vkernel - Fix vmspace_*() call bottleneck
[dragonfly.git] / sys / platform / pc64 / x86_64 / pmap.c
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1994 David Greenman
5  * Copyright (c) 2003 Peter Wemm
6  * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7  * Copyright (c) 2008, 2009 The DragonFly Project.
8  * Copyright (c) 2008, 2009 Jordan Gordeev.
9  * Copyright (c) 2011-2012 Matthew Dillon
10  * All rights reserved.
11  *
12  * This code is derived from software contributed to Berkeley by
13  * the Systems Programming Group of the University of Utah Computer
14  * Science Department and William Jolitz of UUNET Technologies Inc.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *      This product includes software developed by the University of
27  *      California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  */
44 /*
45  * Manage physical address maps for x86-64 systems.
46  */
47
48 #if 0 /* JG */
49 #include "opt_disable_pse.h"
50 #include "opt_pmap.h"
51 #endif
52 #include "opt_msgbuf.h"
53
54 #include <sys/param.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/msgbuf.h>
58 #include <sys/vmmeter.h>
59 #include <sys/mman.h>
60 #include <sys/systm.h>
61
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <sys/sysctl.h>
65 #include <sys/lock.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_pager.h>
73 #include <vm/vm_zone.h>
74
75 #include <sys/user.h>
76 #include <sys/thread2.h>
77 #include <sys/sysref2.h>
78 #include <sys/spinlock2.h>
79 #include <vm/vm_page2.h>
80
81 #include <machine/cputypes.h>
82 #include <machine/md_var.h>
83 #include <machine/specialreg.h>
84 #include <machine/smp.h>
85 #include <machine_base/apic/apicreg.h>
86 #include <machine/globaldata.h>
87 #include <machine/pmap.h>
88 #include <machine/pmap_inval.h>
89 #include <machine/inttypes.h>
90
91 #include <ddb/ddb.h>
92
93 #define PMAP_KEEP_PDIRS
94 #ifndef PMAP_SHPGPERPROC
95 #define PMAP_SHPGPERPROC 2000
96 #endif
97
98 #if defined(DIAGNOSTIC)
99 #define PMAP_DIAGNOSTIC
100 #endif
101
102 #define MINPV 2048
103
104 /*
105  * pmap debugging will report who owns a pv lock when blocking.
106  */
107 #ifdef PMAP_DEBUG
108
109 #define PMAP_DEBUG_DECL         ,const char *func, int lineno
110 #define PMAP_DEBUG_ARGS         , __func__, __LINE__
111 #define PMAP_DEBUG_COPY         , func, lineno
112
113 #define pv_get(pmap, pindex)            _pv_get(pmap, pindex            \
114                                                         PMAP_DEBUG_ARGS)
115 #define pv_lock(pv)                     _pv_lock(pv                     \
116                                                         PMAP_DEBUG_ARGS)
117 #define pv_hold_try(pv)                 _pv_hold_try(pv                 \
118                                                         PMAP_DEBUG_ARGS)
119 #define pv_alloc(pmap, pindex, isnewp)  _pv_alloc(pmap, pindex, isnewp  \
120                                                         PMAP_DEBUG_ARGS)
121
122 #else
123
124 #define PMAP_DEBUG_DECL
125 #define PMAP_DEBUG_ARGS
126 #define PMAP_DEBUG_COPY
127
128 #define pv_get(pmap, pindex)            _pv_get(pmap, pindex)
129 #define pv_lock(pv)                     _pv_lock(pv)
130 #define pv_hold_try(pv)                 _pv_hold_try(pv)
131 #define pv_alloc(pmap, pindex, isnewp)  _pv_alloc(pmap, pindex, isnewp)
132
133 #endif
134
135 /*
136  * Get PDEs and PTEs for user/kernel address space
137  */
138 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
139
140 #define pmap_pde_v(pmap, pte)           ((*(pd_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
141 #define pmap_pte_w(pmap, pte)           ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_W_IDX]) != 0)
142 #define pmap_pte_m(pmap, pte)           ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_M_IDX]) != 0)
143 #define pmap_pte_u(pmap, pte)           ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_U_IDX]) != 0)
144 #define pmap_pte_v(pmap, pte)           ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
145
146 /*
147  * Given a map and a machine independent protection code,
148  * convert to a vax protection code.
149  */
150 #define pte_prot(m, p)          \
151         (m->protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
152 static int protection_codes[PROTECTION_CODES_SIZE];
153
154 struct pmap kernel_pmap;
155
156 MALLOC_DEFINE(M_OBJPMAP, "objpmap", "pmaps associated with VM objects");
157
158 vm_paddr_t avail_start;         /* PA of first available physical page */
159 vm_paddr_t avail_end;           /* PA of last available physical page */
160 vm_offset_t virtual2_start;     /* cutout free area prior to kernel start */
161 vm_offset_t virtual2_end;
162 vm_offset_t virtual_start;      /* VA of first avail page (after kernel bss) */
163 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
164 vm_offset_t KvaStart;           /* VA start of KVA space */
165 vm_offset_t KvaEnd;             /* VA end of KVA space (non-inclusive) */
166 vm_offset_t KvaSize;            /* max size of kernel virtual address space */
167 static boolean_t pmap_initialized = FALSE;      /* Has pmap_init completed? */
168 //static int pgeflag;           /* PG_G or-in */
169 //static int pseflag;           /* PG_PS or-in */
170 uint64_t PatMsr;
171
172 static int ndmpdp;
173 static vm_paddr_t dmaplimit;
174 static int nkpt;
175 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
176
177 static pt_entry_t pat_pte_index[PAT_INDEX_SIZE];        /* PAT -> PG_ bits */
178 /*static pt_entry_t pat_pde_index[PAT_INDEX_SIZE];*/    /* PAT -> PG_ bits */
179
180 static uint64_t KPTbase;
181 static uint64_t KPTphys;
182 static uint64_t KPDphys;        /* phys addr of kernel level 2 */
183 static uint64_t KPDbase;        /* phys addr of kernel level 2 @ KERNBASE */
184 uint64_t KPDPphys;      /* phys addr of kernel level 3 */
185 uint64_t KPML4phys;     /* phys addr of kernel level 4 */
186
187 static uint64_t DMPDphys;       /* phys addr of direct mapped level 2 */
188 static uint64_t DMPDPphys;      /* phys addr of direct mapped level 3 */
189
190 /*
191  * Data for the pv entry allocation mechanism
192  */
193 static vm_zone_t pvzone;
194 static struct vm_zone pvzone_store;
195 static struct vm_object pvzone_obj;
196 static int pv_entry_max=0, pv_entry_high_water=0;
197 static int pmap_pagedaemon_waken = 0;
198 static struct pv_entry *pvinit;
199
200 /*
201  * All those kernel PT submaps that BSD is so fond of
202  */
203 pt_entry_t *CMAP1 = NULL, *ptmmap;
204 caddr_t CADDR1 = NULL, ptvmmap = NULL;
205 static pt_entry_t *msgbufmap;
206 struct msgbuf *msgbufp=NULL;
207
208 /*
209  * PMAP default PG_* bits. Needed to be able to add
210  * EPT/NPT pagetable pmap_bits for the VMM module
211  */
212 uint64_t pmap_bits_default[] = {
213                 REGULAR_PMAP,                                   /* TYPE_IDX             0 */
214                 X86_PG_V,                                       /* PG_V_IDX             1 */
215                 X86_PG_RW,                                      /* PG_RW_IDX            2 */
216                 X86_PG_U,                                       /* PG_U_IDX             3 */
217                 X86_PG_A,                                       /* PG_A_IDX             4 */
218                 X86_PG_M,                                       /* PG_M_IDX             5 */
219                 X86_PG_PS,                                      /* PG_PS_IDX3           6 */
220                 X86_PG_G,                                       /* PG_G_IDX             7 */
221                 X86_PG_AVAIL1,                                  /* PG_AVAIL1_IDX        8 */
222                 X86_PG_AVAIL2,                                  /* PG_AVAIL2_IDX        9 */
223                 X86_PG_AVAIL3,                                  /* PG_AVAIL3_IDX        10 */
224                 X86_PG_NC_PWT | X86_PG_NC_PCD,                  /* PG_N_IDX     11 */
225 };
226 /*
227  * Crashdump maps.
228  */
229 static pt_entry_t *pt_crashdumpmap;
230 static caddr_t crashdumpmap;
231
232 static int pmap_debug = 0;
233 SYSCTL_INT(_machdep, OID_AUTO, pmap_debug, CTLFLAG_RW,
234     &pmap_debug, 0, "Debug pmap's");
235 #ifdef PMAP_DEBUG2
236 static int pmap_enter_debug = 0;
237 SYSCTL_INT(_machdep, OID_AUTO, pmap_enter_debug, CTLFLAG_RW,
238     &pmap_enter_debug, 0, "Debug pmap_enter's");
239 #endif
240 static int pmap_yield_count = 64;
241 SYSCTL_INT(_machdep, OID_AUTO, pmap_yield_count, CTLFLAG_RW,
242     &pmap_yield_count, 0, "Yield during init_pt/release");
243 static int pmap_mmu_optimize = 0;
244 SYSCTL_INT(_machdep, OID_AUTO, pmap_mmu_optimize, CTLFLAG_RW,
245     &pmap_mmu_optimize, 0, "Share page table pages when possible");
246 int pmap_fast_kernel_cpusync = 0;
247 SYSCTL_INT(_machdep, OID_AUTO, pmap_fast_kernel_cpusync, CTLFLAG_RW,
248     &pmap_fast_kernel_cpusync, 0, "Share page table pages when possible");
249 int pmap_dynamic_delete = -1;
250 SYSCTL_INT(_machdep, OID_AUTO, pmap_dynamic_delete, CTLFLAG_RW,
251     &pmap_dynamic_delete, 0, "Dynamically delete PT/PD/PDPs");
252
253 #define DISABLE_PSE
254
255 /* Standard user access funtions */
256 extern int std_copyinstr (const void *udaddr, void *kaddr, size_t len,
257     size_t *lencopied);
258 extern int std_copyin (const void *udaddr, void *kaddr, size_t len);
259 extern int std_copyout (const void *kaddr, void *udaddr, size_t len);
260 extern int std_fubyte (const void *base);
261 extern int std_subyte (void *base, int byte);
262 extern long std_fuword (const void *base);
263 extern int std_suword (void *base, long word);
264 extern int std_suword32 (void *base, int word);
265
266 static void pv_hold(pv_entry_t pv);
267 static int _pv_hold_try(pv_entry_t pv
268                                 PMAP_DEBUG_DECL);
269 static void pv_drop(pv_entry_t pv);
270 static void _pv_lock(pv_entry_t pv
271                                 PMAP_DEBUG_DECL);
272 static void pv_unlock(pv_entry_t pv);
273 static pv_entry_t _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew
274                                 PMAP_DEBUG_DECL);
275 static pv_entry_t _pv_get(pmap_t pmap, vm_pindex_t pindex
276                                 PMAP_DEBUG_DECL);
277 static pv_entry_t pv_get_try(pmap_t pmap, vm_pindex_t pindex, int *errorp);
278 static pv_entry_t pv_find(pmap_t pmap, vm_pindex_t pindex);
279 static void pv_put(pv_entry_t pv);
280 static void pv_free(pv_entry_t pv, pv_entry_t pvp, int putaway);
281 static void *pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex);
282 static pv_entry_t pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
283                       pv_entry_t *pvpp);
284 static pv_entry_t pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex,
285                       pv_entry_t *pvpp, vm_map_entry_t entry, vm_offset_t va);
286 static void pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp,
287                         pmap_inval_bulk_t *bulk, int destroy);
288 static vm_page_t pmap_remove_pv_page(pv_entry_t pv);
289 static int pmap_release_pv(pv_entry_t pv, pv_entry_t pvp,
290                         pmap_inval_bulk_t *bulk);
291
292 struct pmap_scan_info;
293 static void pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
294                       pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
295                       vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
296 static void pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
297                       pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
298                       vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
299
300 static void i386_protection_init (void);
301 static void create_pagetables(vm_paddr_t *firstaddr);
302 static void pmap_remove_all (vm_page_t m);
303 static boolean_t pmap_testbit (vm_page_t m, int bit);
304
305 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
306 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
307
308 static void pmap_pinit_defaults(struct pmap *pmap);
309
310 static unsigned pdir4mb;
311
312 static int
313 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
314 {
315         if (pv1->pv_pindex < pv2->pv_pindex)
316                 return(-1);
317         if (pv1->pv_pindex > pv2->pv_pindex)
318                 return(1);
319         return(0);
320 }
321
322 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
323              pv_entry_compare, vm_pindex_t, pv_pindex);
324
325 static __inline
326 void
327 pmap_page_stats_adding(vm_page_t m)
328 {
329         globaldata_t gd = mycpu;
330
331         if (TAILQ_EMPTY(&m->md.pv_list)) {
332                 ++gd->gd_vmtotal.t_arm;
333         } else if (TAILQ_FIRST(&m->md.pv_list) ==
334                    TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
335                 ++gd->gd_vmtotal.t_armshr;
336                 ++gd->gd_vmtotal.t_avmshr;
337         } else {
338                 ++gd->gd_vmtotal.t_avmshr;
339         }
340 }
341
342 static __inline
343 void
344 pmap_page_stats_deleting(vm_page_t m)
345 {
346         globaldata_t gd = mycpu;
347
348         if (TAILQ_EMPTY(&m->md.pv_list)) {
349                 --gd->gd_vmtotal.t_arm;
350         } else if (TAILQ_FIRST(&m->md.pv_list) ==
351                    TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
352                 --gd->gd_vmtotal.t_armshr;
353                 --gd->gd_vmtotal.t_avmshr;
354         } else {
355                 --gd->gd_vmtotal.t_avmshr;
356         }
357 }
358
359 /*
360  * Move the kernel virtual free pointer to the next
361  * 2MB.  This is used to help improve performance
362  * by using a large (2MB) page for much of the kernel
363  * (.text, .data, .bss)
364  */
365 static
366 vm_offset_t
367 pmap_kmem_choose(vm_offset_t addr)
368 {
369         vm_offset_t newaddr = addr;
370
371         newaddr = roundup2(addr, NBPDR);
372         return newaddr;
373 }
374
375 /*
376  * pmap_pte_quick:
377  *
378  *      Super fast pmap_pte routine best used when scanning the pv lists.
379  *      This eliminates many course-grained invltlb calls.  Note that many of
380  *      the pv list scans are across different pmaps and it is very wasteful
381  *      to do an entire invltlb when checking a single mapping.
382  */
383 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
384
385 static
386 pt_entry_t *
387 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
388 {
389         return pmap_pte(pmap, va);
390 }
391
392 /*
393  * Returns the pindex of a page table entry (representing a terminal page).
394  * There are NUPTE_TOTAL page table entries possible (a huge number)
395  *
396  * x86-64 has a 48-bit address space, where bit 47 is sign-extended out.
397  * We want to properly translate negative KVAs.
398  */
399 static __inline
400 vm_pindex_t
401 pmap_pte_pindex(vm_offset_t va)
402 {
403         return ((va >> PAGE_SHIFT) & (NUPTE_TOTAL - 1));
404 }
405
406 /*
407  * Returns the pindex of a page table.
408  */
409 static __inline
410 vm_pindex_t
411 pmap_pt_pindex(vm_offset_t va)
412 {
413         return (NUPTE_TOTAL + ((va >> PDRSHIFT) & (NUPT_TOTAL - 1)));
414 }
415
416 /*
417  * Returns the pindex of a page directory.
418  */
419 static __inline
420 vm_pindex_t
421 pmap_pd_pindex(vm_offset_t va)
422 {
423         return (NUPTE_TOTAL + NUPT_TOTAL +
424                 ((va >> PDPSHIFT) & (NUPD_TOTAL - 1)));
425 }
426
427 static __inline
428 vm_pindex_t
429 pmap_pdp_pindex(vm_offset_t va)
430 {
431         return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
432                 ((va >> PML4SHIFT) & (NUPDP_TOTAL - 1)));
433 }
434
435 static __inline
436 vm_pindex_t
437 pmap_pml4_pindex(void)
438 {
439         return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
440 }
441
442 /*
443  * Return various clipped indexes for a given VA
444  *
445  * Returns the index of a pt in a page directory, representing a page
446  * table.
447  */
448 static __inline
449 vm_pindex_t
450 pmap_pt_index(vm_offset_t va)
451 {
452         return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
453 }
454
455 /*
456  * Returns the index of a pd in a page directory page, representing a page
457  * directory.
458  */
459 static __inline
460 vm_pindex_t
461 pmap_pd_index(vm_offset_t va)
462 {
463         return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
464 }
465
466 /*
467  * Returns the index of a pdp in the pml4 table, representing a page
468  * directory page.
469  */
470 static __inline
471 vm_pindex_t
472 pmap_pdp_index(vm_offset_t va)
473 {
474         return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
475 }
476
477 /*
478  * Generic procedure to index a pte from a pt, pd, or pdp.
479  *
480  * NOTE: Normally passed pindex as pmap_xx_index().  pmap_xx_pindex() is NOT
481  *       a page table page index but is instead of PV lookup index.
482  */
483 static
484 void *
485 pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex)
486 {
487         pt_entry_t *pte;
488
489         pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pv->pv_m));
490         return(&pte[pindex]);
491 }
492
493 /*
494  * Return pointer to PDP slot in the PML4
495  */
496 static __inline
497 pml4_entry_t *
498 pmap_pdp(pmap_t pmap, vm_offset_t va)
499 {
500         return (&pmap->pm_pml4[pmap_pdp_index(va)]);
501 }
502
503 /*
504  * Return pointer to PD slot in the PDP given a pointer to the PDP
505  */
506 static __inline
507 pdp_entry_t *
508 pmap_pdp_to_pd(pml4_entry_t pdp_pte, vm_offset_t va)
509 {
510         pdp_entry_t *pd;
511
512         pd = (pdp_entry_t *)PHYS_TO_DMAP(pdp_pte & PG_FRAME);
513         return (&pd[pmap_pd_index(va)]);
514 }
515
516 /*
517  * Return pointer to PD slot in the PDP.
518  */
519 static __inline
520 pdp_entry_t *
521 pmap_pd(pmap_t pmap, vm_offset_t va)
522 {
523         pml4_entry_t *pdp;
524
525         pdp = pmap_pdp(pmap, va);
526         if ((*pdp & pmap->pmap_bits[PG_V_IDX]) == 0)
527                 return NULL;
528         return (pmap_pdp_to_pd(*pdp, va));
529 }
530
531 /*
532  * Return pointer to PT slot in the PD given a pointer to the PD
533  */
534 static __inline
535 pd_entry_t *
536 pmap_pd_to_pt(pdp_entry_t pd_pte, vm_offset_t va)
537 {
538         pd_entry_t *pt;
539
540         pt = (pd_entry_t *)PHYS_TO_DMAP(pd_pte & PG_FRAME);
541         return (&pt[pmap_pt_index(va)]);
542 }
543
544 /*
545  * Return pointer to PT slot in the PD
546  *
547  * SIMPLE PMAP NOTE: Simple pmaps (embedded in objects) do not have PDPs,
548  *                   so we cannot lookup the PD via the PDP.  Instead we
549  *                   must look it up via the pmap.
550  */
551 static __inline
552 pd_entry_t *
553 pmap_pt(pmap_t pmap, vm_offset_t va)
554 {
555         pdp_entry_t *pd;
556         pv_entry_t pv;
557         vm_pindex_t pd_pindex;
558
559         if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
560                 pd_pindex = pmap_pd_pindex(va);
561                 spin_lock(&pmap->pm_spin);
562                 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pd_pindex);
563                 spin_unlock(&pmap->pm_spin);
564                 if (pv == NULL || pv->pv_m == NULL)
565                         return NULL;
566                 return (pmap_pd_to_pt(VM_PAGE_TO_PHYS(pv->pv_m), va));
567         } else {
568                 pd = pmap_pd(pmap, va);
569                 if (pd == NULL || (*pd & pmap->pmap_bits[PG_V_IDX]) == 0)
570                          return NULL;
571                 return (pmap_pd_to_pt(*pd, va));
572         }
573 }
574
575 /*
576  * Return pointer to PTE slot in the PT given a pointer to the PT
577  */
578 static __inline
579 pt_entry_t *
580 pmap_pt_to_pte(pd_entry_t pt_pte, vm_offset_t va)
581 {
582         pt_entry_t *pte;
583
584         pte = (pt_entry_t *)PHYS_TO_DMAP(pt_pte & PG_FRAME);
585         return (&pte[pmap_pte_index(va)]);
586 }
587
588 /*
589  * Return pointer to PTE slot in the PT
590  */
591 static __inline
592 pt_entry_t *
593 pmap_pte(pmap_t pmap, vm_offset_t va)
594 {
595         pd_entry_t *pt;
596
597         pt = pmap_pt(pmap, va);
598         if (pt == NULL || (*pt & pmap->pmap_bits[PG_V_IDX]) == 0)
599                  return NULL;
600         if ((*pt & pmap->pmap_bits[PG_PS_IDX]) != 0)
601                 return ((pt_entry_t *)pt);
602         return (pmap_pt_to_pte(*pt, va));
603 }
604
605 /*
606  * Of all the layers (PTE, PT, PD, PDP, PML4) the best one to cache is
607  * the PT layer.  This will speed up core pmap operations considerably.
608  *
609  * NOTE: The pmap spinlock does not need to be held but the passed-in pv
610  *       must be in a known associated state (typically by being locked when
611  *       the pmap spinlock isn't held).  We allow the race for that case.
612  */
613 static __inline
614 void
615 pv_cache(pv_entry_t pv, vm_pindex_t pindex)
616 {
617         if (pindex >= pmap_pt_pindex(0) && pindex <= pmap_pd_pindex(0))
618                 pv->pv_pmap->pm_pvhint = pv;
619 }
620
621
622 /*
623  * Return address of PT slot in PD (KVM only)
624  *
625  * Cannot be used for user page tables because it might interfere with
626  * the shared page-table-page optimization (pmap_mmu_optimize).
627  */
628 static __inline
629 pd_entry_t *
630 vtopt(vm_offset_t va)
631 {
632         uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
633                                   NPML4EPGSHIFT)) - 1);
634
635         return (PDmap + ((va >> PDRSHIFT) & mask));
636 }
637
638 /*
639  * KVM - return address of PTE slot in PT
640  */
641 static __inline
642 pt_entry_t *
643 vtopte(vm_offset_t va)
644 {
645         uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
646                                   NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
647
648         return (PTmap + ((va >> PAGE_SHIFT) & mask));
649 }
650
651 static uint64_t
652 allocpages(vm_paddr_t *firstaddr, long n)
653 {
654         uint64_t ret;
655
656         ret = *firstaddr;
657         bzero((void *)ret, n * PAGE_SIZE);
658         *firstaddr += n * PAGE_SIZE;
659         return (ret);
660 }
661
662 static
663 void
664 create_pagetables(vm_paddr_t *firstaddr)
665 {
666         long i;         /* must be 64 bits */
667         long nkpt_base;
668         long nkpt_phys;
669         int j;
670
671         /*
672          * We are running (mostly) V=P at this point
673          *
674          * Calculate NKPT - number of kernel page tables.  We have to
675          * accomodoate prealloction of the vm_page_array, dump bitmap,
676          * MSGBUF_SIZE, and other stuff.  Be generous.
677          *
678          * Maxmem is in pages.
679          *
680          * ndmpdp is the number of 1GB pages we wish to map.
681          */
682         ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
683         if (ndmpdp < 4)         /* Minimum 4GB of dirmap */
684                 ndmpdp = 4;
685         KKASSERT(ndmpdp <= NKPDPE * NPDEPG);
686
687         /*
688          * Starting at the beginning of kvm (not KERNBASE).
689          */
690         nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
691         nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
692         nkpt_phys += ((nkpt + nkpt + 1 + NKPML4E + NKPDPE + NDMPML4E +
693                        ndmpdp) + 511) / 512;
694         nkpt_phys += 128;
695
696         /*
697          * Starting at KERNBASE - map 2G worth of page table pages.
698          * KERNBASE is offset -2G from the end of kvm.
699          */
700         nkpt_base = (NPDPEPG - KPDPI) * NPTEPG; /* typically 2 x 512 */
701
702         /*
703          * Allocate pages
704          */
705         KPTbase = allocpages(firstaddr, nkpt_base);
706         KPTphys = allocpages(firstaddr, nkpt_phys);
707         KPML4phys = allocpages(firstaddr, 1);
708         KPDPphys = allocpages(firstaddr, NKPML4E);
709         KPDphys = allocpages(firstaddr, NKPDPE);
710
711         /*
712          * Calculate the page directory base for KERNBASE,
713          * that is where we start populating the page table pages.
714          * Basically this is the end - 2.
715          */
716         KPDbase = KPDphys + ((NKPDPE - (NPDPEPG - KPDPI)) << PAGE_SHIFT);
717
718         DMPDPphys = allocpages(firstaddr, NDMPML4E);
719         if ((amd_feature & AMDID_PAGE1GB) == 0)
720                 DMPDphys = allocpages(firstaddr, ndmpdp);
721         dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
722
723         /*
724          * Fill in the underlying page table pages for the area around
725          * KERNBASE.  This remaps low physical memory to KERNBASE.
726          *
727          * Read-only from zero to physfree
728          * XXX not fully used, underneath 2M pages
729          */
730         for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
731                 ((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
732                 ((pt_entry_t *)KPTbase)[i] |=
733                     pmap_bits_default[PG_RW_IDX] |
734                     pmap_bits_default[PG_V_IDX] |
735                     pmap_bits_default[PG_G_IDX];
736         }
737
738         /*
739          * Now map the initial kernel page tables.  One block of page
740          * tables is placed at the beginning of kernel virtual memory,
741          * and another block is placed at KERNBASE to map the kernel binary,
742          * data, bss, and initial pre-allocations.
