1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
80 #include "coretypes.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
93 #include "insn-attr.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 /* Include output.h for dump_file. */
105 #include "tree-pass.h"
109 /* Number of attempts to combine instructions in this function. */
111 static int combine_attempts;
113 /* Number of attempts that got as far as substitution in this function. */
115 static int combine_merges;
117 /* Number of instructions combined with added SETs in this function. */
119 static int combine_extras;
121 /* Number of instructions combined in this function. */
123 static int combine_successes;
125 /* Totals over entire compilation. */
127 static int total_attempts, total_merges, total_extras, total_successes;
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140 static rtx i2mod_old_rhs;
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144 static rtx i2mod_new_rhs;
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
150 /* Record last point of modification of (hard or pseudo) register n. */
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
245 int truncation_label;
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
258 static VEC(reg_stat_type,heap) *reg_stat;
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
263 static int mem_last_set;
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
268 static int last_call_luid;
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
276 static rtx subst_insn;
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
285 static int subst_low_luid;
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
290 static HARD_REG_SET newpat_used_regs;
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
296 static rtx added_links_insn;
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
303 /* Length of the currently allocated uid_insn_cost array. */
305 static int max_uid_known;
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
310 static int *uid_insn_cost;
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as an INSN_LIST rtx. */
315 static rtx *uid_log_links;
317 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
318 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
320 /* Incremented for each basic block. */
322 static int label_tick;
324 /* Reset to label_tick for each label. */
326 static int label_tick_ebb_start;
328 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
329 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
331 static enum machine_mode nonzero_bits_mode;
333 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
334 be safely used. It is zero while computing them and after combine has
335 completed. This former test prevents propagating values based on
336 previously set values, which can be incorrect if a variable is modified
339 static int nonzero_sign_valid;
342 /* Record one modification to rtl structure
343 to be undone by storing old_contents into *where. */
348 enum { UNDO_RTX, UNDO_INT, UNDO_MODE } kind;
349 union { rtx r; int i; enum machine_mode m; } old_contents;
350 union { rtx *r; int *i; } where;
353 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
354 num_undo says how many are currently recorded.
356 other_insn is nonzero if we have modified some other insn in the process
357 of working on subst_insn. It must be verified too. */
366 static struct undobuf undobuf;
368 /* Number of times the pseudo being substituted for
369 was found and replaced. */
371 static int n_occurrences;
373 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
375 unsigned HOST_WIDE_INT,
376 unsigned HOST_WIDE_INT *);
377 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
379 unsigned int, unsigned int *);
380 static void do_SUBST (rtx *, rtx);
381 static void do_SUBST_INT (int *, int);
382 static void init_reg_last (void);
383 static void setup_incoming_promotions (rtx);
384 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
385 static int cant_combine_insn_p (rtx);
386 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
387 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
388 static int contains_muldiv (rtx);
389 static rtx try_combine (rtx, rtx, rtx, int *);
390 static void undo_all (void);
391 static void undo_commit (void);
392 static rtx *find_split_point (rtx *, rtx);
393 static rtx subst (rtx, rtx, rtx, int, int);
394 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
395 static rtx simplify_if_then_else (rtx);
396 static rtx simplify_set (rtx);
397 static rtx simplify_logical (rtx);
398 static rtx expand_compound_operation (rtx);
399 static const_rtx expand_field_assignment (const_rtx);
400 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
401 rtx, unsigned HOST_WIDE_INT, int, int, int);
402 static rtx extract_left_shift (rtx, int);
403 static rtx make_compound_operation (rtx, enum rtx_code);
404 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
405 unsigned HOST_WIDE_INT *);
406 static rtx canon_reg_for_combine (rtx, rtx);
407 static rtx force_to_mode (rtx, enum machine_mode,
408 unsigned HOST_WIDE_INT, int);
409 static rtx if_then_else_cond (rtx, rtx *, rtx *);
410 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
411 static int rtx_equal_for_field_assignment_p (rtx, rtx);
412 static rtx make_field_assignment (rtx);
413 static rtx apply_distributive_law (rtx);
414 static rtx distribute_and_simplify_rtx (rtx, int);
415 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
416 unsigned HOST_WIDE_INT);
417 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
418 unsigned HOST_WIDE_INT);
419 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
420 HOST_WIDE_INT, enum machine_mode, int *);
421 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
422 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
424 static int recog_for_combine (rtx *, rtx, rtx *);
425 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
426 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
427 static void update_table_tick (rtx);
428 static void record_value_for_reg (rtx, rtx, rtx);
429 static void check_promoted_subreg (rtx, rtx);
430 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
431 static void record_dead_and_set_regs (rtx);
432 static int get_last_value_validate (rtx *, rtx, int, int);
433 static rtx get_last_value (const_rtx);
434 static int use_crosses_set_p (const_rtx, int);
435 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
436 static int reg_dead_at_p (rtx, rtx);
437 static void move_deaths (rtx, rtx, int, rtx, rtx *);
438 static int reg_bitfield_target_p (rtx, rtx);
439 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
440 static void distribute_links (rtx);
441 static void mark_used_regs_combine (rtx);
442 static void record_promoted_value (rtx, rtx);
443 static int unmentioned_reg_p_1 (rtx *, void *);
444 static bool unmentioned_reg_p (rtx, rtx);
445 static int record_truncated_value (rtx *, void *);
446 static void record_truncated_values (rtx *, void *);
447 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
448 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
451 /* It is not safe to use ordinary gen_lowpart in combine.
452 See comments in gen_lowpart_for_combine. */
453 #undef RTL_HOOKS_GEN_LOWPART
454 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
456 /* Our implementation of gen_lowpart never emits a new pseudo. */
457 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
458 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
460 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
461 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
463 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
464 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
466 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
467 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
469 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
472 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
473 PATTERN can not be split. Otherwise, it returns an insn sequence.
474 This is a wrapper around split_insns which ensures that the
475 reg_stat vector is made larger if the splitter creates a new
479 combine_split_insns (rtx pattern, rtx insn)
484 ret = split_insns (pattern, insn);
485 nregs = max_reg_num ();
486 if (nregs > VEC_length (reg_stat_type, reg_stat))
487 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
491 /* This is used by find_single_use to locate an rtx in LOC that
492 contains exactly one use of DEST, which is typically either a REG
493 or CC0. It returns a pointer to the innermost rtx expression
494 containing DEST. Appearances of DEST that are being used to
495 totally replace it are not counted. */
498 find_single_use_1 (rtx dest, rtx *loc)
501 enum rtx_code code = GET_CODE (x);
519 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
520 of a REG that occupies all of the REG, the insn uses DEST if
521 it is mentioned in the destination or the source. Otherwise, we
522 need just check the source. */
523 if (GET_CODE (SET_DEST (x)) != CC0
524 && GET_CODE (SET_DEST (x)) != PC
525 && !REG_P (SET_DEST (x))
526 && ! (GET_CODE (SET_DEST (x)) == SUBREG
527 && REG_P (SUBREG_REG (SET_DEST (x)))
528 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
529 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
530 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
531 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
534 return find_single_use_1 (dest, &SET_SRC (x));
538 return find_single_use_1 (dest, &XEXP (x, 0));
544 /* If it wasn't one of the common cases above, check each expression and
545 vector of this code. Look for a unique usage of DEST. */
547 fmt = GET_RTX_FORMAT (code);
548 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
552 if (dest == XEXP (x, i)
553 || (REG_P (dest) && REG_P (XEXP (x, i))
554 && REGNO (dest) == REGNO (XEXP (x, i))))
557 this_result = find_single_use_1 (dest, &XEXP (x, i));
560 result = this_result;
561 else if (this_result)
562 /* Duplicate usage. */
565 else if (fmt[i] == 'E')
569 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
571 if (XVECEXP (x, i, j) == dest
573 && REG_P (XVECEXP (x, i, j))
574 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
577 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
580 result = this_result;
581 else if (this_result)
591 /* See if DEST, produced in INSN, is used only a single time in the
592 sequel. If so, return a pointer to the innermost rtx expression in which
595 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
597 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
598 care about REG_DEAD notes or LOG_LINKS.
