Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include "irq.h"
20 #include "ioapic.h"
21 #include "mmu.h"
22 #include "mmu_internal.h"
23 #include "tdp_mmu.h"
24 #include "x86.h"
25 #include "kvm_cache_regs.h"
26 #include "smm.h"
27 #include "kvm_emulate.h"
28 #include "page_track.h"
29 #include "cpuid.h"
30 #include "spte.h"
31
32 #include <linux/kvm_host.h>
33 #include <linux/types.h>
34 #include <linux/string.h>
35 #include <linux/mm.h>
36 #include <linux/highmem.h>
37 #include <linux/moduleparam.h>
38 #include <linux/export.h>
39 #include <linux/swap.h>
40 #include <linux/hugetlb.h>
41 #include <linux/compiler.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/sched/signal.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <linux/kern_levels.h>
48 #include <linux/kstrtox.h>
49 #include <linux/kthread.h>
50
51 #include <asm/page.h>
52 #include <asm/memtype.h>
53 #include <asm/cmpxchg.h>
54 #include <asm/io.h>
55 #include <asm/set_memory.h>
56 #include <asm/vmx.h>
57
58 #include "trace.h"
59
60 extern bool itlb_multihit_kvm_mitigation;
61
62 static bool nx_hugepage_mitigation_hard_disabled;
63
64 int __read_mostly nx_huge_pages = -1;
65 static uint __read_mostly nx_huge_pages_recovery_period_ms;
66 #ifdef CONFIG_PREEMPT_RT
67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
69 #else
70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
71 #endif
72
73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp);
74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
76
77 static const struct kernel_param_ops nx_huge_pages_ops = {
78         .set = set_nx_huge_pages,
79         .get = get_nx_huge_pages,
80 };
81
82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
83         .set = set_nx_huge_pages_recovery_param,
84         .get = param_get_uint,
85 };
86
87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
88 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
90                 &nx_huge_pages_recovery_ratio, 0644);
91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
93                 &nx_huge_pages_recovery_period_ms, 0644);
94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
95
96 static bool __read_mostly force_flush_and_sync_on_reuse;
97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
98
99 /*
100  * When setting this variable to true it enables Two-Dimensional-Paging
101  * where the hardware walks 2 page tables:
102  * 1. the guest-virtual to guest-physical
103  * 2. while doing 1. it walks guest-physical to host-physical
104  * If the hardware supports that we don't need to do shadow paging.
105  */
106 bool tdp_enabled = false;
107
108 static bool __ro_after_init tdp_mmu_allowed;
109
110 #ifdef CONFIG_X86_64
111 bool __read_mostly tdp_mmu_enabled = true;
112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444);
113 #endif
114
115 static int max_huge_page_level __read_mostly;
116 static int tdp_root_level __read_mostly;
117 static int max_tdp_level __read_mostly;
118
119 #define PTE_PREFETCH_NUM                8
120
121 #include <trace/events/kvm.h>
122
123 /* make pte_list_desc fit well in cache lines */
124 #define PTE_LIST_EXT 14
125
126 /*
127  * struct pte_list_desc is the core data structure used to implement a custom
128  * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a
129  * given GFN when used in the context of rmaps.  Using a custom list allows KVM
130  * to optimize for the common case where many GFNs will have at most a handful
131  * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small
132  * memory footprint, which in turn improves runtime performance by exploiting
133  * cache locality.
134  *
135  * A list is comprised of one or more pte_list_desc objects (descriptors).
136  * Each individual descriptor stores up to PTE_LIST_EXT SPTEs.  If a descriptor
137  * is full and a new SPTEs needs to be added, a new descriptor is allocated and
138  * becomes the head of the list.  This means that by definitions, all tail
139  * descriptors are full.
140  *
141  * Note, the meta data fields are deliberately placed at the start of the
142  * structure to optimize the cacheline layout; accessing the descriptor will
143  * touch only a single cacheline so long as @spte_count<=6 (or if only the
144  * descriptors metadata is accessed).
145  */
146 struct pte_list_desc {
147         struct pte_list_desc *more;
148         /* The number of PTEs stored in _this_ descriptor. */
149         u32 spte_count;
150         /* The number of PTEs stored in all tails of this descriptor. */
151         u32 tail_count;
152         u64 *sptes[PTE_LIST_EXT];
153 };
154
155 struct kvm_shadow_walk_iterator {
156         u64 addr;
157         hpa_t shadow_addr;
158         u64 *sptep;
159         int level;
160         unsigned index;
161 };
162
163 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
164         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
165                                          (_root), (_addr));                \
166              shadow_walk_okay(&(_walker));                                 \
167              shadow_walk_next(&(_walker)))
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
170         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
171              shadow_walk_okay(&(_walker));                      \
172              shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
175         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
176              shadow_walk_okay(&(_walker)) &&                            \
177                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
178              __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static void mmu_spte_set(u64 *sptep, u64 spte);
185
186 struct kvm_mmu_role_regs {
187         const unsigned long cr0;
188         const unsigned long cr4;
189         const u64 efer;
190 };
191
192 #define CREATE_TRACE_POINTS
193 #include "mmutrace.h"
194
195 /*
196  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
197  * reading from the role_regs.  Once the root_role is constructed, it becomes
198  * the single source of truth for the MMU's state.
199  */
200 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)                   \
201 static inline bool __maybe_unused                                       \
202 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs)             \
203 {                                                                       \
204         return !!(regs->reg & flag);                                    \
205 }
206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
215 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
216
217 /*
218  * The MMU itself (with a valid role) is the single source of truth for the
219  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
220  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
221  * and the vCPU may be incorrect/irrelevant.
222  */
223 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)         \
224 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)        \
225 {                                                               \
226         return !!(mmu->cpu_role. base_or_ext . reg##_##name);   \
227 }
228 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
229 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
230 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
231 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
232 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
233 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
235 BUILD_MMU_ROLE_ACCESSOR(ext,  efer, lma);
236
237 static inline bool is_cr0_pg(struct kvm_mmu *mmu)
238 {
239         return mmu->cpu_role.base.level > 0;
240 }
241
242 static inline bool is_cr4_pae(struct kvm_mmu *mmu)
243 {
244         return !mmu->cpu_role.base.has_4_byte_gpte;
245 }
246
247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
248 {
249         struct kvm_mmu_role_regs regs = {
250                 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
251                 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
252                 .efer = vcpu->arch.efer,
253         };
254
255         return regs;
256 }
257
258 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu)
259 {
260         return kvm_read_cr3(vcpu);
261 }
262
263 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu,
264                                                   struct kvm_mmu *mmu)
265 {
266         if (IS_ENABLED(CONFIG_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3)
267                 return kvm_read_cr3(vcpu);
268
269         return mmu->get_guest_pgd(vcpu);
270 }
271
272 static inline bool kvm_available_flush_remote_tlbs_range(void)
273 {
274         return kvm_x86_ops.flush_remote_tlbs_range;
275 }
276
277 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
278 {
279         if (!kvm_x86_ops.flush_remote_tlbs_range)
280                 return -EOPNOTSUPP;
281
282         return static_call(kvm_x86_flush_remote_tlbs_range)(kvm, gfn, nr_pages);
283 }
284
285 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index);
286
287 /* Flush the range of guest memory mapped by the given SPTE. */
288 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep)
289 {
290         struct kvm_mmu_page *sp = sptep_to_sp(sptep);
291         gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep));
292
293         kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
294 }
295
296 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
297                            unsigned int access)
298 {
299         u64 spte = make_mmio_spte(vcpu, gfn, access);
300
301         trace_mark_mmio_spte(sptep, gfn, spte);
302         mmu_spte_set(sptep, spte);
303 }
304
305 static gfn_t get_mmio_spte_gfn(u64 spte)
306 {
307         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
308
309         gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
310                & shadow_nonpresent_or_rsvd_mask;
311
312         return gpa >> PAGE_SHIFT;
313 }
314
315 static unsigned get_mmio_spte_access(u64 spte)
316 {
317         return spte & shadow_mmio_access_mask;
318 }
319
320 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
321 {
322         u64 kvm_gen, spte_gen, gen;
323
324         gen = kvm_vcpu_memslots(vcpu)->generation;
325         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
326                 return false;
327
328         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
329         spte_gen = get_mmio_spte_generation(spte);
330
331         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
332         return likely(kvm_gen == spte_gen);
333 }
334
335 static int is_cpuid_PSE36(void)
336 {
337         return 1;
338 }
339
340 #ifdef CONFIG_X86_64
341 static void __set_spte(u64 *sptep, u64 spte)
342 {
343         WRITE_ONCE(*sptep, spte);
344 }
345
346 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347 {
348         WRITE_ONCE(*sptep, spte);
349 }
350
351 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352 {
353         return xchg(sptep, spte);
354 }
355
356 static u64 __get_spte_lockless(u64 *sptep)
357 {
358         return READ_ONCE(*sptep);
359 }
360 #else
361 union split_spte {
362         struct {
363                 u32 spte_low;
364                 u32 spte_high;
365         };
366         u64 spte;
367 };
368
369 static void count_spte_clear(u64 *sptep, u64 spte)
370 {
371         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
372
373         if (is_shadow_present_pte(spte))
374                 return;
375
376         /* Ensure the spte is completely set before we increase the count */
377         smp_wmb();
378         sp->clear_spte_count++;
379 }
380
381 static void __set_spte(u64 *sptep, u64 spte)
382 {
383         union split_spte *ssptep, sspte;
384
385         ssptep = (union split_spte *)sptep;
386         sspte = (union split_spte)spte;
387
388         ssptep->spte_high = sspte.spte_high;
389
390         /*
391          * If we map the spte from nonpresent to present, We should store
392          * the high bits firstly, then set present bit, so cpu can not
393          * fetch this spte while we are setting the spte.
394          */
395         smp_wmb();
396
397         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
398 }
399
400 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
401 {
402         union split_spte *ssptep, sspte;
403
404         ssptep = (union split_spte *)sptep;
405         sspte = (union split_spte)spte;
406
407         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
408
409         /*
410          * If we map the spte from present to nonpresent, we should clear
411          * present bit firstly to avoid vcpu fetch the old high bits.
412          */
413         smp_wmb();
414
415         ssptep->spte_high = sspte.spte_high;
416         count_spte_clear(sptep, spte);
417 }
418
419 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
420 {
421         union split_spte *ssptep, sspte, orig;
422
423         ssptep = (union split_spte *)sptep;
424         sspte = (union split_spte)spte;
425
426         /* xchg acts as a barrier before the setting of the high bits */
427         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
428         orig.spte_high = ssptep->spte_high;
429         ssptep->spte_high = sspte.spte_high;
430         count_spte_clear(sptep, spte);
431
432         return orig.spte;
433 }
434
435 /*
436  * The idea using the light way get the spte on x86_32 guest is from
437  * gup_get_pte (mm/gup.c).
438  *
439  * An spte tlb flush may be pending, because kvm_set_pte_rmap
440  * coalesces them and we are running out of the MMU lock.  Therefore
441  * we need to protect against in-progress updates of the spte.
442  *
443  * Reading the spte while an update is in progress may get the old value
444  * for the high part of the spte.  The race is fine for a present->non-present
445  * change (because the high part of the spte is ignored for non-present spte),
446  * but for a present->present change we must reread the spte.
447  *
448  * All such changes are done in two steps (present->non-present and
449  * non-present->present), hence it is enough to count the number of
450  * present->non-present updates: if it changed while reading the spte,
451  * we might have hit the race.  This is done using clear_spte_count.
452  */
453 static u64 __get_spte_lockless(u64 *sptep)
454 {
455         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
456         union split_spte spte, *orig = (union split_spte *)sptep;
457         int count;
458
459 retry:
460         count = sp->clear_spte_count;
461         smp_rmb();
462
463         spte.spte_low = orig->spte_low;
464         smp_rmb();
465
466         spte.spte_high = orig->spte_high;
467         smp_rmb();
468
469         if (unlikely(spte.spte_low != orig->spte_low ||
470               count != sp->clear_spte_count))
471                 goto retry;
472
473         return spte.spte;
474 }
475 #endif
476
477 /* Rules for using mmu_spte_set:
478  * Set the sptep from nonpresent to present.
479  * Note: the sptep being assigned *must* be either not present
480  * or in a state where the hardware will not attempt to update
481  * the spte.
482  */
483 static void mmu_spte_set(u64 *sptep, u64 new_spte)
484 {
485         WARN_ON_ONCE(is_shadow_present_pte(*sptep));
486         __set_spte(sptep, new_spte);
487 }
488
489 /*
490  * Update the SPTE (excluding the PFN), but do not track changes in its
491  * accessed/dirty status.
492  */
493 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
494 {
495         u64 old_spte = *sptep;
496
497         WARN_ON_ONCE(!is_shadow_present_pte(new_spte));
498         check_spte_writable_invariants(new_spte);
499
500         if (!is_shadow_present_pte(old_spte)) {
501                 mmu_spte_set(sptep, new_spte);
502                 return old_spte;
503         }
504
505         if (!spte_has_volatile_bits(old_spte))
506                 __update_clear_spte_fast(sptep, new_spte);
507         else
508                 old_spte = __update_clear_spte_slow(sptep, new_spte);
509
510         WARN_ON_ONCE(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
511
512         return old_spte;
513 }
514
515 /* Rules for using mmu_spte_update:
516  * Update the state bits, it means the mapped pfn is not changed.
517  *
518  * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
519  * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
520  * spte, even though the writable spte might be cached on a CPU's TLB.
521  *
522  * Returns true if the TLB needs to be flushed
523  */
524 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
525 {
526         bool flush = false;
527         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
528
529         if (!is_shadow_present_pte(old_spte))
530                 return false;
531
532         /*
533          * For the spte updated out of mmu-lock is safe, since
534          * we always atomically update it, see the comments in
535          * spte_has_volatile_bits().
536          */
537         if (is_mmu_writable_spte(old_spte) &&
538               !is_writable_pte(new_spte))
539                 flush = true;
540
541         /*
542          * Flush TLB when accessed/dirty states are changed in the page tables,
543          * to guarantee consistency between TLB and page tables.
544          */
545
546         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
547                 flush = true;
548                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
549         }
550
551         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
552                 flush = true;
553                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
554         }
555
556         return flush;
557 }
558
559 /*
560  * Rules for using mmu_spte_clear_track_bits:
561  * It sets the sptep from present to nonpresent, and track the
562  * state bits, it is used to clear the last level sptep.
563  * Returns the old PTE.
564  */
565 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
566 {
567         kvm_pfn_t pfn;
568         u64 old_spte = *sptep;
569         int level = sptep_to_sp(sptep)->role.level;
570         struct page *page;
571
572         if (!is_shadow_present_pte(old_spte) ||
573             !spte_has_volatile_bits(old_spte))
574                 __update_clear_spte_fast(sptep, 0ull);
575         else
576                 old_spte = __update_clear_spte_slow(sptep, 0ull);
577
578         if (!is_shadow_present_pte(old_spte))
579                 return old_spte;
580
581         kvm_update_page_stats(kvm, level, -1);
582
583         pfn = spte_to_pfn(old_spte);
584
585         /*
586          * KVM doesn't hold a reference to any pages mapped into the guest, and
587          * instead uses the mmu_notifier to ensure that KVM unmaps any pages
588          * before they are reclaimed.  Sanity check that, if the pfn is backed
589          * by a refcounted page, the refcount is elevated.
590          */
591         page = kvm_pfn_to_refcounted_page(pfn);
592         WARN_ON_ONCE(page && !page_count(page));
593
594         if (is_accessed_spte(old_spte))
595                 kvm_set_pfn_accessed(pfn);
596
597         if (is_dirty_spte(old_spte))
598                 kvm_set_pfn_dirty(pfn);
599
600         return old_spte;
601 }
602
603 /*
604  * Rules for using mmu_spte_clear_no_track:
605  * Directly clear spte without caring the state bits of sptep,
606  * it is used to set the upper level spte.
607  */
608 static void mmu_spte_clear_no_track(u64 *sptep)
609 {
610         __update_clear_spte_fast(sptep, 0ull);
611 }
612
613 static u64 mmu_spte_get_lockless(u64 *sptep)
614 {
615         return __get_spte_lockless(sptep);
616 }
617
618 /* Returns the Accessed status of the PTE and resets it at the same time. */
619 static bool mmu_spte_age(u64 *sptep)
620 {
621         u64 spte = mmu_spte_get_lockless(sptep);
622
623         if (!is_accessed_spte(spte))
624                 return false;
625
626         if (spte_ad_enabled(spte)) {
627                 clear_bit((ffs(shadow_accessed_mask) - 1),
628                           (unsigned long *)sptep);
629         } else {
630                 /*
631                  * Capture the dirty status of the page, so that it doesn't get
632                  * lost when the SPTE is marked for access tracking.
633                  */
634                 if (is_writable_pte(spte))
635                         kvm_set_pfn_dirty(spte_to_pfn(spte));
636
637                 spte = mark_spte_for_access_track(spte);
638                 mmu_spte_update_no_track(sptep, spte);
639         }
640
641         return true;
642 }
643
644 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu)
645 {
646         return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct;
647 }
648
649 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
650 {
651         if (is_tdp_mmu_active(vcpu)) {
652                 kvm_tdp_mmu_walk_lockless_begin();
653         } else {
654                 /*
655                  * Prevent page table teardown by making any free-er wait during
656                  * kvm_flush_remote_tlbs() IPI to all active vcpus.
657                  */
658                 local_irq_disable();
659
660                 /*
661                  * Make sure a following spte read is not reordered ahead of the write
662                  * to vcpu->mode.
663                  */
664                 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
665         }
666 }
667
668 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
669 {
670         if (is_tdp_mmu_active(vcpu)) {
671                 kvm_tdp_mmu_walk_lockless_end();
672         } else {
673                 /*
674                  * Make sure the write to vcpu->mode is not reordered in front of
675                  * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
676                  * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
677                  */
678                 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
679                 local_irq_enable();
680         }
681 }
682
683 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
684 {
685         int r;
686
687         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
688         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
689                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
690         if (r)
691                 return r;
692         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
693                                        PT64_ROOT_MAX_LEVEL);
694         if (r)
695                 return r;
696         if (maybe_indirect) {
697                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache,
698                                                PT64_ROOT_MAX_LEVEL);
699                 if (r)
700                         return r;
701         }
702         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
703                                           PT64_ROOT_MAX_LEVEL);
704 }
705
706 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
707 {
708         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
709         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
710         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache);
711         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
712 }
713
714 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
715 {
716         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
717 }
718
719 static bool sp_has_gptes(struct kvm_mmu_page *sp);
720
721 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
722 {
723         if (sp->role.passthrough)
724                 return sp->gfn;
725
726         if (!sp->role.direct)
727                 return sp->shadowed_translation[index] >> PAGE_SHIFT;
728
729         return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS));
730 }
731
732 /*
733  * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note
734  * that the SPTE itself may have a more constrained access permissions that
735  * what the guest enforces. For example, a guest may create an executable
736  * huge PTE but KVM may disallow execution to mitigate iTLB multihit.
737  */
738 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index)
739 {
740         if (sp_has_gptes(sp))
741                 return sp->shadowed_translation[index] & ACC_ALL;
742
743         /*
744          * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs,
745          * KVM is not shadowing any guest page tables, so the "guest access
746          * permissions" are just ACC_ALL.
747          *
748          * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM
749          * is shadowing a guest huge page with small pages, the guest access
750          * permissions being shadowed are the access permissions of the huge
751          * page.
752          *
753          * In both cases, sp->role.access contains the correct access bits.
754          */
755         return sp->role.access;
756 }
757
758 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index,
759                                          gfn_t gfn, unsigned int access)
760 {
761         if (sp_has_gptes(sp)) {
762                 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access;
763                 return;
764         }
765
766         WARN_ONCE(access != kvm_mmu_page_get_access(sp, index),
767                   "access mismatch under %s page %llx (expected %u, got %u)\n",
768                   sp->role.passthrough ? "passthrough" : "direct",
769                   sp->gfn, kvm_mmu_page_get_access(sp, index), access);
770
771         WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index),
772                   "gfn mismatch under %s page %llx (expected %llx, got %llx)\n",
773                   sp->role.passthrough ? "passthrough" : "direct",
774                   sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn);
775 }
776
777 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index,
778                                     unsigned int access)
779 {
780         gfn_t gfn = kvm_mmu_page_get_gfn(sp, index);
781
782         kvm_mmu_page_set_translation(sp, index, gfn, access);
783 }
784
785 /*
786  * Return the pointer to the large page information for a given gfn,
787  * handling slots that are not large page aligned.
788  */
789 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
790                 const struct kvm_memory_slot *slot, int level)
791 {
792         unsigned long idx;
793
794         idx = gfn_to_index(gfn, slot->base_gfn, level);
795         return &slot->arch.lpage_info[level - 2][idx];
796 }
797
798 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
799                                             gfn_t gfn, int count)
800 {
801         struct kvm_lpage_info *linfo;
802         int i;
803
804         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
805                 linfo = lpage_info_slot(gfn, slot, i);
806                 linfo->disallow_lpage += count;
807                 WARN_ON_ONCE(linfo->disallow_lpage < 0);
808         }
809 }
810
811 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
812 {
813         update_gfn_disallow_lpage_count(slot, gfn, 1);
814 }
815
816 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
817 {
818         update_gfn_disallow_lpage_count(slot, gfn, -1);
819 }
820
821 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
822 {
823         struct kvm_memslots *slots;
824         struct kvm_memory_slot *slot;
825         gfn_t gfn;
826
827         kvm->arch.indirect_shadow_pages++;
828         gfn = sp->gfn;
829         slots = kvm_memslots_for_spte_role(kvm, sp->role);
830         slot = __gfn_to_memslot(slots, gfn);
831
832         /* the non-leaf shadow pages are keeping readonly. */
833         if (sp->role.level > PG_LEVEL_4K)
834                 return __kvm_write_track_add_gfn(kvm, slot, gfn);
835
836         kvm_mmu_gfn_disallow_lpage(slot, gfn);
837
838         if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K))
839                 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K);
840 }
841
842 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
843 {
844         /*
845          * If it's possible to replace the shadow page with an NX huge page,
846          * i.e. if the shadow page is the only thing currently preventing KVM
847          * from using a huge page, add the shadow page to the list of "to be
848          * zapped for NX recovery" pages.  Note, the shadow page can already be
849          * on the list if KVM is reusing an existing shadow page, i.e. if KVM
850          * links a shadow page at multiple points.
851          */
852         if (!list_empty(&sp->possible_nx_huge_page_link))
853                 return;
854
855         ++kvm->stat.nx_lpage_splits;
856         list_add_tail(&sp->possible_nx_huge_page_link,
857                       &kvm->arch.possible_nx_huge_pages);
858 }
859
860 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
861                                  bool nx_huge_page_possible)
862 {
863         sp->nx_huge_page_disallowed = true;
864
865         if (nx_huge_page_possible)
866                 track_possible_nx_huge_page(kvm, sp);
867 }
868
869 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
870 {
871         struct kvm_memslots *slots;
872         struct kvm_memory_slot *slot;
873         gfn_t gfn;
874
875         kvm->arch.indirect_shadow_pages--;
876         gfn = sp->gfn;
877         slots = kvm_memslots_for_spte_role(kvm, sp->role);
878         slot = __gfn_to_memslot(slots, gfn);
879         if (sp->role.level > PG_LEVEL_4K)
880                 return __kvm_write_track_remove_gfn(kvm, slot, gfn);
881
882         kvm_mmu_gfn_allow_lpage(slot, gfn);
883 }
884
885 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
886 {
887         if (list_empty(&sp->possible_nx_huge_page_link))
888                 return;
889
890         --kvm->stat.nx_lpage_splits;
891         list_del_init(&sp->possible_nx_huge_page_link);
892 }
893
894 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
895 {
896         sp->nx_huge_page_disallowed = false;
897
898         untrack_possible_nx_huge_page(kvm, sp);
899 }
900
901 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu,
902                                                            gfn_t gfn,
903                                                            bool no_dirty_log)
904 {
905         struct kvm_memory_slot *slot;
906
907         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
908         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
909                 return NULL;
910         if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
911                 return NULL;
912
913         return slot;
914 }
915
916 /*
917  * About rmap_head encoding:
918  *
919  * If the bit zero of rmap_head->val is clear, then it points to the only spte
920  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
921  * pte_list_desc containing more mappings.
922  */
923
924 /*
925  * Returns the number of pointers in the rmap chain, not counting the new one.
926  */
927 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte,
928                         struct kvm_rmap_head *rmap_head)
929 {
930         struct pte_list_desc *desc;
931         int count = 0;
932
933         if (!rmap_head->val) {
934                 rmap_head->val = (unsigned long)spte;
935         } else if (!(rmap_head->val & 1)) {
936                 desc = kvm_mmu_memory_cache_alloc(cache);
937                 desc->sptes[0] = (u64 *)rmap_head->val;
938                 desc->sptes[1] = spte;
939                 desc->spte_count = 2;
940                 desc->tail_count = 0;
941                 rmap_head->val = (unsigned long)desc | 1;
942                 ++count;
943         } else {
944                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
945                 count = desc->tail_count + desc->spte_count;
946
947                 /*
948                  * If the previous head is full, allocate a new head descriptor
949                  * as tail descriptors are always kept full.
950                  */
951                 if (desc->spte_count == PTE_LIST_EXT) {
952                         desc = kvm_mmu_memory_cache_alloc(cache);
953                         desc->more = (struct pte_list_desc *)(rmap_head->val & ~1ul);
954                         desc->spte_count = 0;
955                         desc->tail_count = count;
956                         rmap_head->val = (unsigned long)desc | 1;
957                 }
958                 desc->sptes[desc->spte_count++] = spte;
959         }
960         return count;
961 }
962
963 static void pte_list_desc_remove_entry(struct kvm *kvm,
964                                        struct kvm_rmap_head *rmap_head,
965                                        struct pte_list_desc *desc, int i)
966 {
967         struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
968         int j = head_desc->spte_count - 1;
969
970         /*
971          * The head descriptor should never be empty.  A new head is added only
972          * when adding an entry and the previous head is full, and heads are
973          * removed (this flow) when they become empty.
974          */
975         KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm);
976
977         /*
978          * Replace the to-be-freed SPTE with the last valid entry from the head
979          * descriptor to ensure that tail descriptors are full at all times.
980          * Note, this also means that tail_count is stable for each descriptor.
981          */
982         desc->sptes[i] = head_desc->sptes[j];
983         head_desc->sptes[j] = NULL;
984         head_desc->spte_count--;
985         if (head_desc->spte_count)
986                 return;
987
988         /*
989          * The head descriptor is empty.  If there are no tail descriptors,
990          * nullify the rmap head to mark the list as emtpy, else point the rmap
991          * head at the next descriptor, i.e. the new head.