743          */
744         for (i = 0; i < nkpt_base; i++) {
745                 ((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
746                 ((pd_entry_t *)KPDbase)[i] |=
747                     pmap_bits_default[PG_RW_IDX] |
748                     pmap_bits_default[PG_V_IDX];
749         }
750         for (i = 0; i < nkpt_phys; i++) {
751                 ((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
752                 ((pd_entry_t *)KPDphys)[i] |=
753                     pmap_bits_default[PG_RW_IDX] |
754                     pmap_bits_default[PG_V_IDX];
755         }
756
757         /*
758          * Map from zero to end of allocations using 2M pages as an
759          * optimization.  This will bypass some of the KPTBase pages
760          * above in the KERNBASE area.
761          */
762         for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
763                 ((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
764                 ((pd_entry_t *)KPDbase)[i] |=
765                     pmap_bits_default[PG_RW_IDX] |
766                     pmap_bits_default[PG_V_IDX] |
767                     pmap_bits_default[PG_PS_IDX] |
768                     pmap_bits_default[PG_G_IDX];
769         }
770
771         /*
772          * And connect up the PD to the PDP.  The kernel pmap is expected
773          * to pre-populate all of its PDs.  See NKPDPE in vmparam.h.
774          */
775         for (i = 0; i < NKPDPE; i++) {
776                 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] =
777                                 KPDphys + (i << PAGE_SHIFT);
778                 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] |=
779                     pmap_bits_default[PG_RW_IDX] |
780                     pmap_bits_default[PG_V_IDX] |
781                     pmap_bits_default[PG_U_IDX];
782         }
783
784         /*
785          * Now set up the direct map space using either 2MB or 1GB pages
786          * Preset PG_M and PG_A because demotion expects it.
787          *
788          * When filling in entries in the PD pages make sure any excess
789          * entries are set to zero as we allocated enough PD pages
790          */
791         if ((amd_feature & AMDID_PAGE1GB) == 0) {
792                 for (i = 0; i < NPDEPG * ndmpdp; i++) {
793                         ((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
794                         ((pd_entry_t *)DMPDphys)[i] |=
795                             pmap_bits_default[PG_RW_IDX] |
796                             pmap_bits_default[PG_V_IDX] |
797                             pmap_bits_default[PG_PS_IDX] |
798                             pmap_bits_default[PG_G_IDX] |
799                             pmap_bits_default[PG_M_IDX] |
800                             pmap_bits_default[PG_A_IDX];
801                 }
802
803                 /*
804                  * And the direct map space's PDP
805                  */
806                 for (i = 0; i < ndmpdp; i++) {
807                         ((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
808                                                         (i << PAGE_SHIFT);
809                         ((pdp_entry_t *)DMPDPphys)[i] |=
810                             pmap_bits_default[PG_RW_IDX] |
811                             pmap_bits_default[PG_V_IDX] |
812                             pmap_bits_default[PG_U_IDX];
813                 }
814         } else {
815                 for (i = 0; i < ndmpdp; i++) {
816                         ((pdp_entry_t *)DMPDPphys)[i] =
817                                                 (vm_paddr_t)i << PDPSHIFT;
818                         ((pdp_entry_t *)DMPDPphys)[i] |=
819                             pmap_bits_default[PG_RW_IDX] |
820                             pmap_bits_default[PG_V_IDX] |
821                             pmap_bits_default[PG_PS_IDX] |
822                             pmap_bits_default[PG_G_IDX] |
823                             pmap_bits_default[PG_M_IDX] |
824                             pmap_bits_default[PG_A_IDX];
825                 }
826         }
827
828         /* And recursively map PML4 to itself in order to get PTmap */
829         ((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
830         ((pdp_entry_t *)KPML4phys)[PML4PML4I] |=
831             pmap_bits_default[PG_RW_IDX] |
832             pmap_bits_default[PG_V_IDX] |
833             pmap_bits_default[PG_U_IDX];
834
835         /*
836          * Connect the Direct Map slots up to the PML4
837          */
838         for (j = 0; j < NDMPML4E; ++j) {
839                 ((pdp_entry_t *)KPML4phys)[DMPML4I + j] =
840                     (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
841                     pmap_bits_default[PG_RW_IDX] |
842                     pmap_bits_default[PG_V_IDX] |
843                     pmap_bits_default[PG_U_IDX];
844         }
845
846         /*
847          * Connect the KVA slot up to the PML4
848          */
849         ((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
850         ((pdp_entry_t *)KPML4phys)[KPML4I] |=
851             pmap_bits_default[PG_RW_IDX] |
852             pmap_bits_default[PG_V_IDX] |
853             pmap_bits_default[PG_U_IDX];
854 }
855
856 /*
857  *      Bootstrap the system enough to run with virtual memory.
858  *
859  *      On the i386 this is called after mapping has already been enabled
860  *      and just syncs the pmap module with what has already been done.
861  *      [We can't call it easily with mapping off since the kernel is not
862  *      mapped with PA == VA, hence we would have to relocate every address
863  *      from the linked base (virtual) address "KERNBASE" to the actual
864  *      (physical) address starting relative to 0]
865  */
866 void
867 pmap_bootstrap(vm_paddr_t *firstaddr)
868 {
869         vm_offset_t va;
870         pt_entry_t *pte;
871
872         KvaStart = VM_MIN_KERNEL_ADDRESS;
873         KvaEnd = VM_MAX_KERNEL_ADDRESS;
874         KvaSize = KvaEnd - KvaStart;
875
876         avail_start = *firstaddr;
877
878         /*
879          * Create an initial set of page tables to run the kernel in.
880          */
881         create_pagetables(firstaddr);
882
883         virtual2_start = KvaStart;
884         virtual2_end = PTOV_OFFSET;
885
886         virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
887         virtual_start = pmap_kmem_choose(virtual_start);
888
889         virtual_end = VM_MAX_KERNEL_ADDRESS;
890
891         /* XXX do %cr0 as well */
892         load_cr4(rcr4() | CR4_PGE | CR4_PSE);
893         load_cr3(KPML4phys);
894
895         /*
896          * Initialize protection array.
897          */
898         i386_protection_init();
899
900         /*
901          * The kernel's pmap is statically allocated so we don't have to use
902          * pmap_create, which is unlikely to work correctly at this part of
903          * the boot sequence (XXX and which no longer exists).
904          */
905         kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
906         kernel_pmap.pm_count = 1;
907         CPUMASK_ASSALLONES(kernel_pmap.pm_active);
908         RB_INIT(&kernel_pmap.pm_pvroot);
909         spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
910         lwkt_token_init(&kernel_pmap.pm_token, "kpmap_tok");
911
912         /*
913          * Reserve some special page table entries/VA space for temporary
914          * mapping of pages.
915          */
916 #define SYSMAP(c, p, v, n)      \
917         v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
918
919         va = virtual_start;
920         pte = vtopte(va);
921
922         /*
923          * CMAP1/CMAP2 are used for zeroing and copying pages.
924          */
925         SYSMAP(caddr_t, CMAP1, CADDR1, 1)
926
927         /*
928          * Crashdump maps.
929          */
930         SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
931
932         /*
933          * ptvmmap is used for reading arbitrary physical pages via
934          * /dev/mem.
935          */
936         SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
937
938         /*
939          * msgbufp is used to map the system message buffer.
940          * XXX msgbufmap is not used.
941          */
942         SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
943                atop(round_page(MSGBUF_SIZE)))
944
945         virtual_start = va;
946         virtual_start = pmap_kmem_choose(virtual_start);
947
948         *CMAP1 = 0;
949
950         /*
951          * PG_G is terribly broken on SMP because we IPI invltlb's in some
952          * cases rather then invl1pg.  Actually, I don't even know why it
953          * works under UP because self-referential page table mappings
954          */
955 //      pgeflag = 0;
956
957 /*
958  * Initialize the 4MB page size flag
959  */
960 //      pseflag = 0;
961 /*
962  * The 4MB page version of the initial
963  * kernel page mapping.
964  */
965         pdir4mb = 0;
966
967 #if !defined(DISABLE_PSE)
968         if (cpu_feature & CPUID_PSE) {
969                 pt_entry_t ptditmp;
970                 /*
971                  * Note that we have enabled PSE mode
972                  */
973 //              pseflag = kernel_pmap.pmap_bits[PG_PS_IDX];
974                 ptditmp = *(PTmap + x86_64_btop(KERNBASE));
975                 ptditmp &= ~(NBPDR - 1);
976                 ptditmp |= pmap_bits_default[PG_V_IDX] |
977                     pmap_bits_default[PG_RW_IDX] |
978                     pmap_bits_default[PG_PS_IDX] |
979                     pmap_bits_default[PG_U_IDX];
980 //                  pgeflag;
981                 pdir4mb = ptditmp;
982         }
983 #endif
984         cpu_invltlb();
985
986         /* Initialize the PAT MSR */
987         pmap_init_pat();
988         pmap_pinit_defaults(&kernel_pmap);
989
990         TUNABLE_INT_FETCH("machdep.pmap_fast_kernel_cpusync",
991                           &pmap_fast_kernel_cpusync);
992
993 }
994
995 /*
996  * Setup the PAT MSR.
997  */
998 void
999 pmap_init_pat(void)
1000 {
1001         uint64_t pat_msr;
1002         u_long cr0, cr4;
1003
1004         /*
1005          * Default values mapping PATi,PCD,PWT bits at system reset.
1006          * The default values effectively ignore the PATi bit by
1007          * repeating the encodings for 0-3 in 4-7, and map the PCD
1008          * and PWT bit combinations to the expected PAT types.
1009          */
1010         pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |        /* 000 */
1011                   PAT_VALUE(1, PAT_WRITE_THROUGH) |     /* 001 */
1012                   PAT_VALUE(2, PAT_UNCACHED) |          /* 010 */
1013                   PAT_VALUE(3, PAT_UNCACHEABLE) |       /* 011 */
1014                   PAT_VALUE(4, PAT_WRITE_BACK) |        /* 100 */
1015                   PAT_VALUE(5, PAT_WRITE_THROUGH) |     /* 101 */
1016                   PAT_VALUE(6, PAT_UNCACHED) |          /* 110 */
1017                   PAT_VALUE(7, PAT_UNCACHEABLE);        /* 111 */
1018         pat_pte_index[PAT_WRITE_BACK]   = 0;
1019         pat_pte_index[PAT_WRITE_THROUGH]= 0         | X86_PG_NC_PWT;
1020         pat_pte_index[PAT_UNCACHED]     = X86_PG_NC_PCD;
1021         pat_pte_index[PAT_UNCACHEABLE]  = X86_PG_NC_PCD | X86_PG_NC_PWT;
1022         pat_pte_index[PAT_WRITE_PROTECTED] = pat_pte_index[PAT_UNCACHEABLE];
1023         pat_pte_index[PAT_WRITE_COMBINING] = pat_pte_index[PAT_UNCACHEABLE];
1024
1025         if (cpu_feature & CPUID_PAT) {
1026                 /*
1027                  * If we support the PAT then set-up entries for
1028                  * WRITE_PROTECTED and WRITE_COMBINING using bit patterns
1029                  * 4 and 5.
1030                  */
1031                 pat_msr = (pat_msr & ~PAT_MASK(4)) |
1032                           PAT_VALUE(4, PAT_WRITE_PROTECTED);
1033                 pat_msr = (pat_msr & ~PAT_MASK(5)) |
1034                           PAT_VALUE(5, PAT_WRITE_COMBINING);
1035                 pat_pte_index[PAT_WRITE_PROTECTED] = X86_PG_PTE_PAT | 0;
1036                 pat_pte_index[PAT_WRITE_COMBINING] = X86_PG_PTE_PAT | X86_PG_NC_PWT;
1037
1038                 /*
1039                  * Then enable the PAT
1040                  */
1041
1042                 /* Disable PGE. */
1043                 cr4 = rcr4();
1044                 load_cr4(cr4 & ~CR4_PGE);
1045
1046                 /* Disable caches (CD = 1, NW = 0). */
1047                 cr0 = rcr0();
1048                 load_cr0((cr0 & ~CR0_NW) | CR0_CD);
1049
1050                 /* Flushes caches and TLBs. */
1051                 wbinvd();
1052                 cpu_invltlb();
1053
1054                 /* Update PAT and index table. */
1055                 wrmsr(MSR_PAT, pat_msr);
1056
1057                 /* Flush caches and TLBs again. */
1058                 wbinvd();
1059                 cpu_invltlb();
1060
1061                 /* Restore caches and PGE. */
1062                 load_cr0(cr0);
1063                 load_cr4(cr4);
1064                 PatMsr = pat_msr;
1065         }
1066 }
1067
1068 /*
1069  * Set 4mb pdir for mp startup
1070  */
1071 void
1072 pmap_set_opt(void)
1073 {
1074         if (cpu_feature & CPUID_PSE) {
1075                 load_cr4(rcr4() | CR4_PSE);
1076                 if (pdir4mb && mycpu->gd_cpuid == 0) {  /* only on BSP */
1077                         cpu_invltlb();
1078                 }
1079         }
1080 }
1081
1082 /*
1083  *      Initialize the pmap module.
1084  *      Called by vm_init, to initialize any structures that the pmap
1085  *      system needs to map virtual memory.
1086  *      pmap_init has been enhanced to support in a fairly consistant
1087  *      way, discontiguous physical memory.
1088  */
1089 void
1090 pmap_init(void)
1091 {
1092         int i;
1093         int initial_pvs;
1094
1095         /*
1096          * Allocate memory for random pmap data structures.  Includes the
1097          * pv_head_table.
1098          */
1099
1100         for (i = 0; i < vm_page_array_size; i++) {
1101                 vm_page_t m;
1102
1103                 m = &vm_page_array[i];
1104                 TAILQ_INIT(&m->md.pv_list);
1105         }
1106
1107         /*
1108          * init the pv free list
1109          */
1110         initial_pvs = vm_page_array_size;
1111         if (initial_pvs < MINPV)
1112                 initial_pvs = MINPV;
1113         pvzone = &pvzone_store;
1114         pvinit = (void *)kmem_alloc(&kernel_map,
1115                                     initial_pvs * sizeof (struct pv_entry),
1116                                     VM_SUBSYS_PVENTRY);
1117         zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
1118                   pvinit, initial_pvs);
1119
1120         /*
1121          * Now it is safe to enable pv_table recording.
1122          */
1123         pmap_initialized = TRUE;
1124 }
1125
1126 /*
1127  * Initialize the address space (zone) for the pv_entries.  Set a
1128  * high water mark so that the system can recover from excessive
1129  * numbers of pv entries.
1130  */
1131 void
1132 pmap_init2(void)
1133 {
1134         int shpgperproc = PMAP_SHPGPERPROC;
1135         int entry_max;
1136
1137         TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1138         pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
1139         TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1140         pv_entry_high_water = 9 * (pv_entry_max / 10);
1141
1142         /*
1143          * Subtract out pages already installed in the zone (hack)
1144          */
1145         entry_max = pv_entry_max - vm_page_array_size;
1146         if (entry_max <= 0)
1147                 entry_max = 1;
1148
1149         zinitna(pvzone, &pvzone_obj, NULL, 0, entry_max, ZONE_INTERRUPT);
1150
1151         /*
1152          * Enable dynamic deletion of empty higher-level page table pages
1153          * by default only if system memory is < 8GB (use 7GB for slop).
1154          * This can save a little memory, but imposes significant
1155          * performance overhead for things like bulk builds, and for programs
1156          * which do a lot of memory mapping and memory unmapping.
1157          */
1158         if (pmap_dynamic_delete < 0) {
1159                 if (vmstats.v_page_count < 7LL * 1024 * 1024 * 1024 / PAGE_SIZE)
1160                         pmap_dynamic_delete = 1;
1161                 else
1162                         pmap_dynamic_delete = 0;
1163         }
1164 }
1165
1166 /*
1167  * Typically used to initialize a fictitious page by vm/device_pager.c
1168  */
1169 void
1170 pmap_page_init(struct vm_page *m)
1171 {
1172         vm_page_init(m);
1173         TAILQ_INIT(&m->md.pv_list);
1174 }
1175
1176 /***************************************************
1177  * Low level helper routines.....
1178  ***************************************************/
1179
1180 /*
1181  * this routine defines the region(s) of memory that should
1182  * not be tested for the modified bit.
1183  */
1184 static __inline
1185 int
1186 pmap_track_modified(vm_pindex_t pindex)
1187 {
1188         vm_offset_t va = (vm_offset_t)pindex << PAGE_SHIFT;
1189         if ((va < clean_sva) || (va >= clean_eva)) 
1190                 return 1;
1191         else
1192                 return 0;
1193 }
1194
1195 /*
1196  * Extract the physical page address associated with the map/VA pair.
1197  * The page must be wired for this to work reliably.
1198  *
1199  * XXX for the moment we're using pv_find() instead of pv_get(), as
1200  *     callers might be expecting non-blocking operation.
1201  */
1202 vm_paddr_t 
1203 pmap_extract(pmap_t pmap, vm_offset_t va)
1204 {
1205         vm_paddr_t rtval;
1206         pv_entry_t pt_pv;
1207         pt_entry_t *ptep;
1208
1209         rtval = 0;
1210         if (va >= VM_MAX_USER_ADDRESS) {
1211                 /*
1212                  * Kernel page directories might be direct-mapped and
1213                  * there is typically no PV tracking of pte's
1214                  */
1215                 pd_entry_t *pt;
1216
1217                 pt = pmap_pt(pmap, va);
1218                 if (pt && (*pt & pmap->pmap_bits[PG_V_IDX])) {
1219                         if (*pt & pmap->pmap_bits[PG_PS_IDX]) {
1220                                 rtval = *pt & PG_PS_FRAME;
1221                                 rtval |= va & PDRMASK;
1222                         } else {
1223                                 ptep = pmap_pt_to_pte(*pt, va);
1224                                 if (*pt & pmap->pmap_bits[PG_V_IDX]) {
1225                                         rtval = *ptep & PG_FRAME;
1226                                         rtval |= va & PAGE_MASK;
1227                                 }
1228                         }
1229                 }
1230         } else {
1231                 /*
1232                  * User pages currently do not direct-map the page directory
1233                  * and some pages might not used managed PVs.  But all PT's
1234                  * will have a PV.
1235                  */
1236                 pt_pv = pv_find(pmap, pmap_pt_pindex(va));
1237                 if (pt_pv) {
1238                         ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1239                         if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
1240                                 rtval = *ptep & PG_FRAME;
1241                                 rtval |= va & PAGE_MASK;
1242                         }
1243                         pv_drop(pt_pv);
1244                 }
1245         }
1246         return rtval;
1247 }
1248
1249 /*
1250  * Similar to extract but checks protections, SMP-friendly short-cut for
1251  * vm_fault_page[_quick]().  Can return NULL to cause the caller to
1252  * fall-through to the real fault code.
1253  *
1254  * The returned page, if not NULL, is held (and not busied).
1255  */
1256 vm_page_t
1257 pmap_fault_page_quick(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1258 {
1259         if (pmap && va < VM_MAX_USER_ADDRESS) {
1260                 pv_entry_t pt_pv;
1261                 pv_entry_t pte_pv;
1262                 pt_entry_t *ptep;
1263                 pt_entry_t req;
1264                 vm_page_t m;
1265                 int error;
1266
1267                 req = pmap->pmap_bits[PG_V_IDX] |
1268                       pmap->pmap_bits[PG_U_IDX];
1269                 if (prot & VM_PROT_WRITE)
1270                         req |= pmap->pmap_bits[PG_RW_IDX];
1271
1272                 pt_pv = pv_find(pmap, pmap_pt_pindex(va));
1273                 if (pt_pv == NULL)
1274                         return (NULL);
1275                 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1276                 if ((*ptep & req) != req) {
1277                         pv_drop(pt_pv);
1278                         return (NULL);
1279                 }
1280                 pte_pv = pv_get_try(pmap, pmap_pte_pindex(va), &error);
1281                 if (pte_pv && error == 0) {
1282                         m = pte_pv->pv_m;
1283                         vm_page_hold(m);
1284                         if (prot & VM_PROT_WRITE)
1285                                 vm_page_dirty(m);
1286                         pv_put(pte_pv);
1287                 } else if (pte_pv) {
1288                         pv_drop(pte_pv);
1289                         m = NULL;
1290                 } else {
1291                         m = NULL;
1292                 }
1293                 pv_drop(pt_pv);
1294                 return(m);
1295         } else {
1296                 return(NULL);
1297         }
1298 }
1299
1300 /*
1301  * Extract the physical page address associated kernel virtual address.
1302  */
1303 vm_paddr_t
1304 pmap_kextract(vm_offset_t va)
1305 {
1306         pd_entry_t pt;          /* pt entry in pd */
1307         vm_paddr_t pa;
1308
1309         if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1310                 pa = DMAP_TO_PHYS(va);
1311         } else {
1312                 pt = *vtopt(va);
1313                 if (pt & kernel_pmap.pmap_bits[PG_PS_IDX]) {
1314                         pa = (pt & PG_PS_FRAME) | (va & PDRMASK);
1315                 } else {
1316                         /*
1317                          * Beware of a concurrent promotion that changes the
1318                          * PDE at this point!  For example, vtopte() must not
1319                          * be used to access the PTE because it would use the
1320                          * new PDE.  It is, however, safe to use the old PDE
1321                          * because the page table page is preserved by the
1322                          * promotion.
1323                          */
1324                         pa = *pmap_pt_to_pte(pt, va);
1325                         pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1326                 }
1327         }
1328         return pa;
1329 }
1330
1331 /***************************************************
1332  * Low level mapping routines.....
1333  ***************************************************/
1334
1335 /*
1336  * Routine: pmap_kenter
1337  * Function:
1338  *      Add a wired page to the KVA
1339  *      NOTE! note that in order for the mapping to take effect -- you
1340  *      should do an invltlb after doing the pmap_kenter().
1341  */
1342 void 
1343 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1344 {
1345         pt_entry_t *ptep;
1346         pt_entry_t npte;
1347
1348         npte = pa |
1349             kernel_pmap.pmap_bits[PG_RW_IDX] |
1350             kernel_pmap.pmap_bits[PG_V_IDX];
1351 //          pgeflag;
1352         ptep = vtopte(va);
1353 #if 1
1354         pmap_inval_smp(&kernel_pmap, va, 1, ptep, npte);
1355 #else
1356         /* FUTURE */
1357         if (*ptep)
1358                 pmap_inval_smp(&kernel_pmap, va, ptep, npte);
1359         else
1360                 *ptep = npte;
1361 #endif
1362 }
1363
1364 /*
1365  * Similar to pmap_kenter(), except we only invalidate the mapping on the
1366  * current CPU.  Returns 0 if the previous pte was 0, 1 if it wasn't
1367  * (caller can conditionalize calling smp_invltlb()).
1368  */
1369 int
1370 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
1371 {
1372         pt_entry_t *ptep;
1373         pt_entry_t npte;
1374         int res;
1375
1376         npte = pa |
1377             kernel_pmap.pmap_bits[PG_RW_IDX] |
1378             kernel_pmap.pmap_bits[PG_V_IDX];
1379 //          pgeflag;
1380         ptep = vtopte(va);
1381 #if 1
1382         res = 1;
1383 #else
1384         /* FUTURE */
1385         res = (*ptep != 0);
1386 #endif
1387         *ptep = npte;
1388         cpu_invlpg((void *)va);
1389
1390         return res;
1391 }
1392
1393 /*
1394  * Enter addresses into the kernel pmap but don't bother
1395  * doing any tlb invalidations.  Caller will do a rollup
1396  * invalidation via pmap_rollup_inval().
1397  */
1398 int
1399 pmap_kenter_noinval(vm_offset_t va, vm_paddr_t pa)
1400 {
1401         pt_entry_t *ptep;
1402         pt_entry_t npte;
1403         int res;
1404
1405         npte = pa |
1406             kernel_pmap.pmap_bits[PG_RW_IDX] |
1407             kernel_pmap.pmap_bits[PG_V_IDX];
1408 //          pgeflag;
1409         ptep = vtopte(va);
1410 #if 1
1411         res = 1;
1412 #else
1413         /* FUTURE */
1414         res = (*ptep != 0);
1415 #endif
1416         *ptep = npte;
1417         cpu_invlpg((void *)va);
1418
1419         return res;
1420 }
1421
1422 /*
1423  * remove a page from the kernel pagetables
1424  */
1425 void
1426 pmap_kremove(vm_offset_t va)
1427 {
1428         pt_entry_t *ptep;
1429
1430         ptep = vtopte(va);
1431         pmap_inval_smp(&kernel_pmap, va, 1, ptep, 0);
1432 }
1433
1434 void
1435 pmap_kremove_quick(vm_offset_t va)
1436 {
1437         pt_entry_t *ptep;
1438
1439         ptep = vtopte(va);
1440         (void)pte_load_clear(ptep);
1441         cpu_invlpg((void *)va);
1442 }
1443
1444 /*
1445  * Remove addresses from the kernel pmap but don't bother
1446  * doing any tlb invalidations.  Caller will do a rollup
1447  * invalidation via pmap_rollup_inval().
1448  */
1449 void
1450 pmap_kremove_noinval(vm_offset_t va)
1451 {
1452         pt_entry_t *ptep;
1453
1454         ptep = vtopte(va);
1455         (void)pte_load_clear(ptep);
1456 }
1457
1458 /*
1459  * XXX these need to be recoded.  They are not used in any critical path.
