Merge branch 'vendor/FILE'
[dragonfly.git] / sys / dev / crypto / safe / safe.c
1 /*-
2  * Copyright (c) 2003 Sam Leffler, Errno Consulting
3  * Copyright (c) 2003 Global Technology Associates, Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/safe/safe.c,v 1.22 2011/06/12 23:33:08 delphij Exp $
28  */
29
30 /*
31  * SafeNet SafeXcel-1141 hardware crypto accelerator
32  */
33 #include "opt_safe.h"
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/proc.h>
38 #include <sys/errno.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/mbuf.h>
42 #include <sys/module.h>
43 #include <sys/lock.h>
44 #include <sys/sysctl.h>
45 #include <sys/endian.h>
46
47 #include <vm/vm.h>
48 #include <vm/pmap.h>
49
50 #include <sys/bus.h>
51 #include <sys/rman.h>
52
53 #include <crypto/sha1.h>
54 #include <opencrypto/cryptodev.h>
55 #include <opencrypto/cryptosoft.h>
56 #include <sys/md5.h>
57 #include <sys/random.h>
58 #include <sys/kobj.h>
59
60 #include "cryptodev_if.h"
61
62 #include <bus/pci/pcivar.h>
63 #include <bus/pci/pcireg.h>
64
65 #ifdef SAFE_RNDTEST
66 #include <dev/crypto/rndtest/rndtest.h>
67 #endif
68 #include <dev/crypto/safe/safereg.h>
69 #include <dev/crypto/safe/safevar.h>
70
71 #ifndef bswap32
72 #define bswap32 NTOHL
73 #endif
74
75 /*
76  * Prototypes and count for the pci_device structure
77  */
78 static  int safe_probe(device_t);
79 static  int safe_attach(device_t);
80 static  int safe_detach(device_t);
81 static  int safe_suspend(device_t);
82 static  int safe_resume(device_t);
83 static  int safe_shutdown(device_t);
84
85 static  int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
86 static  int safe_freesession(device_t, u_int64_t);
87 static  int safe_process(device_t, struct cryptop *, int);
88
89 static device_method_t safe_methods[] = {
90         /* Device interface */
91         DEVMETHOD(device_probe,         safe_probe),
92         DEVMETHOD(device_attach,        safe_attach),
93         DEVMETHOD(device_detach,        safe_detach),
94         DEVMETHOD(device_suspend,       safe_suspend),
95         DEVMETHOD(device_resume,        safe_resume),
96         DEVMETHOD(device_shutdown,      safe_shutdown),
97
98         /* bus interface */
99         DEVMETHOD(bus_print_child,      bus_generic_print_child),
100         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
101
102         /* crypto device methods */
103         DEVMETHOD(cryptodev_newsession, safe_newsession),
104         DEVMETHOD(cryptodev_freesession,safe_freesession),
105         DEVMETHOD(cryptodev_process,    safe_process),
106
107         DEVMETHOD_END
108 };
109 static driver_t safe_driver = {
110         "safe",
111         safe_methods,
112         sizeof (struct safe_softc)
113 };
114 static devclass_t safe_devclass;
115
116 DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, NULL, NULL);
117 MODULE_DEPEND(safe, crypto, 1, 1, 1);
118 #ifdef SAFE_RNDTEST
119 MODULE_DEPEND(safe, rndtest, 1, 1, 1);
120 #endif
121
122 static  void safe_intr(void *);
123 static  void safe_callback(struct safe_softc *, struct safe_ringentry *);
124 static  void safe_feed(struct safe_softc *, struct safe_ringentry *);
125 static  void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
126 #ifndef SAFE_NO_RNG
127 static  void safe_rng_init(struct safe_softc *);
128 static  void safe_rng(void *);
129 #endif /* SAFE_NO_RNG */
130 static  int safe_dma_malloc(struct safe_softc *, bus_size_t,
131                 struct safe_dma_alloc *, int);
132 #define safe_dma_sync(_dma, _flags) \
133         bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
134 static  void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
135 static  int safe_dmamap_aligned(const struct safe_operand *);
136 static  int safe_dmamap_uniform(const struct safe_operand *);
137
138 static  void safe_reset_board(struct safe_softc *);
139 static  void safe_init_board(struct safe_softc *);
140 static  void safe_init_pciregs(device_t dev);
141 static  void safe_cleanchip(struct safe_softc *);
142 static  void safe_totalreset(struct safe_softc *);
143
144 static  int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
145
146 SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0, "SafeNet driver parameters");
147
148 #ifdef SAFE_DEBUG
149 static  void safe_dump_dmastatus(struct safe_softc *, const char *);
150 static  void safe_dump_ringstate(struct safe_softc *, const char *);
151 static  void safe_dump_intrstate(struct safe_softc *, const char *);
152 static  void safe_dump_request(struct safe_softc *, const char *,
153                 struct safe_ringentry *);
154
155 static  struct safe_softc *safec;               /* for use by hw.safe.dump */
156
157 static  int safe_debug = 0;
158 SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
159             0, "control debugging msgs");
160 #define DPRINTF(_x)     if (safe_debug) kprintf _x
161 #else
162 #define DPRINTF(_x)
163 #endif
164
165 #define READ_REG(sc,r) \
166         bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
167
168 #define WRITE_REG(sc,reg,val) \
169         bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
170
171 struct safe_stats safestats;
172 SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
173             safe_stats, "driver statistics");
174 #ifndef SAFE_NO_RNG
175 static  int safe_rnginterval = 1;               /* poll once a second */
176 SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
177             0, "RNG polling interval (secs)");
178 static  int safe_rngbufsize = 16;               /* 64 bytes each poll  */
179 SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
180             0, "RNG polling buffer size (32-bit words)");
181 static  int safe_rngmaxalarm = 8;               /* max alarms before reset */
182 SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
183             0, "RNG max alarms before reset");
184 #endif /* SAFE_NO_RNG */
185
186 static int
187 safe_probe(device_t dev)
188 {
189         if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
190             pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
191                 return (BUS_PROBE_DEFAULT);
192         return (ENXIO);
193 }
194
195 static const char*
196 safe_partname(struct safe_softc *sc)
197 {
198         /* XXX sprintf numbers when not decoded */
199         switch (pci_get_vendor(sc->sc_dev)) {
200         case PCI_VENDOR_SAFENET:
201                 switch (pci_get_device(sc->sc_dev)) {
202                 case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
203                 }
204                 return "SafeNet unknown-part";
205         }
206         return "Unknown-vendor unknown-part";
207 }
208
209 #ifndef SAFE_NO_RNG
210 static void
211 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
212 {
213         add_buffer_randomness_src(buf, count, RAND_SRC_SAFE);
214 }
215 #endif /* SAFE_NO_RNG */
216
217 static int
218 safe_attach(device_t dev)
219 {
220         struct safe_softc *sc = device_get_softc(dev);
221         u_int32_t raddr;
222         u_int32_t cmd, i, devinfo;
223         int rid;
224
225         bzero(sc, sizeof (*sc));
226         sc->sc_dev = dev;
227
228         /* XXX handle power management */
229
230         cmd = pci_read_config(dev, PCIR_COMMAND, 4);
231         cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
232         pci_write_config(dev, PCIR_COMMAND, cmd, 4);
233         cmd = pci_read_config(dev, PCIR_COMMAND, 4);
234
235         if (!(cmd & PCIM_CMD_MEMEN)) {
236                 device_printf(dev, "failed to enable memory mapping\n");
237                 goto bad;
238         }
239
240         if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
241                 device_printf(dev, "failed to enable bus mastering\n");
242                 goto bad;
243         }
244
245         /*
246          * Setup memory-mapping of PCI registers.
247          */
248         rid = BS_BAR;
249         sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
250                                            RF_ACTIVE);
251         if (sc->sc_sr == NULL) {
252                 device_printf(dev, "cannot map register space\n");
253                 goto bad;
254         }
255         sc->sc_st = rman_get_bustag(sc->sc_sr);
256         sc->sc_sh = rman_get_bushandle(sc->sc_sr);
257
258         /*
259          * Arrange interrupt line.
260          */
261         rid = 0;
262         sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
263                                             RF_SHAREABLE|RF_ACTIVE);
264         if (sc->sc_irq == NULL) {
265                 device_printf(dev, "could not map interrupt\n");
266                 goto bad1;
267         }
268         /*
269          * NB: Network code assumes we are blocked with splimp()
270          *     so make sure the IRQ is mapped appropriately.
271          */
272         if (bus_setup_intr(dev, sc->sc_irq, INTR_MPSAFE,
273                            safe_intr, sc, &sc->sc_ih, NULL)) {
274                 device_printf(dev, "could not establish interrupt\n");
275                 goto bad2;
276         }
277
278         sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
279         if (sc->sc_cid < 0) {
280                 device_printf(dev, "could not get crypto driver id\n");
281                 goto bad3;
282         }
283
284         sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
285                 (SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
286
287         /*
288          * Setup DMA descriptor area.
289          */
290         if (bus_dma_tag_create(NULL,                    /* parent */
291                                1,                       /* alignment */
292                                SAFE_DMA_BOUNDARY,       /* boundary */
293                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
294                                BUS_SPACE_MAXADDR,       /* highaddr */
295                                NULL, NULL,              /* filter, filterarg */
296                                SAFE_MAX_DMA,            /* maxsize */
297                                SAFE_MAX_PART,           /* nsegments */
298                                SAFE_MAX_SSIZE,          /* maxsegsize */
299                                BUS_DMA_ALLOCNOW,        /* flags */
300                                &sc->sc_srcdmat)) {
301                 device_printf(dev, "cannot allocate DMA tag\n");
302                 goto bad4;
303         }
304         if (bus_dma_tag_create(NULL,                    /* parent */
305                                1,                       /* alignment */
306                                SAFE_MAX_DSIZE,          /* boundary */
307                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
308                                BUS_SPACE_MAXADDR,       /* highaddr */
309                                NULL, NULL,              /* filter, filterarg */
310                                SAFE_MAX_DMA,            /* maxsize */
311                                SAFE_MAX_PART,           /* nsegments */
312                                SAFE_MAX_DSIZE,          /* maxsegsize */
313                                BUS_DMA_ALLOCNOW,        /* flags */
314                                &sc->sc_dstdmat)) {
315                 device_printf(dev, "cannot allocate DMA tag\n");
316                 goto bad4;
317         }
318
319         /*
320          * Allocate packet engine descriptors.