992          */
993         if (!head_desc->more)
994                 rmap_head->val = 0;
995         else
996                 rmap_head->val = (unsigned long)head_desc->more | 1;
997         mmu_free_pte_list_desc(head_desc);
998 }
999
1000 static void pte_list_remove(struct kvm *kvm, u64 *spte,
1001                             struct kvm_rmap_head *rmap_head)
1002 {
1003         struct pte_list_desc *desc;
1004         int i;
1005
1006         if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm))
1007                 return;
1008
1009         if (!(rmap_head->val & 1)) {
1010                 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm))
1011                         return;
1012
1013                 rmap_head->val = 0;
1014         } else {
1015                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1016                 while (desc) {
1017                         for (i = 0; i < desc->spte_count; ++i) {
1018                                 if (desc->sptes[i] == spte) {
1019                                         pte_list_desc_remove_entry(kvm, rmap_head,
1020                                                                    desc, i);
1021                                         return;
1022                                 }
1023                         }
1024                         desc = desc->more;
1025                 }
1026
1027                 KVM_BUG_ON_DATA_CORRUPTION(true, kvm);
1028         }
1029 }
1030
1031 static void kvm_zap_one_rmap_spte(struct kvm *kvm,
1032                                   struct kvm_rmap_head *rmap_head, u64 *sptep)
1033 {
1034         mmu_spte_clear_track_bits(kvm, sptep);
1035         pte_list_remove(kvm, sptep, rmap_head);
1036 }
1037
1038 /* Return true if at least one SPTE was zapped, false otherwise */
1039 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm,
1040                                    struct kvm_rmap_head *rmap_head)
1041 {
1042         struct pte_list_desc *desc, *next;
1043         int i;
1044
1045         if (!rmap_head->val)
1046                 return false;
1047
1048         if (!(rmap_head->val & 1)) {
1049                 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
1050                 goto out;
1051         }
1052
1053         desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1054
1055         for (; desc; desc = next) {
1056                 for (i = 0; i < desc->spte_count; i++)
1057                         mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
1058                 next = desc->more;
1059                 mmu_free_pte_list_desc(desc);
1060         }
1061 out:
1062         /* rmap_head is meaningless now, remember to reset it */
1063         rmap_head->val = 0;
1064         return true;
1065 }
1066
1067 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
1068 {
1069         struct pte_list_desc *desc;
1070
1071         if (!rmap_head->val)
1072                 return 0;
1073         else if (!(rmap_head->val & 1))
1074                 return 1;
1075
1076         desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1077         return desc->tail_count + desc->spte_count;
1078 }
1079
1080 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1081                                          const struct kvm_memory_slot *slot)
1082 {
1083         unsigned long idx;
1084
1085         idx = gfn_to_index(gfn, slot->base_gfn, level);
1086         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1087 }
1088
1089 static void rmap_remove(struct kvm *kvm, u64 *spte)
1090 {
1091         struct kvm_memslots *slots;
1092         struct kvm_memory_slot *slot;
1093         struct kvm_mmu_page *sp;
1094         gfn_t gfn;
1095         struct kvm_rmap_head *rmap_head;
1096
1097         sp = sptep_to_sp(spte);
1098         gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte));
1099
1100         /*
1101          * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1102          * so we have to determine which memslots to use based on context
1103          * information in sp->role.
1104          */
1105         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1106
1107         slot = __gfn_to_memslot(slots, gfn);
1108         rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1109
1110         pte_list_remove(kvm, spte, rmap_head);
1111 }
1112
1113 /*
1114  * Used by the following functions to iterate through the sptes linked by a
1115  * rmap.  All fields are private and not assumed to be used outside.
1116  */
1117 struct rmap_iterator {
1118         /* private fields */
1119         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1120         int pos;                        /* index of the sptep */
1121 };
1122
1123 /*
1124  * Iteration must be started by this function.  This should also be used after
1125  * removing/dropping sptes from the rmap link because in such cases the
1126  * information in the iterator may not be valid.
1127  *
1128  * Returns sptep if found, NULL otherwise.
1129  */
1130 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1131                            struct rmap_iterator *iter)
1132 {
1133         u64 *sptep;
1134
1135         if (!rmap_head->val)
1136                 return NULL;
1137
1138         if (!(rmap_head->val & 1)) {
1139                 iter->desc = NULL;
1140                 sptep = (u64 *)rmap_head->val;
1141                 goto out;
1142         }
1143
1144         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1145         iter->pos = 0;
1146         sptep = iter->desc->sptes[iter->pos];
1147 out:
1148         BUG_ON(!is_shadow_present_pte(*sptep));
1149         return sptep;
1150 }
1151
1152 /*
1153  * Must be used with a valid iterator: e.g. after rmap_get_first().
1154  *
1155  * Returns sptep if found, NULL otherwise.
1156  */
1157 static u64 *rmap_get_next(struct rmap_iterator *iter)
1158 {
1159         u64 *sptep;
1160
1161         if (iter->desc) {
1162                 if (iter->pos < PTE_LIST_EXT - 1) {
1163                         ++iter->pos;
1164                         sptep = iter->desc->sptes[iter->pos];
1165                         if (sptep)
1166                                 goto out;
1167                 }
1168
1169                 iter->desc = iter->desc->more;
1170
1171                 if (iter->desc) {
1172                         iter->pos = 0;
1173                         /* desc->sptes[0] cannot be NULL */
1174                         sptep = iter->desc->sptes[iter->pos];
1175                         goto out;
1176                 }
1177         }
1178
1179         return NULL;
1180 out:
1181         BUG_ON(!is_shadow_present_pte(*sptep));
1182         return sptep;
1183 }
1184
1185 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1186         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1187              _spte_; _spte_ = rmap_get_next(_iter_))
1188
1189 static void drop_spte(struct kvm *kvm, u64 *sptep)
1190 {
1191         u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1192
1193         if (is_shadow_present_pte(old_spte))
1194                 rmap_remove(kvm, sptep);
1195 }
1196
1197 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush)
1198 {
1199         struct kvm_mmu_page *sp;
1200
1201         sp = sptep_to_sp(sptep);
1202         WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K);
1203
1204         drop_spte(kvm, sptep);
1205
1206         if (flush)
1207                 kvm_flush_remote_tlbs_sptep(kvm, sptep);
1208 }
1209
1210 /*
1211  * Write-protect on the specified @sptep, @pt_protect indicates whether
1212  * spte write-protection is caused by protecting shadow page table.
1213  *
1214  * Note: write protection is difference between dirty logging and spte
1215  * protection:
1216  * - for dirty logging, the spte can be set to writable at anytime if
1217  *   its dirty bitmap is properly set.
1218  * - for spte protection, the spte can be writable only after unsync-ing
1219  *   shadow page.
1220  *
1221  * Return true if tlb need be flushed.
1222  */
1223 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1224 {
1225         u64 spte = *sptep;
1226
1227         if (!is_writable_pte(spte) &&
1228             !(pt_protect && is_mmu_writable_spte(spte)))
1229                 return false;
1230
1231         if (pt_protect)
1232                 spte &= ~shadow_mmu_writable_mask;
1233         spte = spte & ~PT_WRITABLE_MASK;
1234
1235         return mmu_spte_update(sptep, spte);
1236 }
1237
1238 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
1239                                bool pt_protect)
1240 {
1241         u64 *sptep;
1242         struct rmap_iterator iter;
1243         bool flush = false;
1244
1245         for_each_rmap_spte(rmap_head, &iter, sptep)
1246                 flush |= spte_write_protect(sptep, pt_protect);
1247
1248         return flush;
1249 }
1250
1251 static bool spte_clear_dirty(u64 *sptep)
1252 {
1253         u64 spte = *sptep;
1254
1255         KVM_MMU_WARN_ON(!spte_ad_enabled(spte));
1256         spte &= ~shadow_dirty_mask;
1257         return mmu_spte_update(sptep, spte);
1258 }
1259
1260 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1261 {
1262         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1263                                                (unsigned long *)sptep);
1264         if (was_writable && !spte_ad_enabled(*sptep))
1265                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1266
1267         return was_writable;
1268 }
1269
1270 /*
1271  * Gets the GFN ready for another round of dirty logging by clearing the
1272  *      - D bit on ad-enabled SPTEs, and
1273  *      - W bit on ad-disabled SPTEs.
1274  * Returns true iff any D or W bits were cleared.
1275  */
1276 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1277                                const struct kvm_memory_slot *slot)
1278 {
1279         u64 *sptep;
1280         struct rmap_iterator iter;
1281         bool flush = false;
1282
1283         for_each_rmap_spte(rmap_head, &iter, sptep)
1284                 if (spte_ad_need_write_protect(*sptep))
1285                         flush |= spte_wrprot_for_clear_dirty(sptep);
1286                 else
1287                         flush |= spte_clear_dirty(sptep);
1288
1289         return flush;
1290 }
1291
1292 /**
1293  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1294  * @kvm: kvm instance
1295  * @slot: slot to protect
1296  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1297  * @mask: indicates which pages we should protect
1298  *
1299  * Used when we do not need to care about huge page mappings.
1300  */
1301 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1302                                      struct kvm_memory_slot *slot,
1303                                      gfn_t gfn_offset, unsigned long mask)
1304 {
1305         struct kvm_rmap_head *rmap_head;
1306
1307         if (tdp_mmu_enabled)
1308                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1309                                 slot->base_gfn + gfn_offset, mask, true);
1310
1311         if (!kvm_memslots_have_rmaps(kvm))
1312                 return;
1313
1314         while (mask) {
1315                 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1316                                         PG_LEVEL_4K, slot);
1317                 rmap_write_protect(rmap_head, false);
1318
1319                 /* clear the first set bit */
1320                 mask &= mask - 1;
1321         }
1322 }
1323
1324 /**
1325  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1326  * protect the page if the D-bit isn't supported.
1327  * @kvm: kvm instance
1328  * @slot: slot to clear D-bit
1329  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1330  * @mask: indicates which pages we should clear D-bit
1331  *
1332  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1333  */
1334 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1335                                          struct kvm_memory_slot *slot,
1336                                          gfn_t gfn_offset, unsigned long mask)
1337 {
1338         struct kvm_rmap_head *rmap_head;
1339
1340         if (tdp_mmu_enabled)
1341                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1342                                 slot->base_gfn + gfn_offset, mask, false);
1343
1344         if (!kvm_memslots_have_rmaps(kvm))
1345                 return;
1346
1347         while (mask) {
1348                 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1349                                         PG_LEVEL_4K, slot);
1350                 __rmap_clear_dirty(kvm, rmap_head, slot);
1351
1352                 /* clear the first set bit */
1353                 mask &= mask - 1;
1354         }
1355 }
1356
1357 /**
1358  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1359  * PT level pages.
1360  *
1361  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1362  * enable dirty logging for them.
1363  *
1364  * We need to care about huge page mappings: e.g. during dirty logging we may
1365  * have such mappings.
1366  */
1367 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1368                                 struct kvm_memory_slot *slot,
1369                                 gfn_t gfn_offset, unsigned long mask)
1370 {
1371         /*
1372          * Huge pages are NOT write protected when we start dirty logging in
1373          * initially-all-set mode; must write protect them here so that they
1374          * are split to 4K on the first write.
1375          *
1376          * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1377          * of memslot has no such restriction, so the range can cross two large
1378          * pages.
1379          */
1380         if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1381                 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1382                 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1383
1384                 if (READ_ONCE(eager_page_split))
1385                         kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K);
1386
1387                 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1388
1389                 /* Cross two large pages? */
1390                 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1391                     ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1392                         kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1393                                                        PG_LEVEL_2M);
1394         }
1395
1396         /* Now handle 4K PTEs.  */
1397         if (kvm_x86_ops.cpu_dirty_log_size)
1398                 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1399         else
1400                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1401 }
1402
1403 int kvm_cpu_dirty_log_size(void)
1404 {
1405         return kvm_x86_ops.cpu_dirty_log_size;
1406 }
1407
1408 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1409                                     struct kvm_memory_slot *slot, u64 gfn,
1410                                     int min_level)
1411 {
1412         struct kvm_rmap_head *rmap_head;
1413         int i;
1414         bool write_protected = false;
1415
1416         if (kvm_memslots_have_rmaps(kvm)) {
1417                 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1418                         rmap_head = gfn_to_rmap(gfn, i, slot);
1419                         write_protected |= rmap_write_protect(rmap_head, true);
1420                 }
1421         }
1422
1423         if (tdp_mmu_enabled)
1424                 write_protected |=
1425                         kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1426
1427         return write_protected;
1428 }
1429
1430 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1431 {
1432         struct kvm_memory_slot *slot;
1433
1434         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1435         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1436 }
1437
1438 static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1439                            const struct kvm_memory_slot *slot)
1440 {
1441         return kvm_zap_all_rmap_sptes(kvm, rmap_head);
1442 }
1443
1444 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1445                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1446                          pte_t unused)
1447 {
1448         return __kvm_zap_rmap(kvm, rmap_head, slot);
1449 }
1450
1451 static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1452                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1453                              pte_t pte)
1454 {
1455         u64 *sptep;
1456         struct rmap_iterator iter;
1457         bool need_flush = false;
1458         u64 new_spte;
1459         kvm_pfn_t new_pfn;
1460
1461         WARN_ON_ONCE(pte_huge(pte));
1462         new_pfn = pte_pfn(pte);
1463
1464 restart:
1465         for_each_rmap_spte(rmap_head, &iter, sptep) {
1466                 need_flush = true;
1467
1468                 if (pte_write(pte)) {
1469                         kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
1470                         goto restart;
1471                 } else {
1472                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1473                                         *sptep, new_pfn);
1474
1475                         mmu_spte_clear_track_bits(kvm, sptep);
1476                         mmu_spte_set(sptep, new_spte);
1477                 }
1478         }
1479
1480         if (need_flush && kvm_available_flush_remote_tlbs_range()) {
1481                 kvm_flush_remote_tlbs_gfn(kvm, gfn, level);
1482                 return false;
1483         }
1484
1485         return need_flush;
1486 }
1487
1488 struct slot_rmap_walk_iterator {
1489         /* input fields. */
1490         const struct kvm_memory_slot *slot;
1491         gfn_t start_gfn;
1492         gfn_t end_gfn;
1493         int start_level;
1494         int end_level;
1495
1496         /* output fields. */
1497         gfn_t gfn;
1498         struct kvm_rmap_head *rmap;
1499         int level;
1500
1501         /* private field. */
1502         struct kvm_rmap_head *end_rmap;
1503 };
1504
1505 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator,
1506                                  int level)
1507 {
1508         iterator->level = level;
1509         iterator->gfn = iterator->start_gfn;
1510         iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1511         iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1512 }
1513
1514 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1515                                 const struct kvm_memory_slot *slot,
1516                                 int start_level, int end_level,
1517                                 gfn_t start_gfn, gfn_t end_gfn)
1518 {
1519         iterator->slot = slot;
1520         iterator->start_level = start_level;
1521         iterator->end_level = end_level;
1522         iterator->start_gfn = start_gfn;
1523         iterator->end_gfn = end_gfn;
1524
1525         rmap_walk_init_level(iterator, iterator->start_level);
1526 }
1527
1528 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1529 {
1530         return !!iterator->rmap;
1531 }
1532
1533 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1534 {
1535         while (++iterator->rmap <= iterator->end_rmap) {
1536                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1537
1538                 if (iterator->rmap->val)
1539                         return;
1540         }
1541
1542         if (++iterator->level > iterator->end_level) {
1543                 iterator->rmap = NULL;
1544                 return;
1545         }
1546
1547         rmap_walk_init_level(iterator, iterator->level);
1548 }
1549
1550 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1551            _start_gfn, _end_gfn, _iter_)                                \
1552         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1553                                  _end_level_, _start_gfn, _end_gfn);    \
1554              slot_rmap_walk_okay(_iter_);                               \
1555              slot_rmap_walk_next(_iter_))
1556
1557 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1558                                struct kvm_memory_slot *slot, gfn_t gfn,
1559                                int level, pte_t pte);
1560
1561 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1562                                                  struct kvm_gfn_range *range,
1563                                                  rmap_handler_t handler)
1564 {
1565         struct slot_rmap_walk_iterator iterator;
1566         bool ret = false;
1567
1568         for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1569                                  range->start, range->end - 1, &iterator)
1570                 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1571                                iterator.level, range->arg.pte);
1572
1573         return ret;
1574 }
1575
1576 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1577 {
1578         bool flush = false;
1579
1580         if (kvm_memslots_have_rmaps(kvm))
1581                 flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap);
1582
1583         if (tdp_mmu_enabled)
1584                 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1585
1586         if (kvm_x86_ops.set_apic_access_page_addr &&
1587             range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT)
1588                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
1589
1590         return flush;
1591 }
1592
1593 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1594 {
1595         bool flush = false;
1596
1597         if (kvm_memslots_have_rmaps(kvm))
1598                 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap);
1599
1600         if (tdp_mmu_enabled)
1601                 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1602
1603         return flush;
1604 }
1605
1606 static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1607                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1608                          pte_t unused)
1609 {
1610         u64 *sptep;
1611         struct rmap_iterator iter;
1612         int young = 0;
1613
1614         for_each_rmap_spte(rmap_head, &iter, sptep)
1615                 young |= mmu_spte_age(sptep);
1616
1617         return young;
1618 }
1619
1620 static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1621                               struct kvm_memory_slot *slot, gfn_t gfn,
1622                               int level, pte_t unused)
1623 {
1624         u64 *sptep;
1625         struct rmap_iterator iter;
1626
1627         for_each_rmap_spte(rmap_head, &iter, sptep)
1628                 if (is_accessed_spte(*sptep))
1629                         return true;
1630         return false;
1631 }
1632
1633 #define RMAP_RECYCLE_THRESHOLD 1000
1634
1635 static void __rmap_add(struct kvm *kvm,
1636                        struct kvm_mmu_memory_cache *cache,
1637                        const struct kvm_memory_slot *slot,
1638                        u64 *spte, gfn_t gfn, unsigned int access)
1639 {
1640         struct kvm_mmu_page *sp;
1641         struct kvm_rmap_head *rmap_head;
1642         int rmap_count;
1643
1644         sp = sptep_to_sp(spte);
1645         kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access);
1646         kvm_update_page_stats(kvm, sp->role.level, 1);
1647
1648         rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1649         rmap_count = pte_list_add(cache, spte, rmap_head);
1650
1651         if (rmap_count > kvm->stat.max_mmu_rmap_size)
1652                 kvm->stat.max_mmu_rmap_size = rmap_count;
1653         if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1654                 kvm_zap_all_rmap_sptes(kvm, rmap_head);
1655                 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
1656         }
1657 }
1658
1659 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot,
1660                      u64 *spte, gfn_t gfn, unsigned int access)
1661 {
1662         struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache;
1663
1664         __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access);
1665 }
1666
1667 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1668 {
1669         bool young = false;
1670
1671         if (kvm_memslots_have_rmaps(kvm))
1672                 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap);
1673
1674         if (tdp_mmu_enabled)
1675                 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1676
1677         return young;
1678 }
1679
1680 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1681 {
1682         bool young = false;
1683
1684         if (kvm_memslots_have_rmaps(kvm))
1685                 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap);
1686
1687         if (tdp_mmu_enabled)
1688                 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1689
1690         return young;
1691 }
1692
1693 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp)
1694 {
1695 #ifdef CONFIG_KVM_PROVE_MMU
1696         int i;
1697
1698         for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1699                 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i])))
1700                         pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free",
1701                                            sp->spt[i], &sp->spt[i],
1702                                            kvm_mmu_page_get_gfn(sp, i));
1703         }
1704 #endif
1705 }
1706
1707 /*
1708  * This value is the sum of all of the kvm instances's
1709  * kvm->arch.n_used_mmu_pages values.  We need a global,
1710  * aggregate version in order to make the slab shrinker
1711  * faster
1712  */
1713 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1714 {
1715         kvm->arch.n_used_mmu_pages += nr;
1716         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1717 }
1718
1719 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1720 {
1721         kvm_mod_used_mmu_pages(kvm, +1);
1722         kvm_account_pgtable_pages((void *)sp->spt, +1);
1723 }
1724
1725 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1726 {
1727         kvm_mod_used_mmu_pages(kvm, -1);
1728         kvm_account_pgtable_pages((void *)sp->spt, -1);
1729 }
1730
1731 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp)
1732 {
1733         kvm_mmu_check_sptes_at_free(sp);
1734
1735         hlist_del(&sp->hash_link);
1736         list_del(&sp->link);
1737         free_page((unsigned long)sp->spt);
1738         if (!sp->role.direct)
1739                 free_page((unsigned long)sp->shadowed_translation);
1740         kmem_cache_free(mmu_page_header_cache, sp);
1741 }
1742
1743 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1744 {
1745         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1746 }
1747
1748 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache,
1749                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1750 {
1751         if (!parent_pte)
1752                 return;
1753
1754         pte_list_add(cache, parent_pte, &sp->parent_ptes);
1755 }
1756
1757 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1758                                        u64 *parent_pte)
1759 {
1760         pte_list_remove(kvm, parent_pte, &sp->parent_ptes);
1761 }
1762
1763 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1764                             u64 *parent_pte)
1765 {
1766         mmu_page_remove_parent_pte(kvm, sp, parent_pte);
1767         mmu_spte_clear_no_track(parent_pte);
1768 }
1769
1770 static void mark_unsync(u64 *spte);
1771 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1772 {
1773         u64 *sptep;
1774         struct rmap_iterator iter;
1775
1776         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1777                 mark_unsync(sptep);
1778         }
1779 }
1780
1781 static void mark_unsync(u64 *spte)
1782 {
1783         struct kvm_mmu_page *sp;
1784
1785         sp = sptep_to_sp(spte);
1786         if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap))
1787                 return;
1788         if (sp->unsync_children++)
1789                 return;
1790         kvm_mmu_mark_parents_unsync(sp);
1791 }
1792
1793 #define KVM_PAGE_ARRAY_NR 16
1794
1795 struct kvm_mmu_pages {
1796         struct mmu_page_and_offset {
1797                 struct kvm_mmu_page *sp;
1798                 unsigned int idx;
1799         } page[KVM_PAGE_ARRAY_NR];
1800         unsigned int nr;
1801 };
1802
1803 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1804                          int idx)
1805 {
1806         int i;
1807
1808         if (sp->unsync)
1809                 for (i=0; i < pvec->nr; i++)
1810                         if (pvec->page[i].sp == sp)
1811                                 return 0;
1812
1813         pvec->page[pvec->nr].sp = sp;
1814         pvec->page[pvec->nr].idx = idx;
1815         pvec->nr++;
1816         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1817 }
1818
1819 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1820 {
1821         --sp->unsync_children;
1822         WARN_ON_ONCE((int)sp->unsync_children < 0);
1823         __clear_bit(idx, sp->unsync_child_bitmap);
1824 }
1825
1826 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1827                            struct kvm_mmu_pages *pvec)
1828 {
1829         int i, ret, nr_unsync_leaf = 0;
1830
1831         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1832                 struct kvm_mmu_page *child;
1833                 u64 ent = sp->spt[i];
1834
1835                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1836                         clear_unsync_child_bit(sp, i);
1837                         continue;
1838                 }
1839
1840                 child = spte_to_child_sp(ent);
1841
1842                 if (child->unsync_children) {
1843                         if (mmu_pages_add(pvec, child, i))
1844                                 return -ENOSPC;
1845
1846                         ret = __mmu_unsync_walk(child, pvec);
1847                         if (!ret) {
1848                                 clear_unsync_child_bit(sp, i);
1849                                 continue;
1850                         } else if (ret > 0) {
1851                                 nr_unsync_leaf += ret;
1852                         } else
1853                                 return ret;
1854                 } else if (child->unsync) {
1855                         nr_unsync_leaf++;
1856                         if (mmu_pages_add(pvec, child, i))
1857                                 return -ENOSPC;
1858                 } else
1859                         clear_unsync_child_bit(sp, i);
1860         }
1861
1862         return nr_unsync_leaf;
1863 }
1864
1865 #define INVALID_INDEX (-1)
1866
1867 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1868                            struct kvm_mmu_pages *pvec)
1869 {
1870         pvec->nr = 0;
1871         if (!sp->unsync_children)
1872                 return 0;
1873
1874         mmu_pages_add(pvec, sp, INVALID_INDEX);
1875         return __mmu_unsync_walk(sp, pvec);
1876 }
1877
1878 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1879 {
1880         WARN_ON_ONCE(!sp->unsync);
1881         trace_kvm_mmu_sync_page(sp);
1882         sp->unsync = 0;
1883         --kvm->stat.mmu_unsync;
1884 }
1885
1886 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1887                                      struct list_head *invalid_list);
1888 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1889                                     struct list_head *invalid_list);
1890
1891 static bool sp_has_gptes(struct kvm_mmu_page *sp)
1892 {
1893         if (sp->role.direct)
1894                 return false;
1895
1896         if (sp->role.passthrough)
1897                 return false;
1898
1899         return true;
1900 }
1901
1902 #define for_each_valid_sp(_kvm, _sp, _list)                             \
1903         hlist_for_each_entry(_sp, _list, hash_link)                     \
1904                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
1905                 } else
1906
1907 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn)               \
1908         for_each_valid_sp(_kvm, _sp,                                    \
1909           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
1910                 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
1911
1912 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1913 {
1914         union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role;
1915
1916         /*
1917          * Ignore various flags when verifying that it's safe to sync a shadow
1918          * page using the current MMU context.
1919          *
1920          *  - level: not part of the overall MMU role and will never match as the MMU's
1921          *           level tracks the root level
1922          *  - access: updated based on the new guest PTE
1923          *  - quadrant: not part of the overall MMU role (similar to level)
1924          */
1925         const union kvm_mmu_page_role sync_role_ign = {
1926                 .level = 0xf,
1927                 .access = 0x7,
1928                 .quadrant = 0x3,
1929                 .passthrough = 0x1,
1930         };
1931
1932         /*
1933          * Direct pages can never be unsync, and KVM should never attempt to
1934          * sync a shadow page for a different MMU context, e.g. if the role
1935          * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
1936          * reserved bits checks will be wrong, etc...
1937          */
1938         if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte ||
1939                          (sp->role.word ^ root_role.word) & ~sync_role_ign.word))
1940                 return false;
1941
1942         return true;
1943 }
1944
1945 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i)
1946 {
1947         if (!sp->spt[i])
1948                 return 0;
1949
1950         return vcpu->arch.mmu->sync_spte(vcpu, sp, i);
1951 }
1952
1953 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1954 {
1955         int flush = 0;
1956         int i;
1957
1958         if (!kvm_sync_page_check(vcpu, sp))
1959                 return -1;
1960
1961         for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1962                 int ret = kvm_sync_spte(vcpu, sp, i);
1963
1964                 if (ret < -1)
1965                         return -1;
1966                 flush |= ret;
1967         }
1968
1969         /*
1970          * Note, any flush is purely for KVM's correctness, e.g. when dropping
1971          * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier
1972          * unmap or dirty logging event doesn't fail to flush.  The guest is
1973          * responsible for flushing the TLB to ensure any changes in protection
1974          * bits are recognized, i.e. until the guest flushes or page faults on
1975          * a relevant address, KVM is architecturally allowed to let vCPUs use
1976          * cached translations with the old protection bits.
