT_INSN();
803                         break;
804
805                 /* Store to stack. */
806                 case BPF_ST:
807                 case BPF_STX:
808                         stack_off = fp->k * 4  + 4;
809                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
810                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
811                                             -stack_off);
812                         /* check_load_and_stores() verifies that classic BPF can
813                          * load from stack only after write, so tracking
814                          * stack_depth for ST|STX insns is enough
815                          */
816                         if (new_prog && new_prog->aux->stack_depth < stack_off)
817                                 new_prog->aux->stack_depth = stack_off;
818                         break;
819
820                 /* Load from stack. */
821                 case BPF_LD | BPF_MEM:
822                 case BPF_LDX | BPF_MEM:
823                         stack_off = fp->k * 4  + 4;
824                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
825                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
826                                             -stack_off);
827                         break;
828
829                 /* A = K or X = K */
830                 case BPF_LD | BPF_IMM:
831                 case BPF_LDX | BPF_IMM:
832                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
833                                               BPF_REG_A : BPF_REG_X, fp->k);
834                         break;
835
836                 /* X = A */
837                 case BPF_MISC | BPF_TAX:
838                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
839                         break;
840
841                 /* A = X */
842                 case BPF_MISC | BPF_TXA:
843                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
844                         break;
845
846                 /* A = skb->len or X = skb->len */
847                 case BPF_LD | BPF_W | BPF_LEN:
848                 case BPF_LDX | BPF_W | BPF_LEN:
849                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
850                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
851                                             offsetof(struct sk_buff, len));
852                         break;
853
854                 /* Access seccomp_data fields. */
855                 case BPF_LDX | BPF_ABS | BPF_W:
856                         /* A = *(u32 *) (ctx + K) */
857                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
858                         break;
859
860                 /* Unknown instruction. */
861                 default:
862                         goto err;
863                 }
864
865                 insn++;
866                 if (new_prog)
867                         memcpy(new_insn, tmp_insns,
868                                sizeof(*insn) * (insn - tmp_insns));
869                 new_insn += insn - tmp_insns;
870         }
871
872         if (!new_prog) {
873                 /* Only calculating new length. */
874                 *new_len = new_insn - first_insn;
875                 if (*seen_ld_abs)
876                         *new_len += 4; /* Prologue bits. */
877                 return 0;
878         }
879
880         pass++;
881         if (new_flen != new_insn - first_insn) {
882                 new_flen = new_insn - first_insn;
883                 if (pass > 2)
884                         goto err;
885                 goto do_pass;
886         }
887
888         kfree(addrs);
889         BUG_ON(*new_len != new_flen);
890         return 0;
891 err:
892         kfree(addrs);
893         return -EINVAL;
894 }
895
896 /* Security:
897  *
898  * As we dont want to clear mem[] array for each packet going through
899  * __bpf_prog_run(), we check that filter loaded by user never try to read
900  * a cell if not previously written, and we check all branches to be sure
901  * a malicious user doesn't try to abuse us.
902  */
903 static int check_load_and_stores(const struct sock_filter *filter, int flen)
904 {
905         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
906         int pc, ret = 0;
907
908         BUILD_BUG_ON(BPF_MEMWORDS > 16);
909
910         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
911         if (!masks)
912                 return -ENOMEM;
913
914         memset(masks, 0xff, flen * sizeof(*masks));
915
916         for (pc = 0; pc < flen; pc++) {
917                 memvalid &= masks[pc];
918
919                 switch (filter[pc].code) {
920                 case BPF_ST:
921                 case BPF_STX:
922                         memvalid |= (1 << filter[pc].k);
923                         break;
924                 case BPF_LD | BPF_MEM:
925                 case BPF_LDX | BPF_MEM:
926                         if (!(memvalid & (1 << filter[pc].k))) {
927                                 ret = -EINVAL;
928                                 goto error;
929                         }
930                         break;
931                 case BPF_JMP | BPF_JA:
932                         /* A jump must set masks on target */
933                         masks[pc + 1 + filter[pc].k] &= memvalid;
934                         memvalid = ~0;
935                         break;
936                 case BPF_JMP | BPF_JEQ | BPF_K:
937                 case BPF_JMP | BPF_JEQ | BPF_X:
938                 case BPF_JMP | BPF_JGE | BPF_K:
939                 case BPF_JMP | BPF_JGE | BPF_X:
940                 case BPF_JMP | BPF_JGT | BPF_K:
941                 case BPF_JMP | BPF_JGT | BPF_X:
942                 case BPF_JMP | BPF_JSET | BPF_K:
943                 case BPF_JMP | BPF_JSET | BPF_X:
944                         /* A jump must set masks on targets */
945                         masks[pc + 1 + filter[pc].jt] &= memvalid;
946                         masks[pc + 1 + filter[pc].jf] &= memvalid;
947                         memvalid = ~0;
948                         break;
949                 }
950         }
951 error:
952         kfree(masks);
953         return ret;
954 }
955
956 static bool chk_code_allowed(u16 code_to_probe)
957 {
958         static const bool codes[] = {
959                 /* 32 bit ALU operations */
960                 [BPF_ALU | BPF_ADD | BPF_K] = true,
961                 [BPF_ALU | BPF_ADD | BPF_X] = true,
962                 [BPF_ALU | BPF_SUB | BPF_K] = true,
963                 [BPF_ALU | BPF_SUB | BPF_X] = true,
964                 [BPF_ALU | BPF_MUL | BPF_K] = true,
965                 [BPF_ALU | BPF_MUL | BPF_X] = true,
966                 [BPF_ALU | BPF_DIV | BPF_K] = true,
967                 [BPF_ALU | BPF_DIV | BPF_X] = true,
968                 [BPF_ALU | BPF_MOD | BPF_K] = true,
969                 [BPF_ALU | BPF_MOD | BPF_X] = true,
970                 [BPF_ALU | BPF_AND | BPF_K] = true,
971                 [BPF_ALU | BPF_AND | BPF_X] = true,
972                 [BPF_ALU | BPF_OR | BPF_K] = true,
973                 [BPF_ALU | BPF_OR | BPF_X] = true,
974                 [BPF_ALU | BPF_XOR | BPF_K] = true,
975                 [BPF_ALU | BPF_XOR | BPF_X] = true,
976                 [BPF_ALU | BPF_LSH | BPF_K] = true,
977                 [BPF_ALU | BPF_LSH | BPF_X] = true,
978                 [BPF_ALU | BPF_RSH | BPF_K] = true,
979                 [BPF_ALU | BPF_RSH | BPF_X] = true,
980                 [BPF_ALU | BPF_NEG] = true,
981                 /* Load instructions */
982                 [BPF_LD | BPF_W | BPF_ABS] = true,
983                 [BPF_LD | BPF_H | BPF_ABS] = true,
984                 [BPF_LD | BPF_B | BPF_ABS] = true,
985                 [BPF_LD | BPF_W | BPF_LEN] = true,
986                 [BPF_LD | BPF_W | BPF_IND] = true,
987                 [BPF_LD | BPF_H | BPF_IND] = true,
988                 [BPF_LD | BPF_B | BPF_IND] = true,
989                 [BPF_LD | BPF_IMM] = true,
990                 [BPF_LD | BPF_MEM] = true,
991                 [BPF_LDX | BPF_W | BPF_LEN] = true,
992                 [BPF_LDX | BPF_B | BPF_MSH] = true,
993                 [BPF_LDX | BPF_IMM] = true,
994                 [BPF_LDX | BPF_MEM] = true,
995                 /* Store instructions */
996                 [BPF_ST] = true,
997                 [BPF_STX] = true,
998                 /* Misc instructions */
999                 [BPF_MISC | BPF_TAX] = true,
1000                 [BPF_MISC | BPF_TXA] = true,
1001                 /* Return instructions */
1002                 [BPF_RET | BPF_K] = true,
1003                 [BPF_RET | BPF_A] = true,
1004                 /* Jump instructions */
1005                 [BPF_JMP | BPF_JA] = true,
1006                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1007                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1008                 [BPF_JMP | BPF_JGE | BPF_K] = true,
1009                 [BPF_JMP | BPF_JGE | BPF_X] = true,
1010                 [BPF_JMP | BPF_JGT | BPF_K] = true,
1011                 [BPF_JMP | BPF_JGT | BPF_X] = true,
1012                 [BPF_JMP | BPF_JSET | BPF_K] = true,
1013                 [BPF_JMP | BPF_JSET | BPF_X] = true,
1014         };
1015
1016         if (code_to_probe >= ARRAY_SIZE(codes))
1017                 return false;
1018
1019         return codes[code_to_probe];
1020 }
1021
1022 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1023                                 unsigned int flen)
1024 {
1025         if (filter == NULL)
1026                 return false;
1027         if (flen == 0 || flen > BPF_MAXINSNS)
1028                 return false;
1029
1030         return true;
1031 }
1032
1033 /**
1034  *      bpf_check_classic - verify socket filter code
1035  *      @filter: filter to verify
1036  *      @flen: length of filter
1037  *
1038  * Check the user's filter code. If we let some ugly
1039  * filter code slip through kaboom! The filter must contain
1040  * no references or jumps that are out of range, no illegal
1041  * instructions, and must end with a RET instruction.
1042  *
1043  * All jumps are forward as they are not signed.
1044  *
1045  * Returns 0 if the rule set is legal or -EINVAL if not.
1046  */
1047 static int bpf_check_classic(const struct sock_filter *filter,
1048                              unsigned int flen)
1049 {
1050         bool anc_found;
1051         int pc;
1052
1053         /* Check the filter code now */
1054         for (pc = 0; pc < flen; pc++) {
1055                 const struct sock_filter *ftest = &filter[pc];
1056
1057                 /* May we actually operate on this code? */
1058                 if (!chk_code_allowed(ftest->code))
1059                         return -EINVAL;
1060
1061                 /* Some instructions need special checks */
1062                 switch (ftest->code) {
1063                 case BPF_ALU | BPF_DIV | BPF_K:
1064                 case BPF_ALU | BPF_MOD | BPF_K:
1065                         /* Check for division by zero */
1066                         if (ftest->k == 0)
1067                                 return -EINVAL;
1068                         break;
1069                 case BPF_ALU | BPF_LSH | BPF_K:
1070                 case BPF_ALU | BPF_RSH | BPF_K:
1071                         if (ftest->k >= 32)
1072                                 return -EINVAL;
1073                         break;
1074                 case BPF_LD | BPF_MEM:
1075                 case BPF_LDX | BPF_MEM:
1076                 case BPF_ST:
1077                 case BPF_STX:
1078                         /* Check for invalid memory addresses */
1079                         if (ftest->k >= BPF_MEMWORDS)
1080                                 return -EINVAL;
1081                         break;
1082                 case BPF_JMP | BPF_JA:
1083                         /* Note, the large ftest->k might cause loops.
1084                          * Compare this with conditional jumps below,
1085                          * where offsets are limited. --ANK (981016)
1086                          */
1087                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1088                                 return -EINVAL;
1089                         break;
1090                 case BPF_JMP | BPF_JEQ | BPF_K:
1091                 case BPF_JMP | BPF_JEQ | BPF_X:
1092                 case BPF_JMP | BPF_JGE | BPF_K:
1093                 case BPF_JMP | BPF_JGE | BPF_X:
1094                 case BPF_JMP | BPF_JGT | BPF_K:
1095                 case BPF_JMP | BPF_JGT | BPF_X:
1096                 case BPF_JMP | BPF_JSET | BPF_K:
1097                 case BPF_JMP | BPF_JSET | BPF_X:
1098                         /* Both conditionals must be safe */
1099                         if (pc + ftest->jt + 1 >= flen ||
1100                             pc + ftest->jf + 1 >= flen)
1101                                 return -EINVAL;
1102                         break;
1103                 case BPF_LD | BPF_W | BPF_ABS:
1104                 case BPF_LD | BPF_H | BPF_ABS:
1105                 case BPF_LD | BPF_B | BPF_ABS:
1106                         anc_found = false;
1107                         if (bpf_anc_helper(ftest) & BPF_ANC)
1108                                 anc_found = true;
1109                         /* Ancillary operation unknown or unsupported */
1110                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1111                                 return -EINVAL;
1112                 }
1113         }
1114
1115         /* Last instruction must be a RET code */
1116         switch (filter[flen - 1].code) {
1117         case BPF_RET | BPF_K:
1118         case BPF_RET | BPF_A:
1119                 return check_load_and_stores(filter, flen);
1120         }
1121
1122         return -EINVAL;
1123 }
1124
1125 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1126                                       const struct sock_fprog *fprog)
1127 {
1128         unsigned int fsize = bpf_classic_proglen(fprog);
1129         struct sock_fprog_kern *fkprog;
1130
1131         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1132         if (!fp->orig_prog)
1133                 return -ENOMEM;
1134
1135         fkprog = fp->orig_prog;
1136         fkprog->len = fprog->len;
1137
1138         fkprog->filter = kmemdup(fp->insns, fsize,
1139                                  GFP_KERNEL | __GFP_NOWARN);
1140         if (!fkprog->filter) {
1141                 kfree(fp->orig_prog);
1142                 return -ENOMEM;
1143         }
1144
1145         return 0;
1146 }
1147
1148 static void bpf_release_orig_filter(struct bpf_prog *fp)
1149 {
1150         struct sock_fprog_kern *fprog = fp->orig_prog;
1151
1152         if (fprog) {
1153                 kfree(fprog->filter);
1154                 kfree(fprog);
1155         }
1156 }
1157
1158 static void __bpf_prog_release(struct bpf_prog *prog)
1159 {
1160         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1161                 bpf_prog_put(prog);
1162         } else {
1163                 bpf_release_orig_filter(prog);
1164                 bpf_prog_free(prog);
1165         }
1166 }
1167
1168 static void __sk_filter_release(struct sk_filter *fp)
1169 {
1170         __bpf_prog_release(fp->prog);
1171         kfree(fp);
1172 }
1173
1174 /**
1175  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1176  *      @rcu: rcu_head that contains the sk_filter to free
1177  */
1178 static void sk_filter_release_rcu(struct rcu_head *rcu)
1179 {
1180         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1181
1182         __sk_filter_release(fp);
1183 }
1184
1185 /**
1186  *      sk_filter_release - release a socket filter
1187  *      @fp: filter to remove
1188  *
1189  *      Remove a filter from a socket and release its resources.
1190  */
1191 static void sk_filter_release(struct sk_filter *fp)
1192 {
1193         if (refcount_dec_and_test(&fp->refcnt))
1194                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1195 }
1196
1197 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1198 {
1199         u32 filter_size = bpf_prog_size(fp->prog->len);
1200
1201         atomic_sub(filter_size, &sk->sk_omem_alloc);
1202         sk_filter_release(fp);
1203 }
1204
1205 /* try to charge the socket memory if there is space available
1206  * return true on success
1207  */
1208 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1209 {
1210         u32 filter_size = bpf_prog_size(fp->prog->len);
1211
1212         /* same check as in sock_kmalloc() */
1213         if (filter_size <= sysctl_optmem_max &&
1214             atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1215                 atomic_add(filter_size, &sk->sk_omem_alloc);
1216                 return true;
1217         }
1218         return false;
1219 }
1220
1221 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1222 {
1223         if (!refcount_inc_not_zero(&fp->refcnt))
1224                 return false;
1225
1226         if (!__sk_filter_charge(sk, fp)) {
1227                 sk_filter_release(fp);
1228                 return false;
1229         }
1230         return true;
1231 }
1232
1233 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1234 {
1235         struct sock_filter *old_prog;
1236         struct bpf_prog *old_fp;
1237         int err, new_len, old_len = fp->len;
1238         bool seen_ld_abs = false;
1239
1240         /* We are free to overwrite insns et al right here as it
1241          * won't be used at this point in time anymore internally
1242          * after the migration to the internal BPF instruction
1243          * representation.
1244          */
1245         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1246                      sizeof(struct bpf_insn));
1247
1248         /* Conversion cannot happen on overlapping memory areas,
1249          * so we need to keep the user BPF around until the 2nd
1250          * pass. At this time, the user BPF is stored in fp->insns.
1251          */
1252         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1253                            GFP_KERNEL | __GFP_NOWARN);
1254         if (!old_prog) {
1255                 err = -ENOMEM;
1256                 goto out_err;
1257         }
1258
1259         /* 1st pass: calculate the new program length. */
1260         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1261                                  &seen_ld_abs);
1262         if (err)
1263                 goto out_err_free;
1264
1265         /* Expand fp for appending the new filter representation. */
1266         old_fp = fp;
1267         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1268         if (!fp) {
1269                 /* The old_fp is still around in case we couldn't
1270                  * allocate new memory, so uncharge on that one.
1271                  */
1272                 fp = old_fp;
1273                 err = -ENOMEM;
1274                 goto out_err_free;
1275         }
1276
1277         fp->len = new_len;
1278
1279         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1280         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1281                                  &seen_ld_abs);
1282         if (err)
1283                 /* 2nd bpf_convert_filter() can fail only if it fails
1284                  * to allocate memory, remapping must succeed. Note,
1285                  * that at this time old_fp has already been released
1286                  * by krealloc().
1287                  */
1288                 goto out_err_free;
1289
1290         fp = bpf_prog_select_runtime(fp, &err);
1291         if (err)
1292                 goto out_err_free;
1293
1294         kfree(old_prog);
1295         return fp;
1296
1297 out_err_free:
1298         kfree(old_prog);
1299 out_err:
1300         __bpf_prog_release(fp);
1301         return ERR_PTR(err);
1302 }
1303
1304 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1305                                            bpf_aux_classic_check_t trans)
1306 {
1307         int err;
1308
1309         fp->bpf_func = NULL;
1310         fp->jited = 0;
1311
1312         err = bpf_check_classic(fp->insns, fp->len);
1313         if (err) {
1314                 __bpf_prog_release(fp);
1315                 return ERR_PTR(err);
1316         }
1317
1318         /* There might be additional checks and transformations
1319          * needed on classic filters, f.e. in case of seccomp.
1320          */
1321         if (trans) {
1322                 err = trans(fp->insns, fp->len);
1323                 if (err) {
1324                         __bpf_prog_release(fp);
1325                         return ERR_PTR(err);
1326                 }
1327         }
1328
1329         /* Probe if we can JIT compile the filter and if so, do
1330          * the compilation of the filter.
1331          */
1332         bpf_jit_compile(fp);
1333
1334         /* JIT compiler couldn't process this filter, so do the
1335          * internal BPF translation for the optimized interpreter.
1336          */
1337         if (!fp->jited)
1338                 fp = bpf_migrate_filter(fp);
1339
1340         return fp;
1341 }
1342
1343 /**
1344  *      bpf_prog_create - create an unattached filter
1345  *      @pfp: the unattached filter that is created
1346  *      @fprog: the filter program
1347  *
1348  * Create a filter independent of any socket. We first run some
1349  * sanity checks on it to make sure it does not explode on us later.
1350  * If an error occurs or there is insufficient memory for the filter
1351  * a negative errno code is returned. On success the return is zero.
1352  */
1353 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1354 {
1355         unsigned int fsize = bpf_classic_proglen(fprog);
1356         struct bpf_prog *fp;
1357
1358         /* Make sure new filter is there and in the right amounts. */
1359         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1360                 return -EINVAL;
1361
1362         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1363         if (!fp)
1364                 return -ENOMEM;
1365
1366         memcpy(fp->insns, fprog->filter, fsize);
1367
1368         fp->len = fprog->len;
1369         /* Since unattached filters are not copied back to user
1370          * space through sk_get_filter(), we do not need to hold
1371          * a copy here, and can spare us the work.
1372          */
1373         fp->orig_prog = NULL;
1374
1375         /* bpf_prepare_filter() already takes care of freeing
1376          * memory in case something goes wrong.
1377          */
1378         fp = bpf_prepare_filter(fp, NULL);
1379         if (IS_ERR(fp))
1380                 return PTR_ERR(fp);
1381
1382         *pfp = fp;
1383         return 0;
1384 }
1385 EXPORT_SYMBOL_GPL(bpf_prog_create);
1386
1387 /**
1388  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1389  *      @pfp: the unattached filter that is created
1390  *      @fprog: the filter program
1391  *      @trans: post-classic verifier transformation handler
1392  *      @save_orig: save classic BPF program
1393  *
1394  * This function effectively does the same as bpf_prog_create(), only
1395  * that it builds up its insns buffer from user space provided buffer.
1396  * It also allows for passing a bpf_aux_classic_check_t handler.
1397  */
1398 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1399                               bpf_aux_classic_check_t trans, bool save_orig)
1400 {
1401         unsigned int fsize = bpf_classic_proglen(fprog);
1402         struct bpf_prog *fp;
1403         int err;
1404
1405         /* Make sure new filter is there and in the right amounts. */
1406         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1407                 return -EINVAL;
1408
1409         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1410         if (!fp)
1411                 return -ENOMEM;
1412
1413         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1414                 __bpf_prog_free(fp);
1415                 return -EFAULT;
1416         }
1417
1418         fp->len = fprog->len;
1419         fp->orig_prog = NULL;
1420
1421         if (save_orig) {
1422                 err = bpf_prog_store_orig_filter(fp, fprog);
1423                 if (err) {
1424                         __bpf_prog_free(fp);
1425                         return -ENOMEM;
1426                 }
1427         }
1428
1429         /* bpf_prepare_filter() already takes care of freeing
1430          * memory in case something goes wrong.
1431          */
1432         fp = bpf_prepare_filter(fp, trans);
1433         if (IS_ERR(fp))
1434                 return PTR_ERR(fp);
1435
1436         *pfp = fp;
1437         return 0;
1438 }
1439 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1440
1441 void bpf_prog_destroy(struct bpf_prog *fp)
1442 {
1443         __bpf_prog_release(fp);
1444 }
1445 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1446
1447 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1448 {
1449         struct sk_filter *fp, *old_fp;
1450
1451         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1452         if (!fp)
1453                 return -ENOMEM;
1454
1455         fp->prog = prog;
1456
1457         if (!__sk_filter_charge(sk, fp)) {
1458                 kfree(fp);
1459                 return -ENOMEM;
1460         }
1461         refcount_set(&fp->refcnt, 1);
1462
1463         old_fp = rcu_dereference_protected(sk->sk_filter,
1464                                            lockdep_sock_is_held(sk));
1465         rcu_assign_pointer(sk->sk_filter, fp);
1466
1467         if (old_fp)
1468                 sk_filter_uncharge(sk, old_fp);
1469
1470         return 0;
1471 }
1472
1473 static
1474 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1475 {
1476         unsigned int fsize = bpf_classic_proglen(fprog);
1477         struct bpf_prog *prog;
1478         int err;
1479
1480         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1481                 return ERR_PTR(-EPERM);
1482
1483         /* Make sure new filter is there and in the right amounts. */
1484         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1485                 return ERR_PTR(-EINVAL);
1486
1487         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1488         if (!prog)
1489                 return ERR_PTR(-ENOMEM);
1490
1491         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1492                 __bpf_prog_free(prog);
1493                 return ERR_PTR(-EFAULT);
1494         }
1495
1496         prog->len = fprog->len;
1497
1498         err = bpf_prog_store_orig_filter(prog, fprog);
1499         if (err) {
1500                 __bpf_prog_free(prog);
1501                 return ERR_PTR(-ENOMEM);
1502         }
1503
1504         /* bpf_prepare_filter() already takes care of freeing
1505          * memory in case something goes wrong.
1506          */
1507         return bpf_prepare_filter(prog, NULL);
1508 }
1509
1510 /**
1511  *      sk_attach_filter - attach a socket filter
1512  *      @fprog: the filter program
1513  *      @sk: the socket to use
1514  *
1515  * Attach the user's filter code. We first run some sanity checks on
1516  * it to make sure it does not explode on us later. If an error
1517  * occurs or there is insufficient memory for the filter a negative
1518  * errno code is returned. On success the return is zero.
1519  */
1520 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1521 {
1522         struct bpf_prog *prog = __get_filter(fprog, sk);
1523         int err;
1524
1525         if (IS_ERR(prog))
1526                 return PTR_ERR(prog);
1527
1528         err = __sk_attach_prog(prog, sk);
1529         if (err < 0) {
1530                 __bpf_prog_release(prog);
1531                 return err;
1532         }
1533
1534         return 0;
1535 }
1536 EXPORT_SYMBOL_GPL(sk_attach_filter);
1537
1538 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1539 {
1540         struct bpf_prog *prog = __get_filter(fprog, sk);
1541         int err;
1542
1543         if (IS_ERR(prog))
1544                 return PTR_ERR(prog);
1545
1546         if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1547                 err = -ENOMEM;
1548         else
1549                 err = reuseport_attach_prog(sk, prog);
1550
1551         if (err)
1552                 __bpf_prog_release(prog);
1553
1554         return err;
1555 }
1556
1557 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1558 {
1559         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1560                 return ERR_PTR(-EPERM);
1561
1562         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1563 }
1564
1565 int sk_attach_bpf(u32 ufd, struct sock *sk)
1566 {
1567         struct bpf_prog *prog = __get_bpf(ufd, sk);
1568         int err;
1569
1570         if (IS_ERR(prog))
1571                 return PTR_ERR(prog);
1572
1573         err = __sk_attach_prog(prog, sk);
1574         if (err < 0) {
1575                 bpf_prog_put(prog);
1576                 return err;
1577         }
1578
1579         return 0;
1580 }
1581
1582 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1583 {
1584         struct bpf_prog *prog;
1585         int err;
1586
1587         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1588                 return -EPERM;
1589
1590         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1591         if (PTR_ERR(prog) == -EINVAL)
1592                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1593         if (IS_ERR(prog))
1594                 return PTR_ERR(prog);
1595
1596         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1597                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1598                  * bpf prog (e.g. sockmap).  It depends on the
1599                  * limitation imposed by bpf_prog_load().
1600                  * Hence, sysctl_optmem_max is not checked.
1601                  */
1602                 if ((sk->sk_type != SOCK_STREAM &&
1603                      sk->sk_type != SOCK_DGRAM) ||
1604                     (sk->sk_protocol != IPPROTO_UDP &&
1605                      sk->sk_protocol != IPPROTO_TCP) ||
1606                     (sk->sk_family != AF_INET &&
1607                      sk->sk_family != AF_INET6)) {
1608                         err = -ENOTSUPP;
1609                         goto err_prog_put;
1610                 }
1611         } else {
1612                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1613                 if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1614                         err = -ENOMEM;
1615                         goto err_prog_put;
1616                 }
1617         }
1618
1619         err = reuseport_attach_prog(sk, prog);
1620 err_prog_put:
1621         if (err)
1622                 bpf_prog_put(prog);
1623
1624         return err;
1625 }
1626
1627 void sk_reuseport_prog_free(struct bpf_prog *prog)
1628 {
1629         if (!prog)
1630                 return;
1631
1632         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1633                 bpf_prog_put(prog);
1634         else
1635                 bpf_prog_destroy(prog);
1636 }
1637
1638 struct bpf_scratchpad {
1639         union {
1640                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1641                 u8     buff[MAX_BPF_STACK];
1642         };
1643 };
1644
1645 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1646
1647 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1648                                           unsigned int write_len)
1649 {
1650         return skb_ensure_writable(skb, write_len);
1651 }
1652
1653 static inline int bpf_try_make_writable(struct sk_buff *skb,
1654                                         unsigned int write_len)
1655 {
1656         int err = __bpf_try_make_writable(skb, write_len);
1657
1658         bpf_compute_data_pointers(skb);
1659         return err;
1660 }
1661
1662 static int bpf_try_make_head_writable(struct sk_buff *skb)
1663 {
1664         return bpf_try_make_writable(skb, skb_headlen(skb));
1665 }
1666
1667 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1668 {
1669         if (skb_at_tc_ingress(skb))
1670                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1671 }
1672
1673 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1674 {
1675         if (skb_at_tc_ingress(skb))
1676                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1677 }
1678
1679 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1680            const void *, from, u32, len, u64, flags)
1681 {
1682         void *ptr;
1683
1684         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1685                 return -EINVAL;
1686         if (unlikely(offset > 0xffff))
1687                 return -EFAULT;
1688         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1689                 return -EFAULT;
1690
1691         ptr = skb->data + offset;
1692         if (flags & BPF_F_RECOMPUTE_CSUM)
1693                 __skb_postpull_rcsum(skb, ptr, len, offset);
1694
1695         memcpy(ptr, from, len);
1696
1697         if (flags & BPF_F_RECOMPUTE_CSUM)
1698                 __skb_postpush_rcsum(skb, ptr, len, offset);
1699         if (flags & BPF_F_INVALIDATE_HASH)
1700                 skb_clear_hash(skb);
1701
1702         return 0;
1703 }
1704
1705 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1706         .func           = bpf_skb_store_bytes,
1707         .gpl_only       = false,
1708         .ret_type       = RET_INTEGER,
1709         .arg1_type      = ARG_PTR_TO_CTX,
1710         .arg2_type      = ARG_ANYTHING,
1711         .arg3_type      = ARG_PTR_TO_MEM,
1712         .arg4_type      = ARG_CONST_SIZE,
1713         .arg5_type      = ARG_ANYTHING,
1714 };
1715
1716 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1717            void *, to, u32, len)
1718 {
1719         void *ptr;
1720
1721         if (unlikely(offset > 0xffff))
1722                 goto err_clear;
1723
1724         ptr = skb_header_pointer(skb, offset, len, to);
1725         if (unlikely(!ptr))
1726                 goto err_clear;
1727         if (ptr != to)
1728                 memcpy(to, ptr, len);
1729
1730         return 0;
1731 err_clear:
1732         memset(to, 0, len);
1733         return -EFAULT;
1734 }
1735
1736 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1737         .func           = bpf_skb_load_bytes,
1738         .gpl_only       = false,
1739         .ret_type       = RET_INTEGER,
1740         .arg1_type      = ARG_PTR_TO_CTX,
1741         .arg2_type      = ARG_ANYTHING,
1742         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1743         .arg4_type      = ARG_CONST_SIZE,
1744 };
1745
1746 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1747            const struct bpf_flow_dissector *, ctx, u32, offset,
1748            void *, to, u32, len)
1749 {
1750         void *ptr;
1751
1752         if (unlikely(offset > 0xffff))
1753                 goto err_clear;
1754
1755         if (unlikely(!ctx->skb))
1756                 goto err_clear;
1757
1758         ptr = skb_header_pointer(ctx->skb, offset, len, to);
1759         if (unlikely(!ptr))
1760                 goto err_clear;
1761         if (ptr != to)
1762                 memcpy(to, ptr, len);
1763
1764         return 0;
1765 err_clear:
1766         memset(to, 0, len);
1767         return -EFAULT;
1768 }
1769
1770 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1771         .func           = bpf_flow_dissector_load_bytes,
1772         .gpl_only       = false,
1773         .ret_type       = RET_INTEGER,
1774         .arg1_type      = ARG_PTR_TO_CTX,
1775         .arg2_type      = ARG_ANYTHING,
1776         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1777         .arg4_type      = ARG_CONST_SIZE,
1778 };
1779
1780 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1781            u32, offset, void *, to, u32, len, u32, start_header)
1782 {
1783         u8 *end = skb_tail_pointer(skb);
1784         u8 *start, *ptr;
1785
1786         if (unlikely(offset > 0xffff))
1787                 goto err_clear;
1788
1789         switch (start_header) {
1790         case BPF_HDR_START_MAC:
1791                 if (unlikely(!skb_mac_header_was_set(skb)))
1792                         goto err_clear;
1793                 start = skb_mac_header(skb);
1794                 break;
1795         case BPF_HDR_START_NET:
1796                 start = skb_network_header(skb);
1797                 break;
1798         default:
1799                 goto err_clear;
1800         }
1801
1802         ptr = start + offset;
1803
1804         if (likely(ptr + len <= end)) {
1805                 memcpy(to, ptr, len);
1806                 return 0;
1807         }
1808
1809 err_clear:
1810         memset(to, 0, len);
1811         return -EFAULT;
1812 }
1813
1814 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1815         .func           = bpf_skb_load_bytes_relative,
1816         .gpl_only       = false,
1817         .ret_type       = RET_INTEGER,
1818         .arg1_type      = ARG_PTR_TO_CTX,
1819         .arg2_type      = ARG_ANYTHING,
1820         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1821         .arg4_type      = ARG_CONST_SIZE,
1822         .arg5_type      = ARG_ANYTHING,
1823 };
1824
1825 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1826 {
1827         /* Idea is the following: should the needed direct read/write
1828          * test fail during runtime, we can pull in more data and redo
1829          * again, since implicitly, we invalidate previous checks here.
1830          *
1831          * Or, since we know how much we need to make read/writeable,
1832          * this can be done once at the program beginning for direct
1833          * access case. By this we overcome limitations of only current
1834          * headroom being accessible.
1835          */
1836         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1837 }
1838
1839 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1840         .func           = bpf_skb_pull_data,
1841         .gpl_only       = false,
1842         .ret_type       = RET_INTEGER,
1843         .arg1_type      = ARG_PTR_TO_CTX,
1844         .arg2_type      = ARG_ANYTHING,
1845 };
1846
1847 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1848 {
1849         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1850 }
1851
1852 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1853         .func           = bpf_sk_fullsock,
1854         .gpl_only       = false,
1855         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1856         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1857 };
1858
1859 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1860                                            unsigned int write_len)
1861 {
1862         int err = __bpf_try_make_writable(skb, write_len);
1863
1864         bpf_compute_data_end_sk_skb(skb);
1865         return err;
1866 }
1867
1868 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1869 {
1870         /* Idea is the following: should the needed direct read/write
1871          * test fail during runtime, we can pull in more data and redo
1872          * again, since implicitly, we invalidate previous checks here.
1873          *
1874          * Or, since we know how much we need to make read/writeable,
1875          * this can be done once at the program beginning for direct
1876          * access case. By this we overcome limitations of only current
1877          * headroom being accessible.
1878          */
1879         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1880 }
1881
1882 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1883         .func           = sk_skb_pull_data,
1884         .gpl_only       = false,
1885         .ret_type       = RET_INTEGER,
1886         .arg1_type      = ARG_PTR_TO_CTX,
1887         .arg2_type      = ARG_ANYTHING,
1888 };
1889
1890 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1891            u64, from, u64, to, u64, flags)
1892 {
1893         __sum16 *ptr;
1894
1895         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1896                 return -EINVAL;
1897         if (unlikely(offset > 0xffff || offset & 1))
1898                 return -EFAULT;
1899         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1900                 return -EFAULT;
1901
1902         ptr = (__sum16 *)(skb->data + offset);
1903         switch (flags & BPF_F_HDR_FIELD_MASK) {
1904         case 0:
1905                 if (unlikely(from != 0))
1906                         return -EINVAL;
1907
1908                 csum_replace_by_diff(ptr, to);
1909                 break;
1910         case 2:
1911                 csum_replace2(ptr, from, to);
1912                 break;
1913         case 4:
1914                 csum_replace4(ptr, from, to);
1915                 break;
1916         default:
1917                 return -EINVAL;
1918         }
1919
1920         return 0;
1921 }
1922
1923 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1924         .func           = bpf_l3_csum_replace,
1925         .gpl_only       = false,
1926         .ret_type       = RET_INTEGER,
1927         .arg1_type      = ARG_PTR_TO_CTX,
1928         .arg2_type      = ARG_ANYTHING,
1929         .arg3_type      = ARG_ANYTHING,
1930         .arg4_type      = ARG_ANYTHING,
1931         .arg5_type      = ARG_ANYTHING,
1932 };
1933
1934 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1935            u64, from, u64, to, u64, flags)
1936 {
1937         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1938         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1939         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1940         __sum16 *ptr;
1941
1942         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1943                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1944                 return -EINVAL;
1945         if (unlikely(offset > 0xffff || offset & 1))
1946                 return -EFAULT;
1947         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1948                 return -EFAULT;
1949
1950         ptr = (__sum16 *)(skb->data + offset);
1951         if (is_mmzero && !do_mforce && !*ptr)
1952                 return 0;
1953
1954         switch (flags & BPF_F_HDR_FIELD_MASK) {
1955         case 0:
1956                 if (unlikely(from != 0))
1957                         return -EINVAL;
1958
1959                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1960                 break;
1961         case 2:
1962                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1963                 break;
1964         case 4:
1965                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1966                 break;
1967         default:
1968                 return -EINVAL;
1969         }
1970
1971         if (is_mmzero && !*ptr)
1972                 *ptr = CSUM_MANGLED_0;
1973         return 0;
1974 }
1975
1976 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1977         .func           = bpf_l4_csum_replace,
1978         .gpl_only       = false,
1979         .ret_type       = RET_INTEGER,
1980         .arg1_type      = ARG_PTR_TO_CTX,
1981         .arg2_type      = ARG_ANYTHING,
1982         .arg3_type      = ARG_ANYTHING,
1983         .arg4_type      = ARG_ANYTHING,
1984         .arg5_type      = ARG_ANYTHING,
1985 };
1986
1987 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1988            __be32 *, to, u32, to_size, __wsum, seed)
1989 {
1990         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1991         u32 diff_size = from_size + to_size;
1992         int i, j = 0;
1993
1994         /* This is quite flexible, some examples:
1995          *
1996          * from_size == 0, to_size > 0,  seed := csum --> pushing data
1997          * from_size > 0,  to_size == 0, seed := csum --> pulling data
1998          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1999          *
2000          * Even for diffing, from_size and to_size don't need to be equal.