321          */
322         if (safe_dma_malloc(sc,
323             SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
324             &sc->sc_ringalloc, 0)) {
325                 device_printf(dev, "cannot allocate PE descriptor ring\n");
326                 bus_dma_tag_destroy(sc->sc_srcdmat);
327                 goto bad4;
328         }
329         /*
330          * Hookup the static portion of all our data structures.
331          */
332         sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
333         sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
334         sc->sc_front = sc->sc_ring;
335         sc->sc_back = sc->sc_ring;
336         raddr = sc->sc_ringalloc.dma_paddr;
337         bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
338         for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
339                 struct safe_ringentry *re = &sc->sc_ring[i];
340
341                 re->re_desc.d_sa = raddr +
342                         offsetof(struct safe_ringentry, re_sa);
343                 re->re_sa.sa_staterec = raddr +
344                         offsetof(struct safe_ringentry, re_sastate);
345
346                 raddr += sizeof (struct safe_ringentry);
347         }
348         lockinit(&sc->sc_ringlock, "packet engine ring", 0, LK_CANRECURSE);
349
350         /*
351          * Allocate scatter and gather particle descriptors.
352          */
353         if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
354             &sc->sc_spalloc, 0)) {
355                 device_printf(dev, "cannot allocate source particle "
356                         "descriptor ring\n");
357                 lockuninit(&sc->sc_ringlock);
358                 safe_dma_free(sc, &sc->sc_ringalloc);
359                 bus_dma_tag_destroy(sc->sc_srcdmat);
360                 goto bad4;
361         }
362         sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
363         sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
364         sc->sc_spfree = sc->sc_spring;
365         bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
366
367         if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
368             &sc->sc_dpalloc, 0)) {
369                 device_printf(dev, "cannot allocate destination particle "
370                         "descriptor ring\n");
371                 lockuninit(&sc->sc_ringlock);
372                 safe_dma_free(sc, &sc->sc_spalloc);
373                 safe_dma_free(sc, &sc->sc_ringalloc);
374                 bus_dma_tag_destroy(sc->sc_dstdmat);
375                 goto bad4;
376         }
377         sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
378         sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
379         sc->sc_dpfree = sc->sc_dpring;
380         bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
381
382         device_printf(sc->sc_dev, "%s", safe_partname(sc));
383
384         devinfo = READ_REG(sc, SAFE_DEVINFO);
385         if (devinfo & SAFE_DEVINFO_RNG) {
386                 sc->sc_flags |= SAFE_FLAGS_RNG;
387                 kprintf(" rng");
388         }
389         if (devinfo & SAFE_DEVINFO_PKEY) {
390 #if 0
391                 kprintf(" key");
392                 sc->sc_flags |= SAFE_FLAGS_KEY;
393                 crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
394                 crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
395 #endif
396         }
397         if (devinfo & SAFE_DEVINFO_DES) {
398                 kprintf(" des/3des");
399                 crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
400                 crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
401         }
402         if (devinfo & SAFE_DEVINFO_AES) {
403                 kprintf(" aes");
404                 crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
405         }
406         if (devinfo & SAFE_DEVINFO_MD5) {
407                 kprintf(" md5");
408                 crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
409         }
410         if (devinfo & SAFE_DEVINFO_SHA1) {
411                 kprintf(" sha1");
412                 crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
413         }
414         kprintf(" null");
415         crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
416         crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
417         /* XXX other supported algorithms */
418         kprintf("\n");
419
420         safe_reset_board(sc);           /* reset h/w */
421         safe_init_pciregs(dev);         /* init pci settings */
422         safe_init_board(sc);            /* init h/w */
423
424 #ifndef SAFE_NO_RNG
425         if (sc->sc_flags & SAFE_FLAGS_RNG) {
426 #ifdef SAFE_RNDTEST
427                 sc->sc_rndtest = rndtest_attach(dev);
428                 if (sc->sc_rndtest)
429                         sc->sc_harvest = rndtest_harvest;
430                 else
431                         sc->sc_harvest = default_harvest;
432 #else
433                 sc->sc_harvest = default_harvest;
434 #endif
435                 safe_rng_init(sc);
436
437                 callout_init_mp(&sc->sc_rngto);
438                 callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
439         }
440 #endif /* SAFE_NO_RNG */
441 #ifdef SAFE_DEBUG
442         safec = sc;                     /* for use by hw.safe.dump */
443 #endif
444         return (0);
445 bad4:
446         crypto_unregister_all(sc->sc_cid);
447 bad3:
448         bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
449 bad2:
450         bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
451 bad1:
452         bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
453 bad:
454         return (ENXIO);
455 }
456
457 /*
458  * Detach a device that successfully probed.
459  */
460 static int
461 safe_detach(device_t dev)
462 {
463         struct safe_softc *sc = device_get_softc(dev);
464
465         /* XXX wait/abort active ops */
466
467         WRITE_REG(sc, SAFE_HI_MASK, 0);         /* disable interrupts */
468
469         callout_stop(&sc->sc_rngto);
470
471         crypto_unregister_all(sc->sc_cid);
472
473 #ifdef SAFE_RNDTEST
474         if (sc->sc_rndtest)
475                 rndtest_detach(sc->sc_rndtest);
476 #endif
477
478         safe_cleanchip(sc);
479         safe_dma_free(sc, &sc->sc_dpalloc);
480         safe_dma_free(sc, &sc->sc_spalloc);
481         lockuninit(&sc->sc_ringlock);
482         safe_dma_free(sc, &sc->sc_ringalloc);
483
484         bus_generic_detach(dev);
485         bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
486         bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
487
488         bus_dma_tag_destroy(sc->sc_srcdmat);
489         bus_dma_tag_destroy(sc->sc_dstdmat);
490         bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
491
492         return (0);
493 }
494
495 /*
496  * Stop all chip i/o so that the kernel's probe routines don't
497  * get confused by errant DMAs when rebooting.
498  */
499 static int
500 safe_shutdown(device_t dev)
501 {
502 #ifdef notyet
503         safe_stop(device_get_softc(dev));
504 #endif
505         return (0);
506 }
507
508 /*
509  * Device suspend routine.
510  */
511 static int
512 safe_suspend(device_t dev)
513 {
514         struct safe_softc *sc = device_get_softc(dev);
515
516 #ifdef notyet
517         /* XXX stop the device and save PCI settings */
518 #endif
519         sc->sc_suspended = 1;
520
521         return (0);
522 }
523
524 static int
525 safe_resume(device_t dev)
526 {
527         struct safe_softc *sc = device_get_softc(dev);
528
529 #ifdef notyet
530         /* XXX retore PCI settings and start the device */
531 #endif
532         sc->sc_suspended = 0;
533         return (0);
534 }
535
536 /*
537  * SafeXcel Interrupt routine
538  */
539 static void
540 safe_intr(void *arg)
541 {
542         struct safe_softc *sc = arg;
543         volatile u_int32_t stat;
544
545         stat = READ_REG(sc, SAFE_HM_STAT);
546         if (stat == 0)                  /* shared irq, not for us */
547                 return;
548
549         WRITE_REG(sc, SAFE_HI_CLR, stat);       /* IACK */
550
551         if ((stat & SAFE_INT_PE_DDONE)) {
552                 /*
553                  * Descriptor(s) done; scan the ring and
554                  * process completed operations.
555                  */
556                 lockmgr(&sc->sc_ringlock, LK_EXCLUSIVE);
557                 while (sc->sc_back != sc->sc_front) {
558                         struct safe_ringentry *re = sc->sc_back;
559 #ifdef SAFE_DEBUG
560                         if (safe_debug) {
561                                 safe_dump_ringstate(sc, __func__);
562                                 safe_dump_request(sc, __func__, re);
563                         }
564 #endif
565                         /*
566                          * safe_process marks ring entries that were allocated
567                          * but not used with a csr of zero.  This insures the
568                          * ring front pointer never needs to be set backwards
569                          * in the event that an entry is allocated but not used
570                          * because of a setup error.