1977          */
1978         return flush;
1979 }
1980
1981 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1982                          struct list_head *invalid_list)
1983 {
1984         int ret = __kvm_sync_page(vcpu, sp);
1985
1986         if (ret < 0)
1987                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1988         return ret;
1989 }
1990
1991 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1992                                         struct list_head *invalid_list,
1993                                         bool remote_flush)
1994 {
1995         if (!remote_flush && list_empty(invalid_list))
1996                 return false;
1997
1998         if (!list_empty(invalid_list))
1999                 kvm_mmu_commit_zap_page(kvm, invalid_list);
2000         else
2001                 kvm_flush_remote_tlbs(kvm);
2002         return true;
2003 }
2004
2005 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2006 {
2007         if (sp->role.invalid)
2008                 return true;
2009
2010         /* TDP MMU pages do not use the MMU generation. */
2011         return !is_tdp_mmu_page(sp) &&
2012                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2013 }
2014
2015 struct mmu_page_path {
2016         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2017         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2018 };
2019
2020 #define for_each_sp(pvec, sp, parents, i)                       \
2021                 for (i = mmu_pages_first(&pvec, &parents);      \
2022                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2023                         i = mmu_pages_next(&pvec, &parents, i))
2024
2025 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2026                           struct mmu_page_path *parents,
2027                           int i)
2028 {
2029         int n;
2030
2031         for (n = i+1; n < pvec->nr; n++) {
2032                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2033                 unsigned idx = pvec->page[n].idx;
2034                 int level = sp->role.level;
2035
2036                 parents->idx[level-1] = idx;
2037                 if (level == PG_LEVEL_4K)
2038                         break;
2039
2040                 parents->parent[level-2] = sp;
2041         }
2042
2043         return n;
2044 }
2045
2046 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2047                            struct mmu_page_path *parents)
2048 {
2049         struct kvm_mmu_page *sp;
2050         int level;
2051
2052         if (pvec->nr == 0)
2053                 return 0;
2054
2055         WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX);
2056
2057         sp = pvec->page[0].sp;
2058         level = sp->role.level;
2059         WARN_ON_ONCE(level == PG_LEVEL_4K);
2060
2061         parents->parent[level-2] = sp;
2062
2063         /* Also set up a sentinel.  Further entries in pvec are all
2064          * children of sp, so this element is never overwritten.
2065          */
2066         parents->parent[level-1] = NULL;
2067         return mmu_pages_next(pvec, parents, 0);
2068 }
2069
2070 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2071 {
2072         struct kvm_mmu_page *sp;
2073         unsigned int level = 0;
2074
2075         do {
2076                 unsigned int idx = parents->idx[level];
2077                 sp = parents->parent[level];
2078                 if (!sp)
2079                         return;
2080
2081                 WARN_ON_ONCE(idx == INVALID_INDEX);
2082                 clear_unsync_child_bit(sp, idx);
2083                 level++;
2084         } while (!sp->unsync_children);
2085 }
2086
2087 static int mmu_sync_children(struct kvm_vcpu *vcpu,
2088                              struct kvm_mmu_page *parent, bool can_yield)
2089 {
2090         int i;
2091         struct kvm_mmu_page *sp;
2092         struct mmu_page_path parents;
2093         struct kvm_mmu_pages pages;
2094         LIST_HEAD(invalid_list);
2095         bool flush = false;
2096
2097         while (mmu_unsync_walk(parent, &pages)) {
2098                 bool protected = false;
2099
2100                 for_each_sp(pages, sp, parents, i)
2101                         protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
2102
2103                 if (protected) {
2104                         kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
2105                         flush = false;
2106                 }
2107
2108                 for_each_sp(pages, sp, parents, i) {
2109                         kvm_unlink_unsync_page(vcpu->kvm, sp);
2110                         flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
2111                         mmu_pages_clear_parents(&parents);
2112                 }
2113                 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2114                         kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2115                         if (!can_yield) {
2116                                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2117                                 return -EINTR;
2118                         }
2119
2120                         cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2121                         flush = false;
2122                 }
2123         }
2124
2125         kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2126         return 0;
2127 }
2128
2129 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2130 {
2131         atomic_set(&sp->write_flooding_count,  0);
2132 }
2133
2134 static void clear_sp_write_flooding_count(u64 *spte)
2135 {
2136         __clear_sp_write_flooding_count(sptep_to_sp(spte));
2137 }
2138
2139 /*
2140  * The vCPU is required when finding indirect shadow pages; the shadow
2141  * page may already exist and syncing it needs the vCPU pointer in
2142  * order to read guest page tables.  Direct shadow pages are never
2143  * unsync, thus @vcpu can be NULL if @role.direct is true.
2144  */
2145 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm,
2146                                                      struct kvm_vcpu *vcpu,
2147                                                      gfn_t gfn,
2148                                                      struct hlist_head *sp_list,
2149                                                      union kvm_mmu_page_role role)
2150 {
2151         struct kvm_mmu_page *sp;
2152         int ret;
2153         int collisions = 0;
2154         LIST_HEAD(invalid_list);
2155
2156         for_each_valid_sp(kvm, sp, sp_list) {
2157                 if (sp->gfn != gfn) {
2158                         collisions++;
2159                         continue;
2160                 }
2161
2162                 if (sp->role.word != role.word) {
2163                         /*
2164                          * If the guest is creating an upper-level page, zap
2165                          * unsync pages for the same gfn.  While it's possible
2166                          * the guest is using recursive page tables, in all
2167                          * likelihood the guest has stopped using the unsync
2168                          * page and is installing a completely unrelated page.
2169                          * Unsync pages must not be left as is, because the new
2170                          * upper-level page will be write-protected.
2171                          */
2172                         if (role.level > PG_LEVEL_4K && sp->unsync)
2173                                 kvm_mmu_prepare_zap_page(kvm, sp,
2174                                                          &invalid_list);
2175                         continue;
2176                 }
2177
2178                 /* unsync and write-flooding only apply to indirect SPs. */
2179                 if (sp->role.direct)
2180                         goto out;
2181
2182                 if (sp->unsync) {
2183                         if (KVM_BUG_ON(!vcpu, kvm))
2184                                 break;
2185
2186                         /*
2187                          * The page is good, but is stale.  kvm_sync_page does
2188                          * get the latest guest state, but (unlike mmu_unsync_children)
2189                          * it doesn't write-protect the page or mark it synchronized!
2190                          * This way the validity of the mapping is ensured, but the
2191                          * overhead of write protection is not incurred until the
2192                          * guest invalidates the TLB mapping.  This allows multiple
2193                          * SPs for a single gfn to be unsync.
2194                          *
2195                          * If the sync fails, the page is zapped.  If so, break
2196                          * in order to rebuild it.
2197                          */
2198                         ret = kvm_sync_page(vcpu, sp, &invalid_list);
2199                         if (ret < 0)
2200                                 break;
2201
2202                         WARN_ON_ONCE(!list_empty(&invalid_list));
2203                         if (ret > 0)
2204                                 kvm_flush_remote_tlbs(kvm);
2205                 }
2206
2207                 __clear_sp_write_flooding_count(sp);
2208
2209                 goto out;
2210         }
2211
2212         sp = NULL;
2213         ++kvm->stat.mmu_cache_miss;
2214
2215 out:
2216         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2217
2218         if (collisions > kvm->stat.max_mmu_page_hash_collisions)
2219                 kvm->stat.max_mmu_page_hash_collisions = collisions;
2220         return sp;
2221 }
2222
2223 /* Caches used when allocating a new shadow page. */
2224 struct shadow_page_caches {
2225         struct kvm_mmu_memory_cache *page_header_cache;
2226         struct kvm_mmu_memory_cache *shadow_page_cache;
2227         struct kvm_mmu_memory_cache *shadowed_info_cache;
2228 };
2229
2230 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm,
2231                                                       struct shadow_page_caches *caches,
2232                                                       gfn_t gfn,
2233                                                       struct hlist_head *sp_list,
2234                                                       union kvm_mmu_page_role role)
2235 {
2236         struct kvm_mmu_page *sp;
2237
2238         sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache);
2239         sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache);
2240         if (!role.direct)
2241                 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache);
2242
2243         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2244
2245         INIT_LIST_HEAD(&sp->possible_nx_huge_page_link);
2246
2247         /*
2248          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2249          * depends on valid pages being added to the head of the list.  See
2250          * comments in kvm_zap_obsolete_pages().
2251          */
2252         sp->mmu_valid_gen = kvm->arch.mmu_valid_gen;
2253         list_add(&sp->link, &kvm->arch.active_mmu_pages);
2254         kvm_account_mmu_page(kvm, sp);
2255
2256         sp->gfn = gfn;
2257         sp->role = role;
2258         hlist_add_head(&sp->hash_link, sp_list);
2259         if (sp_has_gptes(sp))
2260                 account_shadowed(kvm, sp);
2261
2262         return sp;
2263 }
2264
2265 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */
2266 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm,
2267                                                       struct kvm_vcpu *vcpu,
2268                                                       struct shadow_page_caches *caches,
2269                                                       gfn_t gfn,
2270                                                       union kvm_mmu_page_role role)
2271 {
2272         struct hlist_head *sp_list;
2273         struct kvm_mmu_page *sp;
2274         bool created = false;
2275
2276         sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2277
2278         sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role);
2279         if (!sp) {
2280                 created = true;
2281                 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role);
2282         }
2283
2284         trace_kvm_mmu_get_page(sp, created);
2285         return sp;
2286 }
2287
2288 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu,
2289                                                     gfn_t gfn,
2290                                                     union kvm_mmu_page_role role)
2291 {
2292         struct shadow_page_caches caches = {
2293                 .page_header_cache = &vcpu->arch.mmu_page_header_cache,
2294                 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache,
2295                 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache,
2296         };
2297
2298         return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role);
2299 }
2300
2301 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct,
2302                                                   unsigned int access)
2303 {
2304         struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep);
2305         union kvm_mmu_page_role role;
2306
2307         role = parent_sp->role;
2308         role.level--;
2309         role.access = access;
2310         role.direct = direct;
2311         role.passthrough = 0;
2312
2313         /*
2314          * If the guest has 4-byte PTEs then that means it's using 32-bit,
2315          * 2-level, non-PAE paging. KVM shadows such guests with PAE paging
2316          * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must
2317          * shadow each guest page table with multiple shadow page tables, which
2318          * requires extra bookkeeping in the role.
2319          *
2320          * Specifically, to shadow the guest's page directory (which covers a
2321          * 4GiB address space), KVM uses 4 PAE page directories, each mapping
2322          * 1GiB of the address space. @role.quadrant encodes which quarter of
2323          * the address space each maps.
2324          *
2325          * To shadow the guest's page tables (which each map a 4MiB region), KVM
2326          * uses 2 PAE page tables, each mapping a 2MiB region. For these,
2327          * @role.quadrant encodes which half of the region they map.
2328          *
2329          * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE
2330          * consumes bits 29:21.  To consume bits 31:30, KVM's uses 4 shadow
2331          * PDPTEs; those 4 PAE page directories are pre-allocated and their
2332          * quadrant is assigned in mmu_alloc_root().   A 4-byte PTE consumes
2333          * bits 21:12, while an 8-byte PTE consumes bits 20:12.  To consume
2334          * bit 21 in the PTE (the child here), KVM propagates that bit to the
2335          * quadrant, i.e. sets quadrant to '0' or '1'.  The parent 8-byte PDE
2336          * covers bit 21 (see above), thus the quadrant is calculated from the
2337          * _least_ significant bit of the PDE index.
2338          */
2339         if (role.has_4_byte_gpte) {
2340                 WARN_ON_ONCE(role.level != PG_LEVEL_4K);
2341                 role.quadrant = spte_index(sptep) & 1;
2342         }
2343
2344         return role;
2345 }
2346
2347 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu,
2348                                                  u64 *sptep, gfn_t gfn,
2349                                                  bool direct, unsigned int access)
2350 {
2351         union kvm_mmu_page_role role;
2352
2353         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
2354                 return ERR_PTR(-EEXIST);
2355
2356         role = kvm_mmu_child_role(sptep, direct, access);
2357         return kvm_mmu_get_shadow_page(vcpu, gfn, role);
2358 }
2359
2360 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2361                                         struct kvm_vcpu *vcpu, hpa_t root,
2362                                         u64 addr)
2363 {
2364         iterator->addr = addr;
2365         iterator->shadow_addr = root;
2366         iterator->level = vcpu->arch.mmu->root_role.level;
2367
2368         if (iterator->level >= PT64_ROOT_4LEVEL &&
2369             vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
2370             !vcpu->arch.mmu->root_role.direct)
2371                 iterator->level = PT32E_ROOT_LEVEL;
2372
2373         if (iterator->level == PT32E_ROOT_LEVEL) {
2374                 /*
2375                  * prev_root is currently only used for 64-bit hosts. So only
2376                  * the active root_hpa is valid here.
2377                  */
2378                 BUG_ON(root != vcpu->arch.mmu->root.hpa);
2379
2380                 iterator->shadow_addr
2381                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2382                 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK;
2383                 --iterator->level;
2384                 if (!iterator->shadow_addr)
2385                         iterator->level = 0;
2386         }
2387 }
2388
2389 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2390                              struct kvm_vcpu *vcpu, u64 addr)
2391 {
2392         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
2393                                     addr);
2394 }
2395
2396 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2397 {
2398         if (iterator->level < PG_LEVEL_4K)
2399                 return false;
2400
2401         iterator->index = SPTE_INDEX(iterator->addr, iterator->level);
2402         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2403         return true;
2404 }
2405
2406 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2407                                u64 spte)
2408 {
2409         if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2410                 iterator->level = 0;
2411                 return;
2412         }
2413
2414         iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK;
2415         --iterator->level;
2416 }
2417
2418 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2419 {
2420         __shadow_walk_next(iterator, *iterator->sptep);
2421 }
2422
2423 static void __link_shadow_page(struct kvm *kvm,
2424                                struct kvm_mmu_memory_cache *cache, u64 *sptep,
2425                                struct kvm_mmu_page *sp, bool flush)
2426 {
2427         u64 spte;
2428
2429         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2430
2431         /*
2432          * If an SPTE is present already, it must be a leaf and therefore
2433          * a large one.  Drop it, and flush the TLB if needed, before
2434          * installing sp.
2435          */
2436         if (is_shadow_present_pte(*sptep))
2437                 drop_large_spte(kvm, sptep, flush);
2438
2439         spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2440
2441         mmu_spte_set(sptep, spte);
2442
2443         mmu_page_add_parent_pte(cache, sp, sptep);
2444
2445         /*
2446          * The non-direct sub-pagetable must be updated before linking.  For
2447          * L1 sp, the pagetable is updated via kvm_sync_page() in
2448          * kvm_mmu_find_shadow_page() without write-protecting the gfn,
2449          * so sp->unsync can be true or false.  For higher level non-direct
2450          * sp, the pagetable is updated/synced via mmu_sync_children() in
2451          * FNAME(fetch)(), so sp->unsync_children can only be false.
2452          * WARN_ON_ONCE() if anything happens unexpectedly.
2453          */
2454         if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync)
2455                 mark_unsync(sptep);
2456 }
2457
2458 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2459                              struct kvm_mmu_page *sp)
2460 {
2461         __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true);
2462 }
2463
2464 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2465                                    unsigned direct_access)
2466 {
2467         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2468                 struct kvm_mmu_page *child;
2469
2470                 /*
2471                  * For the direct sp, if the guest pte's dirty bit
2472                  * changed form clean to dirty, it will corrupt the
2473                  * sp's access: allow writable in the read-only sp,
2474                  * so we should update the spte at this point to get
2475                  * a new sp with the correct access.
2476                  */
2477                 child = spte_to_child_sp(*sptep);
2478                 if (child->role.access == direct_access)
2479                         return;
2480
2481                 drop_parent_pte(vcpu->kvm, child, sptep);
2482                 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep);
2483         }
2484 }
2485
2486 /* Returns the number of zapped non-leaf child shadow pages. */
2487 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2488                             u64 *spte, struct list_head *invalid_list)
2489 {
2490         u64 pte;
2491         struct kvm_mmu_page *child;
2492
2493         pte = *spte;
2494         if (is_shadow_present_pte(pte)) {
2495                 if (is_last_spte(pte, sp->role.level)) {
2496                         drop_spte(kvm, spte);
2497                 } else {
2498                         child = spte_to_child_sp(pte);
2499                         drop_parent_pte(kvm, child, spte);
2500
2501                         /*
2502                          * Recursively zap nested TDP SPs, parentless SPs are
2503                          * unlikely to be used again in the near future.  This
2504                          * avoids retaining a large number of stale nested SPs.
2505                          */
2506                         if (tdp_enabled && invalid_list &&
2507                             child->role.guest_mode && !child->parent_ptes.val)
2508                                 return kvm_mmu_prepare_zap_page(kvm, child,
2509                                                                 invalid_list);
2510                 }
2511         } else if (is_mmio_spte(pte)) {
2512                 mmu_spte_clear_no_track(spte);
2513         }
2514         return 0;
2515 }
2516
2517 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2518                                         struct kvm_mmu_page *sp,
2519                                         struct list_head *invalid_list)
2520 {
2521         int zapped = 0;
2522         unsigned i;
2523
2524         for (i = 0; i < SPTE_ENT_PER_PAGE; ++i)
2525                 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2526
2527         return zapped;
2528 }
2529
2530 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2531 {
2532         u64 *sptep;
2533         struct rmap_iterator iter;
2534
2535         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2536                 drop_parent_pte(kvm, sp, sptep);
2537 }
2538
2539 static int mmu_zap_unsync_children(struct kvm *kvm,
2540                                    struct kvm_mmu_page *parent,
2541                                    struct list_head *invalid_list)
2542 {
2543         int i, zapped = 0;
2544         struct mmu_page_path parents;
2545         struct kvm_mmu_pages pages;
2546
2547         if (parent->role.level == PG_LEVEL_4K)
2548                 return 0;
2549
2550         while (mmu_unsync_walk(parent, &pages)) {
2551                 struct kvm_mmu_page *sp;
2552
2553                 for_each_sp(pages, sp, parents, i) {
2554                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2555                         mmu_pages_clear_parents(&parents);
2556                         zapped++;
2557                 }
2558         }
2559
2560         return zapped;
2561 }
2562
2563 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2564                                        struct kvm_mmu_page *sp,
2565                                        struct list_head *invalid_list,
2566                                        int *nr_zapped)
2567 {
2568         bool list_unstable, zapped_root = false;
2569
2570         lockdep_assert_held_write(&kvm->mmu_lock);
2571         trace_kvm_mmu_prepare_zap_page(sp);
2572         ++kvm->stat.mmu_shadow_zapped;
2573         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2574         *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2575         kvm_mmu_unlink_parents(kvm, sp);
2576
2577         /* Zapping children means active_mmu_pages has become unstable. */
2578         list_unstable = *nr_zapped;
2579
2580         if (!sp->role.invalid && sp_has_gptes(sp))
2581                 unaccount_shadowed(kvm, sp);
2582
2583         if (sp->unsync)
2584                 kvm_unlink_unsync_page(kvm, sp);
2585         if (!sp->root_count) {
2586                 /* Count self */
2587                 (*nr_zapped)++;
2588
2589                 /*
2590                  * Already invalid pages (previously active roots) are not on
2591                  * the active page list.  See list_del() in the "else" case of
2592                  * !sp->root_count.
2593                  */
2594                 if (sp->role.invalid)
2595                         list_add(&sp->link, invalid_list);
2596                 else
2597                         list_move(&sp->link, invalid_list);
2598                 kvm_unaccount_mmu_page(kvm, sp);
2599         } else {
2600                 /*
2601                  * Remove the active root from the active page list, the root
2602                  * will be explicitly freed when the root_count hits zero.
2603                  */
2604                 list_del(&sp->link);
2605
2606                 /*
2607                  * Obsolete pages cannot be used on any vCPUs, see the comment
2608                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2609                  * treats invalid shadow pages as being obsolete.
2610                  */
2611                 zapped_root = !is_obsolete_sp(kvm, sp);
2612         }
2613
2614         if (sp->nx_huge_page_disallowed)
2615                 unaccount_nx_huge_page(kvm, sp);
2616
2617         sp->role.invalid = 1;
2618
2619         /*
2620          * Make the request to free obsolete roots after marking the root
2621          * invalid, otherwise other vCPUs may not see it as invalid.
2622          */
2623         if (zapped_root)
2624                 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2625         return list_unstable;
2626 }
2627
2628 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2629                                      struct list_head *invalid_list)
2630 {
2631         int nr_zapped;
2632
2633         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2634         return nr_zapped;
2635 }
2636
2637 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2638                                     struct list_head *invalid_list)
2639 {
2640         struct kvm_mmu_page *sp, *nsp;
2641
2642         if (list_empty(invalid_list))
2643                 return;
2644
2645         /*
2646          * We need to make sure everyone sees our modifications to
2647          * the page tables and see changes to vcpu->mode here. The barrier
2648          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2649          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2650          *
2651          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2652          * guest mode and/or lockless shadow page table walks.
2653          */
2654         kvm_flush_remote_tlbs(kvm);
2655
2656         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2657                 WARN_ON_ONCE(!sp->role.invalid || sp->root_count);
2658                 kvm_mmu_free_shadow_page(sp);
2659         }
2660 }
2661
2662 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2663                                                   unsigned long nr_to_zap)
2664 {
2665         unsigned long total_zapped = 0;
2666         struct kvm_mmu_page *sp, *tmp;
2667         LIST_HEAD(invalid_list);
2668         bool unstable;
2669         int nr_zapped;
2670
2671         if (list_empty(&kvm->arch.active_mmu_pages))
2672                 return 0;
2673
2674 restart:
2675         list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2676                 /*
2677                  * Don't zap active root pages, the page itself can't be freed
2678                  * and zapping it will just force vCPUs to realloc and reload.
2679                  */
2680                 if (sp->root_count)
2681                         continue;
2682
2683                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2684                                                       &nr_zapped);
2685                 total_zapped += nr_zapped;
2686                 if (total_zapped >= nr_to_zap)
2687                         break;
2688
2689                 if (unstable)
2690                         goto restart;
2691         }
2692
2693         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2694
2695         kvm->stat.mmu_recycled += total_zapped;
2696         return total_zapped;
2697 }
2698
2699 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2700 {
2701         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2702                 return kvm->arch.n_max_mmu_pages -
2703                         kvm->arch.n_used_mmu_pages;
2704
2705         return 0;
2706 }
2707
2708 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2709 {
2710         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2711
2712         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2713                 return 0;
2714
2715         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2716
2717         /*
2718          * Note, this check is intentionally soft, it only guarantees that one
2719          * page is available, while the caller may end up allocating as many as
2720          * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2721          * exceeding the (arbitrary by default) limit will not harm the host,
2722          * being too aggressive may unnecessarily kill the guest, and getting an
2723          * exact count is far more trouble than it's worth, especially in the
2724          * page fault paths.
2725          */
2726         if (!kvm_mmu_available_pages(vcpu->kvm))
2727                 return -ENOSPC;
2728         return 0;
2729 }
2730
2731 /*
2732  * Changing the number of mmu pages allocated to the vm
2733  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2734  */
2735 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2736 {
2737         write_lock(&kvm->mmu_lock);
2738
2739         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2740                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2741                                                   goal_nr_mmu_pages);
2742
2743                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2744         }
2745
2746         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2747
2748         write_unlock(&kvm->mmu_lock);
2749 }
2750
2751 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2752 {
2753         struct kvm_mmu_page *sp;
2754         LIST_HEAD(invalid_list);
2755         int r;
2756
2757         r = 0;
2758         write_lock(&kvm->mmu_lock);
2759         for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2760                 r = 1;
2761                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2762         }
2763         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2764         write_unlock(&kvm->mmu_lock);
2765
2766         return r;
2767 }
2768
2769 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2770 {
2771         gpa_t gpa;
2772         int r;
2773
2774         if (vcpu->arch.mmu->root_role.direct)
2775                 return 0;
2776
2777         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2778
2779         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2780
2781         return r;
2782 }
2783
2784 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2785 {
2786         trace_kvm_mmu_unsync_page(sp);
2787         ++kvm->stat.mmu_unsync;
2788         sp->unsync = 1;
2789
2790         kvm_mmu_mark_parents_unsync(sp);
2791 }
2792
2793 /*
2794  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2795  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2796  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2797  * be write-protected.
2798  */
2799 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2800                             gfn_t gfn, bool can_unsync, bool prefetch)
2801 {
2802         struct kvm_mmu_page *sp;
2803         bool locked = false;
2804
2805         /*
2806          * Force write-protection if the page is being tracked.  Note, the page
2807          * track machinery is used to write-protect upper-level shadow pages,
2808          * i.e. this guards the role.level == 4K assertion below!
2809          */
2810         if (kvm_gfn_is_write_tracked(kvm, slot, gfn))
2811                 return -EPERM;
2812
2813         /*
2814          * The page is not write-tracked, mark existing shadow pages unsync
2815          * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2816          * that case, KVM must complete emulation of the guest TLB flush before
2817          * allowing shadow pages to become unsync (writable by the guest).
2818          */
2819         for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2820                 if (!can_unsync)
2821                         return -EPERM;
2822
2823                 if (sp->unsync)
2824                         continue;
2825
2826                 if (prefetch)
2827                         return -EEXIST;
2828
2829                 /*
2830                  * TDP MMU page faults require an additional spinlock as they
2831                  * run with mmu_lock held for read, not write, and the unsync
2832                  * logic is not thread safe.  Take the spinklock regardless of
2833                  * the MMU type to avoid extra conditionals/parameters, there's
2834                  * no meaningful penalty if mmu_lock is held for write.
2835                  */
2836                 if (!locked) {
2837                         locked = true;
2838                         spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2839
2840                         /*
2841                          * Recheck after taking the spinlock, a different vCPU
2842                          * may have since marked the page unsync.  A false
2843                          * positive on the unprotected check above is not
2844                          * possible as clearing sp->unsync _must_ hold mmu_lock
2845                          * for write, i.e. unsync cannot transition from 0->1
2846                          * while this CPU holds mmu_lock for read (or write).
2847                          */
2848                         if (READ_ONCE(sp->unsync))
2849                                 continue;
2850                 }
2851
2852                 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K);
2853                 kvm_unsync_page(kvm, sp);
2854         }
2855         if (locked)
2856                 spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2857
2858         /*
2859          * We need to ensure that the marking of unsync pages is visible
2860          * before the SPTE is updated to allow writes because
2861          * kvm_mmu_sync_roots() checks the unsync flags without holding
2862          * the MMU lock and so can race with this. If the SPTE was updated
2863          * before the page had been marked as unsync-ed, something like the
2864          * following could happen:
2865          *
2866          * CPU 1                    CPU 2
2867          * ---------------------------------------------------------------------
2868          * 1.2 Host updates SPTE
2869          *     to be writable
2870          *                      2.1 Guest writes a GPTE for GVA X.