1460  */
1461 void
1462 pmap_kmodify_rw(vm_offset_t va)
1463 {
1464         atomic_set_long(vtopte(va), kernel_pmap.pmap_bits[PG_RW_IDX]);
1465         cpu_invlpg((void *)va);
1466 }
1467
1468 /* NOT USED
1469 void
1470 pmap_kmodify_nc(vm_offset_t va)
1471 {
1472         atomic_set_long(vtopte(va), PG_N);
1473         cpu_invlpg((void *)va);
1474 }
1475 */
1476
1477 /*
1478  * Used to map a range of physical addresses into kernel virtual
1479  * address space during the low level boot, typically to map the
1480  * dump bitmap, message buffer, and vm_page_array.
1481  *
1482  * These mappings are typically made at some pointer after the end of the
1483  * kernel text+data.
1484  *
1485  * We could return PHYS_TO_DMAP(start) here and not allocate any
1486  * via (*virtp), but then kmem from userland and kernel dumps won't
1487  * have access to the related pointers.
1488  */
1489 vm_offset_t
1490 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1491 {
1492         vm_offset_t va;
1493         vm_offset_t va_start;
1494
1495         /*return PHYS_TO_DMAP(start);*/
1496
1497         va_start = *virtp;
1498         va = va_start;
1499
1500         while (start < end) {
1501                 pmap_kenter_quick(va, start);
1502                 va += PAGE_SIZE;
1503                 start += PAGE_SIZE;
1504         }
1505         *virtp = va;
1506         return va_start;
1507 }
1508
1509 #define PMAP_CLFLUSH_THRESHOLD  (2 * 1024 * 1024)
1510
1511 /*
1512  * Remove the specified set of pages from the data and instruction caches.
1513  *
1514  * In contrast to pmap_invalidate_cache_range(), this function does not
1515  * rely on the CPU's self-snoop feature, because it is intended for use
1516  * when moving pages into a different cache domain.
1517  */
1518 void
1519 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1520 {
1521         vm_offset_t daddr, eva;
1522         int i;
1523
1524         if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1525             (cpu_feature & CPUID_CLFSH) == 0)
1526                 wbinvd();
1527         else {
1528                 cpu_mfence();
1529                 for (i = 0; i < count; i++) {
1530                         daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
1531                         eva = daddr + PAGE_SIZE;
1532                         for (; daddr < eva; daddr += cpu_clflush_line_size)
1533                                 clflush(daddr);
1534                 }
1535                 cpu_mfence();
1536         }
1537 }
1538
1539 void
1540 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1541 {
1542         KASSERT((sva & PAGE_MASK) == 0,
1543             ("pmap_invalidate_cache_range: sva not page-aligned"));
1544         KASSERT((eva & PAGE_MASK) == 0,
1545             ("pmap_invalidate_cache_range: eva not page-aligned"));
1546
1547         if (cpu_feature & CPUID_SS) {
1548                 ; /* If "Self Snoop" is supported, do nothing. */
1549         } else {
1550                 /* Globally invalidate caches */
1551                 cpu_wbinvd_on_all_cpus();
1552         }
1553 }
1554
1555 /*
1556  * Invalidate the specified range of virtual memory on all cpus associated
1557  * with the pmap.
1558  */
1559 void
1560 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1561 {
1562         pmap_inval_smp(pmap, sva, (eva - sva) >> PAGE_SHIFT, NULL, 0);
1563 }
1564
1565 /*
1566  * Add a list of wired pages to the kva.  This routine is used for temporary
1567  * kernel mappings such as those found in buffer cache buffer.  Page
1568  * modifications and accesses are not tracked or recorded.
1569  *
1570  * NOTE! Old mappings are simply overwritten, and we cannot assume relaxed
1571  *       semantics as previous mappings may have been zerod without any
1572  *       invalidation.
1573  *
1574  * The page *must* be wired.
1575  */
1576 void
1577 pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count)
1578 {
1579         vm_offset_t end_va;
1580         vm_offset_t va;
1581
1582         end_va = beg_va + count * PAGE_SIZE;
1583
1584         for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1585                 pt_entry_t *pte;
1586
1587                 pte = vtopte(va);
1588                 *pte = VM_PAGE_TO_PHYS(*m) |
1589                     kernel_pmap.pmap_bits[PG_RW_IDX] |
1590                     kernel_pmap.pmap_bits[PG_V_IDX] |
1591                     kernel_pmap.pmap_cache_bits[(*m)->pat_mode];
1592 //              pgeflag;
1593                 m++;
1594         }
1595         pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1596 }
1597
1598 /*
1599  * This routine jerks page mappings from the kernel -- it is meant only
1600  * for temporary mappings such as those found in buffer cache buffers.
1601  * No recording modified or access status occurs.
1602  *
1603  * MPSAFE, INTERRUPT SAFE (cluster callback)
1604  */
1605 void
1606 pmap_qremove(vm_offset_t beg_va, int count)
1607 {
1608         vm_offset_t end_va;
1609         vm_offset_t va;
1610
1611         end_va = beg_va + count * PAGE_SIZE;
1612
1613         for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1614                 pt_entry_t *pte;
1615
1616                 pte = vtopte(va);
1617                 (void)pte_load_clear(pte);
1618                 cpu_invlpg((void *)va);
1619         }
1620         pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1621 }
1622
1623 /*
1624  * This routine removes temporary kernel mappings, only invalidating them
1625  * on the current cpu.  It should only be used under carefully controlled
1626  * conditions.
1627  */
1628 void
1629 pmap_qremove_quick(vm_offset_t beg_va, int count)
1630 {
1631         vm_offset_t end_va;
1632         vm_offset_t va;
1633
1634         end_va = beg_va + count * PAGE_SIZE;
1635
1636         for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1637                 pt_entry_t *pte;
1638
1639                 pte = vtopte(va);
1640                 (void)pte_load_clear(pte);
1641                 cpu_invlpg((void *)va);
1642         }
1643 }
1644
1645 /*
1646  * This routine removes temporary kernel mappings *without* invalidating
1647  * the TLB.  It can only be used on permanent kva reservations such as those
1648  * found in buffer cache buffers, under carefully controlled circumstances.
1649  *
1650  * NOTE: Repopulating these KVAs requires unconditional invalidation.
1651  *       (pmap_qenter() does unconditional invalidation).
1652  */
1653 void
1654 pmap_qremove_noinval(vm_offset_t beg_va, int count)
1655 {
1656         vm_offset_t end_va;
1657         vm_offset_t va;
1658
1659         end_va = beg_va + count * PAGE_SIZE;
1660
1661         for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1662                 pt_entry_t *pte;
1663
1664                 pte = vtopte(va);
1665                 (void)pte_load_clear(pte);
1666         }
1667 }
1668
1669 /*
1670  * Create a new thread and optionally associate it with a (new) process.
1671  * NOTE! the new thread's cpu may not equal the current cpu.
1672  */
1673 void
1674 pmap_init_thread(thread_t td)
1675 {
1676         /* enforce pcb placement & alignment */
1677         td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1678         td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
1679         td->td_savefpu = &td->td_pcb->pcb_save;
1680         td->td_sp = (char *)td->td_pcb; /* no -16 */
1681 }
1682
1683 /*
1684  * This routine directly affects the fork perf for a process.
1685  */
1686 void
1687 pmap_init_proc(struct proc *p)
1688 {
1689 }
1690
1691 static void
1692 pmap_pinit_defaults(struct pmap *pmap)
1693 {
1694         bcopy(pmap_bits_default, pmap->pmap_bits,
1695               sizeof(pmap_bits_default));
1696         bcopy(protection_codes, pmap->protection_codes,
1697               sizeof(protection_codes));
1698         bcopy(pat_pte_index, pmap->pmap_cache_bits,
1699               sizeof(pat_pte_index));
1700         pmap->pmap_cache_mask = X86_PG_NC_PWT | X86_PG_NC_PCD | X86_PG_PTE_PAT;
1701         pmap->copyinstr = std_copyinstr;
1702         pmap->copyin = std_copyin;
1703         pmap->copyout = std_copyout;
1704         pmap->fubyte = std_fubyte;
1705         pmap->subyte = std_subyte;
1706         pmap->fuword = std_fuword;
1707         pmap->suword = std_suword;
1708         pmap->suword32 = std_suword32;
1709 }
1710 /*
1711  * Initialize pmap0/vmspace0.
1712  *
1713  * On architectures where the kernel pmap is not integrated into the user
1714  * process pmap, this pmap represents the process pmap, not the kernel pmap.
1715  * kernel_pmap should be used to directly access the kernel_pmap.
1716  */
1717 void
1718 pmap_pinit0(struct pmap *pmap)
1719 {
1720         pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
1721         pmap->pm_count = 1;
1722         CPUMASK_ASSZERO(pmap->pm_active);
1723         pmap->pm_pvhint = NULL;
1724         RB_INIT(&pmap->pm_pvroot);
1725         spin_init(&pmap->pm_spin, "pmapinit0");
1726         lwkt_token_init(&pmap->pm_token, "pmap_tok");
1727         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1728         pmap_pinit_defaults(pmap);
1729 }
1730
1731 /*
1732  * Initialize a preallocated and zeroed pmap structure,
1733  * such as one in a vmspace structure.
1734  */
1735 static void
1736 pmap_pinit_simple(struct pmap *pmap)
1737 {
1738         /*
1739          * Misc initialization
1740          */
1741         pmap->pm_count = 1;
1742         CPUMASK_ASSZERO(pmap->pm_active);
1743         pmap->pm_pvhint = NULL;
1744         pmap->pm_flags = PMAP_FLAG_SIMPLE;
1745
1746         pmap_pinit_defaults(pmap);
1747
1748         /*
1749          * Don't blow up locks/tokens on re-use (XXX fix/use drop code
1750          * for this).
1751          */
1752         if (pmap->pm_pmlpv == NULL) {
1753                 RB_INIT(&pmap->pm_pvroot);
1754                 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1755                 spin_init(&pmap->pm_spin, "pmapinitsimple");
1756                 lwkt_token_init(&pmap->pm_token, "pmap_tok");
1757         }
1758 }
1759
1760 void
1761 pmap_pinit(struct pmap *pmap)
1762 {
1763         pv_entry_t pv;
1764         int j;
1765
1766         if (pmap->pm_pmlpv) {
1767                 if (pmap->pmap_bits[TYPE_IDX] != REGULAR_PMAP) {
1768                         pmap_puninit(pmap);
1769                 }
1770         }
1771
1772         pmap_pinit_simple(pmap);
1773         pmap->pm_flags &= ~PMAP_FLAG_SIMPLE;
1774
1775         /*
1776          * No need to allocate page table space yet but we do need a valid
1777          * page directory table.
1778          */
1779         if (pmap->pm_pml4 == NULL) {
1780                 pmap->pm_pml4 =
1781                     (pml4_entry_t *)kmem_alloc_pageable(&kernel_map,
1782                                                         PAGE_SIZE,
1783                                                         VM_SUBSYS_PML4);
1784         }
1785
1786         /*
1787          * Allocate the page directory page, which wires it even though
1788          * it isn't being entered into some higher level page table (it
1789          * being the highest level).  If one is already cached we don't
1790          * have to do anything.
1791          */
1792         if ((pv = pmap->pm_pmlpv) == NULL) {
1793                 pv = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1794                 pmap->pm_pmlpv = pv;
1795                 pmap_kenter((vm_offset_t)pmap->pm_pml4,
1796                             VM_PAGE_TO_PHYS(pv->pv_m));
1797                 pv_put(pv);
1798
1799                 /*
1800                  * Install DMAP and KMAP.
1801                  */
1802                 for (j = 0; j < NDMPML4E; ++j) {
1803                         pmap->pm_pml4[DMPML4I + j] =
1804                             (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
1805                             pmap->pmap_bits[PG_RW_IDX] |
1806                             pmap->pmap_bits[PG_V_IDX] |
1807                             pmap->pmap_bits[PG_U_IDX];
1808                 }
1809                 pmap->pm_pml4[KPML4I] = KPDPphys |
1810                     pmap->pmap_bits[PG_RW_IDX] |
1811                     pmap->pmap_bits[PG_V_IDX] |
1812                     pmap->pmap_bits[PG_U_IDX];
1813
1814                 /*
1815                  * install self-referential address mapping entry
1816                  */
1817                 pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pv->pv_m) |
1818                     pmap->pmap_bits[PG_V_IDX] |
1819                     pmap->pmap_bits[PG_RW_IDX] |
1820                     pmap->pmap_bits[PG_A_IDX] |
1821                     pmap->pmap_bits[PG_M_IDX];
1822         } else {
1823                 KKASSERT(pv->pv_m->flags & PG_MAPPED);
1824                 KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
1825         }
1826         KKASSERT(pmap->pm_pml4[255] == 0);
1827         KKASSERT(RB_ROOT(&pmap->pm_pvroot) == pv);
1828         KKASSERT(pv->pv_entry.rbe_left == NULL);
1829         KKASSERT(pv->pv_entry.rbe_right == NULL);
1830 }
1831
1832 /*
1833  * Clean up a pmap structure so it can be physically freed.  This routine
1834  * is called by the vmspace dtor function.  A great deal of pmap data is
1835  * left passively mapped to improve vmspace management so we have a bit
1836  * of cleanup work to do here.
1837  */
1838 void
1839 pmap_puninit(pmap_t pmap)
1840 {
1841         pv_entry_t pv;
1842         vm_page_t p;
1843
1844         KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
1845         if ((pv = pmap->pm_pmlpv) != NULL) {
1846                 if (pv_hold_try(pv) == 0)
1847                         pv_lock(pv);
1848                 KKASSERT(pv == pmap->pm_pmlpv);
1849                 p = pmap_remove_pv_page(pv);
1850                 pv_free(pv, NULL, 1);
1851                 pv = NULL;      /* safety */
1852                 pmap_kremove((vm_offset_t)pmap->pm_pml4);
1853                 vm_page_busy_wait(p, FALSE, "pgpun");
1854                 KKASSERT(p->flags & (PG_FICTITIOUS|PG_UNMANAGED));
1855                 vm_page_unwire(p, 0);
1856                 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1857
1858                 /*
1859                  * XXX eventually clean out PML4 static entries and
1860                  * use vm_page_free_zero()
1861                  */
1862                 vm_page_free(p);
1863                 pmap->pm_pmlpv = NULL;
1864         }
1865         if (pmap->pm_pml4) {
1866                 KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1867                 kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1868                 pmap->pm_pml4 = NULL;
1869         }
1870         KKASSERT(pmap->pm_stats.resident_count == 0);
1871         KKASSERT(pmap->pm_stats.wired_count == 0);
1872 }
1873
1874 /*
1875  * This function is now unused (used to add the pmap to the pmap_list)
1876  */
1877 void
1878 pmap_pinit2(struct pmap *pmap)
1879 {
1880 }
1881
1882 /*
1883  * This routine is called when various levels in the page table need to
1884  * be populated.  This routine cannot fail.
1885  *
1886  * This function returns two locked pv_entry's, one representing the
1887  * requested pv and one representing the requested pv's parent pv.  If
1888  * an intermediate page table does not exist it will be created, mapped,
1889  * wired, and the parent page table will be given an additional hold
1890  * count representing the presence of the child pv_entry.
1891  */
1892 static
1893 pv_entry_t
1894 pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp)
1895 {
1896         pt_entry_t *ptep;
1897         pv_entry_t pv;
1898         pv_entry_t pvp;
1899         vm_pindex_t pt_pindex;
1900         vm_page_t m;
1901         int isnew;
1902         int ispt;
1903
1904         /*
1905          * If the pv already exists and we aren't being asked for the
1906          * parent page table page we can just return it.  A locked+held pv
1907          * is returned.  The pv will also have a second hold related to the
1908          * pmap association that we don't have to worry about.
1909          */
1910         ispt = 0;
1911         pv = pv_alloc(pmap, ptepindex, &isnew);
1912         if (isnew == 0 && pvpp == NULL)
1913                 return(pv);
1914
1915         /*
1916          * Special case terminal PVs.  These are not page table pages so
1917          * no vm_page is allocated (the caller supplied the vm_page).  If
1918          * pvpp is non-NULL we are being asked to also removed the pt_pv
1919          * for this pv.
1920          *
1921          * Note that pt_pv's are only returned for user VAs. We assert that
1922          * a pt_pv is not being requested for kernel VAs.  The kernel
1923          * pre-wires all higher-level page tables so don't overload managed
1924          * higher-level page tables on top of it!
1925          */
1926         if (ptepindex < pmap_pt_pindex(0)) {
1927                 if (ptepindex >= NUPTE_USER) {
1928                         /* kernel manages this manually for KVM */
1929                         KKASSERT(pvpp == NULL);
1930                 } else {
1931                         KKASSERT(pvpp != NULL);
1932                         pt_pindex = NUPTE_TOTAL + (ptepindex >> NPTEPGSHIFT);
1933                         pvp = pmap_allocpte(pmap, pt_pindex, NULL);
1934                         if (isnew) {
1935                                 vm_page_wire_quick(pvp->pv_m);
1936                                 if (pvpp)
1937                                         *pvpp = pvp;
1938                                 else
1939                                         pv_put(pvp);
1940                         } else {
1941                                 *pvpp = pvp;
1942                         }
1943                 }
1944                 return(pv);
1945         }
1946
1947         /*
1948          * The kernel never uses managed PT/PD/PDP pages.
1949          */
1950         KKASSERT(pmap != &kernel_pmap);
1951
1952         /*
1953          * Non-terminal PVs allocate a VM page to represent the page table,
1954          * so we have to resolve pvp and calculate ptepindex for the pvp
1955          * and then for the page table entry index in the pvp for
1956          * fall-through.
1957          */
1958         if (ptepindex < pmap_pd_pindex(0)) {
1959                 /*
1960                  * pv is PT, pvp is PD
1961                  */
1962                 ptepindex = (ptepindex - pmap_pt_pindex(0)) >> NPDEPGSHIFT;
1963                 ptepindex += NUPTE_TOTAL + NUPT_TOTAL;
1964                 pvp = pmap_allocpte(pmap, ptepindex, NULL);
1965                 if (!isnew)
1966                         goto notnew;
1967
1968                 /*
1969                  * PT index in PD
1970                  */
1971                 ptepindex = pv->pv_pindex - pmap_pt_pindex(0);
1972                 ptepindex &= ((1ul << NPDEPGSHIFT) - 1);
1973                 ispt = 1;
1974         } else if (ptepindex < pmap_pdp_pindex(0)) {
1975                 /*
1976                  * pv is PD, pvp is PDP
1977                  *
1978                  * SIMPLE PMAP NOTE: Simple pmaps do not allocate above
1979                  *                   the PD.
1980                  */
1981                 ptepindex = (ptepindex - pmap_pd_pindex(0)) >> NPDPEPGSHIFT;
1982                 ptepindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
1983
1984                 if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
1985                         KKASSERT(pvpp == NULL);
1986                         pvp = NULL;
1987                 } else {
1988                         pvp = pmap_allocpte(pmap, ptepindex, NULL);
1989                 }
1990                 if (!isnew)
1991                         goto notnew;
1992
1993                 /*
1994                  * PD index in PDP
1995                  */
1996                 ptepindex = pv->pv_pindex - pmap_pd_pindex(0);
1997                 ptepindex &= ((1ul << NPDPEPGSHIFT) - 1);
1998         } else if (ptepindex < pmap_pml4_pindex()) {
1999                 /*
2000                  * pv is PDP, pvp is the root pml4 table
2001                  */
2002                 pvp = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
2003                 if (!isnew)
2004                         goto notnew;
2005
2006                 /*
2007                  * PDP index in PML4
2008                  */
2009                 ptepindex = pv->pv_pindex - pmap_pdp_pindex(0);
2010                 ptepindex &= ((1ul << NPML4EPGSHIFT) - 1);
2011         } else {
2012                 /*
2013                  * pv represents the top-level PML4, there is no parent.
2014                  */
2015                 pvp = NULL;
2016                 if (!isnew)
2017                         goto notnew;
2018         }
2019
2020         /*
2021          * (isnew) is TRUE, pv is not terminal.
2022          *
2023          * (1) Add a wire count to the parent page table (pvp).
2024          * (2) Allocate a VM page for the page table.
2025          * (3) Enter the VM page into the parent page table.
2026          *
2027          * page table pages are marked PG_WRITEABLE and PG_MAPPED.
2028          */
2029         if (pvp)
2030                 vm_page_wire_quick(pvp->pv_m);
2031
2032         for (;;) {
2033                 m = vm_page_alloc(NULL, pv->pv_pindex,
2034                                   VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2035                                   VM_ALLOC_INTERRUPT);
2036                 if (m)
2037                         break;
2038                 vm_wait(0);
2039         }
2040         vm_page_spin_lock(m);
2041         pmap_page_stats_adding(m);
2042         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2043         pv->pv_m = m;
2044         vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
2045         vm_page_spin_unlock(m);
2046         vm_page_unmanage(m);    /* m must be spinunlocked */
2047
2048         pmap_zero_page(VM_PAGE_TO_PHYS(m));
2049         m->valid = VM_PAGE_BITS_ALL;
2050         vm_page_wire(m);        /* wire for mapping in parent */
2051
2052         /*
2053          * Wire the page into pvp.  Bump the resident_count for the pmap.
2054          * There is no pvp for the top level, address the pm_pml4[] array
2055          * directly.
2056          *
2057          * If the caller wants the parent we return it, otherwise
2058          * we just put it away.
2059          *
2060          * No interlock is needed for pte 0 -> non-zero.
2061          *
2062          * In the situation where *ptep is valid we might have an unmanaged
2063          * page table page shared from another page table which we need to
2064          * unshare before installing our private page table page.
2065          */
2066         if (pvp) {
2067                 ptep = pv_pte_lookup(pvp, ptepindex);
2068                 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
2069                         pt_entry_t pte;
2070
2071                         if (ispt == 0) {
2072                                 panic("pmap_allocpte: unexpected pte %p/%d",
2073                                       pvp, (int)ptepindex);
2074                         }
2075                         pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, ptep, 0);
2076                         if (vm_page_unwire_quick(
2077                                         PHYS_TO_VM_PAGE(pte & PG_FRAME))) {
2078                                 panic("pmap_allocpte: shared pgtable "
2079                                       "pg bad wirecount");
2080                         }
2081                         atomic_add_long(&pmap->pm_stats.resident_count, -1);
2082                 }
2083                 *ptep = VM_PAGE_TO_PHYS(m) |
2084                         (pmap->pmap_bits[PG_U_IDX] |
2085                          pmap->pmap_bits[PG_RW_IDX] |
2086                          pmap->pmap_bits[PG_V_IDX] |
2087                          pmap->pmap_bits[PG_A_IDX] |
2088                          pmap->pmap_bits[PG_M_IDX]);
2089         }
2090         vm_page_wakeup(m);
2091 notnew:
2092         if (pvpp)
2093                 *pvpp = pvp;
2094         else if (pvp)
2095                 pv_put(pvp);
2096         return (pv);
2097 }
2098
2099 /*
2100  * This version of pmap_allocpte() checks for possible segment optimizations
2101  * that would allow page-table sharing.  It can be called for terminal
2102  * page or page table page ptepindex's.
2103  *
2104  * The function is called with page table page ptepindex's for fictitious
2105  * and unmanaged terminal pages.  That is, we don't want to allocate a
2106  * terminal pv, we just want the pt_pv.  pvpp is usually passed as NULL
2107  * for this case.
2108  *
2109  * This function can return a pv and *pvpp associated with the passed in pmap
2110  * OR a pv and *pvpp associated with the shared pmap.  In the latter case
2111  * an unmanaged page table page will be entered into the pass in pmap.
2112  */
2113 static
2114 pv_entry_t
2115 pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp,
2116                   vm_map_entry_t entry, vm_offset_t va)
2117 {
2118         vm_object_t object;
2119         pmap_t obpmap;
2120         pmap_t *obpmapp;
2121         vm_offset_t b;
2122         pv_entry_t pte_pv;      /* in original or shared pmap */
2123         pv_entry_t pt_pv;       /* in original or shared pmap */
2124         pv_entry_t proc_pd_pv;  /* in original pmap */
2125         pv_entry_t proc_pt_pv;  /* in original pmap */
2126         pv_entry_t xpv;         /* PT in shared pmap */
2127         pd_entry_t *pt;         /* PT entry in PD of original pmap */
2128         pd_entry_t opte;        /* contents of *pt */
2129         pd_entry_t npte;        /* contents of *pt */
2130         vm_page_t m;
2131
2132 retry:
2133         /*
2134          * Basic tests, require a non-NULL vm_map_entry, require proper
2135          * alignment and type for the vm_map_entry, require that the
2136          * underlying object already be allocated.
2137          *
2138          * We allow almost any type of object to use this optimization.
2139          * The object itself does NOT have to be sized to a multiple of the
2140          * segment size, but the memory mapping does.
2141          *
2142          * XXX don't handle devices currently, because VM_PAGE_TO_PHYS()
2143          *     won't work as expected.
2144          */
2145         if (entry == NULL ||
2146             pmap_mmu_optimize == 0 ||                   /* not enabled */
2147             (pmap->pm_flags & PMAP_HVM) ||              /* special pmap */
2148             ptepindex >= pmap_pd_pindex(0) ||           /* not terminal or pt */
2149             entry->inheritance != VM_INHERIT_SHARE ||   /* not shared */
2150             entry->maptype != VM_MAPTYPE_NORMAL ||      /* weird map type */
2151             entry->object.vm_object == NULL ||          /* needs VM object */
2152             entry->object.vm_object->type == OBJT_DEVICE ||     /* ick */
2153             entry->object.vm_object->type == OBJT_MGTDEVICE ||  /* ick */
2154             (entry->offset & SEG_MASK) ||               /* must be aligned */
2155             (entry->start & SEG_MASK)) {
2156                 return(pmap_allocpte(pmap, ptepindex, pvpp));
2157         }
2158
2159         /*
2160          * Make sure the full segment can be represented.