2001          */
2002         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2003                      diff_size > sizeof(sp->diff)))
2004                 return -EINVAL;
2005
2006         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2007                 sp->diff[j] = ~from[i];
2008         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2009                 sp->diff[j] = to[i];
2010
2011         return csum_partial(sp->diff, diff_size, seed);
2012 }
2013
2014 static const struct bpf_func_proto bpf_csum_diff_proto = {
2015         .func           = bpf_csum_diff,
2016         .gpl_only       = false,
2017         .pkt_access     = true,
2018         .ret_type       = RET_INTEGER,
2019         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
2020         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2021         .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
2022         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2023         .arg5_type      = ARG_ANYTHING,
2024 };
2025
2026 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2027 {
2028         /* The interface is to be used in combination with bpf_csum_diff()
2029          * for direct packet writes. csum rotation for alignment as well
2030          * as emulating csum_sub() can be done from the eBPF program.
2031          */
2032         if (skb->ip_summed == CHECKSUM_COMPLETE)
2033                 return (skb->csum = csum_add(skb->csum, csum));
2034
2035         return -ENOTSUPP;
2036 }
2037
2038 static const struct bpf_func_proto bpf_csum_update_proto = {
2039         .func           = bpf_csum_update,
2040         .gpl_only       = false,
2041         .ret_type       = RET_INTEGER,
2042         .arg1_type      = ARG_PTR_TO_CTX,
2043         .arg2_type      = ARG_ANYTHING,
2044 };
2045
2046 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2047 {
2048         /* The interface is to be used in combination with bpf_skb_adjust_room()
2049          * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2050          * is passed as flags, for example.
2051          */
2052         switch (level) {
2053         case BPF_CSUM_LEVEL_INC:
2054                 __skb_incr_checksum_unnecessary(skb);
2055                 break;
2056         case BPF_CSUM_LEVEL_DEC:
2057                 __skb_decr_checksum_unnecessary(skb);
2058                 break;
2059         case BPF_CSUM_LEVEL_RESET:
2060                 __skb_reset_checksum_unnecessary(skb);
2061                 break;
2062         case BPF_CSUM_LEVEL_QUERY:
2063                 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2064                        skb->csum_level : -EACCES;
2065         default:
2066                 return -EINVAL;
2067         }
2068
2069         return 0;
2070 }
2071
2072 static const struct bpf_func_proto bpf_csum_level_proto = {
2073         .func           = bpf_csum_level,
2074         .gpl_only       = false,
2075         .ret_type       = RET_INTEGER,
2076         .arg1_type      = ARG_PTR_TO_CTX,
2077         .arg2_type      = ARG_ANYTHING,
2078 };
2079
2080 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2081 {
2082         return dev_forward_skb(dev, skb);
2083 }
2084
2085 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2086                                       struct sk_buff *skb)
2087 {
2088         int ret = ____dev_forward_skb(dev, skb);
2089
2090         if (likely(!ret)) {
2091                 skb->dev = dev;
2092                 ret = netif_rx(skb);
2093         }
2094
2095         return ret;
2096 }
2097
2098 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2099 {
2100         int ret;
2101
2102         if (dev_xmit_recursion()) {
2103                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2104                 kfree_skb(skb);
2105                 return -ENETDOWN;
2106         }
2107
2108         skb->dev = dev;
2109         skb->tstamp = 0;
2110
2111         dev_xmit_recursion_inc();
2112         ret = dev_queue_xmit(skb);
2113         dev_xmit_recursion_dec();
2114
2115         return ret;
2116 }
2117
2118 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2119                                  u32 flags)
2120 {
2121         unsigned int mlen = skb_network_offset(skb);
2122
2123         if (mlen) {
2124                 __skb_pull(skb, mlen);
2125
2126                 /* At ingress, the mac header has already been pulled once.
2127                  * At egress, skb_pospull_rcsum has to be done in case that
2128                  * the skb is originated from ingress (i.e. a forwarded skb)
2129                  * to ensure that rcsum starts at net header.
2130                  */
2131                 if (!skb_at_tc_ingress(skb))
2132                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2133         }
2134         skb_pop_mac_header(skb);
2135         skb_reset_mac_len(skb);
2136         return flags & BPF_F_INGRESS ?
2137                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2138 }
2139
2140 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2141                                  u32 flags)
2142 {
2143         /* Verify that a link layer header is carried */
2144         if (unlikely(skb->mac_header >= skb->network_header)) {
2145                 kfree_skb(skb);
2146                 return -ERANGE;
2147         }
2148
2149         bpf_push_mac_rcsum(skb);
2150         return flags & BPF_F_INGRESS ?
2151                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2152 }
2153
2154 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2155                           u32 flags)
2156 {
2157         if (dev_is_mac_header_xmit(dev))
2158                 return __bpf_redirect_common(skb, dev, flags);
2159         else
2160                 return __bpf_redirect_no_mac(skb, dev, flags);
2161 }
2162
2163 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2164 {
2165         struct net_device *dev;
2166         struct sk_buff *clone;
2167         int ret;
2168
2169         if (unlikely(flags & ~(BPF_F_INGRESS)))
2170                 return -EINVAL;
2171
2172         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2173         if (unlikely(!dev))
2174                 return -EINVAL;
2175
2176         clone = skb_clone(skb, GFP_ATOMIC);
2177         if (unlikely(!clone))
2178                 return -ENOMEM;
2179
2180         /* For direct write, we need to keep the invariant that the skbs
2181          * we're dealing with need to be uncloned. Should uncloning fail
2182          * here, we need to free the just generated clone to unclone once
2183          * again.
2184          */
2185         ret = bpf_try_make_head_writable(skb);
2186         if (unlikely(ret)) {
2187                 kfree_skb(clone);
2188                 return -ENOMEM;
2189         }
2190
2191         return __bpf_redirect(clone, dev, flags);
2192 }
2193
2194 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2195         .func           = bpf_clone_redirect,
2196         .gpl_only       = false,
2197         .ret_type       = RET_INTEGER,
2198         .arg1_type      = ARG_PTR_TO_CTX,
2199         .arg2_type      = ARG_ANYTHING,
2200         .arg3_type      = ARG_ANYTHING,
2201 };
2202
2203 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2204 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2205
2206 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2207 {
2208         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2209
2210         if (unlikely(flags & ~(BPF_F_INGRESS)))
2211                 return TC_ACT_SHOT;
2212
2213         ri->flags = flags;
2214         ri->tgt_index = ifindex;
2215
2216         return TC_ACT_REDIRECT;
2217 }
2218
2219 int skb_do_redirect(struct sk_buff *skb)
2220 {
2221         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2222         struct net_device *dev;
2223
2224         dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->tgt_index);
2225         ri->tgt_index = 0;
2226         if (unlikely(!dev)) {
2227                 kfree_skb(skb);
2228                 return -EINVAL;
2229         }
2230
2231         return __bpf_redirect(skb, dev, ri->flags);
2232 }
2233
2234 static const struct bpf_func_proto bpf_redirect_proto = {
2235         .func           = bpf_redirect,
2236         .gpl_only       = false,
2237         .ret_type       = RET_INTEGER,
2238         .arg1_type      = ARG_ANYTHING,
2239         .arg2_type      = ARG_ANYTHING,
2240 };
2241
2242 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2243 {
2244         msg->apply_bytes = bytes;
2245         return 0;
2246 }
2247
2248 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2249         .func           = bpf_msg_apply_bytes,
2250         .gpl_only       = false,
2251         .ret_type       = RET_INTEGER,
2252         .arg1_type      = ARG_PTR_TO_CTX,
2253         .arg2_type      = ARG_ANYTHING,
2254 };
2255
2256 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2257 {
2258         msg->cork_bytes = bytes;
2259         return 0;
2260 }
2261
2262 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2263         .func           = bpf_msg_cork_bytes,
2264         .gpl_only       = false,
2265         .ret_type       = RET_INTEGER,
2266         .arg1_type      = ARG_PTR_TO_CTX,
2267         .arg2_type      = ARG_ANYTHING,
2268 };
2269
2270 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2271            u32, end, u64, flags)
2272 {
2273         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2274         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2275         struct scatterlist *sge;
2276         u8 *raw, *to, *from;
2277         struct page *page;
2278
2279         if (unlikely(flags || end <= start))
2280                 return -EINVAL;
2281
2282         /* First find the starting scatterlist element */
2283         i = msg->sg.start;
2284         do {
2285                 offset += len;
2286                 len = sk_msg_elem(msg, i)->length;
2287                 if (start < offset + len)
2288                         break;
2289                 sk_msg_iter_var_next(i);
2290         } while (i != msg->sg.end);
2291
2292         if (unlikely(start >= offset + len))
2293                 return -EINVAL;
2294
2295         first_sge = i;
2296         /* The start may point into the sg element so we need to also
2297          * account for the headroom.
2298          */
2299         bytes_sg_total = start - offset + bytes;
2300         if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2301                 goto out;
2302
2303         /* At this point we need to linearize multiple scatterlist
2304          * elements or a single shared page. Either way we need to
2305          * copy into a linear buffer exclusively owned by BPF. Then
2306          * place the buffer in the scatterlist and fixup the original
2307          * entries by removing the entries now in the linear buffer
2308          * and shifting the remaining entries. For now we do not try
2309          * to copy partial entries to avoid complexity of running out
2310          * of sg_entry slots. The downside is reading a single byte
2311          * will copy the entire sg entry.
2312          */
2313         do {
2314                 copy += sk_msg_elem(msg, i)->length;
2315                 sk_msg_iter_var_next(i);
2316                 if (bytes_sg_total <= copy)
2317                         break;
2318         } while (i != msg->sg.end);
2319         last_sge = i;
2320
2321         if (unlikely(bytes_sg_total > copy))
2322                 return -EINVAL;
2323
2324         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2325                            get_order(copy));
2326         if (unlikely(!page))
2327                 return -ENOMEM;
2328
2329         raw = page_address(page);
2330         i = first_sge;
2331         do {
2332                 sge = sk_msg_elem(msg, i);
2333                 from = sg_virt(sge);
2334                 len = sge->length;
2335                 to = raw + poffset;
2336
2337                 memcpy(to, from, len);
2338                 poffset += len;
2339                 sge->length = 0;
2340                 put_page(sg_page(sge));
2341
2342                 sk_msg_iter_var_next(i);
2343         } while (i != last_sge);
2344
2345         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2346
2347         /* To repair sg ring we need to shift entries. If we only
2348          * had a single entry though we can just replace it and
2349          * be done. Otherwise walk the ring and shift the entries.
2350          */
2351         WARN_ON_ONCE(last_sge == first_sge);
2352         shift = last_sge > first_sge ?
2353                 last_sge - first_sge - 1 :
2354                 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2355         if (!shift)
2356                 goto out;
2357
2358         i = first_sge;
2359         sk_msg_iter_var_next(i);
2360         do {
2361                 u32 move_from;
2362
2363                 if (i + shift >= NR_MSG_FRAG_IDS)
2364                         move_from = i + shift - NR_MSG_FRAG_IDS;
2365                 else
2366                         move_from = i + shift;
2367                 if (move_from == msg->sg.end)
2368                         break;
2369
2370                 msg->sg.data[i] = msg->sg.data[move_from];
2371                 msg->sg.data[move_from].length = 0;
2372                 msg->sg.data[move_from].page_link = 0;
2373                 msg->sg.data[move_from].offset = 0;
2374                 sk_msg_iter_var_next(i);
2375         } while (1);
2376
2377         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2378                       msg->sg.end - shift + NR_MSG_FRAG_IDS :
2379                       msg->sg.end - shift;
2380 out:
2381         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2382         msg->data_end = msg->data + bytes;
2383         return 0;
2384 }
2385
2386 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2387         .func           = bpf_msg_pull_data,
2388         .gpl_only       = false,
2389         .ret_type       = RET_INTEGER,
2390         .arg1_type      = ARG_PTR_TO_CTX,
2391         .arg2_type      = ARG_ANYTHING,
2392         .arg3_type      = ARG_ANYTHING,
2393         .arg4_type      = ARG_ANYTHING,
2394 };
2395
2396 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2397            u32, len, u64, flags)
2398 {
2399         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2400         u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2401         u8 *raw, *to, *from;
2402         struct page *page;
2403
2404         if (unlikely(flags))
2405                 return -EINVAL;
2406
2407         /* First find the starting scatterlist element */
2408         i = msg->sg.start;
2409         do {
2410                 offset += l;
2411                 l = sk_msg_elem(msg, i)->length;
2412
2413                 if (start < offset + l)
2414                         break;
2415                 sk_msg_iter_var_next(i);
2416         } while (i != msg->sg.end);
2417
2418         if (start >= offset + l)
2419                 return -EINVAL;
2420
2421         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2422
2423         /* If no space available will fallback to copy, we need at
2424          * least one scatterlist elem available to push data into
2425          * when start aligns to the beginning of an element or two
2426          * when it falls inside an element. We handle the start equals
2427          * offset case because its the common case for inserting a
2428          * header.
2429          */
2430         if (!space || (space == 1 && start != offset))
2431                 copy = msg->sg.data[i].length;
2432
2433         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2434                            get_order(copy + len));
2435         if (unlikely(!page))
2436                 return -ENOMEM;
2437
2438         if (copy) {
2439                 int front, back;
2440
2441                 raw = page_address(page);
2442
2443                 psge = sk_msg_elem(msg, i);
2444                 front = start - offset;
2445                 back = psge->length - front;
2446                 from = sg_virt(psge);
2447
2448                 if (front)
2449                         memcpy(raw, from, front);
2450
2451                 if (back) {
2452                         from += front;
2453                         to = raw + front + len;
2454
2455                         memcpy(to, from, back);
2456                 }
2457
2458                 put_page(sg_page(psge));
2459         } else if (start - offset) {
2460                 psge = sk_msg_elem(msg, i);
2461                 rsge = sk_msg_elem_cpy(msg, i);
2462
2463                 psge->length = start - offset;
2464                 rsge.length -= psge->length;
2465                 rsge.offset += start;
2466
2467                 sk_msg_iter_var_next(i);
2468                 sg_unmark_end(psge);
2469                 sg_unmark_end(&rsge);
2470                 sk_msg_iter_next(msg, end);
2471         }
2472
2473         /* Slot(s) to place newly allocated data */
2474         new = i;
2475
2476         /* Shift one or two slots as needed */
2477         if (!copy) {
2478                 sge = sk_msg_elem_cpy(msg, i);
2479
2480                 sk_msg_iter_var_next(i);
2481                 sg_unmark_end(&sge);
2482                 sk_msg_iter_next(msg, end);
2483
2484                 nsge = sk_msg_elem_cpy(msg, i);
2485                 if (rsge.length) {
2486                         sk_msg_iter_var_next(i);
2487                         nnsge = sk_msg_elem_cpy(msg, i);
2488                 }
2489
2490                 while (i != msg->sg.end) {
2491                         msg->sg.data[i] = sge;
2492                         sge = nsge;
2493                         sk_msg_iter_var_next(i);
2494                         if (rsge.length) {
2495                                 nsge = nnsge;
2496                                 nnsge = sk_msg_elem_cpy(msg, i);
2497                         } else {
2498                                 nsge = sk_msg_elem_cpy(msg, i);
2499                         }
2500                 }
2501         }
2502
2503         /* Place newly allocated data buffer */
2504         sk_mem_charge(msg->sk, len);
2505         msg->sg.size += len;
2506         __clear_bit(new, &msg->sg.copy);
2507         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2508         if (rsge.length) {
2509                 get_page(sg_page(&rsge));
2510                 sk_msg_iter_var_next(new);
2511                 msg->sg.data[new] = rsge;
2512         }
2513
2514         sk_msg_compute_data_pointers(msg);
2515         return 0;
2516 }
2517
2518 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2519         .func           = bpf_msg_push_data,
2520         .gpl_only       = false,
2521         .ret_type       = RET_INTEGER,
2522         .arg1_type      = ARG_PTR_TO_CTX,
2523         .arg2_type      = ARG_ANYTHING,
2524         .arg3_type      = ARG_ANYTHING,
2525         .arg4_type      = ARG_ANYTHING,
2526 };
2527
2528 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2529 {
2530         int prev;
2531
2532         do {
2533                 prev = i;
2534                 sk_msg_iter_var_next(i);
2535                 msg->sg.data[prev] = msg->sg.data[i];
2536         } while (i != msg->sg.end);
2537
2538         sk_msg_iter_prev(msg, end);
2539 }
2540
2541 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2542 {
2543         struct scatterlist tmp, sge;
2544
2545         sk_msg_iter_next(msg, end);
2546         sge = sk_msg_elem_cpy(msg, i);
2547         sk_msg_iter_var_next(i);
2548         tmp = sk_msg_elem_cpy(msg, i);
2549
2550         while (i != msg->sg.end) {
2551                 msg->sg.data[i] = sge;
2552                 sk_msg_iter_var_next(i);
2553                 sge = tmp;
2554                 tmp = sk_msg_elem_cpy(msg, i);
2555         }
2556 }
2557
2558 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2559            u32, len, u64, flags)
2560 {
2561         u32 i = 0, l = 0, space, offset = 0;
2562         u64 last = start + len;
2563         int pop;
2564
2565         if (unlikely(flags))
2566                 return -EINVAL;
2567
2568         /* First find the starting scatterlist element */
2569         i = msg->sg.start;
2570         do {
2571                 offset += l;
2572                 l = sk_msg_elem(msg, i)->length;
2573
2574                 if (start < offset + l)
2575                         break;
2576                 sk_msg_iter_var_next(i);
2577         } while (i != msg->sg.end);
2578
2579         /* Bounds checks: start and pop must be inside message */
2580         if (start >= offset + l || last >= msg->sg.size)
2581                 return -EINVAL;
2582
2583         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2584
2585         pop = len;
2586         /* --------------| offset
2587          * -| start      |-------- len -------|
2588          *
2589          *  |----- a ----|-------- pop -------|----- b ----|
2590          *  |______________________________________________| length
2591          *
2592          *
2593          * a:   region at front of scatter element to save
2594          * b:   region at back of scatter element to save when length > A + pop
2595          * pop: region to pop from element, same as input 'pop' here will be
2596          *      decremented below per iteration.
2597          *
2598          * Two top-level cases to handle when start != offset, first B is non
2599          * zero and second B is zero corresponding to when a pop includes more
2600          * than one element.
2601          *
2602          * Then if B is non-zero AND there is no space allocate space and
2603          * compact A, B regions into page. If there is space shift ring to
2604          * the rigth free'ing the next element in ring to place B, leaving
2605          * A untouched except to reduce length.
2606          */
2607         if (start != offset) {
2608                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2609                 int a = start;
2610                 int b = sge->length - pop - a;
2611
2612                 sk_msg_iter_var_next(i);
2613
2614                 if (pop < sge->length - a) {
2615                         if (space) {
2616                                 sge->length = a;
2617                                 sk_msg_shift_right(msg, i);
2618                                 nsge = sk_msg_elem(msg, i);
2619                                 get_page(sg_page(sge));
2620                                 sg_set_page(nsge,
2621                                             sg_page(sge),
2622                                             b, sge->offset + pop + a);
2623                         } else {
2624                                 struct page *page, *orig;
2625                                 u8 *to, *from;
2626
2627                                 page = alloc_pages(__GFP_NOWARN |
2628                                                    __GFP_COMP   | GFP_ATOMIC,
2629                                                    get_order(a + b));
2630                                 if (unlikely(!page))
2631                                         return -ENOMEM;
2632
2633                                 sge->length = a;
2634                                 orig = sg_page(sge);
2635                                 from = sg_virt(sge);
2636                                 to = page_address(page);
2637                                 memcpy(to, from, a);
2638                                 memcpy(to + a, from + a + pop, b);
2639                                 sg_set_page(sge, page, a + b, 0);
2640                                 put_page(orig);
2641                         }
2642                         pop = 0;
2643                 } else if (pop >= sge->length - a) {
2644                         pop -= (sge->length - a);
2645                         sge->length = a;
2646                 }
2647         }
2648
2649         /* From above the current layout _must_ be as follows,
2650          *
2651          * -| offset
2652          * -| start
2653          *
2654          *  |---- pop ---|---------------- b ------------|
2655          *  |____________________________________________| length
2656          *
2657          * Offset and start of the current msg elem are equal because in the
2658          * previous case we handled offset != start and either consumed the
2659          * entire element and advanced to the next element OR pop == 0.
2660          *
2661          * Two cases to handle here are first pop is less than the length
2662          * leaving some remainder b above. Simply adjust the element's layout
2663          * in this case. Or pop >= length of the element so that b = 0. In this
2664          * case advance to next element decrementing pop.
2665          */
2666         while (pop) {
2667                 struct scatterlist *sge = sk_msg_elem(msg, i);
2668
2669                 if (pop < sge->length) {
2670                         sge->length -= pop;
2671                         sge->offset += pop;
2672                         pop = 0;
2673                 } else {
2674                         pop -= sge->length;
2675                         sk_msg_shift_left(msg, i);
2676                 }
2677                 sk_msg_iter_var_next(i);
2678         }
2679
2680         sk_mem_uncharge(msg->sk, len - pop);
2681         msg->sg.size -= (len - pop);
2682         sk_msg_compute_data_pointers(msg);
2683         return 0;
2684 }
2685
2686 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2687         .func           = bpf_msg_pop_data,
2688         .gpl_only       = false,
2689         .ret_type       = RET_INTEGER,
2690         .arg1_type      = ARG_PTR_TO_CTX,
2691         .arg2_type      = ARG_ANYTHING,
2692         .arg3_type      = ARG_ANYTHING,
2693         .arg4_type      = ARG_ANYTHING,
2694 };
2695
2696 #ifdef CONFIG_CGROUP_NET_CLASSID
2697 BPF_CALL_0(bpf_get_cgroup_classid_curr)
2698 {
2699         return __task_get_classid(current);
2700 }
2701
2702 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
2703         .func           = bpf_get_cgroup_classid_curr,
2704         .gpl_only       = false,
2705         .ret_type       = RET_INTEGER,
2706 };
2707 #endif
2708
2709 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2710 {
2711         return task_get_classid(skb);
2712 }
2713
2714 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2715         .func           = bpf_get_cgroup_classid,
2716         .gpl_only       = false,
2717         .ret_type       = RET_INTEGER,
2718         .arg1_type      = ARG_PTR_TO_CTX,
2719 };
2720
2721 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2722 {
2723         return dst_tclassid(skb);
2724 }
2725
2726 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2727         .func           = bpf_get_route_realm,
2728         .gpl_only       = false,
2729         .ret_type       = RET_INTEGER,
2730         .arg1_type      = ARG_PTR_TO_CTX,
2731 };
2732
2733 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2734 {
2735         /* If skb_clear_hash() was called due to mangling, we can
2736          * trigger SW recalculation here. Later access to hash
2737          * can then use the inline skb->hash via context directly
2738          * instead of calling this helper again.
2739          */
2740         return skb_get_hash(skb);
2741 }
2742
2743 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2744         .func           = bpf_get_hash_recalc,
2745         .gpl_only       = false,
2746         .ret_type       = RET_INTEGER,
2747         .arg1_type      = ARG_PTR_TO_CTX,
2748 };
2749
2750 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2751 {
2752         /* After all direct packet write, this can be used once for
2753          * triggering a lazy recalc on next skb_get_hash() invocation.
2754          */
2755         skb_clear_hash(skb);
2756         return 0;
2757 }
2758
2759 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2760         .func           = bpf_set_hash_invalid,
2761         .gpl_only       = false,
2762         .ret_type       = RET_INTEGER,
2763         .arg1_type      = ARG_PTR_TO_CTX,
2764 };
2765
2766 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2767 {
2768         /* Set user specified hash as L4(+), so that it gets returned
2769          * on skb_get_hash() call unless BPF prog later on triggers a
2770          * skb_clear_hash().
2771          */
2772         __skb_set_sw_hash(skb, hash, true);
2773         return 0;
2774 }
2775
2776 static const struct bpf_func_proto bpf_set_hash_proto = {
2777         .func           = bpf_set_hash,
2778         .gpl_only       = false,
2779         .ret_type       = RET_INTEGER,
2780         .arg1_type      = ARG_PTR_TO_CTX,
2781         .arg2_type      = ARG_ANYTHING,
2782 };
2783
2784 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2785            u16, vlan_tci)
2786 {
2787         int ret;
2788
2789         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2790                      vlan_proto != htons(ETH_P_8021AD)))
2791                 vlan_proto = htons(ETH_P_8021Q);
2792
2793         bpf_push_mac_rcsum(skb);
2794         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2795         bpf_pull_mac_rcsum(skb);
2796
2797         bpf_compute_data_pointers(skb);
2798         return ret;
2799 }
2800
2801 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2802         .func           = bpf_skb_vlan_push,
2803         .gpl_only       = false,
2804         .ret_type       = RET_INTEGER,
2805         .arg1_type      = ARG_PTR_TO_CTX,
2806         .arg2_type      = ARG_ANYTHING,
2807         .arg3_type      = ARG_ANYTHING,
2808 };
2809
2810 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2811 {
2812         int ret;
2813
2814         bpf_push_mac_rcsum(skb);
2815         ret = skb_vlan_pop(skb);
2816         bpf_pull_mac_rcsum(skb);
2817
2818         bpf_compute_data_pointers(skb);
2819         return ret;
2820 }
2821
2822 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2823         .func           = bpf_skb_vlan_pop,
2824         .gpl_only       = false,
2825         .ret_type       = RET_INTEGER,
2826         .arg1_type      = ARG_PTR_TO_CTX,
2827 };
2828
2829 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2830 {
2831         /* Caller already did skb_cow() with len as headroom,
2832          * so no need to do it here.
2833          */
2834         skb_push(skb, len);
2835         memmove(skb->data, skb->data + len, off);
2836         memset(skb->data + off, 0, len);
2837
2838         /* No skb_postpush_rcsum(skb, skb->data + off, len)
2839          * needed here as it does not change the skb->csum
2840          * result for checksum complete when summing over
2841          * zeroed blocks.
2842          */
2843         return 0;
2844 }
2845
2846 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2847 {
2848         /* skb_ensure_writable() is not needed here, as we're
2849          * already working on an uncloned skb.
2850          */
2851         if (unlikely(!pskb_may_pull(skb, off + len)))
2852                 return -ENOMEM;
2853
2854         skb_postpull_rcsum(skb, skb->data + off, len);
2855         memmove(skb->data + len, skb->data, off);
2856         __skb_pull(skb, len);
2857
2858         return 0;
2859 }
2860
2861 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2862 {
2863         bool trans_same = skb->transport_header == skb->network_header;
2864         int ret;
2865
2866         /* There's no need for __skb_push()/__skb_pull() pair to
2867          * get to the start of the mac header as we're guaranteed
2868          * to always start from here under eBPF.
2869          */
2870         ret = bpf_skb_generic_push(skb, off, len);
2871         if (likely(!ret)) {
2872                 skb->mac_header -= len;
2873                 skb->network_header -= len;
2874                 if (trans_same)
2875                         skb->transport_header = skb->network_header;
2876         }
2877
2878         return ret;
2879 }
2880
2881 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2882 {
2883         bool trans_same = skb->transport_header == skb->network_header;
2884         int ret;
2885
2886         /* Same here, __skb_push()/__skb_pull() pair not needed. */
2887         ret = bpf_skb_generic_pop(skb, off, len);
2888         if (likely(!ret)) {
2889                 skb->mac_header += len;
2890                 skb->network_header += len;
2891                 if (trans_same)
2892                         skb->transport_header = skb->network_header;
2893         }
2894
2895         return ret;
2896 }
2897
2898 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2899 {
2900         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2901         u32 off = skb_mac_header_len(skb);
2902         int ret;
2903
2904         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2905                 return -ENOTSUPP;
2906
2907         ret = skb_cow(skb, len_diff);
2908         if (unlikely(ret < 0))
2909                 return ret;
2910
2911         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2912         if (unlikely(ret < 0))
2913                 return ret;
2914
2915         if (skb_is_gso(skb)) {
2916                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2917
2918                 /* SKB_GSO_TCPV4 needs to be changed into
2919                  * SKB_GSO_TCPV6.
2920                  */
2921                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
2922                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
2923                         shinfo->gso_type |=  SKB_GSO_TCPV6;
2924                 }
2925
2926                 /* Due to IPv6 header, MSS needs to be downgraded. */
2927                 skb_decrease_gso_size(shinfo, len_diff);
2928                 /* Header must be checked, and gso_segs recomputed. */
2929                 shinfo->gso_type |= SKB_GSO_DODGY;
2930                 shinfo->gso_segs = 0;
2931         }
2932
2933         skb->protocol = htons(ETH_P_IPV6);
2934         skb_clear_hash(skb);
2935
2936         return 0;
2937 }
2938
2939 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2940 {
2941         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2942         u32 off = skb_mac_header_len(skb);
2943         int ret;
2944
2945         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2946                 return -ENOTSUPP;
2947
2948         ret = skb_unclone(skb, GFP_ATOMIC);
2949         if (unlikely(ret < 0))
2950                 return ret;
2951
2952         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2953         if (unlikely(ret < 0))
2954                 return ret;
2955
2956         if (skb_is_gso(skb)) {
2957                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2958
2959                 /* SKB_GSO_TCPV6 needs to be changed into
2960                  * SKB_GSO_TCPV4.
2961                  */
2962                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
2963                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
2964                         shinfo->gso_type |=  SKB_GSO_TCPV4;
2965                 }
2966
2967                 /* Due to IPv4 header, MSS can be upgraded. */
2968                 skb_increase_gso_size(shinfo, len_diff);
2969                 /* Header must be checked, and gso_segs recomputed. */
2970                 shinfo->gso_type |= SKB_GSO_DODGY;
2971                 shinfo->gso_segs = 0;
2972         }
2973
2974         skb->protocol = htons(ETH_P_IP);
2975         skb_clear_hash(skb);
2976
2977         return 0;
2978 }
2979
2980 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2981 {
2982         __be16 from_proto = skb->protocol;
2983
2984         if (from_proto == htons(ETH_P_IP) &&
2985               to_proto == htons(ETH_P_IPV6))
2986                 return bpf_skb_proto_4_to_6(skb);
2987
2988         if (from_proto == htons(ETH_P_IPV6) &&
2989               to_proto == htons(ETH_P_IP))
2990                 return bpf_skb_proto_6_to_4(skb);
2991
2992         return -ENOTSUPP;
2993 }
2994
2995 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2996            u64, flags)
2997 {
2998         int ret;
2999
3000         if (unlikely(flags))
3001                 return -EINVAL;
3002
3003         /* General idea is that this helper does the basic groundwork
3004          * needed for changing the protocol, and eBPF program fills the
3005          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3006          * and other helpers, rather than passing a raw buffer here.
3007          *
3008          * The rationale is to keep this minimal and without a need to
3009          * deal with raw packet data. F.e. even if we would pass buffers
3010          * here, the program still needs to call the bpf_lX_csum_replace()
3011          * helpers anyway. Plus, this way we keep also separation of
3012          * concerns, since f.e. bpf_skb_store_bytes() should only take
3013          * care of stores.
3014          *
3015          * Currently, additional options and extension header space are
3016          * not supported, but flags register is reserved so we can adapt
3017          * that. For offloads, we mark packet as dodgy, so that headers
3018          * need to be verified first.