600 Otherwise, we find the single use by finding an insn that has a
601 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
602 only referenced once in that insn, we know that it must be the first
603 and last insn referencing DEST. */
606 find_single_use (rtx dest, rtx insn, rtx *ploc)
615 next = NEXT_INSN (insn);
617 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
620 result = find_single_use_1 (dest, &PATTERN (next));
630 for (next = next_nonnote_insn (insn);
631 next != 0 && !LABEL_P (next);
632 next = next_nonnote_insn (next))
633 if (INSN_P (next) && dead_or_set_p (next, dest))
635 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
636 if (XEXP (link, 0) == insn)
641 result = find_single_use_1 (dest, &PATTERN (next));
651 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
652 insn. The substitution can be undone by undo_all. If INTO is already
653 set to NEWVAL, do not record this change. Because computing NEWVAL might
654 also call SUBST, we have to compute it before we put anything into
658 do_SUBST (rtx *into, rtx newval)
663 if (oldval == newval)
666 /* We'd like to catch as many invalid transformations here as
667 possible. Unfortunately, there are way too many mode changes
668 that are perfectly valid, so we'd waste too much effort for
669 little gain doing the checks here. Focus on catching invalid
670 transformations involving integer constants. */
671 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
672 && GET_CODE (newval) == CONST_INT)
674 /* Sanity check that we're replacing oldval with a CONST_INT
675 that is a valid sign-extension for the original mode. */
676 gcc_assert (INTVAL (newval)
677 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
679 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
680 CONST_INT is not valid, because after the replacement, the
681 original mode would be gone. Unfortunately, we can't tell
682 when do_SUBST is called to replace the operand thereof, so we
683 perform this test on oldval instead, checking whether an
684 invalid replacement took place before we got here. */
685 gcc_assert (!(GET_CODE (oldval) == SUBREG
686 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
687 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
688 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
692 buf = undobuf.frees, undobuf.frees = buf->next;
694 buf = XNEW (struct undo);
696 buf->kind = UNDO_RTX;
698 buf->old_contents.r = oldval;
701 buf->next = undobuf.undos, undobuf.undos = buf;
704 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
706 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
707 for the value of a HOST_WIDE_INT value (including CONST_INT) is
711 do_SUBST_INT (int *into, int newval)
716 if (oldval == newval)
720 buf = undobuf.frees, undobuf.frees = buf->next;
722 buf = XNEW (struct undo);
724 buf->kind = UNDO_INT;
726 buf->old_contents.i = oldval;
729 buf->next = undobuf.undos, undobuf.undos = buf;
732 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
734 /* Similar to SUBST, but just substitute the mode. This is used when
735 changing the mode of a pseudo-register, so that any other
736 references to the entry in the regno_reg_rtx array will change as
740 do_SUBST_MODE (rtx *into, enum machine_mode newval)
743 enum machine_mode oldval = GET_MODE (*into);
745 if (oldval == newval)
749 buf = undobuf.frees, undobuf.frees = buf->next;
751 buf = XNEW (struct undo);
753 buf->kind = UNDO_MODE;
755 buf->old_contents.m = oldval;
756 adjust_reg_mode (*into, newval);
758 buf->next = undobuf.undos, undobuf.undos = buf;
761 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
763 /* Subroutine of try_combine. Determine whether the combine replacement
764 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
765 insn_rtx_cost that the original instruction sequence I1, I2, I3 and
766 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
767 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
768 function returns false, if the costs of all instructions can be
769 estimated, and the replacements are more expensive than the original
773 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat,
776 int i1_cost, i2_cost, i3_cost;
777 int new_i2_cost, new_i3_cost;
778 int old_cost, new_cost;
780 /* Lookup the original insn_rtx_costs. */
781 i2_cost = INSN_COST (i2);
782 i3_cost = INSN_COST (i3);
786 i1_cost = INSN_COST (i1);
787 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
788 ? i1_cost + i2_cost + i3_cost : 0;
792 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
796 /* Calculate the replacement insn_rtx_costs. */
797 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
800 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
801 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
802 ? new_i2_cost + new_i3_cost : 0;
806 new_cost = new_i3_cost;
810 if (undobuf.other_insn)
812 int old_other_cost, new_other_cost;
814 old_other_cost = INSN_COST (undobuf.other_insn);
815 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
816 if (old_other_cost > 0 && new_other_cost > 0)
818 old_cost += old_other_cost;
819 new_cost += new_other_cost;
825 /* Disallow this recombination if both new_cost and old_cost are
826 greater than zero, and new_cost is greater than old cost. */
828 && new_cost > old_cost)
835 "rejecting combination of insns %d, %d and %d\n",
836 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
837 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
838 i1_cost, i2_cost, i3_cost, old_cost);
843 "rejecting combination of insns %d and %d\n",
844 INSN_UID (i2), INSN_UID (i3));
845 fprintf (dump_file, "original costs %d + %d = %d\n",
846 i2_cost, i3_cost, old_cost);
851 fprintf (dump_file, "replacement costs %d + %d = %d\n",
852 new_i2_cost, new_i3_cost, new_cost);
855 fprintf (dump_file, "replacement cost %d\n", new_cost);
861 /* Update the uid_insn_cost array with the replacement costs. */
862 INSN_COST (i2) = new_i2_cost;
863 INSN_COST (i3) = new_i3_cost;
871 /* Delete any insns that copy a register to itself. */
874 delete_noop_moves (void)
881 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
883 next = NEXT_INSN (insn);
884 if (INSN_P (insn) && noop_move_p (insn))
887 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
889 delete_insn_and_edges (insn);
896 /* Fill in log links field for all insns. */
899 create_log_links (void)
903 df_ref *def_vec, *use_vec;
905 next_use = XCNEWVEC (rtx, max_reg_num ());
907 /* Pass through each block from the end, recording the uses of each
908 register and establishing log links when def is encountered.
909 Note that we do not clear next_use array in order to save time,
910 so we have to test whether the use is in the same basic block as def.
912 There are a few cases below when we do not consider the definition or
913 usage -- these are taken from original flow.c did. Don't ask me why it is
914 done this way; I don't know and if it works, I don't want to know. */
918 FOR_BB_INSNS_REVERSE (bb, insn)
923 /* Log links are created only once. */
924 gcc_assert (!LOG_LINKS (insn));
926 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
928 df_ref def = *def_vec;
929 int regno = DF_REF_REGNO (def);
932 if (!next_use[regno])
935 /* Do not consider if it is pre/post modification in MEM. */
936 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
939 /* Do not make the log link for frame pointer. */
940 if ((regno == FRAME_POINTER_REGNUM
941 && (! reload_completed || frame_pointer_needed))
942 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
943 || (regno == HARD_FRAME_POINTER_REGNUM
944 && (! reload_completed || frame_pointer_needed))
946 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
947 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
952 use_insn = next_use[regno];
953 if (BLOCK_FOR_INSN (use_insn) == bb)
957 We don't build a LOG_LINK for hard registers contained
958 in ASM_OPERANDs. If these registers get replaced,
959 we might wind up changing the semantics of the insn,
960 even if reload can make what appear to be valid
961 assignments later. */
962 if (regno >= FIRST_PSEUDO_REGISTER
963 || asm_noperands (PATTERN (use_insn)) < 0)
965 /* Don't add duplicate links between instructions. */
967 for (links = LOG_LINKS (use_insn); links;
968 links = XEXP (links, 1))
969 if (insn == XEXP (links, 0))
973 LOG_LINKS (use_insn) =
974 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
977 next_use[regno] = NULL_RTX;
980 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
982 df_ref use = *use_vec;
983 int regno = DF_REF_REGNO (use);
985 /* Do not consider the usage of the stack pointer
987 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
990 next_use[regno] = insn;
998 /* Clear LOG_LINKS fields of insns. */
1001 clear_log_links (void)
1005 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1007 free_INSN_LIST_list (&LOG_LINKS (insn));
1013 /* Main entry point for combiner. F is the first insn of the function.
1014 NREGS is the first unused pseudo-reg number.
1016 Return nonzero if the combiner has turned an indirect jump
1017 instruction into a direct jump. */
1019 combine_instructions (rtx f, unsigned int nregs)
1025 rtx links, nextlinks;
1028 int new_direct_jump_p = 0;
1030 for (first = f; first && !INSN_P (first); )
1031 first = NEXT_INSN (first);
1035 combine_attempts = 0;
1038 combine_successes = 0;
1040 rtl_hooks = combine_rtl_hooks;
1042 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1044 init_recog_no_volatile ();
1046 /* Allocate array for insn info. */
1047 max_uid_known = get_max_uid ();
1048 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1049 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1051 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1053 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1054 problems when, for example, we have j <<= 1 in a loop. */
1056 nonzero_sign_valid = 0;
1058 /* Scan all SETs and see if we can deduce anything about what
1059 bits are known to be zero for some registers and how many copies
1060 of the sign bit are known to exist for those registers.
1062 Also set any known values so that we can use it while searching
1063 for what bits are known to be set. */
1065 label_tick = label_tick_ebb_start = 1;
1067 setup_incoming_promotions (first);
1069 create_log_links ();
1070 FOR_EACH_BB (this_basic_block)
1072 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1076 FOR_BB_INSNS (this_basic_block, insn)
1077 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1079 subst_low_luid = DF_INSN_LUID (insn);
1082 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1084 record_dead_and_set_regs (insn);
1087 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1088 if (REG_NOTE_KIND (links) == REG_INC)
1089 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1093 /* Record the current insn_rtx_cost of this instruction. */
1094 if (NONJUMP_INSN_P (insn))
1095 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1096 optimize_this_for_speed_p);
1098 fprintf(dump_file, "insn_cost %d: %d\n",
1099 INSN_UID (insn), INSN_COST (insn));
1101 else if (LABEL_P (insn))
1102 label_tick_ebb_start = label_tick;
1105 nonzero_sign_valid = 1;
1107 /* Now scan all the insns in forward order. */
1109 label_tick = label_tick_ebb_start = 1;
1111 setup_incoming_promotions (first);
1113 FOR_EACH_BB (this_basic_block)
1115 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1119 rtl_profile_for_bb (this_basic_block);
1120 for (insn = BB_HEAD (this_basic_block);
1121 insn != NEXT_INSN (BB_END (this_basic_block));
1122 insn = next ? next : NEXT_INSN (insn))
1127 /* See if we know about function return values before this
1128 insn based upon SUBREG flags. */
1129 check_promoted_subreg (insn, PATTERN (insn));
1131 /* See if we can find hardregs and subreg of pseudos in
1132 narrower modes. This could help turning TRUNCATEs
1134 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1136 /* Try this insn with each insn it links back to. */
1138 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1139 if ((next = try_combine (insn, XEXP (links, 0),
1140 NULL_RTX, &new_direct_jump_p)) != 0)
1143 /* Try each sequence of three linked insns ending with this one. */
1145 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1147 rtx link = XEXP (links, 0);
1149 /* If the linked insn has been replaced by a note, then there
1150 is no point in pursuing this chain any further. */
1154 for (nextlinks = LOG_LINKS (link);
1156 nextlinks = XEXP (nextlinks, 1))
1157 if ((next = try_combine (insn, link,
1158 XEXP (nextlinks, 0),
1159 &new_direct_jump_p)) != 0)
1164 /* Try to combine a jump insn that uses CC0
1165 with a preceding insn that sets CC0, and maybe with its
1166 logical predecessor as well.