2161          */
2162         b = va & ~(vm_offset_t)SEG_MASK;
2163         if (b < entry->start || b + SEG_SIZE > entry->end)
2164                 return(pmap_allocpte(pmap, ptepindex, pvpp));
2165
2166         /*
2167          * If the full segment can be represented dive the VM object's
2168          * shared pmap, allocating as required.
2169          */
2170         object = entry->object.vm_object;
2171
2172         if (entry->protection & VM_PROT_WRITE)
2173                 obpmapp = &object->md.pmap_rw;
2174         else
2175                 obpmapp = &object->md.pmap_ro;
2176
2177 #ifdef PMAP_DEBUG2
2178         if (pmap_enter_debug > 0) {
2179                 --pmap_enter_debug;
2180                 kprintf("pmap_allocpte_seg: va=%jx prot %08x o=%p "
2181                         "obpmapp %p %p\n",
2182                         va, entry->protection, object,
2183                         obpmapp, *obpmapp);
2184                 kprintf("pmap_allocpte_seg: entry %p %jx-%jx\n",
2185                         entry, entry->start, entry->end);
2186         }
2187 #endif
2188
2189         /*
2190          * We allocate what appears to be a normal pmap but because portions
2191          * of this pmap are shared with other unrelated pmaps we have to
2192          * set pm_active to point to all cpus.
2193          *
2194          * XXX Currently using pmap_spin to interlock the update, can't use
2195          *     vm_object_hold/drop because the token might already be held
2196          *     shared OR exclusive and we don't know.
2197          */
2198         while ((obpmap = *obpmapp) == NULL) {
2199                 obpmap = kmalloc(sizeof(*obpmap), M_OBJPMAP, M_WAITOK|M_ZERO);
2200                 pmap_pinit_simple(obpmap);
2201                 pmap_pinit2(obpmap);
2202                 spin_lock(&pmap_spin);
2203                 if (*obpmapp != NULL) {
2204                         /*
2205                          * Handle race
2206                          */
2207                         spin_unlock(&pmap_spin);
2208                         pmap_release(obpmap);
2209                         pmap_puninit(obpmap);
2210                         kfree(obpmap, M_OBJPMAP);
2211                         obpmap = *obpmapp; /* safety */
2212                 } else {
2213                         obpmap->pm_active = smp_active_mask;
2214                         obpmap->pm_flags |= PMAP_SEGSHARED;
2215                         *obpmapp = obpmap;
2216                         spin_unlock(&pmap_spin);
2217                 }
2218         }
2219
2220         /*
2221          * Layering is: PTE, PT, PD, PDP, PML4.  We have to return the
2222          * pte/pt using the shared pmap from the object but also adjust
2223          * the process pmap's page table page as a side effect.
2224          */
2225
2226         /*
2227          * Resolve the terminal PTE and PT in the shared pmap.  This is what
2228          * we will return.  This is true if ptepindex represents a terminal
2229          * page, otherwise pte_pv is actually the PT and pt_pv is actually
2230          * the PD.
2231          */
2232         pt_pv = NULL;
2233         pte_pv = pmap_allocpte(obpmap, ptepindex, &pt_pv);
2234         if (ptepindex >= pmap_pt_pindex(0))
2235                 xpv = pte_pv;
2236         else
2237                 xpv = pt_pv;
2238
2239         /*
2240          * Resolve the PD in the process pmap so we can properly share the
2241          * page table page.  Lock order is bottom-up (leaf first)!
2242          *
2243          * NOTE: proc_pt_pv can be NULL.
2244          */
2245         proc_pt_pv = pv_get(pmap, pmap_pt_pindex(b));
2246         proc_pd_pv = pmap_allocpte(pmap, pmap_pd_pindex(b), NULL);
2247 #ifdef PMAP_DEBUG2
2248         if (pmap_enter_debug > 0) {
2249                 --pmap_enter_debug;
2250                 kprintf("proc_pt_pv %p (wc %d) pd_pv %p va=%jx\n",
2251                         proc_pt_pv,
2252                         (proc_pt_pv ? proc_pt_pv->pv_m->wire_count : -1),
2253                         proc_pd_pv,
2254                         va);
2255         }
2256 #endif
2257
2258         /*
2259          * xpv is the page table page pv from the shared object
2260          * (for convenience), from above.
2261          *
2262          * Calculate the pte value for the PT to load into the process PD.
2263          * If we have to change it we must properly dispose of the previous
2264          * entry.
2265          */
2266         pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2267         npte = VM_PAGE_TO_PHYS(xpv->pv_m) |
2268                (pmap->pmap_bits[PG_U_IDX] |
2269                 pmap->pmap_bits[PG_RW_IDX] |
2270                 pmap->pmap_bits[PG_V_IDX] |
2271                 pmap->pmap_bits[PG_A_IDX] |
2272                 pmap->pmap_bits[PG_M_IDX]);
2273
2274         /*
2275          * Dispose of previous page table page if it was local to the
2276          * process pmap.  If the old pt is not empty we cannot dispose of it
2277          * until we clean it out.  This case should not arise very often so
2278          * it is not optimized.
2279          */
2280         if (proc_pt_pv) {
2281                 pmap_inval_bulk_t bulk;
2282
2283                 if (proc_pt_pv->pv_m->wire_count != 1) {
2284                         pv_put(proc_pd_pv);
2285                         pv_put(proc_pt_pv);
2286                         pv_put(pt_pv);
2287                         pv_put(pte_pv);
2288                         pmap_remove(pmap,
2289                                     va & ~(vm_offset_t)SEG_MASK,
2290                                     (va + SEG_SIZE) & ~(vm_offset_t)SEG_MASK);
2291                         goto retry;
2292                 }
2293
2294                 /*
2295                  * The release call will indirectly clean out *pt
2296                  */
2297                 pmap_inval_bulk_init(&bulk, proc_pt_pv->pv_pmap);
2298                 pmap_release_pv(proc_pt_pv, proc_pd_pv, &bulk);
2299                 pmap_inval_bulk_flush(&bulk);
2300                 proc_pt_pv = NULL;
2301                 /* relookup */
2302                 pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2303         }
2304
2305         /*
2306          * Handle remaining cases.
2307          */
2308         if (*pt == 0) {
2309                 *pt = npte;
2310                 vm_page_wire_quick(xpv->pv_m);          /* shared pt -> proc */
2311                 vm_page_wire_quick(proc_pd_pv->pv_m);   /* proc pd for sh pt */
2312                 atomic_add_long(&pmap->pm_stats.resident_count, 1);
2313         } else if (*pt != npte) {
2314                 opte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, pt, npte);
2315
2316 #if 0
2317                 opte = pte_load_clear(pt);
2318                 KKASSERT(opte && opte != npte);
2319
2320                 *pt = npte;
2321 #endif
2322                 vm_page_wire_quick(xpv->pv_m);          /* shared pt -> proc */
2323
2324                 /*
2325                  * Clean up opte, bump the wire_count for the process
2326                  * PD page representing the new entry if it was
2327                  * previously empty.
2328                  *
2329                  * If the entry was not previously empty and we have
2330                  * a PT in the proc pmap then opte must match that
2331                  * pt.  The proc pt must be retired (this is done
2332                  * later on in this procedure).
2333                  *
2334                  * NOTE: replacing valid pte, wire_count on proc_pd_pv
2335                  * stays the same.
2336                  */
2337                 KKASSERT(opte & pmap->pmap_bits[PG_V_IDX]);
2338                 m = PHYS_TO_VM_PAGE(opte & PG_FRAME);
2339                 if (vm_page_unwire_quick(m)) {
2340                         panic("pmap_allocpte_seg: "
2341                               "bad wire count %p",
2342                               m);
2343                 }
2344         }
2345
2346         /*
2347          * The existing process page table was replaced and must be destroyed
2348          * here.
2349          */
2350         if (proc_pd_pv)
2351                 pv_put(proc_pd_pv);
2352         if (pvpp)
2353                 *pvpp = pt_pv;
2354         else
2355                 pv_put(pt_pv);
2356
2357         return (pte_pv);
2358 }
2359
2360 /*
2361  * Release any resources held by the given physical map.
2362  *
2363  * Called when a pmap initialized by pmap_pinit is being released.  Should
2364  * only be called if the map contains no valid mappings.
2365  *
2366  * Caller must hold pmap->pm_token
2367  */
2368 struct pmap_release_info {
2369         pmap_t  pmap;
2370         int     retry;
2371         pv_entry_t pvp;
2372 };
2373
2374 static int pmap_release_callback(pv_entry_t pv, void *data);
2375
2376 void
2377 pmap_release(struct pmap *pmap)
2378 {
2379         struct pmap_release_info info;
2380
2381         KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
2382                 ("pmap still active! %016jx",
2383                 (uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
2384
2385         /*
2386          * There is no longer a pmap_list, if there were we would remove the
2387          * pmap from it here.
2388          */
2389
2390         /*
2391          * Pull pv's off the RB tree in order from low to high and release
2392          * each page.
2393          */
2394         info.pmap = pmap;
2395         do {
2396                 info.retry = 0;
2397                 info.pvp = NULL;
2398
2399                 spin_lock(&pmap->pm_spin);
2400                 RB_SCAN(pv_entry_rb_tree, &pmap->pm_pvroot, NULL,
2401                         pmap_release_callback, &info);
2402                 spin_unlock(&pmap->pm_spin);
2403
2404                 if (info.pvp)
2405                         pv_put(info.pvp);
2406         } while (info.retry);
2407
2408
2409         /*
2410          * One resident page (the pml4 page) should remain.
2411          * No wired pages should remain.
2412          */
2413         KKASSERT(pmap->pm_stats.resident_count ==
2414                  ((pmap->pm_flags & PMAP_FLAG_SIMPLE) ? 0 : 1));
2415
2416         KKASSERT(pmap->pm_stats.wired_count == 0);
2417 }
2418
2419 /*
2420  * Called from low to high.  We must cache the proper parent pv so we
2421  * can adjust its wired count.
2422  */
2423 static int
2424 pmap_release_callback(pv_entry_t pv, void *data)
2425 {
2426         struct pmap_release_info *info = data;
2427         pmap_t pmap = info->pmap;
2428         vm_pindex_t pindex;
2429         int r;
2430
2431         if (info->pvp == pv) {
2432                 spin_unlock(&pmap->pm_spin);
2433                 info->pvp = NULL;
2434         } else if (pv_hold_try(pv)) {
2435                 spin_unlock(&pmap->pm_spin);
2436         } else {
2437                 spin_unlock(&pmap->pm_spin);
2438                 pv_lock(pv);
2439         }
2440         if (pv->pv_pmap != pmap) {
2441                 pv_put(pv);
2442                 spin_lock(&pmap->pm_spin);
2443                 info->retry = 1;
2444                 return(-1);
2445         }
2446
2447         if (pv->pv_pindex < pmap_pt_pindex(0)) {
2448                 /*
2449                  * parent is PT
2450                  */
2451                 pindex = pv->pv_pindex >> NPTEPGSHIFT;
2452                 pindex += NUPTE_TOTAL;
2453         } else if (pv->pv_pindex < pmap_pd_pindex(0)) {
2454                 /*
2455                  * parent is PD
2456                  */
2457                 pindex = (pv->pv_pindex - NUPTE_TOTAL) >> NPDEPGSHIFT;
2458                 pindex += NUPTE_TOTAL + NUPT_TOTAL;
2459         } else if (pv->pv_pindex < pmap_pdp_pindex(0)) {
2460                 /*
2461                  * parent is PDP
2462                  */
2463                 pindex = (pv->pv_pindex - NUPTE_TOTAL - NUPT_TOTAL) >>
2464                          NPDPEPGSHIFT;
2465                 pindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2466         } else if (pv->pv_pindex < pmap_pml4_pindex()) {
2467                 /*
2468                  * parent is PML4 (there's only one)
2469                  */
2470 #if 0
2471                 pindex = (pv->pv_pindex - NUPTE_TOTAL - NUPT_TOTAL -
2472                            NUPD_TOTAL) >> NPML4EPGSHIFT;
2473                 pindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL;
2474 #endif
2475                 pindex = pmap_pml4_pindex();
2476         } else {
2477                 /*
2478                  * parent is NULL
2479                  */
2480                 if (info->pvp) {
2481                         pv_put(info->pvp);
2482                         info->pvp = NULL;
2483                 }
2484                 pindex = 0;
2485         }
2486         if (pindex) {
2487                 if (info->pvp && info->pvp->pv_pindex != pindex) {
2488                         pv_put(info->pvp);
2489                         info->pvp = NULL;
2490                 }
2491                 if (info->pvp == NULL)
2492                         info->pvp = pv_get(pmap, pindex);
2493         } else {
2494                 if (info->pvp) {
2495                         pv_put(info->pvp);
2496                         info->pvp = NULL;
2497                 }
2498         }
2499         r = pmap_release_pv(pv, info->pvp, NULL);
2500         spin_lock(&pmap->pm_spin);
2501         return(r);
2502 }
2503
2504 /*
2505  * Called with held (i.e. also locked) pv.  This function will dispose of
2506  * the lock along with the pv.
2507  *
2508  * If the caller already holds the locked parent page table for pv it
2509  * must pass it as pvp, allowing us to avoid a deadlock, else it can
2510  * pass NULL for pvp.
2511  */
2512 static int
2513 pmap_release_pv(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk)
2514 {
2515         vm_page_t p;
2516
2517         /*
2518          * The pmap is currently not spinlocked, pv is held+locked.
2519          * Remove the pv's page from its parent's page table.  The
2520          * parent's page table page's wire_count will be decremented.
2521          *
2522          * This will clean out the pte at any level of the page table.
2523          * If smp != 0 all cpus are affected.
2524          *
2525          * Do not tear-down recursively, its faster to just let the
2526          * release run its course.
2527          */
2528         pmap_remove_pv_pte(pv, pvp, bulk, 0);
2529
2530         /*
2531          * Terminal pvs are unhooked from their vm_pages.  Because
2532          * terminal pages aren't page table pages they aren't wired
2533          * by us, so we have to be sure not to unwire them either.
2534          */
2535         if (pv->pv_pindex < pmap_pt_pindex(0)) {
2536                 pmap_remove_pv_page(pv);
2537                 goto skip;
2538         }
2539
2540         /*
2541          * We leave the top-level page table page cached, wired, and
2542          * mapped in the pmap until the dtor function (pmap_puninit())
2543          * gets called.
2544          *
2545          * Since we are leaving the top-level pv intact we need
2546          * to break out of what would otherwise be an infinite loop.
2547          */
2548         if (pv->pv_pindex == pmap_pml4_pindex()) {
2549                 pv_put(pv);
2550                 return(-1);
2551         }
2552
2553         /*
2554          * For page table pages (other than the top-level page),
2555          * remove and free the vm_page.  The representitive mapping
2556          * removed above by pmap_remove_pv_pte() did not undo the
2557          * last wire_count so we have to do that as well.
2558          */
2559         p = pmap_remove_pv_page(pv);
2560         vm_page_busy_wait(p, FALSE, "pmaprl");
2561         if (p->wire_count != 1) {
2562                 kprintf("p->wire_count was %016lx %d\n",
2563                         pv->pv_pindex, p->wire_count);
2564         }
2565         KKASSERT(p->wire_count == 1);
2566         KKASSERT(p->flags & PG_UNMANAGED);
2567
2568         vm_page_unwire(p, 0);
2569         KKASSERT(p->wire_count == 0);
2570
2571         vm_page_free(p);
2572 skip:
2573         pv_free(pv, pvp, 1);
2574
2575         return 0;
2576 }
2577
2578 /*
2579  * This function will remove the pte associated with a pv from its parent.
2580  * Terminal pv's are supported.  All cpus specified by (bulk) are properly
2581  * invalidated.
2582  *
2583  * The wire count will be dropped on the parent page table.  The wire
2584  * count on the page being removed (pv->pv_m) from the parent page table
2585  * is NOT touched.  Note that terminal pages will not have any additional
2586  * wire counts while page table pages will have at least one representing
2587  * the mapping, plus others representing sub-mappings.
2588  *
2589  * NOTE: Cannot be called on kernel page table pages, only KVM terminal
2590  *       pages and user page table and terminal pages.
2591  *
2592  * The pv must be locked.  The pvp, if supplied, must be locked.  All
2593  * supplied pv's will remain locked on return.
2594  *
2595  * XXX must lock parent pv's if they exist to remove pte XXX
2596  */
2597 static
2598 void
2599 pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk,
2600                    int destroy)
2601 {
2602         vm_pindex_t ptepindex = pv->pv_pindex;
2603         pmap_t pmap = pv->pv_pmap;
2604         vm_page_t p;
2605         int gotpvp = 0;
2606
2607         KKASSERT(pmap);
2608
2609         if (ptepindex == pmap_pml4_pindex()) {
2610                 /*
2611                  * We are the top level pml4 table, there is no parent.
2612                  */
2613                 p = pmap->pm_pmlpv->pv_m;
2614         } else if (ptepindex >= pmap_pdp_pindex(0)) {
2615                 /*
2616                  * Remove a PDP page from the pml4e.  This can only occur
2617                  * with user page tables.  We do not have to lock the
2618                  * pml4 PV so just ignore pvp.
2619                  */
2620                 vm_pindex_t pml4_pindex;
2621                 vm_pindex_t pdp_index;
2622                 pml4_entry_t *pdp;
2623
2624                 pdp_index = ptepindex - pmap_pdp_pindex(0);
2625                 if (pvp == NULL) {
2626                         pml4_pindex = pmap_pml4_pindex();
2627                         pvp = pv_get(pv->pv_pmap, pml4_pindex);
2628                         KKASSERT(pvp);
2629                         gotpvp = 1;
2630                 }
2631                 pdp = &pmap->pm_pml4[pdp_index & ((1ul << NPML4EPGSHIFT) - 1)];
2632                 KKASSERT((*pdp & pmap->pmap_bits[PG_V_IDX]) != 0);
2633                 p = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
2634                 pmap_inval_bulk(bulk, (vm_offset_t)-1, pdp, 0);
2635         } else if (ptepindex >= pmap_pd_pindex(0)) {
2636                 /*
2637                  * Remove a PD page from the pdp
2638                  *
2639                  * SIMPLE PMAP NOTE: Non-existant pvp's are ok in the case
2640                  *                   of a simple pmap because it stops at
2641                  *                   the PD page.
2642                  */
2643                 vm_pindex_t pdp_pindex;
2644                 vm_pindex_t pd_index;
2645                 pdp_entry_t *pd;
2646
2647                 pd_index = ptepindex - pmap_pd_pindex(0);
2648
2649                 if (pvp == NULL) {
2650                         pdp_pindex = NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
2651                                      (pd_index >> NPML4EPGSHIFT);
2652                         pvp = pv_get(pv->pv_pmap, pdp_pindex);
2653                         gotpvp = 1;
2654                 }
2655                 if (pvp) {
2656                         pd = pv_pte_lookup(pvp, pd_index &
2657                                                 ((1ul << NPDPEPGSHIFT) - 1));
2658                         KKASSERT((*pd & pmap->pmap_bits[PG_V_IDX]) != 0);
2659                         p = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
2660                         pmap_inval_bulk(bulk, (vm_offset_t)-1, pd, 0);
2661                 } else {
2662                         KKASSERT(pmap->pm_flags & PMAP_FLAG_SIMPLE);
2663                         p = pv->pv_m;           /* degenerate test later */
2664                 }
2665         } else if (ptepindex >= pmap_pt_pindex(0)) {
2666                 /*
2667                  *  Remove a PT page from the pd
2668                  */
2669                 vm_pindex_t pd_pindex;
2670                 vm_pindex_t pt_index;
2671                 pd_entry_t *pt;
2672
2673                 pt_index = ptepindex - pmap_pt_pindex(0);
2674
2675                 if (pvp == NULL) {
2676                         pd_pindex = NUPTE_TOTAL + NUPT_TOTAL +
2677                                     (pt_index >> NPDPEPGSHIFT);
2678                         pvp = pv_get(pv->pv_pmap, pd_pindex);
2679                         KKASSERT(pvp);
2680                         gotpvp = 1;
2681                 }
2682                 pt = pv_pte_lookup(pvp, pt_index & ((1ul << NPDPEPGSHIFT) - 1));
2683                 KKASSERT((*pt & pmap->pmap_bits[PG_V_IDX]) != 0);
2684                 p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
2685                 pmap_inval_bulk(bulk, (vm_offset_t)-1, pt, 0);
2686         } else {
2687                 /*
2688                  * Remove a managed PTE from the PT page.  Userland pmaps
2689                  * manage PT/PD/PDP page tables pages but the kernel_pmap
2690                  * does not.
2691                  *
2692                  * NOTE: pv's must be locked bottom-up to avoid deadlocking.
2693                  *       pv is a pte_pv so we can safely lock pt_pv.
2694                  *
2695                  * NOTE: FICTITIOUS pages may have multiple physical mappings
2696                  *       so PHYS_TO_VM_PAGE() will not necessarily work for
2697                  *       terminal ptes.
2698                  */
2699                 vm_pindex_t pt_pindex;
2700                 pt_entry_t *ptep;
2701                 pt_entry_t pte;
2702                 vm_offset_t va;
2703
2704                 pt_pindex = ptepindex >> NPTEPGSHIFT;
2705                 va = (vm_offset_t)ptepindex << PAGE_SHIFT;
2706
2707                 if (ptepindex >= NUPTE_USER) {
2708                         ptep = vtopte(ptepindex << PAGE_SHIFT);
2709                         KKASSERT(pvp == NULL);
2710                         /* pvp remains NULL */
2711                 } else {
2712                         if (pvp == NULL) {
2713                                 pt_pindex = NUPTE_TOTAL +
2714                                             (ptepindex >> NPDPEPGSHIFT);
2715                                 pvp = pv_get(pv->pv_pmap, pt_pindex);
2716                                 KKASSERT(pvp);
2717                                 gotpvp = 1;
2718                         }
2719                         ptep = pv_pte_lookup(pvp, ptepindex &
2720                                                   ((1ul << NPDPEPGSHIFT) - 1));
2721                 }
2722                 pte = pmap_inval_bulk(bulk, va, ptep, 0);
2723                 if (bulk == NULL)               /* XXX */
2724                         cpu_invlpg((void *)va); /* XXX */
2725
2726                 /*
2727                  * Now update the vm_page_t
2728                  */
2729                 if ((pte & (pmap->pmap_bits[PG_MANAGED_IDX] |
2730                             pmap->pmap_bits[PG_V_IDX])) !=
2731                     (pmap->pmap_bits[PG_MANAGED_IDX] |
2732                      pmap->pmap_bits[PG_V_IDX])) {
2733                         kprintf("remove_pte badpte %016lx %016lx %d\n",
2734                                 pte, pv->pv_pindex,
2735                                 pv->pv_pindex < pmap_pt_pindex(0));
2736                 }
2737
2738                 /* PHYS_TO_VM_PAGE() will not work for FICTITIOUS pages */
2739                 /*KKASSERT((pte & (PG_MANAGED|PG_V)) == (PG_MANAGED|PG_V));*/
2740                 if (pte & pmap->pmap_bits[PG_DEVICE_IDX])
2741                         p = pv->pv_m;
2742                 else
2743                         p = PHYS_TO_VM_PAGE(pte & PG_FRAME);
2744                 /* p = pv->pv_m; */
2745
2746                 if (pte & pmap->pmap_bits[PG_M_IDX]) {
2747                         if (pmap_track_modified(ptepindex))
2748                                 vm_page_dirty(p);
2749                 }
2750                 if (pte & pmap->pmap_bits[PG_A_IDX]) {
2751                         vm_page_flag_set(p, PG_REFERENCED);
2752                 }
2753                 if (pte & pmap->pmap_bits[PG_W_IDX])
2754                         atomic_add_long(&pmap->pm_stats.wired_count, -1);
2755                 if (pte & pmap->pmap_bits[PG_G_IDX])
2756                         cpu_invlpg((void *)va);
2757         }
2758         KKASSERT(pv->pv_m == p);        /* XXX remove me later */
2759
2760         /*
2761          * If requested, scrap the underlying pv->pv_m and the underlying
2762          * pv.  If this is a page-table-page we must also free the page.
2763          *
2764          * pvp must be returned locked.
2765          */
2766         if (destroy == 1) {
2767                 /*
2768                  * page table page (PT, PD, PDP, PML4), caller was responsible
2769                  * for testing wired_count.
2770                  */
2771                 vm_page_t p;
2772
2773                 KKASSERT(pv->pv_m->wire_count == 1);
2774                 p = pmap_remove_pv_page(pv);
2775                 pv_free(pv, pvp, 1);
2776                 pv = NULL;
2777
2778                 KKASSERT(p->flags & (PG_FICTITIOUS|PG_UNMANAGED));
2779                 vm_page_busy_wait(p, FALSE, "pgpun");
2780                 vm_page_unwire(p, 0);
2781                 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
2782                 vm_page_free(p);
2783         } else if (destroy == 2) {
2784                 /*
2785                  * Normal page, remove from pmap and leave the underlying
2786                  * page untouched.
2787                  */
2788                 pmap_remove_pv_page(pv);
2789                 pv_free(pv, pvp, 1);
2790                 pv = NULL;              /* safety */
2791         }
2792
2793         /*
2794          * If we acquired pvp ourselves then we are responsible for
2795          * recursively deleting it.
2796          */
2797         if (pvp && gotpvp) {
2798                 /*
2799                  * Recursively destroy higher-level page tables.
2800                  *
2801                  * This is optional.  If we do not, they will still
2802                  * be destroyed when the process exits.