3019          */
3020         ret = bpf_skb_proto_xlat(skb, proto);
3021         bpf_compute_data_pointers(skb);
3022         return ret;
3023 }
3024
3025 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3026         .func           = bpf_skb_change_proto,
3027         .gpl_only       = false,
3028         .ret_type       = RET_INTEGER,
3029         .arg1_type      = ARG_PTR_TO_CTX,
3030         .arg2_type      = ARG_ANYTHING,
3031         .arg3_type      = ARG_ANYTHING,
3032 };
3033
3034 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3035 {
3036         /* We only allow a restricted subset to be changed for now. */
3037         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3038                      !skb_pkt_type_ok(pkt_type)))
3039                 return -EINVAL;
3040
3041         skb->pkt_type = pkt_type;
3042         return 0;
3043 }
3044
3045 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3046         .func           = bpf_skb_change_type,
3047         .gpl_only       = false,
3048         .ret_type       = RET_INTEGER,
3049         .arg1_type      = ARG_PTR_TO_CTX,
3050         .arg2_type      = ARG_ANYTHING,
3051 };
3052
3053 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3054 {
3055         switch (skb->protocol) {
3056         case htons(ETH_P_IP):
3057                 return sizeof(struct iphdr);
3058         case htons(ETH_P_IPV6):
3059                 return sizeof(struct ipv6hdr);
3060         default:
3061                 return ~0U;
3062         }
3063 }
3064
3065 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3066                                          BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3067
3068 #define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3069                                          BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3070                                          BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3071                                          BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3072                                          BPF_F_ADJ_ROOM_ENCAP_L2( \
3073                                           BPF_ADJ_ROOM_ENCAP_L2_MASK))
3074
3075 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3076                             u64 flags)
3077 {
3078         u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3079         bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3080         u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3081         unsigned int gso_type = SKB_GSO_DODGY;
3082         int ret;
3083
3084         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3085                 /* udp gso_size delineates datagrams, only allow if fixed */
3086                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3087                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3088                         return -ENOTSUPP;
3089         }
3090
3091         ret = skb_cow_head(skb, len_diff);
3092         if (unlikely(ret < 0))
3093                 return ret;
3094
3095         if (encap) {
3096                 if (skb->protocol != htons(ETH_P_IP) &&
3097                     skb->protocol != htons(ETH_P_IPV6))
3098                         return -ENOTSUPP;
3099
3100                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3101                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3102                         return -EINVAL;
3103
3104                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3105                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3106                         return -EINVAL;
3107
3108                 if (skb->encapsulation)
3109                         return -EALREADY;
3110
3111                 mac_len = skb->network_header - skb->mac_header;
3112                 inner_net = skb->network_header;
3113                 if (inner_mac_len > len_diff)
3114                         return -EINVAL;
3115                 inner_trans = skb->transport_header;
3116         }
3117
3118         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3119         if (unlikely(ret < 0))
3120                 return ret;
3121
3122         if (encap) {
3123                 skb->inner_mac_header = inner_net - inner_mac_len;
3124                 skb->inner_network_header = inner_net;
3125                 skb->inner_transport_header = inner_trans;
3126                 skb_set_inner_protocol(skb, skb->protocol);
3127
3128                 skb->encapsulation = 1;
3129                 skb_set_network_header(skb, mac_len);
3130
3131                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3132                         gso_type |= SKB_GSO_UDP_TUNNEL;
3133                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3134                         gso_type |= SKB_GSO_GRE;
3135                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3136                         gso_type |= SKB_GSO_IPXIP6;
3137                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3138                         gso_type |= SKB_GSO_IPXIP4;
3139
3140                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3141                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3142                         int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3143                                         sizeof(struct ipv6hdr) :
3144                                         sizeof(struct iphdr);
3145
3146                         skb_set_transport_header(skb, mac_len + nh_len);
3147                 }
3148
3149                 /* Match skb->protocol to new outer l3 protocol */
3150                 if (skb->protocol == htons(ETH_P_IP) &&
3151                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3152                         skb->protocol = htons(ETH_P_IPV6);
3153                 else if (skb->protocol == htons(ETH_P_IPV6) &&
3154                          flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3155                         skb->protocol = htons(ETH_P_IP);
3156         }
3157
3158         if (skb_is_gso(skb)) {
3159                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3160
3161                 /* Due to header grow, MSS needs to be downgraded. */
3162                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3163                         skb_decrease_gso_size(shinfo, len_diff);
3164
3165                 /* Header must be checked, and gso_segs recomputed. */
3166                 shinfo->gso_type |= gso_type;
3167                 shinfo->gso_segs = 0;
3168         }
3169
3170         return 0;
3171 }
3172
3173 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3174                               u64 flags)
3175 {
3176         int ret;
3177
3178         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3179                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3180                 return -EINVAL;
3181
3182         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3183                 /* udp gso_size delineates datagrams, only allow if fixed */
3184                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3185                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3186                         return -ENOTSUPP;
3187         }
3188
3189         ret = skb_unclone(skb, GFP_ATOMIC);
3190         if (unlikely(ret < 0))
3191                 return ret;
3192
3193         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3194         if (unlikely(ret < 0))
3195                 return ret;
3196
3197         if (skb_is_gso(skb)) {
3198                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3199
3200                 /* Due to header shrink, MSS can be upgraded. */
3201                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3202                         skb_increase_gso_size(shinfo, len_diff);
3203
3204                 /* Header must be checked, and gso_segs recomputed. */
3205                 shinfo->gso_type |= SKB_GSO_DODGY;
3206                 shinfo->gso_segs = 0;
3207         }
3208
3209         return 0;
3210 }
3211
3212 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
3213 {
3214         return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
3215                           SKB_MAX_ALLOC;
3216 }
3217
3218 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3219            u32, mode, u64, flags)
3220 {
3221         u32 len_cur, len_diff_abs = abs(len_diff);
3222         u32 len_min = bpf_skb_net_base_len(skb);
3223         u32 len_max = __bpf_skb_max_len(skb);
3224         __be16 proto = skb->protocol;
3225         bool shrink = len_diff < 0;
3226         u32 off;
3227         int ret;
3228
3229         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3230                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3231                 return -EINVAL;
3232         if (unlikely(len_diff_abs > 0xfffU))
3233                 return -EFAULT;
3234         if (unlikely(proto != htons(ETH_P_IP) &&
3235                      proto != htons(ETH_P_IPV6)))
3236                 return -ENOTSUPP;
3237
3238         off = skb_mac_header_len(skb);
3239         switch (mode) {
3240         case BPF_ADJ_ROOM_NET:
3241                 off += bpf_skb_net_base_len(skb);
3242                 break;
3243         case BPF_ADJ_ROOM_MAC:
3244                 break;
3245         default:
3246                 return -ENOTSUPP;
3247         }
3248
3249         len_cur = skb->len - skb_network_offset(skb);
3250         if ((shrink && (len_diff_abs >= len_cur ||
3251                         len_cur - len_diff_abs < len_min)) ||
3252             (!shrink && (skb->len + len_diff_abs > len_max &&
3253                          !skb_is_gso(skb))))
3254                 return -ENOTSUPP;
3255
3256         ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3257                        bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3258         if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3259                 __skb_reset_checksum_unnecessary(skb);
3260
3261         bpf_compute_data_pointers(skb);
3262         return ret;
3263 }
3264
3265 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3266         .func           = bpf_skb_adjust_room,
3267         .gpl_only       = false,
3268         .ret_type       = RET_INTEGER,
3269         .arg1_type      = ARG_PTR_TO_CTX,
3270         .arg2_type      = ARG_ANYTHING,
3271         .arg3_type      = ARG_ANYTHING,
3272         .arg4_type      = ARG_ANYTHING,
3273 };
3274
3275 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3276 {
3277         u32 min_len = skb_network_offset(skb);
3278
3279         if (skb_transport_header_was_set(skb))
3280                 min_len = skb_transport_offset(skb);
3281         if (skb->ip_summed == CHECKSUM_PARTIAL)
3282                 min_len = skb_checksum_start_offset(skb) +
3283                           skb->csum_offset + sizeof(__sum16);
3284         return min_len;
3285 }
3286
3287 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3288 {
3289         unsigned int old_len = skb->len;
3290         int ret;
3291
3292         ret = __skb_grow_rcsum(skb, new_len);
3293         if (!ret)
3294                 memset(skb->data + old_len, 0, new_len - old_len);
3295         return ret;
3296 }
3297
3298 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3299 {
3300         return __skb_trim_rcsum(skb, new_len);
3301 }
3302
3303 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3304                                         u64 flags)
3305 {
3306         u32 max_len = __bpf_skb_max_len(skb);
3307         u32 min_len = __bpf_skb_min_len(skb);
3308         int ret;
3309
3310         if (unlikely(flags || new_len > max_len || new_len < min_len))
3311                 return -EINVAL;
3312         if (skb->encapsulation)
3313                 return -ENOTSUPP;
3314
3315         /* The basic idea of this helper is that it's performing the
3316          * needed work to either grow or trim an skb, and eBPF program
3317          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3318          * bpf_lX_csum_replace() and others rather than passing a raw
3319          * buffer here. This one is a slow path helper and intended
3320          * for replies with control messages.
3321          *
3322          * Like in bpf_skb_change_proto(), we want to keep this rather
3323          * minimal and without protocol specifics so that we are able
3324          * to separate concerns as in bpf_skb_store_bytes() should only
3325          * be the one responsible for writing buffers.
3326          *
3327          * It's really expected to be a slow path operation here for
3328          * control message replies, so we're implicitly linearizing,
3329          * uncloning and drop offloads from the skb by this.
3330          */
3331         ret = __bpf_try_make_writable(skb, skb->len);
3332         if (!ret) {
3333                 if (new_len > skb->len)
3334                         ret = bpf_skb_grow_rcsum(skb, new_len);
3335                 else if (new_len < skb->len)
3336                         ret = bpf_skb_trim_rcsum(skb, new_len);
3337                 if (!ret && skb_is_gso(skb))
3338                         skb_gso_reset(skb);
3339         }
3340         return ret;
3341 }
3342
3343 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3344            u64, flags)
3345 {
3346         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3347
3348         bpf_compute_data_pointers(skb);
3349         return ret;
3350 }
3351
3352 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3353         .func           = bpf_skb_change_tail,
3354         .gpl_only       = false,
3355         .ret_type       = RET_INTEGER,
3356         .arg1_type      = ARG_PTR_TO_CTX,
3357         .arg2_type      = ARG_ANYTHING,
3358         .arg3_type      = ARG_ANYTHING,
3359 };
3360
3361 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3362            u64, flags)
3363 {
3364         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3365
3366         bpf_compute_data_end_sk_skb(skb);
3367         return ret;
3368 }
3369
3370 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3371         .func           = sk_skb_change_tail,
3372         .gpl_only       = false,
3373         .ret_type       = RET_INTEGER,
3374         .arg1_type      = ARG_PTR_TO_CTX,
3375         .arg2_type      = ARG_ANYTHING,
3376         .arg3_type      = ARG_ANYTHING,
3377 };
3378
3379 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3380                                         u64 flags)
3381 {
3382         u32 max_len = __bpf_skb_max_len(skb);
3383         u32 new_len = skb->len + head_room;
3384         int ret;
3385
3386         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3387                      new_len < skb->len))
3388                 return -EINVAL;
3389
3390         ret = skb_cow(skb, head_room);
3391         if (likely(!ret)) {
3392                 /* Idea for this helper is that we currently only
3393                  * allow to expand on mac header. This means that
3394                  * skb->protocol network header, etc, stay as is.
3395                  * Compared to bpf_skb_change_tail(), we're more
3396                  * flexible due to not needing to linearize or
3397                  * reset GSO. Intention for this helper is to be
3398                  * used by an L3 skb that needs to push mac header
3399                  * for redirection into L2 device.
3400                  */
3401                 __skb_push(skb, head_room);
3402                 memset(skb->data, 0, head_room);
3403                 skb_reset_mac_header(skb);
3404         }
3405
3406         return ret;
3407 }
3408
3409 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3410            u64, flags)
3411 {
3412         int ret = __bpf_skb_change_head(skb, head_room, flags);
3413
3414         bpf_compute_data_pointers(skb);
3415         return ret;
3416 }
3417
3418 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3419         .func           = bpf_skb_change_head,
3420         .gpl_only       = false,
3421         .ret_type       = RET_INTEGER,
3422         .arg1_type      = ARG_PTR_TO_CTX,
3423         .arg2_type      = ARG_ANYTHING,
3424         .arg3_type      = ARG_ANYTHING,
3425 };
3426
3427 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3428            u64, flags)
3429 {
3430         int ret = __bpf_skb_change_head(skb, head_room, flags);
3431
3432         bpf_compute_data_end_sk_skb(skb);
3433         return ret;
3434 }
3435
3436 static const struct bpf_func_proto sk_skb_change_head_proto = {
3437         .func           = sk_skb_change_head,
3438         .gpl_only       = false,
3439         .ret_type       = RET_INTEGER,
3440         .arg1_type      = ARG_PTR_TO_CTX,
3441         .arg2_type      = ARG_ANYTHING,
3442         .arg3_type      = ARG_ANYTHING,
3443 };
3444 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3445 {
3446         return xdp_data_meta_unsupported(xdp) ? 0 :
3447                xdp->data - xdp->data_meta;
3448 }
3449
3450 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3451 {
3452         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3453         unsigned long metalen = xdp_get_metalen(xdp);
3454         void *data_start = xdp_frame_end + metalen;
3455         void *data = xdp->data + offset;
3456
3457         if (unlikely(data < data_start ||
3458                      data > xdp->data_end - ETH_HLEN))
3459                 return -EINVAL;
3460
3461         if (metalen)
3462                 memmove(xdp->data_meta + offset,
3463                         xdp->data_meta, metalen);
3464         xdp->data_meta += offset;
3465         xdp->data = data;
3466
3467         return 0;
3468 }
3469
3470 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3471         .func           = bpf_xdp_adjust_head,
3472         .gpl_only       = false,
3473         .ret_type       = RET_INTEGER,
3474         .arg1_type      = ARG_PTR_TO_CTX,
3475         .arg2_type      = ARG_ANYTHING,
3476 };
3477
3478 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3479 {
3480         void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3481         void *data_end = xdp->data_end + offset;
3482
3483         /* Notice that xdp_data_hard_end have reserved some tailroom */
3484         if (unlikely(data_end > data_hard_end))
3485                 return -EINVAL;
3486
3487         /* ALL drivers MUST init xdp->frame_sz, chicken check below */
3488         if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3489                 WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3490                 return -EINVAL;
3491         }
3492
3493         if (unlikely(data_end < xdp->data + ETH_HLEN))
3494                 return -EINVAL;
3495
3496         /* Clear memory area on grow, can contain uninit kernel memory */
3497         if (offset > 0)
3498                 memset(xdp->data_end, 0, offset);
3499
3500         xdp->data_end = data_end;
3501
3502         return 0;
3503 }
3504
3505 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3506         .func           = bpf_xdp_adjust_tail,
3507         .gpl_only       = false,
3508         .ret_type       = RET_INTEGER,
3509         .arg1_type      = ARG_PTR_TO_CTX,
3510         .arg2_type      = ARG_ANYTHING,
3511 };
3512
3513 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3514 {
3515         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3516         void *meta = xdp->data_meta + offset;
3517         unsigned long metalen = xdp->data - meta;
3518
3519         if (xdp_data_meta_unsupported(xdp))
3520                 return -ENOTSUPP;
3521         if (unlikely(meta < xdp_frame_end ||
3522                      meta > xdp->data))
3523                 return -EINVAL;
3524         if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3525                      (metalen > 32)))
3526                 return -EACCES;
3527
3528         xdp->data_meta = meta;
3529
3530         return 0;
3531 }
3532
3533 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3534         .func           = bpf_xdp_adjust_meta,
3535         .gpl_only       = false,
3536         .ret_type       = RET_INTEGER,
3537         .arg1_type      = ARG_PTR_TO_CTX,
3538         .arg2_type      = ARG_ANYTHING,
3539 };
3540
3541 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3542                             struct bpf_map *map, struct xdp_buff *xdp)
3543 {
3544         switch (map->map_type) {
3545         case BPF_MAP_TYPE_DEVMAP:
3546         case BPF_MAP_TYPE_DEVMAP_HASH:
3547                 return dev_map_enqueue(fwd, xdp, dev_rx);
3548         case BPF_MAP_TYPE_CPUMAP:
3549                 return cpu_map_enqueue(fwd, xdp, dev_rx);
3550         case BPF_MAP_TYPE_XSKMAP:
3551                 return __xsk_map_redirect(fwd, xdp);
3552         default:
3553                 return -EBADRQC;
3554         }
3555         return 0;
3556 }
3557
3558 void xdp_do_flush(void)
3559 {
3560         __dev_flush();
3561         __cpu_map_flush();
3562         __xsk_map_flush();
3563 }
3564 EXPORT_SYMBOL_GPL(xdp_do_flush);
3565
3566 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3567 {
3568         switch (map->map_type) {
3569         case BPF_MAP_TYPE_DEVMAP:
3570                 return __dev_map_lookup_elem(map, index);
3571         case BPF_MAP_TYPE_DEVMAP_HASH:
3572                 return __dev_map_hash_lookup_elem(map, index);
3573         case BPF_MAP_TYPE_CPUMAP:
3574                 return __cpu_map_lookup_elem(map, index);
3575         case BPF_MAP_TYPE_XSKMAP:
3576                 return __xsk_map_lookup_elem(map, index);
3577         default:
3578                 return NULL;
3579         }
3580 }
3581
3582 void bpf_clear_redirect_map(struct bpf_map *map)
3583 {
3584         struct bpf_redirect_info *ri;
3585         int cpu;
3586
3587         for_each_possible_cpu(cpu) {
3588                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3589                 /* Avoid polluting remote cacheline due to writes if
3590                  * not needed. Once we pass this test, we need the
3591                  * cmpxchg() to make sure it hasn't been changed in
3592                  * the meantime by remote CPU.
3593                  */
3594                 if (unlikely(READ_ONCE(ri->map) == map))
3595                         cmpxchg(&ri->map, map, NULL);
3596         }
3597 }
3598
3599 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3600                     struct bpf_prog *xdp_prog)
3601 {
3602         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3603         struct bpf_map *map = READ_ONCE(ri->map);
3604         u32 index = ri->tgt_index;
3605         void *fwd = ri->tgt_value;
3606         int err;
3607
3608         ri->tgt_index = 0;
3609         ri->tgt_value = NULL;
3610         WRITE_ONCE(ri->map, NULL);
3611
3612         if (unlikely(!map)) {
3613                 fwd = dev_get_by_index_rcu(dev_net(dev), index);
3614                 if (unlikely(!fwd)) {
3615                         err = -EINVAL;
3616                         goto err;
3617                 }
3618
3619                 err = dev_xdp_enqueue(fwd, xdp, dev);
3620         } else {
3621                 err = __bpf_tx_xdp_map(dev, fwd, map, xdp);
3622         }
3623
3624         if (unlikely(err))
3625                 goto err;
3626
3627         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3628         return 0;
3629 err:
3630         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3631         return err;
3632 }
3633 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3634
3635 static int xdp_do_generic_redirect_map(struct net_device *dev,
3636                                        struct sk_buff *skb,
3637                                        struct xdp_buff *xdp,
3638                                        struct bpf_prog *xdp_prog,
3639                                        struct bpf_map *map)
3640 {
3641         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3642         u32 index = ri->tgt_index;
3643         void *fwd = ri->tgt_value;
3644         int err = 0;
3645
3646         ri->tgt_index = 0;
3647         ri->tgt_value = NULL;
3648         WRITE_ONCE(ri->map, NULL);
3649
3650         if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
3651             map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
3652                 struct bpf_dtab_netdev *dst = fwd;
3653
3654                 err = dev_map_generic_redirect(dst, skb, xdp_prog);
3655                 if (unlikely(err))
3656                         goto err;
3657         } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3658                 struct xdp_sock *xs = fwd;
3659
3660                 err = xsk_generic_rcv(xs, xdp);
3661                 if (err)
3662                         goto err;
3663                 consume_skb(skb);
3664         } else {
3665                 /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3666                 err = -EBADRQC;
3667                 goto err;
3668         }
3669
3670         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3671         return 0;
3672 err:
3673         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3674         return err;
3675 }
3676
3677 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3678                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3679 {
3680         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3681         struct bpf_map *map = READ_ONCE(ri->map);
3682         u32 index = ri->tgt_index;
3683         struct net_device *fwd;
3684         int err = 0;
3685
3686         if (map)
3687                 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
3688                                                    map);
3689         ri->tgt_index = 0;
3690         fwd = dev_get_by_index_rcu(dev_net(dev), index);
3691         if (unlikely(!fwd)) {
3692                 err = -EINVAL;
3693                 goto err;
3694         }
3695
3696         err = xdp_ok_fwd_dev(fwd, skb->len);
3697         if (unlikely(err))
3698                 goto err;
3699
3700         skb->dev = fwd;
3701         _trace_xdp_redirect(dev, xdp_prog, index);
3702         generic_xdp_tx(skb, xdp_prog);
3703         return 0;
3704 err:
3705         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3706         return err;
3707 }
3708
3709 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3710 {
3711         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3712
3713         if (unlikely(flags))
3714                 return XDP_ABORTED;
3715
3716         ri->flags = flags;
3717         ri->tgt_index = ifindex;
3718         ri->tgt_value = NULL;
3719         WRITE_ONCE(ri->map, NULL);
3720
3721         return XDP_REDIRECT;
3722 }
3723
3724 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3725         .func           = bpf_xdp_redirect,
3726         .gpl_only       = false,
3727         .ret_type       = RET_INTEGER,
3728         .arg1_type      = ARG_ANYTHING,
3729         .arg2_type      = ARG_ANYTHING,
3730 };
3731
3732 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
3733            u64, flags)
3734 {
3735         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3736
3737         /* Lower bits of the flags are used as return code on lookup failure */
3738         if (unlikely(flags > XDP_TX))
3739                 return XDP_ABORTED;
3740
3741         ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
3742         if (unlikely(!ri->tgt_value)) {
3743                 /* If the lookup fails we want to clear out the state in the
3744                  * redirect_info struct completely, so that if an eBPF program
3745                  * performs multiple lookups, the last one always takes
3746                  * precedence.
3747                  */
3748                 WRITE_ONCE(ri->map, NULL);
3749                 return flags;
3750         }
3751
3752         ri->flags = flags;
3753         ri->tgt_index = ifindex;
3754         WRITE_ONCE(ri->map, map);
3755
3756         return XDP_REDIRECT;
3757 }
3758
3759 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3760         .func           = bpf_xdp_redirect_map,
3761         .gpl_only       = false,
3762         .ret_type       = RET_INTEGER,
3763         .arg1_type      = ARG_CONST_MAP_PTR,
3764         .arg2_type      = ARG_ANYTHING,
3765         .arg3_type      = ARG_ANYTHING,
3766 };
3767
3768 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3769                                   unsigned long off, unsigned long len)
3770 {
3771         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3772
3773         if (unlikely(!ptr))
3774                 return len;
3775         if (ptr != dst_buff)
3776                 memcpy(dst_buff, ptr, len);
3777
3778         return 0;
3779 }
3780
3781 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3782            u64, flags, void *, meta, u64, meta_size)
3783 {
3784         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3785
3786         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3787                 return -EINVAL;
3788         if (unlikely(!skb || skb_size > skb->len))
3789                 return -EFAULT;
3790
3791         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3792                                 bpf_skb_copy);
3793 }
3794
3795 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3796         .func           = bpf_skb_event_output,
3797         .gpl_only       = true,
3798         .ret_type       = RET_INTEGER,
3799         .arg1_type      = ARG_PTR_TO_CTX,
3800         .arg2_type      = ARG_CONST_MAP_PTR,
3801         .arg3_type      = ARG_ANYTHING,
3802         .arg4_type      = ARG_PTR_TO_MEM,
3803         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3804 };
3805
3806 BTF_ID_LIST(bpf_skb_output_btf_ids)
3807 BTF_ID(struct, sk_buff)
3808
3809 const struct bpf_func_proto bpf_skb_output_proto = {
3810         .func           = bpf_skb_event_output,
3811         .gpl_only       = true,
3812         .ret_type       = RET_INTEGER,
3813         .arg1_type      = ARG_PTR_TO_BTF_ID,
3814         .arg2_type      = ARG_CONST_MAP_PTR,
3815         .arg3_type      = ARG_ANYTHING,
3816         .arg4_type      = ARG_PTR_TO_MEM,
3817         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3818         .btf_id         = bpf_skb_output_btf_ids,
3819 };
3820
3821 static unsigned short bpf_tunnel_key_af(u64 flags)
3822 {
3823         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3824 }
3825
3826 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3827            u32, size, u64, flags)
3828 {
3829         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3830         u8 compat[sizeof(struct bpf_tunnel_key)];
3831         void *to_orig = to;
3832         int err;
3833
3834         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3835                 err = -EINVAL;
3836                 goto err_clear;
3837         }
3838         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3839                 err = -EPROTO;
3840                 goto err_clear;
3841         }
3842         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3843                 err = -EINVAL;
3844                 switch (size) {
3845                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3846                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3847                         goto set_compat;
3848                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3849                         /* Fixup deprecated structure layouts here, so we have
3850                          * a common path later on.
3851                          */
3852                         if (ip_tunnel_info_af(info) != AF_INET)
3853                                 goto err_clear;
3854 set_compat:
3855                         to = (struct bpf_tunnel_key *)compat;
3856                         break;
3857                 default:
3858                         goto err_clear;
3859                 }
3860         }
3861
3862         to->tunnel_id = be64_to_cpu(info->key.tun_id);
3863         to->tunnel_tos = info->key.tos;
3864         to->tunnel_ttl = info->key.ttl;
3865         to->tunnel_ext = 0;
3866
3867         if (flags & BPF_F_TUNINFO_IPV6) {
3868                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3869                        sizeof(to->remote_ipv6));
3870                 to->tunnel_label = be32_to_cpu(info->key.label);
3871         } else {
3872                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3873                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3874                 to->tunnel_label = 0;
3875         }
3876
3877         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3878                 memcpy(to_orig, to, size);
3879
3880         return 0;
3881 err_clear:
3882         memset(to_orig, 0, size);
3883         return err;
3884 }
3885
3886 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3887         .func           = bpf_skb_get_tunnel_key,
3888         .gpl_only       = false,
3889         .ret_type       = RET_INTEGER,
3890         .arg1_type      = ARG_PTR_TO_CTX,
3891         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3892         .arg3_type      = ARG_CONST_SIZE,
3893         .arg4_type      = ARG_ANYTHING,
3894 };
3895
3896 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3897 {
3898         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3899         int err;
3900
3901         if (unlikely(!info ||
3902                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3903                 err = -ENOENT;
3904                 goto err_clear;
3905         }
3906         if (unlikely(size < info->options_len)) {
3907                 err = -ENOMEM;
3908                 goto err_clear;
3909         }
3910
3911         ip_tunnel_info_opts_get(to, info);
3912         if (size > info->options_len)
3913                 memset(to + info->options_len, 0, size - info->options_len);
3914
3915         return info->options_len;
3916 err_clear:
3917         memset(to, 0, size);
3918         return err;
3919 }
3920
3921 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3922         .func           = bpf_skb_get_tunnel_opt,
3923         .gpl_only       = false,
3924         .ret_type       = RET_INTEGER,
3925         .arg1_type      = ARG_PTR_TO_CTX,
3926         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3927         .arg3_type      = ARG_CONST_SIZE,
3928 };
3929
3930 static struct metadata_dst __percpu *md_dst;
3931
3932 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3933            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3934 {
3935         struct metadata_dst *md = this_cpu_ptr(md_dst);
3936         u8 compat[sizeof(struct bpf_tunnel_key)];
3937         struct ip_tunnel_info *info;
3938
3939         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3940                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3941                 return -EINVAL;
3942         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3943                 switch (size) {
3944                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3945                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3946                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3947                         /* Fixup deprecated structure layouts here, so we have
3948                          * a common path later on.