1167 This is how we make decrement-and-branch insns.
1168 We need this special code because data flow connections
1169 via CC0 do not get entered in LOG_LINKS. */
1172 && (prev = prev_nonnote_insn (insn)) != 0
1173 && NONJUMP_INSN_P (prev)
1174 && sets_cc0_p (PATTERN (prev)))
1176 if ((next = try_combine (insn, prev,
1177 NULL_RTX, &new_direct_jump_p)) != 0)
1180 for (nextlinks = LOG_LINKS (prev); nextlinks;
1181 nextlinks = XEXP (nextlinks, 1))
1182 if ((next = try_combine (insn, prev,
1183 XEXP (nextlinks, 0),
1184 &new_direct_jump_p)) != 0)
1188 /* Do the same for an insn that explicitly references CC0. */
1189 if (NONJUMP_INSN_P (insn)
1190 && (prev = prev_nonnote_insn (insn)) != 0
1191 && NONJUMP_INSN_P (prev)
1192 && sets_cc0_p (PATTERN (prev))
1193 && GET_CODE (PATTERN (insn)) == SET
1194 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1196 if ((next = try_combine (insn, prev,
1197 NULL_RTX, &new_direct_jump_p)) != 0)
1200 for (nextlinks = LOG_LINKS (prev); nextlinks;
1201 nextlinks = XEXP (nextlinks, 1))
1202 if ((next = try_combine (insn, prev,
1203 XEXP (nextlinks, 0),
1204 &new_direct_jump_p)) != 0)
1208 /* Finally, see if any of the insns that this insn links to
1209 explicitly references CC0. If so, try this insn, that insn,
1210 and its predecessor if it sets CC0. */
1211 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1212 if (NONJUMP_INSN_P (XEXP (links, 0))
1213 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1214 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1215 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1216 && NONJUMP_INSN_P (prev)
1217 && sets_cc0_p (PATTERN (prev))
1218 && (next = try_combine (insn, XEXP (links, 0),
1219 prev, &new_direct_jump_p)) != 0)
1223 /* Try combining an insn with two different insns whose results it
1225 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1226 for (nextlinks = XEXP (links, 1); nextlinks;
1227 nextlinks = XEXP (nextlinks, 1))
1228 if ((next = try_combine (insn, XEXP (links, 0),
1229 XEXP (nextlinks, 0),
1230 &new_direct_jump_p)) != 0)
1233 /* Try this insn with each REG_EQUAL note it links back to. */
1234 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1237 rtx temp = XEXP (links, 0);
1238 if ((set = single_set (temp)) != 0
1239 && (note = find_reg_equal_equiv_note (temp)) != 0
1240 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1241 /* Avoid using a register that may already been marked
1242 dead by an earlier instruction. */
1243 && ! unmentioned_reg_p (note, SET_SRC (set))
1244 && (GET_MODE (note) == VOIDmode
1245 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1246 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1248 /* Temporarily replace the set's source with the
1249 contents of the REG_EQUAL note. The insn will
1250 be deleted or recognized by try_combine. */
1251 rtx orig = SET_SRC (set);
1252 SET_SRC (set) = note;
1254 i2mod_old_rhs = copy_rtx (orig);
1255 i2mod_new_rhs = copy_rtx (note);
1256 next = try_combine (insn, i2mod, NULL_RTX,
1257 &new_direct_jump_p);
1261 SET_SRC (set) = orig;
1266 record_dead_and_set_regs (insn);
1271 else if (LABEL_P (insn))
1272 label_tick_ebb_start = label_tick;
1276 default_rtl_profile ();
1279 new_direct_jump_p |= purge_all_dead_edges ();
1280 delete_noop_moves ();
1283 free (uid_log_links);
1284 free (uid_insn_cost);
1285 VEC_free (reg_stat_type, heap, reg_stat);
1288 struct undo *undo, *next;
1289 for (undo = undobuf.frees; undo; undo = next)
1297 total_attempts += combine_attempts;
1298 total_merges += combine_merges;
1299 total_extras += combine_extras;
1300 total_successes += combine_successes;
1302 nonzero_sign_valid = 0;
1303 rtl_hooks = general_rtl_hooks;
1305 /* Make recognizer allow volatile MEMs again. */
1308 return new_direct_jump_p;
1311 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1314 init_reg_last (void)
1319 for (i = 0; VEC_iterate (reg_stat_type, reg_stat, i, p); ++i)
1320 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1323 /* Set up any promoted values for incoming argument registers. */
1326 setup_incoming_promotions (rtx first)
1329 bool strictly_local = false;
1331 if (!targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
1334 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1335 arg = TREE_CHAIN (arg))
1337 rtx reg = DECL_INCOMING_RTL (arg);
1339 enum machine_mode mode1, mode2, mode3, mode4;
1341 /* Only continue if the incoming argument is in a register. */
1345 /* Determine, if possible, whether all call sites of the current
1346 function lie within the current compilation unit. (This does
1347 take into account the exporting of a function via taking its
1348 address, and so forth.) */
1349 strictly_local = cgraph_local_info (current_function_decl)->local;
1351 /* The mode and signedness of the argument before any promotions happen
1352 (equal to the mode of the pseudo holding it at that stage). */
1353 mode1 = TYPE_MODE (TREE_TYPE (arg));
1354 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1356 /* The mode and signedness of the argument after any source language and
1357 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1358 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1359 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1361 /* The mode and signedness of the argument as it is actually passed,
1362 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1363 mode3 = promote_mode (DECL_ARG_TYPE (arg), mode2, &uns3, 1);
1365 /* The mode of the register in which the argument is being passed. */
1366 mode4 = GET_MODE (reg);
1368 /* Eliminate sign extensions in the callee when possible. Only
1370 (a) a mode promotion has occurred;
1371 (b) the mode of the register is the same as the mode of
1372 the argument as it is passed; and
1373 (c) the signedness does not change across any of the promotions; and
1374 (d) when no language-level promotions (which we cannot guarantee
1375 will have been done by an external caller) are necessary,
1376 unless we know that this function is only ever called from
1377 the current compilation unit -- all of whose call sites will
1378 do the mode1 --> mode2 promotion. */
1382 && (mode1 == mode2 || strictly_local))
1384 /* Record that the value was promoted from mode1 to mode3,
1385 so that any sign extension at the head of the current
1386 function may be eliminated. */
1388 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1389 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1390 record_value_for_reg (reg, first, x);
1395 /* Called via note_stores. If X is a pseudo that is narrower than
1396 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1398 If we are setting only a portion of X and we can't figure out what
1399 portion, assume all bits will be used since we don't know what will
1402 Similarly, set how many bits of X are known to be copies of the sign bit
1403 at all locations in the function. This is the smallest number implied
1407 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1409 rtx insn = (rtx) data;
1413 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1414 /* If this register is undefined at the start of the file, we can't
1415 say what its contents were. */
1416 && ! REGNO_REG_SET_P
1417 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1418 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1420 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1422 if (set == 0 || GET_CODE (set) == CLOBBER)
1424 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1425 rsp->sign_bit_copies = 1;
1429 /* If this register is being initialized using itself, and the
1430 register is uninitialized in this basic block, and there are
1431 no LOG_LINKS which set the register, then part of the
1432 register is uninitialized. In that case we can't assume
1433 anything about the number of nonzero bits.
1435 ??? We could do better if we checked this in
1436 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1437 could avoid making assumptions about the insn which initially
1438 sets the register, while still using the information in other
1439 insns. We would have to be careful to check every insn
1440 involved in the combination. */
1443 && reg_referenced_p (x, PATTERN (insn))
1444 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1449 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1451 if (dead_or_set_p (XEXP (link, 0), x))
1456 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1457 rsp->sign_bit_copies = 1;
1462 /* If this is a complex assignment, see if we can convert it into a
1463 simple assignment. */
1464 set = expand_field_assignment (set);
1466 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1467 set what we know about X. */
1469 if (SET_DEST (set) == x
1470 || (GET_CODE (SET_DEST (set)) == SUBREG
1471 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1472 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1473 && SUBREG_REG (SET_DEST (set)) == x))
1475 rtx src = SET_SRC (set);
1477 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1478 /* If X is narrower than a word and SRC is a non-negative
1479 constant that would appear negative in the mode of X,
1480 sign-extend it for use in reg_stat[].nonzero_bits because some
1481 machines (maybe most) will actually do the sign-extension
1482 and this is the conservative approach.