571                          */
572                         if (re->re_desc.d_csr != 0) {
573                                 if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
574                                         break;
575                                 if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
576                                         break;
577                                 sc->sc_nqchip--;
578                                 safe_callback(sc, re);
579                         }
580                         if (++(sc->sc_back) == sc->sc_ringtop)
581                                 sc->sc_back = sc->sc_ring;
582                 }
583                 lockmgr(&sc->sc_ringlock, LK_RELEASE);
584         }
585
586         /*
587          * Check to see if we got any DMA Error
588          */
589         if (stat & SAFE_INT_PE_ERROR) {
590                 DPRINTF(("dmaerr dmastat %08x\n",
591                         READ_REG(sc, SAFE_PE_DMASTAT)));
592                 safestats.st_dmaerr++;
593                 safe_totalreset(sc);
594 #if 0
595                 safe_feed(sc);
596 #endif
597         }
598
599         if (sc->sc_needwakeup) {                /* XXX check high watermark */
600                 int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
601                 DPRINTF(("%s: wakeup crypto %x\n", __func__,
602                         sc->sc_needwakeup));
603                 sc->sc_needwakeup &= ~wakeup;
604                 crypto_unblock(sc->sc_cid, wakeup);
605         }
606 }
607
608 /*
609  * safe_feed() - post a request to chip
610  */
611 static void
612 safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
613 {
614         bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
615         if (re->re_dst_map != NULL)
616                 bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
617                         BUS_DMASYNC_PREREAD);
618         /* XXX have no smaller granularity */
619         safe_dma_sync(&sc->sc_ringalloc,
620                 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
621         safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
622         safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
623
624 #ifdef SAFE_DEBUG
625         if (safe_debug) {
626                 safe_dump_ringstate(sc, __func__);
627                 safe_dump_request(sc, __func__, re);
628         }
629 #endif
630         sc->sc_nqchip++;
631         if (sc->sc_nqchip > safestats.st_maxqchip)
632                 safestats.st_maxqchip = sc->sc_nqchip;
633         /* poke h/w to check descriptor ring, any value can be written */
634         WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
635 }
636
637 #define N(a)    (sizeof(a) / sizeof (a[0]))
638 static void
639 safe_setup_enckey(struct safe_session *ses, caddr_t key)
640 {
641         int i;
642
643         bcopy(key, ses->ses_key, ses->ses_klen / 8);
644
645         /* PE is little-endian, insure proper byte order */
646         for (i = 0; i < N(ses->ses_key); i++)
647                 ses->ses_key[i] = htole32(ses->ses_key[i]);
648 }
649
650 static void
651 safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
652 {
653         MD5_CTX md5ctx;
654         SHA1_CTX sha1ctx;
655         int i;
656
657
658         for (i = 0; i < klen; i++)
659                 key[i] ^= HMAC_IPAD_VAL;
660
661         if (algo == CRYPTO_MD5_HMAC) {
662                 MD5Init(&md5ctx);
663                 MD5Update(&md5ctx, key, klen);
664                 MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
665                 bcopy(&md5ctx.A, ses->ses_hminner, sizeof(md5ctx.A) * 4);
666         } else {
667                 SHA1Init(&sha1ctx);
668                 SHA1Update(&sha1ctx, key, klen);
669                 SHA1Update(&sha1ctx, hmac_ipad_buffer,
670                     SHA1_HMAC_BLOCK_LEN - klen);
671                 bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
672         }
673
674         for (i = 0; i < klen; i++)
675                 key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
676
677         if (algo == CRYPTO_MD5_HMAC) {
678                 MD5Init(&md5ctx);
679                 MD5Update(&md5ctx, key, klen);
680                 MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
681                 bcopy(&md5ctx.A, ses->ses_hmouter, sizeof(md5ctx.A) * 4);
682         } else {
683                 SHA1Init(&sha1ctx);
684                 SHA1Update(&sha1ctx, key, klen);
685                 SHA1Update(&sha1ctx, hmac_opad_buffer,
686                     SHA1_HMAC_BLOCK_LEN - klen);
687                 bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
688         }
689
690         for (i = 0; i < klen; i++)
691                 key[i] ^= HMAC_OPAD_VAL;
692
693         /* PE is little-endian, insure proper byte order */
694         for (i = 0; i < N(ses->ses_hminner); i++) {
695                 ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
696                 ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
697         }
698 }
699 #undef N
700
701 /*
702  * Allocate a new 'session' and return an encoded session id.  'sidp'
703  * contains our registration id, and should contain an encoded session
704  * id on successful allocation.
705  */
706 static int
707 safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
708 {
709         struct safe_softc *sc = device_get_softc(dev);
710         struct cryptoini *c, *encini = NULL, *macini = NULL;
711         struct safe_session *ses = NULL;
712         int sesn;
713
714         if (sidp == NULL || cri == NULL || sc == NULL)
715                 return (EINVAL);
716
717         for (c = cri; c != NULL; c = c->cri_next) {
718                 if (c->cri_alg == CRYPTO_MD5_HMAC ||
719                     c->cri_alg == CRYPTO_SHA1_HMAC ||
720                     c->cri_alg == CRYPTO_NULL_HMAC) {
721                         if (macini)
722                                 return (EINVAL);
723                         macini = c;
724                 } else if (c->cri_alg == CRYPTO_DES_CBC ||
725                     c->cri_alg == CRYPTO_3DES_CBC ||
726                     c->cri_alg == CRYPTO_AES_CBC ||
727                     c->cri_alg == CRYPTO_NULL_CBC) {
728                         if (encini)
729                                 return (EINVAL);
730                         encini = c;
731                 } else
732                         return (EINVAL);
733         }
734         if (encini == NULL && macini == NULL)
735                 return (EINVAL);
736         if (encini) {                   /* validate key length */
737                 switch (encini->cri_alg) {
738                 case CRYPTO_DES_CBC:
739                         if (encini->cri_klen != 64)
740                                 return (EINVAL);
741                         break;
742                 case CRYPTO_3DES_CBC:
743                         if (encini->cri_klen != 192)
744                                 return (EINVAL);
745                         break;
746                 case CRYPTO_AES_CBC:
747                         if (encini->cri_klen != 128 &&
748                             encini->cri_klen != 192 &&
749                             encini->cri_klen != 256)
750                                 return (EINVAL);
751                         break;
752                 }
753         }
754
755         if (sc->sc_sessions == NULL) {
756                 ses = sc->sc_sessions = (struct safe_session *)kmalloc(
757                     sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
758                 if (ses == NULL)
759                         return (ENOMEM);
760                 sesn = 0;
761                 sc->sc_nsessions = 1;
762         } else {
763                 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
764                         if (sc->sc_sessions[sesn].ses_used == 0) {
765                                 ses = &sc->sc_sessions[sesn];
766                                 break;
767                         }
768                 }
769
770                 if (ses == NULL) {
771                         sesn = sc->sc_nsessions;
772                         ses = (struct safe_session *)kmalloc((sesn + 1) *
773                             sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
774                         if (ses == NULL)
775                                 return (ENOMEM);
776                         bcopy(sc->sc_sessions, ses, sesn *
777                             sizeof(struct safe_session));
778                         bzero(sc->sc_sessions, sesn *
779                             sizeof(struct safe_session));
780                         kfree(sc->sc_sessions, M_DEVBUF);
781                         sc->sc_sessions = ses;
782                         ses = &sc->sc_sessions[sesn];
783                         sc->sc_nsessions++;
784                 }
785         }
786
787         bzero(ses, sizeof(struct safe_session));
788         ses->ses_used = 1;
789
790         if (encini) {
791                 /* get an IV */
792                 /* XXX may read fewer than requested */
793                 read_random(ses->ses_iv, sizeof(ses->ses_iv));
794
795                 ses->ses_klen = encini->cri_klen;
796                 if (encini->cri_key != NULL)
797                         safe_setup_enckey(ses, encini->cri_key);
798         }
799
800         if (macini) {
801                 ses->ses_mlen = macini->cri_mlen;
802                 if (ses->ses_mlen == 0) {
803                         if (macini->cri_alg == CRYPTO_MD5_HMAC)
804                                 ses->ses_mlen = MD5_HASH_LEN;
805                         else
806                                 ses->ses_mlen = SHA1_HASH_LEN;
807                 }
808
809                 if (macini->cri_key != NULL) {
810                         safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
811                             macini->cri_klen / 8);
812                 }
813         }
814
815         *sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
816         return (0);
817 }
818
819 /*
820  * Deallocate a session.