3949                          */
3950                         memcpy(compat, from, size);
3951                         memset(compat + size, 0, sizeof(compat) - size);
3952                         from = (const struct bpf_tunnel_key *) compat;
3953                         break;
3954                 default:
3955                         return -EINVAL;
3956                 }
3957         }
3958         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3959                      from->tunnel_ext))
3960                 return -EINVAL;
3961
3962         skb_dst_drop(skb);
3963         dst_hold((struct dst_entry *) md);
3964         skb_dst_set(skb, (struct dst_entry *) md);
3965
3966         info = &md->u.tun_info;
3967         memset(info, 0, sizeof(*info));
3968         info->mode = IP_TUNNEL_INFO_TX;
3969
3970         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3971         if (flags & BPF_F_DONT_FRAGMENT)
3972                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3973         if (flags & BPF_F_ZERO_CSUM_TX)
3974                 info->key.tun_flags &= ~TUNNEL_CSUM;
3975         if (flags & BPF_F_SEQ_NUMBER)
3976                 info->key.tun_flags |= TUNNEL_SEQ;
3977
3978         info->key.tun_id = cpu_to_be64(from->tunnel_id);
3979         info->key.tos = from->tunnel_tos;
3980         info->key.ttl = from->tunnel_ttl;
3981
3982         if (flags & BPF_F_TUNINFO_IPV6) {
3983                 info->mode |= IP_TUNNEL_INFO_IPV6;
3984                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3985                        sizeof(from->remote_ipv6));
3986                 info->key.label = cpu_to_be32(from->tunnel_label) &
3987                                   IPV6_FLOWLABEL_MASK;
3988         } else {
3989                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3990         }
3991
3992         return 0;
3993 }
3994
3995 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3996         .func           = bpf_skb_set_tunnel_key,
3997         .gpl_only       = false,
3998         .ret_type       = RET_INTEGER,
3999         .arg1_type      = ARG_PTR_TO_CTX,
4000         .arg2_type      = ARG_PTR_TO_MEM,
4001         .arg3_type      = ARG_CONST_SIZE,
4002         .arg4_type      = ARG_ANYTHING,
4003 };
4004
4005 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4006            const u8 *, from, u32, size)
4007 {
4008         struct ip_tunnel_info *info = skb_tunnel_info(skb);
4009         const struct metadata_dst *md = this_cpu_ptr(md_dst);
4010
4011         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4012                 return -EINVAL;
4013         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4014                 return -ENOMEM;
4015
4016         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4017
4018         return 0;
4019 }
4020
4021 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4022         .func           = bpf_skb_set_tunnel_opt,
4023         .gpl_only       = false,
4024         .ret_type       = RET_INTEGER,
4025         .arg1_type      = ARG_PTR_TO_CTX,
4026         .arg2_type      = ARG_PTR_TO_MEM,
4027         .arg3_type      = ARG_CONST_SIZE,
4028 };
4029
4030 static const struct bpf_func_proto *
4031 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4032 {
4033         if (!md_dst) {
4034                 struct metadata_dst __percpu *tmp;
4035
4036                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4037                                                 METADATA_IP_TUNNEL,
4038                                                 GFP_KERNEL);
4039                 if (!tmp)
4040                         return NULL;
4041                 if (cmpxchg(&md_dst, NULL, tmp))
4042                         metadata_dst_free_percpu(tmp);
4043         }
4044
4045         switch (which) {
4046         case BPF_FUNC_skb_set_tunnel_key:
4047                 return &bpf_skb_set_tunnel_key_proto;
4048         case BPF_FUNC_skb_set_tunnel_opt:
4049                 return &bpf_skb_set_tunnel_opt_proto;
4050         default:
4051                 return NULL;
4052         }
4053 }
4054
4055 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4056            u32, idx)
4057 {
4058         struct bpf_array *array = container_of(map, struct bpf_array, map);
4059         struct cgroup *cgrp;
4060         struct sock *sk;
4061
4062         sk = skb_to_full_sk(skb);
4063         if (!sk || !sk_fullsock(sk))
4064                 return -ENOENT;
4065         if (unlikely(idx >= array->map.max_entries))
4066                 return -E2BIG;
4067
4068         cgrp = READ_ONCE(array->ptrs[idx]);
4069         if (unlikely(!cgrp))
4070                 return -EAGAIN;
4071
4072         return sk_under_cgroup_hierarchy(sk, cgrp);
4073 }
4074
4075 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4076         .func           = bpf_skb_under_cgroup,
4077         .gpl_only       = false,
4078         .ret_type       = RET_INTEGER,
4079         .arg1_type      = ARG_PTR_TO_CTX,
4080         .arg2_type      = ARG_CONST_MAP_PTR,
4081         .arg3_type      = ARG_ANYTHING,
4082 };
4083
4084 #ifdef CONFIG_SOCK_CGROUP_DATA
4085 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4086 {
4087         struct cgroup *cgrp;
4088
4089         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4090         return cgroup_id(cgrp);
4091 }
4092
4093 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4094 {
4095         struct sock *sk = skb_to_full_sk(skb);
4096
4097         if (!sk || !sk_fullsock(sk))
4098                 return 0;
4099
4100         return __bpf_sk_cgroup_id(sk);
4101 }
4102
4103 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4104         .func           = bpf_skb_cgroup_id,
4105         .gpl_only       = false,
4106         .ret_type       = RET_INTEGER,
4107         .arg1_type      = ARG_PTR_TO_CTX,
4108 };
4109
4110 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4111                                               int ancestor_level)
4112 {
4113         struct cgroup *ancestor;
4114         struct cgroup *cgrp;
4115
4116         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4117         ancestor = cgroup_ancestor(cgrp, ancestor_level);
4118         if (!ancestor)
4119                 return 0;
4120
4121         return cgroup_id(ancestor);
4122 }
4123
4124 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4125            ancestor_level)
4126 {
4127         struct sock *sk = skb_to_full_sk(skb);
4128
4129         if (!sk || !sk_fullsock(sk))
4130                 return 0;
4131
4132         return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4133 }
4134
4135 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4136         .func           = bpf_skb_ancestor_cgroup_id,
4137         .gpl_only       = false,
4138         .ret_type       = RET_INTEGER,
4139         .arg1_type      = ARG_PTR_TO_CTX,
4140         .arg2_type      = ARG_ANYTHING,
4141 };
4142
4143 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4144 {
4145         return __bpf_sk_cgroup_id(sk);
4146 }
4147
4148 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4149         .func           = bpf_sk_cgroup_id,
4150         .gpl_only       = false,
4151         .ret_type       = RET_INTEGER,
4152         .arg1_type      = ARG_PTR_TO_SOCKET,
4153 };
4154
4155 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4156 {
4157         return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4158 }
4159
4160 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4161         .func           = bpf_sk_ancestor_cgroup_id,
4162         .gpl_only       = false,
4163         .ret_type       = RET_INTEGER,
4164         .arg1_type      = ARG_PTR_TO_SOCKET,
4165         .arg2_type      = ARG_ANYTHING,
4166 };
4167 #endif
4168
4169 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4170                                   unsigned long off, unsigned long len)
4171 {
4172         memcpy(dst_buff, src_buff + off, len);
4173         return 0;
4174 }
4175
4176 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4177            u64, flags, void *, meta, u64, meta_size)
4178 {
4179         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4180
4181         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4182                 return -EINVAL;
4183         if (unlikely(!xdp ||
4184                      xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4185                 return -EFAULT;
4186
4187         return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4188                                 xdp_size, bpf_xdp_copy);
4189 }
4190
4191 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4192         .func           = bpf_xdp_event_output,
4193         .gpl_only       = true,
4194         .ret_type       = RET_INTEGER,
4195         .arg1_type      = ARG_PTR_TO_CTX,
4196         .arg2_type      = ARG_CONST_MAP_PTR,
4197         .arg3_type      = ARG_ANYTHING,
4198         .arg4_type      = ARG_PTR_TO_MEM,
4199         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4200 };
4201
4202 BTF_ID_LIST(bpf_xdp_output_btf_ids)
4203 BTF_ID(struct, xdp_buff)
4204
4205 const struct bpf_func_proto bpf_xdp_output_proto = {
4206         .func           = bpf_xdp_event_output,
4207         .gpl_only       = true,
4208         .ret_type       = RET_INTEGER,
4209         .arg1_type      = ARG_PTR_TO_BTF_ID,
4210         .arg2_type      = ARG_CONST_MAP_PTR,
4211         .arg3_type      = ARG_ANYTHING,
4212         .arg4_type      = ARG_PTR_TO_MEM,
4213         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4214         .btf_id         = bpf_xdp_output_btf_ids,
4215 };
4216
4217 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4218 {
4219         return skb->sk ? sock_gen_cookie(skb->sk) : 0;
4220 }
4221
4222 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4223         .func           = bpf_get_socket_cookie,
4224         .gpl_only       = false,
4225         .ret_type       = RET_INTEGER,
4226         .arg1_type      = ARG_PTR_TO_CTX,
4227 };
4228
4229 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4230 {
4231         return sock_gen_cookie(ctx->sk);
4232 }
4233
4234 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4235         .func           = bpf_get_socket_cookie_sock_addr,
4236         .gpl_only       = false,
4237         .ret_type       = RET_INTEGER,
4238         .arg1_type      = ARG_PTR_TO_CTX,
4239 };
4240
4241 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4242 {
4243         return sock_gen_cookie(ctx);
4244 }
4245
4246 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4247         .func           = bpf_get_socket_cookie_sock,
4248         .gpl_only       = false,
4249         .ret_type       = RET_INTEGER,
4250         .arg1_type      = ARG_PTR_TO_CTX,
4251 };
4252
4253 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4254 {
4255         return sock_gen_cookie(ctx->sk);
4256 }
4257
4258 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4259         .func           = bpf_get_socket_cookie_sock_ops,
4260         .gpl_only       = false,
4261         .ret_type       = RET_INTEGER,
4262         .arg1_type      = ARG_PTR_TO_CTX,
4263 };
4264
4265 static u64 __bpf_get_netns_cookie(struct sock *sk)
4266 {
4267 #ifdef CONFIG_NET_NS
4268         return net_gen_cookie(sk ? sk->sk_net.net : &init_net);
4269 #else
4270         return 0;
4271 #endif
4272 }
4273
4274 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4275 {
4276         return __bpf_get_netns_cookie(ctx);
4277 }
4278
4279 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4280         .func           = bpf_get_netns_cookie_sock,
4281         .gpl_only       = false,
4282         .ret_type       = RET_INTEGER,
4283         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4284 };
4285
4286 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4287 {
4288         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4289 }
4290
4291 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4292         .func           = bpf_get_netns_cookie_sock_addr,
4293         .gpl_only       = false,
4294         .ret_type       = RET_INTEGER,
4295         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4296 };
4297
4298 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4299 {
4300         struct sock *sk = sk_to_full_sk(skb->sk);
4301         kuid_t kuid;
4302
4303         if (!sk || !sk_fullsock(sk))
4304                 return overflowuid;
4305         kuid = sock_net_uid(sock_net(sk), sk);
4306         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4307 }
4308
4309 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4310         .func           = bpf_get_socket_uid,
4311         .gpl_only       = false,
4312         .ret_type       = RET_INTEGER,
4313         .arg1_type      = ARG_PTR_TO_CTX,
4314 };
4315
4316 #define SOCKOPT_CC_REINIT (1 << 0)
4317
4318 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4319                            char *optval, int optlen, u32 flags)
4320 {
4321         char devname[IFNAMSIZ];
4322         int val, valbool;
4323         struct net *net;
4324         int ifindex;
4325         int ret = 0;
4326
4327         if (!sk_fullsock(sk))
4328                 return -EINVAL;
4329
4330         sock_owned_by_me(sk);
4331
4332         if (level == SOL_SOCKET) {
4333                 if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4334                         return -EINVAL;
4335                 val = *((int *)optval);
4336                 valbool = val ? 1 : 0;
4337
4338                 /* Only some socketops are supported */
4339                 switch (optname) {
4340                 case SO_RCVBUF:
4341                         val = min_t(u32, val, sysctl_rmem_max);
4342                         sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4343                         WRITE_ONCE(sk->sk_rcvbuf,
4344                                    max_t(int, val * 2, SOCK_MIN_RCVBUF));
4345                         break;
4346                 case SO_SNDBUF:
4347                         val = min_t(u32, val, sysctl_wmem_max);
4348                         sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4349                         WRITE_ONCE(sk->sk_sndbuf,
4350                                    max_t(int, val * 2, SOCK_MIN_SNDBUF));
4351                         break;
4352                 case SO_MAX_PACING_RATE: /* 32bit version */
4353                         if (val != ~0U)
4354                                 cmpxchg(&sk->sk_pacing_status,
4355                                         SK_PACING_NONE,
4356                                         SK_PACING_NEEDED);
4357                         sk->sk_max_pacing_rate = (val == ~0U) ? ~0UL : val;
4358                         sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4359                                                  sk->sk_max_pacing_rate);
4360                         break;
4361                 case SO_PRIORITY:
4362                         sk->sk_priority = val;
4363                         break;
4364                 case SO_RCVLOWAT:
4365                         if (val < 0)
4366                                 val = INT_MAX;
4367                         WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4368                         break;
4369                 case SO_MARK:
4370                         if (sk->sk_mark != val) {
4371                                 sk->sk_mark = val;
4372                                 sk_dst_reset(sk);
4373                         }
4374                         break;
4375                 case SO_BINDTODEVICE:
4376                         optlen = min_t(long, optlen, IFNAMSIZ - 1);
4377                         strncpy(devname, optval, optlen);
4378                         devname[optlen] = 0;
4379
4380                         ifindex = 0;
4381                         if (devname[0] != '\0') {
4382                                 struct net_device *dev;
4383
4384                                 ret = -ENODEV;
4385
4386                                 net = sock_net(sk);
4387                                 dev = dev_get_by_name(net, devname);
4388                                 if (!dev)
4389                                         break;
4390                                 ifindex = dev->ifindex;
4391                                 dev_put(dev);
4392                         }
4393                         ret = sock_bindtoindex(sk, ifindex, false);
4394                         break;
4395                 case SO_KEEPALIVE:
4396                         if (sk->sk_prot->keepalive)
4397                                 sk->sk_prot->keepalive(sk, valbool);
4398                         sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4399                         break;
4400                 default:
4401                         ret = -EINVAL;
4402                 }
4403 #ifdef CONFIG_INET
4404         } else if (level == SOL_IP) {
4405                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4406                         return -EINVAL;
4407
4408                 val = *((int *)optval);
4409                 /* Only some options are supported */
4410                 switch (optname) {
4411                 case IP_TOS:
4412                         if (val < -1 || val > 0xff) {
4413                                 ret = -EINVAL;
4414                         } else {
4415                                 struct inet_sock *inet = inet_sk(sk);
4416
4417                                 if (val == -1)
4418                                         val = 0;
4419                                 inet->tos = val;
4420                         }
4421                         break;
4422                 default:
4423                         ret = -EINVAL;
4424                 }
4425 #if IS_ENABLED(CONFIG_IPV6)
4426         } else if (level == SOL_IPV6) {
4427                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4428                         return -EINVAL;
4429
4430                 val = *((int *)optval);
4431                 /* Only some options are supported */
4432                 switch (optname) {
4433                 case IPV6_TCLASS:
4434                         if (val < -1 || val > 0xff) {
4435                                 ret = -EINVAL;
4436                         } else {
4437                                 struct ipv6_pinfo *np = inet6_sk(sk);
4438
4439                                 if (val == -1)
4440                                         val = 0;
4441                                 np->tclass = val;
4442                         }
4443                         break;
4444                 default:
4445                         ret = -EINVAL;
4446                 }
4447 #endif
4448         } else if (level == SOL_TCP &&
4449                    sk->sk_prot->setsockopt == tcp_setsockopt) {
4450                 if (optname == TCP_CONGESTION) {
4451                         char name[TCP_CA_NAME_MAX];
4452                         bool reinit = flags & SOCKOPT_CC_REINIT;
4453
4454                         strncpy(name, optval, min_t(long, optlen,
4455                                                     TCP_CA_NAME_MAX-1));
4456                         name[TCP_CA_NAME_MAX-1] = 0;
4457                         ret = tcp_set_congestion_control(sk, name, false,
4458                                                          reinit, true);
4459                 } else {
4460                         struct inet_connection_sock *icsk = inet_csk(sk);
4461                         struct tcp_sock *tp = tcp_sk(sk);
4462
4463                         if (optlen != sizeof(int))
4464                                 return -EINVAL;
4465
4466                         val = *((int *)optval);
4467                         /* Only some options are supported */
4468                         switch (optname) {
4469                         case TCP_BPF_IW:
4470                                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
4471                                         ret = -EINVAL;
4472                                 else
4473                                         tp->snd_cwnd = val;
4474                                 break;
4475                         case TCP_BPF_SNDCWND_CLAMP:
4476                                 if (val <= 0) {
4477                                         ret = -EINVAL;
4478                                 } else {
4479                                         tp->snd_cwnd_clamp = val;
4480                                         tp->snd_ssthresh = val;
4481                                 }
4482                                 break;
4483                         case TCP_SAVE_SYN:
4484                                 if (val < 0 || val > 1)
4485                                         ret = -EINVAL;
4486                                 else
4487                                         tp->save_syn = val;
4488                                 break;
4489                         case TCP_KEEPIDLE:
4490                                 ret = tcp_sock_set_keepidle_locked(sk, val);
4491                                 break;
4492                         case TCP_KEEPINTVL:
4493                                 if (val < 1 || val > MAX_TCP_KEEPINTVL)
4494                                         ret = -EINVAL;
4495                                 else
4496                                         tp->keepalive_intvl = val * HZ;
4497                                 break;
4498                         case TCP_KEEPCNT:
4499                                 if (val < 1 || val > MAX_TCP_KEEPCNT)
4500                                         ret = -EINVAL;
4501                                 else
4502                                         tp->keepalive_probes = val;
4503                                 break;
4504                         case TCP_SYNCNT:
4505                                 if (val < 1 || val > MAX_TCP_SYNCNT)
4506                                         ret = -EINVAL;
4507                                 else
4508                                         icsk->icsk_syn_retries = val;
4509                                 break;
4510                         case TCP_USER_TIMEOUT:
4511                                 if (val < 0)
4512                                         ret = -EINVAL;
4513                                 else
4514                                         icsk->icsk_user_timeout = val;
4515                                 break;
4516                         default:
4517                                 ret = -EINVAL;
4518                         }
4519                 }
4520 #endif
4521         } else {
4522                 ret = -EINVAL;
4523         }
4524         return ret;
4525 }
4526
4527 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4528                            char *optval, int optlen)
4529 {
4530         if (!sk_fullsock(sk))
4531                 goto err_clear;
4532
4533         sock_owned_by_me(sk);
4534
4535 #ifdef CONFIG_INET
4536         if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4537                 struct inet_connection_sock *icsk;
4538                 struct tcp_sock *tp;
4539
4540                 switch (optname) {
4541                 case TCP_CONGESTION:
4542                         icsk = inet_csk(sk);
4543
4544                         if (!icsk->icsk_ca_ops || optlen <= 1)
4545                                 goto err_clear;
4546                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4547                         optval[optlen - 1] = 0;
4548                         break;
4549                 case TCP_SAVED_SYN:
4550                         tp = tcp_sk(sk);
4551
4552                         if (optlen <= 0 || !tp->saved_syn ||
4553                             optlen > tp->saved_syn[0])
4554                                 goto err_clear;
4555                         memcpy(optval, tp->saved_syn + 1, optlen);
4556                         break;
4557                 default:
4558                         goto err_clear;
4559                 }
4560         } else if (level == SOL_IP) {
4561                 struct inet_sock *inet = inet_sk(sk);
4562
4563                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4564                         goto err_clear;
4565
4566                 /* Only some options are supported */
4567                 switch (optname) {
4568                 case IP_TOS:
4569                         *((int *)optval) = (int)inet->tos;
4570                         break;
4571                 default:
4572                         goto err_clear;
4573                 }
4574 #if IS_ENABLED(CONFIG_IPV6)
4575         } else if (level == SOL_IPV6) {
4576                 struct ipv6_pinfo *np = inet6_sk(sk);
4577
4578                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4579                         goto err_clear;
4580
4581                 /* Only some options are supported */
4582                 switch (optname) {
4583                 case IPV6_TCLASS:
4584                         *((int *)optval) = (int)np->tclass;
4585                         break;
4586                 default:
4587                         goto err_clear;
4588                 }
4589 #endif
4590         } else {
4591                 goto err_clear;
4592         }
4593         return 0;
4594 #endif
4595 err_clear:
4596         memset(optval, 0, optlen);
4597         return -EINVAL;
4598 }
4599
4600 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
4601            int, level, int, optname, char *, optval, int, optlen)
4602 {
4603         u32 flags = 0;
4604         return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen,
4605                                flags);
4606 }
4607
4608 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
4609         .func           = bpf_sock_addr_setsockopt,
4610         .gpl_only       = false,
4611         .ret_type       = RET_INTEGER,
4612         .arg1_type      = ARG_PTR_TO_CTX,
4613         .arg2_type      = ARG_ANYTHING,
4614         .arg3_type      = ARG_ANYTHING,
4615         .arg4_type      = ARG_PTR_TO_MEM,
4616         .arg5_type      = ARG_CONST_SIZE,
4617 };
4618
4619 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
4620            int, level, int, optname, char *, optval, int, optlen)
4621 {
4622         return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
4623 }
4624
4625 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
4626         .func           = bpf_sock_addr_getsockopt,
4627         .gpl_only       = false,
4628         .ret_type       = RET_INTEGER,
4629         .arg1_type      = ARG_PTR_TO_CTX,
4630         .arg2_type      = ARG_ANYTHING,
4631         .arg3_type      = ARG_ANYTHING,
4632         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
4633         .arg5_type      = ARG_CONST_SIZE,
4634 };
4635
4636 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4637            int, level, int, optname, char *, optval, int, optlen)
4638 {
4639         u32 flags = 0;
4640         if (bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN)
4641                 flags |= SOCKOPT_CC_REINIT;
4642         return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen,
4643                                flags);
4644 }
4645
4646 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
4647         .func           = bpf_sock_ops_setsockopt,
4648         .gpl_only       = false,
4649         .ret_type       = RET_INTEGER,
4650         .arg1_type      = ARG_PTR_TO_CTX,
4651         .arg2_type      = ARG_ANYTHING,
4652         .arg3_type      = ARG_ANYTHING,
4653         .arg4_type      = ARG_PTR_TO_MEM,
4654         .arg5_type      = ARG_CONST_SIZE,
4655 };
4656
4657 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4658            int, level, int, optname, char *, optval, int, optlen)
4659 {
4660         return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
4661 }
4662
4663 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
4664         .func           = bpf_sock_ops_getsockopt,
4665         .gpl_only       = false,
4666         .ret_type       = RET_INTEGER,
4667         .arg1_type      = ARG_PTR_TO_CTX,
4668         .arg2_type      = ARG_ANYTHING,
4669         .arg3_type      = ARG_ANYTHING,
4670         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
4671         .arg5_type      = ARG_CONST_SIZE,
4672 };
4673
4674 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
4675            int, argval)
4676 {
4677         struct sock *sk = bpf_sock->sk;
4678         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
4679
4680         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4681                 return -EINVAL;
4682
4683         tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
4684
4685         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
4686 }
4687
4688 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
4689         .func           = bpf_sock_ops_cb_flags_set,
4690         .gpl_only       = false,
4691         .ret_type       = RET_INTEGER,
4692         .arg1_type      = ARG_PTR_TO_CTX,
4693         .arg2_type      = ARG_ANYTHING,
4694 };
4695
4696 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
4697 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
4698
4699 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
4700            int, addr_len)
4701 {
4702 #ifdef CONFIG_INET
4703         struct sock *sk = ctx->sk;
4704         u32 flags = BIND_FROM_BPF;
4705         int err;
4706
4707         err = -EINVAL;
4708         if (addr_len < offsetofend(struct sockaddr, sa_family))
4709                 return err;
4710         if (addr->sa_family == AF_INET) {
4711                 if (addr_len < sizeof(struct sockaddr_in))
4712                         return err;
4713                 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
4714                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
4715                 return __inet_bind(sk, addr, addr_len, flags);
4716 #if IS_ENABLED(CONFIG_IPV6)
4717         } else if (addr->sa_family == AF_INET6) {
4718                 if (addr_len < SIN6_LEN_RFC2133)
4719                         return err;
4720                 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
4721                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
4722                 /* ipv6_bpf_stub cannot be NULL, since it's called from
4723                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4724                  */
4725                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
4726 #endif /* CONFIG_IPV6 */
4727         }
4728 #endif /* CONFIG_INET */
4729
4730         return -EAFNOSUPPORT;
4731 }
4732
4733 static const struct bpf_func_proto bpf_bind_proto = {
4734         .func           = bpf_bind,
4735         .gpl_only       = false,
4736         .ret_type       = RET_INTEGER,
4737         .arg1_type      = ARG_PTR_TO_CTX,
4738         .arg2_type      = ARG_PTR_TO_MEM,
4739         .arg3_type      = ARG_CONST_SIZE,
4740 };
4741
4742 #ifdef CONFIG_XFRM
4743 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4744            struct bpf_xfrm_state *, to, u32, size, u64, flags)
4745 {
4746         const struct sec_path *sp = skb_sec_path(skb);
4747         const struct xfrm_state *x;
4748
4749         if (!sp || unlikely(index >= sp->len || flags))
4750                 goto err_clear;
4751
4752         x = sp->xvec[index];
4753
4754         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4755                 goto err_clear;
4756
4757         to->reqid = x->props.reqid;
4758         to->spi = x->id.spi;
4759         to->family = x->props.family;
4760         to->ext = 0;
4761
4762         if (to->family == AF_INET6) {
4763                 memcpy(to->remote_ipv6, x->props.saddr.a6,
4764                        sizeof(to->remote_ipv6));
4765         } else {
4766                 to->remote_ipv4 = x->props.saddr.a4;
4767                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4768         }
4769
4770         return 0;
4771 err_clear:
4772         memset(to, 0, size);
4773         return -EINVAL;
4774 }
4775
4776 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4777         .func           = bpf_skb_get_xfrm_state,
4778         .gpl_only       = false,
4779         .ret_type       = RET_INTEGER,
4780         .arg1_type      = ARG_PTR_TO_CTX,
4781         .arg2_type      = ARG_ANYTHING,
4782         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
4783         .arg4_type      = ARG_CONST_SIZE,
4784         .arg5_type      = ARG_ANYTHING,
4785 };
4786 #endif
4787
4788 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
4789 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4790                                   const struct neighbour *neigh,
4791                                   const struct net_device *dev)
4792 {
4793         memcpy(params->dmac, neigh->ha, ETH_ALEN);
4794         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4795         params->h_vlan_TCI = 0;
4796         params->h_vlan_proto = 0;
4797         params->ifindex = dev->ifindex;
4798
4799         return 0;
4800 }
4801 #endif
4802
4803 #if IS_ENABLED(CONFIG_INET)
4804 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4805                                u32 flags, bool check_mtu)
4806 {
4807         struct fib_nh_common *nhc;
4808         struct in_device *in_dev;
4809         struct neighbour *neigh;
4810         struct net_device *dev;
4811         struct fib_result res;
4812         struct flowi4 fl4;
4813         int err;
4814         u32 mtu;
4815
4816         dev = dev_get_by_index_rcu(net, params->ifindex);
4817         if (unlikely(!dev))
4818                 return -ENODEV;
4819
4820         /* verify forwarding is enabled on this interface */
4821         in_dev = __in_dev_get_rcu(dev);
4822         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4823                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4824
4825         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4826                 fl4.flowi4_iif = 1;
4827                 fl4.flowi4_oif = params->ifindex;
4828         } else {
4829                 fl4.flowi4_iif = params->ifindex;
4830                 fl4.flowi4_oif = 0;
4831         }
4832         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4833         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4834         fl4.flowi4_flags = 0;
4835
4836         fl4.flowi4_proto = params->l4_protocol;
4837         fl4.daddr = params->ipv4_dst;
4838         fl4.saddr = params->ipv4_src;
4839         fl4.fl4_sport = params->sport;
4840         fl4.fl4_dport = params->dport;
4841         fl4.flowi4_multipath_hash = 0;
4842
4843         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4844                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4845                 struct fib_table *tb;
4846
4847                 tb = fib_get_table(net, tbid);
4848                 if (unlikely(!tb))
4849                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4850
4851                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4852         } else {
4853                 fl4.flowi4_mark = 0;
4854                 fl4.flowi4_secid = 0;
4855                 fl4.flowi4_tun_key.tun_id = 0;
4856                 fl4.flowi4_uid = sock_net_uid(net, NULL);
4857
4858                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4859         }
4860
4861         if (err) {
4862                 /* map fib lookup errors to RTN_ type */
4863                 if (err == -EINVAL)
4864                         return BPF_FIB_LKUP_RET_BLACKHOLE;
4865                 if (err == -EHOSTUNREACH)
4866                         return BPF_FIB_LKUP_RET_UNREACHABLE;
4867                 if (err == -EACCES)
4868                         return BPF_FIB_LKUP_RET_PROHIBIT;
4869
4870                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4871         }
4872
4873         if (res.type != RTN_UNICAST)
4874                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4875
4876         if (fib_info_num_path(res.fi) > 1)
4877                 fib_select_path(net, &res, &fl4, NULL);
4878
4879         if (check_mtu) {
4880                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4881                 if (params->tot_len > mtu)
4882                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4883         }
4884
4885         nhc = res.nhc;
4886
4887         /* do not handle lwt encaps right now */
4888         if (nhc->nhc_lwtstate)
4889                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4890
4891         dev = nhc->nhc_dev;
4892
4893         params->rt_metric = res.fi->fib_priority;
4894
4895         /* xdp and cls_bpf programs are run in RCU-bh so
4896          * rcu_read_lock_bh is not needed here
4897          */
4898         if (likely(nhc->nhc_gw_family != AF_INET6)) {
4899                 if (nhc->nhc_gw_family)
4900                         params->ipv4_dst = nhc->nhc_gw.ipv4;
4901
4902                 neigh = __ipv4_neigh_lookup_noref(dev,
4903                                                  (__force u32)params->ipv4_dst);
4904         } else {
4905                 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
4906
4907                 params->family = AF_INET6;
4908                 *dst = nhc->nhc_gw.ipv6;
4909                 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4910         }
4911
4912         if (!neigh)
4913                 return BPF_FIB_LKUP_RET_NO_NEIGH;
4914
4915         return bpf_fib_set_fwd_params(params, neigh, dev);
4916 }
4917 #endif
4918
4919 #if IS_ENABLED(CONFIG_IPV6)
4920 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4921                                u32 flags, bool check_mtu)
4922 {
4923         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4924         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4925         struct fib6_result res = {};
4926         struct neighbour *neigh;
4927         struct net_device *dev;
4928         struct inet6_dev *idev;
4929         struct flowi6 fl6;
4930         int strict = 0;
4931         int oif, err;
4932         u32 mtu;
4933
4934         /* link local addresses are never forwarded */
4935         if (rt6_need_strict(dst) || rt6_need_strict(src))
4936                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4937
4938         dev = dev_get_by_index_rcu(net, params->ifindex);
4939         if (unlikely(!dev))
4940                 return -ENODEV;
4941
4942         idev = __in6_dev_get_safely(dev);
4943         if (unlikely(!idev || !idev->cnf.forwarding))
4944                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4945
4946         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4947                 fl6.flowi6_iif = 1;
4948                 oif = fl6.flowi6_oif = params->ifindex;
4949         } else {
4950                 oif = fl6.flowi6_iif = params->ifindex;
4951                 fl6.flowi6_oif = 0;
4952                 strict = RT6_LOOKUP_F_HAS_SADDR;
4953         }
4954         fl6.flowlabel = params->flowinfo;
4955         fl6.flowi6_scope = 0;
4956         fl6.flowi6_flags = 0;
4957         fl6.mp_hash = 0;
4958
4959         fl6.flowi6_proto = params->l4_protocol;
4960         fl6.daddr = *dst;
4961         fl6.saddr = *src;
4962         fl6.fl6_sport = params->sport;
4963         fl6.fl6_dport = params->dport;
4964
4965         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4966                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4967                 struct fib6_table *tb;
4968
4969                 tb = ipv6_stub->fib6_get_table(net, tbid);
4970                 if (unlikely(!tb))
4971                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4972
4973                 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
4974                                                    strict);
4975         } else {
4976                 fl6.flowi6_mark = 0;
4977                 fl6.flowi6_secid = 0;
4978                 fl6.flowi6_tun_key.tun_id = 0;
4979                 fl6.flowi6_uid = sock_net_uid(net, NULL);
4980
4981                 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
4982         }
4983
4984         if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
4985                      res.f6i == net->ipv6.fib6_null_entry))
4986                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4987
4988         switch (res.fib6_type) {
4989         /* only unicast is forwarded */
4990         case RTN_UNICAST:
4991                 break;
4992         case RTN_BLACKHOLE:
4993                 return BPF_FIB_LKUP_RET_BLACKHOLE;
4994         case RTN_UNREACHABLE:
4995                 return BPF_FIB_LKUP_RET_UNREACHABLE;
4996         case RTN_PROHIBIT:
4997                 return BPF_FIB_LKUP_RET_PROHIBIT;
4998         default:
4999                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5000         }
5001
5002         ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5003                                     fl6.flowi6_oif != 0, NULL, strict);
5004
5005         if (check_mtu) {
5006                 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5007                 if (params->tot_len > mtu)
5008                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5009         }
5010
5011         if (res.nh->fib_nh_lws)
5012                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5013
5014         if (res.nh->fib_nh_gw_family)
5015                 *dst = res.nh->fib_nh_gw6;
5016
5017         dev = res.nh->fib_nh_dev;
5018         params->rt_metric = res.f6i->fib6_metric;
5019
5020         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5021          * not needed here.
5022          */
5023         neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5024         if (!neigh)
5025                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5026
5027         return bpf_fib_set_fwd_params(params, neigh, dev);
5028 }
5029 #endif
5030
5031 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5032            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5033 {
5034         if (plen < sizeof(*params))
5035                 return -EINVAL;
5036
5037         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5038                 return -EINVAL;
5039
5040         switch (params->family) {
5041 #if IS_ENABLED(CONFIG_INET)
5042         case AF_INET:
5043                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5044                                            flags, true);
5045 #endif
5046 #if IS_ENABLED(CONFIG_IPV6)
5047         case AF_INET6:
5048                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5049                                            flags, true);
5050 #endif
5051         }
5052         return -EAFNOSUPPORT;
5053 }
5054
5055 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5056         .func           = bpf_xdp_fib_lookup,
5057         .gpl_only       = true,
5058         .ret_type       = RET_INTEGER,
5059         .arg1_type      = ARG_PTR_TO_CTX,
5060         .arg2_type      = ARG_PTR_TO_MEM,
5061         .arg3_type      = ARG_CONST_SIZE,
5062         .arg4_type      = ARG_ANYTHING,
5063 };
5064
5065 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5066            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5067 {
5068         struct net *net = dev_net(skb->dev);
5069         int rc = -EAFNOSUPPORT;
5070
5071         if (plen < sizeof(*params))
5072                 return -EINVAL;
5073
5074         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5075                 return -EINVAL;
5076
5077         switch (params->family) {
5078 #if IS_ENABLED(CONFIG_INET)
5079         case AF_INET:
5080                 rc = bpf_ipv4_fib_lookup(net, params, flags, false);
5081                 break;
5082 #endif
5083 #if IS_ENABLED(CONFIG_IPV6)
5084         case AF_INET6:
5085                 rc = bpf_ipv6_fib_lookup(net, params, flags, false);
5086                 break;
5087 #endif
5088         }
5089
5090         if (!rc) {
5091                 struct net_device *dev;
5092
5093                 dev = dev_get_by_index_rcu(net, params->ifindex);
5094                 if (!is_skb_forwardable(dev, skb))
5095                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5096         }
5097
5098         return rc;
5099 }
5100
5101 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5102         .func           = bpf_skb_fib_lookup,
5103         .gpl_only       = true,
5104         .ret_type       = RET_INTEGER,
5105         .arg1_type      = ARG_PTR_TO_CTX,
5106         .arg2_type      = ARG_PTR_TO_MEM,
5107         .arg3_type      = ARG_CONST_SIZE,
5108         .arg4_type      = ARG_ANYTHING,
5109 };
5110
5111 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5112 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5113 {
5114         int err;
5115         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5116
5117         if (!seg6_validate_srh(srh, len, false))
5118                 return -EINVAL;
5119
5120         switch (type) {
5121         case BPF_LWT_ENCAP_SEG6_INLINE:
5122                 if (skb->protocol != htons(ETH_P_IPV6))
5123                         return -EBADMSG;
5124
5125                 err = seg6_do_srh_inline(skb, srh);
5126                 break;
5127         case BPF_LWT_ENCAP_SEG6:
5128                 skb_reset_inner_headers(skb);
5129                 skb->encapsulation = 1;
5130                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5131                 break;
5132         default:
5133                 return -EINVAL;
5134         }
5135
5136         bpf_compute_data_pointers(skb);
5137         if (err)
5138                 return err;
5139
5140         ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5141         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5142
5143         return seg6_lookup_nexthop(skb, NULL, 0);
5144 }
5145 #endif /* CONFIG_IPV6_SEG6_BPF */
5146
5147 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5148 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5149                              bool ingress)
5150 {
5151         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5152 }
5153 #endif
5154
5155 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5156            u32, len)
5157 {
5158         switch (type) {
5159 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5160         case BPF_LWT_ENCAP_SEG6:
5161         case BPF_LWT_ENCAP_SEG6_INLINE:
5162                 return bpf_push_seg6_encap(skb, type, hdr, len);
5163 #endif
5164 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5165         case BPF_LWT_ENCAP_IP:
5166                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5167 #endif
5168         default:
5169                 return -EINVAL;
5170         }
5171 }
5172
5173 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5174            void *, hdr, u32, len)
5175 {
5176         switch (type) {
5177 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5178         case BPF_LWT_ENCAP_IP:
5179                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5180 #endif
5181         default:
5182                 return -EINVAL;
5183         }
5184 }
5185
5186 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5187         .func           = bpf_lwt_in_push_encap,
5188         .gpl_only       = false,
5189         .ret_type       = RET_INTEGER,
5190         .arg1_type      = ARG_PTR_TO_CTX,
5191         .arg2_type      = ARG_ANYTHING,
5192         .arg3_type      = ARG_PTR_TO_MEM,
5193         .arg4_type      = ARG_CONST_SIZE
5194 };
5195
5196 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5197         .func           = bpf_lwt_xmit_push_encap,
5198         .gpl_only       = false,
5199         .ret_type       = RET_INTEGER,
5200         .arg1_type      = ARG_PTR_TO_CTX,
5201         .arg2_type      = ARG_ANYTHING,
5202         .arg3_type      = ARG_PTR_TO_MEM,
5203         .arg4_type      = ARG_CONST_SIZE
5204 };
5205
5206 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5207 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5208            const void *, from, u32, len)
5209 {
5210         struct seg6_bpf_srh_state *srh_state =
5211                 this_cpu_ptr(&seg6_bpf_srh_states);
5212         struct ipv6_sr_hdr *srh = srh_state->srh;
5213         void *srh_tlvs, *srh_end, *ptr;
5214         int srhoff = 0;
5215
5216         if (srh == NULL)
5217                 return -EINVAL;
5218
5219         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5220         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5221
5222         ptr = skb->data + offset;
5223         if (ptr >= srh_tlvs && ptr + len <= srh_end)
5224                 srh_state->valid = false;
5225         else if (ptr < (void *)&srh->flags ||
5226                  ptr + len > (void *)&srh->segments)
5227                 return -EFAULT;
5228
5229         if (unlikely(bpf_try_make_writable(skb, offset + len)))
5230                 return -EFAULT;
5231         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5232                 return -EINVAL;
5233         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5234
5235         memcpy(skb->data + offset, from, len);
5236         return 0;
5237 }
5238
5239 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5240         .func           = bpf_lwt_seg6_store_bytes,
5241         .gpl_only       = false,
5242         .ret_type       = RET_INTEGER,
5243         .arg1_type      = ARG_PTR_TO_CTX,
5244         .arg2_type      = ARG_ANYTHING,
5245         .arg3_type      = ARG_PTR_TO_MEM,
5246         .arg4_type      = ARG_CONST_SIZE
5247 };
5248
5249 static void bpf_update_srh_state(struct sk_buff *skb)
5250 {
5251         struct seg6_bpf_srh_state *srh_state =
5252                 this_cpu_ptr(&seg6_bpf_srh_states);
5253         int srhoff = 0;
5254
5255         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5256                 srh_state->srh = NULL;
5257         } else {
5258                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5259                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5260                 srh_state->valid = true;
5261         }
5262 }
5263
5264 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5265            u32, action, void *, param, u32, param_len)
5266 {
5267         struct seg6_bpf_srh_state *srh_state =
5268                 this_cpu_ptr(&seg6_bpf_srh_states);
5269         int hdroff = 0;
5270         int err;
5271
5272         switch (action) {
5273         case SEG6_LOCAL_ACTION_END_X:
5274                 if (!seg6_bpf_has_valid_srh(skb))
5275                         return -EBADMSG;
5276                 if (param_len != sizeof(struct in6_addr))
5277                         return -EINVAL;
5278                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5279         case SEG6_LOCAL_ACTION_END_T:
5280                 if (!seg6_bpf_has_valid_srh(skb))
5281                         return -EBADMSG;
5282                 if (param_len != sizeof(int))
5283                         return -EINVAL;
5284                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5285         case SEG6_LOCAL_ACTION_END_DT6:
5286                 if (!seg6_bpf_has_valid_srh(skb))
5287                         return -EBADMSG;
5288                 if (param_len != sizeof(int))
5289                         return -EINVAL;
5290
5291                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5292                         return -EBADMSG;
5293                 if (!pskb_pull(skb, hdroff))
5294                         return -EBADMSG;
5295
5296                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5297                 skb_reset_network_header(skb);
5298                 skb_reset_transport_header(skb);
5299                 skb->encapsulation = 0;
5300
5301                 bpf_compute_data_pointers(skb);
5302                 bpf_update_srh_state(skb);
5303                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5304         case SEG6_LOCAL_ACTION_END_B6:
5305                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5306                         return -EBADMSG;
5307                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5308                                           param, param_len);
5309                 if (!err)
5310                         bpf_update_srh_state(skb);
5311
5312                 return err;
5313         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5314                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5315                         return -EBADMSG;
5316                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5317                                           param, param_len);
5318                 if (!err)
5319                         bpf_update_srh_state(skb);
5320
5321                 return err;
5322         default:
5323                 return -EINVAL;
5324         }
5325 }
5326
5327 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5328         .func           = bpf_lwt_seg6_action,
5329         .gpl_only       = false,
5330         .ret_type       = RET_INTEGER,
5331         .arg1_type      = ARG_PTR_TO_CTX,
5332         .arg2_type      = ARG_ANYTHING,
5333         .arg3_type      = ARG_PTR_TO_MEM,
5334         .arg4_type      = ARG_CONST_SIZE
5335 };
5336
5337 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5338            s32, len)
5339 {
5340         struct seg6_bpf_srh_state *srh_state =
5341                 this_cpu_ptr(&seg6_bpf_srh_states);
5342         struct ipv6_sr_hdr *srh = srh_state->srh;
5343         void *srh_end, *srh_tlvs, *ptr;
5344         struct ipv6hdr *hdr;
5345         int srhoff = 0;
5346         int ret;
5347
5348         if (unlikely(srh == NULL))
5349                 return -EINVAL;
5350
5351         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5352                         ((srh->first_segment + 1) << 4));
5353         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5354                         srh_state->hdrlen);
5355         ptr = skb->data + offset;
5356
5357         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5358                 return -EFAULT;
5359         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5360                 return -EFAULT;
5361
5362         if (len > 0) {
5363                 ret = skb_cow_head(skb, len);
5364                 if (unlikely(ret < 0))
5365                         return ret;
5366
5367                 ret = bpf_skb_net_hdr_push(skb, offset, len);
5368         } else {
5369                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5370         }
5371
5372         bpf_compute_data_pointers(skb);
5373         if (unlikely(ret < 0))
5374                 return ret;
5375
5376         hdr = (struct ipv6hdr *)skb->data;
5377         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5378
5379         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5380                 return -EINVAL;
5381         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5382         srh_state->hdrlen += len;
5383         srh_state->valid = false;
5384         return 0;
5385 }
5386
5387 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5388         .func           = bpf_lwt_seg6_adjust_srh,
5389         .gpl_only       = false,
5390         .ret_type       = RET_INTEGER,
5391         .arg1_type      = ARG_PTR_TO_CTX,
5392         .arg2_type      = ARG_ANYTHING,
5393         .arg3_type      = ARG_ANYTHING,
5394 };
5395 #endif /* CONFIG_IPV6_SEG6_BPF */
5396
5397 #ifdef CONFIG_INET
5398 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5399                               int dif, int sdif, u8 family, u8 proto)
5400 {
5401         bool refcounted = false;
5402         struct sock *sk = NULL;
5403
5404         if (family == AF_INET) {
5405                 __be32 src4 = tuple->ipv4.saddr;
5406                 __be32 dst4 = tuple->ipv4.daddr;
5407
5408                 if (proto == IPPROTO_TCP)
5409                         sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5410                                            src4, tuple->ipv4.sport,
5411                                            dst4, tuple->ipv4.dport,
5412                                            dif, sdif, &refcounted);
5413                 else
5414                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5415                                                dst4, tuple->ipv4.dport,
5416                                                dif, sdif, &udp_table, NULL);
5417 #if IS_ENABLED(CONFIG_IPV6)
5418         } else {
5419                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5420                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5421
5422                 if (proto == IPPROTO_TCP)
5423                         sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5424                                             src6, tuple->ipv6.sport,
5425                                             dst6, ntohs(tuple->ipv6.dport),
5426                                             dif, sdif, &refcounted);
5427                 else if (likely(ipv6_bpf_stub))
5428                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5429                                                             src6, tuple->ipv6.sport,
5430                                                             dst6, tuple->ipv6.dport,
5431                                                             dif, sdif,
5432                                                             &udp_table, NULL);
5433 #endif
5434         }
5435
5436         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5437                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5438                 sk = NULL;
5439         }
5440         return sk;
5441 }
5442
5443 /* bpf_skc_lookup performs the core lookup for different types of sockets,
5444  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5445  * Returns the socket as an 'unsigned long' to simplify the casting in the
5446  * callers to satisfy BPF_CALL declarations.