2803                  *
2804                  * NOTE: Do not destroy pv_entry's with extra hold refs,
2805                  *       a caller may have unlocked it and intends to
2806                  *       continue to use it.
2807                  */
2808                 if (pmap_dynamic_delete &&
2809                     pvp->pv_m &&
2810                     pvp->pv_m->wire_count == 1 &&
2811                     (pvp->pv_hold & PV_HOLD_MASK) == 2 &&
2812                     pvp->pv_pindex != pmap_pml4_pindex()) {
2813                         if (pmap_dynamic_delete == 2)
2814                                 kprintf("A %jd %08x\n", pvp->pv_pindex, pvp->pv_hold);
2815                         if (pmap != &kernel_pmap) {
2816                                 pmap_remove_pv_pte(pvp, NULL, bulk, 1);
2817                                 pvp = NULL;     /* safety */
2818                         } else {
2819                                 kprintf("Attempt to remove kernel_pmap pindex "
2820                                         "%jd\n", pvp->pv_pindex);
2821                                 pv_put(pvp);
2822                         }
2823                 } else {
2824                         pv_put(pvp);
2825                 }
2826         }
2827 }
2828
2829 /*
2830  * Remove the vm_page association to a pv.  The pv must be locked.
2831  */
2832 static
2833 vm_page_t
2834 pmap_remove_pv_page(pv_entry_t pv)
2835 {
2836         vm_page_t m;
2837
2838         m = pv->pv_m;
2839         KKASSERT(m);
2840         vm_page_spin_lock(m);
2841         pv->pv_m = NULL;
2842         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2843         pmap_page_stats_deleting(m);
2844         /*
2845         if (m->object)
2846                 atomic_add_int(&m->object->agg_pv_list_count, -1);
2847         */
2848         if (TAILQ_EMPTY(&m->md.pv_list))
2849                 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2850         vm_page_spin_unlock(m);
2851
2852         return(m);
2853 }
2854
2855 /*
2856  * Grow the number of kernel page table entries, if needed.
2857  *
2858  * This routine is always called to validate any address space
2859  * beyond KERNBASE (for kldloads).  kernel_vm_end only governs the address
2860  * space below KERNBASE.
2861  *
2862  * kernel_map must be locked exclusively by the caller.
2863  */
2864 void
2865 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
2866 {
2867         vm_paddr_t paddr;
2868         vm_offset_t ptppaddr;
2869         vm_page_t nkpg;
2870         pd_entry_t *pt, newpt;
2871         pdp_entry_t newpd;
2872         int update_kernel_vm_end;
2873
2874         /*
2875          * bootstrap kernel_vm_end on first real VM use
2876          */
2877         if (kernel_vm_end == 0) {
2878                 kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
2879                 nkpt = 0;
2880                 while ((*pmap_pt(&kernel_pmap, kernel_vm_end) & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
2881                         kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
2882                                         ~(PAGE_SIZE * NPTEPG - 1);
2883                         nkpt++;
2884                         if (kernel_vm_end - 1 >= kernel_map.max_offset) {
2885                                 kernel_vm_end = kernel_map.max_offset;
2886                                 break;                       
2887                         }
2888                 }
2889         }
2890
2891         /*
2892          * Fill in the gaps.  kernel_vm_end is only adjusted for ranges
2893          * below KERNBASE.  Ranges above KERNBASE are kldloaded and we
2894          * do not want to force-fill 128G worth of page tables.
2895          */
2896         if (kstart < KERNBASE) {
2897                 if (kstart > kernel_vm_end)
2898                         kstart = kernel_vm_end;
2899                 KKASSERT(kend <= KERNBASE);
2900                 update_kernel_vm_end = 1;
2901         } else {
2902                 update_kernel_vm_end = 0;
2903         }
2904
2905         kstart = rounddown2(kstart, PAGE_SIZE * NPTEPG);
2906         kend = roundup2(kend, PAGE_SIZE * NPTEPG);
2907
2908         if (kend - 1 >= kernel_map.max_offset)
2909                 kend = kernel_map.max_offset;
2910
2911         while (kstart < kend) {
2912                 pt = pmap_pt(&kernel_pmap, kstart);
2913                 if (pt == NULL) {
2914                         /* We need a new PD entry */
2915                         nkpg = vm_page_alloc(NULL, nkpt,
2916                                              VM_ALLOC_NORMAL |
2917                                              VM_ALLOC_SYSTEM |
2918                                              VM_ALLOC_INTERRUPT);
2919                         if (nkpg == NULL) {
2920                                 panic("pmap_growkernel: no memory to grow "
2921                                       "kernel");
2922                         }
2923                         paddr = VM_PAGE_TO_PHYS(nkpg);
2924                         pmap_zero_page(paddr);
2925                         newpd = (pdp_entry_t)
2926                             (paddr |
2927                             kernel_pmap.pmap_bits[PG_V_IDX] |
2928                             kernel_pmap.pmap_bits[PG_RW_IDX] |
2929                             kernel_pmap.pmap_bits[PG_A_IDX] |
2930                             kernel_pmap.pmap_bits[PG_M_IDX]);
2931                         *pmap_pd(&kernel_pmap, kstart) = newpd;
2932                         nkpt++;
2933                         continue; /* try again */
2934                 }
2935                 if ((*pt & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
2936                         kstart = (kstart + PAGE_SIZE * NPTEPG) &
2937                                  ~(PAGE_SIZE * NPTEPG - 1);
2938                         if (kstart - 1 >= kernel_map.max_offset) {
2939                                 kstart = kernel_map.max_offset;
2940                                 break;                       
2941                         }
2942                         continue;
2943                 }
2944
2945                 /*
2946                  * We need a new PT
2947                  *
2948                  * This index is bogus, but out of the way
2949                  */
2950                 nkpg = vm_page_alloc(NULL, nkpt,
2951                                      VM_ALLOC_NORMAL |
2952                                      VM_ALLOC_SYSTEM |
2953                                      VM_ALLOC_INTERRUPT);
2954                 if (nkpg == NULL)
2955                         panic("pmap_growkernel: no memory to grow kernel");
2956
2957                 vm_page_wire(nkpg);
2958                 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2959                 pmap_zero_page(ptppaddr);
2960                 newpt = (pd_entry_t) (ptppaddr |
2961                     kernel_pmap.pmap_bits[PG_V_IDX] |
2962                     kernel_pmap.pmap_bits[PG_RW_IDX] |
2963                     kernel_pmap.pmap_bits[PG_A_IDX] |
2964                     kernel_pmap.pmap_bits[PG_M_IDX]);
2965                 *pmap_pt(&kernel_pmap, kstart) = newpt;
2966                 nkpt++;
2967
2968                 kstart = (kstart + PAGE_SIZE * NPTEPG) &
2969                           ~(PAGE_SIZE * NPTEPG - 1);
2970
2971                 if (kstart - 1 >= kernel_map.max_offset) {
2972                         kstart = kernel_map.max_offset;
2973                         break;                       
2974                 }
2975         }
2976
2977         /*
2978          * Only update kernel_vm_end for areas below KERNBASE.
2979          */
2980         if (update_kernel_vm_end && kernel_vm_end < kstart)
2981                 kernel_vm_end = kstart;
2982 }
2983
2984 /*
2985  *      Add a reference to the specified pmap.
2986  */
2987 void
2988 pmap_reference(pmap_t pmap)
2989 {
2990         if (pmap != NULL) {
2991                 lwkt_gettoken(&pmap->pm_token);
2992                 ++pmap->pm_count;
2993                 lwkt_reltoken(&pmap->pm_token);
2994         }
2995 }
2996
2997 /***************************************************
2998  * page management routines.
2999  ***************************************************/
3000
3001 /*
3002  * Hold a pv without locking it
3003  */
3004 static void
3005 pv_hold(pv_entry_t pv)
3006 {
3007         atomic_add_int(&pv->pv_hold, 1);
3008 }
3009
3010 /*
3011  * Hold a pv_entry, preventing its destruction.  TRUE is returned if the pv
3012  * was successfully locked, FALSE if it wasn't.  The caller must dispose of
3013  * the pv properly.
3014  *
3015  * Either the pmap->pm_spin or the related vm_page_spin (if traversing a
3016  * pv list via its page) must be held by the caller.
3017  */
3018 static int
3019 _pv_hold_try(pv_entry_t pv PMAP_DEBUG_DECL)
3020 {
3021         u_int count;
3022
3023         /*
3024          * Critical path shortcut expects pv to already have one ref
3025          * (for the pv->pv_pmap).
3026          */
3027         if (atomic_cmpset_int(&pv->pv_hold, 1, PV_HOLD_LOCKED | 2)) {
3028 #ifdef PMAP_DEBUG
3029                 pv->pv_func = func;
3030                 pv->pv_line = lineno;
3031 #endif
3032                 return TRUE;
3033         }
3034
3035         for (;;) {
3036                 count = pv->pv_hold;
3037                 cpu_ccfence();
3038                 if ((count & PV_HOLD_LOCKED) == 0) {
3039                         if (atomic_cmpset_int(&pv->pv_hold, count,
3040                                               (count + 1) | PV_HOLD_LOCKED)) {
3041 #ifdef PMAP_DEBUG
3042                                 pv->pv_func = func;
3043                                 pv->pv_line = lineno;
3044 #endif
3045                                 return TRUE;
3046                         }
3047                 } else {
3048                         if (atomic_cmpset_int(&pv->pv_hold, count, count + 1))
3049                                 return FALSE;
3050                 }
3051                 /* retry */
3052         }
3053 }
3054
3055 /*
3056  * Drop a previously held pv_entry which could not be locked, allowing its
3057  * destruction.
3058  *
3059  * Must not be called with a spinlock held as we might zfree() the pv if it
3060  * is no longer associated with a pmap and this was the last hold count.
3061  */
3062 static void
3063 pv_drop(pv_entry_t pv)
3064 {
3065         u_int count;
3066
3067         for (;;) {
3068                 count = pv->pv_hold;
3069                 cpu_ccfence();
3070                 KKASSERT((count & PV_HOLD_MASK) > 0);
3071                 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) !=
3072                          (PV_HOLD_LOCKED | 1));
3073                 if (atomic_cmpset_int(&pv->pv_hold, count, count - 1)) {
3074                         if ((count & PV_HOLD_MASK) == 1) {
3075 #ifdef PMAP_DEBUG2
3076                                 if (pmap_enter_debug > 0) {
3077                                         --pmap_enter_debug;
3078                                         kprintf("pv_drop: free pv %p\n", pv);
3079                                 }
3080 #endif
3081                                 KKASSERT(count == 1);
3082                                 KKASSERT(pv->pv_pmap == NULL);
3083                                 zfree(pvzone, pv);
3084                         }
3085                         return;
3086                 }
3087                 /* retry */
3088         }
3089 }
3090
3091 /*
3092  * Find or allocate the requested PV entry, returning a locked, held pv.
3093  *
3094  * If (*isnew) is non-zero, the returned pv will have two hold counts, one
3095  * for the caller and one representing the pmap and vm_page association.
3096  *
3097  * If (*isnew) is zero, the returned pv will have only one hold count.
3098  *
3099  * Since both associations can only be adjusted while the pv is locked,
3100  * together they represent just one additional hold.
3101  */
3102 static
3103 pv_entry_t
3104 _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew PMAP_DEBUG_DECL)
3105 {
3106         pv_entry_t pv;
3107         pv_entry_t pnew = NULL;
3108
3109         spin_lock(&pmap->pm_spin);
3110         for (;;) {
3111                 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex) {
3112                         pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
3113                                                         pindex);
3114                 }
3115                 if (pv == NULL) {
3116                         if (pnew == NULL) {
3117                                 spin_unlock(&pmap->pm_spin);
3118                                 pnew = zalloc(pvzone);
3119                                 spin_lock(&pmap->pm_spin);
3120                                 continue;
3121                         }
3122                         pnew->pv_pmap = pmap;
3123                         pnew->pv_pindex = pindex;
3124                         pnew->pv_hold = PV_HOLD_LOCKED | 2;
3125 #ifdef PMAP_DEBUG
3126                         pnew->pv_func = func;
3127                         pnew->pv_line = lineno;
3128 #endif
3129                         pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pnew);
3130                         ++pmap->pm_generation;
3131                         atomic_add_long(&pmap->pm_stats.resident_count, 1);
3132                         spin_unlock(&pmap->pm_spin);
3133                         *isnew = 1;
3134                         return(pnew);
3135                 }
3136                 if (pnew) {
3137                         spin_unlock(&pmap->pm_spin);
3138                         zfree(pvzone, pnew);
3139                         pnew = NULL;
3140                         spin_lock(&pmap->pm_spin);
3141                         continue;
3142                 }
3143                 if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
3144                         spin_unlock(&pmap->pm_spin);
3145                 } else {
3146                         spin_unlock(&pmap->pm_spin);
3147                         _pv_lock(pv PMAP_DEBUG_COPY);
3148                 }
3149                 if (pv->pv_pmap == pmap && pv->pv_pindex == pindex) {
3150                         *isnew = 0;
3151                         return(pv);
3152                 }
3153                 pv_put(pv);
3154                 spin_lock(&pmap->pm_spin);
3155         }
3156 }
3157
3158 /*
3159  * Find the requested PV entry, returning a locked+held pv or NULL
3160  */
3161 static
3162 pv_entry_t
3163 _pv_get(pmap_t pmap, vm_pindex_t pindex PMAP_DEBUG_DECL)
3164 {
3165         pv_entry_t pv;
3166
3167         spin_lock(&pmap->pm_spin);
3168         for (;;) {
3169                 /*
3170                  * Shortcut cache
3171                  */
3172                 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex) {
3173                         pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
3174                                                         pindex);
3175                 }
3176                 if (pv == NULL) {
3177                         spin_unlock(&pmap->pm_spin);
3178                         return NULL;
3179                 }
3180                 if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
3181                         spin_unlock(&pmap->pm_spin);
3182                 } else {
3183                         spin_unlock(&pmap->pm_spin);
3184                         _pv_lock(pv PMAP_DEBUG_COPY);
3185                 }
3186                 if (pv->pv_pmap == pmap && pv->pv_pindex == pindex) {
3187                         pv_cache(pv, pindex);
3188                         return(pv);
3189                 }
3190                 pv_put(pv);
3191                 spin_lock(&pmap->pm_spin);
3192         }
3193 }
3194
3195 /*
3196  * Lookup, hold, and attempt to lock (pmap,pindex).
3197  *
3198  * If the entry does not exist NULL is returned and *errorp is set to 0
3199  *
3200  * If the entry exists and could be successfully locked it is returned and
3201  * errorp is set to 0.
3202  *
3203  * If the entry exists but could NOT be successfully locked it is returned
3204  * held and *errorp is set to 1.
3205  */
3206 static
3207 pv_entry_t
3208 pv_get_try(pmap_t pmap, vm_pindex_t pindex, int *errorp)
3209 {
3210         pv_entry_t pv;
3211
3212         spin_lock_shared(&pmap->pm_spin);
3213         if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex)
3214                 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
3215         if (pv == NULL) {
3216                 spin_unlock_shared(&pmap->pm_spin);
3217                 *errorp = 0;
3218                 return NULL;
3219         }
3220         if (pv_hold_try(pv)) {
3221                 pv_cache(pv, pindex);
3222                 spin_unlock_shared(&pmap->pm_spin);
3223                 *errorp = 0;
3224                 KKASSERT(pv->pv_pmap == pmap && pv->pv_pindex == pindex);
3225                 return(pv);     /* lock succeeded */
3226         }
3227         spin_unlock_shared(&pmap->pm_spin);
3228         *errorp = 1;
3229         return (pv);            /* lock failed */
3230 }
3231
3232 /*
3233  * Find the requested PV entry, returning a held pv or NULL
3234  */
3235 static
3236 pv_entry_t
3237 pv_find(pmap_t pmap, vm_pindex_t pindex)
3238 {
3239         pv_entry_t pv;
3240
3241         spin_lock_shared(&pmap->pm_spin);
3242
3243         if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex)
3244                 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
3245         if (pv == NULL) {
3246                 spin_unlock_shared(&pmap->pm_spin);
3247                 return NULL;
3248         }
3249         pv_hold(pv);
3250         pv_cache(pv, pindex);
3251         spin_unlock_shared(&pmap->pm_spin);
3252         return(pv);
3253 }
3254
3255 /*
3256  * Lock a held pv, keeping the hold count
3257  */
3258 static
3259 void
3260 _pv_lock(pv_entry_t pv PMAP_DEBUG_DECL)
3261 {
3262         u_int count;
3263
3264         for (;;) {
3265                 count = pv->pv_hold;
3266                 cpu_ccfence();
3267                 if ((count & PV_HOLD_LOCKED) == 0) {
3268                         if (atomic_cmpset_int(&pv->pv_hold, count,
3269                                               count | PV_HOLD_LOCKED)) {
3270 #ifdef PMAP_DEBUG
3271                                 pv->pv_func = func;
3272                                 pv->pv_line = lineno;
3273 #endif
3274                                 return;
3275                         }
3276                         continue;
3277                 }
3278                 tsleep_interlock(pv, 0);
3279                 if (atomic_cmpset_int(&pv->pv_hold, count,
3280                                       count | PV_HOLD_WAITING)) {
3281 #ifdef PMAP_DEBUG
3282                         kprintf("pv waiting on %s:%d\n",
3283                                         pv->pv_func, pv->pv_line);
3284 #endif
3285                         tsleep(pv, PINTERLOCKED, "pvwait", hz);
3286                 }
3287                 /* retry */
3288         }
3289 }
3290
3291 /*
3292  * Unlock a held and locked pv, keeping the hold count.
3293  */
3294 static
3295 void
3296 pv_unlock(pv_entry_t pv)
3297 {
3298         u_int count;
3299
3300         for (;;) {
3301                 count = pv->pv_hold;
3302                 cpu_ccfence();
3303                 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) >=
3304                          (PV_HOLD_LOCKED | 1));
3305                 if (atomic_cmpset_int(&pv->pv_hold, count,
3306                                       count &
3307                                       ~(PV_HOLD_LOCKED | PV_HOLD_WAITING))) {
3308                         if (count & PV_HOLD_WAITING)
3309                                 wakeup(pv);
3310                         break;
3311                 }
3312         }
3313 }
3314
3315 /*
3316  * Unlock and drop a pv.  If the pv is no longer associated with a pmap
3317  * and the hold count drops to zero we will free it.
3318  *
3319  * Caller should not hold any spin locks.  We are protected from hold races
3320  * by virtue of holds only occuring only with a pmap_spin or vm_page_spin
3321  * lock held.  A pv cannot be located otherwise.
3322  */
3323 static
3324 void
3325 pv_put(pv_entry_t pv)
3326 {
3327 #ifdef PMAP_DEBUG2
3328         if (pmap_enter_debug > 0) {
3329                 --pmap_enter_debug;
3330                 kprintf("pv_put pv=%p hold=%08x\n", pv, pv->pv_hold);
3331         }
3332 #endif
3333
3334         /*
3335          * Fast - shortcut most common condition
3336          */
3337         if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 1))
3338                 return;
3339
3340         /*
3341          * Slow
3342          */
3343         pv_unlock(pv);
3344         pv_drop(pv);
3345 }
3346
3347 /*
3348  * Remove the pmap association from a pv, require that pv_m already be removed,
3349  * then unlock and drop the pv.  Any pte operations must have already been
3350  * completed.  This call may result in a last-drop which will physically free
3351  * the pv.
3352  *
3353  * Removing the pmap association entails an additional drop.
3354  *
3355  * pv must be exclusively locked on call and will be disposed of on return.
3356  */
3357 static
3358 void
3359 pv_free(pv_entry_t pv, pv_entry_t pvp, int putaway)
3360 {
3361         pmap_t pmap;
3362
3363         KKASSERT(pv->pv_m == NULL);
3364         KKASSERT((pv->pv_hold & PV_HOLD_MASK) >= 2);
3365         if ((pmap = pv->pv_pmap) != NULL) {
3366                 spin_lock(&pmap->pm_spin);
3367                 pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
3368                 ++pmap->pm_generation;
3369                 if (pmap->pm_pvhint == pv)
3370                         pmap->pm_pvhint = NULL;
3371                 atomic_add_long(&pmap->pm_stats.resident_count, -1);
3372                 pv->pv_pmap = NULL;
3373                 pv->pv_pindex = 0;
3374                 spin_unlock(&pmap->pm_spin);
3375
3376                 /*
3377                  * Try to shortcut three atomic ops, otherwise fall through
3378                  * and do it normally.  Drop two refs and the lock all in
3379                  * one go.
3380                  */
3381                 if (putaway &&
3382                     atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 0)) {
3383 #ifdef PMAP_DEBUG2
3384                         if (pmap_enter_debug > 0) {
3385                                 --pmap_enter_debug;
3386                                 kprintf("pv_free: free pv %p\n", pv);
3387                         }
3388 #endif
3389                         zfree(pvzone, pv);
3390                         if (pvp)
3391                                 vm_page_unwire_quick(pvp->pv_m);
3392                         return;
3393                 }
3394                 pv_drop(pv);    /* ref for pv_pmap */
3395         }
3396         if (putaway)
3397                 pv_put(pv);
3398         if (pvp)
3399                 vm_page_unwire_quick(pvp->pv_m);
3400 }
3401
3402 /*
3403  * This routine is very drastic, but can save the system
3404  * in a pinch.
3405  */
3406 void
3407 pmap_collect(void)
3408 {
3409         int i;
3410         vm_page_t m;
3411         static int warningdone=0;
3412
3413         if (pmap_pagedaemon_waken == 0)
3414                 return;
3415         pmap_pagedaemon_waken = 0;
3416         if (warningdone < 5) {
3417                 kprintf("pmap_collect: collecting pv entries -- "
3418                         "suggest increasing PMAP_SHPGPERPROC\n");
3419                 warningdone++;
3420         }
3421
3422         for (i = 0; i < vm_page_array_size; i++) {
3423                 m = &vm_page_array[i];
3424                 if (m->wire_count || m->hold_count)
3425                         continue;
3426                 if (vm_page_busy_try(m, TRUE) == 0) {
3427                         if (m->wire_count == 0 && m->hold_count == 0) {
3428                                 pmap_remove_all(m);
3429                         }
3430                         vm_page_wakeup(m);
3431                 }
3432         }
3433 }
3434
3435 /*
3436  * Scan the pmap for active page table entries and issue a callback.
3437  * The callback must dispose of pte_pv, whos PTE entry is at *ptep in
3438  * its parent page table.
3439  *
3440  * pte_pv will be NULL if the page or page table is unmanaged.
3441  * pt_pv will point to the page table page containing the pte for the page.
3442  *
3443  * NOTE! If we come across an unmanaged page TABLE (verses an unmanaged page),
3444  *       we pass a NULL pte_pv and we pass a pt_pv pointing to the passed
3445  *       process pmap's PD and page to the callback function.  This can be
3446  *       confusing because the pt_pv is really a pd_pv, and the target page
3447  *       table page is simply aliased by the pmap and not owned by it.
3448  *
3449  * It is assumed that the start and end are properly rounded to the page size.
3450  *
3451  * It is assumed that PD pages and above are managed and thus in the RB tree,
3452  * allowing us to use RB_SCAN from the PD pages down for ranged scans.
3453  */
3454 struct pmap_scan_info {
3455         struct pmap *pmap;
3456         vm_offset_t sva;
3457         vm_offset_t eva;
3458         vm_pindex_t sva_pd_pindex;
3459         vm_pindex_t eva_pd_pindex;
3460         void (*func)(pmap_t, struct pmap_scan_info *,
3461                      pv_entry_t, pv_entry_t, int, vm_offset_t,
3462                      pt_entry_t *, void *);
3463         void *arg;
3464         pmap_inval_bulk_t bulk_core;
3465         pmap_inval_bulk_t *bulk;
3466         int count;
3467         int stop;
3468 };
3469
3470 static int pmap_scan_cmp(pv_entry_t pv, void *data);
3471 static int pmap_scan_callback(pv_entry_t pv, void *data);
3472
3473 static void
3474 pmap_scan(struct pmap_scan_info *info, int smp_inval)
3475 {
3476         struct pmap *pmap = info->pmap;
3477         pv_entry_t pd_pv;       /* A page directory PV */
3478         pv_entry_t pt_pv;       /* A page table PV */
3479         pv_entry_t pte_pv;      /* A page table entry PV */
3480         pt_entry_t *ptep;
3481         pt_entry_t oldpte;
3482         struct pv_entry dummy_pv;
3483         int generation;
3484
3485         info->stop = 0;
3486         if (pmap == NULL)
3487                 return;
3488         if (smp_inval) {
3489                 info->bulk = &info->bulk_core;
3490                 pmap_inval_bulk_init(&info->bulk_core, pmap);
3491         } else {
3492                 info->bulk = NULL;
3493         }
3494
3495         /*
3496          * Hold the token for stability; if the pmap is empty we have nothing
3497          * to do.
3498          */
3499         lwkt_gettoken(&pmap->pm_token);
3500 #if 0
3501         if (pmap->pm_stats.resident_count == 0) {
3502                 lwkt_reltoken(&pmap->pm_token);
3503                 return;
3504         }
3505 #endif
3506
3507         info->count = 0;
3508
3509 again:
3510         /*
3511          * Special handling for scanning one page, which is a very common
3512          * operation (it is?).
3513          *
3514          * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4
3515          */
3516         if (info->sva + PAGE_SIZE == info->eva) {
3517                 generation = pmap->pm_generation;
3518                 if (info->sva >= VM_MAX_USER_ADDRESS) {
3519                         /*
3520                          * Kernel mappings do not track wire counts on
3521                          * page table pages and only maintain pd_pv and
3522                          * pte_pv levels so pmap_scan() works.