821  */
822 static int
823 safe_freesession(device_t dev, u_int64_t tid)
824 {
825         struct safe_softc *sc = device_get_softc(dev);
826         int session, ret;
827         u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
828
829         if (sc == NULL)
830                 return (EINVAL);
831
832         session = SAFE_SESSION(sid);
833         if (session < sc->sc_nsessions) {
834                 bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
835                 ret = 0;
836         } else
837                 ret = EINVAL;
838         return (ret);
839 }
840
841 static void
842 safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
843 {
844         struct safe_operand *op = arg;
845
846         DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
847                 (u_int) mapsize, nsegs, error));
848         if (error != 0)
849                 return;
850         op->mapsize = mapsize;
851         op->nsegs = nsegs;
852         bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
853 }
854
855 static int
856 safe_process(device_t dev, struct cryptop *crp, int hint)
857 {
858         struct safe_softc *sc = device_get_softc(dev);
859         int err = 0, i, nicealign, uniform;
860         struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
861         int bypass, oplen, ivsize;
862         caddr_t iv;
863         int16_t coffset;
864         struct safe_session *ses;
865         struct safe_ringentry *re;
866         struct safe_sarec *sa;
867         struct safe_pdesc *pd;
868         u_int32_t cmd0, cmd1, staterec;
869
870         if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
871                 safestats.st_invalid++;
872                 return (EINVAL);
873         }
874         if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
875                 safestats.st_badsession++;
876                 return (EINVAL);
877         }
878
879         lockmgr(&sc->sc_ringlock, LK_EXCLUSIVE);
880         if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
881                 safestats.st_ringfull++;
882                 sc->sc_needwakeup |= CRYPTO_SYMQ;
883                 lockmgr(&sc->sc_ringlock, LK_RELEASE);
884                 return (ERESTART);
885         }
886         re = sc->sc_front;
887
888         staterec = re->re_sa.sa_staterec;       /* save */
889         /* NB: zero everything but the PE descriptor */
890         bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
891         re->re_sa.sa_staterec = staterec;       /* restore */
892
893         re->re_crp = crp;
894         re->re_sesn = SAFE_SESSION(crp->crp_sid);
895
896         if (crp->crp_flags & CRYPTO_F_IMBUF) {
897                 re->re_src_m = (struct mbuf *)crp->crp_buf;
898                 re->re_dst_m = (struct mbuf *)crp->crp_buf;
899         } else if (crp->crp_flags & CRYPTO_F_IOV) {
900                 re->re_src_io = (struct uio *)crp->crp_buf;
901                 re->re_dst_io = (struct uio *)crp->crp_buf;
902         } else {
903                 safestats.st_badflags++;
904                 err = EINVAL;
905                 goto errout;    /* XXX we don't handle contiguous blocks! */
906         }
907
908         sa = &re->re_sa;
909         ses = &sc->sc_sessions[re->re_sesn];
910
911         crd1 = crp->crp_desc;
912         if (crd1 == NULL) {
913                 safestats.st_nodesc++;
914                 err = EINVAL;
915                 goto errout;
916         }
917         crd2 = crd1->crd_next;
918
919         cmd0 = SAFE_SA_CMD0_BASIC;              /* basic group operation */
920         cmd1 = 0;
921         if (crd2 == NULL) {
922                 if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
923                     crd1->crd_alg == CRYPTO_SHA1_HMAC ||
924                     crd1->crd_alg == CRYPTO_NULL_HMAC) {
925                         maccrd = crd1;
926                         enccrd = NULL;
927                         cmd0 |= SAFE_SA_CMD0_OP_HASH;
928                 } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
929                     crd1->crd_alg == CRYPTO_3DES_CBC ||
930                     crd1->crd_alg == CRYPTO_AES_CBC ||
931                     crd1->crd_alg == CRYPTO_NULL_CBC) {
932                         maccrd = NULL;
933                         enccrd = crd1;
934                         cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
935                 } else {
936                         safestats.st_badalg++;
937                         err = EINVAL;
938                         goto errout;
939                 }
940         } else {
941                 if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
942                     crd1->crd_alg == CRYPTO_SHA1_HMAC ||
943                     crd1->crd_alg == CRYPTO_NULL_HMAC) &&
944                     (crd2->crd_alg == CRYPTO_DES_CBC ||
945                         crd2->crd_alg == CRYPTO_3DES_CBC ||
946                         crd2->crd_alg == CRYPTO_AES_CBC ||
947                         crd2->crd_alg == CRYPTO_NULL_CBC) &&
948                     ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
949                         maccrd = crd1;
950                         enccrd = crd2;
951                 } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
952                     crd1->crd_alg == CRYPTO_3DES_CBC ||
953                     crd1->crd_alg == CRYPTO_AES_CBC ||
954                     crd1->crd_alg == CRYPTO_NULL_CBC) &&
955                     (crd2->crd_alg == CRYPTO_MD5_HMAC ||
956                         crd2->crd_alg == CRYPTO_SHA1_HMAC ||
957                         crd2->crd_alg == CRYPTO_NULL_HMAC) &&
958                     (crd1->crd_flags & CRD_F_ENCRYPT)) {
959                         enccrd = crd1;
960                         maccrd = crd2;
961                 } else {
962                         safestats.st_badalg++;
963                         err = EINVAL;
964                         goto errout;
965                 }
966                 cmd0 |= SAFE_SA_CMD0_OP_BOTH;
967         }
968
969         if (enccrd) {
970                 if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
971                         safe_setup_enckey(ses, enccrd->crd_key);
972
973                 if (enccrd->crd_alg == CRYPTO_DES_CBC) {
974                         cmd0 |= SAFE_SA_CMD0_DES;
975                         cmd1 |= SAFE_SA_CMD1_CBC;
976                         ivsize = 2*sizeof(u_int32_t);
977                 } else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
978                         cmd0 |= SAFE_SA_CMD0_3DES;
979                         cmd1 |= SAFE_SA_CMD1_CBC;
980                         ivsize = 2*sizeof(u_int32_t);
981                 } else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
982                         cmd0 |= SAFE_SA_CMD0_AES;
983                         cmd1 |= SAFE_SA_CMD1_CBC;
984                         if (ses->ses_klen == 128)
985                              cmd1 |=  SAFE_SA_CMD1_AES128;
986                         else if (ses->ses_klen == 192)
987                              cmd1 |=  SAFE_SA_CMD1_AES192;
988                         else
989                              cmd1 |=  SAFE_SA_CMD1_AES256;
990                         ivsize = 4*sizeof(u_int32_t);
991                 } else {
992                         cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
993                         ivsize = 0;
994                 }
995
996                 /*
997                  * Setup encrypt/decrypt state.  When using basic ops
998                  * we can't use an inline IV because hash/crypt offset
999                  * must be from the end of the IV to the start of the
1000                  * crypt data and this leaves out the preceding header
1001                  * from the hash calculation.  Instead we place the IV
1002                  * in the state record and set the hash/crypt offset to
1003                  * copy both the header+IV.
1004                  */
1005                 if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1006                         cmd0 |= SAFE_SA_CMD0_OUTBOUND;
1007
1008                         if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1009                                 iv = enccrd->crd_iv;
1010                         else
1011                                 iv = (caddr_t) ses->ses_iv;
1012                         if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1013                                 crypto_copyback(crp->crp_flags, crp->crp_buf,
1014                                     enccrd->crd_inject, ivsize, iv);
1015                         }
1016                         bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1017                         cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1018                         re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1019                 } else {
1020                         cmd0 |= SAFE_SA_CMD0_INBOUND;
1021
1022                         if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
1023                                 bcopy(enccrd->crd_iv,
1024                                         re->re_sastate.sa_saved_iv, ivsize);
1025                         } else {
1026                                 crypto_copydata(crp->crp_flags, crp->crp_buf,
1027                                     enccrd->crd_inject, ivsize,
1028                                     (caddr_t)re->re_sastate.sa_saved_iv);
1029                         }
1030                         cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1031                 }
1032                 /*
1033                  * For basic encryption use the zero pad algorithm.
1034                  * This pads results to an 8-byte boundary and
1035                  * suppresses padding verification for inbound (i.e.
1036                  * decrypt) operations.
1037                  *
1038                  * NB: Not sure if the 8-byte pad boundary is a problem.
1039                  */
1040                 cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1041
1042                 /* XXX assert key bufs have the same size */
1043                 bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1044         }
1045
1046         if (maccrd) {
1047                 if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1048                         safe_setup_mackey(ses, maccrd->crd_alg,
1049                             maccrd->crd_key, maccrd->crd_klen / 8);
1050                 }
1051
1052                 if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1053                         cmd0 |= SAFE_SA_CMD0_MD5;
1054                         cmd1 |= SAFE_SA_CMD1_HMAC;      /* NB: enable HMAC */
1055                 } else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1056                         cmd0 |= SAFE_SA_CMD0_SHA1;
1057                         cmd1 |= SAFE_SA_CMD1_HMAC;      /* NB: enable HMAC */
1058                 } else {
1059                         cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1060                 }
1061                 /*
1062                  * Digest data is loaded from the SA and the hash
1063                  * result is saved to the state block where we
1064                  * retrieve it for return to the caller.
1065                  */
1066                 /* XXX assert digest bufs have the same size */
1067                 bcopy(ses->ses_hminner, sa->sa_indigest,
1068                         sizeof(sa->sa_indigest));
1069                 bcopy(ses->ses_hmouter, sa->sa_outdigest,
1070                         sizeof(sa->sa_outdigest));
1071
1072                 cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1073                 re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1074         }
1075
1076         if (enccrd && maccrd) {
1077                 /*
1078                  * The offset from hash data to the start of
1079                  * crypt data is the difference in the skips.
1080                  */
1081                 bypass = maccrd->crd_skip;
1082                 coffset = enccrd->crd_skip - maccrd->crd_skip;
1083                 if (coffset < 0) {
1084                         DPRINTF(("%s: hash does not precede crypt; "
1085                                 "mac skip %u enc skip %u\n",
1086                                 __func__, maccrd->crd_skip, enccrd->crd_skip));
1087                         safestats.st_skipmismatch++;
1088                         err = EINVAL;
1089                         goto errout;
1090                 }
1091                 oplen = enccrd->crd_skip + enccrd->crd_len;
1092                 if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1093                         DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1094                                 __func__, maccrd->crd_skip + maccrd->crd_len,
1095                                 oplen));
1096                         safestats.st_lenmismatch++;
1097                         err = EINVAL;
1098                         goto errout;
1099                 }
1100 #ifdef SAFE_DEBUG
1101                 if (safe_debug) {
1102                         kprintf("mac: skip %d, len %d, inject %d\n",
1103                             maccrd->crd_skip, maccrd->crd_len,
1104                             maccrd->crd_inject);
1105                         kprintf("enc: skip %d, len %d, inject %d\n",
1106                             enccrd->crd_skip, enccrd->crd_len,
1107                             enccrd->crd_inject);
1108                         kprintf("bypass %d coffset %d oplen %d\n",
1109                                 bypass, coffset, oplen);
1110                 }
1111 #endif
1112                 if (coffset & 3) {      /* offset must be 32-bit aligned */
1113                         DPRINTF(("%s: coffset %u misaligned\n",
1114                                 __func__, coffset));
1115                         safestats.st_coffmisaligned++;
1116                         err = EINVAL;
1117                         goto errout;
1118                 }
1119                 coffset >>= 2;
1120                 if (coffset > 255) {    /* offset must be <256 dwords */
1121                         DPRINTF(("%s: coffset %u too big\n",
1122                                 __func__, coffset));
1123                         safestats.st_cofftoobig++;
1124                         err = EINVAL;
1125                         goto errout;
1126                 }
1127                 /*
1128                  * Tell the hardware to copy the header to the output.
1129                  * The header is defined as the data from the end of
1130                  * the bypass to the start of data to be encrypted.
1131                  * Typically this is the inline IV.  Note that you need
1132                  * to do this even if src+dst are the same; it appears
1133                  * that w/o this bit the crypted data is written
1134                  * immediately after the bypass data.
1135                  */
1136                 cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1137                 /*
1138                  * Disable IP header mutable bit handling.  This is
1139                  * needed to get correct HMAC calculations.