5447  */
5448 static struct sock *
5449 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5450                  struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5451                  u64 flags)
5452 {
5453         struct sock *sk = NULL;
5454         u8 family = AF_UNSPEC;
5455         struct net *net;
5456         int sdif;
5457
5458         if (len == sizeof(tuple->ipv4))
5459                 family = AF_INET;
5460         else if (len == sizeof(tuple->ipv6))
5461                 family = AF_INET6;
5462         else
5463                 return NULL;
5464
5465         if (unlikely(family == AF_UNSPEC || flags ||
5466                      !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5467                 goto out;
5468
5469         if (family == AF_INET)
5470                 sdif = inet_sdif(skb);
5471         else
5472                 sdif = inet6_sdif(skb);
5473
5474         if ((s32)netns_id < 0) {
5475                 net = caller_net;
5476                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5477         } else {
5478                 net = get_net_ns_by_id(caller_net, netns_id);
5479                 if (unlikely(!net))
5480                         goto out;
5481                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5482                 put_net(net);
5483         }
5484
5485 out:
5486         return sk;
5487 }
5488
5489 static struct sock *
5490 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5491                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5492                 u64 flags)
5493 {
5494         struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5495                                            ifindex, proto, netns_id, flags);
5496
5497         if (sk) {
5498                 sk = sk_to_full_sk(sk);
5499                 if (!sk_fullsock(sk)) {
5500                         sock_gen_put(sk);
5501                         return NULL;
5502                 }
5503         }
5504
5505         return sk;
5506 }
5507
5508 static struct sock *
5509 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5510                u8 proto, u64 netns_id, u64 flags)
5511 {
5512         struct net *caller_net;
5513         int ifindex;
5514
5515         if (skb->dev) {
5516                 caller_net = dev_net(skb->dev);
5517                 ifindex = skb->dev->ifindex;
5518         } else {
5519                 caller_net = sock_net(skb->sk);
5520                 ifindex = 0;
5521         }
5522
5523         return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
5524                                 netns_id, flags);
5525 }
5526
5527 static struct sock *
5528 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5529               u8 proto, u64 netns_id, u64 flags)
5530 {
5531         struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
5532                                          flags);
5533
5534         if (sk) {
5535                 sk = sk_to_full_sk(sk);
5536                 if (!sk_fullsock(sk)) {
5537                         sock_gen_put(sk);
5538                         return NULL;
5539                 }
5540         }
5541
5542         return sk;
5543 }
5544
5545 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
5546            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5547 {
5548         return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
5549                                              netns_id, flags);
5550 }
5551
5552 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
5553         .func           = bpf_skc_lookup_tcp,
5554         .gpl_only       = false,
5555         .pkt_access     = true,
5556         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5557         .arg1_type      = ARG_PTR_TO_CTX,
5558         .arg2_type      = ARG_PTR_TO_MEM,
5559         .arg3_type      = ARG_CONST_SIZE,
5560         .arg4_type      = ARG_ANYTHING,
5561         .arg5_type      = ARG_ANYTHING,
5562 };
5563
5564 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
5565            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5566 {
5567         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
5568                                             netns_id, flags);
5569 }
5570
5571 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
5572         .func           = bpf_sk_lookup_tcp,
5573         .gpl_only       = false,
5574         .pkt_access     = true,
5575         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5576         .arg1_type      = ARG_PTR_TO_CTX,
5577         .arg2_type      = ARG_PTR_TO_MEM,
5578         .arg3_type      = ARG_CONST_SIZE,
5579         .arg4_type      = ARG_ANYTHING,
5580         .arg5_type      = ARG_ANYTHING,
5581 };
5582
5583 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
5584            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5585 {
5586         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
5587                                             netns_id, flags);
5588 }
5589
5590 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
5591         .func           = bpf_sk_lookup_udp,
5592         .gpl_only       = false,
5593         .pkt_access     = true,
5594         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5595         .arg1_type      = ARG_PTR_TO_CTX,
5596         .arg2_type      = ARG_PTR_TO_MEM,
5597         .arg3_type      = ARG_CONST_SIZE,
5598         .arg4_type      = ARG_ANYTHING,
5599         .arg5_type      = ARG_ANYTHING,
5600 };
5601
5602 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
5603 {
5604         if (sk_is_refcounted(sk))
5605                 sock_gen_put(sk);
5606         return 0;
5607 }
5608
5609 static const struct bpf_func_proto bpf_sk_release_proto = {
5610         .func           = bpf_sk_release,
5611         .gpl_only       = false,
5612         .ret_type       = RET_INTEGER,
5613         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5614 };
5615
5616 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
5617            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5618 {
5619         struct net *caller_net = dev_net(ctx->rxq->dev);
5620         int ifindex = ctx->rxq->dev->ifindex;
5621
5622         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5623                                               ifindex, IPPROTO_UDP, netns_id,
5624                                               flags);
5625 }
5626
5627 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
5628         .func           = bpf_xdp_sk_lookup_udp,
5629         .gpl_only       = false,
5630         .pkt_access     = true,
5631         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5632         .arg1_type      = ARG_PTR_TO_CTX,
5633         .arg2_type      = ARG_PTR_TO_MEM,
5634         .arg3_type      = ARG_CONST_SIZE,
5635         .arg4_type      = ARG_ANYTHING,
5636         .arg5_type      = ARG_ANYTHING,
5637 };
5638
5639 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
5640            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5641 {
5642         struct net *caller_net = dev_net(ctx->rxq->dev);
5643         int ifindex = ctx->rxq->dev->ifindex;
5644
5645         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
5646                                                ifindex, IPPROTO_TCP, netns_id,
5647                                                flags);
5648 }
5649
5650 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
5651         .func           = bpf_xdp_skc_lookup_tcp,
5652         .gpl_only       = false,
5653         .pkt_access     = true,
5654         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5655         .arg1_type      = ARG_PTR_TO_CTX,
5656         .arg2_type      = ARG_PTR_TO_MEM,
5657         .arg3_type      = ARG_CONST_SIZE,
5658         .arg4_type      = ARG_ANYTHING,
5659         .arg5_type      = ARG_ANYTHING,
5660 };
5661
5662 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
5663            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5664 {
5665         struct net *caller_net = dev_net(ctx->rxq->dev);
5666         int ifindex = ctx->rxq->dev->ifindex;
5667
5668         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5669                                               ifindex, IPPROTO_TCP, netns_id,
5670                                               flags);
5671 }
5672
5673 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
5674         .func           = bpf_xdp_sk_lookup_tcp,
5675         .gpl_only       = false,
5676         .pkt_access     = true,
5677         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5678         .arg1_type      = ARG_PTR_TO_CTX,
5679         .arg2_type      = ARG_PTR_TO_MEM,
5680         .arg3_type      = ARG_CONST_SIZE,
5681         .arg4_type      = ARG_ANYTHING,
5682         .arg5_type      = ARG_ANYTHING,
5683 };
5684
5685 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5686            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5687 {
5688         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
5689                                                sock_net(ctx->sk), 0,
5690                                                IPPROTO_TCP, netns_id, flags);
5691 }
5692
5693 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
5694         .func           = bpf_sock_addr_skc_lookup_tcp,
5695         .gpl_only       = false,
5696         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5697         .arg1_type      = ARG_PTR_TO_CTX,
5698         .arg2_type      = ARG_PTR_TO_MEM,
5699         .arg3_type      = ARG_CONST_SIZE,
5700         .arg4_type      = ARG_ANYTHING,
5701         .arg5_type      = ARG_ANYTHING,
5702 };
5703
5704 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5705            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5706 {
5707         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5708                                               sock_net(ctx->sk), 0, IPPROTO_TCP,
5709                                               netns_id, flags);
5710 }
5711
5712 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
5713         .func           = bpf_sock_addr_sk_lookup_tcp,
5714         .gpl_only       = false,
5715         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5716         .arg1_type      = ARG_PTR_TO_CTX,
5717         .arg2_type      = ARG_PTR_TO_MEM,
5718         .arg3_type      = ARG_CONST_SIZE,
5719         .arg4_type      = ARG_ANYTHING,
5720         .arg5_type      = ARG_ANYTHING,
5721 };
5722
5723 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
5724            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5725 {
5726         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5727                                               sock_net(ctx->sk), 0, IPPROTO_UDP,
5728                                               netns_id, flags);
5729 }
5730
5731 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
5732         .func           = bpf_sock_addr_sk_lookup_udp,
5733         .gpl_only       = false,
5734         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5735         .arg1_type      = ARG_PTR_TO_CTX,
5736         .arg2_type      = ARG_PTR_TO_MEM,
5737         .arg3_type      = ARG_CONST_SIZE,
5738         .arg4_type      = ARG_ANYTHING,
5739         .arg5_type      = ARG_ANYTHING,
5740 };
5741
5742 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5743                                   struct bpf_insn_access_aux *info)
5744 {
5745         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
5746                                           icsk_retransmits))
5747                 return false;
5748
5749         if (off % size != 0)
5750                 return false;
5751
5752         switch (off) {
5753         case offsetof(struct bpf_tcp_sock, bytes_received):
5754         case offsetof(struct bpf_tcp_sock, bytes_acked):
5755                 return size == sizeof(__u64);
5756         default:
5757                 return size == sizeof(__u32);
5758         }
5759 }
5760
5761 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
5762                                     const struct bpf_insn *si,
5763                                     struct bpf_insn *insn_buf,
5764                                     struct bpf_prog *prog, u32 *target_size)
5765 {
5766         struct bpf_insn *insn = insn_buf;
5767
5768 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
5769         do {                                                            \
5770                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
5771                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
5772                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
5773                                       si->dst_reg, si->src_reg,         \
5774                                       offsetof(struct tcp_sock, FIELD)); \
5775         } while (0)
5776
5777 #define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
5778         do {                                                            \
5779                 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
5780                                           FIELD) >                      \
5781                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
5782                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
5783                                         struct inet_connection_sock,    \
5784                                         FIELD),                         \
5785                                       si->dst_reg, si->src_reg,         \
5786                                       offsetof(                         \
5787                                         struct inet_connection_sock,    \
5788                                         FIELD));                        \
5789         } while (0)
5790
5791         if (insn > insn_buf)
5792                 return insn - insn_buf;
5793
5794         switch (si->off) {
5795         case offsetof(struct bpf_tcp_sock, rtt_min):
5796                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
5797                              sizeof(struct minmax));
5798                 BUILD_BUG_ON(sizeof(struct minmax) <
5799                              sizeof(struct minmax_sample));
5800
5801                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5802                                       offsetof(struct tcp_sock, rtt_min) +
5803                                       offsetof(struct minmax_sample, v));
5804                 break;
5805         case offsetof(struct bpf_tcp_sock, snd_cwnd):
5806                 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
5807                 break;
5808         case offsetof(struct bpf_tcp_sock, srtt_us):
5809                 BPF_TCP_SOCK_GET_COMMON(srtt_us);
5810                 break;
5811         case offsetof(struct bpf_tcp_sock, snd_ssthresh):
5812                 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
5813                 break;
5814         case offsetof(struct bpf_tcp_sock, rcv_nxt):
5815                 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
5816                 break;
5817         case offsetof(struct bpf_tcp_sock, snd_nxt):
5818                 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
5819                 break;
5820         case offsetof(struct bpf_tcp_sock, snd_una):
5821                 BPF_TCP_SOCK_GET_COMMON(snd_una);
5822                 break;
5823         case offsetof(struct bpf_tcp_sock, mss_cache):
5824                 BPF_TCP_SOCK_GET_COMMON(mss_cache);
5825                 break;
5826         case offsetof(struct bpf_tcp_sock, ecn_flags):
5827                 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
5828                 break;
5829         case offsetof(struct bpf_tcp_sock, rate_delivered):
5830                 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
5831                 break;
5832         case offsetof(struct bpf_tcp_sock, rate_interval_us):
5833                 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
5834                 break;
5835         case offsetof(struct bpf_tcp_sock, packets_out):
5836                 BPF_TCP_SOCK_GET_COMMON(packets_out);
5837                 break;
5838         case offsetof(struct bpf_tcp_sock, retrans_out):
5839                 BPF_TCP_SOCK_GET_COMMON(retrans_out);
5840                 break;
5841         case offsetof(struct bpf_tcp_sock, total_retrans):
5842                 BPF_TCP_SOCK_GET_COMMON(total_retrans);
5843                 break;
5844         case offsetof(struct bpf_tcp_sock, segs_in):
5845                 BPF_TCP_SOCK_GET_COMMON(segs_in);
5846                 break;
5847         case offsetof(struct bpf_tcp_sock, data_segs_in):
5848                 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
5849                 break;
5850         case offsetof(struct bpf_tcp_sock, segs_out):
5851                 BPF_TCP_SOCK_GET_COMMON(segs_out);
5852                 break;
5853         case offsetof(struct bpf_tcp_sock, data_segs_out):
5854                 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
5855                 break;
5856         case offsetof(struct bpf_tcp_sock, lost_out):
5857                 BPF_TCP_SOCK_GET_COMMON(lost_out);
5858                 break;
5859         case offsetof(struct bpf_tcp_sock, sacked_out):
5860                 BPF_TCP_SOCK_GET_COMMON(sacked_out);
5861                 break;
5862         case offsetof(struct bpf_tcp_sock, bytes_received):
5863                 BPF_TCP_SOCK_GET_COMMON(bytes_received);
5864                 break;
5865         case offsetof(struct bpf_tcp_sock, bytes_acked):
5866                 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
5867                 break;
5868         case offsetof(struct bpf_tcp_sock, dsack_dups):
5869                 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
5870                 break;
5871         case offsetof(struct bpf_tcp_sock, delivered):
5872                 BPF_TCP_SOCK_GET_COMMON(delivered);
5873                 break;
5874         case offsetof(struct bpf_tcp_sock, delivered_ce):
5875                 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
5876                 break;
5877         case offsetof(struct bpf_tcp_sock, icsk_retransmits):
5878                 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
5879                 break;
5880         }
5881
5882         return insn - insn_buf;
5883 }
5884
5885 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
5886 {
5887         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
5888                 return (unsigned long)sk;
5889
5890         return (unsigned long)NULL;
5891 }
5892
5893 const struct bpf_func_proto bpf_tcp_sock_proto = {
5894         .func           = bpf_tcp_sock,
5895         .gpl_only       = false,
5896         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
5897         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5898 };
5899
5900 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
5901 {
5902         sk = sk_to_full_sk(sk);
5903
5904         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
5905                 return (unsigned long)sk;
5906
5907         return (unsigned long)NULL;
5908 }
5909
5910 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
5911         .func           = bpf_get_listener_sock,
5912         .gpl_only       = false,
5913         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5914         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5915 };
5916
5917 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
5918 {
5919         unsigned int iphdr_len;
5920
5921         switch (skb_protocol(skb, true)) {
5922         case cpu_to_be16(ETH_P_IP):
5923                 iphdr_len = sizeof(struct iphdr);
5924                 break;
5925         case cpu_to_be16(ETH_P_IPV6):
5926                 iphdr_len = sizeof(struct ipv6hdr);
5927                 break;
5928         default:
5929                 return 0;
5930         }
5931
5932         if (skb_headlen(skb) < iphdr_len)
5933                 return 0;
5934
5935         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
5936                 return 0;
5937
5938         return INET_ECN_set_ce(skb);
5939 }
5940
5941 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5942                                   struct bpf_insn_access_aux *info)
5943 {
5944         if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
5945                 return false;
5946
5947         if (off % size != 0)
5948                 return false;
5949
5950         switch (off) {
5951         default:
5952                 return size == sizeof(__u32);
5953         }
5954 }
5955
5956 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
5957                                     const struct bpf_insn *si,
5958                                     struct bpf_insn *insn_buf,
5959                                     struct bpf_prog *prog, u32 *target_size)
5960 {
5961         struct bpf_insn *insn = insn_buf;
5962
5963 #define BPF_XDP_SOCK_GET(FIELD)                                         \
5964         do {                                                            \
5965                 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
5966                              sizeof_field(struct bpf_xdp_sock, FIELD)); \
5967                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
5968                                       si->dst_reg, si->src_reg,         \
5969                                       offsetof(struct xdp_sock, FIELD)); \
5970         } while (0)
5971
5972         switch (si->off) {
5973         case offsetof(struct bpf_xdp_sock, queue_id):
5974                 BPF_XDP_SOCK_GET(queue_id);
5975                 break;
5976         }
5977
5978         return insn - insn_buf;
5979 }
5980
5981 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
5982         .func           = bpf_skb_ecn_set_ce,
5983         .gpl_only       = false,
5984         .ret_type       = RET_INTEGER,
5985         .arg1_type      = ARG_PTR_TO_CTX,
5986 };
5987
5988 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5989            struct tcphdr *, th, u32, th_len)
5990 {
5991 #ifdef CONFIG_SYN_COOKIES
5992         u32 cookie;
5993         int ret;
5994
5995         if (unlikely(th_len < sizeof(*th)))
5996                 return -EINVAL;
5997
5998         /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
5999         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6000                 return -EINVAL;
6001
6002         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6003                 return -EINVAL;
6004
6005         if (!th->ack || th->rst || th->syn)
6006                 return -ENOENT;
6007
6008         if (tcp_synq_no_recent_overflow(sk))
6009                 return -ENOENT;
6010
6011         cookie = ntohl(th->ack_seq) - 1;
6012
6013         switch (sk->sk_family) {
6014         case AF_INET:
6015                 if (unlikely(iph_len < sizeof(struct iphdr)))
6016                         return -EINVAL;
6017
6018                 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6019                 break;
6020
6021 #if IS_BUILTIN(CONFIG_IPV6)
6022         case AF_INET6:
6023                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6024                         return -EINVAL;
6025
6026                 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6027                 break;
6028 #endif /* CONFIG_IPV6 */
6029
6030         default:
6031                 return -EPROTONOSUPPORT;
6032         }
6033
6034         if (ret > 0)
6035                 return 0;
6036
6037         return -ENOENT;
6038 #else
6039         return -ENOTSUPP;
6040 #endif
6041 }
6042
6043 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6044         .func           = bpf_tcp_check_syncookie,
6045         .gpl_only       = true,
6046         .pkt_access     = true,
6047         .ret_type       = RET_INTEGER,
6048         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6049         .arg2_type      = ARG_PTR_TO_MEM,
6050         .arg3_type      = ARG_CONST_SIZE,
6051         .arg4_type      = ARG_PTR_TO_MEM,
6052         .arg5_type      = ARG_CONST_SIZE,
6053 };
6054
6055 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6056            struct tcphdr *, th, u32, th_len)
6057 {
6058 #ifdef CONFIG_SYN_COOKIES
6059         u32 cookie;
6060         u16 mss;
6061
6062         if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
6063                 return -EINVAL;
6064
6065         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6066                 return -EINVAL;
6067
6068         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6069                 return -ENOENT;
6070
6071         if (!th->syn || th->ack || th->fin || th->rst)
6072                 return -EINVAL;
6073
6074         if (unlikely(iph_len < sizeof(struct iphdr)))
6075                 return -EINVAL;
6076
6077         /* Both struct iphdr and struct ipv6hdr have the version field at the
6078          * same offset so we can cast to the shorter header (struct iphdr).
6079          */
6080         switch (((struct iphdr *)iph)->version) {
6081         case 4:
6082                 if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6083                         return -EINVAL;
6084
6085                 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6086                 break;
6087
6088 #if IS_BUILTIN(CONFIG_IPV6)
6089         case 6:
6090                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6091                         return -EINVAL;
6092
6093                 if (sk->sk_family != AF_INET6)
6094                         return -EINVAL;
6095
6096                 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6097                 break;
6098 #endif /* CONFIG_IPV6 */
6099
6100         default:
6101                 return -EPROTONOSUPPORT;
6102         }
6103         if (mss == 0)
6104                 return -ENOENT;
6105
6106         return cookie | ((u64)mss << 32);
6107 #else
6108         return -EOPNOTSUPP;
6109 #endif /* CONFIG_SYN_COOKIES */
6110 }
6111
6112 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6113         .func           = bpf_tcp_gen_syncookie,
6114         .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
6115         .pkt_access     = true,
6116         .ret_type       = RET_INTEGER,
6117         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6118         .arg2_type      = ARG_PTR_TO_MEM,
6119         .arg3_type      = ARG_CONST_SIZE,
6120         .arg4_type      = ARG_PTR_TO_MEM,
6121         .arg5_type      = ARG_CONST_SIZE,
6122 };
6123
6124 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6125 {
6126         if (flags != 0)
6127                 return -EINVAL;
6128         if (!skb_at_tc_ingress(skb))
6129                 return -EOPNOTSUPP;
6130         if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6131                 return -ENETUNREACH;
6132         if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6133                 return -ESOCKTNOSUPPORT;
6134         if (sk_is_refcounted(sk) &&
6135             unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6136                 return -ENOENT;
6137
6138         skb_orphan(skb);
6139         skb->sk = sk;
6140         skb->destructor = sock_pfree;
6141
6142         return 0;
6143 }
6144
6145 static const struct bpf_func_proto bpf_sk_assign_proto = {
6146         .func           = bpf_sk_assign,
6147         .gpl_only       = false,
6148         .ret_type       = RET_INTEGER,
6149         .arg1_type      = ARG_PTR_TO_CTX,
6150         .arg2_type      = ARG_PTR_TO_SOCK_COMMON,
6151         .arg3_type      = ARG_ANYTHING,
6152 };
6153
6154 #endif /* CONFIG_INET */
6155
6156 bool bpf_helper_changes_pkt_data(void *func)
6157 {
6158         if (func == bpf_skb_vlan_push ||
6159             func == bpf_skb_vlan_pop ||
6160             func == bpf_skb_store_bytes ||
6161             func == bpf_skb_change_proto ||
6162             func == bpf_skb_change_head ||
6163             func == sk_skb_change_head ||
6164             func == bpf_skb_change_tail ||
6165             func == sk_skb_change_tail ||
6166             func == bpf_skb_adjust_room ||
6167             func == bpf_skb_pull_data ||
6168             func == sk_skb_pull_data ||
6169             func == bpf_clone_redirect ||
6170             func == bpf_l3_csum_replace ||
6171             func == bpf_l4_csum_replace ||
6172             func == bpf_xdp_adjust_head ||
6173             func == bpf_xdp_adjust_meta ||
6174             func == bpf_msg_pull_data ||
6175             func == bpf_msg_push_data ||
6176             func == bpf_msg_pop_data ||
6177             func == bpf_xdp_adjust_tail ||
6178 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6179             func == bpf_lwt_seg6_store_bytes ||
6180             func == bpf_lwt_seg6_adjust_srh ||
6181             func == bpf_lwt_seg6_action ||
6182 #endif
6183             func == bpf_lwt_in_push_encap ||
6184             func == bpf_lwt_xmit_push_encap)
6185                 return true;
6186
6187         return false;
6188 }
6189
6190 const struct bpf_func_proto bpf_event_output_data_proto __weak;
6191 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
6192
6193 static const struct bpf_func_proto *
6194 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6195 {
6196         switch (func_id) {
6197         /* inet and inet6 sockets are created in a process
6198          * context so there is always a valid uid/gid
6199          */
6200         case BPF_FUNC_get_current_uid_gid:
6201                 return &bpf_get_current_uid_gid_proto;
6202         case BPF_FUNC_get_local_storage:
6203                 return &bpf_get_local_storage_proto;
6204         case BPF_FUNC_get_socket_cookie:
6205                 return &bpf_get_socket_cookie_sock_proto;
6206         case BPF_FUNC_get_netns_cookie:
6207                 return &bpf_get_netns_cookie_sock_proto;
6208         case BPF_FUNC_perf_event_output:
6209                 return &bpf_event_output_data_proto;
6210         case BPF_FUNC_get_current_pid_tgid:
6211                 return &bpf_get_current_pid_tgid_proto;
6212         case BPF_FUNC_get_current_comm:
6213                 return &bpf_get_current_comm_proto;
6214 #ifdef CONFIG_CGROUPS
6215         case BPF_FUNC_get_current_cgroup_id:
6216                 return &bpf_get_current_cgroup_id_proto;
6217         case BPF_FUNC_get_current_ancestor_cgroup_id:
6218                 return &bpf_get_current_ancestor_cgroup_id_proto;
6219 #endif
6220 #ifdef CONFIG_CGROUP_NET_CLASSID
6221         case BPF_FUNC_get_cgroup_classid:
6222                 return &bpf_get_cgroup_classid_curr_proto;
6223 #endif
6224         case BPF_FUNC_sk_storage_get:
6225                 return &bpf_sk_storage_get_cg_sock_proto;
6226         default:
6227                 return bpf_base_func_proto(func_id);
6228         }
6229 }
6230
6231 static const struct bpf_func_proto *
6232 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6233 {
6234         switch (func_id) {
6235         /* inet and inet6 sockets are created in a process
6236          * context so there is always a valid uid/gid
6237          */
6238         case BPF_FUNC_get_current_uid_gid:
6239                 return &bpf_get_current_uid_gid_proto;
6240         case BPF_FUNC_bind:
6241                 switch (prog->expected_attach_type) {
6242                 case BPF_CGROUP_INET4_CONNECT:
6243                 case BPF_CGROUP_INET6_CONNECT:
6244                         return &bpf_bind_proto;
6245                 default:
6246                         return NULL;
6247                 }
6248         case BPF_FUNC_get_socket_cookie:
6249                 return &bpf_get_socket_cookie_sock_addr_proto;
6250         case BPF_FUNC_get_netns_cookie:
6251                 return &bpf_get_netns_cookie_sock_addr_proto;
6252         case BPF_FUNC_get_local_storage:
6253                 return &bpf_get_local_storage_proto;
6254         case BPF_FUNC_perf_event_output:
6255                 return &bpf_event_output_data_proto;
6256         case BPF_FUNC_get_current_pid_tgid:
6257                 return &bpf_get_current_pid_tgid_proto;
6258         case BPF_FUNC_get_current_comm:
6259                 return &bpf_get_current_comm_proto;
6260 #ifdef CONFIG_CGROUPS
6261         case BPF_FUNC_get_current_cgroup_id:
6262                 return &bpf_get_current_cgroup_id_proto;
6263         case BPF_FUNC_get_current_ancestor_cgroup_id:
6264                 return &bpf_get_current_ancestor_cgroup_id_proto;
6265 #endif
6266 #ifdef CONFIG_CGROUP_NET_CLASSID
6267         case BPF_FUNC_get_cgroup_classid:
6268                 return &bpf_get_cgroup_classid_curr_proto;
6269 #endif
6270 #ifdef CONFIG_INET
6271         case BPF_FUNC_sk_lookup_tcp:
6272                 return &bpf_sock_addr_sk_lookup_tcp_proto;
6273         case BPF_FUNC_sk_lookup_udp:
6274                 return &bpf_sock_addr_sk_lookup_udp_proto;
6275         case BPF_FUNC_sk_release:
6276                 return &bpf_sk_release_proto;
6277         case BPF_FUNC_skc_lookup_tcp:
6278                 return &bpf_sock_addr_skc_lookup_tcp_proto;
6279 #endif /* CONFIG_INET */
6280         case BPF_FUNC_sk_storage_get:
6281                 return &bpf_sk_storage_get_proto;
6282         case BPF_FUNC_sk_storage_delete:
6283                 return &bpf_sk_storage_delete_proto;
6284         case BPF_FUNC_setsockopt:
6285                 switch (prog->expected_attach_type) {
6286                 case BPF_CGROUP_INET4_CONNECT:
6287                 case BPF_CGROUP_INET6_CONNECT:
6288                         return &bpf_sock_addr_setsockopt_proto;
6289                 default:
6290                         return NULL;
6291                 }
6292         case BPF_FUNC_getsockopt:
6293                 switch (prog->expected_attach_type) {
6294                 case BPF_CGROUP_INET4_CONNECT:
6295                 case BPF_CGROUP_INET6_CONNECT:
6296                         return &bpf_sock_addr_getsockopt_proto;
6297                 default:
6298                         return NULL;
6299                 }
6300         default:
6301                 return bpf_base_func_proto(func_id);
6302         }
6303 }
6304
6305 static const struct bpf_func_proto *
6306 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6307 {
6308         switch (func_id) {
6309         case BPF_FUNC_skb_load_bytes:
6310                 return &bpf_skb_load_bytes_proto;
6311         case BPF_FUNC_skb_load_bytes_relative:
6312                 return &bpf_skb_load_bytes_relative_proto;
6313         case BPF_FUNC_get_socket_cookie:
6314                 return &bpf_get_socket_cookie_proto;
6315         case BPF_FUNC_get_socket_uid:
6316                 return &bpf_get_socket_uid_proto;
6317         case BPF_FUNC_perf_event_output:
6318                 return &bpf_skb_event_output_proto;
6319         default:
6320                 return bpf_base_func_proto(func_id);
6321         }
6322 }
6323
6324 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
6325 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
6326
6327 static const struct bpf_func_proto *
6328 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6329 {
6330         switch (func_id) {
6331         case BPF_FUNC_get_local_storage:
6332                 return &bpf_get_local_storage_proto;
6333         case BPF_FUNC_sk_fullsock:
6334                 return &bpf_sk_fullsock_proto;
6335         case BPF_FUNC_sk_storage_get:
6336                 return &bpf_sk_storage_get_proto;
6337         case BPF_FUNC_sk_storage_delete:
6338                 return &bpf_sk_storage_delete_proto;
6339         case BPF_FUNC_perf_event_output:
6340                 return &bpf_skb_event_output_proto;
6341 #ifdef CONFIG_SOCK_CGROUP_DATA
6342         case BPF_FUNC_skb_cgroup_id:
6343                 return &bpf_skb_cgroup_id_proto;
6344         case BPF_FUNC_skb_ancestor_cgroup_id:
6345                 return &bpf_skb_ancestor_cgroup_id_proto;
6346         case BPF_FUNC_sk_cgroup_id:
6347                 return &bpf_sk_cgroup_id_proto;
6348         case BPF_FUNC_sk_ancestor_cgroup_id:
6349                 return &bpf_sk_ancestor_cgroup_id_proto;
6350 #endif
6351 #ifdef CONFIG_INET
6352         case BPF_FUNC_sk_lookup_tcp:
6353                 return &bpf_sk_lookup_tcp_proto;
6354         case BPF_FUNC_sk_lookup_udp:
6355                 return &bpf_sk_lookup_udp_proto;
6356         case BPF_FUNC_sk_release:
6357                 return &bpf_sk_release_proto;
6358         case BPF_FUNC_skc_lookup_tcp:
6359                 return &bpf_skc_lookup_tcp_proto;
6360         case BPF_FUNC_tcp_sock:
6361                 return &bpf_tcp_sock_proto;
6362         case BPF_FUNC_get_listener_sock:
6363                 return &bpf_get_listener_sock_proto;
6364         case BPF_FUNC_skb_ecn_set_ce:
6365                 return &bpf_skb_ecn_set_ce_proto;
6366 #endif
6367         default:
6368                 return sk_filter_func_proto(func_id, prog);
6369         }
6370 }
6371
6372 static const struct bpf_func_proto *
6373 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6374 {
6375         switch (func_id) {
6376         case BPF_FUNC_skb_store_bytes:
6377                 return &bpf_skb_store_bytes_proto;
6378         case BPF_FUNC_skb_load_bytes:
6379                 return &bpf_skb_load_bytes_proto;
6380         case BPF_FUNC_skb_load_bytes_relative:
6381                 return &bpf_skb_load_bytes_relative_proto;
6382         case BPF_FUNC_skb_pull_data:
6383                 return &bpf_skb_pull_data_proto;
6384         case BPF_FUNC_csum_diff:
6385                 return &bpf_csum_diff_proto;
6386         case BPF_FUNC_csum_update:
6387                 return &bpf_csum_update_proto;
6388         case BPF_FUNC_csum_level:
6389                 return &bpf_csum_level_proto;
6390         case BPF_FUNC_l3_csum_replace:
6391                 return &bpf_l3_csum_replace_proto;
6392         case BPF_FUNC_l4_csum_replace:
6393                 return &bpf_l4_csum_replace_proto;
6394         case BPF_FUNC_clone_redirect:
6395                 return &bpf_clone_redirect_proto;
6396         case BPF_FUNC_get_cgroup_classid:
6397                 return &bpf_get_cgroup_classid_proto;
6398         case BPF_FUNC_skb_vlan_push:
6399                 return &bpf_skb_vlan_push_proto;
6400         case BPF_FUNC_skb_vlan_pop:
6401                 return &bpf_skb_vlan_pop_proto;
6402         case BPF_FUNC_skb_change_proto:
6403                 return &bpf_skb_change_proto_proto;
6404         case BPF_FUNC_skb_change_type:
6405                 return &bpf_skb_change_type_proto;
6406         case BPF_FUNC_skb_adjust_room:
6407                 return &bpf_skb_adjust_room_proto;
6408         case BPF_FUNC_skb_change_tail:
6409                 return &bpf_skb_change_tail_proto;
6410         case BPF_FUNC_skb_change_head:
6411                 return &bpf_skb_change_head_proto;
6412         case BPF_FUNC_skb_get_tunnel_key:
6413                 return &bpf_skb_get_tunnel_key_proto;
6414         case BPF_FUNC_skb_set_tunnel_key:
6415                 return bpf_get_skb_set_tunnel_proto(func_id);
6416         case BPF_FUNC_skb_get_tunnel_opt:
6417                 return &bpf_skb_get_tunnel_opt_proto;
6418         case BPF_FUNC_skb_set_tunnel_opt:
6419                 return bpf_get_skb_set_tunnel_proto(func_id);
6420         case BPF_FUNC_redirect:
6421                 return &bpf_redirect_proto;
6422         case BPF_FUNC_get_route_realm:
6423                 return &bpf_get_route_realm_proto;
6424         case BPF_FUNC_get_hash_recalc:
6425                 return &bpf_get_hash_recalc_proto;
6426         case BPF_FUNC_set_hash_invalid:
6427                 return &bpf_set_hash_invalid_proto;
6428         case BPF_FUNC_set_hash:
6429                 return &bpf_set_hash_proto;
6430         case BPF_FUNC_perf_event_output:
6431                 return &bpf_skb_event_output_proto;
6432         case BPF_FUNC_get_smp_processor_id:
6433                 return &bpf_get_smp_processor_id_proto;
6434         case BPF_FUNC_skb_under_cgroup:
6435                 return &bpf_skb_under_cgroup_proto;
6436         case BPF_FUNC_get_socket_cookie:
6437                 return &bpf_get_socket_cookie_proto;
6438         case BPF_FUNC_get_socket_uid:
6439                 return &bpf_get_socket_uid_proto;
6440         case BPF_FUNC_fib_lookup:
6441                 return &bpf_skb_fib_lookup_proto;
6442         case BPF_FUNC_sk_fullsock:
6443                 return &bpf_sk_fullsock_proto;
6444         case BPF_FUNC_sk_storage_get:
6445                 return &bpf_sk_storage_get_proto;
6446         case BPF_FUNC_sk_storage_delete:
6447                 return &bpf_sk_storage_delete_proto;
6448 #ifdef CONFIG_XFRM
6449         case BPF_FUNC_skb_get_xfrm_state:
6450                 return &bpf_skb_get_xfrm_state_proto;
6451 #endif
6452 #ifdef CONFIG_SOCK_CGROUP_DATA
6453         case BPF_FUNC_skb_cgroup_id:
6454                 return &bpf_skb_cgroup_id_proto;
6455         case BPF_FUNC_skb_ancestor_cgroup_id:
6456                 return &bpf_skb_ancestor_cgroup_id_proto;
6457 #endif
6458 #ifdef CONFIG_INET
6459         case BPF_FUNC_sk_lookup_tcp:
6460                 return &bpf_sk_lookup_tcp_proto;
6461         case BPF_FUNC_sk_lookup_udp:
6462                 return &bpf_sk_lookup_udp_proto;
6463         case BPF_FUNC_sk_release:
6464                 return &bpf_sk_release_proto;
6465         case BPF_FUNC_tcp_sock:
6466                 return &bpf_tcp_sock_proto;
6467         case BPF_FUNC_get_listener_sock:
6468                 return &bpf_get_listener_sock_proto;
6469         case BPF_FUNC_skc_lookup_tcp:
6470                 return &bpf_skc_lookup_tcp_proto;
6471         case BPF_FUNC_tcp_check_syncookie:
6472                 return &bpf_tcp_check_syncookie_proto;
6473         case BPF_FUNC_skb_ecn_set_ce:
6474                 return &bpf_skb_ecn_set_ce_proto;
6475         case BPF_FUNC_tcp_gen_syncookie:
6476                 return &bpf_tcp_gen_syncookie_proto;
6477         case BPF_FUNC_sk_assign:
6478                 return &bpf_sk_assign_proto;
6479 #endif
6480         default:
6481                 return bpf_base_func_proto(func_id);
6482         }
6483 }
6484
6485 static const struct bpf_func_proto *
6486 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6487 {
6488         switch (func_id) {
6489         case BPF_FUNC_perf_event_output:
6490                 return &bpf_xdp_event_output_proto;
6491         case BPF_FUNC_get_smp_processor_id:
6492                 return &bpf_get_smp_processor_id_proto;
6493         case BPF_FUNC_csum_diff:
6494                 return &bpf_csum_diff_proto;
6495         case BPF_FUNC_xdp_adjust_head:
6496                 return &bpf_xdp_adjust_head_proto;
6497         case BPF_FUNC_xdp_adjust_meta:
6498                 return &bpf_xdp_adjust_meta_proto;
6499         case BPF_FUNC_redirect:
6500                 return &bpf_xdp_redirect_proto;
6501         case BPF_FUNC_redirect_map:
6502                 return &bpf_xdp_redirect_map_proto;
6503         case BPF_FUNC_xdp_adjust_tail:
6504                 return &bpf_xdp_adjust_tail_proto;
6505         case BPF_FUNC_fib_lookup:
6506                 return &bpf_xdp_fib_lookup_proto;
6507 #ifdef CONFIG_INET
6508         case BPF_FUNC_sk_lookup_udp:
6509                 return &bpf_xdp_sk_lookup_udp_proto;
6510         case BPF_FUNC_sk_lookup_tcp:
6511                 return &bpf_xdp_sk_lookup_tcp_proto;
6512         case BPF_FUNC_sk_release:
6513                 return &bpf_sk_release_proto;
6514         case BPF_FUNC_skc_lookup_tcp:
6515                 return &bpf_xdp_skc_lookup_tcp_proto;
6516         case BPF_FUNC_tcp_check_syncookie:
6517                 return &bpf_tcp_check_syncookie_proto;
6518         case BPF_FUNC_tcp_gen_syncookie:
6519                 return &bpf_tcp_gen_syncookie_proto;
6520 #endif
6521         default:
6522                 return bpf_base_func_proto(func_id);
6523         }
6524 }
6525
6526 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
6527 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
6528
6529 static const struct bpf_func_proto *
6530 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6531 {
6532         switch (func_id) {
6533         case BPF_FUNC_setsockopt:
6534                 return &bpf_sock_ops_setsockopt_proto;
6535         case BPF_FUNC_getsockopt:
6536                 return &bpf_sock_ops_getsockopt_proto;
6537         case BPF_FUNC_sock_ops_cb_flags_set:
6538                 return &bpf_sock_ops_cb_flags_set_proto;
6539         case BPF_FUNC_sock_map_update:
6540                 return &bpf_sock_map_update_proto;
6541         case BPF_FUNC_sock_hash_update:
6542                 return &bpf_sock_hash_update_proto;
6543         case BPF_FUNC_get_socket_cookie:
6544                 return &bpf_get_socket_cookie_sock_ops_proto;
6545         case BPF_FUNC_get_local_storage:
6546                 return &bpf_get_local_storage_proto;
6547         case BPF_FUNC_perf_event_output:
6548                 return &bpf_event_output_data_proto;
6549         case BPF_FUNC_sk_storage_get:
6550                 return &bpf_sk_storage_get_proto;
6551         case BPF_FUNC_sk_storage_delete:
6552                 return &bpf_sk_storage_delete_proto;
6553 #ifdef CONFIG_INET
6554         case BPF_FUNC_tcp_sock:
6555                 return &bpf_tcp_sock_proto;
6556 #endif /* CONFIG_INET */
6557         default:
6558                 return bpf_base_func_proto(func_id);
6559         }
6560 }
6561
6562 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
6563 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
6564
6565 static const struct bpf_func_proto *
6566 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6567 {
6568         switch (func_id) {
6569         case BPF_FUNC_msg_redirect_map:
6570                 return &bpf_msg_redirect_map_proto;
6571         case BPF_FUNC_msg_redirect_hash:
6572                 return &bpf_msg_redirect_hash_proto;