1484 ??? For 2.5, try to tighten up the MD files in this regard
1485 instead of this kludge. */
1487 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1488 && GET_CODE (src) == CONST_INT
1490 && 0 != (INTVAL (src)
1491 & ((HOST_WIDE_INT) 1
1492 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1493 src = GEN_INT (INTVAL (src)
1494 | ((HOST_WIDE_INT) (-1)
1495 << GET_MODE_BITSIZE (GET_MODE (x))));
1498 /* Don't call nonzero_bits if it cannot change anything. */
1499 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1500 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1501 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1502 if (rsp->sign_bit_copies == 0
1503 || rsp->sign_bit_copies > num)
1504 rsp->sign_bit_copies = num;
1508 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1509 rsp->sign_bit_copies = 1;
1514 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1515 insns that were previously combined into I3 or that will be combined
1516 into the merger of INSN and I3.
1518 Return 0 if the combination is not allowed for any reason.
1520 If the combination is allowed, *PDEST will be set to the single
1521 destination of INSN and *PSRC to the single source, and this function
1525 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1526 rtx *pdest, rtx *psrc)
1535 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1536 && next_active_insn (succ) == i3)
1537 : next_active_insn (insn) == i3);
1539 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1540 or a PARALLEL consisting of such a SET and CLOBBERs.
1542 If INSN has CLOBBER parallel parts, ignore them for our processing.
1543 By definition, these happen during the execution of the insn. When it
1544 is merged with another insn, all bets are off. If they are, in fact,
1545 needed and aren't also supplied in I3, they may be added by
1546 recog_for_combine. Otherwise, it won't match.
1548 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1551 Get the source and destination of INSN. If more than one, can't
1554 if (GET_CODE (PATTERN (insn)) == SET)
1555 set = PATTERN (insn);
1556 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1557 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1559 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1561 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1564 switch (GET_CODE (elt))
1566 /* This is important to combine floating point insns
1567 for the SH4 port. */
1569 /* Combining an isolated USE doesn't make sense.
1570 We depend here on combinable_i3pat to reject them. */
1571 /* The code below this loop only verifies that the inputs of
1572 the SET in INSN do not change. We call reg_set_between_p
1573 to verify that the REG in the USE does not change between
1575 If the USE in INSN was for a pseudo register, the matching
1576 insn pattern will likely match any register; combining this
1577 with any other USE would only be safe if we knew that the
1578 used registers have identical values, or if there was
1579 something to tell them apart, e.g. different modes. For
1580 now, we forgo such complicated tests and simply disallow
1581 combining of USES of pseudo registers with any other USE. */
1582 if (REG_P (XEXP (elt, 0))
1583 && GET_CODE (PATTERN (i3)) == PARALLEL)
1585 rtx i3pat = PATTERN (i3);
1586 int i = XVECLEN (i3pat, 0) - 1;
1587 unsigned int regno = REGNO (XEXP (elt, 0));
1591 rtx i3elt = XVECEXP (i3pat, 0, i);
1593 if (GET_CODE (i3elt) == USE
1594 && REG_P (XEXP (i3elt, 0))
1595 && (REGNO (XEXP (i3elt, 0)) == regno
1596 ? reg_set_between_p (XEXP (elt, 0),
1597 PREV_INSN (insn), i3)
1598 : regno >= FIRST_PSEUDO_REGISTER))
1605 /* We can ignore CLOBBERs. */
1610 /* Ignore SETs whose result isn't used but not those that
1611 have side-effects. */
1612 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1613 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1614 || INTVAL (XEXP (note, 0)) <= 0)
1615 && ! side_effects_p (elt))
1618 /* If we have already found a SET, this is a second one and
1619 so we cannot combine with this insn. */
1627 /* Anything else means we can't combine. */
1633 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1634 so don't do anything with it. */
1635 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1644 set = expand_field_assignment (set);
1645 src = SET_SRC (set), dest = SET_DEST (set);
1647 /* Don't eliminate a store in the stack pointer. */
1648 if (dest == stack_pointer_rtx
1649 /* Don't combine with an insn that sets a register to itself if it has
1650 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1651 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1652 /* Can't merge an ASM_OPERANDS. */
1653 || GET_CODE (src) == ASM_OPERANDS
1654 /* Can't merge a function call. */
1655 || GET_CODE (src) == CALL
1656 /* Don't eliminate a function call argument. */
1658 && (find_reg_fusage (i3, USE, dest)
1660 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1661 && global_regs[REGNO (dest)])))
1662 /* Don't substitute into an incremented register. */
1663 || FIND_REG_INC_NOTE (i3, dest)
1664 || (succ && FIND_REG_INC_NOTE (succ, dest))
1665 /* Don't substitute into a non-local goto, this confuses CFG. */
1666 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1667 /* Make sure that DEST is not used after SUCC but before I3. */
1668 || (succ && ! all_adjacent
1669 && reg_used_between_p (dest, succ, i3))
1670 /* Make sure that the value that is to be substituted for the register
1671 does not use any registers whose values alter in between. However,
1672 If the insns are adjacent, a use can't cross a set even though we
1673 think it might (this can happen for a sequence of insns each setting
1674 the same destination; last_set of that register might point to
1675 a NOTE). If INSN has a REG_EQUIV note, the register is always
1676 equivalent to the memory so the substitution is valid even if there
1677 are intervening stores. Also, don't move a volatile asm or
1678 UNSPEC_VOLATILE across any other insns. */
1681 || ! find_reg_note (insn, REG_EQUIV, src))
1682 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1683 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1684 || GET_CODE (src) == UNSPEC_VOLATILE))
1685 /* Don't combine across a CALL_INSN, because that would possibly
1686 change whether the life span of some REGs crosses calls or not,
1687 and it is a pain to update that information.
1688 Exception: if source is a constant, moving it later can't hurt.
1689 Accept that as a special case. */
1690 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1693 /* DEST must either be a REG or CC0. */
1696 /* If register alignment is being enforced for multi-word items in all
1697 cases except for parameters, it is possible to have a register copy
1698 insn referencing a hard register that is not allowed to contain the
1699 mode being copied and which would not be valid as an operand of most
1700 insns. Eliminate this problem by not combining with such an insn.
1702 Also, on some machines we don't want to extend the life of a hard
1706 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1707 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1708 /* Don't extend the life of a hard register unless it is
1709 user variable (if we have few registers) or it can't
1710 fit into the desired register (meaning something special
1712 Also avoid substituting a return register into I3, because
1713 reload can't handle a conflict with constraints of other
1715 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1716 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1719 else if (GET_CODE (dest) != CC0)
1723 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1724 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1725 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1727 /* Don't substitute for a register intended as a clobberable
1729 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1730 if (rtx_equal_p (reg, dest))
1733 /* If the clobber represents an earlyclobber operand, we must not
1734 substitute an expression containing the clobbered register.
1735 As we do not analyze the constraint strings here, we have to
1736 make the conservative assumption. However, if the register is
1737 a fixed hard reg, the clobber cannot represent any operand;
1738 we leave it up to the machine description to either accept or
1739 reject use-and-clobber patterns. */
1741 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1742 || !fixed_regs[REGNO (reg)])
1743 if (reg_overlap_mentioned_p (reg, src))
1747 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1748 or not), reject, unless nothing volatile comes between it and I3 */
1750 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1752 /* Make sure succ doesn't contain a volatile reference. */
1753 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1756 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1757 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1761 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1762 to be an explicit register variable, and was chosen for a reason. */
1764 if (GET_CODE (src) == ASM_OPERANDS
1765 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1768 /* If there are any volatile insns between INSN and I3, reject, because
1769 they might affect machine state. */
1771 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1772 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1775 /* If INSN contains an autoincrement or autodecrement, make sure that
1776 register is not used between there and I3, and not already used in
1777 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1778 Also insist that I3 not be a jump; if it were one
1779 and the incremented register were spilled, we would lose. */
1782 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1783 if (REG_NOTE_KIND (link) == REG_INC
1785 || reg_used_between_p (XEXP (link, 0), insn, i3)
1786 || (pred != NULL_RTX
1787 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1788 || (succ != NULL_RTX
1789 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1790 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1795 /* Don't combine an insn that follows a CC0-setting insn.
1796 An insn that uses CC0 must not be separated from the one that sets it.
1797 We do, however, allow I2 to follow a CC0-setting insn if that insn
1798 is passed as I1; in that case it will be deleted also.
1799 We also allow combining in this case if all the insns are adjacent
1800 because that would leave the two CC0 insns adjacent as well.
1801 It would be more logical to test whether CC0 occurs inside I1 or I2,
1802 but that would be much slower, and this ought to be equivalent. */
1804 p = prev_nonnote_insn (insn);
1805 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1810 /* If we get here, we have passed all the tests and the combination is
1819 /* LOC is the location within I3 that contains its pattern or the component
1820 of a PARALLEL of the pattern. We validate that it is valid for combining.
1822 One problem is if I3 modifies its output, as opposed to replacing it
1823 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1824 so would produce an insn that is not equivalent to the original insns.
1828 (set (reg:DI 101) (reg:DI 100))
1829 (set (subreg:SI (reg:DI 101) 0) <foo>)
1831 This is NOT equivalent to:
1833 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1834 (set (reg:DI 101) (reg:DI 100))])
1836 Not only does this modify 100 (in which case it might still be valid
1837 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1839 We can also run into a problem if I2 sets a register that I1
1840 uses and I1 gets directly substituted into I3 (not via I2). In that
1841 case, we would be getting the wrong value of I2DEST into I3, so we
1842 must reject the combination. This case occurs when I2 and I1 both
1843 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1844 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1845 of a SET must prevent combination from occurring.
1847 Before doing the above check, we first try to expand a field assignment
1848 into a set of logical operations.