2871          *                          (GPTE being in the guest page table shadowed
2872          *                           by the SP from CPU 1.)
2873          *                          This reads SPTE during the page table walk.
2874          *                          Since SPTE.W is read as 1, there is no
2875          *                          fault.
2876          *
2877          *                      2.2 Guest issues TLB flush.
2878          *                          That causes a VM Exit.
2879          *
2880          *                      2.3 Walking of unsync pages sees sp->unsync is
2881          *                          false and skips the page.
2882          *
2883          *                      2.4 Guest accesses GVA X.
2884          *                          Since the mapping in the SP was not updated,
2885          *                          so the old mapping for GVA X incorrectly
2886          *                          gets used.
2887          * 1.1 Host marks SP
2888          *     as unsync
2889          *     (sp->unsync = true)
2890          *
2891          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2892          * the situation in 2.4 does not arise.  It pairs with the read barrier
2893          * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2894          */
2895         smp_wmb();
2896
2897         return 0;
2898 }
2899
2900 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
2901                         u64 *sptep, unsigned int pte_access, gfn_t gfn,
2902                         kvm_pfn_t pfn, struct kvm_page_fault *fault)
2903 {
2904         struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2905         int level = sp->role.level;
2906         int was_rmapped = 0;
2907         int ret = RET_PF_FIXED;
2908         bool flush = false;
2909         bool wrprot;
2910         u64 spte;
2911
2912         /* Prefetching always gets a writable pfn.  */
2913         bool host_writable = !fault || fault->map_writable;
2914         bool prefetch = !fault || fault->prefetch;
2915         bool write_fault = fault && fault->write;
2916
2917         if (unlikely(is_noslot_pfn(pfn))) {
2918                 vcpu->stat.pf_mmio_spte_created++;
2919                 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2920                 return RET_PF_EMULATE;
2921         }
2922
2923         if (is_shadow_present_pte(*sptep)) {
2924                 /*
2925                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2926                  * the parent of the now unreachable PTE.
2927                  */
2928                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2929                         struct kvm_mmu_page *child;
2930                         u64 pte = *sptep;
2931
2932                         child = spte_to_child_sp(pte);
2933                         drop_parent_pte(vcpu->kvm, child, sptep);
2934                         flush = true;
2935                 } else if (pfn != spte_to_pfn(*sptep)) {
2936                         drop_spte(vcpu->kvm, sptep);
2937                         flush = true;
2938                 } else
2939                         was_rmapped = 1;
2940         }
2941
2942         wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2943                            true, host_writable, &spte);
2944
2945         if (*sptep == spte) {
2946                 ret = RET_PF_SPURIOUS;
2947         } else {
2948                 flush |= mmu_spte_update(sptep, spte);
2949                 trace_kvm_mmu_set_spte(level, gfn, sptep);
2950         }
2951
2952         if (wrprot) {
2953                 if (write_fault)
2954                         ret = RET_PF_EMULATE;
2955         }
2956
2957         if (flush)
2958                 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level);
2959
2960         if (!was_rmapped) {
2961                 WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2962                 rmap_add(vcpu, slot, sptep, gfn, pte_access);
2963         } else {
2964                 /* Already rmapped but the pte_access bits may have changed. */
2965                 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access);
2966         }
2967
2968         return ret;
2969 }
2970
2971 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2972                                     struct kvm_mmu_page *sp,
2973                                     u64 *start, u64 *end)
2974 {
2975         struct page *pages[PTE_PREFETCH_NUM];
2976         struct kvm_memory_slot *slot;
2977         unsigned int access = sp->role.access;
2978         int i, ret;
2979         gfn_t gfn;
2980
2981         gfn = kvm_mmu_page_get_gfn(sp, spte_index(start));
2982         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2983         if (!slot)
2984                 return -1;
2985
2986         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2987         if (ret <= 0)
2988                 return -1;
2989
2990         for (i = 0; i < ret; i++, gfn++, start++) {
2991                 mmu_set_spte(vcpu, slot, start, access, gfn,
2992                              page_to_pfn(pages[i]), NULL);
2993                 put_page(pages[i]);
2994         }
2995
2996         return 0;
2997 }
2998
2999 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3000                                   struct kvm_mmu_page *sp, u64 *sptep)
3001 {
3002         u64 *spte, *start = NULL;
3003         int i;
3004
3005         WARN_ON_ONCE(!sp->role.direct);
3006
3007         i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
3008         spte = sp->spt + i;
3009
3010         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3011                 if (is_shadow_present_pte(*spte) || spte == sptep) {
3012                         if (!start)
3013                                 continue;
3014                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3015                                 return;
3016                         start = NULL;
3017                 } else if (!start)
3018                         start = spte;
3019         }
3020         if (start)
3021                 direct_pte_prefetch_many(vcpu, sp, start, spte);
3022 }
3023
3024 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3025 {
3026         struct kvm_mmu_page *sp;
3027
3028         sp = sptep_to_sp(sptep);
3029
3030         /*
3031          * Without accessed bits, there's no way to distinguish between
3032          * actually accessed translations and prefetched, so disable pte
3033          * prefetch if accessed bits aren't available.
3034          */
3035         if (sp_ad_disabled(sp))
3036                 return;
3037
3038         if (sp->role.level > PG_LEVEL_4K)
3039                 return;
3040
3041         /*
3042          * If addresses are being invalidated, skip prefetching to avoid
3043          * accidentally prefetching those addresses.
3044          */
3045         if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
3046                 return;
3047
3048         __direct_pte_prefetch(vcpu, sp, sptep);
3049 }
3050
3051 /*
3052  * Lookup the mapping level for @gfn in the current mm.
3053  *
3054  * WARNING!  Use of host_pfn_mapping_level() requires the caller and the end
3055  * consumer to be tied into KVM's handlers for MMU notifier events!
3056  *
3057  * There are several ways to safely use this helper:
3058  *
3059  * - Check mmu_invalidate_retry_hva() after grabbing the mapping level, before
3060  *   consuming it.  In this case, mmu_lock doesn't need to be held during the
3061  *   lookup, but it does need to be held while checking the MMU notifier.
3062  *
3063  * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
3064  *   event for the hva.  This can be done by explicit checking the MMU notifier
3065  *   or by ensuring that KVM already has a valid mapping that covers the hva.
3066  *
3067  * - Do not use the result to install new mappings, e.g. use the host mapping
3068  *   level only to decide whether or not to zap an entry.  In this case, it's
3069  *   not required to hold mmu_lock (though it's highly likely the caller will
3070  *   want to hold mmu_lock anyways, e.g. to modify SPTEs).
3071  *
3072  * Note!  The lookup can still race with modifications to host page tables, but
3073  * the above "rules" ensure KVM will not _consume_ the result of the walk if a
3074  * race with the primary MMU occurs.
3075  */
3076 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
3077                                   const struct kvm_memory_slot *slot)
3078 {
3079         int level = PG_LEVEL_4K;
3080         unsigned long hva;
3081         unsigned long flags;
3082         pgd_t pgd;
3083         p4d_t p4d;
3084         pud_t pud;
3085         pmd_t pmd;
3086
3087         /*
3088          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3089          * is not solely for performance, it's also necessary to avoid the
3090          * "writable" check in __gfn_to_hva_many(), which will always fail on
3091          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
3092          * page fault steps have already verified the guest isn't writing a
3093          * read-only memslot.
3094          */
3095         hva = __gfn_to_hva_memslot(slot, gfn);
3096
3097         /*
3098          * Disable IRQs to prevent concurrent tear down of host page tables,
3099          * e.g. if the primary MMU promotes a P*D to a huge page and then frees
3100          * the original page table.
3101          */
3102         local_irq_save(flags);
3103
3104         /*
3105          * Read each entry once.  As above, a non-leaf entry can be promoted to
3106          * a huge page _during_ this walk.  Re-reading the entry could send the
3107          * walk into the weeks, e.g. p*d_large() returns false (sees the old
3108          * value) and then p*d_offset() walks into the target huge page instead
3109          * of the old page table (sees the new value).
3110          */
3111         pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
3112         if (pgd_none(pgd))
3113                 goto out;
3114
3115         p4d = READ_ONCE(*p4d_offset(&pgd, hva));
3116         if (p4d_none(p4d) || !p4d_present(p4d))
3117                 goto out;
3118
3119         pud = READ_ONCE(*pud_offset(&p4d, hva));
3120         if (pud_none(pud) || !pud_present(pud))
3121                 goto out;
3122
3123         if (pud_large(pud)) {
3124                 level = PG_LEVEL_1G;
3125                 goto out;
3126         }
3127
3128         pmd = READ_ONCE(*pmd_offset(&pud, hva));
3129         if (pmd_none(pmd) || !pmd_present(pmd))
3130                 goto out;
3131
3132         if (pmd_large(pmd))
3133                 level = PG_LEVEL_2M;
3134
3135 out:
3136         local_irq_restore(flags);
3137         return level;
3138 }
3139
3140 int kvm_mmu_max_mapping_level(struct kvm *kvm,
3141                               const struct kvm_memory_slot *slot, gfn_t gfn,
3142                               int max_level)
3143 {
3144         struct kvm_lpage_info *linfo;
3145         int host_level;
3146
3147         max_level = min(max_level, max_huge_page_level);
3148         for ( ; max_level > PG_LEVEL_4K; max_level--) {
3149                 linfo = lpage_info_slot(gfn, slot, max_level);
3150                 if (!linfo->disallow_lpage)
3151                         break;
3152         }
3153
3154         if (max_level == PG_LEVEL_4K)
3155                 return PG_LEVEL_4K;
3156
3157         host_level = host_pfn_mapping_level(kvm, gfn, slot);
3158         return min(host_level, max_level);
3159 }
3160
3161 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3162 {
3163         struct kvm_memory_slot *slot = fault->slot;
3164         kvm_pfn_t mask;
3165
3166         fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
3167
3168         if (unlikely(fault->max_level == PG_LEVEL_4K))
3169                 return;
3170
3171         if (is_error_noslot_pfn(fault->pfn))
3172                 return;
3173
3174         if (kvm_slot_dirty_track_enabled(slot))
3175                 return;
3176
3177         /*
3178          * Enforce the iTLB multihit workaround after capturing the requested
3179          * level, which will be used to do precise, accurate accounting.
3180          */
3181         fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
3182                                                      fault->gfn, fault->max_level);
3183         if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
3184                 return;
3185
3186         /*
3187          * mmu_invalidate_retry() was successful and mmu_lock is held, so
3188          * the pmd can't be split from under us.
3189          */
3190         fault->goal_level = fault->req_level;
3191         mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
3192         VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
3193         fault->pfn &= ~mask;
3194 }
3195
3196 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
3197 {
3198         if (cur_level > PG_LEVEL_4K &&
3199             cur_level == fault->goal_level &&
3200             is_shadow_present_pte(spte) &&
3201             !is_large_pte(spte) &&
3202             spte_to_child_sp(spte)->nx_huge_page_disallowed) {
3203                 /*
3204                  * A small SPTE exists for this pfn, but FNAME(fetch),
3205                  * direct_map(), or kvm_tdp_mmu_map() would like to create a
3206                  * large PTE instead: just force them to go down another level,
3207                  * patching back for them into pfn the next 9 bits of the
3208                  * address.
3209                  */
3210                 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
3211                                 KVM_PAGES_PER_HPAGE(cur_level - 1);
3212                 fault->pfn |= fault->gfn & page_mask;
3213                 fault->goal_level--;
3214         }
3215 }
3216
3217 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3218 {
3219         struct kvm_shadow_walk_iterator it;
3220         struct kvm_mmu_page *sp;
3221         int ret;
3222         gfn_t base_gfn = fault->gfn;
3223
3224         kvm_mmu_hugepage_adjust(vcpu, fault);
3225
3226         trace_kvm_mmu_spte_requested(fault);
3227         for_each_shadow_entry(vcpu, fault->addr, it) {
3228                 /*
3229                  * We cannot overwrite existing page tables with an NX
3230                  * large page, as the leaf could be executable.
3231                  */
3232                 if (fault->nx_huge_page_workaround_enabled)
3233                         disallowed_hugepage_adjust(fault, *it.sptep, it.level);
3234
3235                 base_gfn = gfn_round_for_level(fault->gfn, it.level);
3236                 if (it.level == fault->goal_level)
3237                         break;
3238
3239                 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL);
3240                 if (sp == ERR_PTR(-EEXIST))
3241                         continue;
3242
3243                 link_shadow_page(vcpu, it.sptep, sp);
3244                 if (fault->huge_page_disallowed)
3245                         account_nx_huge_page(vcpu->kvm, sp,
3246                                              fault->req_level >= it.level);
3247         }
3248
3249         if (WARN_ON_ONCE(it.level != fault->goal_level))
3250                 return -EFAULT;
3251
3252         ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
3253                            base_gfn, fault->pfn, fault);
3254         if (ret == RET_PF_SPURIOUS)
3255                 return ret;
3256
3257         direct_pte_prefetch(vcpu, it.sptep);
3258         return ret;
3259 }
3260
3261 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn)
3262 {
3263         unsigned long hva = gfn_to_hva_memslot(slot, gfn);
3264
3265         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current);
3266 }
3267
3268 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3269 {
3270         if (is_sigpending_pfn(fault->pfn)) {
3271                 kvm_handle_signal_exit(vcpu);
3272                 return -EINTR;
3273         }
3274
3275         /*
3276          * Do not cache the mmio info caused by writing the readonly gfn
3277          * into the spte otherwise read access on readonly gfn also can
3278          * caused mmio page fault and treat it as mmio access.
3279          */
3280         if (fault->pfn == KVM_PFN_ERR_RO_FAULT)
3281                 return RET_PF_EMULATE;
3282
3283         if (fault->pfn == KVM_PFN_ERR_HWPOISON) {
3284                 kvm_send_hwpoison_signal(fault->slot, fault->gfn);
3285                 return RET_PF_RETRY;
3286         }
3287
3288         return -EFAULT;
3289 }
3290
3291 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu,
3292                                    struct kvm_page_fault *fault,
3293                                    unsigned int access)
3294 {
3295         gva_t gva = fault->is_tdp ? 0 : fault->addr;
3296
3297         vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3298                              access & shadow_mmio_access_mask);
3299
3300         /*
3301          * If MMIO caching is disabled, emulate immediately without
3302          * touching the shadow page tables as attempting to install an
3303          * MMIO SPTE will just be an expensive nop.
3304          */
3305         if (unlikely(!enable_mmio_caching))
3306                 return RET_PF_EMULATE;
3307
3308         /*
3309          * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR,
3310          * any guest that generates such gfns is running nested and is being
3311          * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and
3312          * only if L1's MAXPHYADDR is inaccurate with respect to the
3313          * hardware's).
3314          */
3315         if (unlikely(fault->gfn > kvm_mmu_max_gfn()))
3316                 return RET_PF_EMULATE;
3317
3318         return RET_PF_CONTINUE;
3319 }
3320
3321 static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3322 {
3323         /*
3324          * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
3325          * reach the common page fault handler if the SPTE has an invalid MMIO
3326          * generation number.  Refreshing the MMIO generation needs to go down
3327          * the slow path.  Note, EPT Misconfigs do NOT set the PRESENT flag!
3328          */
3329         if (fault->rsvd)
3330                 return false;
3331
3332         /*
3333          * #PF can be fast if:
3334          *
3335          * 1. The shadow page table entry is not present and A/D bits are
3336          *    disabled _by KVM_, which could mean that the fault is potentially
3337          *    caused by access tracking (if enabled).  If A/D bits are enabled
3338          *    by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
3339          *    bits for L2 and employ access tracking, but the fast page fault
3340          *    mechanism only supports direct MMUs.
3341          * 2. The shadow page table entry is present, the access is a write,
3342          *    and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
3343          *    the fault was caused by a write-protection violation.  If the
3344          *    SPTE is MMU-writable (determined later), the fault can be fixed
3345          *    by setting the Writable bit, which can be done out of mmu_lock.
3346          */
3347         if (!fault->present)
3348                 return !kvm_ad_enabled();
3349
3350         /*
3351          * Note, instruction fetches and writes are mutually exclusive, ignore
3352          * the "exec" flag.
3353          */
3354         return fault->write;
3355 }
3356
3357 /*
3358  * Returns true if the SPTE was fixed successfully. Otherwise,
3359  * someone else modified the SPTE from its original value.
3360  */
3361 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu,
3362                                     struct kvm_page_fault *fault,
3363                                     u64 *sptep, u64 old_spte, u64 new_spte)
3364 {
3365         /*
3366          * Theoretically we could also set dirty bit (and flush TLB) here in
3367          * order to eliminate unnecessary PML logging. See comments in
3368          * set_spte. But fast_page_fault is very unlikely to happen with PML
3369          * enabled, so we do not do this. This might result in the same GPA
3370          * to be logged in PML buffer again when the write really happens, and
3371          * eventually to be called by mark_page_dirty twice. But it's also no
3372          * harm. This also avoids the TLB flush needed after setting dirty bit
3373          * so non-PML cases won't be impacted.
3374          *
3375          * Compare with set_spte where instead shadow_dirty_mask is set.
3376          */
3377         if (!try_cmpxchg64(sptep, &old_spte, new_spte))
3378                 return false;
3379
3380         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
3381                 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3382
3383         return true;
3384 }
3385
3386 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3387 {
3388         if (fault->exec)
3389                 return is_executable_pte(spte);
3390
3391         if (fault->write)
3392                 return is_writable_pte(spte);
3393
3394         /* Fault was on Read access */
3395         return spte & PT_PRESENT_MASK;
3396 }
3397
3398 /*
3399  * Returns the last level spte pointer of the shadow page walk for the given
3400  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3401  * walk could be performed, returns NULL and *spte does not contain valid data.
3402  *
3403  * Contract:
3404  *  - Must be called between walk_shadow_page_lockless_{begin,end}.
3405  *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
3406  */
3407 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3408 {
3409         struct kvm_shadow_walk_iterator iterator;
3410         u64 old_spte;
3411         u64 *sptep = NULL;
3412
3413         for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3414                 sptep = iterator.sptep;
3415                 *spte = old_spte;
3416         }
3417
3418         return sptep;
3419 }
3420
3421 /*
3422  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3423  */
3424 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3425 {
3426         struct kvm_mmu_page *sp;
3427         int ret = RET_PF_INVALID;
3428         u64 spte;
3429         u64 *sptep;
3430         uint retry_count = 0;
3431
3432         if (!page_fault_can_be_fast(fault))
3433                 return ret;
3434
3435         walk_shadow_page_lockless_begin(vcpu);
3436
3437         do {
3438                 u64 new_spte;
3439
3440                 if (tdp_mmu_enabled)
3441                         sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3442                 else
3443                         sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3444
3445                 /*
3446                  * It's entirely possible for the mapping to have been zapped
3447                  * by a different task, but the root page should always be
3448                  * available as the vCPU holds a reference to its root(s).
3449                  */
3450                 if (WARN_ON_ONCE(!sptep))
3451                         spte = REMOVED_SPTE;
3452
3453                 if (!is_shadow_present_pte(spte))
3454                         break;
3455
3456                 sp = sptep_to_sp(sptep);
3457                 if (!is_last_spte(spte, sp->role.level))
3458                         break;
3459
3460                 /*
3461                  * Check whether the memory access that caused the fault would
3462                  * still cause it if it were to be performed right now. If not,
3463                  * then this is a spurious fault caused by TLB lazily flushed,
3464                  * or some other CPU has already fixed the PTE after the
3465                  * current CPU took the fault.
3466                  *
3467                  * Need not check the access of upper level table entries since
3468                  * they are always ACC_ALL.
3469                  */
3470                 if (is_access_allowed(fault, spte)) {
3471                         ret = RET_PF_SPURIOUS;
3472                         break;
3473                 }
3474
3475                 new_spte = spte;
3476
3477                 /*
3478                  * KVM only supports fixing page faults outside of MMU lock for
3479                  * direct MMUs, nested MMUs are always indirect, and KVM always
3480                  * uses A/D bits for non-nested MMUs.  Thus, if A/D bits are
3481                  * enabled, the SPTE can't be an access-tracked SPTE.
3482                  */
3483                 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte))
3484                         new_spte = restore_acc_track_spte(new_spte);
3485
3486                 /*
3487                  * To keep things simple, only SPTEs that are MMU-writable can
3488                  * be made fully writable outside of mmu_lock, e.g. only SPTEs
3489                  * that were write-protected for dirty-logging or access
3490                  * tracking are handled here.  Don't bother checking if the
3491                  * SPTE is writable to prioritize running with A/D bits enabled.
3492                  * The is_access_allowed() check above handles the common case
3493                  * of the fault being spurious, and the SPTE is known to be
3494                  * shadow-present, i.e. except for access tracking restoration
3495                  * making the new SPTE writable, the check is wasteful.
3496                  */
3497                 if (fault->write && is_mmu_writable_spte(spte)) {
3498                         new_spte |= PT_WRITABLE_MASK;
3499
3500                         /*
3501                          * Do not fix write-permission on the large spte when
3502                          * dirty logging is enabled. Since we only dirty the
3503                          * first page into the dirty-bitmap in
3504                          * fast_pf_fix_direct_spte(), other pages are missed
3505                          * if its slot has dirty logging enabled.
3506                          *
3507                          * Instead, we let the slow page fault path create a
3508                          * normal spte to fix the access.
3509                          */
3510                         if (sp->role.level > PG_LEVEL_4K &&
3511                             kvm_slot_dirty_track_enabled(fault->slot))
3512                                 break;
3513                 }
3514
3515                 /* Verify that the fault can be handled in the fast path */
3516                 if (new_spte == spte ||
3517                     !is_access_allowed(fault, new_spte))
3518                         break;
3519
3520                 /*
3521                  * Currently, fast page fault only works for direct mapping
3522                  * since the gfn is not stable for indirect shadow page. See
3523                  * Documentation/virt/kvm/locking.rst to get more detail.
3524                  */
3525                 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3526                         ret = RET_PF_FIXED;
3527                         break;
3528                 }
3529
3530                 if (++retry_count > 4) {
3531                         pr_warn_once("Fast #PF retrying more than 4 times.\n");
3532                         break;
3533                 }
3534
3535         } while (true);
3536
3537         trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3538         walk_shadow_page_lockless_end(vcpu);
3539
3540         if (ret != RET_PF_INVALID)
3541                 vcpu->stat.pf_fast++;
3542
3543         return ret;
3544 }
3545
3546 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3547                                struct list_head *invalid_list)
3548 {
3549         struct kvm_mmu_page *sp;
3550
3551         if (!VALID_PAGE(*root_hpa))
3552                 return;
3553
3554         sp = root_to_sp(*root_hpa);
3555         if (WARN_ON_ONCE(!sp))
3556                 return;
3557
3558         if (is_tdp_mmu_page(sp))
3559                 kvm_tdp_mmu_put_root(kvm, sp, false);
3560         else if (!--sp->root_count && sp->role.invalid)
3561                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3562
3563         *root_hpa = INVALID_PAGE;
3564 }
3565
3566 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3567 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3568                         ulong roots_to_free)
3569 {
3570         int i;
3571         LIST_HEAD(invalid_list);
3572         bool free_active_root;
3573
3574         WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL);
3575
3576         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3577
3578         /* Before acquiring the MMU lock, see if we need to do any real work. */
3579         free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
3580                 && VALID_PAGE(mmu->root.hpa);
3581
3582         if (!free_active_root) {
3583                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3584                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3585                             VALID_PAGE(mmu->prev_roots[i].hpa))
3586                                 break;
3587
3588                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3589                         return;
3590         }
3591
3592         write_lock(&kvm->mmu_lock);
3593
3594         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3595                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3596                         mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3597                                            &invalid_list);
3598
3599         if (free_active_root) {
3600                 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) {
3601                         /* Nothing to cleanup for dummy roots. */
3602                 } else if (root_to_sp(mmu->root.hpa)) {
3603                         mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
3604                 } else if (mmu->pae_root) {
3605                         for (i = 0; i < 4; ++i) {
3606                                 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3607                                         continue;
3608
3609                                 mmu_free_root_page(kvm, &mmu->pae_root[i],
3610                                                    &invalid_list);
3611                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3612                         }
3613                 }
3614                 mmu->root.hpa = INVALID_PAGE;
3615                 mmu->root.pgd = 0;
3616         }
3617
3618         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3619         write_unlock(&kvm->mmu_lock);
3620 }
3621 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3622
3623 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3624 {
3625         unsigned long roots_to_free = 0;
3626         struct kvm_mmu_page *sp;
3627         hpa_t root_hpa;
3628         int i;
3629
3630         /*
3631          * This should not be called while L2 is active, L2 can't invalidate
3632          * _only_ its own roots, e.g. INVVPID unconditionally exits.
3633          */
3634         WARN_ON_ONCE(mmu->root_role.guest_mode);
3635
3636         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3637                 root_hpa = mmu->prev_roots[i].hpa;
3638                 if (!VALID_PAGE(root_hpa))
3639                         continue;
3640
3641                 sp = root_to_sp(root_hpa);
3642                 if (!sp || sp->role.guest_mode)
3643                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3644         }
3645
3646         kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3647 }
3648 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3649
3650 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant,
3651                             u8 level)
3652 {
3653         union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
3654         struct kvm_mmu_page *sp;
3655
3656         role.level = level;
3657         role.quadrant = quadrant;
3658
3659         WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte);
3660         WARN_ON_ONCE(role.direct && role.has_4_byte_gpte);
3661
3662         sp = kvm_mmu_get_shadow_page(vcpu, gfn, role);
3663         ++sp->root_count;
3664
3665         return __pa(sp->spt);
3666 }
3667
3668 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3669 {
3670         struct kvm_mmu *mmu = vcpu->arch.mmu;
3671         u8 shadow_root_level = mmu->root_role.level;
3672         hpa_t root;
3673         unsigned i;
3674         int r;
3675
3676         write_lock(&vcpu->kvm->mmu_lock);
3677         r = make_mmu_pages_available(vcpu);
3678         if (r < 0)
3679                 goto out_unlock;
3680
3681         if (tdp_mmu_enabled) {
3682                 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3683                 mmu->root.hpa = root;
3684         } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3685                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level);
3686                 mmu->root.hpa = root;
3687         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3688                 if (WARN_ON_ONCE(!mmu->pae_root)) {
3689                         r = -EIO;
3690                         goto out_unlock;
3691                 }
3692
3693                 for (i = 0; i < 4; ++i) {
3694                         WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3695
3696                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0,
3697                                               PT32_ROOT_LEVEL);
3698                         mmu->pae_root[i] = root | PT_PRESENT_MASK |
3699                                            shadow_me_value;
3700                 }
3701                 mmu->root.hpa = __pa(mmu->pae_root);
3702         } else {
3703                 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3704                 r = -EIO;
3705                 goto out_unlock;
3706         }
3707
3708         /* root.pgd is ignored for direct MMUs. */
3709         mmu->root.pgd = 0;
3710 out_unlock:
3711         write_unlock(&vcpu->kvm->mmu_lock);
3712         return r;
3713 }
3714
3715 static int mmu_first_shadow_root_alloc(struct kvm *kvm)
3716 {
3717         struct kvm_memslots *slots;
3718         struct kvm_memory_slot *slot;
3719         int r = 0, i, bkt;
3720
3721         /*
3722          * Check if this is the first shadow root being allocated before
3723          * taking the lock.