6573         case BPF_FUNC_msg_apply_bytes:
6574                 return &bpf_msg_apply_bytes_proto;
6575         case BPF_FUNC_msg_cork_bytes:
6576                 return &bpf_msg_cork_bytes_proto;
6577         case BPF_FUNC_msg_pull_data:
6578                 return &bpf_msg_pull_data_proto;
6579         case BPF_FUNC_msg_push_data:
6580                 return &bpf_msg_push_data_proto;
6581         case BPF_FUNC_msg_pop_data:
6582                 return &bpf_msg_pop_data_proto;
6583         case BPF_FUNC_perf_event_output:
6584                 return &bpf_event_output_data_proto;
6585         case BPF_FUNC_get_current_uid_gid:
6586                 return &bpf_get_current_uid_gid_proto;
6587         case BPF_FUNC_get_current_pid_tgid:
6588                 return &bpf_get_current_pid_tgid_proto;
6589         case BPF_FUNC_sk_storage_get:
6590                 return &bpf_sk_storage_get_proto;
6591         case BPF_FUNC_sk_storage_delete:
6592                 return &bpf_sk_storage_delete_proto;
6593 #ifdef CONFIG_CGROUPS
6594         case BPF_FUNC_get_current_cgroup_id:
6595                 return &bpf_get_current_cgroup_id_proto;
6596         case BPF_FUNC_get_current_ancestor_cgroup_id:
6597                 return &bpf_get_current_ancestor_cgroup_id_proto;
6598 #endif
6599 #ifdef CONFIG_CGROUP_NET_CLASSID
6600         case BPF_FUNC_get_cgroup_classid:
6601                 return &bpf_get_cgroup_classid_curr_proto;
6602 #endif
6603         default:
6604                 return bpf_base_func_proto(func_id);
6605         }
6606 }
6607
6608 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
6609 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
6610
6611 static const struct bpf_func_proto *
6612 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6613 {
6614         switch (func_id) {
6615         case BPF_FUNC_skb_store_bytes:
6616                 return &bpf_skb_store_bytes_proto;
6617         case BPF_FUNC_skb_load_bytes:
6618                 return &bpf_skb_load_bytes_proto;
6619         case BPF_FUNC_skb_pull_data:
6620                 return &sk_skb_pull_data_proto;
6621         case BPF_FUNC_skb_change_tail:
6622                 return &sk_skb_change_tail_proto;
6623         case BPF_FUNC_skb_change_head:
6624                 return &sk_skb_change_head_proto;
6625         case BPF_FUNC_get_socket_cookie:
6626                 return &bpf_get_socket_cookie_proto;
6627         case BPF_FUNC_get_socket_uid:
6628                 return &bpf_get_socket_uid_proto;
6629         case BPF_FUNC_sk_redirect_map:
6630                 return &bpf_sk_redirect_map_proto;
6631         case BPF_FUNC_sk_redirect_hash:
6632                 return &bpf_sk_redirect_hash_proto;
6633         case BPF_FUNC_perf_event_output:
6634                 return &bpf_skb_event_output_proto;
6635 #ifdef CONFIG_INET
6636         case BPF_FUNC_sk_lookup_tcp:
6637                 return &bpf_sk_lookup_tcp_proto;
6638         case BPF_FUNC_sk_lookup_udp:
6639                 return &bpf_sk_lookup_udp_proto;
6640         case BPF_FUNC_sk_release:
6641                 return &bpf_sk_release_proto;
6642         case BPF_FUNC_skc_lookup_tcp:
6643                 return &bpf_skc_lookup_tcp_proto;
6644 #endif
6645         default:
6646                 return bpf_base_func_proto(func_id);
6647         }
6648 }
6649
6650 static const struct bpf_func_proto *
6651 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6652 {
6653         switch (func_id) {
6654         case BPF_FUNC_skb_load_bytes:
6655                 return &bpf_flow_dissector_load_bytes_proto;
6656         default:
6657                 return bpf_base_func_proto(func_id);
6658         }
6659 }
6660
6661 static const struct bpf_func_proto *
6662 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6663 {
6664         switch (func_id) {
6665         case BPF_FUNC_skb_load_bytes:
6666                 return &bpf_skb_load_bytes_proto;
6667         case BPF_FUNC_skb_pull_data:
6668                 return &bpf_skb_pull_data_proto;
6669         case BPF_FUNC_csum_diff:
6670                 return &bpf_csum_diff_proto;
6671         case BPF_FUNC_get_cgroup_classid:
6672                 return &bpf_get_cgroup_classid_proto;
6673         case BPF_FUNC_get_route_realm:
6674                 return &bpf_get_route_realm_proto;
6675         case BPF_FUNC_get_hash_recalc:
6676                 return &bpf_get_hash_recalc_proto;
6677         case BPF_FUNC_perf_event_output:
6678                 return &bpf_skb_event_output_proto;
6679         case BPF_FUNC_get_smp_processor_id:
6680                 return &bpf_get_smp_processor_id_proto;
6681         case BPF_FUNC_skb_under_cgroup:
6682                 return &bpf_skb_under_cgroup_proto;
6683         default:
6684                 return bpf_base_func_proto(func_id);
6685         }
6686 }
6687
6688 static const struct bpf_func_proto *
6689 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6690 {
6691         switch (func_id) {
6692         case BPF_FUNC_lwt_push_encap:
6693                 return &bpf_lwt_in_push_encap_proto;
6694         default:
6695                 return lwt_out_func_proto(func_id, prog);
6696         }
6697 }
6698
6699 static const struct bpf_func_proto *
6700 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6701 {
6702         switch (func_id) {
6703         case BPF_FUNC_skb_get_tunnel_key:
6704                 return &bpf_skb_get_tunnel_key_proto;
6705         case BPF_FUNC_skb_set_tunnel_key:
6706                 return bpf_get_skb_set_tunnel_proto(func_id);
6707         case BPF_FUNC_skb_get_tunnel_opt:
6708                 return &bpf_skb_get_tunnel_opt_proto;
6709         case BPF_FUNC_skb_set_tunnel_opt:
6710                 return bpf_get_skb_set_tunnel_proto(func_id);
6711         case BPF_FUNC_redirect:
6712                 return &bpf_redirect_proto;
6713         case BPF_FUNC_clone_redirect:
6714                 return &bpf_clone_redirect_proto;
6715         case BPF_FUNC_skb_change_tail:
6716                 return &bpf_skb_change_tail_proto;
6717         case BPF_FUNC_skb_change_head:
6718                 return &bpf_skb_change_head_proto;
6719         case BPF_FUNC_skb_store_bytes:
6720                 return &bpf_skb_store_bytes_proto;
6721         case BPF_FUNC_csum_update:
6722                 return &bpf_csum_update_proto;
6723         case BPF_FUNC_csum_level:
6724                 return &bpf_csum_level_proto;
6725         case BPF_FUNC_l3_csum_replace:
6726                 return &bpf_l3_csum_replace_proto;
6727         case BPF_FUNC_l4_csum_replace:
6728                 return &bpf_l4_csum_replace_proto;
6729         case BPF_FUNC_set_hash_invalid:
6730                 return &bpf_set_hash_invalid_proto;
6731         case BPF_FUNC_lwt_push_encap:
6732                 return &bpf_lwt_xmit_push_encap_proto;
6733         default:
6734                 return lwt_out_func_proto(func_id, prog);
6735         }
6736 }
6737
6738 static const struct bpf_func_proto *
6739 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6740 {
6741         switch (func_id) {
6742 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6743         case BPF_FUNC_lwt_seg6_store_bytes:
6744                 return &bpf_lwt_seg6_store_bytes_proto;
6745         case BPF_FUNC_lwt_seg6_action:
6746                 return &bpf_lwt_seg6_action_proto;
6747         case BPF_FUNC_lwt_seg6_adjust_srh:
6748                 return &bpf_lwt_seg6_adjust_srh_proto;
6749 #endif
6750         default:
6751                 return lwt_out_func_proto(func_id, prog);
6752         }
6753 }
6754
6755 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
6756                                     const struct bpf_prog *prog,
6757                                     struct bpf_insn_access_aux *info)
6758 {
6759         const int size_default = sizeof(__u32);
6760
6761         if (off < 0 || off >= sizeof(struct __sk_buff))
6762                 return false;
6763
6764         /* The verifier guarantees that size > 0. */
6765         if (off % size != 0)
6766                 return false;
6767
6768         switch (off) {
6769         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6770                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
6771                         return false;
6772                 break;
6773         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
6774         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
6775         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
6776         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
6777         case bpf_ctx_range(struct __sk_buff, data):
6778         case bpf_ctx_range(struct __sk_buff, data_meta):
6779         case bpf_ctx_range(struct __sk_buff, data_end):
6780                 if (size != size_default)
6781                         return false;
6782                 break;
6783         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6784                 return false;
6785         case bpf_ctx_range(struct __sk_buff, tstamp):
6786                 if (size != sizeof(__u64))
6787                         return false;
6788                 break;
6789         case offsetof(struct __sk_buff, sk):
6790                 if (type == BPF_WRITE || size != sizeof(__u64))
6791                         return false;
6792                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
6793                 break;
6794         default:
6795                 /* Only narrow read access allowed for now. */
6796                 if (type == BPF_WRITE) {
6797                         if (size != size_default)
6798                                 return false;
6799                 } else {
6800                         bpf_ctx_record_field_size(info, size_default);
6801                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6802                                 return false;
6803                 }
6804         }
6805
6806         return true;
6807 }
6808
6809 static bool sk_filter_is_valid_access(int off, int size,
6810                                       enum bpf_access_type type,
6811                                       const struct bpf_prog *prog,
6812                                       struct bpf_insn_access_aux *info)
6813 {
6814         switch (off) {
6815         case bpf_ctx_range(struct __sk_buff, tc_classid):
6816         case bpf_ctx_range(struct __sk_buff, data):
6817         case bpf_ctx_range(struct __sk_buff, data_meta):
6818         case bpf_ctx_range(struct __sk_buff, data_end):
6819         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6820         case bpf_ctx_range(struct __sk_buff, tstamp):
6821         case bpf_ctx_range(struct __sk_buff, wire_len):
6822                 return false;
6823         }
6824
6825         if (type == BPF_WRITE) {
6826                 switch (off) {
6827                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6828                         break;
6829                 default:
6830                         return false;
6831                 }
6832         }
6833
6834         return bpf_skb_is_valid_access(off, size, type, prog, info);
6835 }
6836
6837 static bool cg_skb_is_valid_access(int off, int size,
6838                                    enum bpf_access_type type,
6839                                    const struct bpf_prog *prog,
6840                                    struct bpf_insn_access_aux *info)
6841 {
6842         switch (off) {
6843         case bpf_ctx_range(struct __sk_buff, tc_classid):
6844         case bpf_ctx_range(struct __sk_buff, data_meta):
6845         case bpf_ctx_range(struct __sk_buff, wire_len):
6846                 return false;
6847         case bpf_ctx_range(struct __sk_buff, data):
6848         case bpf_ctx_range(struct __sk_buff, data_end):
6849                 if (!bpf_capable())
6850                         return false;
6851                 break;
6852         }
6853
6854         if (type == BPF_WRITE) {
6855                 switch (off) {
6856                 case bpf_ctx_range(struct __sk_buff, mark):
6857                 case bpf_ctx_range(struct __sk_buff, priority):
6858                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6859                         break;
6860                 case bpf_ctx_range(struct __sk_buff, tstamp):
6861                         if (!bpf_capable())
6862                                 return false;
6863                         break;
6864                 default:
6865                         return false;
6866                 }
6867         }
6868
6869         switch (off) {
6870         case bpf_ctx_range(struct __sk_buff, data):
6871                 info->reg_type = PTR_TO_PACKET;
6872                 break;
6873         case bpf_ctx_range(struct __sk_buff, data_end):
6874                 info->reg_type = PTR_TO_PACKET_END;
6875                 break;
6876         }
6877
6878         return bpf_skb_is_valid_access(off, size, type, prog, info);
6879 }
6880
6881 static bool lwt_is_valid_access(int off, int size,
6882                                 enum bpf_access_type type,
6883                                 const struct bpf_prog *prog,
6884                                 struct bpf_insn_access_aux *info)
6885 {
6886         switch (off) {
6887         case bpf_ctx_range(struct __sk_buff, tc_classid):
6888         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6889         case bpf_ctx_range(struct __sk_buff, data_meta):
6890         case bpf_ctx_range(struct __sk_buff, tstamp):
6891         case bpf_ctx_range(struct __sk_buff, wire_len):
6892                 return false;
6893         }
6894
6895         if (type == BPF_WRITE) {
6896                 switch (off) {
6897                 case bpf_ctx_range(struct __sk_buff, mark):
6898                 case bpf_ctx_range(struct __sk_buff, priority):
6899                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6900                         break;
6901                 default:
6902                         return false;
6903                 }
6904         }
6905
6906         switch (off) {
6907         case bpf_ctx_range(struct __sk_buff, data):
6908                 info->reg_type = PTR_TO_PACKET;
6909                 break;
6910         case bpf_ctx_range(struct __sk_buff, data_end):
6911                 info->reg_type = PTR_TO_PACKET_END;
6912                 break;
6913         }
6914
6915         return bpf_skb_is_valid_access(off, size, type, prog, info);
6916 }
6917
6918 /* Attach type specific accesses */
6919 static bool __sock_filter_check_attach_type(int off,
6920                                             enum bpf_access_type access_type,
6921                                             enum bpf_attach_type attach_type)
6922 {
6923         switch (off) {
6924         case offsetof(struct bpf_sock, bound_dev_if):
6925         case offsetof(struct bpf_sock, mark):
6926         case offsetof(struct bpf_sock, priority):
6927                 switch (attach_type) {
6928                 case BPF_CGROUP_INET_SOCK_CREATE:
6929                 case BPF_CGROUP_INET_SOCK_RELEASE:
6930                         goto full_access;
6931                 default:
6932                         return false;
6933                 }
6934         case bpf_ctx_range(struct bpf_sock, src_ip4):
6935                 switch (attach_type) {
6936                 case BPF_CGROUP_INET4_POST_BIND:
6937                         goto read_only;
6938                 default:
6939                         return false;
6940                 }
6941         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6942                 switch (attach_type) {
6943                 case BPF_CGROUP_INET6_POST_BIND:
6944                         goto read_only;
6945                 default:
6946                         return false;
6947                 }
6948         case bpf_ctx_range(struct bpf_sock, src_port):
6949                 switch (attach_type) {
6950                 case BPF_CGROUP_INET4_POST_BIND:
6951                 case BPF_CGROUP_INET6_POST_BIND:
6952                         goto read_only;
6953                 default:
6954                         return false;
6955                 }
6956         }
6957 read_only:
6958         return access_type == BPF_READ;
6959 full_access:
6960         return true;
6961 }
6962
6963 bool bpf_sock_common_is_valid_access(int off, int size,
6964                                      enum bpf_access_type type,
6965                                      struct bpf_insn_access_aux *info)
6966 {
6967         switch (off) {
6968         case bpf_ctx_range_till(struct bpf_sock, type, priority):
6969                 return false;
6970         default:
6971                 return bpf_sock_is_valid_access(off, size, type, info);
6972         }
6973 }
6974
6975 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6976                               struct bpf_insn_access_aux *info)
6977 {
6978         const int size_default = sizeof(__u32);
6979
6980         if (off < 0 || off >= sizeof(struct bpf_sock))
6981                 return false;
6982         if (off % size != 0)
6983                 return false;
6984
6985         switch (off) {
6986         case offsetof(struct bpf_sock, state):
6987         case offsetof(struct bpf_sock, family):
6988         case offsetof(struct bpf_sock, type):
6989         case offsetof(struct bpf_sock, protocol):
6990         case offsetof(struct bpf_sock, dst_port):
6991         case offsetof(struct bpf_sock, src_port):
6992         case offsetof(struct bpf_sock, rx_queue_mapping):
6993         case bpf_ctx_range(struct bpf_sock, src_ip4):
6994         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6995         case bpf_ctx_range(struct bpf_sock, dst_ip4):
6996         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
6997                 bpf_ctx_record_field_size(info, size_default);
6998                 return bpf_ctx_narrow_access_ok(off, size, size_default);
6999         }
7000
7001         return size == size_default;
7002 }
7003
7004 static bool sock_filter_is_valid_access(int off, int size,
7005                                         enum bpf_access_type type,
7006                                         const struct bpf_prog *prog,
7007                                         struct bpf_insn_access_aux *info)
7008 {
7009         if (!bpf_sock_is_valid_access(off, size, type, info))
7010                 return false;
7011         return __sock_filter_check_attach_type(off, type,
7012                                                prog->expected_attach_type);
7013 }
7014
7015 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
7016                              const struct bpf_prog *prog)
7017 {
7018         /* Neither direct read nor direct write requires any preliminary
7019          * action.
7020          */
7021         return 0;
7022 }
7023
7024 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
7025                                 const struct bpf_prog *prog, int drop_verdict)
7026 {
7027         struct bpf_insn *insn = insn_buf;
7028
7029         if (!direct_write)
7030                 return 0;
7031
7032         /* if (!skb->cloned)
7033          *       goto start;
7034          *
7035          * (Fast-path, otherwise approximation that we might be
7036          *  a clone, do the rest in helper.)
7037          */
7038         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
7039         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
7040         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
7041
7042         /* ret = bpf_skb_pull_data(skb, 0); */
7043         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
7044         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
7045         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
7046                                BPF_FUNC_skb_pull_data);
7047         /* if (!ret)
7048          *      goto restore;
7049          * return TC_ACT_SHOT;
7050          */
7051         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
7052         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
7053         *insn++ = BPF_EXIT_INSN();
7054
7055         /* restore: */
7056         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
7057         /* start: */
7058         *insn++ = prog->insnsi[0];
7059
7060         return insn - insn_buf;
7061 }
7062
7063 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
7064                           struct bpf_insn *insn_buf)
7065 {
7066         bool indirect = BPF_MODE(orig->code) == BPF_IND;
7067         struct bpf_insn *insn = insn_buf;
7068
7069         if (!indirect) {
7070                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
7071         } else {
7072                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
7073                 if (orig->imm)
7074                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
7075         }
7076         /* We're guaranteed here that CTX is in R6. */
7077         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
7078
7079         switch (BPF_SIZE(orig->code)) {
7080         case BPF_B:
7081                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
7082                 break;
7083         case BPF_H:
7084                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
7085                 break;
7086         case BPF_W:
7087                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
7088                 break;
7089         }
7090
7091         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
7092         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
7093         *insn++ = BPF_EXIT_INSN();
7094
7095         return insn - insn_buf;
7096 }
7097
7098 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
7099                                const struct bpf_prog *prog)
7100 {
7101         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
7102 }
7103
7104 static bool tc_cls_act_is_valid_access(int off, int size,
7105                                        enum bpf_access_type type,
7106                                        const struct bpf_prog *prog,
7107                                        struct bpf_insn_access_aux *info)
7108 {
7109         if (type == BPF_WRITE) {
7110                 switch (off) {
7111                 case bpf_ctx_range(struct __sk_buff, mark):
7112                 case bpf_ctx_range(struct __sk_buff, tc_index):
7113                 case bpf_ctx_range(struct __sk_buff, priority):
7114                 case bpf_ctx_range(struct __sk_buff, tc_classid):
7115                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7116                 case bpf_ctx_range(struct __sk_buff, tstamp):
7117                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
7118                         break;
7119                 default:
7120                         return false;
7121                 }
7122         }
7123
7124         switch (off) {
7125         case bpf_ctx_range(struct __sk_buff, data):
7126                 info->reg_type = PTR_TO_PACKET;
7127                 break;
7128         case bpf_ctx_range(struct __sk_buff, data_meta):
7129                 info->reg_type = PTR_TO_PACKET_META;
7130                 break;
7131         case bpf_ctx_range(struct __sk_buff, data_end):
7132                 info->reg_type = PTR_TO_PACKET_END;
7133                 break;
7134         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7135                 return false;
7136         }
7137
7138         return bpf_skb_is_valid_access(off, size, type, prog, info);
7139 }
7140
7141 static bool __is_valid_xdp_access(int off, int size)
7142 {
7143         if (off < 0 || off >= sizeof(struct xdp_md))
7144                 return false;
7145         if (off % size != 0)
7146                 return false;
7147         if (size != sizeof(__u32))
7148                 return false;
7149
7150         return true;
7151 }
7152
7153 static bool xdp_is_valid_access(int off, int size,
7154                                 enum bpf_access_type type,
7155                                 const struct bpf_prog *prog,
7156                                 struct bpf_insn_access_aux *info)
7157 {
7158         if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
7159                 switch (off) {
7160                 case offsetof(struct xdp_md, egress_ifindex):
7161                         return false;
7162                 }
7163         }
7164
7165         if (type == BPF_WRITE) {
7166                 if (bpf_prog_is_dev_bound(prog->aux)) {
7167                         switch (off) {
7168                         case offsetof(struct xdp_md, rx_queue_index):
7169                                 return __is_valid_xdp_access(off, size);
7170                         }
7171                 }
7172                 return false;
7173         }
7174
7175         switch (off) {
7176         case offsetof(struct xdp_md, data):
7177                 info->reg_type = PTR_TO_PACKET;
7178                 break;
7179         case offsetof(struct xdp_md, data_meta):
7180                 info->reg_type = PTR_TO_PACKET_META;
7181                 break;
7182         case offsetof(struct xdp_md, data_end):
7183                 info->reg_type = PTR_TO_PACKET_END;
7184                 break;
7185         }
7186
7187         return __is_valid_xdp_access(off, size);
7188 }
7189
7190 void bpf_warn_invalid_xdp_action(u32 act)
7191 {
7192         const u32 act_max = XDP_REDIRECT;
7193
7194         WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
7195                   act > act_max ? "Illegal" : "Driver unsupported",
7196                   act);
7197 }
7198 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
7199
7200 static bool sock_addr_is_valid_access(int off, int size,
7201                                       enum bpf_access_type type,
7202                                       const struct bpf_prog *prog,
7203                                       struct bpf_insn_access_aux *info)
7204 {
7205         const int size_default = sizeof(__u32);
7206
7207         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
7208                 return false;
7209         if (off % size != 0)
7210                 return false;
7211
7212         /* Disallow access to IPv6 fields from IPv4 contex and vise
7213          * versa.
7214          */
7215         switch (off) {
7216         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7217                 switch (prog->expected_attach_type) {
7218                 case BPF_CGROUP_INET4_BIND:
7219                 case BPF_CGROUP_INET4_CONNECT:
7220                 case BPF_CGROUP_INET4_GETPEERNAME:
7221                 case BPF_CGROUP_INET4_GETSOCKNAME:
7222                 case BPF_CGROUP_UDP4_SENDMSG:
7223                 case BPF_CGROUP_UDP4_RECVMSG:
7224                         break;
7225                 default:
7226                         return false;
7227                 }
7228                 break;
7229         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7230                 switch (prog->expected_attach_type) {
7231                 case BPF_CGROUP_INET6_BIND:
7232                 case BPF_CGROUP_INET6_CONNECT:
7233                 case BPF_CGROUP_INET6_GETPEERNAME:
7234                 case BPF_CGROUP_INET6_GETSOCKNAME:
7235                 case BPF_CGROUP_UDP6_SENDMSG:
7236                 case BPF_CGROUP_UDP6_RECVMSG:
7237                         break;
7238                 default:
7239                         return false;
7240                 }
7241                 break;
7242         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7243                 switch (prog->expected_attach_type) {
7244                 case BPF_CGROUP_UDP4_SENDMSG:
7245                         break;
7246                 default:
7247                         return false;
7248                 }
7249                 break;
7250         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7251                                 msg_src_ip6[3]):
7252                 switch (prog->expected_attach_type) {
7253                 case BPF_CGROUP_UDP6_SENDMSG:
7254                         break;
7255                 default:
7256                         return false;
7257                 }
7258                 break;
7259         }
7260
7261         switch (off) {
7262         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7263         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7264         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7265         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7266                                 msg_src_ip6[3]):
7267         case bpf_ctx_range(struct bpf_sock_addr, user_port):
7268                 if (type == BPF_READ) {
7269                         bpf_ctx_record_field_size(info, size_default);
7270
7271                         if (bpf_ctx_wide_access_ok(off, size,
7272                                                    struct bpf_sock_addr,
7273                                                    user_ip6))
7274                                 return true;
7275
7276                         if (bpf_ctx_wide_access_ok(off, size,
7277                                                    struct bpf_sock_addr,
7278                                                    msg_src_ip6))
7279                                 return true;
7280
7281                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7282                                 return false;
7283                 } else {
7284                         if (bpf_ctx_wide_access_ok(off, size,
7285                                                    struct bpf_sock_addr,
7286                                                    user_ip6))
7287                                 return true;
7288
7289                         if (bpf_ctx_wide_access_ok(off, size,
7290                                                    struct bpf_sock_addr,
7291                                                    msg_src_ip6))
7292                                 return true;
7293
7294                         if (size != size_default)
7295                                 return false;
7296                 }
7297                 break;
7298         case offsetof(struct bpf_sock_addr, sk):
7299                 if (type != BPF_READ)
7300                         return false;
7301                 if (size != sizeof(__u64))
7302                         return false;
7303                 info->reg_type = PTR_TO_SOCKET;
7304                 break;
7305         default:
7306                 if (type == BPF_READ) {
7307                         if (size != size_default)
7308                                 return false;
7309                 } else {
7310                         return false;
7311                 }
7312         }
7313
7314         return true;
7315 }
7316
7317 static bool sock_ops_is_valid_access(int off, int size,
7318                                      enum bpf_access_type type,
7319                                      const struct bpf_prog *prog,
7320                                      struct bpf_insn_access_aux *info)
7321 {
7322         const int size_default = sizeof(__u32);
7323
7324         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
7325                 return false;
7326
7327         /* The verifier guarantees that size > 0. */
7328         if (off % size != 0)
7329                 return false;
7330
7331         if (type == BPF_WRITE) {
7332                 switch (off) {
7333                 case offsetof(struct bpf_sock_ops, reply):
7334                 case offsetof(struct bpf_sock_ops, sk_txhash):
7335                         if (size != size_default)
7336                                 return false;
7337                         break;
7338                 default:
7339                         return false;
7340                 }
7341         } else {
7342                 switch (off) {
7343                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
7344                                         bytes_acked):
7345                         if (size != sizeof(__u64))
7346                                 return false;
7347                         break;
7348                 case offsetof(struct bpf_sock_ops, sk):
7349                         if (size != sizeof(__u64))
7350                                 return false;
7351                         info->reg_type = PTR_TO_SOCKET_OR_NULL;
7352                         break;
7353                 default:
7354                         if (size != size_default)
7355                                 return false;
7356                         break;
7357                 }
7358         }
7359
7360         return true;
7361 }
7362
7363 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
7364                            const struct bpf_prog *prog)
7365 {
7366         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
7367 }
7368
7369 static bool sk_skb_is_valid_access(int off, int size,
7370                                    enum bpf_access_type type,
7371                                    const struct bpf_prog *prog,
7372                                    struct bpf_insn_access_aux *info)
7373 {
7374         switch (off) {
7375         case bpf_ctx_range(struct __sk_buff, tc_classid):
7376         case bpf_ctx_range(struct __sk_buff, data_meta):
7377         case bpf_ctx_range(struct __sk_buff, tstamp):
7378         case bpf_ctx_range(struct __sk_buff, wire_len):
7379                 return false;
7380         }
7381
7382         if (type == BPF_WRITE) {
7383                 switch (off) {
7384                 case bpf_ctx_range(struct __sk_buff, tc_index):
7385                 case bpf_ctx_range(struct __sk_buff, priority):
7386                         break;
7387                 default:
7388                         return false;
7389                 }
7390         }
7391
7392         switch (off) {
7393         case bpf_ctx_range(struct __sk_buff, mark):
7394                 return false;
7395         case bpf_ctx_range(struct __sk_buff, data):
7396                 info->reg_type = PTR_TO_PACKET;
7397                 break;
7398         case bpf_ctx_range(struct __sk_buff, data_end):
7399                 info->reg_type = PTR_TO_PACKET_END;
7400                 break;
7401         }
7402
7403         return bpf_skb_is_valid_access(off, size, type, prog, info);
7404 }
7405
7406 static bool sk_msg_is_valid_access(int off, int size,
7407                                    enum bpf_access_type type,
7408                                    const struct bpf_prog *prog,
7409                                    struct bpf_insn_access_aux *info)
7410 {
7411         if (type == BPF_WRITE)
7412                 return false;
7413
7414         if (off % size != 0)
7415                 return false;
7416
7417         switch (off) {
7418         case offsetof(struct sk_msg_md, data):
7419                 info->reg_type = PTR_TO_PACKET;
7420                 if (size != sizeof(__u64))
7421                         return false;
7422                 break;
7423         case offsetof(struct sk_msg_md, data_end):
7424                 info->reg_type = PTR_TO_PACKET_END;
7425                 if (size != sizeof(__u64))
7426                         return false;
7427                 break;
7428         case offsetof(struct sk_msg_md, sk):
7429                 if (size != sizeof(__u64))
7430                         return false;
7431                 info->reg_type = PTR_TO_SOCKET;
7432                 break;
7433         case bpf_ctx_range(struct sk_msg_md, family):
7434         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
7435         case bpf_ctx_range(struct sk_msg_md, local_ip4):
7436         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
7437         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
7438         case bpf_ctx_range(struct sk_msg_md, remote_port):
7439         case bpf_ctx_range(struct sk_msg_md, local_port):
7440         case bpf_ctx_range(struct sk_msg_md, size):
7441                 if (size != sizeof(__u32))
7442                         return false;
7443                 break;
7444         default:
7445                 return false;
7446         }
7447         return true;
7448 }
7449
7450 static bool flow_dissector_is_valid_access(int off, int size,
7451                                            enum bpf_access_type type,
7452                                            const struct bpf_prog *prog,
7453                                            struct bpf_insn_access_aux *info)
7454 {
7455         const int size_default = sizeof(__u32);
7456
7457         if (off < 0 || off >= sizeof(struct __sk_buff))
7458                 return false;
7459
7460         if (type == BPF_WRITE)
7461                 return false;
7462
7463         switch (off) {
7464         case bpf_ctx_range(struct __sk_buff, data):
7465                 if (size != size_default)
7466                         return false;
7467                 info->reg_type = PTR_TO_PACKET;
7468                 return true;
7469         case bpf_ctx_range(struct __sk_buff, data_end):
7470                 if (size != size_default)
7471                         return false;
7472                 info->reg_type = PTR_TO_PACKET_END;
7473                 return true;
7474         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7475                 if (size != sizeof(__u64))
7476                         return false;
7477                 info->reg_type = PTR_TO_FLOW_KEYS;
7478                 return true;
7479         default:
7480                 return false;
7481         }
7482 }
7483
7484 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
7485                                              const struct bpf_insn *si,
7486                                              struct bpf_insn *insn_buf,
7487                                              struct bpf_prog *prog,
7488                                              u32 *target_size)
7489
7490 {
7491         struct bpf_insn *insn = insn_buf;
7492
7493         switch (si->off) {
7494         case offsetof(struct __sk_buff, data):
7495                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
7496                                       si->dst_reg, si->src_reg,
7497                                       offsetof(struct bpf_flow_dissector, data));
7498                 break;
7499
7500         case offsetof(struct __sk_buff, data_end):
7501                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
7502                                       si->dst_reg, si->src_reg,
7503                                       offsetof(struct bpf_flow_dissector, data_end));
7504                 break;
7505
7506         case offsetof(struct __sk_buff, flow_keys):
7507                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
7508                                       si->dst_reg, si->src_reg,
7509                                       offsetof(struct bpf_flow_dissector, flow_keys));
7510                 break;
7511         }
7512
7513         return insn - insn_buf;
7514 }
7515
7516 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
7517                                                   struct bpf_insn *insn)
7518 {
7519         /* si->dst_reg = skb_shinfo(SKB); */
7520 #ifdef NET_SKBUFF_DATA_USES_OFFSET
7521         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7522                               BPF_REG_AX, si->src_reg,
7523                               offsetof(struct sk_buff, end));
7524         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
7525                               si->dst_reg, si->src_reg,
7526                               offsetof(struct sk_buff, head));
7527         *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
7528 #else
7529         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7530                               si->dst_reg, si->src_reg,
7531                               offsetof(struct sk_buff, end));
7532 #endif
7533
7534         return insn;
7535 }
7536
7537 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
7538                                   const struct bpf_insn *si,
7539                                   struct bpf_insn *insn_buf,
7540                                   struct bpf_prog *prog, u32 *target_size)
7541 {
7542         struct bpf_insn *insn = insn_buf;
7543         int off;
7544
7545         switch (si->off) {
7546         case offsetof(struct __sk_buff, len):
7547                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7548                                       bpf_target_off(struct sk_buff, len, 4,
7549                                                      target_size));
7550                 break;
7551
7552         case offsetof(struct __sk_buff, protocol):
7553                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7554                                       bpf_target_off(struct sk_buff, protocol, 2,
7555                                                      target_size));
7556                 break;
7557
7558         case offsetof(struct __sk_buff, vlan_proto):
7559                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7560                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
7561                                                      target_size));
7562                 break;
7563
7564         case offsetof(struct __sk_buff, priority):
7565                 if (type == BPF_WRITE)
7566                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7567                                               bpf_target_off(struct sk_buff, priority, 4,
7568                                                              target_size));
7569                 else
7570                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7571                                               bpf_target_off(struct sk_buff, priority, 4,
7572                                                              target_size));
7573                 break;
7574
7575         case offsetof(struct __sk_buff, ingress_ifindex):
7576                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7577                                       bpf_target_off(struct sk_buff, skb_iif, 4,
7578                                                      target_size));
7579                 break;
7580
7581         case offsetof(struct __sk_buff, ifindex):
7582                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7583                                       si->dst_reg, si->src_reg,
7584                                       offsetof(struct sk_buff, dev));
7585                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
7586                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7587                                       bpf_target_off(struct net_device, ifindex, 4,
7588                                                      target_size));
7589                 break;
7590
7591         case offsetof(struct __sk_buff, hash):
7592                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7593                                       bpf_target_off(struct sk_buff, hash, 4,
7594                                                      target_size));
7595                 break;
7596
7597         case offsetof(struct __sk_buff, mark):
7598                 if (type == BPF_WRITE)
7599                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7600                                               bpf_target_off(struct sk_buff, mark, 4,
7601                                                              target_size));
7602                 else
7603                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7604                                               bpf_target_off(struct sk_buff, mark, 4,
7605                                                              target_size));
7606                 break;
7607
7608         case offsetof(struct __sk_buff, pkt_type):
7609                 *target_size = 1;
7610                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7611                                       PKT_TYPE_OFFSET());
7612                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
7613 #ifdef __BIG_ENDIAN_BITFIELD
7614                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
7615 #endif
7616                 break;
7617
7618         case offsetof(struct __sk_buff, queue_mapping):
7619                 if (type == BPF_WRITE) {
7620                         *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
7621                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7622                                               bpf_target_off(struct sk_buff,
7623                                                              queue_mapping,
7624                                                              2, target_size));
7625                 } else {
7626                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7627                                               bpf_target_off(struct sk_buff,
7628                                                              queue_mapping,
7629                                                              2, target_size));
7630                 }
7631                 break;
7632
7633         case offsetof(struct __sk_buff, vlan_present):
7634                 *target_size = 1;
7635                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7636                                       PKT_VLAN_PRESENT_OFFSET());
7637                 if (PKT_VLAN_PRESENT_BIT)
7638                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
7639                 if (PKT_VLAN_PRESENT_BIT < 7)
7640                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
7641                 break;
7642
7643         case offsetof(struct __sk_buff, vlan_tci):
7644                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7645                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
7646                                                      target_size));
7647                 break;
7648
7649         case offsetof(struct __sk_buff, cb[0]) ...