1140                  */
1141                 cmd1 |= SAFE_SA_CMD1_MUTABLE;
1142         } else {
1143                 if (enccrd) {
1144                         bypass = enccrd->crd_skip;
1145                         oplen = bypass + enccrd->crd_len;
1146                 } else {
1147                         bypass = maccrd->crd_skip;
1148                         oplen = bypass + maccrd->crd_len;
1149                 }
1150                 coffset = 0;
1151         }
1152         /* XXX verify multiple of 4 when using s/g */
1153         if (bypass > 96) {              /* bypass offset must be <= 96 bytes */
1154                 DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1155                 safestats.st_bypasstoobig++;
1156                 err = EINVAL;
1157                 goto errout;
1158         }
1159
1160         if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1161                 safestats.st_nomap++;
1162                 err = ENOMEM;
1163                 goto errout;
1164         }
1165         if (crp->crp_flags & CRYPTO_F_IMBUF) {
1166                 if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1167                     re->re_src_m, safe_op_cb,
1168                     &re->re_src, BUS_DMA_NOWAIT) != 0) {
1169                         bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1170                         re->re_src_map = NULL;
1171                         safestats.st_noload++;
1172                         err = ENOMEM;
1173                         goto errout;
1174                 }
1175         } else if (crp->crp_flags & CRYPTO_F_IOV) {
1176                 if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1177                     re->re_src_io, safe_op_cb,
1178                     &re->re_src, BUS_DMA_NOWAIT) != 0) {
1179                         bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1180                         re->re_src_map = NULL;
1181                         safestats.st_noload++;
1182                         err = ENOMEM;
1183                         goto errout;
1184                 }
1185         }
1186         nicealign = safe_dmamap_aligned(&re->re_src);
1187         uniform = safe_dmamap_uniform(&re->re_src);
1188
1189         DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1190                 nicealign, uniform, re->re_src.nsegs));
1191         if (re->re_src.nsegs > 1) {
1192                 re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1193                         ((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1194                 for (i = 0; i < re->re_src_nsegs; i++) {
1195                         /* NB: no need to check if there's space */
1196                         pd = sc->sc_spfree;
1197                         if (++(sc->sc_spfree) == sc->sc_springtop)
1198                                 sc->sc_spfree = sc->sc_spring;
1199
1200                         KASSERT((pd->pd_flags&3) == 0 ||
1201                                 (pd->pd_flags&3) == SAFE_PD_DONE,
1202                                 ("bogus source particle descriptor; flags %x",
1203                                 pd->pd_flags));
1204                         pd->pd_addr = re->re_src_segs[i].ds_addr;
1205                         pd->pd_size = re->re_src_segs[i].ds_len;
1206                         pd->pd_flags = SAFE_PD_READY;
1207                 }
1208                 cmd0 |= SAFE_SA_CMD0_IGATHER;
1209         } else {
1210                 /*
1211                  * No need for gather, reference the operand directly.
1212                  */
1213                 re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1214         }
1215
1216         if (enccrd == NULL && maccrd != NULL) {
1217                 /*
1218                  * Hash op; no destination needed.
1219                  */
1220         } else {
1221                 if (crp->crp_flags & CRYPTO_F_IOV) {
1222                         if (!nicealign) {
1223                                 safestats.st_iovmisaligned++;
1224                                 err = EINVAL;
1225                                 goto errout;
1226                         }
1227                         if (uniform != 1) {
1228                                 /*
1229                                  * Source is not suitable for direct use as
1230                                  * the destination.  Create a new scatter/gather
1231                                  * list based on the destination requirements
1232                                  * and check if that's ok.
1233                                  */
1234                                 if (bus_dmamap_create(sc->sc_dstdmat,
1235                                     BUS_DMA_NOWAIT, &re->re_dst_map)) {
1236                                         safestats.st_nomap++;
1237                                         err = ENOMEM;
1238                                         goto errout;
1239                                 }
1240                                 if (bus_dmamap_load_uio(sc->sc_dstdmat,
1241                                     re->re_dst_map, re->re_dst_io,
1242                                     safe_op_cb, &re->re_dst,
1243                                     BUS_DMA_NOWAIT) != 0) {
1244                                         bus_dmamap_destroy(sc->sc_dstdmat,
1245                                                 re->re_dst_map);
1246                                         re->re_dst_map = NULL;
1247                                         safestats.st_noload++;
1248                                         err = ENOMEM;
1249                                         goto errout;
1250                                 }
1251                                 uniform = safe_dmamap_uniform(&re->re_dst);
1252                                 if (!uniform) {
1253                                         /*
1254                                          * There's no way to handle the DMA
1255                                          * requirements with this uio.  We
1256                                          * could create a separate DMA area for
1257                                          * the result and then copy it back,
1258                                          * but for now we just bail and return
1259                                          * an error.  Note that uio requests
1260                                          * > SAFE_MAX_DSIZE are handled because
1261                                          * the DMA map and segment list for the
1262                                          * destination wil result in a
1263                                          * destination particle list that does
1264                                          * the necessary scatter DMA.
1265                                          */
1266                                         safestats.st_iovnotuniform++;
1267                                         err = EINVAL;
1268                                         goto errout;
1269                                 }
1270                         } else
1271                                 re->re_dst = re->re_src;
1272                 } else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1273                         if (nicealign && uniform == 1) {
1274                                 /*
1275                                  * Source layout is suitable for direct
1276                                  * sharing of the DMA map and segment list.
1277                                  */
1278                                 re->re_dst = re->re_src;
1279                         } else if (nicealign && uniform == 2) {
1280                                 /*
1281                                  * The source is properly aligned but requires a
1282                                  * different particle list to handle DMA of the
1283                                  * result.  Create a new map and do the load to
1284                                  * create the segment list.  The particle
1285                                  * descriptor setup code below will handle the
1286                                  * rest.
1287                                  */
1288                                 if (bus_dmamap_create(sc->sc_dstdmat,
1289                                     BUS_DMA_NOWAIT, &re->re_dst_map)) {
1290                                         safestats.st_nomap++;
1291                                         err = ENOMEM;
1292                                         goto errout;
1293                                 }
1294                                 if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1295                                     re->re_dst_map, re->re_dst_m,
1296                                     safe_op_cb, &re->re_dst,
1297                                     BUS_DMA_NOWAIT) != 0) {
1298                                         bus_dmamap_destroy(sc->sc_dstdmat,
1299                                                 re->re_dst_map);
1300                                         re->re_dst_map = NULL;
1301                                         safestats.st_noload++;
1302                                         err = ENOMEM;
1303                                         goto errout;
1304                                 }
1305                         } else {                /* !(aligned and/or uniform) */
1306                                 int totlen, len;
1307                                 struct mbuf *m, *top, **mp;
1308
1309                                 /*
1310                                  * DMA constraints require that we allocate a
1311                                  * new mbuf chain for the destination.  We
1312                                  * allocate an entire new set of mbufs of
1313                                  * optimal/required size and then tell the
1314                                  * hardware to copy any bits that are not
1315                                  * created as a byproduct of the operation.
1316                                  */
1317                                 if (!nicealign)
1318                                         safestats.st_unaligned++;
1319                                 if (!uniform)
1320                                         safestats.st_notuniform++;
1321                                 totlen = re->re_src_mapsize;
1322                                 if (re->re_src_m->m_flags & M_PKTHDR) {
1323                                         len = MHLEN;
1324                                         MGETHDR(m, M_NOWAIT, MT_DATA);
1325                                         if (m && !m_dup_pkthdr(m, re->re_src_m,
1326                                             M_NOWAIT)) {
1327                                                 m_free(m);
1328                                                 m = NULL;
1329                                         }
1330                                 } else {
1331                                         len = MLEN;
1332                                         MGET(m, M_NOWAIT, MT_DATA);
1333                                 }
1334                                 if (m == NULL) {
1335                                         safestats.st_nombuf++;
1336                                         err = sc->sc_nqchip ? ERESTART : ENOMEM;
1337                                         goto errout;
1338                                 }
1339                                 if (totlen >= MINCLSIZE) {
1340                                         MCLGET(m, M_NOWAIT);
1341                                         if ((m->m_flags & M_EXT) == 0) {
1342                                                 m_free(m);
1343                                                 safestats.st_nomcl++;
1344                                                 err = sc->sc_nqchip ?
1345                                                         ERESTART : ENOMEM;
1346                                                 goto errout;
1347                                         }
1348                                         len = MCLBYTES;
1349                                 }
1350                                 m->m_len = len;
1351                                 top = NULL;
1352                                 mp = &top;
1353
1354                                 while (totlen > 0) {
1355                                         if (top) {
1356                                                 MGET(m, M_NOWAIT, MT_DATA);
1357                                                 if (m == NULL) {
1358                                                         m_freem(top);
1359                                                         safestats.st_nombuf++;
1360                                                         err = sc->sc_nqchip ?
1361                                                             ERESTART : ENOMEM;
1362                                                         goto errout;
1363                                                 }
1364                                                 len = MLEN;
1365                                         }
1366                                         if (top && totlen >= MINCLSIZE) {
1367                                                 MCLGET(m, M_NOWAIT);
1368                                                 if ((m->m_flags & M_EXT) == 0) {
1369                                                         *mp = m;
1370                                                         m_freem(top);
1371                                                         safestats.st_nomcl++;
1372                                                         err = sc->sc_nqchip ?