1850 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1851 we place a register that is both set and used within I3. If more than one
1852 such register is detected, we fail.
1854 Return 1 if the combination is valid, zero otherwise. */
1857 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1858 int i1_not_in_src, rtx *pi3dest_killed)
1862 if (GET_CODE (x) == SET)
1865 rtx dest = SET_DEST (set);
1866 rtx src = SET_SRC (set);
1867 rtx inner_dest = dest;
1870 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1871 || GET_CODE (inner_dest) == SUBREG
1872 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1873 inner_dest = XEXP (inner_dest, 0);
1875 /* Check for the case where I3 modifies its output, as discussed
1876 above. We don't want to prevent pseudos from being combined
1877 into the address of a MEM, so only prevent the combination if
1878 i1 or i2 set the same MEM. */
1879 if ((inner_dest != dest &&
1880 (!MEM_P (inner_dest)
1881 || rtx_equal_p (i2dest, inner_dest)
1882 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1883 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1884 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1886 /* This is the same test done in can_combine_p except we can't test
1887 all_adjacent; we don't have to, since this instruction will stay
1888 in place, thus we are not considering increasing the lifetime of
1891 Also, if this insn sets a function argument, combining it with
1892 something that might need a spill could clobber a previous
1893 function argument; the all_adjacent test in can_combine_p also
1894 checks this; here, we do a more specific test for this case. */
1896 || (REG_P (inner_dest)
1897 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1898 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1899 GET_MODE (inner_dest))))
1900 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1903 /* If DEST is used in I3, it is being killed in this insn, so
1904 record that for later. We have to consider paradoxical
1905 subregs here, since they kill the whole register, but we
1906 ignore partial subregs, STRICT_LOW_PART, etc.
1907 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1908 STACK_POINTER_REGNUM, since these are always considered to be
1909 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1911 if (GET_CODE (subdest) == SUBREG
1912 && (GET_MODE_SIZE (GET_MODE (subdest))
1913 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1914 subdest = SUBREG_REG (subdest);
1917 && reg_referenced_p (subdest, PATTERN (i3))
1918 && REGNO (subdest) != FRAME_POINTER_REGNUM
1919 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1920 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1922 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1923 && (REGNO (subdest) != ARG_POINTER_REGNUM
1924 || ! fixed_regs [REGNO (subdest)])
1926 && REGNO (subdest) != STACK_POINTER_REGNUM)
1928 if (*pi3dest_killed)
1931 *pi3dest_killed = subdest;
1935 else if (GET_CODE (x) == PARALLEL)
1939 for (i = 0; i < XVECLEN (x, 0); i++)
1940 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1941 i1_not_in_src, pi3dest_killed))
1948 /* Return 1 if X is an arithmetic expression that contains a multiplication
1949 and division. We don't count multiplications by powers of two here. */
1952 contains_muldiv (rtx x)
1954 switch (GET_CODE (x))
1956 case MOD: case DIV: case UMOD: case UDIV:
1960 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1961 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1964 return contains_muldiv (XEXP (x, 0))
1965 || contains_muldiv (XEXP (x, 1));
1968 return contains_muldiv (XEXP (x, 0));
1974 /* Determine whether INSN can be used in a combination. Return nonzero if
1975 not. This is used in try_combine to detect early some cases where we
1976 can't perform combinations. */
1979 cant_combine_insn_p (rtx insn)
1984 /* If this isn't really an insn, we can't do anything.
1985 This can occur when flow deletes an insn that it has merged into an
1986 auto-increment address. */
1987 if (! INSN_P (insn))
1990 /* Never combine loads and stores involving hard regs that are likely
1991 to be spilled. The register allocator can usually handle such
1992 reg-reg moves by tying. If we allow the combiner to make
1993 substitutions of likely-spilled regs, reload might die.
1994 As an exception, we allow combinations involving fixed regs; these are
1995 not available to the register allocator so there's no risk involved. */
1997 set = single_set (insn);
2000 src = SET_SRC (set);
2001 dest = SET_DEST (set);
2002 if (GET_CODE (src) == SUBREG)
2003 src = SUBREG_REG (src);
2004 if (GET_CODE (dest) == SUBREG)
2005 dest = SUBREG_REG (dest);
2006 if (REG_P (src) && REG_P (dest)
2007 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
2008 && ! fixed_regs[REGNO (src)]
2009 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
2010 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
2011 && ! fixed_regs[REGNO (dest)]
2012 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
2018 struct likely_spilled_retval_info
2020 unsigned regno, nregs;
2024 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2025 hard registers that are known to be written to / clobbered in full. */
2027 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2029 struct likely_spilled_retval_info *const info =
2030 (struct likely_spilled_retval_info *) data;
2031 unsigned regno, nregs;
2034 if (!REG_P (XEXP (set, 0)))
2037 if (regno >= info->regno + info->nregs)
2039 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2040 if (regno + nregs <= info->regno)
2042 new_mask = (2U << (nregs - 1)) - 1;
2043 if (regno < info->regno)
2044 new_mask >>= info->regno - regno;
2046 new_mask <<= regno - info->regno;
2047 info->mask &= ~new_mask;
2050 /* Return nonzero iff part of the return value is live during INSN, and
2051 it is likely spilled. This can happen when more than one insn is needed
2052 to copy the return value, e.g. when we consider to combine into the
2053 second copy insn for a complex value. */
2056 likely_spilled_retval_p (rtx insn)
2058 rtx use = BB_END (this_basic_block);
2060 unsigned regno, nregs;
2061 /* We assume here that no machine mode needs more than
2062 32 hard registers when the value overlaps with a register
2063 for which FUNCTION_VALUE_REGNO_P is true. */
2065 struct likely_spilled_retval_info info;
2067 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2069 reg = XEXP (PATTERN (use), 0);
2070 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
2072 regno = REGNO (reg);
2073 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2076 mask = (2U << (nregs - 1)) - 1;
2078 /* Disregard parts of the return value that are set later. */
2082 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2084 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2087 /* Check if any of the (probably) live return value registers is
2092 if ((mask & 1 << nregs)
2093 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
2099 /* Adjust INSN after we made a change to its destination.
2101 Changing the destination can invalidate notes that say something about
2102 the results of the insn and a LOG_LINK pointing to the insn. */
2105 adjust_for_new_dest (rtx insn)
2107 /* For notes, be conservative and simply remove them. */
2108 remove_reg_equal_equiv_notes (insn);
2110 /* The new insn will have a destination that was previously the destination
2111 of an insn just above it. Call distribute_links to make a LOG_LINK from
2112 the next use of that destination. */
2113 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2115 df_insn_rescan (insn);
2118 /* Return TRUE if combine can reuse reg X in mode MODE.
2119 ADDED_SETS is nonzero if the original set is still required. */
2121 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2129 /* Allow hard registers if the new mode is legal, and occupies no more
2130 registers than the old mode. */
2131 if (regno < FIRST_PSEUDO_REGISTER)
2132 return (HARD_REGNO_MODE_OK (regno, mode)
2133 && (hard_regno_nregs[regno][GET_MODE (x)]
2134 >= hard_regno_nregs[regno][mode]));
2136 /* Or a pseudo that is only used once. */
2137 return (REG_N_SETS (regno) == 1 && !added_sets
2138 && !REG_USERVAR_P (x));
2142 /* Check whether X, the destination of a set, refers to part of
2143 the register specified by REG. */
2146 reg_subword_p (rtx x, rtx reg)
2148 /* Check that reg is an integer mode register. */
2149 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2152 if (GET_CODE (x) == STRICT_LOW_PART
2153 || GET_CODE (x) == ZERO_EXTRACT)
2156 return GET_CODE (x) == SUBREG
2157 && SUBREG_REG (x) == reg
2158 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2162 /* Try to combine the insns I1 and I2 into I3.
2163 Here I1 and I2 appear earlier than I3.
2164 I1 can be zero; then we combine just I2 into I3.
2166 If we are combining three insns and the resulting insn is not recognized,
2167 try splitting it into two insns. If that happens, I2 and I3 are retained
2168 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
2171 Return 0 if the combination does not work. Then nothing is changed.
2172 If we did the combination, return the insn at which combine should
2175 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2176 new direct jump instruction. */
2179 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
2181 /* New patterns for I3 and I2, respectively. */
2182 rtx newpat, newi2pat = 0;
2183 rtvec newpat_vec_with_clobbers = 0;
2184 int substed_i2 = 0, substed_i1 = 0;
2185 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
2186 int added_sets_1, added_sets_2;
2187 /* Total number of SETs to put into I3. */
2189 /* Nonzero if I2's body now appears in I3. */
2191 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2192 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2193 /* Contains I3 if the destination of I3 is used in its source, which means
2194 that the old life of I3 is being killed. If that usage is placed into
2195 I2 and not in I3, a REG_DEAD note must be made. */
2196 rtx i3dest_killed = 0;
2197 /* SET_DEST and SET_SRC of I2 and I1. */
2198 rtx i2dest, i2src, i1dest = 0, i1src = 0;
2199 /* PATTERN (I1) and PATTERN (I2), or a copy of it in certain cases. */
2200 rtx i1pat = 0, i2pat = 0;
2201 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2202 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2203 int i2dest_killed = 0, i1dest_killed = 0;
2204 int i1_feeds_i3 = 0;
2205 /* Notes that must be added to REG_NOTES in I3 and I2. */
2206 rtx new_i3_notes, new_i2_notes;
2207 /* Notes that we substituted I3 into I2 instead of the normal case. */
2208 int i3_subst_into_i2 = 0;
2209 /* Notes that I1, I2 or I3 is a MULT operation. */
2212 int changed_i3_dest = 0;
2218 rtx new_other_notes;
2221 /* Exit early if one of the insns involved can't be used for
2223 if (cant_combine_insn_p (i3)
2224 || cant_combine_insn_p (i2)
2225 || (i1 && cant_combine_insn_p (i1))
2226 || likely_spilled_retval_p (i3))
2230 undobuf.other_insn = 0;
2232 /* Reset the hard register usage information. */
2233 CLEAR_HARD_REG_SET (newpat_used_regs);
2235 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
2236 code below, set I1 to be the earlier of the two insns. */
2237 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2238 temp = i1, i1 = i2, i2 = temp;
2240 added_links_insn = 0;
2242 /* First check for one important special-case that the code below will
2243 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2244 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2245 we may be able to replace that destination with the destination of I3.