7650              offsetofend(struct __sk_buff, cb[4]) - 1:
7651                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
7652                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
7653                               offsetof(struct qdisc_skb_cb, data)) %
7654                              sizeof(__u64));
7655
7656                 prog->cb_access = 1;
7657                 off  = si->off;
7658                 off -= offsetof(struct __sk_buff, cb[0]);
7659                 off += offsetof(struct sk_buff, cb);
7660                 off += offsetof(struct qdisc_skb_cb, data);
7661                 if (type == BPF_WRITE)
7662                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
7663                                               si->src_reg, off);
7664                 else
7665                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
7666                                               si->src_reg, off);
7667                 break;
7668
7669         case offsetof(struct __sk_buff, tc_classid):
7670                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
7671
7672                 off  = si->off;
7673                 off -= offsetof(struct __sk_buff, tc_classid);
7674                 off += offsetof(struct sk_buff, cb);
7675                 off += offsetof(struct qdisc_skb_cb, tc_classid);
7676                 *target_size = 2;
7677                 if (type == BPF_WRITE)
7678                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
7679                                               si->src_reg, off);
7680                 else
7681                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
7682                                               si->src_reg, off);
7683                 break;
7684
7685         case offsetof(struct __sk_buff, data):
7686                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
7687                                       si->dst_reg, si->src_reg,
7688                                       offsetof(struct sk_buff, data));
7689                 break;
7690
7691         case offsetof(struct __sk_buff, data_meta):
7692                 off  = si->off;
7693                 off -= offsetof(struct __sk_buff, data_meta);
7694                 off += offsetof(struct sk_buff, cb);
7695                 off += offsetof(struct bpf_skb_data_end, data_meta);
7696                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7697                                       si->src_reg, off);
7698                 break;
7699
7700         case offsetof(struct __sk_buff, data_end):
7701                 off  = si->off;
7702                 off -= offsetof(struct __sk_buff, data_end);
7703                 off += offsetof(struct sk_buff, cb);
7704                 off += offsetof(struct bpf_skb_data_end, data_end);
7705                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7706                                       si->src_reg, off);
7707                 break;
7708
7709         case offsetof(struct __sk_buff, tc_index):
7710 #ifdef CONFIG_NET_SCHED
7711                 if (type == BPF_WRITE)
7712                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7713                                               bpf_target_off(struct sk_buff, tc_index, 2,
7714                                                              target_size));
7715                 else
7716                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7717                                               bpf_target_off(struct sk_buff, tc_index, 2,
7718                                                              target_size));
7719 #else
7720                 *target_size = 2;
7721                 if (type == BPF_WRITE)
7722                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
7723                 else
7724                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7725 #endif
7726                 break;
7727
7728         case offsetof(struct __sk_buff, napi_id):
7729 #if defined(CONFIG_NET_RX_BUSY_POLL)
7730                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7731                                       bpf_target_off(struct sk_buff, napi_id, 4,
7732                                                      target_size));
7733                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
7734                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7735 #else
7736                 *target_size = 4;
7737                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7738 #endif
7739                 break;
7740         case offsetof(struct __sk_buff, family):
7741                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
7742
7743                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7744                                       si->dst_reg, si->src_reg,
7745                                       offsetof(struct sk_buff, sk));
7746                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7747                                       bpf_target_off(struct sock_common,
7748                                                      skc_family,
7749                                                      2, target_size));
7750                 break;
7751         case offsetof(struct __sk_buff, remote_ip4):
7752                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
7753
7754                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7755                                       si->dst_reg, si->src_reg,
7756                                       offsetof(struct sk_buff, sk));
7757                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7758                                       bpf_target_off(struct sock_common,
7759                                                      skc_daddr,
7760                                                      4, target_size));
7761                 break;
7762         case offsetof(struct __sk_buff, local_ip4):
7763                 BUILD_BUG_ON(sizeof_field(struct sock_common,
7764                                           skc_rcv_saddr) != 4);
7765
7766                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7767                                       si->dst_reg, si->src_reg,
7768                                       offsetof(struct sk_buff, sk));
7769                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7770                                       bpf_target_off(struct sock_common,
7771                                                      skc_rcv_saddr,
7772                                                      4, target_size));
7773                 break;
7774         case offsetof(struct __sk_buff, remote_ip6[0]) ...
7775              offsetof(struct __sk_buff, remote_ip6[3]):
7776 #if IS_ENABLED(CONFIG_IPV6)
7777                 BUILD_BUG_ON(sizeof_field(struct sock_common,
7778                                           skc_v6_daddr.s6_addr32[0]) != 4);
7779
7780                 off = si->off;
7781                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
7782
7783                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7784                                       si->dst_reg, si->src_reg,
7785                                       offsetof(struct sk_buff, sk));
7786                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7787                                       offsetof(struct sock_common,
7788                                                skc_v6_daddr.s6_addr32[0]) +
7789                                       off);
7790 #else
7791                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7792 #endif
7793                 break;
7794         case offsetof(struct __sk_buff, local_ip6[0]) ...
7795              offsetof(struct __sk_buff, local_ip6[3]):
7796 #if IS_ENABLED(CONFIG_IPV6)
7797                 BUILD_BUG_ON(sizeof_field(struct sock_common,
7798                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
7799
7800                 off = si->off;
7801                 off -= offsetof(struct __sk_buff, local_ip6[0]);
7802
7803                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7804                                       si->dst_reg, si->src_reg,
7805                                       offsetof(struct sk_buff, sk));
7806                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7807                                       offsetof(struct sock_common,
7808                                                skc_v6_rcv_saddr.s6_addr32[0]) +
7809                                       off);
7810 #else
7811                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7812 #endif
7813                 break;
7814
7815         case offsetof(struct __sk_buff, remote_port):
7816                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
7817
7818                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7819                                       si->dst_reg, si->src_reg,
7820                                       offsetof(struct sk_buff, sk));
7821                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7822                                       bpf_target_off(struct sock_common,
7823                                                      skc_dport,
7824                                                      2, target_size));
7825 #ifndef __BIG_ENDIAN_BITFIELD
7826                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
7827 #endif
7828                 break;
7829
7830         case offsetof(struct __sk_buff, local_port):
7831                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
7832
7833                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7834                                       si->dst_reg, si->src_reg,
7835                                       offsetof(struct sk_buff, sk));
7836                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7837                                       bpf_target_off(struct sock_common,
7838                                                      skc_num, 2, target_size));
7839                 break;
7840
7841         case offsetof(struct __sk_buff, tstamp):
7842                 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
7843
7844                 if (type == BPF_WRITE)
7845                         *insn++ = BPF_STX_MEM(BPF_DW,
7846                                               si->dst_reg, si->src_reg,
7847                                               bpf_target_off(struct sk_buff,
7848                                                              tstamp, 8,
7849                                                              target_size));
7850                 else
7851                         *insn++ = BPF_LDX_MEM(BPF_DW,
7852                                               si->dst_reg, si->src_reg,
7853                                               bpf_target_off(struct sk_buff,
7854                                                              tstamp, 8,
7855                                                              target_size));
7856                 break;
7857
7858         case offsetof(struct __sk_buff, gso_segs):
7859                 insn = bpf_convert_shinfo_access(si, insn);
7860                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
7861                                       si->dst_reg, si->dst_reg,
7862                                       bpf_target_off(struct skb_shared_info,
7863                                                      gso_segs, 2,
7864                                                      target_size));
7865                 break;
7866         case offsetof(struct __sk_buff, gso_size):
7867                 insn = bpf_convert_shinfo_access(si, insn);
7868                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
7869                                       si->dst_reg, si->dst_reg,
7870                                       bpf_target_off(struct skb_shared_info,
7871                                                      gso_size, 2,
7872                                                      target_size));
7873                 break;
7874         case offsetof(struct __sk_buff, wire_len):
7875                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
7876
7877                 off = si->off;
7878                 off -= offsetof(struct __sk_buff, wire_len);
7879                 off += offsetof(struct sk_buff, cb);
7880                 off += offsetof(struct qdisc_skb_cb, pkt_len);
7881                 *target_size = 4;
7882                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
7883                 break;
7884
7885         case offsetof(struct __sk_buff, sk):
7886                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7887                                       si->dst_reg, si->src_reg,
7888                                       offsetof(struct sk_buff, sk));
7889                 break;
7890         }
7891
7892         return insn - insn_buf;
7893 }
7894
7895 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
7896                                 const struct bpf_insn *si,
7897                                 struct bpf_insn *insn_buf,
7898                                 struct bpf_prog *prog, u32 *target_size)
7899 {
7900         struct bpf_insn *insn = insn_buf;
7901         int off;
7902
7903         switch (si->off) {
7904         case offsetof(struct bpf_sock, bound_dev_if):
7905                 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
7906
7907                 if (type == BPF_WRITE)
7908                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7909                                         offsetof(struct sock, sk_bound_dev_if));
7910                 else
7911                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7912                                       offsetof(struct sock, sk_bound_dev_if));
7913                 break;
7914
7915         case offsetof(struct bpf_sock, mark):
7916                 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
7917
7918                 if (type == BPF_WRITE)
7919                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7920                                         offsetof(struct sock, sk_mark));
7921                 else
7922                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7923                                       offsetof(struct sock, sk_mark));
7924                 break;
7925
7926         case offsetof(struct bpf_sock, priority):
7927                 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
7928
7929                 if (type == BPF_WRITE)
7930                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7931                                         offsetof(struct sock, sk_priority));
7932                 else
7933                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7934                                       offsetof(struct sock, sk_priority));
7935                 break;
7936
7937         case offsetof(struct bpf_sock, family):
7938                 *insn++ = BPF_LDX_MEM(
7939                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
7940                         si->dst_reg, si->src_reg,
7941                         bpf_target_off(struct sock_common,
7942                                        skc_family,
7943                                        sizeof_field(struct sock_common,
7944                                                     skc_family),
7945                                        target_size));
7946                 break;
7947
7948         case offsetof(struct bpf_sock, type):
7949                 *insn++ = BPF_LDX_MEM(
7950                         BPF_FIELD_SIZEOF(struct sock, sk_type),
7951                         si->dst_reg, si->src_reg,
7952                         bpf_target_off(struct sock, sk_type,
7953                                        sizeof_field(struct sock, sk_type),
7954                                        target_size));
7955                 break;
7956
7957         case offsetof(struct bpf_sock, protocol):
7958                 *insn++ = BPF_LDX_MEM(
7959                         BPF_FIELD_SIZEOF(struct sock, sk_protocol),
7960                         si->dst_reg, si->src_reg,
7961                         bpf_target_off(struct sock, sk_protocol,
7962                                        sizeof_field(struct sock, sk_protocol),
7963                                        target_size));
7964                 break;
7965
7966         case offsetof(struct bpf_sock, src_ip4):
7967                 *insn++ = BPF_LDX_MEM(
7968                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7969                         bpf_target_off(struct sock_common, skc_rcv_saddr,
7970                                        sizeof_field(struct sock_common,
7971                                                     skc_rcv_saddr),
7972                                        target_size));
7973                 break;
7974
7975         case offsetof(struct bpf_sock, dst_ip4):
7976                 *insn++ = BPF_LDX_MEM(
7977                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7978                         bpf_target_off(struct sock_common, skc_daddr,
7979                                        sizeof_field(struct sock_common,
7980                                                     skc_daddr),
7981                                        target_size));
7982                 break;
7983
7984         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7985 #if IS_ENABLED(CONFIG_IPV6)
7986                 off = si->off;
7987                 off -= offsetof(struct bpf_sock, src_ip6[0]);
7988                 *insn++ = BPF_LDX_MEM(
7989                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7990                         bpf_target_off(
7991                                 struct sock_common,
7992                                 skc_v6_rcv_saddr.s6_addr32[0],
7993                                 sizeof_field(struct sock_common,
7994                                              skc_v6_rcv_saddr.s6_addr32[0]),
7995                                 target_size) + off);
7996 #else
7997                 (void)off;
7998                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7999 #endif
8000                 break;
8001
8002         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8003 #if IS_ENABLED(CONFIG_IPV6)
8004                 off = si->off;
8005                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
8006                 *insn++ = BPF_LDX_MEM(
8007                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8008                         bpf_target_off(struct sock_common,
8009                                        skc_v6_daddr.s6_addr32[0],
8010                                        sizeof_field(struct sock_common,
8011                                                     skc_v6_daddr.s6_addr32[0]),
8012                                        target_size) + off);
8013 #else
8014                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8015                 *target_size = 4;
8016 #endif
8017                 break;
8018
8019         case offsetof(struct bpf_sock, src_port):
8020                 *insn++ = BPF_LDX_MEM(
8021                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
8022                         si->dst_reg, si->src_reg,
8023                         bpf_target_off(struct sock_common, skc_num,
8024                                        sizeof_field(struct sock_common,
8025                                                     skc_num),
8026                                        target_size));
8027                 break;
8028
8029         case offsetof(struct bpf_sock, dst_port):
8030                 *insn++ = BPF_LDX_MEM(
8031                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
8032                         si->dst_reg, si->src_reg,
8033                         bpf_target_off(struct sock_common, skc_dport,
8034                                        sizeof_field(struct sock_common,
8035                                                     skc_dport),
8036                                        target_size));
8037                 break;
8038
8039         case offsetof(struct bpf_sock, state):
8040                 *insn++ = BPF_LDX_MEM(
8041                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
8042                         si->dst_reg, si->src_reg,
8043                         bpf_target_off(struct sock_common, skc_state,
8044                                        sizeof_field(struct sock_common,
8045                                                     skc_state),
8046                                        target_size));
8047                 break;
8048         case offsetof(struct bpf_sock, rx_queue_mapping):
8049 #ifdef CONFIG_XPS
8050                 *insn++ = BPF_LDX_MEM(
8051                         BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
8052                         si->dst_reg, si->src_reg,
8053                         bpf_target_off(struct sock, sk_rx_queue_mapping,
8054                                        sizeof_field(struct sock,
8055                                                     sk_rx_queue_mapping),
8056                                        target_size));
8057                 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
8058                                       1);
8059                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8060 #else
8061                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8062                 *target_size = 2;
8063 #endif
8064                 break;
8065         }
8066
8067         return insn - insn_buf;
8068 }
8069
8070 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
8071                                          const struct bpf_insn *si,
8072                                          struct bpf_insn *insn_buf,
8073                                          struct bpf_prog *prog, u32 *target_size)
8074 {
8075         struct bpf_insn *insn = insn_buf;
8076
8077         switch (si->off) {
8078         case offsetof(struct __sk_buff, ifindex):
8079                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8080                                       si->dst_reg, si->src_reg,
8081                                       offsetof(struct sk_buff, dev));
8082                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8083                                       bpf_target_off(struct net_device, ifindex, 4,
8084                                                      target_size));
8085                 break;
8086         default:
8087                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
8088                                               target_size);
8089         }
8090
8091         return insn - insn_buf;
8092 }
8093
8094 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
8095                                   const struct bpf_insn *si,
8096                                   struct bpf_insn *insn_buf,
8097                                   struct bpf_prog *prog, u32 *target_size)
8098 {
8099         struct bpf_insn *insn = insn_buf;
8100
8101         switch (si->off) {
8102         case offsetof(struct xdp_md, data):
8103                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
8104                                       si->dst_reg, si->src_reg,
8105                                       offsetof(struct xdp_buff, data));
8106                 break;
8107         case offsetof(struct xdp_md, data_meta):
8108                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
8109                                       si->dst_reg, si->src_reg,
8110                                       offsetof(struct xdp_buff, data_meta));
8111                 break;
8112         case offsetof(struct xdp_md, data_end):
8113                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
8114                                       si->dst_reg, si->src_reg,
8115                                       offsetof(struct xdp_buff, data_end));
8116                 break;
8117         case offsetof(struct xdp_md, ingress_ifindex):
8118                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8119                                       si->dst_reg, si->src_reg,
8120                                       offsetof(struct xdp_buff, rxq));
8121                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
8122                                       si->dst_reg, si->dst_reg,
8123                                       offsetof(struct xdp_rxq_info, dev));
8124                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8125                                       offsetof(struct net_device, ifindex));
8126                 break;
8127         case offsetof(struct xdp_md, rx_queue_index):
8128                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8129                                       si->dst_reg, si->src_reg,
8130                                       offsetof(struct xdp_buff, rxq));
8131                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8132                                       offsetof(struct xdp_rxq_info,
8133                                                queue_index));
8134                 break;
8135         case offsetof(struct xdp_md, egress_ifindex):
8136                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
8137                                       si->dst_reg, si->src_reg,
8138                                       offsetof(struct xdp_buff, txq));
8139                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
8140                                       si->dst_reg, si->dst_reg,
8141                                       offsetof(struct xdp_txq_info, dev));
8142                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8143                                       offsetof(struct net_device, ifindex));
8144                 break;
8145         }
8146
8147         return insn - insn_buf;
8148 }
8149
8150 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
8151  * context Structure, F is Field in context structure that contains a pointer
8152  * to Nested Structure of type NS that has the field NF.
8153  *
8154  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
8155  * sure that SIZE is not greater than actual size of S.F.NF.
8156  *
8157  * If offset OFF is provided, the load happens from that offset relative to
8158  * offset of NF.
8159  */
8160 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
8161         do {                                                                   \
8162                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
8163                                       si->src_reg, offsetof(S, F));            \
8164                 *insn++ = BPF_LDX_MEM(                                         \
8165                         SIZE, si->dst_reg, si->dst_reg,                        \
8166                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
8167                                        target_size)                            \
8168                                 + OFF);                                        \
8169         } while (0)
8170
8171 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
8172         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
8173                                              BPF_FIELD_SIZEOF(NS, NF), 0)
8174
8175 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
8176  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
8177  *
8178  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
8179  * "register" since two registers available in convert_ctx_access are not
8180  * enough: we can't override neither SRC, since it contains value to store, nor
8181  * DST since it contains pointer to context that may be used by later
8182  * instructions. But we need a temporary place to save pointer to nested
8183  * structure whose field we want to store to.
8184  */
8185 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
8186         do {                                                                   \
8187                 int tmp_reg = BPF_REG_9;                                       \
8188                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
8189                         --tmp_reg;                                             \
8190                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
8191                         --tmp_reg;                                             \
8192                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
8193                                       offsetof(S, TF));                        \
8194                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
8195                                       si->dst_reg, offsetof(S, F));            \
8196                 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
8197                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
8198                                        target_size)                            \
8199                                 + OFF);                                        \
8200                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
8201                                       offsetof(S, TF));                        \
8202         } while (0)
8203
8204 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
8205                                                       TF)                      \
8206         do {                                                                   \
8207                 if (type == BPF_WRITE) {                                       \
8208                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
8209                                                          OFF, TF);             \
8210                 } else {                                                       \
8211                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
8212                                 S, NS, F, NF, SIZE, OFF);  \
8213                 }                                                              \
8214         } while (0)
8215
8216 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
8217         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
8218                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
8219
8220 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
8221                                         const struct bpf_insn *si,
8222                                         struct bpf_insn *insn_buf,
8223                                         struct bpf_prog *prog, u32 *target_size)
8224 {
8225         int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
8226         struct bpf_insn *insn = insn_buf;
8227
8228         switch (si->off) {
8229         case offsetof(struct bpf_sock_addr, user_family):
8230                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8231                                             struct sockaddr, uaddr, sa_family);
8232                 break;
8233
8234         case offsetof(struct bpf_sock_addr, user_ip4):
8235                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8236                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
8237                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
8238                 break;
8239
8240         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8241                 off = si->off;
8242                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
8243                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8244                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
8245                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
8246                         tmp_reg);
8247                 break;
8248
8249         case offsetof(struct bpf_sock_addr, user_port):
8250                 /* To get port we need to know sa_family first and then treat
8251                  * sockaddr as either sockaddr_in or sockaddr_in6.
8252                  * Though we can simplify since port field has same offset and
8253                  * size in both structures.
8254                  * Here we check this invariant and use just one of the
8255                  * structures if it's true.
8256                  */
8257                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
8258                              offsetof(struct sockaddr_in6, sin6_port));
8259                 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
8260                              sizeof_field(struct sockaddr_in6, sin6_port));
8261                 /* Account for sin6_port being smaller than user_port. */
8262                 port_size = min(port_size, BPF_LDST_BYTES(si));
8263                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8264                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
8265                         sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
8266                 break;
8267
8268         case offsetof(struct bpf_sock_addr, family):
8269                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8270                                             struct sock, sk, sk_family);
8271                 break;
8272
8273         case offsetof(struct bpf_sock_addr, type):
8274                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8275                                             struct sock, sk, sk_type);
8276                 break;
8277
8278         case offsetof(struct bpf_sock_addr, protocol):
8279                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8280                                             struct sock, sk, sk_protocol);
8281                 break;
8282
8283         case offsetof(struct bpf_sock_addr, msg_src_ip4):
8284                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
8285                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8286                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
8287                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
8288                 break;
8289
8290         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8291                                 msg_src_ip6[3]):
8292                 off = si->off;
8293                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
8294                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
8295                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8296                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
8297                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
8298                 break;
8299         case offsetof(struct bpf_sock_addr, sk):
8300                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
8301                                       si->dst_reg, si->src_reg,
8302                                       offsetof(struct bpf_sock_addr_kern, sk));
8303                 break;
8304         }
8305
8306         return insn - insn_buf;
8307 }
8308
8309 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
8310                                        const struct bpf_insn *si,
8311                                        struct bpf_insn *insn_buf,
8312                                        struct bpf_prog *prog,
8313                                        u32 *target_size)
8314 {
8315         struct bpf_insn *insn = insn_buf;
8316         int off;
8317
8318 /* Helper macro for adding read access to tcp_sock or sock fields. */
8319 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
8320         do {                                                                  \
8321                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
8322                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
8323                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
8324                 if (si->dst_reg == reg || si->src_reg == reg)                 \
8325                         reg--;                                                \
8326                 if (si->dst_reg == reg || si->src_reg == reg)                 \
8327                         reg--;                                                \
8328                 if (si->dst_reg == si->src_reg) {                             \
8329                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
8330                                           offsetof(struct bpf_sock_ops_kern,  \
8331                                           temp));                             \
8332                         fullsock_reg = reg;                                   \
8333                         jmp += 2;                                             \
8334                 }                                                             \
8335                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
8336                                                 struct bpf_sock_ops_kern,     \
8337                                                 is_fullsock),                 \
8338                                       fullsock_reg, si->src_reg,              \
8339                                       offsetof(struct bpf_sock_ops_kern,      \
8340                                                is_fullsock));                 \
8341                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
8342                 if (si->dst_reg == si->src_reg)                               \
8343                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
8344                                       offsetof(struct bpf_sock_ops_kern,      \
8345                                       temp));                                 \
8346                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
8347                                                 struct bpf_sock_ops_kern, sk),\
8348                                       si->dst_reg, si->src_reg,               \
8349                                       offsetof(struct bpf_sock_ops_kern, sk));\
8350                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
8351                                                        OBJ_FIELD),            \
8352                                       si->dst_reg, si->dst_reg,               \
8353                                       offsetof(OBJ, OBJ_FIELD));              \
8354                 if (si->dst_reg == si->src_reg) {                             \
8355                         *insn++ = BPF_JMP_A(1);                               \
8356                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
8357                                       offsetof(struct bpf_sock_ops_kern,      \
8358                                       temp));                                 \
8359                 }                                                             \
8360         } while (0)
8361
8362 #define SOCK_OPS_GET_SK()                                                             \
8363         do {                                                                  \
8364                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
8365                 if (si->dst_reg == reg || si->src_reg == reg)                 \
8366                         reg--;                                                \
8367                 if (si->dst_reg == reg || si->src_reg == reg)                 \
8368                         reg--;                                                \
8369                 if (si->dst_reg == si->src_reg) {                             \
8370                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
8371                                           offsetof(struct bpf_sock_ops_kern,  \
8372                                           temp));                             \
8373                         fullsock_reg = reg;                                   \
8374                         jmp += 2;                                             \
8375                 }                                                             \
8376                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
8377                                                 struct bpf_sock_ops_kern,     \
8378                                                 is_fullsock),                 \
8379                                       fullsock_reg, si->src_reg,              \
8380                                       offsetof(struct bpf_sock_ops_kern,      \
8381                                                is_fullsock));                 \
8382                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
8383                 if (si->dst_reg == si->src_reg)                               \
8384                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
8385                                       offsetof(struct bpf_sock_ops_kern,      \
8386                                       temp));                                 \
8387                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
8388                                                 struct bpf_sock_ops_kern, sk),\
8389                                       si->dst_reg, si->src_reg,               \
8390                                       offsetof(struct bpf_sock_ops_kern, sk));\
8391                 if (si->dst_reg == si->src_reg) {                             \
8392                         *insn++ = BPF_JMP_A(1);                               \
8393                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
8394                                       offsetof(struct bpf_sock_ops_kern,      \
8395                                       temp));                                 \
8396                 }                                                             \
8397         } while (0)
8398
8399 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
8400                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
8401
8402 /* Helper macro for adding write access to tcp_sock or sock fields.
8403  * The macro is called with two registers, dst_reg which contains a pointer
8404  * to ctx (context) and src_reg which contains the value that should be
8405  * stored. However, we need an additional register since we cannot overwrite
8406  * dst_reg because it may be used later in the program.
8407  * Instead we "borrow" one of the other register. We first save its value
8408  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
8409  * it at the end of the macro.
8410  */
8411 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
8412         do {                                                                  \
8413                 int reg = BPF_REG_9;                                          \
8414                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
8415                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
8416                 if (si->dst_reg == reg || si->src_reg == reg)                 \
8417                         reg--;                                                \
8418                 if (si->dst_reg == reg || si->src_reg == reg)                 \
8419                         reg--;                                                \
8420                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
8421                                       offsetof(struct bpf_sock_ops_kern,      \
8422                                                temp));                        \
8423                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
8424                                                 struct bpf_sock_ops_kern,     \
8425                                                 is_fullsock),                 \
8426                                       reg, si->dst_reg,                       \
8427                                       offsetof(struct bpf_sock_ops_kern,      \
8428                                                is_fullsock));                 \
8429                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
8430                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
8431                                                 struct bpf_sock_ops_kern, sk),\
8432                                       reg, si->dst_reg,                       \
8433                                       offsetof(struct bpf_sock_ops_kern, sk));\
8434                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
8435                                       reg, si->src_reg,                       \
8436                                       offsetof(OBJ, OBJ_FIELD));              \
8437                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
8438                                       offsetof(struct bpf_sock_ops_kern,      \
8439                                                temp));                        \
8440         } while (0)
8441
8442 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
8443         do {                                                                  \
8444                 if (TYPE == BPF_WRITE)                                        \
8445                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
8446                 else                                                          \
8447                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
8448         } while (0)
8449
8450         if (insn > insn_buf)
8451                 return insn - insn_buf;
8452
8453         switch (si->off) {
8454         case offsetof(struct bpf_sock_ops, op) ...