1373                                                             ERESTART : ENOMEM;
1374                                                         goto errout;
1375                                                 }
1376                                                 len = MCLBYTES;
1377                                         }
1378                                         m->m_len = len = min(totlen, len);
1379                                         totlen -= len;
1380                                         *mp = m;
1381                                         mp = &m->m_next;
1382                                 }
1383                                 re->re_dst_m = top;
1384                                 if (bus_dmamap_create(sc->sc_dstdmat,
1385                                     BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1386                                         safestats.st_nomap++;
1387                                         err = ENOMEM;
1388                                         goto errout;
1389                                 }
1390                                 if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1391                                     re->re_dst_map, re->re_dst_m,
1392                                     safe_op_cb, &re->re_dst,
1393                                     BUS_DMA_NOWAIT) != 0) {
1394                                         bus_dmamap_destroy(sc->sc_dstdmat,
1395                                         re->re_dst_map);
1396                                         re->re_dst_map = NULL;
1397                                         safestats.st_noload++;
1398                                         err = ENOMEM;
1399                                         goto errout;
1400                                 }
1401                                 if (re->re_src.mapsize > oplen) {
1402                                         /*
1403                                          * There's data following what the
1404                                          * hardware will copy for us.  If this
1405                                          * isn't just the ICV (that's going to
1406                                          * be written on completion), copy it
1407                                          * to the new mbufs
1408                                          */
1409                                         if (!(maccrd &&
1410                                             (re->re_src.mapsize-oplen) == 12 &&
1411                                             maccrd->crd_inject == oplen))
1412                                                 safe_mcopy(re->re_src_m,
1413                                                            re->re_dst_m,
1414                                                            oplen);
1415                                         else
1416                                                 safestats.st_noicvcopy++;
1417                                 }
1418                         }
1419                 } else {
1420                         safestats.st_badflags++;
1421                         err = EINVAL;
1422                         goto errout;
1423                 }
1424
1425                 if (re->re_dst.nsegs > 1) {
1426                         re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1427                             ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1428                         for (i = 0; i < re->re_dst_nsegs; i++) {
1429                                 pd = sc->sc_dpfree;
1430                                 KASSERT((pd->pd_flags&3) == 0 ||
1431                                         (pd->pd_flags&3) == SAFE_PD_DONE,
1432                                         ("bogus dest particle descriptor; flags %x",
1433                                                 pd->pd_flags));
1434                                 if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1435                                         sc->sc_dpfree = sc->sc_dpring;
1436                                 pd->pd_addr = re->re_dst_segs[i].ds_addr;
1437                                 pd->pd_flags = SAFE_PD_READY;
1438                         }
1439                         cmd0 |= SAFE_SA_CMD0_OSCATTER;
1440                 } else {
1441                         /*
1442                          * No need for scatter, reference the operand directly.
1443                          */
1444                         re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1445                 }
1446         }
1447
1448         /*
1449          * All done with setup; fillin the SA command words
1450          * and the packet engine descriptor.  The operation
1451          * is now ready for submission to the hardware.
1452          */
1453         sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1454         sa->sa_cmd1 = cmd1
1455                     | (coffset << SAFE_SA_CMD1_OFFSET_S)
1456                     | SAFE_SA_CMD1_SAREV1       /* Rev 1 SA data structure */
1457                     | SAFE_SA_CMD1_SRPCI
1458                     ;
1459         /*
1460          * NB: the order of writes is important here.  In case the
1461          * chip is scanning the ring because of an outstanding request
1462          * it might nab this one too.  In that case we need to make
1463          * sure the setup is complete before we write the length
1464          * field of the descriptor as it signals the descriptor is
1465          * ready for processing.
1466          */
1467         re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1468         if (maccrd)
1469                 re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1470         re->re_desc.d_len = oplen
1471                           | SAFE_PE_LEN_READY
1472                           | (bypass << SAFE_PE_LEN_BYPASS_S)
1473                           ;
1474
1475         safestats.st_ipackets++;
1476         safestats.st_ibytes += oplen;
1477
1478         if (++(sc->sc_front) == sc->sc_ringtop)
1479                 sc->sc_front = sc->sc_ring;
1480
1481         /* XXX honor batching */
1482         safe_feed(sc, re);
1483         lockmgr(&sc->sc_ringlock, LK_RELEASE);
1484         return (0);
1485
1486 errout:
1487         if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1488                 m_freem(re->re_dst_m);
1489
1490         if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1491                 bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1492                 bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1493         }
1494         if (re->re_src_map != NULL) {
1495                 bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1496                 bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1497         }
1498         lockmgr(&sc->sc_ringlock, LK_RELEASE);
1499         if (err != ERESTART) {
1500                 crp->crp_etype = err;
1501                 crypto_done(crp);
1502         } else {
1503                 sc->sc_needwakeup |= CRYPTO_SYMQ;
1504         }
1505         return (err);
1506 }
1507
1508 static void
1509 safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1510 {
1511         struct cryptop *crp = (struct cryptop *)re->re_crp;
1512         struct cryptodesc *crd;
1513
1514         safestats.st_opackets++;
1515         safestats.st_obytes += re->re_dst.mapsize;
1516
1517         safe_dma_sync(&sc->sc_ringalloc,
1518                 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1519         if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1520                 device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1521                         re->re_desc.d_csr,
1522                         re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1523                 safestats.st_peoperr++;
1524                 crp->crp_etype = EIO;           /* something more meaningful? */
1525         }
1526         if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1527                 bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1528                     BUS_DMASYNC_POSTREAD);
1529                 bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1530                 bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1531         }
1532         bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1533         bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1534         bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1535
1536         /*
1537          * If result was written to a differet mbuf chain, swap
1538          * it in as the return value and reclaim the original.
1539          */
1540         if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1541                 m_freem(re->re_src_m);
1542                 crp->crp_buf = (caddr_t)re->re_dst_m;
1543         }
1544
1545         if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1546                 /* copy out IV for future use */
1547                 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1548                         int ivsize;
1549
1550                         if (crd->crd_alg == CRYPTO_DES_CBC ||
1551                             crd->crd_alg == CRYPTO_3DES_CBC) {
1552                                 ivsize = 2*sizeof(u_int32_t);
1553                         } else if (crd->crd_alg == CRYPTO_AES_CBC) {
1554                                 ivsize = 4*sizeof(u_int32_t);
1555                         } else
1556                                 continue;
1557                         crypto_copydata(crp->crp_flags, crp->crp_buf,
1558                             crd->crd_skip + crd->crd_len - ivsize, ivsize,
1559                             (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1560                         break;
1561                 }
1562         }
1563
1564         if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1565                 /* copy out ICV result */
1566                 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1567                         if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1568                             crd->crd_alg == CRYPTO_SHA1_HMAC ||
1569                             crd->crd_alg == CRYPTO_NULL_HMAC))
1570                                 continue;
1571                         if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1572                                 /*
1573                                  * SHA-1 ICV's are byte-swapped; fix 'em up
1574                                  * before copy them to their destination.
1575                                  */
1576                                 re->re_sastate.sa_saved_indigest[0] =
1577                                     bswap32(re->re_sastate.sa_saved_indigest[0]);
1578                                 re->re_sastate.sa_saved_indigest[1] =
1579                                     bswap32(re->re_sastate.sa_saved_indigest[1]);
1580                                 re->re_sastate.sa_saved_indigest[2] =
1581                                     bswap32(re->re_sastate.sa_saved_indigest[2]);
1582                         }
1583                         crypto_copyback(crp->crp_flags, crp->crp_buf,
1584                             crd->crd_inject,
1585                             sc->sc_sessions[re->re_sesn].ses_mlen,
1586                             (caddr_t)re->re_sastate.sa_saved_indigest);
1587                         break;
1588                 }
1589         }
1590         crypto_done(crp);
1591 }
1592
1593 /*
1594  * Copy all data past offset from srcm to dstm.
1595  */
1596 static void
1597 safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1598 {
1599         u_int j, dlen, slen;
1600         caddr_t dptr, sptr;
1601
1602         /*
1603          * Advance src and dst to offset.
1604          */
1605         j = offset;
1606         while (j >= 0) {
1607                 if (srcm->m_len > j)
1608                         break;
1609                 j -= srcm->m_len;
1610                 srcm = srcm->m_next;
1611                 if (srcm == NULL)
1612                         return;
1613         }
1614         sptr = mtod(srcm, caddr_t) + j;
1615         slen = srcm->m_len - j;
1616
1617         j = offset;
1618         while (j >= 0) {
1619                 if (dstm->m_len > j)
1620                         break;
1621                 j -= dstm->m_len;
1622                 dstm = dstm->m_next;
1623                 if (dstm == NULL)
1624                         return;
1625         }
1626         dptr = mtod(dstm, caddr_t) + j;
1627         dlen = dstm->m_len - j;
1628
1629         /*
1630          * Copy everything that remains.
1631          */
1632         for (;;) {
1633                 j = min(slen, dlen);
1634                 bcopy(sptr, dptr, j);
1635                 if (slen == j) {
1636                         srcm = srcm->m_next;
1637                         if (srcm == NULL)
1638                                 return;
1639                         sptr = srcm->m_data;
1640                         slen = srcm->m_len;
1641                 } else
1642                         sptr += j, slen -= j;
1643                 if (dlen == j) {
1644                         dstm = dstm->m_next;
1645                         if (dstm == NULL)
1646                                 return;
1647                         dptr = dstm->m_data;
1648                         dlen = dstm->m_len;
1649                 } else
1650                         dptr += j, dlen -= j;
1651         }
1652 }
1653
1654 #ifndef SAFE_NO_RNG
1655 #define SAFE_RNG_MAXWAIT        1000
1656
1657 static void
1658 safe_rng_init(struct safe_softc *sc)
1659 {
1660         u_int32_t w, v;
1661         int i;
1662
1663         WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1664         /* use default value according to the manual */
1665         WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);    /* magic from SafeNet */
1666         WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1667
1668         /*
1669          * There is a bug in rev 1.0 of the 1140 that when the RNG
1670          * is brought out of reset the ready status flag does not
1671          * work until the RNG has finished its internal initialization.
1672          *
1673          * So in order to determine the device is through its
1674          * initialization we must read the data register, using the
1675          * status reg in the read in case it is initialized.  Then read
1676          * the data register until it changes from the first read.