2246 This occurs in the common code where we compute both a quotient and
2247 remainder into a structure, in which case we want to do the computation
2248 directly into the structure to avoid register-register copies.
2250 Note that this case handles both multiple sets in I2 and also
2251 cases where I2 has a number of CLOBBER or PARALLELs.
2253 We make very conservative checks below and only try to handle the
2254 most common cases of this. For example, we only handle the case
2255 where I2 and I3 are adjacent to avoid making difficult register
2258 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2259 && REG_P (SET_SRC (PATTERN (i3)))
2260 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2261 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2262 && GET_CODE (PATTERN (i2)) == PARALLEL
2263 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2264 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2265 below would need to check what is inside (and reg_overlap_mentioned_p
2266 doesn't support those codes anyway). Don't allow those destinations;
2267 the resulting insn isn't likely to be recognized anyway. */
2268 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2269 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2270 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2271 SET_DEST (PATTERN (i3)))
2272 && next_real_insn (i2) == i3)
2274 rtx p2 = PATTERN (i2);
2276 /* Make sure that the destination of I3,
2277 which we are going to substitute into one output of I2,
2278 is not used within another output of I2. We must avoid making this:
2279 (parallel [(set (mem (reg 69)) ...)
2280 (set (reg 69) ...)])
2281 which is not well-defined as to order of actions.
2282 (Besides, reload can't handle output reloads for this.)
2284 The problem can also happen if the dest of I3 is a memory ref,
2285 if another dest in I2 is an indirect memory ref. */
2286 for (i = 0; i < XVECLEN (p2, 0); i++)
2287 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2288 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2289 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2290 SET_DEST (XVECEXP (p2, 0, i))))
2293 if (i == XVECLEN (p2, 0))
2294 for (i = 0; i < XVECLEN (p2, 0); i++)
2295 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2296 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2297 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2302 subst_low_luid = DF_INSN_LUID (i2);
2304 added_sets_2 = added_sets_1 = 0;
2305 i2dest = SET_SRC (PATTERN (i3));
2306 i2dest_killed = dead_or_set_p (i2, i2dest);
2308 /* Replace the dest in I2 with our dest and make the resulting
2309 insn the new pattern for I3. Then skip to where we
2310 validate the pattern. Everything was set up above. */
2311 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
2312 SET_DEST (PATTERN (i3)));
2315 i3_subst_into_i2 = 1;
2316 goto validate_replacement;
2320 /* If I2 is setting a pseudo to a constant and I3 is setting some
2321 sub-part of it to another constant, merge them by making a new
2324 && (temp = single_set (i2)) != 0
2325 && (GET_CODE (SET_SRC (temp)) == CONST_INT
2326 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2327 && GET_CODE (PATTERN (i3)) == SET
2328 && (GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT
2329 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2330 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2332 rtx dest = SET_DEST (PATTERN (i3));
2336 if (GET_CODE (dest) == ZERO_EXTRACT)
2338 if (GET_CODE (XEXP (dest, 1)) == CONST_INT
2339 && GET_CODE (XEXP (dest, 2)) == CONST_INT)
2341 width = INTVAL (XEXP (dest, 1));
2342 offset = INTVAL (XEXP (dest, 2));
2343 dest = XEXP (dest, 0);
2344 if (BITS_BIG_ENDIAN)
2345 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2350 if (GET_CODE (dest) == STRICT_LOW_PART)
2351 dest = XEXP (dest, 0);
2352 width = GET_MODE_BITSIZE (GET_MODE (dest));
2358 /* If this is the low part, we're done. */
2359 if (subreg_lowpart_p (dest))
2361 /* Handle the case where inner is twice the size of outer. */
2362 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2363 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2364 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2365 /* Otherwise give up for now. */
2371 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2372 <= HOST_BITS_PER_WIDE_INT * 2))
2374 HOST_WIDE_INT mhi, ohi, ihi;
2375 HOST_WIDE_INT mlo, olo, ilo;
2376 rtx inner = SET_SRC (PATTERN (i3));
2377 rtx outer = SET_SRC (temp);
2379 if (GET_CODE (outer) == CONST_INT)
2381 olo = INTVAL (outer);
2382 ohi = olo < 0 ? -1 : 0;
2386 olo = CONST_DOUBLE_LOW (outer);
2387 ohi = CONST_DOUBLE_HIGH (outer);
2390 if (GET_CODE (inner) == CONST_INT)
2392 ilo = INTVAL (inner);
2393 ihi = ilo < 0 ? -1 : 0;
2397 ilo = CONST_DOUBLE_LOW (inner);
2398 ihi = CONST_DOUBLE_HIGH (inner);
2401 if (width < HOST_BITS_PER_WIDE_INT)
2403 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2406 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2408 mhi = ((unsigned HOST_WIDE_INT) 1
2409 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2421 if (offset >= HOST_BITS_PER_WIDE_INT)
2423 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2425 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2428 else if (offset > 0)
2430 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2431 >> (HOST_BITS_PER_WIDE_INT - offset));
2432 mlo = mlo << offset;
2433 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2434 >> (HOST_BITS_PER_WIDE_INT - offset));
2435 ilo = ilo << offset;
2438 olo = (olo & ~mlo) | ilo;
2439 ohi = (ohi & ~mhi) | ihi;
2443 subst_low_luid = DF_INSN_LUID (i2);
2444 added_sets_2 = added_sets_1 = 0;
2445 i2dest = SET_DEST (temp);
2446 i2dest_killed = dead_or_set_p (i2, i2dest);
2448 SUBST (SET_SRC (temp),
2449 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2451 newpat = PATTERN (i2);
2452 goto validate_replacement;
2457 /* If we have no I1 and I2 looks like:
2458 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2460 make up a dummy I1 that is
2463 (set (reg:CC X) (compare:CC Y (const_int 0)))
2465 (We can ignore any trailing CLOBBERs.)
2467 This undoes a previous combination and allows us to match a branch-and-
2470 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2471 && XVECLEN (PATTERN (i2), 0) >= 2
2472 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2473 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2475 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2476 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2477 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2478 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2479 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2480 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2482 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2483 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2488 /* We make I1 with the same INSN_UID as I2. This gives it
2489 the same DF_INSN_LUID for value tracking. Our fake I1 will
2490 never appear in the insn stream so giving it the same INSN_UID
2491 as I2 will not cause a problem. */
2493 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2494 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2495 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX);
2497 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2498 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2499 SET_DEST (PATTERN (i1)));
2504 /* Verify that I2 and I1 are valid for combining. */
2505 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2506 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2512 /* Record whether I2DEST is used in I2SRC and similarly for the other
2513 cases. Knowing this will help in register status updating below. */
2514 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2515 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2516 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2517 i2dest_killed = dead_or_set_p (i2, i2dest);
2518 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2520 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2522 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2524 /* Ensure that I3's pattern can be the destination of combines. */
2525 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2526 i1 && i2dest_in_i1src && i1_feeds_i3,
2533 /* See if any of the insns is a MULT operation. Unless one is, we will
2534 reject a combination that is, since it must be slower. Be conservative
2536 if (GET_CODE (i2src) == MULT
2537 || (i1 != 0 && GET_CODE (i1src) == MULT)
2538 || (GET_CODE (PATTERN (i3)) == SET
2539 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2542 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2543 We used to do this EXCEPT in one case: I3 has a post-inc in an
2544 output operand. However, that exception can give rise to insns like
2546 which is a famous insn on the PDP-11 where the value of r3 used as the
2547 source was model-dependent. Avoid this sort of thing. */
2550 if (!(GET_CODE (PATTERN (i3)) == SET
2551 && REG_P (SET_SRC (PATTERN (i3)))
2552 && MEM_P (SET_DEST (PATTERN (i3)))
2553 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2554 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2555 /* It's not the exception. */
2558 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2559 if (REG_NOTE_KIND (link) == REG_INC
2560 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2562 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2569 /* See if the SETs in I1 or I2 need to be kept around in the merged
2570 instruction: whenever the value set there is still needed past I3.