8455              offsetof(struct bpf_sock_ops, replylong[3]):
8456                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, op) !=
8457                              sizeof_field(struct bpf_sock_ops_kern, op));
8458                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
8459                              sizeof_field(struct bpf_sock_ops_kern, reply));
8460                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
8461                              sizeof_field(struct bpf_sock_ops_kern, replylong));
8462                 off = si->off;
8463                 off -= offsetof(struct bpf_sock_ops, op);
8464                 off += offsetof(struct bpf_sock_ops_kern, op);
8465                 if (type == BPF_WRITE)
8466                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8467                                               off);
8468                 else
8469                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8470                                               off);
8471                 break;
8472
8473         case offsetof(struct bpf_sock_ops, family):
8474                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8475
8476                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8477                                               struct bpf_sock_ops_kern, sk),
8478                                       si->dst_reg, si->src_reg,
8479                                       offsetof(struct bpf_sock_ops_kern, sk));
8480                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8481                                       offsetof(struct sock_common, skc_family));
8482                 break;
8483
8484         case offsetof(struct bpf_sock_ops, remote_ip4):
8485                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8486
8487                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8488                                                 struct bpf_sock_ops_kern, sk),
8489                                       si->dst_reg, si->src_reg,
8490                                       offsetof(struct bpf_sock_ops_kern, sk));
8491                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8492                                       offsetof(struct sock_common, skc_daddr));
8493                 break;
8494
8495         case offsetof(struct bpf_sock_ops, local_ip4):
8496                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8497                                           skc_rcv_saddr) != 4);
8498
8499                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8500                                               struct bpf_sock_ops_kern, sk),
8501                                       si->dst_reg, si->src_reg,
8502                                       offsetof(struct bpf_sock_ops_kern, sk));
8503                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8504                                       offsetof(struct sock_common,
8505                                                skc_rcv_saddr));
8506                 break;
8507
8508         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
8509              offsetof(struct bpf_sock_ops, remote_ip6[3]):
8510 #if IS_ENABLED(CONFIG_IPV6)
8511                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8512                                           skc_v6_daddr.s6_addr32[0]) != 4);
8513
8514                 off = si->off;
8515                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
8516                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8517                                                 struct bpf_sock_ops_kern, sk),
8518                                       si->dst_reg, si->src_reg,
8519                                       offsetof(struct bpf_sock_ops_kern, sk));
8520                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8521                                       offsetof(struct sock_common,
8522                                                skc_v6_daddr.s6_addr32[0]) +
8523                                       off);
8524 #else
8525                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8526 #endif
8527                 break;
8528
8529         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
8530              offsetof(struct bpf_sock_ops, local_ip6[3]):
8531 #if IS_ENABLED(CONFIG_IPV6)
8532                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8533                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8534
8535                 off = si->off;
8536                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
8537                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8538                                                 struct bpf_sock_ops_kern, sk),
8539                                       si->dst_reg, si->src_reg,
8540                                       offsetof(struct bpf_sock_ops_kern, sk));
8541                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8542                                       offsetof(struct sock_common,
8543                                                skc_v6_rcv_saddr.s6_addr32[0]) +
8544                                       off);
8545 #else
8546                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8547 #endif
8548                 break;
8549
8550         case offsetof(struct bpf_sock_ops, remote_port):
8551                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8552
8553                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8554                                                 struct bpf_sock_ops_kern, sk),
8555                                       si->dst_reg, si->src_reg,
8556                                       offsetof(struct bpf_sock_ops_kern, sk));
8557                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8558                                       offsetof(struct sock_common, skc_dport));
8559 #ifndef __BIG_ENDIAN_BITFIELD
8560                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8561 #endif
8562                 break;
8563
8564         case offsetof(struct bpf_sock_ops, local_port):
8565                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8566
8567                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8568                                                 struct bpf_sock_ops_kern, sk),
8569                                       si->dst_reg, si->src_reg,
8570                                       offsetof(struct bpf_sock_ops_kern, sk));
8571                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8572                                       offsetof(struct sock_common, skc_num));
8573                 break;
8574
8575         case offsetof(struct bpf_sock_ops, is_fullsock):
8576                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8577                                                 struct bpf_sock_ops_kern,
8578                                                 is_fullsock),
8579                                       si->dst_reg, si->src_reg,
8580                                       offsetof(struct bpf_sock_ops_kern,
8581                                                is_fullsock));
8582                 break;
8583
8584         case offsetof(struct bpf_sock_ops, state):
8585                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
8586
8587                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8588                                                 struct bpf_sock_ops_kern, sk),
8589                                       si->dst_reg, si->src_reg,
8590                                       offsetof(struct bpf_sock_ops_kern, sk));
8591                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
8592                                       offsetof(struct sock_common, skc_state));
8593                 break;
8594
8595         case offsetof(struct bpf_sock_ops, rtt_min):
8596                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
8597                              sizeof(struct minmax));
8598                 BUILD_BUG_ON(sizeof(struct minmax) <
8599                              sizeof(struct minmax_sample));
8600
8601                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8602                                                 struct bpf_sock_ops_kern, sk),
8603                                       si->dst_reg, si->src_reg,
8604                                       offsetof(struct bpf_sock_ops_kern, sk));
8605                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8606                                       offsetof(struct tcp_sock, rtt_min) +
8607                                       sizeof_field(struct minmax_sample, t));
8608                 break;
8609
8610         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
8611                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
8612                                    struct tcp_sock);
8613                 break;
8614
8615         case offsetof(struct bpf_sock_ops, sk_txhash):
8616                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
8617                                           struct sock, type);
8618                 break;
8619         case offsetof(struct bpf_sock_ops, snd_cwnd):
8620                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
8621                 break;
8622         case offsetof(struct bpf_sock_ops, srtt_us):
8623                 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
8624                 break;
8625         case offsetof(struct bpf_sock_ops, snd_ssthresh):
8626                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
8627                 break;
8628         case offsetof(struct bpf_sock_ops, rcv_nxt):
8629                 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
8630                 break;
8631         case offsetof(struct bpf_sock_ops, snd_nxt):
8632                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
8633                 break;
8634         case offsetof(struct bpf_sock_ops, snd_una):
8635                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
8636                 break;
8637         case offsetof(struct bpf_sock_ops, mss_cache):
8638                 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
8639                 break;
8640         case offsetof(struct bpf_sock_ops, ecn_flags):
8641                 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
8642                 break;
8643         case offsetof(struct bpf_sock_ops, rate_delivered):
8644                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
8645                 break;
8646         case offsetof(struct bpf_sock_ops, rate_interval_us):
8647                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
8648                 break;
8649         case offsetof(struct bpf_sock_ops, packets_out):
8650                 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
8651                 break;
8652         case offsetof(struct bpf_sock_ops, retrans_out):
8653                 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
8654                 break;
8655         case offsetof(struct bpf_sock_ops, total_retrans):
8656                 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
8657                 break;
8658         case offsetof(struct bpf_sock_ops, segs_in):
8659                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
8660                 break;
8661         case offsetof(struct bpf_sock_ops, data_segs_in):
8662                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
8663                 break;
8664         case offsetof(struct bpf_sock_ops, segs_out):
8665                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
8666                 break;
8667         case offsetof(struct bpf_sock_ops, data_segs_out):
8668                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
8669                 break;
8670         case offsetof(struct bpf_sock_ops, lost_out):
8671                 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
8672                 break;
8673         case offsetof(struct bpf_sock_ops, sacked_out):
8674                 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
8675                 break;
8676         case offsetof(struct bpf_sock_ops, bytes_received):
8677                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
8678                 break;
8679         case offsetof(struct bpf_sock_ops, bytes_acked):
8680                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
8681                 break;
8682         case offsetof(struct bpf_sock_ops, sk):
8683                 SOCK_OPS_GET_SK();
8684                 break;
8685         }
8686         return insn - insn_buf;
8687 }
8688
8689 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
8690                                      const struct bpf_insn *si,
8691                                      struct bpf_insn *insn_buf,
8692                                      struct bpf_prog *prog, u32 *target_size)
8693 {
8694         struct bpf_insn *insn = insn_buf;
8695         int off;
8696
8697         switch (si->off) {
8698         case offsetof(struct __sk_buff, data_end):
8699                 off  = si->off;
8700                 off -= offsetof(struct __sk_buff, data_end);
8701                 off += offsetof(struct sk_buff, cb);
8702                 off += offsetof(struct tcp_skb_cb, bpf.data_end);
8703                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8704                                       si->src_reg, off);
8705                 break;
8706         default:
8707                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
8708                                               target_size);
8709         }
8710
8711         return insn - insn_buf;
8712 }
8713
8714 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
8715                                      const struct bpf_insn *si,
8716                                      struct bpf_insn *insn_buf,
8717                                      struct bpf_prog *prog, u32 *target_size)
8718 {
8719         struct bpf_insn *insn = insn_buf;
8720 #if IS_ENABLED(CONFIG_IPV6)
8721         int off;
8722 #endif
8723
8724         /* convert ctx uses the fact sg element is first in struct */
8725         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
8726
8727         switch (si->off) {
8728         case offsetof(struct sk_msg_md, data):
8729                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
8730                                       si->dst_reg, si->src_reg,
8731                                       offsetof(struct sk_msg, data));
8732                 break;
8733         case offsetof(struct sk_msg_md, data_end):
8734                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
8735                                       si->dst_reg, si->src_reg,
8736                                       offsetof(struct sk_msg, data_end));
8737                 break;
8738         case offsetof(struct sk_msg_md, family):
8739                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8740
8741                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8742                                               struct sk_msg, sk),
8743                                       si->dst_reg, si->src_reg,
8744                                       offsetof(struct sk_msg, sk));
8745                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8746                                       offsetof(struct sock_common, skc_family));
8747                 break;
8748
8749         case offsetof(struct sk_msg_md, remote_ip4):
8750                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8751
8752                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8753                                                 struct sk_msg, sk),
8754                                       si->dst_reg, si->src_reg,
8755                                       offsetof(struct sk_msg, sk));
8756                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8757                                       offsetof(struct sock_common, skc_daddr));
8758                 break;
8759
8760         case offsetof(struct sk_msg_md, local_ip4):
8761                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8762                                           skc_rcv_saddr) != 4);
8763
8764                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8765                                               struct sk_msg, sk),
8766                                       si->dst_reg, si->src_reg,
8767                                       offsetof(struct sk_msg, sk));
8768                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8769                                       offsetof(struct sock_common,
8770                                                skc_rcv_saddr));
8771                 break;
8772
8773         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
8774              offsetof(struct sk_msg_md, remote_ip6[3]):
8775 #if IS_ENABLED(CONFIG_IPV6)
8776                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8777                                           skc_v6_daddr.s6_addr32[0]) != 4);
8778
8779                 off = si->off;
8780                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
8781                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8782                                                 struct sk_msg, sk),
8783                                       si->dst_reg, si->src_reg,
8784                                       offsetof(struct sk_msg, sk));
8785                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8786                                       offsetof(struct sock_common,
8787                                                skc_v6_daddr.s6_addr32[0]) +
8788                                       off);
8789 #else
8790                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8791 #endif
8792                 break;
8793
8794         case offsetof(struct sk_msg_md, local_ip6[0]) ...
8795              offsetof(struct sk_msg_md, local_ip6[3]):
8796 #if IS_ENABLED(CONFIG_IPV6)
8797                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8798                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8799
8800                 off = si->off;
8801                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
8802                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8803                                                 struct sk_msg, sk),
8804                                       si->dst_reg, si->src_reg,
8805                                       offsetof(struct sk_msg, sk));
8806                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8807                                       offsetof(struct sock_common,
8808                                                skc_v6_rcv_saddr.s6_addr32[0]) +
8809                                       off);
8810 #else
8811                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8812 #endif
8813                 break;
8814
8815         case offsetof(struct sk_msg_md, remote_port):
8816                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8817
8818                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8819                                                 struct sk_msg, sk),
8820                                       si->dst_reg, si->src_reg,
8821                                       offsetof(struct sk_msg, sk));
8822                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8823                                       offsetof(struct sock_common, skc_dport));
8824 #ifndef __BIG_ENDIAN_BITFIELD
8825                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8826 #endif
8827                 break;
8828
8829         case offsetof(struct sk_msg_md, local_port):
8830                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8831
8832                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8833                                                 struct sk_msg, sk),
8834                                       si->dst_reg, si->src_reg,
8835                                       offsetof(struct sk_msg, sk));
8836                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8837                                       offsetof(struct sock_common, skc_num));
8838                 break;
8839
8840         case offsetof(struct sk_msg_md, size):
8841                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
8842                                       si->dst_reg, si->src_reg,
8843                                       offsetof(struct sk_msg_sg, size));
8844                 break;
8845
8846         case offsetof(struct sk_msg_md, sk):
8847                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
8848                                       si->dst_reg, si->src_reg,
8849                                       offsetof(struct sk_msg, sk));
8850                 break;
8851         }
8852
8853         return insn - insn_buf;
8854 }
8855
8856 const struct bpf_verifier_ops sk_filter_verifier_ops = {
8857         .get_func_proto         = sk_filter_func_proto,
8858         .is_valid_access        = sk_filter_is_valid_access,
8859         .convert_ctx_access     = bpf_convert_ctx_access,
8860         .gen_ld_abs             = bpf_gen_ld_abs,
8861 };
8862
8863 const struct bpf_prog_ops sk_filter_prog_ops = {
8864         .test_run               = bpf_prog_test_run_skb,
8865 };
8866
8867 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
8868         .get_func_proto         = tc_cls_act_func_proto,
8869         .is_valid_access        = tc_cls_act_is_valid_access,
8870         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
8871         .gen_prologue           = tc_cls_act_prologue,
8872         .gen_ld_abs             = bpf_gen_ld_abs,
8873 };
8874
8875 const struct bpf_prog_ops tc_cls_act_prog_ops = {
8876         .test_run               = bpf_prog_test_run_skb,
8877 };
8878
8879 const struct bpf_verifier_ops xdp_verifier_ops = {
8880         .get_func_proto         = xdp_func_proto,
8881         .is_valid_access        = xdp_is_valid_access,
8882         .convert_ctx_access     = xdp_convert_ctx_access,
8883         .gen_prologue           = bpf_noop_prologue,
8884 };
8885
8886 const struct bpf_prog_ops xdp_prog_ops = {
8887         .test_run               = bpf_prog_test_run_xdp,
8888 };
8889
8890 const struct bpf_verifier_ops cg_skb_verifier_ops = {
8891         .get_func_proto         = cg_skb_func_proto,
8892         .is_valid_access        = cg_skb_is_valid_access,
8893         .convert_ctx_access     = bpf_convert_ctx_access,
8894 };
8895
8896 const struct bpf_prog_ops cg_skb_prog_ops = {
8897         .test_run               = bpf_prog_test_run_skb,
8898 };
8899
8900 const struct bpf_verifier_ops lwt_in_verifier_ops = {
8901         .get_func_proto         = lwt_in_func_proto,
8902         .is_valid_access        = lwt_is_valid_access,
8903         .convert_ctx_access     = bpf_convert_ctx_access,
8904 };
8905
8906 const struct bpf_prog_ops lwt_in_prog_ops = {
8907         .test_run               = bpf_prog_test_run_skb,
8908 };
8909
8910 const struct bpf_verifier_ops lwt_out_verifier_ops = {
8911         .get_func_proto         = lwt_out_func_proto,
8912         .is_valid_access        = lwt_is_valid_access,
8913         .convert_ctx_access     = bpf_convert_ctx_access,
8914 };
8915
8916 const struct bpf_prog_ops lwt_out_prog_ops = {
8917         .test_run               = bpf_prog_test_run_skb,
8918 };
8919
8920 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
8921         .get_func_proto         = lwt_xmit_func_proto,
8922         .is_valid_access        = lwt_is_valid_access,
8923         .convert_ctx_access     = bpf_convert_ctx_access,
8924         .gen_prologue           = tc_cls_act_prologue,
8925 };
8926
8927 const struct bpf_prog_ops lwt_xmit_prog_ops = {
8928         .test_run               = bpf_prog_test_run_skb,
8929 };
8930
8931 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
8932         .get_func_proto         = lwt_seg6local_func_proto,
8933         .is_valid_access        = lwt_is_valid_access,
8934         .convert_ctx_access     = bpf_convert_ctx_access,
8935 };
8936
8937 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
8938         .test_run               = bpf_prog_test_run_skb,
8939 };
8940
8941 const struct bpf_verifier_ops cg_sock_verifier_ops = {
8942         .get_func_proto         = sock_filter_func_proto,
8943         .is_valid_access        = sock_filter_is_valid_access,
8944         .convert_ctx_access     = bpf_sock_convert_ctx_access,
8945 };
8946
8947 const struct bpf_prog_ops cg_sock_prog_ops = {
8948 };
8949
8950 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
8951         .get_func_proto         = sock_addr_func_proto,
8952         .is_valid_access        = sock_addr_is_valid_access,
8953         .convert_ctx_access     = sock_addr_convert_ctx_access,
8954 };
8955
8956 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
8957 };
8958
8959 const struct bpf_verifier_ops sock_ops_verifier_ops = {
8960         .get_func_proto         = sock_ops_func_proto,
8961         .is_valid_access        = sock_ops_is_valid_access,
8962         .convert_ctx_access     = sock_ops_convert_ctx_access,
8963 };
8964
8965 const struct bpf_prog_ops sock_ops_prog_ops = {
8966 };
8967
8968 const struct bpf_verifier_ops sk_skb_verifier_ops = {
8969         .get_func_proto         = sk_skb_func_proto,
8970         .is_valid_access        = sk_skb_is_valid_access,
8971         .convert_ctx_access     = sk_skb_convert_ctx_access,
8972         .gen_prologue           = sk_skb_prologue,
8973 };
8974
8975 const struct bpf_prog_ops sk_skb_prog_ops = {
8976 };
8977
8978 const struct bpf_verifier_ops sk_msg_verifier_ops = {
8979         .get_func_proto         = sk_msg_func_proto,
8980         .is_valid_access        = sk_msg_is_valid_access,
8981         .convert_ctx_access     = sk_msg_convert_ctx_access,
8982         .gen_prologue           = bpf_noop_prologue,
8983 };
8984
8985 const struct bpf_prog_ops sk_msg_prog_ops = {
8986 };
8987
8988 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
8989         .get_func_proto         = flow_dissector_func_proto,
8990         .is_valid_access        = flow_dissector_is_valid_access,
8991         .convert_ctx_access     = flow_dissector_convert_ctx_access,
8992 };
8993
8994 const struct bpf_prog_ops flow_dissector_prog_ops = {
8995         .test_run               = bpf_prog_test_run_flow_dissector,
8996 };
8997
8998 int sk_detach_filter(struct sock *sk)
8999 {
9000         int ret = -ENOENT;
9001         struct sk_filter *filter;
9002
9003         if (sock_flag(sk, SOCK_FILTER_LOCKED))
9004                 return -EPERM;
9005
9006         filter = rcu_dereference_protected(sk->sk_filter,
9007                                            lockdep_sock_is_held(sk));
9008         if (filter) {
9009                 RCU_INIT_POINTER(sk->sk_filter, NULL);
9010                 sk_filter_uncharge(sk, filter);
9011                 ret = 0;
9012         }
9013
9014         return ret;
9015 }
9016 EXPORT_SYMBOL_GPL(sk_detach_filter);
9017
9018 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
9019                   unsigned int len)
9020 {
9021         struct sock_fprog_kern *fprog;
9022         struct sk_filter *filter;
9023         int ret = 0;
9024
9025         lock_sock(sk);
9026         filter = rcu_dereference_protected(sk->sk_filter,
9027                                            lockdep_sock_is_held(sk));
9028         if (!filter)
9029                 goto out;
9030
9031         /* We're copying the filter that has been originally attached,
9032          * so no conversion/decode needed anymore. eBPF programs that
9033          * have no original program cannot be dumped through this.
9034          */
9035         ret = -EACCES;
9036         fprog = filter->prog->orig_prog;
9037         if (!fprog)
9038                 goto out;
9039
9040         ret = fprog->len;
9041         if (!len)
9042                 /* User space only enquires number of filter blocks. */
9043                 goto out;
9044
9045         ret = -EINVAL;
9046         if (len < fprog->len)
9047                 goto out;
9048
9049         ret = -EFAULT;
9050         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
9051                 goto out;
9052
9053         /* Instead of bytes, the API requests to return the number
9054          * of filter blocks.
9055          */
9056         ret = fprog->len;
9057 out:
9058         release_sock(sk);
9059         return ret;
9060 }
9061
9062 #ifdef CONFIG_INET
9063 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
9064                                     struct sock_reuseport *reuse,
9065                                     struct sock *sk, struct sk_buff *skb,
9066                                     u32 hash)
9067 {
9068         reuse_kern->skb = skb;
9069         reuse_kern->sk = sk;
9070         reuse_kern->selected_sk = NULL;
9071         reuse_kern->data_end = skb->data + skb_headlen(skb);
9072         reuse_kern->hash = hash;
9073         reuse_kern->reuseport_id = reuse->reuseport_id;
9074         reuse_kern->bind_inany = reuse->bind_inany;
9075 }
9076
9077 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
9078                                   struct bpf_prog *prog, struct sk_buff *skb,
9079                                   u32 hash)
9080 {
9081         struct sk_reuseport_kern reuse_kern;
9082         enum sk_action action;
9083
9084         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
9085         action = BPF_PROG_RUN(prog, &reuse_kern);
9086
9087         if (action == SK_PASS)
9088                 return reuse_kern.selected_sk;
9089         else
9090                 return ERR_PTR(-ECONNREFUSED);
9091 }
9092
9093 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
9094            struct bpf_map *, map, void *, key, u32, flags)
9095 {
9096         bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
9097         struct sock_reuseport *reuse;
9098         struct sock *selected_sk;
9099
9100         selected_sk = map->ops->map_lookup_elem(map, key);
9101         if (!selected_sk)
9102                 return -ENOENT;
9103
9104         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
9105         if (!reuse) {
9106                 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
9107                 if (sk_is_refcounted(selected_sk))
9108                         sock_put(selected_sk);
9109
9110                 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
9111                  * The only (!reuse) case here is - the sk has already been
9112                  * unhashed (e.g. by close()), so treat it as -ENOENT.
9113                  *
9114                  * Other maps (e.g. sock_map) do not provide this guarantee and
9115                  * the sk may never be in the reuseport group to begin with.
9116                  */
9117                 return is_sockarray ? -ENOENT : -EINVAL;
9118         }
9119
9120         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
9121                 struct sock *sk = reuse_kern->sk;
9122
9123                 if (sk->sk_protocol != selected_sk->sk_protocol)
9124                         return -EPROTOTYPE;
9125                 else if (sk->sk_family != selected_sk->sk_family)
9126                         return -EAFNOSUPPORT;
9127
9128                 /* Catch all. Likely bound to a different sockaddr. */
9129                 return -EBADFD;
9130         }
9131
9132         reuse_kern->selected_sk = selected_sk;
9133
9134         return 0;
9135 }
9136
9137 static const struct bpf_func_proto sk_select_reuseport_proto = {
9138         .func           = sk_select_reuseport,
9139         .gpl_only       = false,
9140         .ret_type       = RET_INTEGER,
9141         .arg1_type      = ARG_PTR_TO_CTX,
9142         .arg2_type      = ARG_CONST_MAP_PTR,
9143         .arg3_type      = ARG_PTR_TO_MAP_KEY,
9144         .arg4_type      = ARG_ANYTHING,
9145 };
9146
9147 BPF_CALL_4(sk_reuseport_load_bytes,
9148            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
9149            void *, to, u32, len)
9150 {
9151         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
9152 }
9153
9154 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
9155         .func           = sk_reuseport_load_bytes,
9156         .gpl_only       = false,
9157         .ret_type       = RET_INTEGER,
9158         .arg1_type      = ARG_PTR_TO_CTX,
9159         .arg2_type      = ARG_ANYTHING,
9160         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
9161         .arg4_type      = ARG_CONST_SIZE,
9162 };
9163
9164 BPF_CALL_5(sk_reuseport_load_bytes_relative,
9165            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
9166            void *, to, u32, len, u32, start_header)
9167 {
9168         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
9169                                                len, start_header);
9170 }
9171
9172 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
9173         .func           = sk_reuseport_load_bytes_relative,
9174         .gpl_only       = false,
9175         .ret_type       = RET_INTEGER,
9176         .arg1_type      = ARG_PTR_TO_CTX,
9177         .arg2_type      = ARG_ANYTHING,
9178         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
9179         .arg4_type      = ARG_CONST_SIZE,
9180         .arg5_type      = ARG_ANYTHING,
9181 };
9182
9183 static const struct bpf_func_proto *
9184 sk_reuseport_func_proto(enum bpf_func_id func_id,
9185                         const struct bpf_prog *prog)
9186 {
9187         switch (func_id) {
9188         case BPF_FUNC_sk_select_reuseport:
9189                 return &sk_select_reuseport_proto;
9190         case BPF_FUNC_skb_load_bytes:
9191                 return &sk_reuseport_load_bytes_proto;
9192         case BPF_FUNC_skb_load_bytes_relative:
9193                 return &sk_reuseport_load_bytes_relative_proto;
9194         default:
9195                 return bpf_base_func_proto(func_id);
9196         }
9197 }
9198
9199 static bool
9200 sk_reuseport_is_valid_access(int off, int size,
9201                              enum bpf_access_type type,
9202                              const struct bpf_prog *prog,
9203                              struct bpf_insn_access_aux *info)
9204 {
9205         const u32 size_default = sizeof(__u32);
9206
9207         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
9208             off % size || type != BPF_READ)
9209                 return false;
9210
9211         switch (off) {
9212         case offsetof(struct sk_reuseport_md, data):
9213                 info->reg_type = PTR_TO_PACKET;
9214                 return size == sizeof(__u64);
9215
9216         case offsetof(struct sk_reuseport_md, data_end):
9217                 info->reg_type = PTR_TO_PACKET_END;
9218                 return size == sizeof(__u64);
9219
9220         case offsetof(struct sk_reuseport_md, hash):
9221                 return size == size_default;
9222
9223         /* Fields that allow narrowing */
9224         case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
9225                 if (size < sizeof_field(struct sk_buff, protocol))
9226                         return false;
9227                 fallthrough;
9228         case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
9229         case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
9230         case bpf_ctx_range(struct sk_reuseport_md, len):
9231                 bpf_ctx_record_field_size(info, size_default);
9232                 return bpf_ctx_narrow_access_ok(off, size, size_default);
9233
9234         default:
9235                 return false;
9236         }
9237 }
9238
9239 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
9240         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
9241                               si->dst_reg, si->src_reg,                 \
9242                               bpf_target_off(struct sk_reuseport_kern, F, \
9243                                              sizeof_field(struct sk_reuseport_kern, F), \
9244                                              target_size));             \
9245         })
9246
9247 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
9248         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
9249                                     struct sk_buff,                     \
9250                                     skb,                                \
9251                                     SKB_FIELD)
9252
9253 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
9254         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
9255                                     struct sock,                        \
9256                                     sk,                                 \
9257                                     SK_FIELD)
9258
9259 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
9260                                            const struct bpf_insn *si,
9261                                            struct bpf_insn *insn_buf,
9262                                            struct bpf_prog *prog,
9263                                            u32 *target_size)
9264 {
9265         struct bpf_insn *insn = insn_buf;
9266
9267         switch (si->off) {
9268         case offsetof(struct sk_reuseport_md, data):
9269                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
9270                 break;
9271
9272         case offsetof(struct sk_reuseport_md, len):
9273                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
9274                 break;
9275
9276         case offsetof(struct sk_reuseport_md, eth_protocol):
9277                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
9278                 break;
9279
9280         case offsetof(struct sk_reuseport_md, ip_protocol):
9281                 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
9282                 break;
9283
9284         case offsetof(struct sk_reuseport_md, data_end):
9285                 SK_REUSEPORT_LOAD_FIELD(data_end);
9286                 break;
9287
9288         case offsetof(struct sk_reuseport_md, hash):
9289                 SK_REUSEPORT_LOAD_FIELD(hash);
9290                 break;
9291
9292         case offsetof(struct sk_reuseport_md, bind_inany):
9293                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
9294                 break;
9295         }
9296
9297         return insn - insn_buf;
9298 }
9299
9300 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
9301         .get_func_proto         = sk_reuseport_func_proto,
9302         .is_valid_access        = sk_reuseport_is_valid_access,
9303         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
9304 };
9305
9306 const struct bpf_prog_ops sk_reuseport_prog_ops = {
9307 };
9308
9309 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
9310 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
9311
9312 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
9313            struct sock *, sk, u64, flags)
9314 {
9315         if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
9316                                BPF_SK_LOOKUP_F_NO_REUSEPORT)))
9317                 return -EINVAL;
9318         if (unlikely(sk && sk_is_refcounted(sk)))
9319                 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
9320         if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
9321                 return -ESOCKTNOSUPPORT; /* reject connected sockets */
9322
9323         /* Check if socket is suitable for packet L3/L4 protocol */
9324         if (sk && sk->sk_protocol != ctx->protocol)
9325                 return -EPROTOTYPE;
9326         if (sk && sk->sk_family != ctx->family &&
9327             (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
9328                 return -EAFNOSUPPORT;
9329
9330         if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
9331                 return -EEXIST;
9332
9333         /* Select socket as lookup result */
9334         ctx->selected_sk = sk;
9335         ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
9336         return 0;
9337 }
9338
9339 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
9340         .func           = bpf_sk_lookup_assign,
9341         .gpl_only       = false,
9342         .ret_type       = RET_INTEGER,
9343         .arg1_type      = ARG_PTR_TO_CTX,
9344         .arg2_type      = ARG_PTR_TO_SOCKET_OR_NULL,
9345         .arg3_type      = ARG_ANYTHING,
9346 };
9347
9348 static const struct bpf_func_proto *
9349 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
9350 {
9351         switch (func_id) {
9352         case BPF_FUNC_perf_event_output:
9353                 return &bpf_event_output_data_proto;
9354         case BPF_FUNC_sk_assign:
9355                 return &bpf_sk_lookup_assign_proto;
9356         case BPF_FUNC_sk_release:
9357                 return &bpf_sk_release_proto;
9358         default:
9359                 return bpf_base_func_proto(func_id);
9360         }
9361 }
9362
9363 static bool sk_lookup_is_valid_access(int off, int size,
9364                                       enum bpf_access_type type,
9365                                       const struct bpf_prog *prog,
9366                                       struct bpf_insn_access_aux *info)
9367 {
9368         if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
9369                 return false;
9370         if (off % size != 0)
9371                 return false;
9372         if (type != BPF_READ)
9373                 return false;
9374
9375         switch (off) {
9376         case offsetof(struct bpf_sk_lookup, sk):
9377                 info->reg_type = PTR_TO_SOCKET_OR_NULL;
9378                 return size == sizeof(__u64);
9379
9380         case bpf_ctx_range(struct bpf_sk_lookup, family):
9381         case bpf_ctx_range(struct bpf_sk_lookup, protocol):
9382         case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
9383         case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
9384         case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
9385         case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
9386         case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
9387         case bpf_ctx_range(struct bpf_sk_lookup, local_port):
9388                 bpf_ctx_record_field_size(info, sizeof(__u32));
9389                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
9390
9391         default:
9392                 return false;
9393         }
9394 }
9395
9396 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
9397                                         const struct bpf_insn *si,
9398                                         struct bpf_insn *insn_buf,
9399                                         struct bpf_prog *prog,
9400                                         u32 *target_size)
9401 {
9402         struct bpf_insn *insn = insn_buf;
9403
9404         switch (si->off) {
9405         case offsetof(struct bpf_sk_lookup, sk):
9406                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
9407                                       offsetof(struct bpf_sk_lookup_kern, selected_sk));
9408                 break;
9409
9410         case offsetof(struct bpf_sk_lookup, family):
9411                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9412                                       bpf_target_off(struct bpf_sk_lookup_kern,
9413                                                      family, 2, target_size));
9414                 break;
9415
9416         case offsetof(struct bpf_sk_lookup, protocol):
9417                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9418                                       bpf_target_off(struct bpf_sk_lookup_kern,
9419                                                      protocol, 2, target_size));
9420                 break;
9421
9422         case offsetof(struct bpf_sk_lookup, remote_ip4):
9423                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9424                                       bpf_target_off(struct bpf_sk_lookup_kern,
9425                                                      v4.saddr, 4, target_size));
9426                 break;
9427
9428         case offsetof(struct bpf_sk_lookup, local_ip4):
9429                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9430                                       bpf_target_off(struct bpf_sk_lookup_kern,
9431                                                      v4.daddr, 4, target_size));
9432                 break;
9433
9434         case bpf_ctx_range_till(struct bpf_sk_lookup,
9435                                 remote_ip6[0], remote_ip6[3]): {
9436 #if IS_ENABLED(CONFIG_IPV6)
9437                 int off = si->off;
9438
9439                 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
9440                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
9441                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
9442                                       offsetof(struct bpf_sk_lookup_kern, v6.saddr));
9443                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9444                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
9445 #else
9446                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9447 #endif
9448                 break;
9449         }
9450         case bpf_ctx_range_till(struct bpf_sk_lookup,
9451                                 local_ip6[0], local_ip6[3]): {
9452 #if IS_ENABLED(CONFIG_IPV6)
9453                 int off = si->off;
9454
9455                 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
9456                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
9457                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
9458                                       offsetof(struct bpf_sk_lookup_kern, v6.daddr));
9459                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9460                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
9461 #else
9462                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9463 #endif
9464                 break;
9465         }
9466         case offsetof(struct bpf_sk_lookup, remote_port):
9467                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9468                                       bpf_target_off(struct bpf_sk_lookup_kern,
9469                                                      sport, 2, target_size));
9470                 break;
9471
9472         case offsetof(struct bpf_sk_lookup, local_port):
9473                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9474                                       bpf_target_off(struct bpf_sk_lookup_kern,
9475                                                      dport, 2, target_size));
9476                 break;
9477         }
9478
9479         return insn - insn_buf;
9480 }
9481
9482 const struct bpf_prog_ops sk_lookup_prog_ops = {
9483 };
9484
9485 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
9486         .get_func_proto         = sk_lookup_func_proto,
9487         .is_valid_access        = sk_lookup_is_valid_access,
9488         .convert_ctx_access     = sk_lookup_convert_ctx_access,
9489 };
9490
9491 #endif /* CONFIG_INET */
9492
9493 DEFINE_BPF_DISPATCHER(xdp)
9494
9495 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
9496 {
9497         bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
9498 }
9499
9500 #ifdef CONFIG_DEBUG_INFO_BTF
9501 BTF_ID_LIST_GLOBAL(btf_sock_ids)
9502 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
9503 BTF_SOCK_TYPE_xxx
9504 #undef BTF_SOCK_TYPE
9505 #else
9506 u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
9507 #endif
9508
9509 static bool check_arg_btf_id(u32 btf_id, u32 arg)
9510 {
9511         int i;
9512
9513         /* only one argument, no need to check arg */
9514         for (i = 0; i < MAX_BTF_SOCK_TYPE; i++)
9515                 if (btf_sock_ids[i] == btf_id)
9516                         return true;
9517         return false;
9518 }
9519
9520 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
9521 {
9522         /* tcp6_sock type is not generated in dwarf and hence btf,
9523          * trigger an explicit type generation here.
9524          */
9525         BTF_TYPE_EMIT(struct tcp6_sock);
9526         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
9527             sk->sk_family == AF_INET6)
9528                 return (unsigned long)sk;
9529
9530         return (unsigned long)NULL;
9531 }
9532
9533 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
9534         .func                   = bpf_skc_to_tcp6_sock,
9535         .gpl_only               = false,
9536         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
9537         .arg1_type              = ARG_PTR_TO_BTF_ID,
9538         .check_btf_id           = check_arg_btf_id,
9539         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
9540 };
9541
9542 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
9543 {
9544         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
9545                 return (unsigned long)sk;
9546
9547         return (unsigned long)NULL;
9548 }
9549
9550 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
9551         .func                   = bpf_skc_to_tcp_sock,
9552         .gpl_only               = false,
9553         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
9554         .arg1_type              = ARG_PTR_TO_BTF_ID,
9555         .check_btf_id           = check_arg_btf_id,
9556         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
9557 };
9558
9559 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
9560 {
9561 #ifdef CONFIG_INET
9562         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
9563                 return (unsigned long)sk;
9564 #endif
9565
9566 #if IS_BUILTIN(CONFIG_IPV6)
9567         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
9568                 return (unsigned long)sk;
9569 #endif
9570
9571         return (unsigned long)NULL;
9572 }
9573
9574 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
9575         .func                   = bpf_skc_to_tcp_timewait_sock,
9576         .gpl_only               = false,
9577         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
9578         .arg1_type              = ARG_PTR_TO_BTF_ID,
9579         .check_btf_id           = check_arg_btf_id,
9580         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
9581 };
9582
9583 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
9584 {
9585 #ifdef CONFIG_INET
9586         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
9587                 return (unsigned long)sk;
9588 #endif
9589
9590 #if IS_BUILTIN(CONFIG_IPV6)
9591         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
9592                 return (unsigned long)sk;
9593 #endif
9594
9595         return (unsigned long)NULL;
9596 }
9597
9598 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
9599         .func                   = bpf_skc_to_tcp_request_sock,
9600         .gpl_only               = false,
9601         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
9602         .arg1_type              = ARG_PTR_TO_BTF_ID,
9603         .check_btf_id           = check_arg_btf_id,
9604         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
9605 };
9606
9607 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
9608 {
9609         /* udp6_sock type is not generated in dwarf and hence btf,
9610          * trigger an explicit type generation here.
9611          */
9612         BTF_TYPE_EMIT(struct udp6_sock);
9613         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
9614             sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
9615                 return (unsigned long)sk;
9616
9617         return (unsigned long)NULL;
9618 }
9619
9620 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
9621         .func                   = bpf_skc_to_udp6_sock,
9622         .gpl_only               = false,
9623         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
9624         .arg1_type              = ARG_PTR_TO_BTF_ID,
9625         .check_btf_id           = check_arg_btf_id,
9626         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
9627 };