3724          */
3725         if (kvm_shadow_root_allocated(kvm))
3726                 return 0;
3727
3728         mutex_lock(&kvm->slots_arch_lock);
3729
3730         /* Recheck, under the lock, whether this is the first shadow root. */
3731         if (kvm_shadow_root_allocated(kvm))
3732                 goto out_unlock;
3733
3734         /*
3735          * Check if anything actually needs to be allocated, e.g. all metadata
3736          * will be allocated upfront if TDP is disabled.
3737          */
3738         if (kvm_memslots_have_rmaps(kvm) &&
3739             kvm_page_track_write_tracking_enabled(kvm))
3740                 goto out_success;
3741
3742         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
3743                 slots = __kvm_memslots(kvm, i);
3744                 kvm_for_each_memslot(slot, bkt, slots) {
3745                         /*
3746                          * Both of these functions are no-ops if the target is
3747                          * already allocated, so unconditionally calling both
3748                          * is safe.  Intentionally do NOT free allocations on
3749                          * failure to avoid having to track which allocations
3750                          * were made now versus when the memslot was created.
3751                          * The metadata is guaranteed to be freed when the slot
3752                          * is freed, and will be kept/used if userspace retries
3753                          * KVM_RUN instead of killing the VM.
3754                          */
3755                         r = memslot_rmap_alloc(slot, slot->npages);
3756                         if (r)
3757                                 goto out_unlock;
3758                         r = kvm_page_track_write_tracking_alloc(slot);
3759                         if (r)
3760                                 goto out_unlock;
3761                 }
3762         }
3763
3764         /*
3765          * Ensure that shadow_root_allocated becomes true strictly after
3766          * all the related pointers are set.
3767          */
3768 out_success:
3769         smp_store_release(&kvm->arch.shadow_root_allocated, true);
3770
3771 out_unlock:
3772         mutex_unlock(&kvm->slots_arch_lock);
3773         return r;
3774 }
3775
3776 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3777 {
3778         struct kvm_mmu *mmu = vcpu->arch.mmu;
3779         u64 pdptrs[4], pm_mask;
3780         gfn_t root_gfn, root_pgd;
3781         int quadrant, i, r;
3782         hpa_t root;
3783
3784         root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu);
3785         root_gfn = root_pgd >> PAGE_SHIFT;
3786
3787         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3788                 mmu->root.hpa = kvm_mmu_get_dummy_root();
3789                 return 0;
3790         }
3791
3792         /*
3793          * On SVM, reading PDPTRs might access guest memory, which might fault
3794          * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3795          */
3796         if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3797                 for (i = 0; i < 4; ++i) {
3798                         pdptrs[i] = mmu->get_pdptr(vcpu, i);
3799                         if (!(pdptrs[i] & PT_PRESENT_MASK))
3800                                 continue;
3801
3802                         if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT))
3803                                 pdptrs[i] = 0;
3804                 }
3805         }
3806
3807         r = mmu_first_shadow_root_alloc(vcpu->kvm);
3808         if (r)
3809                 return r;
3810
3811         write_lock(&vcpu->kvm->mmu_lock);
3812         r = make_mmu_pages_available(vcpu);
3813         if (r < 0)
3814                 goto out_unlock;
3815
3816         /*
3817          * Do we shadow a long mode page table? If so we need to
3818          * write-protect the guests page table root.
3819          */
3820         if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3821                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3822                                       mmu->root_role.level);
3823                 mmu->root.hpa = root;
3824                 goto set_root_pgd;
3825         }
3826
3827         if (WARN_ON_ONCE(!mmu->pae_root)) {
3828                 r = -EIO;
3829                 goto out_unlock;
3830         }
3831
3832         /*
3833          * We shadow a 32 bit page table. This may be a legacy 2-level
3834          * or a PAE 3-level page table. In either case we need to be aware that
3835          * the shadow page table may be a PAE or a long mode page table.
3836          */
3837         pm_mask = PT_PRESENT_MASK | shadow_me_value;
3838         if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
3839                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3840
3841                 if (WARN_ON_ONCE(!mmu->pml4_root)) {
3842                         r = -EIO;
3843                         goto out_unlock;
3844                 }
3845                 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3846
3847                 if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
3848                         if (WARN_ON_ONCE(!mmu->pml5_root)) {
3849                                 r = -EIO;
3850                                 goto out_unlock;
3851                         }
3852                         mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
3853                 }
3854         }
3855
3856         for (i = 0; i < 4; ++i) {
3857                 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3858
3859                 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3860                         if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3861                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3862                                 continue;
3863                         }
3864                         root_gfn = pdptrs[i] >> PAGE_SHIFT;
3865                 }
3866
3867                 /*
3868                  * If shadowing 32-bit non-PAE page tables, each PAE page
3869                  * directory maps one quarter of the guest's non-PAE page
3870                  * directory. Othwerise each PAE page direct shadows one guest
3871                  * PAE page directory so that quadrant should be 0.
3872                  */
3873                 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0;
3874
3875                 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL);
3876                 mmu->pae_root[i] = root | pm_mask;
3877         }
3878
3879         if (mmu->root_role.level == PT64_ROOT_5LEVEL)
3880                 mmu->root.hpa = __pa(mmu->pml5_root);
3881         else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
3882                 mmu->root.hpa = __pa(mmu->pml4_root);
3883         else
3884                 mmu->root.hpa = __pa(mmu->pae_root);
3885
3886 set_root_pgd:
3887         mmu->root.pgd = root_pgd;
3888 out_unlock:
3889         write_unlock(&vcpu->kvm->mmu_lock);
3890
3891         return r;
3892 }
3893
3894 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3895 {
3896         struct kvm_mmu *mmu = vcpu->arch.mmu;
3897         bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
3898         u64 *pml5_root = NULL;
3899         u64 *pml4_root = NULL;
3900         u64 *pae_root;
3901
3902         /*
3903          * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3904          * tables are allocated and initialized at root creation as there is no
3905          * equivalent level in the guest's NPT to shadow.  Allocate the tables
3906          * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3907          */
3908         if (mmu->root_role.direct ||
3909             mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
3910             mmu->root_role.level < PT64_ROOT_4LEVEL)
3911                 return 0;
3912
3913         /*
3914          * NPT, the only paging mode that uses this horror, uses a fixed number
3915          * of levels for the shadow page tables, e.g. all MMUs are 4-level or
3916          * all MMus are 5-level.  Thus, this can safely require that pml5_root
3917          * is allocated if the other roots are valid and pml5 is needed, as any
3918          * prior MMU would also have required pml5.
3919          */
3920         if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3921                 return 0;
3922
3923         /*
3924          * The special roots should always be allocated in concert.  Yell and
3925          * bail if KVM ends up in a state where only one of the roots is valid.
3926          */
3927         if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3928                          (need_pml5 && mmu->pml5_root)))
3929                 return -EIO;
3930
3931         /*
3932          * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3933          * doesn't need to be decrypted.
3934          */
3935         pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3936         if (!pae_root)
3937                 return -ENOMEM;
3938
3939 #ifdef CONFIG_X86_64
3940         pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3941         if (!pml4_root)
3942                 goto err_pml4;
3943
3944         if (need_pml5) {
3945                 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3946                 if (!pml5_root)
3947                         goto err_pml5;
3948         }
3949 #endif
3950
3951         mmu->pae_root = pae_root;
3952         mmu->pml4_root = pml4_root;
3953         mmu->pml5_root = pml5_root;
3954
3955         return 0;
3956
3957 #ifdef CONFIG_X86_64
3958 err_pml5:
3959         free_page((unsigned long)pml4_root);
3960 err_pml4:
3961         free_page((unsigned long)pae_root);
3962         return -ENOMEM;
3963 #endif
3964 }
3965
3966 static bool is_unsync_root(hpa_t root)
3967 {
3968         struct kvm_mmu_page *sp;
3969
3970         if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root))
3971                 return false;
3972
3973         /*
3974          * The read barrier orders the CPU's read of SPTE.W during the page table
3975          * walk before the reads of sp->unsync/sp->unsync_children here.
3976          *
3977          * Even if another CPU was marking the SP as unsync-ed simultaneously,
3978          * any guest page table changes are not guaranteed to be visible anyway
3979          * until this VCPU issues a TLB flush strictly after those changes are
3980          * made.  We only need to ensure that the other CPU sets these flags
3981          * before any actual changes to the page tables are made.  The comments
3982          * in mmu_try_to_unsync_pages() describe what could go wrong if this
3983          * requirement isn't satisfied.
3984          */
3985         smp_rmb();
3986         sp = root_to_sp(root);
3987
3988         /*
3989          * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
3990          * PDPTEs for a given PAE root need to be synchronized individually.
3991          */
3992         if (WARN_ON_ONCE(!sp))
3993                 return false;
3994
3995         if (sp->unsync || sp->unsync_children)
3996                 return true;
3997
3998         return false;
3999 }
4000
4001 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
4002 {
4003         int i;
4004         struct kvm_mmu_page *sp;
4005
4006         if (vcpu->arch.mmu->root_role.direct)
4007                 return;
4008
4009         if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
4010                 return;
4011
4012         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4013
4014         if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
4015                 hpa_t root = vcpu->arch.mmu->root.hpa;
4016
4017                 if (!is_unsync_root(root))
4018                         return;
4019
4020                 sp = root_to_sp(root);
4021
4022                 write_lock(&vcpu->kvm->mmu_lock);
4023                 mmu_sync_children(vcpu, sp, true);
4024                 write_unlock(&vcpu->kvm->mmu_lock);
4025                 return;
4026         }
4027
4028         write_lock(&vcpu->kvm->mmu_lock);
4029
4030         for (i = 0; i < 4; ++i) {
4031                 hpa_t root = vcpu->arch.mmu->pae_root[i];
4032
4033                 if (IS_VALID_PAE_ROOT(root)) {
4034                         sp = spte_to_child_sp(root);
4035                         mmu_sync_children(vcpu, sp, true);
4036                 }
4037         }
4038
4039         write_unlock(&vcpu->kvm->mmu_lock);
4040 }
4041
4042 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
4043 {
4044         unsigned long roots_to_free = 0;
4045         int i;
4046
4047         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4048                 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
4049                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
4050
4051         /* sync prev_roots by simply freeing them */
4052         kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
4053 }
4054
4055 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4056                                   gpa_t vaddr, u64 access,
4057                                   struct x86_exception *exception)
4058 {
4059         if (exception)
4060                 exception->error_code = 0;
4061         return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
4062 }
4063
4064 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4065 {
4066         /*
4067          * A nested guest cannot use the MMIO cache if it is using nested
4068          * page tables, because cr2 is a nGPA while the cache stores GPAs.
4069          */
4070         if (mmu_is_nested(vcpu))
4071                 return false;
4072
4073         if (direct)
4074                 return vcpu_match_mmio_gpa(vcpu, addr);
4075
4076         return vcpu_match_mmio_gva(vcpu, addr);
4077 }
4078
4079 /*
4080  * Return the level of the lowest level SPTE added to sptes.
4081  * That SPTE may be non-present.
4082  *
4083  * Must be called between walk_shadow_page_lockless_{begin,end}.
4084  */
4085 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
4086 {
4087         struct kvm_shadow_walk_iterator iterator;
4088         int leaf = -1;
4089         u64 spte;
4090
4091         for (shadow_walk_init(&iterator, vcpu, addr),
4092              *root_level = iterator.level;
4093              shadow_walk_okay(&iterator);
4094              __shadow_walk_next(&iterator, spte)) {
4095                 leaf = iterator.level;
4096                 spte = mmu_spte_get_lockless(iterator.sptep);
4097
4098                 sptes[leaf] = spte;
4099         }
4100
4101         return leaf;
4102 }
4103
4104 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
4105 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
4106 {
4107         u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
4108         struct rsvd_bits_validate *rsvd_check;
4109         int root, leaf, level;
4110         bool reserved = false;
4111
4112         walk_shadow_page_lockless_begin(vcpu);
4113
4114         if (is_tdp_mmu_active(vcpu))
4115                 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
4116         else
4117                 leaf = get_walk(vcpu, addr, sptes, &root);
4118
4119         walk_shadow_page_lockless_end(vcpu);
4120
4121         if (unlikely(leaf < 0)) {
4122                 *sptep = 0ull;
4123                 return reserved;
4124         }
4125
4126         *sptep = sptes[leaf];
4127
4128         /*
4129          * Skip reserved bits checks on the terminal leaf if it's not a valid
4130          * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
4131          * design, always have reserved bits set.  The purpose of the checks is
4132          * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
4133          */
4134         if (!is_shadow_present_pte(sptes[leaf]))
4135                 leaf++;
4136
4137         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
4138
4139         for (level = root; level >= leaf; level--)
4140                 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
4141
4142         if (reserved) {
4143                 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
4144                        __func__, addr);
4145                 for (level = root; level >= leaf; level--)
4146                         pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
4147                                sptes[level], level,
4148                                get_rsvd_bits(rsvd_check, sptes[level], level));
4149         }
4150
4151         return reserved;
4152 }
4153
4154 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4155 {
4156         u64 spte;
4157         bool reserved;
4158
4159         if (mmio_info_in_cache(vcpu, addr, direct))
4160                 return RET_PF_EMULATE;
4161
4162         reserved = get_mmio_spte(vcpu, addr, &spte);
4163         if (WARN_ON_ONCE(reserved))
4164                 return -EINVAL;
4165
4166         if (is_mmio_spte(spte)) {
4167                 gfn_t gfn = get_mmio_spte_gfn(spte);
4168                 unsigned int access = get_mmio_spte_access(spte);
4169
4170                 if (!check_mmio_spte(vcpu, spte))
4171                         return RET_PF_INVALID;
4172
4173                 if (direct)
4174                         addr = 0;
4175
4176                 trace_handle_mmio_page_fault(addr, gfn, access);
4177                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4178                 return RET_PF_EMULATE;
4179         }
4180
4181         /*
4182          * If the page table is zapped by other cpus, let CPU fault again on
4183          * the address.
4184          */
4185         return RET_PF_RETRY;
4186 }
4187
4188 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4189                                          struct kvm_page_fault *fault)
4190 {
4191         if (unlikely(fault->rsvd))
4192                 return false;
4193
4194         if (!fault->present || !fault->write)
4195                 return false;
4196
4197         /*
4198          * guest is writing the page which is write tracked which can
4199          * not be fixed by page fault handler.
4200          */
4201         if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn))
4202                 return true;
4203
4204         return false;
4205 }
4206
4207 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4208 {
4209         struct kvm_shadow_walk_iterator iterator;
4210         u64 spte;
4211
4212         walk_shadow_page_lockless_begin(vcpu);
4213         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
4214                 clear_sp_write_flooding_count(iterator.sptep);
4215         walk_shadow_page_lockless_end(vcpu);
4216 }
4217
4218 static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
4219 {
4220         /* make sure the token value is not 0 */
4221         u32 id = vcpu->arch.apf.id;
4222
4223         if (id << 12 == 0)
4224                 vcpu->arch.apf.id = 1;
4225
4226         return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4227 }
4228
4229 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4230                                     gfn_t gfn)
4231 {
4232         struct kvm_arch_async_pf arch;
4233
4234         arch.token = alloc_apf_token(vcpu);
4235         arch.gfn = gfn;
4236         arch.direct_map = vcpu->arch.mmu->root_role.direct;
4237         arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu);
4238
4239         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4240                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4241 }
4242
4243 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
4244 {
4245         int r;
4246
4247         if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) ||
4248               work->wakeup_all)
4249                 return;
4250
4251         r = kvm_mmu_reload(vcpu);
4252         if (unlikely(r))
4253                 return;
4254
4255         if (!vcpu->arch.mmu->root_role.direct &&
4256               work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu))
4257                 return;
4258
4259         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true, NULL);
4260 }
4261
4262 static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4263 {
4264         struct kvm_memory_slot *slot = fault->slot;
4265         bool async;
4266
4267         /*
4268          * Retry the page fault if the gfn hit a memslot that is being deleted
4269          * or moved.  This ensures any existing SPTEs for the old memslot will
4270          * be zapped before KVM inserts a new MMIO SPTE for the gfn.
4271          */
4272         if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
4273                 return RET_PF_RETRY;
4274
4275         if (!kvm_is_visible_memslot(slot)) {
4276                 /* Don't expose private memslots to L2. */
4277                 if (is_guest_mode(vcpu)) {
4278                         fault->slot = NULL;
4279                         fault->pfn = KVM_PFN_NOSLOT;
4280                         fault->map_writable = false;
4281                         return RET_PF_CONTINUE;
4282                 }
4283                 /*
4284                  * If the APIC access page exists but is disabled, go directly
4285                  * to emulation without caching the MMIO access or creating a
4286                  * MMIO SPTE.  That way the cache doesn't need to be purged
4287                  * when the AVIC is re-enabled.
4288                  */
4289                 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
4290                     !kvm_apicv_activated(vcpu->kvm))
4291                         return RET_PF_EMULATE;
4292         }
4293
4294         async = false;
4295         fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, false, &async,
4296                                           fault->write, &fault->map_writable,
4297                                           &fault->hva);
4298         if (!async)
4299                 return RET_PF_CONTINUE; /* *pfn has correct page already */
4300
4301         if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
4302                 trace_kvm_try_async_get_page(fault->addr, fault->gfn);
4303                 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
4304                         trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn);
4305                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4306                         return RET_PF_RETRY;
4307                 } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) {
4308                         return RET_PF_RETRY;
4309                 }
4310         }
4311
4312         /*
4313          * Allow gup to bail on pending non-fatal signals when it's also allowed
4314          * to wait for IO.  Note, gup always bails if it is unable to quickly
4315          * get a page and a fatal signal, i.e. SIGKILL, is pending.
4316          */
4317         fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, true, NULL,
4318                                           fault->write, &fault->map_writable,
4319                                           &fault->hva);
4320         return RET_PF_CONTINUE;
4321 }
4322
4323 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
4324                            unsigned int access)
4325 {
4326         int ret;
4327
4328         fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq;
4329         smp_rmb();
4330
4331         ret = __kvm_faultin_pfn(vcpu, fault);
4332         if (ret != RET_PF_CONTINUE)
4333                 return ret;
4334
4335         if (unlikely(is_error_pfn(fault->pfn)))
4336                 return kvm_handle_error_pfn(vcpu, fault);
4337
4338         if (unlikely(!fault->slot))
4339                 return kvm_handle_noslot_fault(vcpu, fault, access);
4340
4341         return RET_PF_CONTINUE;
4342 }
4343
4344 /*
4345  * Returns true if the page fault is stale and needs to be retried, i.e. if the
4346  * root was invalidated by a memslot update or a relevant mmu_notifier fired.
4347  */
4348 static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
4349                                 struct kvm_page_fault *fault)
4350 {
4351         struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
4352
4353         /* Special roots, e.g. pae_root, are not backed by shadow pages. */
4354         if (sp && is_obsolete_sp(vcpu->kvm, sp))
4355                 return true;
4356
4357         /*
4358          * Roots without an associated shadow page are considered invalid if
4359          * there is a pending request to free obsolete roots.  The request is
4360          * only a hint that the current root _may_ be obsolete and needs to be
4361          * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
4362          * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
4363          * to reload even if no vCPU is actively using the root.
4364          */
4365         if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
4366                 return true;
4367
4368         return fault->slot &&
4369                mmu_invalidate_retry_hva(vcpu->kvm, fault->mmu_seq, fault->hva);
4370 }
4371
4372 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4373 {
4374         int r;
4375
4376         /* Dummy roots are used only for shadowing bad guest roots. */
4377         if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa)))
4378                 return RET_PF_RETRY;
4379
4380         if (page_fault_handle_page_track(vcpu, fault))
4381                 return RET_PF_EMULATE;
4382
4383         r = fast_page_fault(vcpu, fault);
4384         if (r != RET_PF_INVALID)
4385                 return r;
4386
4387         r = mmu_topup_memory_caches(vcpu, false);
4388         if (r)
4389                 return r;
4390
4391         r = kvm_faultin_pfn(vcpu, fault, ACC_ALL);
4392         if (r != RET_PF_CONTINUE)
4393                 return r;
4394
4395         r = RET_PF_RETRY;
4396         write_lock(&vcpu->kvm->mmu_lock);
4397
4398         if (is_page_fault_stale(vcpu, fault))
4399                 goto out_unlock;
4400
4401         r = make_mmu_pages_available(vcpu);
4402         if (r)
4403                 goto out_unlock;
4404
4405         r = direct_map(vcpu, fault);
4406
4407 out_unlock:
4408         write_unlock(&vcpu->kvm->mmu_lock);
4409         kvm_release_pfn_clean(fault->pfn);
4410         return r;
4411 }
4412
4413 static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
4414                                 struct kvm_page_fault *fault)
4415 {
4416         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4417         fault->max_level = PG_LEVEL_2M;
4418         return direct_page_fault(vcpu, fault);
4419 }
4420
4421 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4422                                 u64 fault_address, char *insn, int insn_len)
4423 {
4424         int r = 1;
4425         u32 flags = vcpu->arch.apf.host_apf_flags;
4426
4427 #ifndef CONFIG_X86_64
4428         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4429         if (WARN_ON_ONCE(fault_address >> 32))
4430                 return -EFAULT;
4431 #endif
4432
4433         vcpu->arch.l1tf_flush_l1d = true;
4434         if (!flags) {
4435                 trace_kvm_page_fault(vcpu, fault_address, error_code);
4436
4437                 if (kvm_event_needs_reinjection(vcpu))
4438                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4439                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4440                                 insn_len);
4441         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4442                 vcpu->arch.apf.host_apf_flags = 0;
4443                 local_irq_disable();
4444                 kvm_async_pf_task_wait_schedule(fault_address);
4445                 local_irq_enable();
4446         } else {
4447                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4448         }
4449
4450         return r;
4451 }
4452 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4453
4454 #ifdef CONFIG_X86_64
4455 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu,
4456                                   struct kvm_page_fault *fault)
4457 {
4458         int r;
4459
4460         if (page_fault_handle_page_track(vcpu, fault))
4461                 return RET_PF_EMULATE;
4462
4463         r = fast_page_fault(vcpu, fault);
4464         if (r != RET_PF_INVALID)
4465                 return r;
4466
4467         r = mmu_topup_memory_caches(vcpu, false);
4468         if (r)
4469                 return r;
4470
4471         r = kvm_faultin_pfn(vcpu, fault, ACC_ALL);
4472         if (r != RET_PF_CONTINUE)
4473                 return r;
4474
4475         r = RET_PF_RETRY;
4476         read_lock(&vcpu->kvm->mmu_lock);
4477
4478         if (is_page_fault_stale(vcpu, fault))
4479                 goto out_unlock;
4480
4481         r = kvm_tdp_mmu_map(vcpu, fault);
4482
4483 out_unlock:
4484         read_unlock(&vcpu->kvm->mmu_lock);
4485         kvm_release_pfn_clean(fault->pfn);
4486         return r;
4487 }
4488 #endif
4489
4490 bool __kvm_mmu_honors_guest_mtrrs(bool vm_has_noncoherent_dma)
4491 {
4492         /*
4493          * If host MTRRs are ignored (shadow_memtype_mask is non-zero), and the
4494          * VM has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is
4495          * to honor the memtype from the guest's MTRRs so that guest accesses
4496          * to memory that is DMA'd aren't cached against the guest's wishes.
4497          *
4498          * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs,
4499          * e.g. KVM will force UC memtype for host MMIO.
4500          */
4501         return vm_has_noncoherent_dma && shadow_memtype_mask;
4502 }
4503
4504 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4505 {
4506         /*
4507          * If the guest's MTRRs may be used to compute the "real" memtype,
4508          * restrict the mapping level to ensure KVM uses a consistent memtype
4509          * across the entire mapping.
4510          */
4511         if (kvm_mmu_honors_guest_mtrrs(vcpu->kvm)) {
4512                 for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) {
4513                         int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
4514                         gfn_t base = gfn_round_for_level(fault->gfn,
4515                                                          fault->max_level);
4516
4517                         if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4518                                 break;
4519                 }
4520         }
4521
4522 #ifdef CONFIG_X86_64
4523         if (tdp_mmu_enabled)
4524                 return kvm_tdp_mmu_page_fault(vcpu, fault);
4525 #endif
4526
4527         return direct_page_fault(vcpu, fault);
4528 }
4529
4530 static void nonpaging_init_context(struct kvm_mmu *context)
4531 {
4532         context->page_fault = nonpaging_page_fault;
4533         context->gva_to_gpa = nonpaging_gva_to_gpa;
4534         context->sync_spte = NULL;
4535 }
4536
4537 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4538                                   union kvm_mmu_page_role role)
4539 {
4540         struct kvm_mmu_page *sp;
4541
4542         if (!VALID_PAGE(root->hpa))
4543                 return false;
4544
4545         if (!role.direct && pgd != root->pgd)
4546                 return false;
4547
4548         sp = root_to_sp(root->hpa);
4549         if (WARN_ON_ONCE(!sp))
4550                 return false;
4551
4552         return role.word == sp->role.word;
4553 }
4554
4555 /*
4556  * Find out if a previously cached root matching the new pgd/role is available,
4557  * and insert the current root as the MRU in the cache.
4558  * If a matching root is found, it is assigned to kvm_mmu->root and
4559  * true is returned.
4560  * If no match is found, kvm_mmu->root is left invalid, the LRU root is
4561  * evicted to make room for the current root, and false is returned.
4562  */
4563 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
4564                                               gpa_t new_pgd,
4565                                               union kvm_mmu_page_role new_role)
4566 {
4567         uint i;
4568
4569         if (is_root_usable(&mmu->root, new_pgd, new_role))
4570                 return true;
4571
4572         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4573                 /*
4574                  * The swaps end up rotating the cache like this:
4575                  *   C   0 1 2 3   (on entry to the function)
4576                  *   0   C 1 2 3
4577                  *   1   C 0 2 3
4578                  *   2   C 0 1 3
4579                  *   3   C 0 1 2   (on exit from the loop)
4580                  */
4581                 swap(mmu->root, mmu->prev_roots[i]);
4582                 if (is_root_usable(&mmu->root, new_pgd, new_role))
4583                         return true;
4584         }
4585
4586         kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4587         return false;
4588 }
4589
4590 /*
4591  * Find out if a previously cached root matching the new pgd/role is available.
4592  * On entry, mmu->root is invalid.
4593  * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
4594  * of the cache becomes invalid, and true is returned.
4595  * If no match is found, kvm_mmu->root is left invalid and false is returned.