3523                          */
3524                         pt_pv = NULL;
3525                         pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva));
3526                         ptep = vtopte(info->sva);
3527                 } else {
3528                         /*
3529                          * User pages which are unmanaged will not have a
3530                          * pte_pv.  User page table pages which are unmanaged
3531                          * (shared from elsewhere) will also not have a pt_pv.
3532                          * The func() callback will pass both pte_pv and pt_pv
3533                          * as NULL in that case.
3534                          */
3535                         pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva));
3536                         pt_pv = pv_get(pmap, pmap_pt_pindex(info->sva));
3537                         if (pt_pv == NULL) {
3538                                 KKASSERT(pte_pv == NULL);
3539                                 pd_pv = pv_get(pmap, pmap_pd_pindex(info->sva));
3540                                 if (pd_pv) {
3541                                         ptep = pv_pte_lookup(pd_pv,
3542                                                     pmap_pt_index(info->sva));
3543                                         if (*ptep) {
3544                                                 info->func(pmap, info,
3545                                                      NULL, pd_pv, 1,
3546                                                      info->sva, ptep,
3547                                                      info->arg);
3548                                         }
3549                                         pv_put(pd_pv);
3550                                 }
3551                                 goto fast_skip;
3552                         }
3553                         ptep = pv_pte_lookup(pt_pv, pmap_pte_index(info->sva));
3554                 }
3555
3556                 /*
3557                  * NOTE: *ptep can't be ripped out from under us if we hold
3558                  *       pte_pv locked, but bits can change.  However, there is
3559                  *       a race where another thread may be inserting pte_pv
3560                  *       and setting *ptep just after our pte_pv lookup fails.
3561                  *
3562                  *       In this situation we can end up with a NULL pte_pv
3563                  *       but find that we have a managed *ptep.  We explicitly
3564                  *       check for this race.
3565                  */
3566                 oldpte = *ptep;
3567                 cpu_ccfence();
3568                 if (oldpte == 0) {
3569                         /*
3570                          * Unlike the pv_find() case below we actually
3571                          * acquired a locked pv in this case so any
3572                          * race should have been resolved.  It is expected
3573                          * to not exist.
3574                          */
3575                         KKASSERT(pte_pv == NULL);
3576                 } else if (pte_pv) {
3577                         KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3578                                            pmap->pmap_bits[PG_V_IDX])) ==
3579                                 (pmap->pmap_bits[PG_MANAGED_IDX] |
3580                                  pmap->pmap_bits[PG_V_IDX]),
3581                             ("badA *ptep %016lx/%016lx sva %016lx pte_pv %p"
3582                              "generation %d/%d",
3583                             *ptep, oldpte, info->sva, pte_pv,
3584                             generation, pmap->pm_generation));
3585                         info->func(pmap, info, pte_pv, pt_pv, 0,
3586                                    info->sva, ptep, info->arg);
3587                 } else {
3588                         /*
3589                          * Check for insertion race
3590                          */
3591                         if ((oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) &&
3592                             pt_pv) {
3593                                 pte_pv = pv_find(pmap,
3594                                                  pmap_pte_pindex(info->sva));
3595                                 if (pte_pv) {
3596                                         pv_drop(pte_pv);
3597                                         pv_put(pt_pv);
3598                                         kprintf("pmap_scan: RACE1 "
3599                                                 "%016jx, %016lx\n",
3600                                                 info->sva, oldpte);
3601                                         goto again;
3602                                 }
3603                         }
3604
3605                         /*
3606                          * Didn't race
3607                          */
3608                         KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3609                                            pmap->pmap_bits[PG_V_IDX])) ==
3610                             pmap->pmap_bits[PG_V_IDX],
3611                             ("badB *ptep %016lx/%016lx sva %016lx pte_pv NULL"
3612                              "generation %d/%d",
3613                             *ptep, oldpte, info->sva,
3614                             generation, pmap->pm_generation));
3615                         info->func(pmap, info, NULL, pt_pv, 0,
3616                             info->sva, ptep, info->arg);
3617                 }
3618                 if (pt_pv)
3619                         pv_put(pt_pv);
3620 fast_skip:
3621                 pmap_inval_bulk_flush(info->bulk);
3622                 lwkt_reltoken(&pmap->pm_token);
3623                 return;
3624         }
3625
3626         /*
3627          * Nominal scan case, RB_SCAN() for PD pages and iterate from
3628          * there.
3629          */
3630         info->sva_pd_pindex = pmap_pd_pindex(info->sva);
3631         info->eva_pd_pindex = pmap_pd_pindex(info->eva + NBPDP - 1);
3632
3633         if (info->sva >= VM_MAX_USER_ADDRESS) {
3634                 /*
3635                  * The kernel does not currently maintain any pv_entry's for
3636                  * higher-level page tables.
3637                  */
3638                 bzero(&dummy_pv, sizeof(dummy_pv));
3639                 dummy_pv.pv_pindex = info->sva_pd_pindex;
3640                 spin_lock(&pmap->pm_spin);
3641                 while (dummy_pv.pv_pindex < info->eva_pd_pindex) {
3642                         pmap_scan_callback(&dummy_pv, info);
3643                         ++dummy_pv.pv_pindex;
3644                 }
3645                 spin_unlock(&pmap->pm_spin);
3646         } else {
3647                 /*
3648                  * User page tables maintain local PML4, PDP, and PD
3649                  * pv_entry's at the very least.  PT pv's might be
3650                  * unmanaged and thus not exist.  PTE pv's might be
3651                  * unmanaged and thus not exist.
3652                  */
3653                 spin_lock(&pmap->pm_spin);
3654                 pv_entry_rb_tree_RB_SCAN(&pmap->pm_pvroot,
3655                         pmap_scan_cmp, pmap_scan_callback, info);
3656                 spin_unlock(&pmap->pm_spin);
3657         }
3658         pmap_inval_bulk_flush(info->bulk);
3659         lwkt_reltoken(&pmap->pm_token);
3660 }
3661
3662 /*
3663  * WARNING! pmap->pm_spin held
3664  */
3665 static int
3666 pmap_scan_cmp(pv_entry_t pv, void *data)
3667 {
3668         struct pmap_scan_info *info = data;
3669         if (pv->pv_pindex < info->sva_pd_pindex)
3670                 return(-1);
3671         if (pv->pv_pindex >= info->eva_pd_pindex)
3672                 return(1);
3673         return(0);
3674 }
3675
3676 /*
3677  * WARNING! pmap->pm_spin held
3678  */
3679 static int
3680 pmap_scan_callback(pv_entry_t pv, void *data)
3681 {
3682         struct pmap_scan_info *info = data;
3683         struct pmap *pmap = info->pmap;
3684         pv_entry_t pd_pv;       /* A page directory PV */
3685         pv_entry_t pt_pv;       /* A page table PV */
3686         pv_entry_t pte_pv;      /* A page table entry PV */
3687         pt_entry_t *ptep;
3688         pt_entry_t oldpte;
3689         vm_offset_t sva;
3690         vm_offset_t eva;
3691         vm_offset_t va_next;
3692         vm_pindex_t pd_pindex;
3693         int error;
3694         int generation;
3695
3696         /*
3697          * Stop if requested
3698          */
3699         if (info->stop)
3700                 return -1;
3701
3702         /*
3703          * Pull the PD pindex from the pv before releasing the spinlock.
3704          *
3705          * WARNING: pv is faked for kernel pmap scans.
3706          */
3707         pd_pindex = pv->pv_pindex;
3708         spin_unlock(&pmap->pm_spin);
3709         pv = NULL;      /* invalid after spinlock unlocked */
3710
3711         /*
3712          * Calculate the page range within the PD.  SIMPLE pmaps are
3713          * direct-mapped for the entire 2^64 address space.  Normal pmaps
3714          * reflect the user and kernel address space which requires
3715          * cannonicalization w/regards to converting pd_pindex's back
3716          * into addresses.
3717          */
3718         sva = (pd_pindex - NUPTE_TOTAL - NUPT_TOTAL) << PDPSHIFT;
3719         if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0 &&
3720             (sva & PML4_SIGNMASK)) {
3721                 sva |= PML4_SIGNMASK;
3722         }
3723         eva = sva + NBPDP;      /* can overflow */
3724         if (sva < info->sva)
3725                 sva = info->sva;
3726         if (eva < info->sva || eva > info->eva)
3727                 eva = info->eva;
3728
3729         /*
3730          * NOTE: kernel mappings do not track page table pages, only
3731          *       terminal pages.
3732          *
3733          * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4.
3734          *       However, for the scan to be efficient we try to
3735          *       cache items top-down.
3736          */
3737         pd_pv = NULL;
3738         pt_pv = NULL;
3739
3740         for (; sva < eva; sva = va_next) {
3741                 if (info->stop)
3742                         break;
3743                 if (sva >= VM_MAX_USER_ADDRESS) {
3744                         if (pt_pv) {
3745                                 pv_put(pt_pv);
3746                                 pt_pv = NULL;
3747                         }
3748                         goto kernel_skip;
3749                 }
3750
3751                 /*
3752                  * PD cache (degenerate case if we skip).  It is possible
3753                  * for the PD to not exist due to races.  This is ok.
3754                  */
3755                 if (pd_pv == NULL) {
3756                         pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3757                 } else if (pd_pv->pv_pindex != pmap_pd_pindex(sva)) {
3758                         pv_put(pd_pv);
3759                         pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3760                 }
3761                 if (pd_pv == NULL) {
3762                         va_next = (sva + NBPDP) & ~PDPMASK;
3763                         if (va_next < sva)
3764                                 va_next = eva;
3765                         continue;
3766                 }
3767
3768                 /*
3769                  * PT cache
3770                  */
3771                 if (pt_pv == NULL) {
3772                         vm_page_wire_quick(pd_pv->pv_m);
3773                         pv_unlock(pd_pv);
3774                         pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
3775                         pv_lock(pd_pv);
3776                         vm_page_unwire_quick(pd_pv->pv_m);
3777                 } else if (pt_pv->pv_pindex != pmap_pt_pindex(sva)) {
3778                         vm_page_wire_quick(pd_pv->pv_m);
3779                         pv_unlock(pd_pv);
3780                         pv_put(pt_pv);
3781                         pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
3782                         pv_lock(pd_pv);
3783                         vm_page_unwire_quick(pd_pv->pv_m);
3784                 }
3785
3786                 /*
3787                  * If pt_pv is NULL we either have an shared page table
3788                  * page and must issue a callback specific to that case,
3789                  * or there is no page table page.
3790                  *
3791                  * Either way we can skip the page table page.
3792                  */
3793                 if (pt_pv == NULL) {
3794                         /*
3795                          * Possible unmanaged (shared from another pmap)
3796                          * page table page.
3797                          */
3798                         ptep = pv_pte_lookup(pd_pv, pmap_pt_index(sva));
3799                         if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
3800                                 info->func(pmap, info, NULL, pd_pv, 1,
3801                                            sva, ptep, info->arg);
3802                         }
3803
3804                         /*
3805                          * Done, move to next page table page.
3806                          */
3807                         va_next = (sva + NBPDR) & ~PDRMASK;
3808                         if (va_next < sva)
3809                                 va_next = eva;
3810                         continue;
3811                 }
3812
3813                 /*
3814                  * From this point in the loop testing pt_pv for non-NULL
3815                  * means we are in UVM, else if it is NULL we are in KVM.
3816                  *
3817                  * Limit our scan to either the end of the va represented
3818                  * by the current page table page, or to the end of the
3819                  * range being removed.
3820                  */
3821 kernel_skip:
3822                 va_next = (sva + NBPDR) & ~PDRMASK;
3823                 if (va_next < sva)
3824                         va_next = eva;
3825                 if (va_next > eva)
3826                         va_next = eva;
3827
3828                 /*
3829                  * Scan the page table for pages.  Some pages may not be
3830                  * managed (might not have a pv_entry).
3831                  *
3832                  * There is no page table management for kernel pages so
3833                  * pt_pv will be NULL in that case, but otherwise pt_pv
3834                  * is non-NULL, locked, and referenced.
3835                  */
3836
3837                 /*
3838                  * At this point a non-NULL pt_pv means a UVA, and a NULL
3839                  * pt_pv means a KVA.
3840                  */
3841                 if (pt_pv)
3842                         ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
3843                 else
3844                         ptep = vtopte(sva);
3845
3846                 while (sva < va_next) {
3847                         /*
3848                          * Yield every 64 pages, stop if requested.
3849                          */
3850                         if ((++info->count & 63) == 0)
3851                                 lwkt_user_yield();
3852                         if (info->stop)
3853                                 break;
3854
3855                         /*
3856                          * Check if pt_pv has been lost (probably due to
3857                          * a remove of the underlying pages).
3858                          */
3859                         if (pt_pv && pt_pv->pv_pmap == NULL)
3860                                 break;
3861
3862                         /*
3863                          * Acquire the related pte_pv, if any.  If *ptep == 0
3864                          * the related pte_pv should not exist, but if *ptep
3865                          * is not zero the pte_pv may or may not exist (e.g.
3866                          * will not exist for an unmanaged page).
3867                          *
3868                          * However a multitude of races are possible here.
3869                          *
3870                          * In addition, the (pt_pv, pte_pv) lock order is
3871                          * backwards, so we have to be careful in aquiring
3872                          * a properly locked pte_pv.
3873                          */
3874                         generation = pmap->pm_generation;
3875                         if (pt_pv) {
3876                                 pte_pv = pv_get_try(pmap, pmap_pte_pindex(sva),
3877                                                     &error);
3878                                 if (error) {
3879                                         if (pd_pv) {
3880                                                 vm_page_wire_quick(pd_pv->pv_m);
3881                                                 pv_unlock(pd_pv);
3882                                         }
3883                                         vm_page_wire_quick(pt_pv->pv_m);
3884                                         pv_unlock(pt_pv);/* must be non-NULL */
3885                                         pv_lock(pte_pv); /* safe to block now */
3886                                         pv_put(pte_pv);
3887                                         pte_pv = NULL;
3888                                         pv_lock(pt_pv);
3889                                         vm_page_unwire_quick(pt_pv->pv_m);
3890
3891                                         /*
3892                                          * pt_pv reloaded, need new ptep
3893                                          */
3894                                         KKASSERT(pt_pv != NULL);
3895                                         ptep = pv_pte_lookup(pt_pv,
3896                                                         pmap_pte_index(sva));
3897                                         if (pd_pv) {
3898                                                 pv_lock(pd_pv);
3899                                                 vm_page_unwire_quick(pd_pv->pv_m);
3900                                         }
3901                                         continue;
3902                                 }
3903                         } else {
3904                                 pte_pv = pv_get(pmap, pmap_pte_pindex(sva));
3905                         }
3906
3907                         /*
3908                          * Ok, if *ptep == 0 we had better NOT have a pte_pv.
3909                          */
3910                         oldpte = *ptep;
3911                         if (oldpte == 0) {
3912                                 if (pte_pv) {
3913                                         kprintf("Unexpected non-NULL pte_pv "
3914                                                 "%p pt_pv %p "
3915                                                 "*ptep = %016lx/%016lx\n",
3916                                                 pte_pv, pt_pv, *ptep, oldpte);
3917                                         panic("Unexpected non-NULL pte_pv");
3918                                 }
3919                                 sva += PAGE_SIZE;
3920                                 ++ptep;
3921                                 continue;
3922                         }
3923
3924                         /*
3925                          * Ready for the callback.  The locked pte_pv (if any)
3926                          * is consumed by the callback.  pte_pv will exist if
3927                          * the page is managed, and will not exist if it
3928                          * isn't.
3929                          */
3930                         if (pte_pv) {
3931                                 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX])) ==
3932                                     (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX]),
3933                                     ("badC *ptep %016lx/%016lx sva %016lx "
3934                                     "pte_pv %p pm_generation %d/%d",
3935                                     *ptep, oldpte, sva, pte_pv,
3936                                     generation, pmap->pm_generation));
3937                                 /*
3938                                  * We must unlock pd_pv across the callback
3939                                  * to avoid deadlocks on any recursive
3940                                  * disposal.  Re-check that it still exists
3941                                  * after re-locking.
3942                                  */
3943                                 if (pd_pv)
3944                                         pv_unlock(pd_pv);
3945                                 info->func(pmap, info, pte_pv, pt_pv, 0,
3946                                            sva, ptep, info->arg);
3947                                 if (pd_pv) {
3948                                         pv_lock(pd_pv);
3949                                         if (pd_pv->pv_pmap == NULL) {
3950                                                 pv_put(pd_pv);
3951                                                 pd_pv = NULL;
3952                                         }
3953                                 }
3954                         } else {
3955                                 /*
3956                                  * Check for insertion race.  Since there is no
3957                                  * pte_pv to guard us it is possible for us
3958                                  * to race another thread doing an insertion.
3959                                  * Our lookup misses the pte_pv but our *ptep
3960                                  * check sees the inserted pte.
3961                                  *
3962                                  * XXX panic case seems to occur within a
3963                                  * vm_fork() of /bin/sh, which frankly
3964                                  * shouldn't happen since no other threads
3965                                  * should be inserting to our pmap in that
3966                                  * situation.  Removing, possibly.  Inserting,
3967                                  * shouldn't happen.
3968                                  */
3969                                 if ((oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) &&
3970                                     pt_pv) {
3971                                         pte_pv = pv_find(pmap,
3972                                                          pmap_pte_pindex(sva));
3973                                         if (pte_pv) {
3974                                                 pv_drop(pte_pv);
3975                                                 kprintf("pmap_scan: RACE2 "
3976                                                         "%016jx, %016lx\n",
3977                                                         sva, oldpte);
3978                                                 continue;
3979                                         }
3980                                 }
3981
3982                                 /*
3983                                  * Didn't race
3984                                  *
3985                                  * We must unlock pd_pv across the callback
3986                                  * to avoid deadlocks on any recursive
3987                                  * disposal.  Re-check that it still exists
3988                                  * after re-locking.
3989                                  */
3990                                 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX])) ==
3991                                     pmap->pmap_bits[PG_V_IDX],
3992                                     ("badD *ptep %016lx/%016lx sva %016lx "
3993                                     "pte_pv NULL pm_generation %d/%d",
3994                                      *ptep, oldpte, sva,
3995                                      generation, pmap->pm_generation));
3996                                 if (pd_pv)
3997                                         pv_unlock(pd_pv);
3998                                 info->func(pmap, info, NULL, pt_pv, 0,
3999                                            sva, ptep, info->arg);
4000                                 if (pd_pv) {
4001                                         pv_lock(pd_pv);
4002                                         if (pd_pv->pv_pmap == NULL) {
4003                                                 pv_put(pd_pv);
4004                                                 pd_pv = NULL;
4005                                         }
4006                                 }
4007                         }
4008                         pte_pv = NULL;
4009                         sva += PAGE_SIZE;
4010                         ++ptep;
4011                 }
4012         }
4013         if (pd_pv) {
4014                 pv_put(pd_pv);
4015                 pd_pv = NULL;
4016         }
4017         if (pt_pv) {
4018                 pv_put(pt_pv);
4019                 pt_pv = NULL;
4020         }
4021         if ((++info->count & 7) == 0)
4022                 lwkt_user_yield();
4023
4024         /*
4025          * Relock before returning.
4026          */
4027         spin_lock(&pmap->pm_spin);
4028         return (0);
4029 }
4030
4031 void
4032 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4033 {
4034         struct pmap_scan_info info;
4035
4036         info.pmap = pmap;
4037         info.sva = sva;
4038         info.eva = eva;
4039         info.func = pmap_remove_callback;
4040         info.arg = NULL;
4041         pmap_scan(&info, 1);
4042 }
4043
4044 static void
4045 pmap_remove_noinval(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4046 {
4047         struct pmap_scan_info info;
4048
4049         info.pmap = pmap;
4050         info.sva = sva;
4051         info.eva = eva;
4052         info.func = pmap_remove_callback;
4053         info.arg = NULL;
4054         pmap_scan(&info, 0);
4055 }
4056
4057 static void
4058 pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
4059                      pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
4060                      vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
4061 {
4062         pt_entry_t pte;
4063
4064         if (pte_pv) {
4065                 /*
4066                  * This will also drop pt_pv's wire_count. Note that
4067                  * terminal pages are not wired based on mmu presence.
4068                  *
4069                  * NOTE: If this is the kernel_pmap, pt_pv can be NULL.
4070                  */
4071                 pmap_remove_pv_pte(pte_pv, pt_pv, info->bulk, 2);
4072                 pte_pv = NULL;  /* safety */
4073
4074                 /*
4075                  * Recursively destroy higher-level page tables.
4076                  *
4077                  * This is optional.  If we do not, they will still
4078                  * be destroyed when the process exits.
4079                  *
4080                  * NOTE: Do not destroy pv_entry's with extra hold refs,
4081                  *       a caller may have unlocked it and intends to
4082                  *       continue to use it.
4083                  */
4084                 if (pmap_dynamic_delete &&
4085                     pt_pv &&
4086                     pt_pv->pv_m &&
4087                     pt_pv->pv_m->wire_count == 1 &&
4088                     (pt_pv->pv_hold & PV_HOLD_MASK) == 2 &&
4089                     pt_pv->pv_pindex != pmap_pml4_pindex()) {
4090                         if (pmap_dynamic_delete == 2)
4091                                 kprintf("B %jd %08x\n", pt_pv->pv_pindex, pt_pv->pv_hold);
4092                         pv_hold(pt_pv);
4093                         pmap_remove_pv_pte(pt_pv, NULL, info->bulk, 1);
4094                         pv_lock(pt_pv);
4095                 }
4096         } else if (sharept == 0) {
4097                 /*
4098                  * Unmanaged page table (pt, pd, or pdp. Not pte).
4099                  *
4100                  * pt_pv's wire_count is still bumped by unmanaged pages
4101                  * so we must decrement it manually.
4102                  *
4103                  * We have to unwire the target page table page.
4104                  *
4105                  * It is unclear how we can invalidate a segment so we
4106                  * invalidate -1 which invlidates the tlb.
4107                  */
4108                 pte = pmap_inval_bulk(info->bulk, (vm_offset_t)-1, ptep, 0);
4109                 if (pte & pmap->pmap_bits[PG_W_IDX])
4110                         atomic_add_long(&pmap->pm_stats.wired_count, -1);
4111                 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4112                 if (vm_page_unwire_quick(pt_pv->pv_m))
4113                         panic("pmap_remove: insufficient wirecount");
4114         } else {
4115                 /*
4116                  * Unmanaged page table (pt, pd, or pdp. Not pte) for
4117                  * a shared page table.
4118                  *
4119                  * pt_pv is actually the pd_pv for our pmap (not the shared
4120                  * object pmap).
4121                  *
4122                  * We have to unwire the target page table page and we
4123                  * have to unwire our page directory page.
4124                  *
4125                  * It is unclear how we can invalidate a segment so we
4126                  * invalidate -1 which invlidates the tlb.
4127                  */
4128                 pte = pmap_inval_bulk(info->bulk, (vm_offset_t)-1, ptep, 0);
4129                 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4130                 KKASSERT((pte & pmap->pmap_bits[PG_DEVICE_IDX]) == 0);
4131                 if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
4132                         panic("pmap_remove: shared pgtable1 bad wirecount");
4133                 if (vm_page_unwire_quick(pt_pv->pv_m))
4134                         panic("pmap_remove: shared pgtable2 bad wirecount");
4135         }
4136 }
4137
4138 /*
4139  * Removes this physical page from all physical maps in which it resides.
4140  * Reflects back modify bits to the pager.
4141  *
4142  * This routine may not be called from an interrupt.
4143  */
4144 static
4145 void
4146 pmap_remove_all(vm_page_t m)
4147 {
4148         pv_entry_t pv;
4149         pmap_inval_bulk_t bulk;
4150
4151         if (!pmap_initialized /* || (m->flags & PG_FICTITIOUS)*/)
4152                 return;
4153
4154         vm_page_spin_lock(m);
4155         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4156                 KKASSERT(pv->pv_m == m);
4157                 if (pv_hold_try(pv)) {
4158                         vm_page_spin_unlock(m);
4159                 } else {
4160                         vm_page_spin_unlock(m);
4161                         pv_lock(pv);
4162                 }
4163                 if (pv->pv_m != m) {
4164                         pv_put(pv);
4165                         vm_page_spin_lock(m);
4166                         continue;
4167                 }
4168
4169                 /*
4170                  * Holding no spinlocks, pv is locked.
4171                  */
4172                 pmap_inval_bulk_init(&bulk, pv->pv_pmap);
4173                 pmap_remove_pv_pte(pv, NULL, &bulk, 2);
4174                 pv = NULL;      /* safety */
4175                 pmap_inval_bulk_flush(&bulk);
4176 #if 0
4177                 pmap_remove_pv_page(pv);
4178                 pv_free(pv, 1);
4179 #endif
4180                 vm_page_spin_lock(m);
4181         }
4182         KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
4183         vm_page_spin_unlock(m);
4184 }
4185
4186 /*
4187  * Removes the page from a particular pmap
4188  */
4189 void
4190 pmap_remove_specific(pmap_t pmap, vm_page_t m)
4191 {
4192         pv_entry_t pv;
4193         pmap_inval_bulk_t bulk;
4194
4195         if (!pmap_initialized)
4196                 return;
4197
4198 again:
4199         vm_page_spin_lock(m);
4200         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4201                 if (pv->pv_pmap != pmap)
4202                         continue;
4203                 KKASSERT(pv->pv_m == m);
4204                 if (pv_hold_try(pv)) {
4205                         vm_page_spin_unlock(m);
4206                 } else {
4207                         vm_page_spin_unlock(m);
4208                         pv_lock(pv);
4209                 }
4210                 if (pv->pv_m != m) {
4211                         pv_put(pv);
4212                         goto again;
4213                 }
4214
4215                 /*
4216                  * Holding no spinlocks, pv is locked.