1677          * Once it changes read the data register until it changes
1678          * again.  At this time the RNG is considered initialized.
1679          * This could take between 750ms - 1000ms in time.
1680          */
1681         i = 0;
1682         w = READ_REG(sc, SAFE_RNG_OUT);
1683         do {
1684                 v = READ_REG(sc, SAFE_RNG_OUT);
1685                 if (v != w) {
1686                         w = v;
1687                         break;
1688                 }
1689                 DELAY(10);
1690         } while (++i < SAFE_RNG_MAXWAIT);
1691
1692         /* Wait Until data changes again */
1693         i = 0;
1694         do {
1695                 v = READ_REG(sc, SAFE_RNG_OUT);
1696                 if (v != w)
1697                         break;
1698                 DELAY(10);
1699         } while (++i < SAFE_RNG_MAXWAIT);
1700 }
1701
1702 static __inline void
1703 safe_rng_disable_short_cycle(struct safe_softc *sc)
1704 {
1705         WRITE_REG(sc, SAFE_RNG_CTRL,
1706                 READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1707 }
1708
1709 static __inline void
1710 safe_rng_enable_short_cycle(struct safe_softc *sc)
1711 {
1712         WRITE_REG(sc, SAFE_RNG_CTRL,
1713                 READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1714 }
1715
1716 static __inline u_int32_t
1717 safe_rng_read(struct safe_softc *sc)
1718 {
1719         int i;
1720
1721         i = 0;
1722         while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1723                 ;
1724         return READ_REG(sc, SAFE_RNG_OUT);
1725 }
1726
1727 static void
1728 safe_rng(void *arg)
1729 {
1730         struct safe_softc *sc = arg;
1731         u_int32_t buf[SAFE_RNG_MAXBUFSIZ];      /* NB: maybe move to softc */
1732         u_int maxwords;
1733         int i;
1734
1735         safestats.st_rng++;
1736         /*
1737          * Fetch the next block of data.
1738          */
1739         maxwords = safe_rngbufsize;
1740         if (maxwords > SAFE_RNG_MAXBUFSIZ)
1741                 maxwords = SAFE_RNG_MAXBUFSIZ;
1742 retry:
1743         for (i = 0; i < maxwords; i++)
1744                 buf[i] = safe_rng_read(sc);
1745         /*
1746          * Check the comparator alarm count and reset the h/w if
1747          * it exceeds our threshold.  This guards against the
1748          * hardware oscillators resonating with external signals.
1749          */
1750         if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1751                 u_int32_t freq_inc, w;
1752
1753                 DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1754                         READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1755                 safestats.st_rngalarm++;
1756                 safe_rng_enable_short_cycle(sc);
1757                 freq_inc = 18;
1758                 for (i = 0; i < 64; i++) {
1759                         w = READ_REG(sc, SAFE_RNG_CNFG);
1760                         freq_inc = ((w + freq_inc) & 0x3fL);
1761                         w = ((w & ~0x3fL) | freq_inc);
1762                         WRITE_REG(sc, SAFE_RNG_CNFG, w);
1763
1764                         WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1765
1766                         (void) safe_rng_read(sc);
1767                         DELAY(25);
1768
1769                         if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1770                                 safe_rng_disable_short_cycle(sc);
1771                                 goto retry;
1772                         }
1773                         freq_inc = 1;
1774                 }
1775                 safe_rng_disable_short_cycle(sc);
1776         } else
1777                 WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1778
1779         (*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1780         callout_reset(&sc->sc_rngto,
1781                 hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1782 }
1783 #endif /* SAFE_NO_RNG */
1784
1785 static void
1786 safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1787 {
1788         bus_addr_t *paddr = (bus_addr_t*) arg;
1789         *paddr = segs->ds_addr;
1790 }
1791
1792 static int
1793 safe_dma_malloc(
1794         struct safe_softc *sc,
1795         bus_size_t size,
1796         struct safe_dma_alloc *dma,
1797         int mapflags
1798 )
1799 {
1800         int r;
1801
1802         r = bus_dma_tag_create(NULL,                    /* parent */
1803                                sizeof(u_int32_t), 0,    /* alignment, bounds */
1804                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1805                                BUS_SPACE_MAXADDR,       /* highaddr */
1806                                NULL, NULL,              /* filter, filterarg */
1807                                size,                    /* maxsize */
1808                                1,                       /* nsegments */
1809                                size,                    /* maxsegsize */
1810                                BUS_DMA_ALLOCNOW,        /* flags */
1811                                &dma->dma_tag);
1812         if (r != 0) {
1813                 device_printf(sc->sc_dev, "safe_dma_malloc: "
1814                         "bus_dma_tag_create failed; error %u\n", r);
1815                 goto fail_0;
1816         }
1817
1818         r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1819         if (r != 0) {
1820                 device_printf(sc->sc_dev, "safe_dma_malloc: "
1821                         "bus_dmamap_create failed; error %u\n", r);
1822                 goto fail_1;
1823         }
1824
1825         r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1826                              BUS_DMA_NOWAIT, &dma->dma_map);
1827         if (r != 0) {
1828                 device_printf(sc->sc_dev, "safe_dma_malloc: "
1829                         "bus_dmammem_alloc failed; size %zu, error %u\n",
1830                         size, r);
1831                 goto fail_2;
1832         }
1833
1834         r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1835                             size,
1836                             safe_dmamap_cb,
1837                             &dma->dma_paddr,
1838                             mapflags | BUS_DMA_NOWAIT);
1839         if (r != 0) {
1840                 device_printf(sc->sc_dev, "safe_dma_malloc: "
1841                         "bus_dmamap_load failed; error %u\n", r);
1842                 goto fail_3;
1843         }
1844
1845         dma->dma_size = size;
1846         return (0);
1847
1848 fail_3:
1849         bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1850 fail_2:
1851         bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1852 fail_1:
1853         bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1854         bus_dma_tag_destroy(dma->dma_tag);
1855 fail_0:
1856         dma->dma_map = NULL;
1857         dma->dma_tag = NULL;
1858         return (r);
1859 }
1860
1861 static void
1862 safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1863 {
1864         bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1865         bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1866         bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1867         bus_dma_tag_destroy(dma->dma_tag);
1868 }
1869
1870 /*
1871  * Resets the board.  Values in the regesters are left as is
1872  * from the reset (i.e. initial values are assigned elsewhere).
1873  */
1874 static void
1875 safe_reset_board(struct safe_softc *sc)
1876 {
1877         u_int32_t v;
1878         /*
1879          * Reset the device.  The manual says no delay
1880          * is needed between marking and clearing reset.
1881          */
1882         v = READ_REG(sc, SAFE_PE_DMACFG) &~
1883                 (SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1884                  SAFE_PE_DMACFG_SGRESET);
1885         WRITE_REG(sc, SAFE_PE_DMACFG, v
1886                                     | SAFE_PE_DMACFG_PERESET
1887                                     | SAFE_PE_DMACFG_PDRRESET
1888                                     | SAFE_PE_DMACFG_SGRESET);
1889         WRITE_REG(sc, SAFE_PE_DMACFG, v);
1890 }
1891
1892 /*
1893  * Initialize registers we need to touch only once.
1894  */
1895 static void
1896 safe_init_board(struct safe_softc *sc)
1897 {
1898         u_int32_t v, dwords;
1899
1900         v = READ_REG(sc, SAFE_PE_DMACFG);
1901         v &=~ SAFE_PE_DMACFG_PEMODE;
1902         v |= SAFE_PE_DMACFG_FSENA               /* failsafe enable */
1903           |  SAFE_PE_DMACFG_GPRPCI              /* gather ring on PCI */
1904           |  SAFE_PE_DMACFG_SPRPCI              /* scatter ring on PCI */
1905           |  SAFE_PE_DMACFG_ESDESC              /* endian-swap descriptors */
1906           |  SAFE_PE_DMACFG_ESSA                /* endian-swap SA's */
1907           |  SAFE_PE_DMACFG_ESPDESC             /* endian-swap part. desc's */
1908           ;
1909         WRITE_REG(sc, SAFE_PE_DMACFG, v);
1910 #if 0
1911         /* XXX select byte swap based on host byte order */
1912         WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1913 #endif
1914         if (sc->sc_chiprev == SAFE_REV(1,0)) {
1915                 /*
1916                  * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1917                  * "target mode transfers" done while the chip is DMA'ing
1918                  * >1020 bytes cause the hardware to lockup.  To avoid this
1919                  * we reduce the max PCI transfer size and use small source
1920                  * particle descriptors (<= 256 bytes).
1921                  */
1922                 WRITE_REG(sc, SAFE_DMA_CFG, 256);
1923                 device_printf(sc->sc_dev,
1924                         "Reduce max DMA size to %u words for rev %u.%u WAR\n",
1925                         (READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1926                         SAFE_REV_MAJ(sc->sc_chiprev),
1927                         SAFE_REV_MIN(sc->sc_chiprev));
1928         }
1929
1930         /* NB: operands+results are overlaid */
1931         WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1932         WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1933         /*
1934          * Configure ring entry size and number of items in the ring.
1935          */
1936         KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1937                 ("PE ring entry not 32-bit aligned!"));
1938         dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1939         WRITE_REG(sc, SAFE_PE_RINGCFG,
1940                 (dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1941         WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);     /* disable polling */
1942
1943         WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1944         WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1945         WRITE_REG(sc, SAFE_PE_PARTSIZE,
1946                 (SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1947         /*
1948          * NB: destination particles are fixed size.  We use
1949          *     an mbuf cluster and require all results go to
1950          *     clusters or smaller.
1951          */
1952         WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1953
1954         /* it's now safe to enable PE mode, do it */
1955         WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1956
1957         /*
1958          * Configure hardware to use level-triggered interrupts and
1959          * to interrupt after each descriptor is processed.