4596  */
4597 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
4598                                              gpa_t new_pgd,
4599                                              union kvm_mmu_page_role new_role)
4600 {
4601         uint i;
4602
4603         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4604                 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
4605                         goto hit;
4606
4607         return false;
4608
4609 hit:
4610         swap(mmu->root, mmu->prev_roots[i]);
4611         /* Bubble up the remaining roots.  */
4612         for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
4613                 mmu->prev_roots[i] = mmu->prev_roots[i + 1];
4614         mmu->prev_roots[i].hpa = INVALID_PAGE;
4615         return true;
4616 }
4617
4618 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
4619                             gpa_t new_pgd, union kvm_mmu_page_role new_role)
4620 {
4621         /*
4622          * Limit reuse to 64-bit hosts+VMs without "special" roots in order to
4623          * avoid having to deal with PDPTEs and other complexities.
4624          */
4625         if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa))
4626                 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4627
4628         if (VALID_PAGE(mmu->root.hpa))
4629                 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
4630         else
4631                 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
4632 }
4633
4634 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4635 {
4636         struct kvm_mmu *mmu = vcpu->arch.mmu;
4637         union kvm_mmu_page_role new_role = mmu->root_role;
4638
4639         /*
4640          * Return immediately if no usable root was found, kvm_mmu_reload()
4641          * will establish a valid root prior to the next VM-Enter.
4642          */
4643         if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role))
4644                 return;
4645
4646         /*
4647          * It's possible that the cached previous root page is obsolete because
4648          * of a change in the MMU generation number. However, changing the
4649          * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
4650          * which will free the root set here and allocate a new one.
4651          */
4652         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4653
4654         if (force_flush_and_sync_on_reuse) {
4655                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4656                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4657         }
4658
4659         /*
4660          * The last MMIO access's GVA and GPA are cached in the VCPU. When
4661          * switching to a new CR3, that GVA->GPA mapping may no longer be
4662          * valid. So clear any cached MMIO info even when we don't need to sync
4663          * the shadow page tables.
4664          */
4665         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4666
4667         /*
4668          * If this is a direct root page, it doesn't have a write flooding
4669          * count. Otherwise, clear the write flooding count.
4670          */
4671         if (!new_role.direct) {
4672                 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
4673
4674                 if (!WARN_ON_ONCE(!sp))
4675                         __clear_sp_write_flooding_count(sp);
4676         }
4677 }
4678 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4679
4680 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4681                            unsigned int access)
4682 {
4683         if (unlikely(is_mmio_spte(*sptep))) {
4684                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4685                         mmu_spte_clear_no_track(sptep);
4686                         return true;
4687                 }
4688
4689                 mark_mmio_spte(vcpu, sptep, gfn, access);
4690                 return true;
4691         }
4692
4693         return false;
4694 }
4695
4696 #define PTTYPE_EPT 18 /* arbitrary */
4697 #define PTTYPE PTTYPE_EPT
4698 #include "paging_tmpl.h"
4699 #undef PTTYPE
4700
4701 #define PTTYPE 64
4702 #include "paging_tmpl.h"
4703 #undef PTTYPE
4704
4705 #define PTTYPE 32
4706 #include "paging_tmpl.h"
4707 #undef PTTYPE
4708
4709 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4710                                     u64 pa_bits_rsvd, int level, bool nx,
4711                                     bool gbpages, bool pse, bool amd)
4712 {
4713         u64 gbpages_bit_rsvd = 0;
4714         u64 nonleaf_bit8_rsvd = 0;
4715         u64 high_bits_rsvd;
4716
4717         rsvd_check->bad_mt_xwr = 0;
4718
4719         if (!gbpages)
4720                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4721
4722         if (level == PT32E_ROOT_LEVEL)
4723                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4724         else
4725                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4726
4727         /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4728         if (!nx)
4729                 high_bits_rsvd |= rsvd_bits(63, 63);
4730
4731         /*
4732          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4733          * leaf entries) on AMD CPUs only.
4734          */
4735         if (amd)
4736                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4737
4738         switch (level) {
4739         case PT32_ROOT_LEVEL:
4740                 /* no rsvd bits for 2 level 4K page table entries */
4741                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4742                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4743                 rsvd_check->rsvd_bits_mask[1][0] =
4744                         rsvd_check->rsvd_bits_mask[0][0];
4745
4746                 if (!pse) {
4747                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4748                         break;
4749                 }
4750
4751                 if (is_cpuid_PSE36())
4752                         /* 36bits PSE 4MB page */
4753                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4754                 else
4755                         /* 32 bits PSE 4MB page */
4756                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4757                 break;
4758         case PT32E_ROOT_LEVEL:
4759                 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4760                                                    high_bits_rsvd |
4761                                                    rsvd_bits(5, 8) |
4762                                                    rsvd_bits(1, 2);     /* PDPTE */
4763                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;      /* PDE */
4764                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;      /* PTE */
4765                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4766                                                    rsvd_bits(13, 20);   /* large page */
4767                 rsvd_check->rsvd_bits_mask[1][0] =
4768                         rsvd_check->rsvd_bits_mask[0][0];
4769                 break;
4770         case PT64_ROOT_5LEVEL:
4771                 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4772                                                    nonleaf_bit8_rsvd |
4773                                                    rsvd_bits(7, 7);
4774                 rsvd_check->rsvd_bits_mask[1][4] =
4775                         rsvd_check->rsvd_bits_mask[0][4];
4776                 fallthrough;
4777         case PT64_ROOT_4LEVEL:
4778                 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4779                                                    nonleaf_bit8_rsvd |
4780                                                    rsvd_bits(7, 7);
4781                 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4782                                                    gbpages_bit_rsvd;
4783                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4784                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4785                 rsvd_check->rsvd_bits_mask[1][3] =
4786                         rsvd_check->rsvd_bits_mask[0][3];
4787                 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4788                                                    gbpages_bit_rsvd |
4789                                                    rsvd_bits(13, 29);
4790                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4791                                                    rsvd_bits(13, 20); /* large page */
4792                 rsvd_check->rsvd_bits_mask[1][0] =
4793                         rsvd_check->rsvd_bits_mask[0][0];
4794                 break;
4795         }
4796 }
4797
4798 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4799                                         struct kvm_mmu *context)
4800 {
4801         __reset_rsvds_bits_mask(&context->guest_rsvd_check,
4802                                 vcpu->arch.reserved_gpa_bits,
4803                                 context->cpu_role.base.level, is_efer_nx(context),
4804                                 guest_can_use(vcpu, X86_FEATURE_GBPAGES),
4805                                 is_cr4_pse(context),
4806                                 guest_cpuid_is_amd_or_hygon(vcpu));
4807 }
4808
4809 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4810                                         u64 pa_bits_rsvd, bool execonly,
4811                                         int huge_page_level)
4812 {
4813         u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4814         u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
4815         u64 bad_mt_xwr;
4816
4817         if (huge_page_level < PG_LEVEL_1G)
4818                 large_1g_rsvd = rsvd_bits(7, 7);
4819         if (huge_page_level < PG_LEVEL_2M)
4820                 large_2m_rsvd = rsvd_bits(7, 7);
4821
4822         rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4823         rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4824         rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
4825         rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
4826         rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4827
4828         /* large page */
4829         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4830         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4831         rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
4832         rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
4833         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4834
4835         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4836         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4837         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4838         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4839         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4840         if (!execonly) {
4841                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4842                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4843         }
4844         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4845 }
4846
4847 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4848                 struct kvm_mmu *context, bool execonly, int huge_page_level)
4849 {
4850         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4851                                     vcpu->arch.reserved_gpa_bits, execonly,
4852                                     huge_page_level);
4853 }
4854
4855 static inline u64 reserved_hpa_bits(void)
4856 {
4857         return rsvd_bits(shadow_phys_bits, 63);
4858 }
4859
4860 /*
4861  * the page table on host is the shadow page table for the page
4862  * table in guest or amd nested guest, its mmu features completely
4863  * follow the features in guest.
4864  */
4865 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4866                                         struct kvm_mmu *context)
4867 {
4868         /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4869         bool is_amd = true;
4870         /* KVM doesn't use 2-level page tables for the shadow MMU. */
4871         bool is_pse = false;
4872         struct rsvd_bits_validate *shadow_zero_check;
4873         int i;
4874
4875         WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL);
4876
4877         shadow_zero_check = &context->shadow_zero_check;
4878         __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4879                                 context->root_role.level,
4880                                 context->root_role.efer_nx,
4881                                 guest_can_use(vcpu, X86_FEATURE_GBPAGES),
4882                                 is_pse, is_amd);
4883
4884         if (!shadow_me_mask)
4885                 return;
4886
4887         for (i = context->root_role.level; --i >= 0;) {
4888                 /*
4889                  * So far shadow_me_value is a constant during KVM's life
4890                  * time.  Bits in shadow_me_value are allowed to be set.
4891                  * Bits in shadow_me_mask but not in shadow_me_value are
4892                  * not allowed to be set.
4893                  */
4894                 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask;
4895                 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask;
4896                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value;
4897                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value;
4898         }
4899
4900 }
4901
4902 static inline bool boot_cpu_is_amd(void)
4903 {
4904         WARN_ON_ONCE(!tdp_enabled);
4905         return shadow_x_mask == 0;
4906 }
4907
4908 /*
4909  * the direct page table on host, use as much mmu features as
4910  * possible, however, kvm currently does not do execution-protection.
4911  */
4912 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
4913 {
4914         struct rsvd_bits_validate *shadow_zero_check;
4915         int i;
4916
4917         shadow_zero_check = &context->shadow_zero_check;
4918
4919         if (boot_cpu_is_amd())
4920                 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4921                                         context->root_role.level, true,
4922                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4923                                         false, true);
4924         else
4925                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4926                                             reserved_hpa_bits(), false,
4927                                             max_huge_page_level);
4928
4929         if (!shadow_me_mask)
4930                 return;
4931
4932         for (i = context->root_role.level; --i >= 0;) {
4933                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4934                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4935         }
4936 }
4937
4938 /*
4939  * as the comments in reset_shadow_zero_bits_mask() except it
4940  * is the shadow page table for intel nested guest.
4941  */
4942 static void
4943 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
4944 {
4945         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4946                                     reserved_hpa_bits(), execonly,
4947                                     max_huge_page_level);
4948 }
4949
4950 #define BYTE_MASK(access) \
4951         ((1 & (access) ? 2 : 0) | \
4952          (2 & (access) ? 4 : 0) | \
4953          (3 & (access) ? 8 : 0) | \
4954          (4 & (access) ? 16 : 0) | \
4955          (5 & (access) ? 32 : 0) | \
4956          (6 & (access) ? 64 : 0) | \
4957          (7 & (access) ? 128 : 0))
4958
4959
4960 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4961 {
4962         unsigned byte;
4963
4964         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4965         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4966         const u8 u = BYTE_MASK(ACC_USER_MASK);
4967
4968         bool cr4_smep = is_cr4_smep(mmu);
4969         bool cr4_smap = is_cr4_smap(mmu);
4970         bool cr0_wp = is_cr0_wp(mmu);
4971         bool efer_nx = is_efer_nx(mmu);
4972
4973         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4974                 unsigned pfec = byte << 1;
4975
4976                 /*
4977                  * Each "*f" variable has a 1 bit for each UWX value
4978                  * that causes a fault with the given PFEC.
4979                  */
4980
4981                 /* Faults from writes to non-writable pages */
4982                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4983                 /* Faults from user mode accesses to supervisor pages */
4984                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4985                 /* Faults from fetches of non-executable pages*/
4986                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4987                 /* Faults from kernel mode fetches of user pages */
4988                 u8 smepf = 0;
4989                 /* Faults from kernel mode accesses of user pages */
4990                 u8 smapf = 0;
4991
4992                 if (!ept) {
4993                         /* Faults from kernel mode accesses to user pages */
4994                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4995
4996                         /* Not really needed: !nx will cause pte.nx to fault */
4997                         if (!efer_nx)
4998                                 ff = 0;
4999
5000                         /* Allow supervisor writes if !cr0.wp */
5001                         if (!cr0_wp)
5002                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
5003
5004                         /* Disallow supervisor fetches of user code if cr4.smep */
5005                         if (cr4_smep)
5006                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
5007
5008                         /*
5009                          * SMAP:kernel-mode data accesses from user-mode
5010                          * mappings should fault. A fault is considered
5011                          * as a SMAP violation if all of the following
5012                          * conditions are true:
5013                          *   - X86_CR4_SMAP is set in CR4
5014                          *   - A user page is accessed
5015                          *   - The access is not a fetch
5016                          *   - The access is supervisor mode
5017                          *   - If implicit supervisor access or X86_EFLAGS_AC is clear
5018                          *
5019                          * Here, we cover the first four conditions.
5020                          * The fifth is computed dynamically in permission_fault();
5021                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
5022                          * *not* subject to SMAP restrictions.
5023                          */
5024                         if (cr4_smap)
5025                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
5026                 }
5027
5028                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
5029         }
5030 }
5031
5032 /*
5033 * PKU is an additional mechanism by which the paging controls access to
5034 * user-mode addresses based on the value in the PKRU register.  Protection
5035 * key violations are reported through a bit in the page fault error code.
5036 * Unlike other bits of the error code, the PK bit is not known at the
5037 * call site of e.g. gva_to_gpa; it must be computed directly in
5038 * permission_fault based on two bits of PKRU, on some machine state (CR4,
5039 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
5040 *
5041 * In particular the following conditions come from the error code, the
5042 * page tables and the machine state:
5043 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
5044 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
5045 * - PK is always zero if U=0 in the page tables
5046 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
5047 *
5048 * The PKRU bitmask caches the result of these four conditions.  The error
5049 * code (minus the P bit) and the page table's U bit form an index into the
5050 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
5051 * with the two bits of the PKRU register corresponding to the protection key.
5052 * For the first three conditions above the bits will be 00, thus masking
5053 * away both AD and WD.  For all reads or if the last condition holds, WD
5054 * only will be masked away.
5055 */
5056 static void update_pkru_bitmask(struct kvm_mmu *mmu)
5057 {
5058         unsigned bit;
5059         bool wp;
5060
5061         mmu->pkru_mask = 0;
5062
5063         if (!is_cr4_pke(mmu))
5064                 return;
5065
5066         wp = is_cr0_wp(mmu);
5067
5068         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
5069                 unsigned pfec, pkey_bits;
5070                 bool check_pkey, check_write, ff, uf, wf, pte_user;
5071
5072                 pfec = bit << 1;
5073                 ff = pfec & PFERR_FETCH_MASK;
5074                 uf = pfec & PFERR_USER_MASK;
5075                 wf = pfec & PFERR_WRITE_MASK;
5076
5077                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
5078                 pte_user = pfec & PFERR_RSVD_MASK;
5079
5080                 /*
5081                  * Only need to check the access which is not an
5082                  * instruction fetch and is to a user page.
5083                  */
5084                 check_pkey = (!ff && pte_user);
5085                 /*
5086                  * write access is controlled by PKRU if it is a
5087                  * user access or CR0.WP = 1.
5088                  */
5089                 check_write = check_pkey && wf && (uf || wp);
5090
5091                 /* PKRU.AD stops both read and write access. */
5092                 pkey_bits = !!check_pkey;
5093                 /* PKRU.WD stops write access. */
5094                 pkey_bits |= (!!check_write) << 1;
5095
5096                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
5097         }
5098 }
5099
5100 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
5101                                         struct kvm_mmu *mmu)
5102 {
5103         if (!is_cr0_pg(mmu))
5104                 return;
5105
5106         reset_guest_rsvds_bits_mask(vcpu, mmu);
5107         update_permission_bitmask(mmu, false);
5108         update_pkru_bitmask(mmu);
5109 }
5110
5111 static void paging64_init_context(struct kvm_mmu *context)
5112 {
5113         context->page_fault = paging64_page_fault;
5114         context->gva_to_gpa = paging64_gva_to_gpa;
5115         context->sync_spte = paging64_sync_spte;
5116 }
5117
5118 static void paging32_init_context(struct kvm_mmu *context)
5119 {
5120         context->page_fault = paging32_page_fault;
5121         context->gva_to_gpa = paging32_gva_to_gpa;
5122         context->sync_spte = paging32_sync_spte;
5123 }
5124
5125 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu,
5126                                             const struct kvm_mmu_role_regs *regs)
5127 {
5128         union kvm_cpu_role role = {0};
5129
5130         role.base.access = ACC_ALL;
5131         role.base.smm = is_smm(vcpu);
5132         role.base.guest_mode = is_guest_mode(vcpu);
5133         role.ext.valid = 1;
5134
5135         if (!____is_cr0_pg(regs)) {
5136                 role.base.direct = 1;
5137                 return role;
5138         }
5139
5140         role.base.efer_nx = ____is_efer_nx(regs);
5141         role.base.cr0_wp = ____is_cr0_wp(regs);
5142         role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs);
5143         role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs);
5144         role.base.has_4_byte_gpte = !____is_cr4_pae(regs);
5145
5146         if (____is_efer_lma(regs))
5147                 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL
5148                                                         : PT64_ROOT_4LEVEL;
5149         else if (____is_cr4_pae(regs))
5150                 role.base.level = PT32E_ROOT_LEVEL;
5151         else
5152                 role.base.level = PT32_ROOT_LEVEL;
5153
5154         role.ext.cr4_smep = ____is_cr4_smep(regs);
5155         role.ext.cr4_smap = ____is_cr4_smap(regs);
5156         role.ext.cr4_pse = ____is_cr4_pse(regs);
5157
5158         /* PKEY and LA57 are active iff long mode is active. */
5159         role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
5160         role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
5161         role.ext.efer_lma = ____is_efer_lma(regs);
5162         return role;
5163 }
5164
5165 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
5166                                         struct kvm_mmu *mmu)
5167 {
5168         const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP);
5169
5170         BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP);
5171         BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS));
5172
5173         if (is_cr0_wp(mmu) == cr0_wp)
5174                 return;
5175
5176         mmu->cpu_role.base.cr0_wp = cr0_wp;
5177         reset_guest_paging_metadata(vcpu, mmu);
5178 }
5179
5180 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
5181 {
5182         /* tdp_root_level is architecture forced level, use it if nonzero */
5183         if (tdp_root_level)
5184                 return tdp_root_level;
5185
5186         /* Use 5-level TDP if and only if it's useful/necessary. */
5187         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
5188                 return 4;
5189
5190         return max_tdp_level;
5191 }
5192
5193 static union kvm_mmu_page_role
5194 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
5195                                 union kvm_cpu_role cpu_role)
5196 {
5197         union kvm_mmu_page_role role = {0};
5198
5199         role.access = ACC_ALL;
5200         role.cr0_wp = true;
5201         role.efer_nx = true;
5202         role.smm = cpu_role.base.smm;
5203         role.guest_mode = cpu_role.base.guest_mode;
5204         role.ad_disabled = !kvm_ad_enabled();
5205         role.level = kvm_mmu_get_tdp_level(vcpu);
5206         role.direct = true;
5207         role.has_4_byte_gpte = false;
5208
5209         return role;
5210 }
5211
5212 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
5213                              union kvm_cpu_role cpu_role)
5214 {
5215         struct kvm_mmu *context = &vcpu->arch.root_mmu;
5216         union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role);
5217
5218         if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5219             root_role.word == context->root_role.word)
5220                 return;
5221
5222         context->cpu_role.as_u64 = cpu_role.as_u64;
5223         context->root_role.word = root_role.word;
5224         context->page_fault = kvm_tdp_page_fault;
5225         context->sync_spte = NULL;
5226         context->get_guest_pgd = get_guest_cr3;
5227         context->get_pdptr = kvm_pdptr_read;
5228         context->inject_page_fault = kvm_inject_page_fault;
5229
5230         if (!is_cr0_pg(context))
5231                 context->gva_to_gpa = nonpaging_gva_to_gpa;
5232         else if (is_cr4_pae(context))
5233                 context->gva_to_gpa = paging64_gva_to_gpa;
5234         else
5235                 context->gva_to_gpa = paging32_gva_to_gpa;
5236
5237         reset_guest_paging_metadata(vcpu, context);
5238         reset_tdp_shadow_zero_bits_mask(context);
5239 }
5240
5241 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
5242                                     union kvm_cpu_role cpu_role,
5243                                     union kvm_mmu_page_role root_role)
5244 {
5245         if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5246             root_role.word == context->root_role.word)
5247                 return;
5248
5249         context->cpu_role.as_u64 = cpu_role.as_u64;
5250         context->root_role.word = root_role.word;
5251
5252         if (!is_cr0_pg(context))
5253                 nonpaging_init_context(context);
5254         else if (is_cr4_pae(context))
5255                 paging64_init_context(context);
5256         else
5257                 paging32_init_context(context);
5258
5259         reset_guest_paging_metadata(vcpu, context);
5260         reset_shadow_zero_bits_mask(vcpu, context);
5261 }
5262
5263 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
5264                                 union kvm_cpu_role cpu_role)
5265 {
5266         struct kvm_mmu *context = &vcpu->arch.root_mmu;
5267         union kvm_mmu_page_role root_role;
5268
5269         root_role = cpu_role.base;
5270
5271         /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */
5272         root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL);
5273
5274         /*
5275          * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role.
5276          * KVM uses NX when TDP is disabled to handle a variety of scenarios,
5277          * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
5278          * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
5279          * The iTLB multi-hit workaround can be toggled at any time, so assume
5280          * NX can be used by any non-nested shadow MMU to avoid having to reset
5281          * MMU contexts.
5282          */
5283         root_role.efer_nx = true;
5284
5285         shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5286 }
5287
5288 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
5289                              unsigned long cr4, u64 efer, gpa_t nested_cr3)
5290 {
5291         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5292         struct kvm_mmu_role_regs regs = {
5293                 .cr0 = cr0,
5294                 .cr4 = cr4 & ~X86_CR4_PKE,
5295                 .efer = efer,
5296         };
5297         union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5298         union kvm_mmu_page_role root_role;
5299
5300         /* NPT requires CR0.PG=1. */
5301         WARN_ON_ONCE(cpu_role.base.direct);
5302
5303         root_role = cpu_role.base;
5304         root_role.level = kvm_mmu_get_tdp_level(vcpu);
5305         if (root_role.level == PT64_ROOT_5LEVEL &&
5306             cpu_role.base.level == PT64_ROOT_4LEVEL)
5307                 root_role.passthrough = 1;
5308
5309         shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5310         kvm_mmu_new_pgd(vcpu, nested_cr3);
5311 }
5312 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
5313
5314 static union kvm_cpu_role
5315 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5316                                    bool execonly, u8 level)
5317 {
5318         union kvm_cpu_role role = {0};
5319
5320         /*
5321          * KVM does not support SMM transfer monitors, and consequently does not
5322          * support the "entry to SMM" control either.  role.base.smm is always 0.
5323          */
5324         WARN_ON_ONCE(is_smm(vcpu));
5325         role.base.level = level;
5326         role.base.has_4_byte_gpte = false;
5327         role.base.direct = false;
5328         role.base.ad_disabled = !accessed_dirty;
5329         role.base.guest_mode = true;
5330         role.base.access = ACC_ALL;
5331
5332         role.ext.word = 0;
5333         role.ext.execonly = execonly;
5334         role.ext.valid = 1;
5335
5336         return role;
5337 }
5338
5339 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5340                              int huge_page_level, bool accessed_dirty,
5341                              gpa_t new_eptp)
5342 {
5343         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5344         u8 level = vmx_eptp_page_walk_level(new_eptp);
5345         union kvm_cpu_role new_mode =
5346                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5347                                                    execonly, level);
5348
5349         if (new_mode.as_u64 != context->cpu_role.as_u64) {
5350                 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
5351                 context->cpu_role.as_u64 = new_mode.as_u64;
5352                 context->root_role.word = new_mode.base.word;
5353
5354                 context->page_fault = ept_page_fault;
5355                 context->gva_to_gpa = ept_gva_to_gpa;
5356                 context->sync_spte = ept_sync_spte;
5357
5358                 update_permission_bitmask(context, true);
5359                 context->pkru_mask = 0;
5360                 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
5361                 reset_ept_shadow_zero_bits_mask(context, execonly);
5362         }
5363
5364         kvm_mmu_new_pgd(vcpu, new_eptp);
5365 }
5366 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5367
5368 static void init_kvm_softmmu(struct kvm_vcpu *vcpu,
5369                              union kvm_cpu_role cpu_role)
5370 {
5371         struct kvm_mmu *context = &vcpu->arch.root_mmu;
5372
5373         kvm_init_shadow_mmu(vcpu, cpu_role);
5374
5375         context->get_guest_pgd     = get_guest_cr3;
5376         context->get_pdptr         = kvm_pdptr_read;
5377         context->inject_page_fault = kvm_inject_page_fault;
5378 }
5379
5380 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
5381                                 union kvm_cpu_role new_mode)
5382 {
5383         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5384
5385         if (new_mode.as_u64 == g_context->cpu_role.as_u64)
5386                 return;
5387
5388         g_context->cpu_role.as_u64   = new_mode.as_u64;
5389         g_context->get_guest_pgd     = get_guest_cr3;
5390         g_context->get_pdptr         = kvm_pdptr_read;
5391         g_context->inject_page_fault = kvm_inject_page_fault;
5392
5393         /*
5394          * L2 page tables are never shadowed, so there is no need to sync
5395          * SPTEs.
5396          */
5397         g_context->sync_spte         = NULL;
5398
5399         /*
5400          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5401          * L1's nested page tables (e.g. EPT12). The nested translation
5402          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5403          * L2's page tables as the first level of translation and L1's
5404          * nested page tables as the second level of translation. Basically
5405          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5406          */
5407         if (!is_paging(vcpu))
5408                 g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5409         else if (is_long_mode(vcpu))
5410                 g_context->gva_to_gpa = paging64_gva_to_gpa;
5411         else if (is_pae(vcpu))
5412                 g_context->gva_to_gpa = paging64_gva_to_gpa;
5413         else
5414                 g_context->gva_to_gpa = paging32_gva_to_gpa;
5415
5416         reset_guest_paging_metadata(vcpu, g_context);
5417 }
5418
5419 void kvm_init_mmu(struct kvm_vcpu *vcpu)
5420 {
5421         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5422         union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5423
5424         if (mmu_is_nested(vcpu))
5425                 init_kvm_nested_mmu(vcpu, cpu_role);
5426         else if (tdp_enabled)
5427                 init_kvm_tdp_mmu(vcpu, cpu_role);
5428         else
5429                 init_kvm_softmmu(vcpu, cpu_role);
5430 }
5431 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5432
5433 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5434 {
5435         /*
5436          * Invalidate all MMU roles to force them to reinitialize as CPUID
5437          * information is factored into reserved bit calculations.
5438          *
5439          * Correctly handling multiple vCPU models with respect to paging and
5440          * physical address properties) in a single VM would require tracking
5441          * all relevant CPUID information in kvm_mmu_page_role. That is very
5442          * undesirable as it would increase the memory requirements for
5443          * gfn_write_track (see struct kvm_mmu_page_role comments).  For now
5444          * that problem is swept under the rug; KVM's CPUID API is horrific and
5445          * it's all but impossible to solve it without introducing a new API.