4217                  */
4218                 pmap_inval_bulk_init(&bulk, pv->pv_pmap);
4219                 pmap_remove_pv_pte(pv, NULL, &bulk, 2);
4220                 pv = NULL;      /* safety */
4221                 pmap_inval_bulk_flush(&bulk);
4222 #if 0
4223                 pmap_remove_pv_page(pv);
4224                 pv_free(pv, 1);
4225 #endif
4226                 goto again;
4227         }
4228         vm_page_spin_unlock(m);
4229 }
4230
4231 /*
4232  * Set the physical protection on the specified range of this map
4233  * as requested.  This function is typically only used for debug watchpoints
4234  * and COW pages.
4235  *
4236  * This function may not be called from an interrupt if the map is
4237  * not the kernel_pmap.
4238  *
4239  * NOTE!  For shared page table pages we just unmap the page.
4240  */
4241 void
4242 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4243 {
4244         struct pmap_scan_info info;
4245         /* JG review for NX */
4246
4247         if (pmap == NULL)
4248                 return;
4249         if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
4250                 pmap_remove(pmap, sva, eva);
4251                 return;
4252         }
4253         if (prot & VM_PROT_WRITE)
4254                 return;
4255         info.pmap = pmap;
4256         info.sva = sva;
4257         info.eva = eva;
4258         info.func = pmap_protect_callback;
4259         info.arg = &prot;
4260         pmap_scan(&info, 1);
4261 }
4262
4263 static
4264 void
4265 pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
4266                       pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
4267                       vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
4268 {
4269         pt_entry_t pbits;
4270         pt_entry_t cbits;
4271         pt_entry_t pte;
4272         vm_page_t m;
4273
4274 again:
4275         pbits = *ptep;
4276         cbits = pbits;
4277         if (pte_pv) {
4278                 m = NULL;
4279                 if (pbits & pmap->pmap_bits[PG_A_IDX]) {
4280                         if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
4281                                 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4282                                 KKASSERT(m == pte_pv->pv_m);
4283                                 vm_page_flag_set(m, PG_REFERENCED);
4284                         }
4285                         cbits &= ~pmap->pmap_bits[PG_A_IDX];
4286                 }
4287                 if (pbits & pmap->pmap_bits[PG_M_IDX]) {
4288                         if (pmap_track_modified(pte_pv->pv_pindex)) {
4289                                 if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
4290                                         if (m == NULL) {
4291                                                 m = PHYS_TO_VM_PAGE(pbits &
4292                                                                     PG_FRAME);
4293                                         }
4294                                         vm_page_dirty(m);
4295                                 }
4296                                 cbits &= ~pmap->pmap_bits[PG_M_IDX];
4297                         }
4298                 }
4299         } else if (sharept) {
4300                 /*
4301                  * Unmanaged page table, pt_pv is actually the pd_pv
4302                  * for our pmap (not the object's shared pmap).
4303                  *
4304                  * When asked to protect something in a shared page table
4305                  * page we just unmap the page table page.  We have to
4306                  * invalidate the tlb in this situation.
4307                  *
4308                  * XXX Warning, shared page tables will not be used for
4309                  * OBJT_DEVICE or OBJT_MGTDEVICE (PG_FICTITIOUS) mappings
4310                  * so PHYS_TO_VM_PAGE() should be safe here.
4311                  */
4312                 pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, ptep, 0);
4313                 if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
4314                         panic("pmap_protect: pgtable1 pg bad wirecount");
4315                 if (vm_page_unwire_quick(pt_pv->pv_m))
4316                         panic("pmap_protect: pgtable2 pg bad wirecount");
4317                 ptep = NULL;
4318         }
4319         /* else unmanaged page, adjust bits, no wire changes */
4320
4321         if (ptep) {
4322                 cbits &= ~pmap->pmap_bits[PG_RW_IDX];
4323 #ifdef PMAP_DEBUG2
4324                 if (pmap_enter_debug > 0) {
4325                         --pmap_enter_debug;
4326                         kprintf("pmap_protect va=%lx ptep=%p pte_pv=%p "
4327                                 "pt_pv=%p cbits=%08lx\n",
4328                                 va, ptep, pte_pv,
4329                                 pt_pv, cbits
4330                         );
4331                 }
4332 #endif
4333                 if (pbits != cbits) {
4334                         if (!pmap_inval_smp_cmpset(pmap, (vm_offset_t)-1,
4335                                                    ptep, pbits, cbits)) {
4336                                 goto again;
4337                         }
4338                 }
4339         }
4340         if (pte_pv)
4341                 pv_put(pte_pv);
4342 }
4343
4344 /*
4345  * Insert the vm_page (m) at the virtual address (va), replacing any prior
4346  * mapping at that address.  Set protection and wiring as requested.
4347  *
4348  * If entry is non-NULL we check to see if the SEG_SIZE optimization is
4349  * possible.  If it is we enter the page into the appropriate shared pmap
4350  * hanging off the related VM object instead of the passed pmap, then we
4351  * share the page table page from the VM object's pmap into the current pmap.
4352  *
4353  * NOTE: This routine MUST insert the page into the pmap now, it cannot
4354  *       lazy-evaluate.
4355  */
4356 void
4357 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4358            boolean_t wired, vm_map_entry_t entry)
4359 {
4360         pv_entry_t pt_pv;       /* page table */
4361         pv_entry_t pte_pv;      /* page table entry */
4362         pt_entry_t *ptep;
4363         vm_paddr_t opa;
4364         pt_entry_t origpte, newpte;
4365         vm_paddr_t pa;
4366
4367         if (pmap == NULL)
4368                 return;
4369         va = trunc_page(va);
4370 #ifdef PMAP_DIAGNOSTIC
4371         if (va >= KvaEnd)
4372                 panic("pmap_enter: toobig");
4373         if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
4374                 panic("pmap_enter: invalid to pmap_enter page table "
4375                       "pages (va: 0x%lx)", va);
4376 #endif
4377         if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
4378                 kprintf("Warning: pmap_enter called on UVA with "
4379                         "kernel_pmap\n");
4380 #ifdef DDB
4381                 db_print_backtrace();
4382 #endif
4383         }
4384         if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
4385                 kprintf("Warning: pmap_enter called on KVA without"
4386                         "kernel_pmap\n");
4387 #ifdef DDB
4388                 db_print_backtrace();
4389 #endif
4390         }
4391
4392         /*
4393          * Get locked PV entries for our new page table entry (pte_pv)
4394          * and for its parent page table (pt_pv).  We need the parent
4395          * so we can resolve the location of the ptep.
4396          *
4397          * Only hardware MMU actions can modify the ptep out from
4398          * under us.
4399          *
4400          * if (m) is fictitious or unmanaged we do not create a managing
4401          * pte_pv for it.  Any pre-existing page's management state must
4402          * match (avoiding code complexity).
4403          *
4404          * If the pmap is still being initialized we assume existing
4405          * page tables.
4406          *
4407          * Kernel mapppings do not track page table pages (i.e. pt_pv).
4408          */
4409         if (pmap_initialized == FALSE) {
4410                 pte_pv = NULL;
4411                 pt_pv = NULL;
4412                 ptep = vtopte(va);
4413                 origpte = *ptep;
4414         } else if (m->flags & (/*PG_FICTITIOUS |*/ PG_UNMANAGED)) { /* XXX */
4415                 pte_pv = NULL;
4416                 if (va >= VM_MAX_USER_ADDRESS) {
4417                         pt_pv = NULL;
4418                         ptep = vtopte(va);
4419                 } else {
4420                         pt_pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va),
4421                                                   NULL, entry, va);
4422                         ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4423                 }
4424                 origpte = *ptep;
4425                 cpu_ccfence();
4426                 KASSERT(origpte == 0 ||
4427                          (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0,
4428                          ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4429         } else {
4430                 if (va >= VM_MAX_USER_ADDRESS) {
4431                         /*
4432                          * Kernel map, pv_entry-tracked.
4433                          */
4434                         pt_pv = NULL;
4435                         pte_pv = pmap_allocpte(pmap, pmap_pte_pindex(va), NULL);
4436                         ptep = vtopte(va);
4437                 } else {
4438                         /*
4439                          * User map
4440                          */
4441                         pte_pv = pmap_allocpte_seg(pmap, pmap_pte_pindex(va),
4442                                                    &pt_pv, entry, va);
4443                         ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4444                 }
4445                 origpte = *ptep;
4446                 cpu_ccfence();
4447                 KASSERT(origpte == 0 ||
4448                          (origpte & pmap->pmap_bits[PG_MANAGED_IDX]),
4449                          ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4450         }
4451
4452         pa = VM_PAGE_TO_PHYS(m);
4453         opa = origpte & PG_FRAME;
4454
4455         newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) |
4456                  pmap->pmap_bits[PG_V_IDX] | pmap->pmap_bits[PG_A_IDX]);
4457         if (wired)
4458                 newpte |= pmap->pmap_bits[PG_W_IDX];
4459         if (va < VM_MAX_USER_ADDRESS)
4460                 newpte |= pmap->pmap_bits[PG_U_IDX];
4461         if (pte_pv)
4462                 newpte |= pmap->pmap_bits[PG_MANAGED_IDX];
4463 //      if (pmap == &kernel_pmap)
4464 //              newpte |= pgeflag;
4465         newpte |= pmap->pmap_cache_bits[m->pat_mode];
4466         if (m->flags & PG_FICTITIOUS)
4467                 newpte |= pmap->pmap_bits[PG_DEVICE_IDX];
4468
4469         /*
4470          * It is possible for multiple faults to occur in threaded
4471          * environments, the existing pte might be correct.
4472          */
4473         if (((origpte ^ newpte) & ~(pt_entry_t)(pmap->pmap_bits[PG_M_IDX] |
4474             pmap->pmap_bits[PG_A_IDX])) == 0)
4475                 goto done;
4476
4477         /*
4478          * Ok, either the address changed or the protection or wiring
4479          * changed.
4480          *
4481          * Clear the current entry, interlocking the removal.  For managed
4482          * pte's this will also flush the modified state to the vm_page.
4483          * Atomic ops are mandatory in order to ensure that PG_M events are
4484          * not lost during any transition.
4485          *
4486          * WARNING: The caller has busied the new page but not the original
4487          *          vm_page which we are trying to replace.  Because we hold
4488          *          the pte_pv lock, but have not busied the page, PG bits
4489          *          can be cleared out from under us.
4490          */
4491         if (opa) {
4492                 if (pte_pv) {
4493                         /*
4494                          * pt_pv won't exist for a kernel page (managed or
4495                          * otherwise).
4496                          */
4497                         if (prot & VM_PROT_NOSYNC) {
4498                                 pmap_remove_pv_pte(pte_pv, pt_pv, NULL, 0);
4499                         } else {
4500                                 pmap_inval_bulk_t bulk;
4501
4502                                 pmap_inval_bulk_init(&bulk, pmap);
4503                                 pmap_remove_pv_pte(pte_pv, pt_pv, &bulk, 0);
4504                                 pmap_inval_bulk_flush(&bulk);
4505                         }
4506                         if (pte_pv->pv_m)
4507                                 pmap_remove_pv_page(pte_pv);
4508                 } else if (prot & VM_PROT_NOSYNC) {
4509                         /*
4510                          * Unmanaged page, NOSYNC (no mmu sync) requested.
4511                          *
4512                          * Leave wire count on PT page intact.
4513                          */
4514                         (void)pte_load_clear(ptep);
4515                         cpu_invlpg((void *)va);
4516                         atomic_add_long(&pmap->pm_stats.resident_count, -1);
4517                 } else {
4518                         /*
4519                          * Unmanaged page, normal enter.
4520                          *
4521                          * Leave wire count on PT page intact.
4522                          */
4523                         pmap_inval_smp(pmap, va, 1, ptep, 0);
4524                         atomic_add_long(&pmap->pm_stats.resident_count, -1);
4525                 }
4526                 KKASSERT(*ptep == 0);
4527         }
4528
4529 #ifdef PMAP_DEBUG2
4530         if (pmap_enter_debug > 0) {
4531                 --pmap_enter_debug;
4532                 kprintf("pmap_enter: va=%lx m=%p origpte=%lx newpte=%lx ptep=%p"
4533                         " pte_pv=%p pt_pv=%p opa=%lx prot=%02x\n",
4534                         va, m,
4535                         origpte, newpte, ptep,
4536                         pte_pv, pt_pv, opa, prot);
4537         }
4538 #endif
4539
4540         if (pte_pv) {
4541                 /*
4542                  * Enter on the PV list if part of our managed memory.
4543                  * Wiring of the PT page is already handled.
4544                  */
4545                 KKASSERT(pte_pv->pv_m == NULL);
4546                 vm_page_spin_lock(m);
4547                 pte_pv->pv_m = m;
4548                 pmap_page_stats_adding(m);
4549                 TAILQ_INSERT_TAIL(&m->md.pv_list, pte_pv, pv_list);
4550                 vm_page_flag_set(m, PG_MAPPED);
4551                 vm_page_spin_unlock(m);
4552         } else if (pt_pv && opa == 0) {
4553                 /*
4554                  * We have to adjust the wire count on the PT page ourselves
4555                  * for unmanaged entries.  If opa was non-zero we retained
4556                  * the existing wire count from the removal.
4557                  */
4558                 vm_page_wire_quick(pt_pv->pv_m);
4559         }
4560
4561         /*
4562          * Kernel VMAs (pt_pv == NULL) require pmap invalidation interlocks.
4563          *
4564          * User VMAs do not because those will be zero->non-zero, so no
4565          * stale entries to worry about at this point.
4566          *
4567          * For KVM there appear to still be issues.  Theoretically we
4568          * should be able to scrap the interlocks entirely but we
4569          * get crashes.
4570          */
4571         if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL) {
4572                 pmap_inval_smp(pmap, va, 1, ptep, newpte);
4573         } else {
4574                 *(volatile pt_entry_t *)ptep = newpte;
4575                 if (pt_pv == NULL)
4576                         cpu_invlpg((void *)va);
4577         }
4578
4579         if (wired) {
4580                 if (pte_pv) {
4581                         atomic_add_long(&pte_pv->pv_pmap->pm_stats.wired_count,
4582                                         1);
4583                 } else {
4584                         atomic_add_long(&pmap->pm_stats.wired_count, 1);
4585                 }
4586         }
4587         if (newpte & pmap->pmap_bits[PG_RW_IDX])
4588                 vm_page_flag_set(m, PG_WRITEABLE);
4589
4590         /*
4591          * Unmanaged pages need manual resident_count tracking.
4592          */
4593         if (pte_pv == NULL && pt_pv)
4594                 atomic_add_long(&pt_pv->pv_pmap->pm_stats.resident_count, 1);
4595
4596         /*
4597          * Cleanup
4598          */
4599 done:
4600         KKASSERT((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0 ||
4601                  (m->flags & PG_MAPPED));
4602
4603         /*
4604          * Cleanup the pv entry, allowing other accessors.
4605          */
4606         if (pte_pv)
4607                 pv_put(pte_pv);
4608         if (pt_pv)
4609                 pv_put(pt_pv);
4610 }
4611
4612 /*
4613  * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
4614  * This code also assumes that the pmap has no pre-existing entry for this
4615  * VA.
4616  *
4617  * This code currently may only be used on user pmaps, not kernel_pmap.
4618  */
4619 void
4620 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
4621 {
4622         pmap_enter(pmap, va, m, VM_PROT_READ, FALSE, NULL);
4623 }
4624
4625 /*
4626  * Make a temporary mapping for a physical address.  This is only intended
4627  * to be used for panic dumps.
4628  *
4629  * The caller is responsible for calling smp_invltlb().
4630  */
4631 void *
4632 pmap_kenter_temporary(vm_paddr_t pa, long i)
4633 {
4634         pmap_kenter_quick((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
4635         return ((void *)crashdumpmap);
4636 }
4637
4638 #define MAX_INIT_PT (96)
4639
4640 /*
4641  * This routine preloads the ptes for a given object into the specified pmap.
4642  * This eliminates the blast of soft faults on process startup and
4643  * immediately after an mmap.
4644  */
4645 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
4646
4647 void
4648 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
4649                     vm_object_t object, vm_pindex_t pindex,
4650                     vm_size_t size, int limit)
4651 {
4652         struct rb_vm_page_scan_info info;
4653         struct lwp *lp;
4654         vm_size_t psize;
4655
4656         /*
4657          * We can't preinit if read access isn't set or there is no pmap
4658          * or object.
4659          */
4660         if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
4661                 return;
4662
4663         /*
4664          * We can't preinit if the pmap is not the current pmap
4665          */
4666         lp = curthread->td_lwp;
4667         if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
4668                 return;
4669
4670         /*
4671          * Misc additional checks
4672          */
4673         psize = x86_64_btop(size);
4674
4675         if ((object->type != OBJT_VNODE) ||
4676                 ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
4677                         (object->resident_page_count > MAX_INIT_PT))) {
4678                 return;
4679         }
4680
4681         if (pindex + psize > object->size) {
4682                 if (object->size < pindex)
4683                         return;           
4684                 psize = object->size - pindex;
4685         }
4686
4687         if (psize == 0)
4688                 return;
4689
4690         /*
4691          * If everything is segment-aligned do not pre-init here.  Instead
4692          * allow the normal vm_fault path to pass a segment hint to
4693          * pmap_enter() which will then use an object-referenced shared
4694          * page table page.
4695          */
4696         if ((addr & SEG_MASK) == 0 &&
4697             (ctob(psize) & SEG_MASK) == 0 &&
4698             (ctob(pindex) & SEG_MASK) == 0) {
4699                 return;
4700         }
4701
4702         /*
4703          * Use a red-black scan to traverse the requested range and load
4704          * any valid pages found into the pmap.
4705          *
4706          * We cannot safely scan the object's memq without holding the
4707          * object token.
4708          */
4709         info.start_pindex = pindex;
4710         info.end_pindex = pindex + psize - 1;
4711         info.limit = limit;
4712         info.mpte = NULL;
4713         info.addr = addr;
4714         info.pmap = pmap;
4715
4716         vm_object_hold_shared(object);
4717         vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
4718                                 pmap_object_init_pt_callback, &info);
4719         vm_object_drop(object);
4720 }
4721
4722 static
4723 int
4724 pmap_object_init_pt_callback(vm_page_t p, void *data)
4725 {
4726         struct rb_vm_page_scan_info *info = data;
4727         vm_pindex_t rel_index;
4728
4729         /*
4730          * don't allow an madvise to blow away our really
4731          * free pages allocating pv entries.
4732          */
4733         if ((info->limit & MAP_PREFAULT_MADVISE) &&
4734                 vmstats.v_free_count < vmstats.v_free_reserved) {
4735                     return(-1);
4736         }
4737
4738         /*
4739          * Ignore list markers and ignore pages we cannot instantly
4740          * busy (while holding the object token).
4741          */
4742         if (p->flags & PG_MARKER)
4743                 return 0;
4744         if (vm_page_busy_try(p, TRUE))
4745                 return 0;
4746         if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
4747             (p->flags & PG_FICTITIOUS) == 0) {
4748                 if ((p->queue - p->pc) == PQ_CACHE)
4749                         vm_page_deactivate(p);
4750                 rel_index = p->pindex - info->start_pindex;
4751                 pmap_enter_quick(info->pmap,
4752                                  info->addr + x86_64_ptob(rel_index), p);
4753         }
4754         vm_page_wakeup(p);
4755         lwkt_yield();
4756         return(0);
4757 }
4758
4759 /*
4760  * Return TRUE if the pmap is in shape to trivially pre-fault the specified
4761  * address.
4762  *
4763  * Returns FALSE if it would be non-trivial or if a pte is already loaded
4764  * into the slot.
4765  *
4766  * XXX This is safe only because page table pages are not freed.
4767  */
4768 int
4769 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
4770 {
4771         pt_entry_t *pte;
4772
4773         /*spin_lock(&pmap->pm_spin);*/
4774         if ((pte = pmap_pte(pmap, addr)) != NULL) {
4775                 if (*pte & pmap->pmap_bits[PG_V_IDX]) {
4776                         /*spin_unlock(&pmap->pm_spin);*/
4777                         return FALSE;
4778                 }
4779         }
4780         /*spin_unlock(&pmap->pm_spin);*/
4781         return TRUE;
4782 }
4783
4784 /*
4785  * Change the wiring attribute for a pmap/va pair.  The mapping must already
4786  * exist in the pmap.  The mapping may or may not be managed.
4787  *
4788  * Wiring is not a hardware characteristic so there is no need to invalidate
4789  * TLB.  However, in an SMP environment we must use a locked bus cycle to
4790  * update the pte (if we are not using the pmap_inval_*() API that is)...
4791  * it's ok to do this for simple wiring changes.
4792  */
4793 void
4794 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired,
4795                    vm_map_entry_t entry)
4796 {
4797         pt_entry_t *ptep;
4798         pv_entry_t pv;
4799
4800         if (pmap == NULL)
4801                 return;
4802
4803         lwkt_gettoken(&pmap->pm_token);
4804         if (pmap == &kernel_pmap) {
4805                 /*
4806                  * The kernel may have managed pages, but not managed
4807                  * page tables.
4808                  */
4809                 ptep = pmap_pte_quick(pmap, va);
4810
4811                 if (wired && !pmap_pte_w(pmap, ptep))
4812                         atomic_add_long(&pmap->pm_stats.wired_count, 1);
4813                 else if (!wired && pmap_pte_w(pmap, ptep))
4814                         atomic_add_long(&pmap->pm_stats.wired_count, -1);
4815
4816                 if (wired)
4817                         atomic_set_long(ptep, pmap->pmap_bits[PG_W_IDX]);
4818                 else
4819                         atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
4820         } else {
4821                 /*
4822                  * Userland, the pmap of the possibly shared segment might
4823                  * not be (pmap).
4824                  */
4825                 pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va), NULL,
4826                                        entry, va);
4827                 ptep = pv_pte_lookup(pv, pmap_pte_index(va));
4828
4829                 if (wired && !pmap_pte_w(pmap, ptep))
4830                         atomic_add_long(&pv->pv_pmap->pm_stats.wired_count, 1);
4831                 else if (!wired && pmap_pte_w(pmap, ptep))
4832                         atomic_add_long(&pv->pv_pmap->pm_stats.wired_count, -1);
4833
4834                 if (wired)
4835                         atomic_set_long(ptep, pmap->pmap_bits[PG_W_IDX]);
4836                 else
4837                         atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
4838                 pv_put(pv);
4839         }
4840         lwkt_reltoken(&pmap->pm_token);
4841 }
4842
4843
4844
4845 /*
4846  * Copy the range specified by src_addr/len from the source map to
4847  * the range dst_addr/len in the destination map.
4848  *
4849  * This routine is only advisory and need not do anything.
4850  */
4851 void
4852 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, 
4853           vm_size_t len, vm_offset_t src_addr)
4854 {
4855 }       
4856
4857 /*
4858  * pmap_zero_page:
4859  *
4860  *      Zero the specified physical page.
4861  *
4862  *      This function may be called from an interrupt and no locking is
4863  *      required.
4864  */
4865 void
4866 pmap_zero_page(vm_paddr_t phys)
4867 {
4868         vm_offset_t va = PHYS_TO_DMAP(phys);
4869
4870         pagezero((void *)va);
4871 }
4872
4873 /*
4874  * pmap_zero_page:
4875  *
4876  *      Zero part of a physical page by mapping it into memory and clearing
4877  *      its contents with bzero.
4878  *
4879  *      off and size may not cover an area beyond a single hardware page.
4880  */
4881 void
4882 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
4883 {
4884         vm_offset_t virt = PHYS_TO_DMAP(phys);
4885
4886         bzero((char *)virt + off, size);
4887 }
4888
4889 /*
4890  * pmap_copy_page:
4891  *
4892  *      Copy the physical page from the source PA to the target PA.
4893  *      This function may be called from an interrupt.  No locking
4894  *      is required.
4895  */
4896 void
4897 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
4898 {
4899         vm_offset_t src_virt, dst_virt;
4900
4901         src_virt = PHYS_TO_DMAP(src);
4902         dst_virt = PHYS_TO_DMAP(dst);
4903         bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
4904 }
4905
4906 /*
4907  * pmap_copy_page_frag:
4908  *
4909  *      Copy the physical page from the source PA to the target PA.
4910  *      This function may be called from an interrupt.  No locking
4911  *      is required.
4912  */
4913 void
4914 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
4915 {
4916         vm_offset_t src_virt, dst_virt;
4917
4918         src_virt = PHYS_TO_DMAP(src);
4919         dst_virt = PHYS_TO_DMAP(dst);
4920
4921         bcopy((char *)src_virt + (src & PAGE_MASK),
4922               (char *)dst_virt + (dst & PAGE_MASK),
4923               bytes);
4924 }
4925
4926 /*
4927  * Returns true if the pmap's pv is one of the first 16 pvs linked to from
4928  * this page.  This count may be changed upwards or downwards in the future;
4929  * it is only necessary that true be returned for a small subset of pmaps
4930  * for proper page aging.
4931  */
4932 boolean_t
4933 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4934 {
4935         pv_entry_t pv;
4936         int loops = 0;
4937
4938         if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
4939                 return FALSE;
4940
4941         vm_page_spin_lock(m);
4942         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4943                 if (pv->pv_pmap == pmap) {
4944                         vm_page_spin_unlock(m);
4945                         return TRUE;
4946                 }
4947                 loops++;
4948                 if (loops >= 16)
4949                         break;
4950         }
4951         vm_page_spin_unlock(m);
4952         return (FALSE);
4953 }
4954
4955 /*
4956  * Remove all pages from specified address space this aids process exit
4957  * speeds.  Also, this code may be special cased for the current process
4958  * only.