1960          */
1961         WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1962         WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1963         WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1964 }
1965
1966 /*
1967  * Init PCI registers
1968  */
1969 static void
1970 safe_init_pciregs(device_t dev)
1971 {
1972 }
1973
1974 /*
1975  * Clean up after a chip crash.
1976  * It is assumed that the caller in splimp()
1977  */
1978 static void
1979 safe_cleanchip(struct safe_softc *sc)
1980 {
1981
1982         if (sc->sc_nqchip != 0) {
1983                 struct safe_ringentry *re = sc->sc_back;
1984
1985                 while (re != sc->sc_front) {
1986                         if (re->re_desc.d_csr != 0)
1987                                 safe_free_entry(sc, re);
1988                         if (++re == sc->sc_ringtop)
1989                                 re = sc->sc_ring;
1990                 }
1991                 sc->sc_back = re;
1992                 sc->sc_nqchip = 0;
1993         }
1994 }
1995
1996 /*
1997  * free a safe_q
1998  * It is assumed that the caller is within splimp().
1999  */
2000 static int
2001 safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
2002 {
2003         struct cryptop *crp;
2004
2005         /*
2006          * Free header MCR
2007          */
2008         if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
2009                 m_freem(re->re_dst_m);
2010
2011         crp = (struct cryptop *)re->re_crp;
2012
2013         re->re_desc.d_csr = 0;
2014
2015         crp->crp_etype = EFAULT;
2016         crypto_done(crp);
2017         return(0);
2018 }
2019
2020 /*
2021  * Routine to reset the chip and clean up.
2022  * It is assumed that the caller is in splimp()
2023  */
2024 static void
2025 safe_totalreset(struct safe_softc *sc)
2026 {
2027         safe_reset_board(sc);
2028         safe_init_board(sc);
2029         safe_cleanchip(sc);
2030 }
2031
2032 /*
2033  * Is the operand suitable aligned for direct DMA.  Each
2034  * segment must be aligned on a 32-bit boundary and all
2035  * but the last segment must be a multiple of 4 bytes.
2036  */
2037 static int
2038 safe_dmamap_aligned(const struct safe_operand *op)
2039 {
2040         int i;
2041
2042         for (i = 0; i < op->nsegs; i++) {
2043                 if (op->segs[i].ds_addr & 3)
2044                         return (0);
2045                 if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2046                         return (0);
2047         }
2048         return (1);
2049 }
2050
2051 /*
2052  * Is the operand suitable for direct DMA as the destination
2053  * of an operation.  The hardware requires that each ``particle''
2054  * but the last in an operation result have the same size.  We
2055  * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2056  * 0 if some segment is not a multiple of of this size, 1 if all
2057  * segments are exactly this size, or 2 if segments are at worst
2058  * a multple of this size.
2059  */
2060 static int
2061 safe_dmamap_uniform(const struct safe_operand *op)
2062 {
2063         int result = 1;
2064
2065         if (op->nsegs > 0) {
2066                 int i;
2067
2068                 for (i = 0; i < op->nsegs-1; i++) {
2069                         if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2070                                 return (0);
2071                         if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2072                                 result = 2;
2073                 }
2074         }
2075         return (result);
2076 }
2077
2078 #ifdef SAFE_DEBUG
2079 static void
2080 safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2081 {
2082         kprintf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2083                 , tag
2084                 , READ_REG(sc, SAFE_DMA_ENDIAN)
2085                 , READ_REG(sc, SAFE_DMA_SRCADDR)
2086                 , READ_REG(sc, SAFE_DMA_DSTADDR)
2087                 , READ_REG(sc, SAFE_DMA_STAT)
2088         );
2089 }
2090
2091 static void
2092 safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2093 {
2094         kprintf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2095                 , tag
2096                 , READ_REG(sc, SAFE_HI_CFG)
2097                 , READ_REG(sc, SAFE_HI_MASK)
2098                 , READ_REG(sc, SAFE_HI_DESC_CNT)
2099                 , READ_REG(sc, SAFE_HU_STAT)
2100                 , READ_REG(sc, SAFE_HM_STAT)
2101         );
2102 }
2103
2104 static void
2105 safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2106 {
2107         u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2108
2109         /* NB: assume caller has lock on ring */
2110         kprintf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2111                 tag,
2112                 estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2113                 (unsigned long)(sc->sc_back - sc->sc_ring),
2114                 (unsigned long)(sc->sc_front - sc->sc_ring));
2115 }
2116
2117 static void
2118 safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2119 {
2120         int ix, nsegs;
2121
2122         ix = re - sc->sc_ring;
2123         kprintf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2124                 , tag
2125                 , re, ix
2126                 , re->re_desc.d_csr
2127                 , re->re_desc.d_src
2128                 , re->re_desc.d_dst
2129                 , re->re_desc.d_sa
2130                 , re->re_desc.d_len
2131         );
2132         if (re->re_src.nsegs > 1) {
2133                 ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2134                         sizeof(struct safe_pdesc);
2135                 for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2136                         kprintf(" spd[%u] %p: %p size %u flags %x"
2137                                 , ix, &sc->sc_spring[ix]
2138                                 , (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2139                                 , sc->sc_spring[ix].pd_size
2140                                 , sc->sc_spring[ix].pd_flags
2141                         );
2142                         if (sc->sc_spring[ix].pd_size == 0)
2143                                 kprintf(" (zero!)");
2144                         kprintf("\n");
2145                         if (++ix == SAFE_TOTAL_SPART)
2146                                 ix = 0;
2147                 }
2148         }
2149         if (re->re_dst.nsegs > 1) {
2150                 ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2151                         sizeof(struct safe_pdesc);
2152                 for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2153                         kprintf(" dpd[%u] %p: %p flags %x\n"
2154                                 , ix, &sc->sc_dpring[ix]
2155                                 , (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2156                                 , sc->sc_dpring[ix].pd_flags
2157                         );
2158                         if (++ix == SAFE_TOTAL_DPART)
2159                                 ix = 0;
2160                 }
2161         }
2162         kprintf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2163                 re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2164         kprintf("sa: key %x %x %x %x %x %x %x %x\n"
2165                 , re->re_sa.sa_key[0]
2166                 , re->re_sa.sa_key[1]
2167                 , re->re_sa.sa_key[2]
2168                 , re->re_sa.sa_key[3]
2169                 , re->re_sa.sa_key[4]
2170                 , re->re_sa.sa_key[5]
2171                 , re->re_sa.sa_key[6]
2172                 , re->re_sa.sa_key[7]
2173         );
2174         kprintf("sa: indigest %x %x %x %x %x\n"
2175                 , re->re_sa.sa_indigest[0]
2176                 , re->re_sa.sa_indigest[1]
2177                 , re->re_sa.sa_indigest[2]
2178                 , re->re_sa.sa_indigest[3]
2179                 , re->re_sa.sa_indigest[4]
2180         );
2181         kprintf("sa: outdigest %x %x %x %x %x\n"
2182                 , re->re_sa.sa_outdigest[0]
2183                 , re->re_sa.sa_outdigest[1]
2184                 , re->re_sa.sa_outdigest[2]
2185                 , re->re_sa.sa_outdigest[3]
2186                 , re->re_sa.sa_outdigest[4]
2187         );
2188         kprintf("sr: iv %x %x %x %x\n"
2189                 , re->re_sastate.sa_saved_iv[0]
2190                 , re->re_sastate.sa_saved_iv[1]
2191                 , re->re_sastate.sa_saved_iv[2]
2192                 , re->re_sastate.sa_saved_iv[3]
2193         );
2194         kprintf("sr: hashbc %u indigest %x %x %x %x %x\n"
2195                 , re->re_sastate.sa_saved_hashbc
2196                 , re->re_sastate.sa_saved_indigest[0]
2197                 , re->re_sastate.sa_saved_indigest[1]
2198                 , re->re_sastate.sa_saved_indigest[2]
2199                 , re->re_sastate.sa_saved_indigest[3]
2200                 , re->re_sastate.sa_saved_indigest[4]
2201         );
2202 }
2203
2204 static void
2205 safe_dump_ring(struct safe_softc *sc, const char *tag)
2206 {
2207         lockmgr(&sc->sc_ringlock, LK_EXCLUSIVE);
2208         kprintf("\nSafeNet Ring State:\n");
2209         safe_dump_intrstate(sc, tag);
2210         safe_dump_dmastatus(sc, tag);
2211         safe_dump_ringstate(sc, tag);
2212         if (sc->sc_nqchip) {
2213                 struct safe_ringentry *re = sc->sc_back;
2214                 do {
2215                         safe_dump_request(sc, tag, re);
2216                         if (++re == sc->sc_ringtop)
2217                                 re = sc->sc_ring;
2218                 } while (re != sc->sc_front);
2219         }
2220         lockmgr(&sc->sc_ringlock, LK_RELEASE);
2221 }
2222
2223 static int
2224 sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2225 {
2226         char dmode[64];
2227         int error;
2228
2229         strncpy(dmode, "", sizeof(dmode) - 1);
2230         dmode[sizeof(dmode) - 1] = '\0';
2231         error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2232
2233         if (error == 0 && req->newptr != NULL) {
2234                 struct safe_softc *sc = safec;
2235
2236                 if (!sc)
2237                         return EINVAL;
2238                 if (strncmp(dmode, "dma", 3) == 0)
2239                         safe_dump_dmastatus(sc, "safe0");
2240                 else if (strncmp(dmode, "int", 3) == 0)
2241                         safe_dump_intrstate(sc, "safe0");
2242                 else if (strncmp(dmode, "ring", 4) == 0)
2243                         safe_dump_ring(sc, "safe0");
2244                 else
2245                         return EINVAL;
2246         }
2247         return error;
2248 }
2249 SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2250         0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2251 #endif /* SAFE_DEBUG */