5446          */
5447         vcpu->arch.root_mmu.root_role.word = 0;
5448         vcpu->arch.guest_mmu.root_role.word = 0;
5449         vcpu->arch.nested_mmu.root_role.word = 0;
5450         vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
5451         vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
5452         vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
5453         kvm_mmu_reset_context(vcpu);
5454
5455         /*
5456          * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
5457          * kvm_arch_vcpu_ioctl().
5458          */
5459         KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm);
5460 }
5461
5462 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5463 {
5464         kvm_mmu_unload(vcpu);
5465         kvm_init_mmu(vcpu);
5466 }
5467 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5468
5469 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5470 {
5471         int r;
5472
5473         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct);
5474         if (r)
5475                 goto out;
5476         r = mmu_alloc_special_roots(vcpu);
5477         if (r)
5478                 goto out;
5479         if (vcpu->arch.mmu->root_role.direct)
5480                 r = mmu_alloc_direct_roots(vcpu);
5481         else
5482                 r = mmu_alloc_shadow_roots(vcpu);
5483         if (r)
5484                 goto out;
5485
5486         kvm_mmu_sync_roots(vcpu);
5487
5488         kvm_mmu_load_pgd(vcpu);
5489
5490         /*
5491          * Flush any TLB entries for the new root, the provenance of the root
5492          * is unknown.  Even if KVM ensures there are no stale TLB entries
5493          * for a freed root, in theory another hypervisor could have left
5494          * stale entries.  Flushing on alloc also allows KVM to skip the TLB
5495          * flush when freeing a root (see kvm_tdp_mmu_put_root()).
5496          */
5497         static_call(kvm_x86_flush_tlb_current)(vcpu);
5498 out:
5499         return r;
5500 }
5501
5502 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5503 {
5504         struct kvm *kvm = vcpu->kvm;
5505
5506         kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5507         WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
5508         kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5509         WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
5510         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
5511 }
5512
5513 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
5514 {
5515         struct kvm_mmu_page *sp;
5516
5517         if (!VALID_PAGE(root_hpa))
5518                 return false;
5519
5520         /*
5521          * When freeing obsolete roots, treat roots as obsolete if they don't
5522          * have an associated shadow page, as it's impossible to determine if
5523          * such roots are fresh or stale.  This does mean KVM will get false
5524          * positives and free roots that don't strictly need to be freed, but
5525          * such false positives are relatively rare:
5526          *
5527          *  (a) only PAE paging and nested NPT have roots without shadow pages
5528          *      (or any shadow paging flavor with a dummy root, see note below)
5529          *  (b) remote reloads due to a memslot update obsoletes _all_ roots
5530          *  (c) KVM doesn't track previous roots for PAE paging, and the guest
5531          *      is unlikely to zap an in-use PGD.
5532          *
5533          * Note!  Dummy roots are unique in that they are obsoleted by memslot
5534          * _creation_!  See also FNAME(fetch).
5535          */
5536         sp = root_to_sp(root_hpa);
5537         return !sp || is_obsolete_sp(kvm, sp);
5538 }
5539
5540 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
5541 {
5542         unsigned long roots_to_free = 0;
5543         int i;
5544
5545         if (is_obsolete_root(kvm, mmu->root.hpa))
5546                 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5547
5548         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5549                 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
5550                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5551         }
5552
5553         if (roots_to_free)
5554                 kvm_mmu_free_roots(kvm, mmu, roots_to_free);
5555 }
5556
5557 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
5558 {
5559         __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5560         __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
5561 }
5562
5563 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5564                                     int *bytes)
5565 {
5566         u64 gentry = 0;
5567         int r;
5568
5569         /*
5570          * Assume that the pte write on a page table of the same type
5571          * as the current vcpu paging mode since we update the sptes only
5572          * when they have the same mode.
5573          */
5574         if (is_pae(vcpu) && *bytes == 4) {
5575                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5576                 *gpa &= ~(gpa_t)7;
5577                 *bytes = 8;
5578         }
5579
5580         if (*bytes == 4 || *bytes == 8) {
5581                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5582                 if (r)
5583                         gentry = 0;
5584         }
5585
5586         return gentry;
5587 }
5588
5589 /*
5590  * If we're seeing too many writes to a page, it may no longer be a page table,
5591  * or we may be forking, in which case it is better to unmap the page.
5592  */
5593 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5594 {
5595         /*
5596          * Skip write-flooding detected for the sp whose level is 1, because
5597          * it can become unsync, then the guest page is not write-protected.
5598          */
5599         if (sp->role.level == PG_LEVEL_4K)
5600                 return false;
5601
5602         atomic_inc(&sp->write_flooding_count);
5603         return atomic_read(&sp->write_flooding_count) >= 3;
5604 }
5605
5606 /*
5607  * Misaligned accesses are too much trouble to fix up; also, they usually
5608  * indicate a page is not used as a page table.
5609  */
5610 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5611                                     int bytes)
5612 {
5613         unsigned offset, pte_size, misaligned;
5614
5615         offset = offset_in_page(gpa);
5616         pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5617
5618         /*
5619          * Sometimes, the OS only writes the last one bytes to update status
5620          * bits, for example, in linux, andb instruction is used in clear_bit().
5621          */
5622         if (!(offset & (pte_size - 1)) && bytes == 1)
5623                 return false;
5624
5625         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5626         misaligned |= bytes < 4;
5627
5628         return misaligned;
5629 }
5630
5631 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5632 {
5633         unsigned page_offset, quadrant;
5634         u64 *spte;
5635         int level;
5636
5637         page_offset = offset_in_page(gpa);
5638         level = sp->role.level;
5639         *nspte = 1;
5640         if (sp->role.has_4_byte_gpte) {
5641                 page_offset <<= 1;      /* 32->64 */
5642                 /*
5643                  * A 32-bit pde maps 4MB while the shadow pdes map
5644                  * only 2MB.  So we need to double the offset again
5645                  * and zap two pdes instead of one.
5646                  */
5647                 if (level == PT32_ROOT_LEVEL) {
5648                         page_offset &= ~7; /* kill rounding error */
5649                         page_offset <<= 1;
5650                         *nspte = 2;
5651                 }
5652                 quadrant = page_offset >> PAGE_SHIFT;
5653                 page_offset &= ~PAGE_MASK;
5654                 if (quadrant != sp->role.quadrant)
5655                         return NULL;
5656         }
5657
5658         spte = &sp->spt[page_offset / sizeof(*spte)];
5659         return spte;
5660 }
5661
5662 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
5663                          int bytes)
5664 {
5665         gfn_t gfn = gpa >> PAGE_SHIFT;
5666         struct kvm_mmu_page *sp;
5667         LIST_HEAD(invalid_list);
5668         u64 entry, gentry, *spte;
5669         int npte;
5670         bool flush = false;
5671
5672         /*
5673          * If we don't have indirect shadow pages, it means no page is
5674          * write-protected, so we can exit simply.
5675          */
5676         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5677                 return;
5678
5679         write_lock(&vcpu->kvm->mmu_lock);
5680
5681         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5682
5683         ++vcpu->kvm->stat.mmu_pte_write;
5684
5685         for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
5686                 if (detect_write_misaligned(sp, gpa, bytes) ||
5687                       detect_write_flooding(sp)) {
5688                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5689                         ++vcpu->kvm->stat.mmu_flooded;
5690                         continue;
5691                 }
5692
5693                 spte = get_written_sptes(sp, gpa, &npte);
5694                 if (!spte)
5695                         continue;
5696
5697                 while (npte--) {
5698                         entry = *spte;
5699                         mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5700                         if (gentry && sp->role.level != PG_LEVEL_4K)
5701                                 ++vcpu->kvm->stat.mmu_pde_zapped;
5702                         if (is_shadow_present_pte(entry))
5703                                 flush = true;
5704                         ++spte;
5705                 }
5706         }
5707         kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5708         write_unlock(&vcpu->kvm->mmu_lock);
5709 }
5710
5711 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5712                        void *insn, int insn_len)
5713 {
5714         int r, emulation_type = EMULTYPE_PF;
5715         bool direct = vcpu->arch.mmu->root_role.direct;
5716
5717         /*
5718          * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP
5719          * checks when emulating instructions that triggers implicit access.
5720          * WARN if hardware generates a fault with an error code that collides
5721          * with the KVM-defined value.  Clear the flag and continue on, i.e.
5722          * don't terminate the VM, as KVM can't possibly be relying on a flag
5723          * that KVM doesn't know about.
5724          */
5725         if (WARN_ON_ONCE(error_code & PFERR_IMPLICIT_ACCESS))
5726                 error_code &= ~PFERR_IMPLICIT_ACCESS;
5727
5728         if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
5729                 return RET_PF_RETRY;
5730
5731         r = RET_PF_INVALID;
5732         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5733                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5734                 if (r == RET_PF_EMULATE)
5735                         goto emulate;
5736         }
5737
5738         if (r == RET_PF_INVALID) {
5739                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5740                                           lower_32_bits(error_code), false,
5741                                           &emulation_type);
5742                 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5743                         return -EIO;
5744         }
5745
5746         if (r < 0)
5747                 return r;
5748         if (r != RET_PF_EMULATE)
5749                 return 1;
5750
5751         /*
5752          * Before emulating the instruction, check if the error code
5753          * was due to a RO violation while translating the guest page.
5754          * This can occur when using nested virtualization with nested
5755          * paging in both guests. If true, we simply unprotect the page
5756          * and resume the guest.
5757          */
5758         if (vcpu->arch.mmu->root_role.direct &&
5759             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5760                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5761                 return 1;
5762         }
5763
5764         /*
5765          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5766          * optimistically try to just unprotect the page and let the processor
5767          * re-execute the instruction that caused the page fault.  Do not allow
5768          * retrying MMIO emulation, as it's not only pointless but could also
5769          * cause us to enter an infinite loop because the processor will keep
5770          * faulting on the non-existent MMIO address.  Retrying an instruction
5771          * from a nested guest is also pointless and dangerous as we are only
5772          * explicitly shadowing L1's page tables, i.e. unprotecting something
5773          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5774          */
5775         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5776                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5777 emulate:
5778         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5779                                        insn_len);
5780 }
5781 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5782
5783 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5784                                       u64 addr, hpa_t root_hpa)
5785 {
5786         struct kvm_shadow_walk_iterator iterator;
5787
5788         vcpu_clear_mmio_info(vcpu, addr);
5789
5790         /*
5791          * Walking and synchronizing SPTEs both assume they are operating in
5792          * the context of the current MMU, and would need to be reworked if
5793          * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT.
5794          */
5795         if (WARN_ON_ONCE(mmu != vcpu->arch.mmu))
5796                 return;
5797
5798         if (!VALID_PAGE(root_hpa))
5799                 return;
5800
5801         write_lock(&vcpu->kvm->mmu_lock);
5802         for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) {
5803                 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep);
5804
5805                 if (sp->unsync) {
5806                         int ret = kvm_sync_spte(vcpu, sp, iterator.index);
5807
5808                         if (ret < 0)
5809                                 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL);
5810                         if (ret)
5811                                 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep);
5812                 }
5813
5814                 if (!sp->unsync_children)
5815                         break;
5816         }
5817         write_unlock(&vcpu->kvm->mmu_lock);
5818 }
5819
5820 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5821                              u64 addr, unsigned long roots)
5822 {
5823         int i;
5824
5825         WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL);
5826
5827         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5828         if (mmu != &vcpu->arch.guest_mmu) {
5829                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5830                 if (is_noncanonical_address(addr, vcpu))
5831                         return;
5832
5833                 static_call(kvm_x86_flush_tlb_gva)(vcpu, addr);
5834         }
5835
5836         if (!mmu->sync_spte)
5837                 return;
5838
5839         if (roots & KVM_MMU_ROOT_CURRENT)
5840                 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa);
5841
5842         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5843                 if (roots & KVM_MMU_ROOT_PREVIOUS(i))
5844                         __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa);
5845         }
5846 }
5847 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr);
5848
5849 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5850 {
5851         /*
5852          * INVLPG is required to invalidate any global mappings for the VA,
5853          * irrespective of PCID.  Blindly sync all roots as it would take
5854          * roughly the same amount of work/time to determine whether any of the
5855          * previous roots have a global mapping.
5856          *
5857          * Mappings not reachable via the current or previous cached roots will
5858          * be synced when switching to that new cr3, so nothing needs to be
5859          * done here for them.
5860          */
5861         kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL);
5862         ++vcpu->stat.invlpg;
5863 }
5864 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5865
5866
5867 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5868 {
5869         struct kvm_mmu *mmu = vcpu->arch.mmu;
5870         unsigned long roots = 0;
5871         uint i;
5872
5873         if (pcid == kvm_get_active_pcid(vcpu))
5874                 roots |= KVM_MMU_ROOT_CURRENT;
5875
5876         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5877                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5878                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd))
5879                         roots |= KVM_MMU_ROOT_PREVIOUS(i);
5880         }
5881
5882         if (roots)
5883                 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots);
5884         ++vcpu->stat.invlpg;
5885
5886         /*
5887          * Mappings not reachable via the current cr3 or the prev_roots will be
5888          * synced when switching to that cr3, so nothing needs to be done here
5889          * for them.
5890          */
5891 }
5892
5893 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
5894                        int tdp_max_root_level, int tdp_huge_page_level)
5895 {
5896         tdp_enabled = enable_tdp;
5897         tdp_root_level = tdp_forced_root_level;
5898         max_tdp_level = tdp_max_root_level;
5899
5900 #ifdef CONFIG_X86_64
5901         tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled;
5902 #endif
5903         /*
5904          * max_huge_page_level reflects KVM's MMU capabilities irrespective
5905          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5906          * the kernel is not.  But, KVM never creates a page size greater than
5907          * what is used by the kernel for any given HVA, i.e. the kernel's
5908          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5909          */
5910         if (tdp_enabled)
5911                 max_huge_page_level = tdp_huge_page_level;
5912         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5913                 max_huge_page_level = PG_LEVEL_1G;
5914         else
5915                 max_huge_page_level = PG_LEVEL_2M;
5916 }
5917 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5918
5919 /* The return value indicates if tlb flush on all vcpus is needed. */
5920 typedef bool (*slot_rmaps_handler) (struct kvm *kvm,
5921                                     struct kvm_rmap_head *rmap_head,
5922                                     const struct kvm_memory_slot *slot);
5923
5924 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm,
5925                                               const struct kvm_memory_slot *slot,
5926                                               slot_rmaps_handler fn,
5927                                               int start_level, int end_level,
5928                                               gfn_t start_gfn, gfn_t end_gfn,
5929                                               bool flush_on_yield, bool flush)
5930 {
5931         struct slot_rmap_walk_iterator iterator;
5932
5933         lockdep_assert_held_write(&kvm->mmu_lock);
5934
5935         for_each_slot_rmap_range(slot, start_level, end_level, start_gfn,
5936                         end_gfn, &iterator) {
5937                 if (iterator.rmap)
5938                         flush |= fn(kvm, iterator.rmap, slot);
5939
5940                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5941                         if (flush && flush_on_yield) {
5942                                 kvm_flush_remote_tlbs_range(kvm, start_gfn,
5943                                                             iterator.gfn - start_gfn + 1);
5944                                 flush = false;
5945                         }
5946                         cond_resched_rwlock_write(&kvm->mmu_lock);
5947                 }
5948         }
5949
5950         return flush;
5951 }
5952
5953 static __always_inline bool walk_slot_rmaps(struct kvm *kvm,
5954                                             const struct kvm_memory_slot *slot,
5955                                             slot_rmaps_handler fn,
5956                                             int start_level, int end_level,
5957                                             bool flush_on_yield)
5958 {
5959         return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level,
5960                                  slot->base_gfn, slot->base_gfn + slot->npages - 1,
5961                                  flush_on_yield, false);
5962 }
5963
5964 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm,
5965                                                const struct kvm_memory_slot *slot,
5966                                                slot_rmaps_handler fn,
5967                                                bool flush_on_yield)
5968 {
5969         return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield);
5970 }
5971
5972 static void free_mmu_pages(struct kvm_mmu *mmu)
5973 {
5974         if (!tdp_enabled && mmu->pae_root)
5975                 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5976         free_page((unsigned long)mmu->pae_root);
5977         free_page((unsigned long)mmu->pml4_root);
5978         free_page((unsigned long)mmu->pml5_root);
5979 }
5980
5981 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5982 {
5983         struct page *page;
5984         int i;
5985
5986         mmu->root.hpa = INVALID_PAGE;
5987         mmu->root.pgd = 0;
5988         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5989                 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5990
5991         /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
5992         if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
5993                 return 0;
5994
5995         /*
5996          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5997          * while the PDP table is a per-vCPU construct that's allocated at MMU
5998          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5999          * x86_64.  Therefore we need to allocate the PDP table in the first
6000          * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
6001          * generally doesn't use PAE paging and can skip allocating the PDP
6002          * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
6003          * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
6004          * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
6005          */
6006         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
6007                 return 0;
6008
6009         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
6010         if (!page)
6011                 return -ENOMEM;
6012
6013         mmu->pae_root = page_address(page);
6014
6015         /*
6016          * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
6017          * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
6018          * that KVM's writes and the CPU's reads get along.  Note, this is
6019          * only necessary when using shadow paging, as 64-bit NPT can get at
6020          * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
6021          * by 32-bit kernels (when KVM itself uses 32-bit NPT).
6022          */
6023         if (!tdp_enabled)
6024                 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
6025         else
6026                 WARN_ON_ONCE(shadow_me_value);
6027
6028         for (i = 0; i < 4; ++i)
6029                 mmu->pae_root[i] = INVALID_PAE_ROOT;
6030
6031         return 0;
6032 }
6033
6034 int kvm_mmu_create(struct kvm_vcpu *vcpu)
6035 {
6036         int ret;
6037
6038         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
6039         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
6040
6041         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
6042         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
6043
6044         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
6045
6046         vcpu->arch.mmu = &vcpu->arch.root_mmu;
6047         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6048
6049         ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
6050         if (ret)
6051                 return ret;
6052
6053         ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
6054         if (ret)
6055                 goto fail_allocate_root;
6056
6057         return ret;
6058  fail_allocate_root:
6059         free_mmu_pages(&vcpu->arch.guest_mmu);
6060         return ret;
6061 }
6062
6063 #define BATCH_ZAP_PAGES 10
6064 static void kvm_zap_obsolete_pages(struct kvm *kvm)
6065 {
6066         struct kvm_mmu_page *sp, *node;
6067         int nr_zapped, batch = 0;
6068         bool unstable;
6069
6070 restart:
6071         list_for_each_entry_safe_reverse(sp, node,
6072               &kvm->arch.active_mmu_pages, link) {
6073                 /*
6074                  * No obsolete valid page exists before a newly created page
6075                  * since active_mmu_pages is a FIFO list.
6076                  */
6077                 if (!is_obsolete_sp(kvm, sp))
6078                         break;
6079
6080                 /*
6081                  * Invalid pages should never land back on the list of active
6082                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
6083                  * infinite loop if the page gets put back on the list (again).
6084                  */
6085                 if (WARN_ON_ONCE(sp->role.invalid))
6086                         continue;
6087
6088                 /*
6089                  * No need to flush the TLB since we're only zapping shadow
6090                  * pages with an obsolete generation number and all vCPUS have
6091                  * loaded a new root, i.e. the shadow pages being zapped cannot
6092                  * be in active use by the guest.
6093                  */
6094                 if (batch >= BATCH_ZAP_PAGES &&
6095                     cond_resched_rwlock_write(&kvm->mmu_lock)) {
6096                         batch = 0;
6097                         goto restart;
6098                 }
6099
6100                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
6101                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped);
6102                 batch += nr_zapped;
6103
6104                 if (unstable)
6105                         goto restart;
6106         }
6107
6108         /*
6109          * Kick all vCPUs (via remote TLB flush) before freeing the page tables
6110          * to ensure KVM is not in the middle of a lockless shadow page table
6111          * walk, which may reference the pages.  The remote TLB flush itself is
6112          * not required and is simply a convenient way to kick vCPUs as needed.
6113          * KVM performs a local TLB flush when allocating a new root (see
6114          * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
6115          * running with an obsolete MMU.
6116          */
6117         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
6118 }
6119
6120 /*
6121  * Fast invalidate all shadow pages and use lock-break technique
6122  * to zap obsolete pages.
6123  *
6124  * It's required when memslot is being deleted or VM is being
6125  * destroyed, in these cases, we should ensure that KVM MMU does
6126  * not use any resource of the being-deleted slot or all slots
6127  * after calling the function.
6128  */
6129 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
6130 {
6131         lockdep_assert_held(&kvm->slots_lock);
6132
6133         write_lock(&kvm->mmu_lock);
6134         trace_kvm_mmu_zap_all_fast(kvm);
6135
6136         /*
6137          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
6138          * held for the entire duration of zapping obsolete pages, it's
6139          * impossible for there to be multiple invalid generations associated
6140          * with *valid* shadow pages at any given time, i.e. there is exactly
6141          * one valid generation and (at most) one invalid generation.
6142          */
6143         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
6144
6145         /*
6146          * In order to ensure all vCPUs drop their soon-to-be invalid roots,
6147          * invalidating TDP MMU roots must be done while holding mmu_lock for
6148          * write and in the same critical section as making the reload request,
6149          * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
6150          */
6151         if (tdp_mmu_enabled)
6152                 kvm_tdp_mmu_invalidate_all_roots(kvm);
6153
6154         /*
6155          * Notify all vcpus to reload its shadow page table and flush TLB.
6156          * Then all vcpus will switch to new shadow page table with the new
6157          * mmu_valid_gen.
6158          *
6159          * Note: we need to do this under the protection of mmu_lock,
6160          * otherwise, vcpu would purge shadow page but miss tlb flush.
6161          */
6162         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
6163
6164         kvm_zap_obsolete_pages(kvm);
6165
6166         write_unlock(&kvm->mmu_lock);
6167
6168         /*
6169          * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
6170          * returning to the caller, e.g. if the zap is in response to a memslot
6171          * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
6172          * associated with the deleted memslot once the update completes, and
6173          * Deferring the zap until the final reference to the root is put would
6174          * lead to use-after-free.
6175          */
6176         if (tdp_mmu_enabled)
6177                 kvm_tdp_mmu_zap_invalidated_roots(kvm);
6178 }
6179
6180 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
6181 {
6182         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
6183 }
6184
6185 void kvm_mmu_init_vm(struct kvm *kvm)
6186 {
6187         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6188         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
6189         INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages);
6190         spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
6191
6192         if (tdp_mmu_enabled)
6193                 kvm_mmu_init_tdp_mmu(kvm);
6194
6195         kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache;
6196         kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO;
6197
6198         kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO;
6199
6200         kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache;
6201         kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO;
6202 }
6203
6204 static void mmu_free_vm_memory_caches(struct kvm *kvm)
6205 {
6206         kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache);
6207         kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache);
6208         kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache);
6209 }
6210
6211 void kvm_mmu_uninit_vm(struct kvm *kvm)
6212 {
6213         if (tdp_mmu_enabled)
6214                 kvm_mmu_uninit_tdp_mmu(kvm);
6215
6216         mmu_free_vm_memory_caches(kvm);
6217 }
6218
6219 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6220 {
6221         const struct kvm_memory_slot *memslot;
6222         struct kvm_memslots *slots;
6223         struct kvm_memslot_iter iter;
6224         bool flush = false;
6225         gfn_t start, end;
6226         int i;
6227
6228         if (!kvm_memslots_have_rmaps(kvm))
6229                 return flush;
6230
6231         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6232                 slots = __kvm_memslots(kvm, i);
6233
6234                 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
6235                         memslot = iter.slot;
6236                         start = max(gfn_start, memslot->base_gfn);
6237                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
6238                         if (WARN_ON_ONCE(start >= end))
6239                                 continue;
6240
6241                         flush = __walk_slot_rmaps(kvm, memslot, __kvm_zap_rmap,
6242                                                   PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
6243                                                   start, end - 1, true, flush);
6244                 }
6245         }
6246
6247         return flush;
6248 }
6249
6250 /*
6251  * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
6252  * (not including it)
6253  */
6254 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6255 {
6256         bool flush;
6257
6258         if (WARN_ON_ONCE(gfn_end <= gfn_start))
6259                 return;
6260
6261         write_lock(&kvm->mmu_lock);
6262
6263         kvm_mmu_invalidate_begin(kvm, 0, -1ul);
6264
6265         flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end);
6266
6267         if (tdp_mmu_enabled)
6268                 flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush);
6269
6270         if (flush)
6271                 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start);
6272
6273         kvm_mmu_invalidate_end(kvm, 0, -1ul);
6274
6275         write_unlock(&kvm->mmu_lock);
6276 }
6277
6278 static bool slot_rmap_write_protect(struct kvm *kvm,
6279                                     struct kvm_rmap_head *rmap_head,
6280                                     const struct kvm_memory_slot *slot)
6281 {
6282         return rmap_write_protect(rmap_head, false);
6283 }
6284
6285 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
6286                                       const struct kvm_memory_slot *memslot,
6287                                       int start_level)
6288 {
6289         if (kvm_memslots_have_rmaps(kvm)) {
6290                 write_lock(&kvm->mmu_lock);
6291                 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect,
6292                                 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
6293                 write_unlock(&kvm->mmu_lock);
6294         }
6295
6296         if (tdp_mmu_enabled) {
6297                 read_lock(&kvm->mmu_lock);
6298                 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
6299                 read_unlock(&kvm->mmu_lock);
6300         }
6301 }
6302
6303 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min)
6304 {
6305         return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
6306 }
6307
6308 static bool need_topup_split_caches_or_resched(struct kvm *kvm)
6309 {
6310         if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
6311                 return true;
6312
6313         /*
6314          * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed
6315          * to split a single huge page. Calculating how many are actually needed
6316          * is possible but not worth the complexity.
6317          */
6318         return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) ||
6319                need_topup(&kvm->arch.split_page_header_cache, 1) ||
6320                need_topup(&kvm->arch.split_shadow_page_cache, 1);
6321 }
6322
6323 static int topup_split_caches(struct kvm *kvm)
6324 {
6325         /*
6326          * Allocating rmap list entries when splitting huge pages for nested
6327          * MMUs is uncommon as KVM needs to use a list if and only if there is
6328          * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be
6329          * aliased by multiple L2 gfns and/or from multiple nested roots with
6330          * different roles.  Aliasing gfns when using TDP is atypical for VMMs;
6331          * a few gfns are often aliased during boot, e.g. when remapping BIOS,
6332          * but aliasing rarely occurs post-boot or for many gfns.  If there is
6333          * only one rmap entry, rmap->val points directly at that one entry and
6334          * doesn't need to allocate a list.  Buffer the cache by the default
6335          * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM
6336          * encounters an aliased gfn or two.