2571 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2573 For the SET in I1, we have two cases: If I1 and I2 independently
2574 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2575 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2576 in I1 needs to be kept around unless I1DEST dies or is set in either
2577 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2578 I1DEST. If so, we know I1 feeds into I2. */
2580 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2583 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2584 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2586 /* If the set in I2 needs to be kept around, we must make a copy of
2587 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2588 PATTERN (I2), we are only substituting for the original I1DEST, not into
2589 an already-substituted copy. This also prevents making self-referential
2590 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2595 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2596 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2598 i2pat = copy_rtx (PATTERN (i2));
2603 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2604 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2606 i1pat = copy_rtx (PATTERN (i1));
2611 /* Substitute in the latest insn for the regs set by the earlier ones. */
2613 maxreg = max_reg_num ();
2618 /* Many machines that don't use CC0 have insns that can both perform an
2619 arithmetic operation and set the condition code. These operations will
2620 be represented as a PARALLEL with the first element of the vector
2621 being a COMPARE of an arithmetic operation with the constant zero.
2622 The second element of the vector will set some pseudo to the result
2623 of the same arithmetic operation. If we simplify the COMPARE, we won't
2624 match such a pattern and so will generate an extra insn. Here we test
2625 for this case, where both the comparison and the operation result are
2626 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2627 I2SRC. Later we will make the PARALLEL that contains I2. */
2629 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2630 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2631 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2632 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2634 #ifdef SELECT_CC_MODE
2636 enum machine_mode compare_mode;
2639 newpat = PATTERN (i3);
2640 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2644 #ifdef SELECT_CC_MODE
2645 /* See if a COMPARE with the operand we substituted in should be done
2646 with the mode that is currently being used. If not, do the same
2647 processing we do in `subst' for a SET; namely, if the destination
2648 is used only once, try to replace it with a register of the proper
2649 mode and also replace the COMPARE. */
2650 if (undobuf.other_insn == 0
2651 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2652 &undobuf.other_insn))
2653 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2655 != GET_MODE (SET_DEST (newpat))))
2657 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2660 unsigned int regno = REGNO (SET_DEST (newpat));
2663 if (regno < FIRST_PSEUDO_REGISTER)
2664 new_dest = gen_rtx_REG (compare_mode, regno);
2667 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2668 new_dest = regno_reg_rtx[regno];
2671 SUBST (SET_DEST (newpat), new_dest);
2672 SUBST (XEXP (*cc_use, 0), new_dest);
2673 SUBST (SET_SRC (newpat),
2674 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2677 undobuf.other_insn = 0;
2684 /* It is possible that the source of I2 or I1 may be performing
2685 an unneeded operation, such as a ZERO_EXTEND of something
2686 that is known to have the high part zero. Handle that case
2687 by letting subst look at the innermost one of them.
2689 Another way to do this would be to have a function that tries
2690 to simplify a single insn instead of merging two or more
2691 insns. We don't do this because of the potential of infinite
2692 loops and because of the potential extra memory required.
2693 However, doing it the way we are is a bit of a kludge and
2694 doesn't catch all cases.
2696 But only do this if -fexpensive-optimizations since it slows
2697 things down and doesn't usually win.
2699 This is not done in the COMPARE case above because the
2700 unmodified I2PAT is used in the PARALLEL and so a pattern
2701 with a modified I2SRC would not match. */
2703 if (flag_expensive_optimizations)
2705 /* Pass pc_rtx so no substitutions are done, just
2709 subst_low_luid = DF_INSN_LUID (i1);
2710 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2714 subst_low_luid = DF_INSN_LUID (i2);
2715 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2719 n_occurrences = 0; /* `subst' counts here */
2721 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2722 need to make a unique copy of I2SRC each time we substitute it
2723 to avoid self-referential rtl. */
2725 subst_low_luid = DF_INSN_LUID (i2);
2726 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2727 ! i1_feeds_i3 && i1dest_in_i1src);
2730 /* Record whether i2's body now appears within i3's body. */
2731 i2_is_used = n_occurrences;
2734 /* If we already got a failure, don't try to do more. Otherwise,
2735 try to substitute in I1 if we have it. */
2737 if (i1 && GET_CODE (newpat) != CLOBBER)
2739 /* Check that an autoincrement side-effect on I1 has not been lost.
2740 This happens if I1DEST is mentioned in I2 and dies there, and
2741 has disappeared from the new pattern. */
2742 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2744 && dead_or_set_p (i2, i1dest)
2745 && !reg_overlap_mentioned_p (i1dest, newpat))
2746 /* Before we can do this substitution, we must redo the test done
2747 above (see detailed comments there) that ensures that I1DEST
2748 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2749 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, 0, 0))
2756 subst_low_luid = DF_INSN_LUID (i1);
2757 newpat = subst (newpat, i1dest, i1src, 0, 0);
2761 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2762 to count all the ways that I2SRC and I1SRC can be used. */
2763 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2764 && i2_is_used + added_sets_2 > 1)
2765 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2766 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2768 /* Fail if we tried to make a new register. */
2769 || max_reg_num () != maxreg
2770 /* Fail if we couldn't do something and have a CLOBBER. */
2771 || GET_CODE (newpat) == CLOBBER
2772 /* Fail if this new pattern is a MULT and we didn't have one before
2773 at the outer level. */
2774 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2781 /* If the actions of the earlier insns must be kept
2782 in addition to substituting them into the latest one,
2783 we must make a new PARALLEL for the latest insn
2784 to hold additional the SETs. */
2786 if (added_sets_1 || added_sets_2)
2790 if (GET_CODE (newpat) == PARALLEL)
2792 rtvec old = XVEC (newpat, 0);
2793 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2794 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2795 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2796 sizeof (old->elem[0]) * old->num_elem);
2801 total_sets = 1 + added_sets_1 + added_sets_2;
2802 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2803 XVECEXP (newpat, 0, 0) = old;
2807 XVECEXP (newpat, 0, --total_sets) = i1pat;
2811 /* If there is no I1, use I2's body as is. We used to also not do
2812 the subst call below if I2 was substituted into I3,
2813 but that could lose a simplification. */
2815 XVECEXP (newpat, 0, --total_sets) = i2pat;
2817 /* See comment where i2pat is assigned. */
2818 XVECEXP (newpat, 0, --total_sets)
2819 = subst (i2pat, i1dest, i1src, 0, 0);
2823 /* We come here when we are replacing a destination in I2 with the
2824 destination of I3. */
2825 validate_replacement:
2827 /* Note which hard regs this insn has as inputs. */
2828 mark_used_regs_combine (newpat);
2830 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2831 consider splitting this pattern, we might need these clobbers. */
2832 if (i1 && GET_CODE (newpat) == PARALLEL
2833 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2835 int len = XVECLEN (newpat, 0);
2837 newpat_vec_with_clobbers = rtvec_alloc (len);
2838 for (i = 0; i < len; i++)
2839 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2842 /* Is the result of combination a valid instruction? */
2843 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2845 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2846 the second SET's destination is a register that is unused and isn't
2847 marked as an instruction that might trap in an EH region. In that case,
2848 we just need the first SET. This can occur when simplifying a divmod
2849 insn. We *must* test for this case here because the code below that
2850 splits two independent SETs doesn't handle this case correctly when it
2851 updates the register status.
2853 It's pointless doing this if we originally had two sets, one from
2854 i3, and one from i2. Combining then splitting the parallel results
2855 in the original i2 again plus an invalid insn (which we delete).
2856 The net effect is only to move instructions around, which makes
2857 debug info less accurate.
2859 Also check the case where the first SET's destination is unused.
2860 That would not cause incorrect code, but does cause an unneeded
2863 if (insn_code_number < 0
2864 && !(added_sets_2 && i1 == 0)
2865 && GET_CODE (newpat) == PARALLEL
2866 && XVECLEN (newpat, 0) == 2
2867 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2868 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2869 && asm_noperands (newpat) < 0)
2871 rtx set0 = XVECEXP (newpat, 0, 0);
2872 rtx set1 = XVECEXP (newpat, 0, 1);
2875 if (((REG_P (SET_DEST (set1))
2876 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2877 || (GET_CODE (SET_DEST (set1)) == SUBREG
2878 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2879 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2880 || INTVAL (XEXP (note, 0)) <= 0)
2881 && ! side_effects_p (SET_SRC (set1)))
2884 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2887 else if (((REG_P (SET_DEST (set0))
2888 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2889 || (GET_CODE (SET_DEST (set0)) == SUBREG
2890 && find_reg_note (i3, REG_UNUSED,
2891 SUBREG_REG (SET_DEST (set0)))))
2892 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2893 || INTVAL (XEXP (note, 0)) <= 0)
2894 && ! side_effects_p (SET_SRC (set0)))
2897 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2899 if (insn_code_number >= 0)
2900 changed_i3_dest = 1;
2904 /* If we were combining three insns and the result is a simple SET
2905 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2906 insns. There are two ways to do this. It can be split using a
2907 machine-specific method (like when you have an addition of a large
2908 constant) or by combine in the function find_split_point. */
2910 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2911 && asm_noperands (newpat) < 0)
2913 rtx parallel, m_split, *split;
2915 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2916 use I2DEST as a scratch register will help. In the latter case,
2917 convert I2DEST to the mode of the source of NEWPAT if we can. */
2919 m_split = combine_split_insns (newpat, i3);
2921 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2922 inputs of NEWPAT. */
2924 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2925 possible to try that as a scratch reg. This would require adding
2926 more code to make it work though. */
2928 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
2930 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2932 /* First try to split using the original register as a
2933 scratch register. */
2934 parallel = gen_rtx_PARALLEL (VOIDmode,
2935 gen_rtvec (2, newpat,
2936 gen_rtx_CLOBBER (VOIDmode,
2938 m_split = combine_split_insns (parallel, i3);
2940 /* If that didn't work, try changing the mode of I2DEST if
2943 && new_mode != GET_MODE (i2dest)
2944 && new_mode != VOIDmode
2945 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2947 enum machine_mode old_mode = GET_MODE (i2dest);
2950 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2951 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
2954 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
2955 ni2dest = regno_reg_rtx[REGNO (i2dest)];
2958 parallel = (gen_rtx_PARALLEL
2960 gen_rtvec (2, newpat,
2961 gen_rtx_CLOBBER (VOIDmode,
2963 m_split = combine_split_insns (parallel, i3);
2966 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2970 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
2971 buf = undobuf.undos;
2972 undobuf.undos = buf->next;
2973 buf->next = undobuf.frees;
2974 undobuf.frees = buf;
2979 /* If recog_for_combine has discarded clobbers, try to use them
2980 again for the split. */
2981 if (m_split == 0 && newpat_vec_with_clobbers)
2983 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
2984 m_split = combine_split_insns (parallel, i3);
2987 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2989 m_split = PATTERN (m_split);
2990 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2991 if (insn_code_number >= 0)
2994 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2995 && (next_real_insn (i2) == i3
2996 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
2999 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3000 newi2pat = PATTERN (m_split);
3002 i3set = single_set (NEXT_INSN (m_split));
3003 i2set = single_set (m_split);
3005 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3007 /* If I2 or I3 has multiple SETs, we won't know how to track
3008 register status, so don't use these insns. If I2's destination
3009 is used between I2 and I3, we also can't use these insns. */
3011 if (i2_code_number >= 0 && i2set && i3set
3012 && (next_real_insn (i2) == i3
3013 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3014 insn_code_number = recog_for_combine (&newi3pat, i3,
3016 if (insn_code_number >= 0)
3019 /* It is possible that both insns now set the destination of I3.