4959  */
4960 void
4961 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4962 {
4963         pmap_remove_noinval(pmap, sva, eva);
4964         cpu_invltlb();
4965 }
4966
4967 /*
4968  * pmap_testbit tests bits in pte's note that the testbit/clearbit
4969  * routines are inline, and a lot of things compile-time evaluate.
4970  */
4971 static
4972 boolean_t
4973 pmap_testbit(vm_page_t m, int bit)
4974 {
4975         pv_entry_t pv;
4976         pt_entry_t *pte;
4977         pmap_t pmap;
4978
4979         if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
4980                 return FALSE;
4981
4982         if (TAILQ_FIRST(&m->md.pv_list) == NULL)
4983                 return FALSE;
4984         vm_page_spin_lock(m);
4985         if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
4986                 vm_page_spin_unlock(m);
4987                 return FALSE;
4988         }
4989
4990         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4991
4992 #if defined(PMAP_DIAGNOSTIC)
4993                 if (pv->pv_pmap == NULL) {
4994                         kprintf("Null pmap (tb) at pindex: %"PRIu64"\n",
4995                             pv->pv_pindex);
4996                         continue;
4997                 }
4998 #endif
4999                 pmap = pv->pv_pmap;
5000
5001                 /*
5002                  * If the bit being tested is the modified bit, then
5003                  * mark clean_map and ptes as never
5004                  * modified.
5005                  *
5006                  * WARNING!  Because we do not lock the pv, *pte can be in a
5007                  *           state of flux.  Despite this the value of *pte
5008                  *           will still be related to the vm_page in some way
5009                  *           because the pv cannot be destroyed as long as we
5010                  *           hold the vm_page spin lock.
5011                  */
5012                 if (bit == PG_A_IDX || bit == PG_M_IDX) {
5013                                 //& (pmap->pmap_bits[PG_A_IDX] | pmap->pmap_bits[PG_M_IDX])) {
5014                         if (!pmap_track_modified(pv->pv_pindex))
5015                                 continue;
5016                 }
5017
5018                 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5019                 if (*pte & pmap->pmap_bits[bit]) {
5020                         vm_page_spin_unlock(m);
5021                         return TRUE;
5022                 }
5023         }
5024         vm_page_spin_unlock(m);
5025         return (FALSE);
5026 }
5027
5028 /*
5029  * This routine is used to modify bits in ptes.  Only one bit should be
5030  * specified.  PG_RW requires special handling.
5031  *
5032  * Caller must NOT hold any spin locks
5033  */
5034 static __inline
5035 void
5036 pmap_clearbit(vm_page_t m, int bit_index)
5037 {
5038         pv_entry_t pv;
5039         pt_entry_t *pte;
5040         pt_entry_t pbits;
5041         pmap_t pmap;
5042
5043         if (bit_index == PG_RW_IDX)
5044                 vm_page_flag_clear(m, PG_WRITEABLE);
5045         if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
5046                 return;
5047         }
5048
5049         /*
5050          * PG_M or PG_A case
5051          *
5052          * Loop over all current mappings setting/clearing as appropos If
5053          * setting RO do we need to clear the VAC?
5054          *
5055          * NOTE: When clearing PG_M we could also (not implemented) drop
5056          *       through to the PG_RW code and clear PG_RW too, forcing
5057          *       a fault on write to redetect PG_M for virtual kernels, but
5058          *       it isn't necessary since virtual kernels invalidate the
5059          *       pte when they clear the VPTE_M bit in their virtual page
5060          *       tables.
5061          *
5062          * NOTE: Does not re-dirty the page when clearing only PG_M.
5063          *
5064          * NOTE: Because we do not lock the pv, *pte can be in a state of
5065          *       flux.  Despite this the value of *pte is still somewhat
5066          *       related while we hold the vm_page spin lock.
5067          *
5068          *       *pte can be zero due to this race.  Since we are clearing
5069          *       bits we basically do no harm when this race  ccurs.
5070          */
5071         if (bit_index != PG_RW_IDX) {
5072                 vm_page_spin_lock(m);
5073                 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5074 #if defined(PMAP_DIAGNOSTIC)
5075                         if (pv->pv_pmap == NULL) {
5076                                 kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
5077                                     pv->pv_pindex);
5078                                 continue;
5079                         }
5080 #endif
5081                         pmap = pv->pv_pmap;
5082                         pte = pmap_pte_quick(pv->pv_pmap,
5083                                              pv->pv_pindex << PAGE_SHIFT);
5084                         pbits = *pte;
5085                         if (pbits & pmap->pmap_bits[bit_index])
5086                                 atomic_clear_long(pte, pmap->pmap_bits[bit_index]);
5087                 }
5088                 vm_page_spin_unlock(m);
5089                 return;
5090         }
5091
5092         /*
5093          * Clear PG_RW.  Also clears PG_M and marks the page dirty if PG_M
5094          * was set.
5095          */
5096 restart:
5097         vm_page_spin_lock(m);
5098         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5099                 /*
5100                  * don't write protect pager mappings
5101                  */
5102                 if (!pmap_track_modified(pv->pv_pindex))
5103                         continue;
5104
5105 #if defined(PMAP_DIAGNOSTIC)
5106                 if (pv->pv_pmap == NULL) {
5107                         kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
5108                             pv->pv_pindex);
5109                         continue;
5110                 }
5111 #endif
5112                 pmap = pv->pv_pmap;
5113                 /*
5114                  * Skip pages which do not have PG_RW set.
5115                  */
5116                 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5117                 if ((*pte & pmap->pmap_bits[PG_RW_IDX]) == 0)
5118                         continue;
5119
5120                 /*
5121                  * Lock the PV
5122                  */
5123                 if (pv_hold_try(pv)) {
5124                         vm_page_spin_unlock(m);
5125                 } else {
5126                         vm_page_spin_unlock(m);
5127                         pv_lock(pv);    /* held, now do a blocking lock */
5128                 }
5129                 if (pv->pv_pmap != pmap || pv->pv_m != m) {
5130                         pv_put(pv);     /* and release */
5131                         goto restart;   /* anything could have happened */
5132                 }
5133                 KKASSERT(pv->pv_pmap == pmap);
5134                 for (;;) {
5135                         pt_entry_t nbits;
5136
5137                         pbits = *pte;
5138                         cpu_ccfence();
5139                         nbits = pbits & ~(pmap->pmap_bits[PG_RW_IDX] |
5140                                           pmap->pmap_bits[PG_M_IDX]);
5141                         if (pmap_inval_smp_cmpset(pmap,
5142                                      ((vm_offset_t)pv->pv_pindex << PAGE_SHIFT),
5143                                      pte, pbits, nbits)) {
5144                                 break;
5145                         }
5146                         cpu_pause();
5147                 }
5148                 vm_page_spin_lock(m);
5149
5150                 /*
5151                  * If PG_M was found to be set while we were clearing PG_RW
5152                  * we also clear PG_M (done above) and mark the page dirty.
5153                  * Callers expect this behavior.
5154                  */
5155                 if (pbits & pmap->pmap_bits[PG_M_IDX])
5156                         vm_page_dirty(m);
5157                 pv_put(pv);
5158         }
5159         vm_page_spin_unlock(m);
5160 }
5161
5162 /*
5163  * Lower the permission for all mappings to a given page.
5164  *
5165  * Page must be busied by caller.  Because page is busied by caller this
5166  * should not be able to race a pmap_enter().
5167  */
5168 void
5169 pmap_page_protect(vm_page_t m, vm_prot_t prot)
5170 {
5171         /* JG NX support? */
5172         if ((prot & VM_PROT_WRITE) == 0) {
5173                 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
5174                         /*
5175                          * NOTE: pmap_clearbit(.. PG_RW) also clears
5176                          *       the PG_WRITEABLE flag in (m).
5177                          */
5178                         pmap_clearbit(m, PG_RW_IDX);
5179                 } else {
5180                         pmap_remove_all(m);
5181                 }
5182         }
5183 }
5184
5185 vm_paddr_t
5186 pmap_phys_address(vm_pindex_t ppn)
5187 {
5188         return (x86_64_ptob(ppn));
5189 }
5190
5191 /*
5192  * Return a count of reference bits for a page, clearing those bits.
5193  * It is not necessary for every reference bit to be cleared, but it
5194  * is necessary that 0 only be returned when there are truly no
5195  * reference bits set.
5196  *
5197  * XXX: The exact number of bits to check and clear is a matter that
5198  * should be tested and standardized at some point in the future for
5199  * optimal aging of shared pages.
5200  *
5201  * This routine may not block.
5202  */
5203 int
5204 pmap_ts_referenced(vm_page_t m)
5205 {
5206         pv_entry_t pv;
5207         pt_entry_t *pte;
5208         pmap_t pmap;
5209         int rtval = 0;
5210
5211         if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5212                 return (rtval);
5213
5214         vm_page_spin_lock(m);
5215         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5216                 if (!pmap_track_modified(pv->pv_pindex))
5217                         continue;
5218                 pmap = pv->pv_pmap;
5219                 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5220                 if (pte && (*pte & pmap->pmap_bits[PG_A_IDX])) {
5221                         atomic_clear_long(pte, pmap->pmap_bits[PG_A_IDX]);
5222                         rtval++;
5223                         if (rtval > 4)
5224                                 break;
5225                 }
5226         }
5227         vm_page_spin_unlock(m);
5228         return (rtval);
5229 }
5230
5231 /*
5232  *      pmap_is_modified:
5233  *
5234  *      Return whether or not the specified physical page was modified
5235  *      in any physical maps.
5236  */
5237 boolean_t
5238 pmap_is_modified(vm_page_t m)
5239 {
5240         boolean_t res;
5241
5242         res = pmap_testbit(m, PG_M_IDX);
5243         return (res);
5244 }
5245
5246 /*
5247  *      Clear the modify bits on the specified physical page.
5248  */
5249 void
5250 pmap_clear_modify(vm_page_t m)
5251 {
5252         pmap_clearbit(m, PG_M_IDX);
5253 }
5254
5255 /*
5256  *      pmap_clear_reference:
5257  *
5258  *      Clear the reference bit on the specified physical page.
5259  */
5260 void
5261 pmap_clear_reference(vm_page_t m)
5262 {
5263         pmap_clearbit(m, PG_A_IDX);
5264 }
5265
5266 /*
5267  * Miscellaneous support routines follow
5268  */
5269
5270 static
5271 void
5272 i386_protection_init(void)
5273 {
5274         int *kp, prot;
5275
5276         /* JG NX support may go here; No VM_PROT_EXECUTE ==> set NX bit  */
5277         kp = protection_codes;
5278         for (prot = 0; prot < PROTECTION_CODES_SIZE; prot++) {
5279                 switch (prot) {
5280                 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
5281                         /*
5282                          * Read access is also 0. There isn't any execute bit,
5283                          * so just make it readable.
5284                          */
5285                 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
5286                 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
5287                 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
5288                         *kp++ = 0;
5289                         break;
5290                 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
5291                 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
5292                 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
5293                 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
5294                         *kp++ = pmap_bits_default[PG_RW_IDX];
5295                         break;
5296                 }
5297         }
5298 }
5299
5300 /*
5301  * Map a set of physical memory pages into the kernel virtual
5302  * address space. Return a pointer to where it is mapped. This
5303  * routine is intended to be used for mapping device memory,
5304  * NOT real memory.
5305  *
5306  * NOTE: We can't use pgeflag unless we invalidate the pages one at
5307  *       a time.
5308  *
5309  * NOTE: The PAT attributes {WRITE_BACK, WRITE_THROUGH, UNCACHED, UNCACHEABLE}
5310  *       work whether the cpu supports PAT or not.  The remaining PAT
5311  *       attributes {WRITE_PROTECTED, WRITE_COMBINING} only work if the cpu
5312  *       supports PAT.
5313  */
5314 void *
5315 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
5316 {
5317         return(pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5318 }
5319
5320 void *
5321 pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
5322 {
5323         return(pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
5324 }
5325
5326 void *
5327 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5328 {
5329         return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5330 }
5331
5332 /*
5333  * Map a set of physical memory pages into the kernel virtual
5334  * address space. Return a pointer to where it is mapped. This
5335  * routine is intended to be used for mapping device memory,
5336  * NOT real memory.
5337  */
5338 void *
5339 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
5340 {
5341         vm_offset_t va, tmpva, offset;
5342         pt_entry_t *pte;
5343         vm_size_t tmpsize;
5344
5345         offset = pa & PAGE_MASK;
5346         size = roundup(offset + size, PAGE_SIZE);
5347
5348         va = kmem_alloc_nofault(&kernel_map, size, VM_SUBSYS_MAPDEV, PAGE_SIZE);
5349         if (va == 0)
5350                 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
5351
5352         pa = pa & ~PAGE_MASK;
5353         for (tmpva = va, tmpsize = size; tmpsize > 0;) {
5354                 pte = vtopte(tmpva);
5355                 *pte = pa |
5356                     kernel_pmap.pmap_bits[PG_RW_IDX] |
5357                     kernel_pmap.pmap_bits[PG_V_IDX] | /* pgeflag | */
5358                     kernel_pmap.pmap_cache_bits[mode];
5359                 tmpsize -= PAGE_SIZE;
5360                 tmpva += PAGE_SIZE;
5361                 pa += PAGE_SIZE;
5362         }
5363         pmap_invalidate_range(&kernel_pmap, va, va + size);
5364         pmap_invalidate_cache_range(va, va + size);
5365
5366         return ((void *)(va + offset));
5367 }
5368
5369 void
5370 pmap_unmapdev(vm_offset_t va, vm_size_t size)
5371 {
5372         vm_offset_t base, offset;
5373
5374         base = va & ~PAGE_MASK;
5375         offset = va & PAGE_MASK;
5376         size = roundup(offset + size, PAGE_SIZE);
5377         pmap_qremove(va, size >> PAGE_SHIFT);
5378         kmem_free(&kernel_map, base, size);
5379 }
5380
5381 /*
5382  * Sets the memory attribute for the specified page.
5383  */
5384 void
5385 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5386 {
5387
5388     m->pat_mode = ma;
5389
5390     /*
5391      * If "m" is a normal page, update its direct mapping.  This update
5392      * can be relied upon to perform any cache operations that are
5393      * required for data coherence.
5394      */
5395     if ((m->flags & PG_FICTITIOUS) == 0)
5396         pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), 1, m->pat_mode);
5397 }
5398
5399 /*
5400  * Change the PAT attribute on an existing kernel memory map.  Caller
5401  * must ensure that the virtual memory in question is not accessed
5402  * during the adjustment.
5403  */
5404 void
5405 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
5406 {
5407         pt_entry_t *pte;
5408         vm_offset_t base;
5409         int changed = 0;
5410
5411         if (va == 0)
5412                 panic("pmap_change_attr: va is NULL");
5413         base = trunc_page(va);
5414
5415         while (count) {
5416                 pte = vtopte(va);
5417                 *pte = (*pte & ~(pt_entry_t)(kernel_pmap.pmap_cache_mask)) |
5418                        kernel_pmap.pmap_cache_bits[mode];
5419                 --count;
5420                 va += PAGE_SIZE;
5421         }
5422
5423         changed = 1;    /* XXX: not optimal */
5424
5425         /*
5426          * Flush CPU caches if required to make sure any data isn't cached that
5427          * shouldn't be, etc.
5428          */
5429         if (changed) {
5430                 pmap_invalidate_range(&kernel_pmap, base, va);
5431                 pmap_invalidate_cache_range(base, va);
5432         }
5433 }
5434
5435 /*
5436  * perform the pmap work for mincore
5437  */
5438 int
5439 pmap_mincore(pmap_t pmap, vm_offset_t addr)
5440 {
5441         pt_entry_t *ptep, pte;
5442         vm_page_t m;
5443         int val = 0;
5444         
5445         lwkt_gettoken(&pmap->pm_token);
5446         ptep = pmap_pte(pmap, addr);
5447
5448         if (ptep && (pte = *ptep) != 0) {
5449                 vm_offset_t pa;
5450
5451                 val = MINCORE_INCORE;
5452                 if ((pte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0)
5453                         goto done;
5454
5455                 pa = pte & PG_FRAME;
5456
5457                 if (pte & pmap->pmap_bits[PG_DEVICE_IDX])
5458                         m = NULL;
5459                 else
5460                         m = PHYS_TO_VM_PAGE(pa);
5461
5462                 /*
5463                  * Modified by us
5464                  */
5465                 if (pte & pmap->pmap_bits[PG_M_IDX])
5466                         val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
5467                 /*
5468                  * Modified by someone
5469                  */
5470                 else if (m && (m->dirty || pmap_is_modified(m)))
5471                         val |= MINCORE_MODIFIED_OTHER;
5472                 /*
5473                  * Referenced by us
5474                  */
5475                 if (pte & pmap->pmap_bits[PG_A_IDX])
5476                         val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
5477
5478                 /*
5479                  * Referenced by someone
5480                  */
5481                 else if (m && ((m->flags & PG_REFERENCED) ||
5482                                 pmap_ts_referenced(m))) {
5483                         val |= MINCORE_REFERENCED_OTHER;
5484                         vm_page_flag_set(m, PG_REFERENCED);
5485                 }
5486         } 
5487 done:
5488         lwkt_reltoken(&pmap->pm_token);
5489
5490         return val;
5491 }
5492
5493 /*
5494  * Replace p->p_vmspace with a new one.  If adjrefs is non-zero the new
5495  * vmspace will be ref'd and the old one will be deref'd.
5496  *
5497  * The vmspace for all lwps associated with the process will be adjusted
5498  * and cr3 will be reloaded if any lwp is the current lwp.
5499  *
5500  * The process must hold the vmspace->vm_map.token for oldvm and newvm
5501  */
5502 void
5503 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
5504 {
5505         struct vmspace *oldvm;
5506         struct lwp *lp;
5507
5508         oldvm = p->p_vmspace;
5509         if (oldvm != newvm) {
5510                 if (adjrefs)
5511                         vmspace_ref(newvm);
5512                 p->p_vmspace = newvm;
5513                 KKASSERT(p->p_nthreads == 1);
5514                 lp = RB_ROOT(&p->p_lwp_tree);
5515                 pmap_setlwpvm(lp, newvm);
5516                 if (adjrefs)
5517                         vmspace_rel(oldvm);
5518         }
5519 }
5520
5521 /*
5522  * Set the vmspace for a LWP.  The vmspace is almost universally set the
5523  * same as the process vmspace, but virtual kernels need to swap out contexts
5524  * on a per-lwp basis.
5525  *
5526  * Caller does not necessarily hold any vmspace tokens.  Caller must control
5527  * the lwp (typically be in the context of the lwp).  We use a critical
5528  * section to protect against statclock and hardclock (statistics collection).
5529  */
5530 void
5531 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
5532 {
5533         struct vmspace *oldvm;
5534         struct pmap *pmap;
5535
5536         oldvm = lp->lwp_vmspace;
5537
5538         if (oldvm != newvm) {
5539                 crit_enter();
5540                 lp->lwp_vmspace = newvm;
5541                 if (curthread->td_lwp == lp) {
5542                         pmap = vmspace_pmap(newvm);
5543                         ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
5544                         if (pmap->pm_active_lock & CPULOCK_EXCL)
5545                                 pmap_interlock_wait(newvm);
5546 #if defined(SWTCH_OPTIM_STATS)
5547                         tlb_flush_count++;
5548 #endif
5549                         if (pmap->pmap_bits[TYPE_IDX] == REGULAR_PMAP) {
5550                                 curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
5551                         } else if (pmap->pmap_bits[TYPE_IDX] == EPT_PMAP) {
5552                                 curthread->td_pcb->pcb_cr3 = KPML4phys;
5553                         } else {
5554                                 panic("pmap_setlwpvm: unknown pmap type\n");
5555                         }
5556                         load_cr3(curthread->td_pcb->pcb_cr3);
5557                         pmap = vmspace_pmap(oldvm);
5558                         ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
5559                                                mycpu->gd_cpuid);
5560                 }
5561                 crit_exit();
5562         }
5563 }
5564
5565 /*
5566  * Called when switching to a locked pmap, used to interlock against pmaps
5567  * undergoing modifications to prevent us from activating the MMU for the
5568  * target pmap until all such modifications have completed.  We have to do
5569  * this because the thread making the modifications has already set up its
5570  * SMP synchronization mask.
5571  *
5572  * This function cannot sleep!
5573  *
5574  * No requirements.
5575  */
5576 void
5577 pmap_interlock_wait(struct vmspace *vm)
5578 {
5579         struct pmap *pmap = &vm->vm_pmap;
5580
5581         if (pmap->pm_active_lock & CPULOCK_EXCL) {
5582                 crit_enter();
5583                 KKASSERT(curthread->td_critcount >= 2);
5584                 DEBUG_PUSH_INFO("pmap_interlock_wait");
5585                 while (pmap->pm_active_lock & CPULOCK_EXCL) {
5586                         cpu_ccfence();
5587                         lwkt_process_ipiq();
5588                 }
5589                 DEBUG_POP_INFO();
5590                 crit_exit();
5591         }
5592 }
5593
5594 vm_offset_t
5595 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
5596 {
5597
5598         if ((obj == NULL) || (size < NBPDR) ||
5599             ((obj->type != OBJT_DEVICE) && (obj->type != OBJT_MGTDEVICE))) {
5600                 return addr;
5601         }
5602
5603         addr = roundup2(addr, NBPDR);
5604         return addr;
5605 }
5606
5607 /*
5608  * Used by kmalloc/kfree, page already exists at va
5609  */
5610 vm_page_t
5611 pmap_kvtom(vm_offset_t va)
5612 {
5613         pt_entry_t *ptep = vtopte(va);
5614
5615         KKASSERT((*ptep & kernel_pmap.pmap_bits[PG_DEVICE_IDX]) == 0);
5616         return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
5617 }
5618
5619 /*
5620  * Initialize machine-specific shared page directory support.  This
5621  * is executed when a VM object is created.
5622  */
5623 void
5624 pmap_object_init(vm_object_t object)
5625 {
5626         object->md.pmap_rw = NULL;
5627         object->md.pmap_ro = NULL;
5628 }
5629
5630 /*
5631  * Clean up machine-specific shared page directory support.  This
5632  * is executed when a VM object is destroyed.
5633  */
5634 void
5635 pmap_object_free(vm_object_t object)
5636 {
5637         pmap_t pmap;
5638
5639         if ((pmap = object->md.pmap_rw) != NULL) {
5640                 object->md.pmap_rw = NULL;
5641                 pmap_remove_noinval(pmap,
5642                                   VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
5643                 CPUMASK_ASSZERO(pmap->pm_active);
5644                 pmap_release(pmap);
5645                 pmap_puninit(pmap);
5646                 kfree(pmap, M_OBJPMAP);
5647         }
5648         if ((pmap = object->md.pmap_ro) != NULL) {
5649                 object->md.pmap_ro = NULL;
5650                 pmap_remove_noinval(pmap,
5651                                   VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
5652                 CPUMASK_ASSZERO(pmap->pm_active);
5653                 pmap_release(pmap);
5654                 pmap_puninit(pmap);
5655                 kfree(pmap, M_OBJPMAP);
5656         }
5657 }
5658
5659 /*
5660  * pmap_pgscan_callback - Used by pmap_pgscan to acquire the related
5661  * VM page and issue a pginfo->callback.
5662  *
5663  * We are expected to dispose of any non-NULL pte_pv.
5664  */
5665 static
5666 void
5667 pmap_pgscan_callback(pmap_t pmap, struct pmap_scan_info *info,
5668                       pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
5669                       vm_offset_t va, pt_entry_t *ptep, void *arg)
5670 {
5671         struct pmap_pgscan_info *pginfo = arg;
5672         vm_page_t m;
5673
5674         if (pte_pv) {
5675                 /*
5676                  * Try to busy the page while we hold the pte_pv locked.
5677                  */
5678                 m = PHYS_TO_VM_PAGE(*ptep & PG_FRAME);
5679                 if (vm_page_busy_try(m, TRUE) == 0) {
5680                         if (m == PHYS_TO_VM_PAGE(*ptep & PG_FRAME)) {
5681                                 /*
5682                                  * The callback is issued with the pte_pv
5683                                  * unlocked and put away, and the pt_pv
5684                                  * unlocked.
5685                                  */
5686                                 pv_put(pte_pv);
5687                                 if (pt_pv)
5688                                         pv_unlock(pt_pv);
5689                                 if (pginfo->callback(pginfo, va, m) < 0)
5690                                         info->stop = 1;
5691                                 if (pt_pv)
5692                                         pv_lock(pt_pv);
5693                         } else {
5694                                 vm_page_wakeup(m);
5695                                 pv_put(pte_pv);
5696                         }
5697                 } else {
5698                         ++pginfo->busycount;
5699                         pv_put(pte_pv);
5700                 }
5701         } else if (sharept) {
5702                 /* shared page table */
5703         } else {
5704                 /* else unmanaged page */
5705         }
5706 }
5707
5708 void
5709 pmap_pgscan(struct pmap_pgscan_info *pginfo)
5710 {
5711         struct pmap_scan_info info;
5712
5713         pginfo->offset = pginfo->beg_addr;
5714         info.pmap = pginfo->pmap;
5715         info.sva = pginfo->beg_addr;
5716         info.eva = pginfo->end_addr;
5717         info.func = pmap_pgscan_callback;
5718         info.arg = pginfo;
5719         pmap_scan(&info, 0);
5720         if (info.stop == 0)
5721                 pginfo->offset = pginfo->end_addr;
5722 }