6337          */
6338         const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS +
6339                              KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE;
6340         int r;
6341
6342         lockdep_assert_held(&kvm->slots_lock);
6343
6344         r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity,
6345                                          SPLIT_DESC_CACHE_MIN_NR_OBJECTS);
6346         if (r)
6347                 return r;
6348
6349         r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1);
6350         if (r)
6351                 return r;
6352
6353         return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1);
6354 }
6355
6356 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep)
6357 {
6358         struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6359         struct shadow_page_caches caches = {};
6360         union kvm_mmu_page_role role;
6361         unsigned int access;
6362         gfn_t gfn;
6363
6364         gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6365         access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep));
6366
6367         /*
6368          * Note, huge page splitting always uses direct shadow pages, regardless
6369          * of whether the huge page itself is mapped by a direct or indirect
6370          * shadow page, since the huge page region itself is being directly
6371          * mapped with smaller pages.
6372          */
6373         role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access);
6374
6375         /* Direct SPs do not require a shadowed_info_cache. */
6376         caches.page_header_cache = &kvm->arch.split_page_header_cache;
6377         caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache;
6378
6379         /* Safe to pass NULL for vCPU since requesting a direct SP. */
6380         return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role);
6381 }
6382
6383 static void shadow_mmu_split_huge_page(struct kvm *kvm,
6384                                        const struct kvm_memory_slot *slot,
6385                                        u64 *huge_sptep)
6386
6387 {
6388         struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache;
6389         u64 huge_spte = READ_ONCE(*huge_sptep);
6390         struct kvm_mmu_page *sp;
6391         bool flush = false;
6392         u64 *sptep, spte;
6393         gfn_t gfn;
6394         int index;
6395
6396         sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep);
6397
6398         for (index = 0; index < SPTE_ENT_PER_PAGE; index++) {
6399                 sptep = &sp->spt[index];
6400                 gfn = kvm_mmu_page_get_gfn(sp, index);
6401
6402                 /*
6403                  * The SP may already have populated SPTEs, e.g. if this huge
6404                  * page is aliased by multiple sptes with the same access
6405                  * permissions. These entries are guaranteed to map the same
6406                  * gfn-to-pfn translation since the SP is direct, so no need to
6407                  * modify them.
6408                  *
6409                  * However, if a given SPTE points to a lower level page table,
6410                  * that lower level page table may only be partially populated.
6411                  * Installing such SPTEs would effectively unmap a potion of the
6412                  * huge page. Unmapping guest memory always requires a TLB flush
6413                  * since a subsequent operation on the unmapped regions would
6414                  * fail to detect the need to flush.
6415                  */
6416                 if (is_shadow_present_pte(*sptep)) {
6417                         flush |= !is_last_spte(*sptep, sp->role.level);
6418                         continue;
6419                 }
6420
6421                 spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index);
6422                 mmu_spte_set(sptep, spte);
6423                 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access);
6424         }
6425
6426         __link_shadow_page(kvm, cache, huge_sptep, sp, flush);
6427 }
6428
6429 static int shadow_mmu_try_split_huge_page(struct kvm *kvm,
6430                                           const struct kvm_memory_slot *slot,
6431                                           u64 *huge_sptep)
6432 {
6433         struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6434         int level, r = 0;
6435         gfn_t gfn;
6436         u64 spte;
6437
6438         /* Grab information for the tracepoint before dropping the MMU lock. */
6439         gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6440         level = huge_sp->role.level;
6441         spte = *huge_sptep;
6442
6443         if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) {
6444                 r = -ENOSPC;
6445                 goto out;
6446         }
6447
6448         if (need_topup_split_caches_or_resched(kvm)) {
6449                 write_unlock(&kvm->mmu_lock);
6450                 cond_resched();
6451                 /*
6452                  * If the topup succeeds, return -EAGAIN to indicate that the
6453                  * rmap iterator should be restarted because the MMU lock was
6454                  * dropped.
6455                  */
6456                 r = topup_split_caches(kvm) ?: -EAGAIN;
6457                 write_lock(&kvm->mmu_lock);
6458                 goto out;
6459         }
6460
6461         shadow_mmu_split_huge_page(kvm, slot, huge_sptep);
6462
6463 out:
6464         trace_kvm_mmu_split_huge_page(gfn, spte, level, r);
6465         return r;
6466 }
6467
6468 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6469                                             struct kvm_rmap_head *rmap_head,
6470                                             const struct kvm_memory_slot *slot)
6471 {
6472         struct rmap_iterator iter;
6473         struct kvm_mmu_page *sp;
6474         u64 *huge_sptep;
6475         int r;
6476
6477 restart:
6478         for_each_rmap_spte(rmap_head, &iter, huge_sptep) {
6479                 sp = sptep_to_sp(huge_sptep);
6480
6481                 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */
6482                 if (WARN_ON_ONCE(!sp->role.guest_mode))
6483                         continue;
6484
6485                 /* The rmaps should never contain non-leaf SPTEs. */
6486                 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep)))
6487                         continue;
6488
6489                 /* SPs with level >PG_LEVEL_4K should never by unsync. */
6490                 if (WARN_ON_ONCE(sp->unsync))
6491                         continue;
6492
6493                 /* Don't bother splitting huge pages on invalid SPs. */
6494                 if (sp->role.invalid)
6495                         continue;
6496
6497                 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep);
6498
6499                 /*
6500                  * The split succeeded or needs to be retried because the MMU
6501                  * lock was dropped. Either way, restart the iterator to get it
6502                  * back into a consistent state.
6503                  */
6504                 if (!r || r == -EAGAIN)
6505                         goto restart;
6506
6507                 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */
6508                 break;
6509         }
6510
6511         return false;
6512 }
6513
6514 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6515                                                 const struct kvm_memory_slot *slot,
6516                                                 gfn_t start, gfn_t end,
6517                                                 int target_level)
6518 {
6519         int level;
6520
6521         /*
6522          * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working
6523          * down to the target level. This ensures pages are recursively split
6524          * all the way to the target level. There's no need to split pages
6525          * already at the target level.
6526          */
6527         for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--)
6528                 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages,
6529                                   level, level, start, end - 1, true, false);
6530 }
6531
6532 /* Must be called with the mmu_lock held in write-mode. */
6533 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
6534                                    const struct kvm_memory_slot *memslot,
6535                                    u64 start, u64 end,
6536                                    int target_level)
6537 {
6538         if (!tdp_mmu_enabled)
6539                 return;
6540
6541         if (kvm_memslots_have_rmaps(kvm))
6542                 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
6543
6544         kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false);
6545
6546         /*
6547          * A TLB flush is unnecessary at this point for the same resons as in
6548          * kvm_mmu_slot_try_split_huge_pages().
6549          */
6550 }
6551
6552 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
6553                                         const struct kvm_memory_slot *memslot,
6554                                         int target_level)
6555 {
6556         u64 start = memslot->base_gfn;
6557         u64 end = start + memslot->npages;
6558
6559         if (!tdp_mmu_enabled)
6560                 return;
6561
6562         if (kvm_memslots_have_rmaps(kvm)) {
6563                 write_lock(&kvm->mmu_lock);
6564                 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
6565                 write_unlock(&kvm->mmu_lock);
6566         }
6567
6568         read_lock(&kvm->mmu_lock);
6569         kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
6570         read_unlock(&kvm->mmu_lock);
6571
6572         /*
6573          * No TLB flush is necessary here. KVM will flush TLBs after
6574          * write-protecting and/or clearing dirty on the newly split SPTEs to
6575          * ensure that guest writes are reflected in the dirty log before the
6576          * ioctl to enable dirty logging on this memslot completes. Since the
6577          * split SPTEs retain the write and dirty bits of the huge SPTE, it is
6578          * safe for KVM to decide if a TLB flush is necessary based on the split
6579          * SPTEs.
6580          */
6581 }
6582
6583 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
6584                                          struct kvm_rmap_head *rmap_head,
6585                                          const struct kvm_memory_slot *slot)
6586 {
6587         u64 *sptep;
6588         struct rmap_iterator iter;
6589         int need_tlb_flush = 0;
6590         struct kvm_mmu_page *sp;
6591
6592 restart:
6593         for_each_rmap_spte(rmap_head, &iter, sptep) {
6594                 sp = sptep_to_sp(sptep);
6595
6596                 /*
6597                  * We cannot do huge page mapping for indirect shadow pages,
6598                  * which are found on the last rmap (level = 1) when not using
6599                  * tdp; such shadow pages are synced with the page table in
6600                  * the guest, and the guest page table is using 4K page size
6601                  * mapping if the indirect sp has level = 1.
6602                  */
6603                 if (sp->role.direct &&
6604                     sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
6605                                                                PG_LEVEL_NUM)) {
6606                         kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
6607
6608                         if (kvm_available_flush_remote_tlbs_range())
6609                                 kvm_flush_remote_tlbs_sptep(kvm, sptep);
6610                         else
6611                                 need_tlb_flush = 1;
6612
6613                         goto restart;
6614                 }
6615         }
6616
6617         return need_tlb_flush;
6618 }
6619
6620 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm,
6621                                            const struct kvm_memory_slot *slot)
6622 {
6623         /*
6624          * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap
6625          * pages that are already mapped at the maximum hugepage level.
6626          */
6627         if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte,
6628                             PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true))
6629                 kvm_flush_remote_tlbs_memslot(kvm, slot);
6630 }
6631
6632 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6633                                    const struct kvm_memory_slot *slot)
6634 {
6635         if (kvm_memslots_have_rmaps(kvm)) {
6636                 write_lock(&kvm->mmu_lock);
6637                 kvm_rmap_zap_collapsible_sptes(kvm, slot);
6638                 write_unlock(&kvm->mmu_lock);
6639         }
6640
6641         if (tdp_mmu_enabled) {
6642                 read_lock(&kvm->mmu_lock);
6643                 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
6644                 read_unlock(&kvm->mmu_lock);
6645         }
6646 }
6647
6648 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6649                                    const struct kvm_memory_slot *memslot)
6650 {
6651         if (kvm_memslots_have_rmaps(kvm)) {
6652                 write_lock(&kvm->mmu_lock);
6653                 /*
6654                  * Clear dirty bits only on 4k SPTEs since the legacy MMU only
6655                  * support dirty logging at a 4k granularity.
6656                  */
6657                 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false);
6658                 write_unlock(&kvm->mmu_lock);
6659         }
6660
6661         if (tdp_mmu_enabled) {
6662                 read_lock(&kvm->mmu_lock);
6663                 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
6664                 read_unlock(&kvm->mmu_lock);
6665         }
6666
6667         /*
6668          * The caller will flush the TLBs after this function returns.
6669          *
6670          * It's also safe to flush TLBs out of mmu lock here as currently this
6671          * function is only used for dirty logging, in which case flushing TLB
6672          * out of mmu lock also guarantees no dirty pages will be lost in
6673          * dirty_bitmap.
6674          */
6675 }
6676
6677 static void kvm_mmu_zap_all(struct kvm *kvm)
6678 {
6679         struct kvm_mmu_page *sp, *node;
6680         LIST_HEAD(invalid_list);
6681         int ign;
6682
6683         write_lock(&kvm->mmu_lock);
6684 restart:
6685         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6686                 if (WARN_ON_ONCE(sp->role.invalid))
6687                         continue;
6688                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6689                         goto restart;
6690                 if (cond_resched_rwlock_write(&kvm->mmu_lock))
6691                         goto restart;
6692         }
6693
6694         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6695
6696         if (tdp_mmu_enabled)
6697                 kvm_tdp_mmu_zap_all(kvm);
6698
6699         write_unlock(&kvm->mmu_lock);
6700 }
6701
6702 void kvm_arch_flush_shadow_all(struct kvm *kvm)
6703 {
6704         kvm_mmu_zap_all(kvm);
6705 }
6706
6707 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
6708                                    struct kvm_memory_slot *slot)
6709 {
6710         kvm_mmu_zap_all_fast(kvm);
6711 }
6712
6713 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6714 {
6715         WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6716
6717         gen &= MMIO_SPTE_GEN_MASK;
6718
6719         /*
6720          * Generation numbers are incremented in multiples of the number of
6721          * address spaces in order to provide unique generations across all
6722          * address spaces.  Strip what is effectively the address space
6723          * modifier prior to checking for a wrap of the MMIO generation so
6724          * that a wrap in any address space is detected.
6725          */
6726         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6727
6728         /*
6729          * The very rare case: if the MMIO generation number has wrapped,
6730          * zap all shadow pages.
6731          */
6732         if (unlikely(gen == 0)) {
6733                 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n");
6734                 kvm_mmu_zap_all_fast(kvm);
6735         }
6736 }
6737
6738 static unsigned long mmu_shrink_scan(struct shrinker *shrink,
6739                                      struct shrink_control *sc)
6740 {
6741         struct kvm *kvm;
6742         int nr_to_scan = sc->nr_to_scan;
6743         unsigned long freed = 0;
6744
6745         mutex_lock(&kvm_lock);
6746
6747         list_for_each_entry(kvm, &vm_list, vm_list) {
6748                 int idx;
6749                 LIST_HEAD(invalid_list);
6750
6751                 /*
6752                  * Never scan more than sc->nr_to_scan VM instances.
6753                  * Will not hit this condition practically since we do not try
6754                  * to shrink more than one VM and it is very unlikely to see
6755                  * !n_used_mmu_pages so many times.
6756                  */
6757                 if (!nr_to_scan--)
6758                         break;
6759                 /*
6760                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6761                  * here. We may skip a VM instance errorneosly, but we do not
6762                  * want to shrink a VM that only started to populate its MMU
6763                  * anyway.
6764                  */
6765                 if (!kvm->arch.n_used_mmu_pages &&
6766                     !kvm_has_zapped_obsolete_pages(kvm))
6767                         continue;
6768
6769                 idx = srcu_read_lock(&kvm->srcu);
6770                 write_lock(&kvm->mmu_lock);
6771
6772                 if (kvm_has_zapped_obsolete_pages(kvm)) {
6773                         kvm_mmu_commit_zap_page(kvm,
6774                               &kvm->arch.zapped_obsolete_pages);
6775                         goto unlock;
6776                 }
6777
6778                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6779
6780 unlock:
6781                 write_unlock(&kvm->mmu_lock);
6782                 srcu_read_unlock(&kvm->srcu, idx);
6783
6784                 /*
6785                  * unfair on small ones
6786                  * per-vm shrinkers cry out
6787                  * sadness comes quickly
6788                  */
6789                 list_move_tail(&kvm->vm_list, &vm_list);
6790                 break;
6791         }
6792
6793         mutex_unlock(&kvm_lock);
6794         return freed;
6795 }
6796
6797 static unsigned long mmu_shrink_count(struct shrinker *shrink,
6798                                       struct shrink_control *sc)
6799 {
6800         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6801 }
6802
6803 static struct shrinker *mmu_shrinker;
6804
6805 static void mmu_destroy_caches(void)
6806 {
6807         kmem_cache_destroy(pte_list_desc_cache);
6808         kmem_cache_destroy(mmu_page_header_cache);
6809 }
6810
6811 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp)
6812 {
6813         if (nx_hugepage_mitigation_hard_disabled)
6814                 return sysfs_emit(buffer, "never\n");
6815
6816         return param_get_bool(buffer, kp);
6817 }
6818
6819 static bool get_nx_auto_mode(void)
6820 {
6821         /* Return true when CPU has the bug, and mitigations are ON */
6822         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6823 }
6824
6825 static void __set_nx_huge_pages(bool val)
6826 {
6827         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6828 }
6829
6830 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6831 {
6832         bool old_val = nx_huge_pages;
6833         bool new_val;
6834
6835         if (nx_hugepage_mitigation_hard_disabled)
6836                 return -EPERM;
6837
6838         /* In "auto" mode deploy workaround only if CPU has the bug. */
6839         if (sysfs_streq(val, "off")) {
6840                 new_val = 0;
6841         } else if (sysfs_streq(val, "force")) {
6842                 new_val = 1;
6843         } else if (sysfs_streq(val, "auto")) {
6844                 new_val = get_nx_auto_mode();
6845         } else if (sysfs_streq(val, "never")) {
6846                 new_val = 0;
6847
6848                 mutex_lock(&kvm_lock);
6849                 if (!list_empty(&vm_list)) {
6850                         mutex_unlock(&kvm_lock);
6851                         return -EBUSY;
6852                 }
6853                 nx_hugepage_mitigation_hard_disabled = true;
6854                 mutex_unlock(&kvm_lock);
6855         } else if (kstrtobool(val, &new_val) < 0) {
6856                 return -EINVAL;
6857         }
6858
6859         __set_nx_huge_pages(new_val);
6860
6861         if (new_val != old_val) {
6862                 struct kvm *kvm;
6863
6864                 mutex_lock(&kvm_lock);
6865
6866                 list_for_each_entry(kvm, &vm_list, vm_list) {
6867                         mutex_lock(&kvm->slots_lock);
6868                         kvm_mmu_zap_all_fast(kvm);
6869                         mutex_unlock(&kvm->slots_lock);
6870
6871                         wake_up_process(kvm->arch.nx_huge_page_recovery_thread);
6872                 }
6873                 mutex_unlock(&kvm_lock);
6874         }
6875
6876         return 0;
6877 }
6878
6879 /*
6880  * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
6881  * its default value of -1 is technically undefined behavior for a boolean.
6882  * Forward the module init call to SPTE code so that it too can handle module
6883  * params that need to be resolved/snapshot.
6884  */
6885 void __init kvm_mmu_x86_module_init(void)
6886 {
6887         if (nx_huge_pages == -1)
6888                 __set_nx_huge_pages(get_nx_auto_mode());
6889
6890         /*
6891          * Snapshot userspace's desire to enable the TDP MMU. Whether or not the
6892          * TDP MMU is actually enabled is determined in kvm_configure_mmu()
6893          * when the vendor module is loaded.
6894          */
6895         tdp_mmu_allowed = tdp_mmu_enabled;
6896
6897         kvm_mmu_spte_module_init();
6898 }
6899
6900 /*
6901  * The bulk of the MMU initialization is deferred until the vendor module is
6902  * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
6903  * to be reset when a potentially different vendor module is loaded.
6904  */
6905 int kvm_mmu_vendor_module_init(void)
6906 {
6907         int ret = -ENOMEM;
6908
6909         /*
6910          * MMU roles use union aliasing which is, generally speaking, an
6911          * undefined behavior. However, we supposedly know how compilers behave
6912          * and the current status quo is unlikely to change. Guardians below are
6913          * supposed to let us know if the assumption becomes false.
6914          */
6915         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6916         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6917         BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64));
6918
6919         kvm_mmu_reset_all_pte_masks();
6920
6921         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6922                                             sizeof(struct pte_list_desc),
6923                                             0, SLAB_ACCOUNT, NULL);
6924         if (!pte_list_desc_cache)
6925                 goto out;
6926
6927         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6928                                                   sizeof(struct kvm_mmu_page),
6929                                                   0, SLAB_ACCOUNT, NULL);
6930         if (!mmu_page_header_cache)
6931                 goto out;
6932
6933         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6934                 goto out;
6935
6936         mmu_shrinker = shrinker_alloc(0, "x86-mmu");
6937         if (!mmu_shrinker)
6938                 goto out_shrinker;
6939
6940         mmu_shrinker->count_objects = mmu_shrink_count;
6941         mmu_shrinker->scan_objects = mmu_shrink_scan;
6942         mmu_shrinker->seeks = DEFAULT_SEEKS * 10;
6943
6944         shrinker_register(mmu_shrinker);
6945
6946         return 0;
6947
6948 out_shrinker:
6949         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6950 out:
6951         mmu_destroy_caches();
6952         return ret;
6953 }
6954
6955 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6956 {
6957         kvm_mmu_unload(vcpu);
6958         free_mmu_pages(&vcpu->arch.root_mmu);
6959         free_mmu_pages(&vcpu->arch.guest_mmu);
6960         mmu_free_memory_caches(vcpu);
6961 }
6962
6963 void kvm_mmu_vendor_module_exit(void)
6964 {
6965         mmu_destroy_caches();
6966         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6967         shrinker_free(mmu_shrinker);
6968 }
6969
6970 /*
6971  * Calculate the effective recovery period, accounting for '0' meaning "let KVM
6972  * select a halving time of 1 hour".  Returns true if recovery is enabled.
6973  */
6974 static bool calc_nx_huge_pages_recovery_period(uint *period)
6975 {
6976         /*
6977          * Use READ_ONCE to get the params, this may be called outside of the
6978          * param setters, e.g. by the kthread to compute its next timeout.
6979          */
6980         bool enabled = READ_ONCE(nx_huge_pages);
6981         uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6982
6983         if (!enabled || !ratio)
6984                 return false;
6985
6986         *period = READ_ONCE(nx_huge_pages_recovery_period_ms);
6987         if (!*period) {
6988                 /* Make sure the period is not less than one second.  */
6989                 ratio = min(ratio, 3600u);
6990                 *period = 60 * 60 * 1000 / ratio;
6991         }
6992         return true;
6993 }
6994
6995 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
6996 {
6997         bool was_recovery_enabled, is_recovery_enabled;
6998         uint old_period, new_period;
6999         int err;
7000
7001         if (nx_hugepage_mitigation_hard_disabled)
7002                 return -EPERM;
7003
7004         was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
7005
7006         err = param_set_uint(val, kp);
7007         if (err)
7008                 return err;
7009
7010         is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
7011
7012         if (is_recovery_enabled &&
7013             (!was_recovery_enabled || old_period > new_period)) {
7014                 struct kvm *kvm;
7015
7016                 mutex_lock(&kvm_lock);
7017
7018                 list_for_each_entry(kvm, &vm_list, vm_list)
7019                         wake_up_process(kvm->arch.nx_huge_page_recovery_thread);
7020
7021                 mutex_unlock(&kvm_lock);
7022         }
7023
7024         return err;
7025 }
7026
7027 static void kvm_recover_nx_huge_pages(struct kvm *kvm)
7028 {
7029         unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
7030         struct kvm_memory_slot *slot;
7031         int rcu_idx;
7032         struct kvm_mmu_page *sp;
7033         unsigned int ratio;
7034         LIST_HEAD(invalid_list);
7035         bool flush = false;
7036         ulong to_zap;
7037
7038         rcu_idx = srcu_read_lock(&kvm->srcu);
7039         write_lock(&kvm->mmu_lock);
7040
7041         /*
7042          * Zapping TDP MMU shadow pages, including the remote TLB flush, must
7043          * be done under RCU protection, because the pages are freed via RCU
7044          * callback.
7045          */
7046         rcu_read_lock();
7047
7048         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7049         to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
7050         for ( ; to_zap; --to_zap) {
7051                 if (list_empty(&kvm->arch.possible_nx_huge_pages))
7052                         break;
7053
7054                 /*
7055                  * We use a separate list instead of just using active_mmu_pages
7056                  * because the number of shadow pages that be replaced with an
7057                  * NX huge page is expected to be relatively small compared to
7058                  * the total number of shadow pages.  And because the TDP MMU
7059                  * doesn't use active_mmu_pages.
7060                  */
7061                 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages,
7062                                       struct kvm_mmu_page,
7063                                       possible_nx_huge_page_link);
7064                 WARN_ON_ONCE(!sp->nx_huge_page_disallowed);
7065                 WARN_ON_ONCE(!sp->role.direct);
7066
7067                 /*
7068                  * Unaccount and do not attempt to recover any NX Huge Pages
7069                  * that are being dirty tracked, as they would just be faulted
7070                  * back in as 4KiB pages. The NX Huge Pages in this slot will be
7071                  * recovered, along with all the other huge pages in the slot,
7072                  * when dirty logging is disabled.
7073                  *
7074                  * Since gfn_to_memslot() is relatively expensive, it helps to
7075                  * skip it if it the test cannot possibly return true.  On the
7076                  * other hand, if any memslot has logging enabled, chances are
7077                  * good that all of them do, in which case unaccount_nx_huge_page()
7078                  * is much cheaper than zapping the page.
7079                  *
7080                  * If a memslot update is in progress, reading an incorrect value
7081                  * of kvm->nr_memslots_dirty_logging is not a problem: if it is
7082                  * becoming zero, gfn_to_memslot() will be done unnecessarily; if
7083                  * it is becoming nonzero, the page will be zapped unnecessarily.
7084                  * Either way, this only affects efficiency in racy situations,
7085                  * and not correctness.
7086                  */
7087                 slot = NULL;
7088                 if (atomic_read(&kvm->nr_memslots_dirty_logging)) {
7089                         struct kvm_memslots *slots;
7090
7091                         slots = kvm_memslots_for_spte_role(kvm, sp->role);
7092                         slot = __gfn_to_memslot(slots, sp->gfn);
7093                         WARN_ON_ONCE(!slot);
7094                 }
7095
7096                 if (slot && kvm_slot_dirty_track_enabled(slot))
7097                         unaccount_nx_huge_page(kvm, sp);
7098                 else if (is_tdp_mmu_page(sp))
7099                         flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
7100                 else
7101                         kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7102                 WARN_ON_ONCE(sp->nx_huge_page_disallowed);
7103
7104                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
7105                         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7106                         rcu_read_unlock();
7107
7108                         cond_resched_rwlock_write(&kvm->mmu_lock);
7109                         flush = false;
7110
7111                         rcu_read_lock();
7112                 }
7113         }
7114         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7115
7116         rcu_read_unlock();
7117
7118         write_unlock(&kvm->mmu_lock);
7119         srcu_read_unlock(&kvm->srcu, rcu_idx);
7120 }
7121
7122 static long get_nx_huge_page_recovery_timeout(u64 start_time)
7123 {
7124         bool enabled;
7125         uint period;
7126
7127         enabled = calc_nx_huge_pages_recovery_period(&period);
7128
7129         return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
7130                        : MAX_SCHEDULE_TIMEOUT;
7131 }
7132
7133 static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data)
7134 {
7135         u64 start_time;
7136         long remaining_time;
7137
7138         while (true) {
7139                 start_time = get_jiffies_64();
7140                 remaining_time = get_nx_huge_page_recovery_timeout(start_time);
7141
7142                 set_current_state(TASK_INTERRUPTIBLE);
7143                 while (!kthread_should_stop() && remaining_time > 0) {
7144                         schedule_timeout(remaining_time);
7145                         remaining_time = get_nx_huge_page_recovery_timeout(start_time);
7146                         set_current_state(TASK_INTERRUPTIBLE);
7147                 }
7148
7149                 set_current_state(TASK_RUNNING);
7150
7151                 if (kthread_should_stop())
7152                         return 0;
7153
7154                 kvm_recover_nx_huge_pages(kvm);
7155         }
7156 }
7157
7158 int kvm_mmu_post_init_vm(struct kvm *kvm)
7159 {
7160         int err;
7161
7162         if (nx_hugepage_mitigation_hard_disabled)
7163                 return 0;
7164
7165         err = kvm_vm_create_worker_thread(kvm, kvm_nx_huge_page_recovery_worker, 0,
7166                                           "kvm-nx-lpage-recovery",
7167                                           &kvm->arch.nx_huge_page_recovery_thread);
7168         if (!err)
7169                 kthread_unpark(kvm->arch.nx_huge_page_recovery_thread);
7170
7171         return err;
7172 }
7173
7174 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
7175 {
7176         if (kvm->arch.nx_huge_page_recovery_thread)
7177                 kthread_stop(kvm->arch.nx_huge_page_recovery_thread);
7178 }