3020 If so, we must show an extra use of it. */
3022 if (insn_code_number >= 0)
3024 rtx new_i3_dest = SET_DEST (i3set);
3025 rtx new_i2_dest = SET_DEST (i2set);
3027 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3028 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3029 || GET_CODE (new_i3_dest) == SUBREG)
3030 new_i3_dest = XEXP (new_i3_dest, 0);
3032 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3033 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3034 || GET_CODE (new_i2_dest) == SUBREG)
3035 new_i2_dest = XEXP (new_i2_dest, 0);
3037 if (REG_P (new_i3_dest)
3038 && REG_P (new_i2_dest)
3039 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3040 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3044 /* If we can split it and use I2DEST, go ahead and see if that
3045 helps things be recognized. Verify that none of the registers
3046 are set between I2 and I3. */
3047 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
3051 /* We need I2DEST in the proper mode. If it is a hard register
3052 or the only use of a pseudo, we can change its mode.
3053 Make sure we don't change a hard register to have a mode that
3054 isn't valid for it, or change the number of registers. */
3055 && (GET_MODE (*split) == GET_MODE (i2dest)
3056 || GET_MODE (*split) == VOIDmode
3057 || can_change_dest_mode (i2dest, added_sets_2,
3059 && (next_real_insn (i2) == i3
3060 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3061 /* We can't overwrite I2DEST if its value is still used by
3063 && ! reg_referenced_p (i2dest, newpat))
3065 rtx newdest = i2dest;
3066 enum rtx_code split_code = GET_CODE (*split);
3067 enum machine_mode split_mode = GET_MODE (*split);
3068 bool subst_done = false;
3069 newi2pat = NULL_RTX;
3071 /* Get NEWDEST as a register in the proper mode. We have already
3072 validated that we can do this. */
3073 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3075 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3076 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3079 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3080 newdest = regno_reg_rtx[REGNO (i2dest)];
3084 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3085 an ASHIFT. This can occur if it was inside a PLUS and hence
3086 appeared to be a memory address. This is a kludge. */
3087 if (split_code == MULT
3088 && GET_CODE (XEXP (*split, 1)) == CONST_INT
3089 && INTVAL (XEXP (*split, 1)) > 0
3090 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
3092 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3093 XEXP (*split, 0), GEN_INT (i)));
3094 /* Update split_code because we may not have a multiply
3096 split_code = GET_CODE (*split);
3099 #ifdef INSN_SCHEDULING
3100 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3101 be written as a ZERO_EXTEND. */
3102 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3104 #ifdef LOAD_EXTEND_OP
3105 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3106 what it really is. */
3107 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3109 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3110 SUBREG_REG (*split)));
3113 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3114 SUBREG_REG (*split)));
3118 /* Attempt to split binary operators using arithmetic identities. */
3119 if (BINARY_P (SET_SRC (newpat))
3120 && split_mode == GET_MODE (SET_SRC (newpat))
3121 && ! side_effects_p (SET_SRC (newpat)))
3123 rtx setsrc = SET_SRC (newpat);
3124 enum machine_mode mode = GET_MODE (setsrc);
3125 enum rtx_code code = GET_CODE (setsrc);
3126 rtx src_op0 = XEXP (setsrc, 0);
3127 rtx src_op1 = XEXP (setsrc, 1);
3129 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3130 if (rtx_equal_p (src_op0, src_op1))
3132 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3133 SUBST (XEXP (setsrc, 0), newdest);
3134 SUBST (XEXP (setsrc, 1), newdest);
3137 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3138 else if ((code == PLUS || code == MULT)
3139 && GET_CODE (src_op0) == code
3140 && GET_CODE (XEXP (src_op0, 0)) == code
3141 && (INTEGRAL_MODE_P (mode)
3142 || (FLOAT_MODE_P (mode)
3143 && flag_unsafe_math_optimizations)))
3145 rtx p = XEXP (XEXP (src_op0, 0), 0);
3146 rtx q = XEXP (XEXP (src_op0, 0), 1);
3147 rtx r = XEXP (src_op0, 1);
3150 /* Split both "((X op Y) op X) op Y" and
3151 "((X op Y) op Y) op X" as "T op T" where T is
3153 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3154 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3156 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3158 SUBST (XEXP (setsrc, 0), newdest);
3159 SUBST (XEXP (setsrc, 1), newdest);
3162 /* Split "((X op X) op Y) op Y)" as "T op T" where
3164 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3166 rtx tmp = simplify_gen_binary (code, mode, p, r);
3167 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3168 SUBST (XEXP (setsrc, 0), newdest);
3169 SUBST (XEXP (setsrc, 1), newdest);
3177 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3178 SUBST (*split, newdest);
3181 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3183 /* recog_for_combine might have added CLOBBERs to newi2pat.
3184 Make sure NEWPAT does not depend on the clobbered regs. */
3185 if (GET_CODE (newi2pat) == PARALLEL)
3186 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3187 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3189 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3190 if (reg_overlap_mentioned_p (reg, newpat))
3197 /* If the split point was a MULT and we didn't have one before,
3198 don't use one now. */
3199 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3200 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3204 /* Check for a case where we loaded from memory in a narrow mode and
3205 then sign extended it, but we need both registers. In that case,
3206 we have a PARALLEL with both loads from the same memory location.
3207 We can split this into a load from memory followed by a register-register
3208 copy. This saves at least one insn, more if register allocation can
3211 We cannot do this if the destination of the first assignment is a
3212 condition code register or cc0. We eliminate this case by making sure
3213 the SET_DEST and SET_SRC have the same mode.
3215 We cannot do this if the destination of the second assignment is
3216 a register that we have already assumed is zero-extended. Similarly
3217 for a SUBREG of such a register. */
3219 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3220 && GET_CODE (newpat) == PARALLEL
3221 && XVECLEN (newpat, 0) == 2
3222 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3223 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3224 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3225 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3226 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3227 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3228 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3229 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3231 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3232 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3233 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3235 && VEC_index (reg_stat_type, reg_stat,
3236 REGNO (temp))->nonzero_bits != 0
3237 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3238 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3239 && (VEC_index (reg_stat_type, reg_stat,
3240 REGNO (temp))->nonzero_bits
3241 != GET_MODE_MASK (word_mode))))
3242 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3243 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3245 && VEC_index (reg_stat_type, reg_stat,
3246 REGNO (temp))->nonzero_bits != 0
3247 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3248 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3249 && (VEC_index (reg_stat_type, reg_stat,
3250 REGNO (temp))->nonzero_bits
3251 != GET_MODE_MASK (word_mode)))))
3252 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3253 SET_SRC (XVECEXP (newpat, 0, 1)))
3254 && ! find_reg_note (i3, REG_UNUSED,
3255 SET_DEST (XVECEXP (newpat, 0, 0))))
3259 newi2pat = XVECEXP (newpat, 0, 0);
3260 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3261 newpat = XVECEXP (newpat, 0, 1);
3262 SUBST (SET_SRC (newpat),
3263 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3264 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3266 if (i2_code_number >= 0)
3267 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3269 if (insn_code_number >= 0)
3273 /* Similarly, check for a case where we have a PARALLEL of two independent
3274 SETs but we started with three insns. In this case, we can do the sets
3275 as two separate insns. This case occurs when some SET allows two
3276 other insns to combine, but the destination of that SET is still live. */
3278 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3279 && GET_CODE (newpat) == PARALLEL
3280 && XVECLEN (newpat, 0) == 2
3281 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3282 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3283 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3284 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3285 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3286 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3287 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3289 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3290 XVECEXP (newpat, 0, 0))
3291 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3292 XVECEXP (newpat, 0, 1))
3293 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3294 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
3296 /* We cannot split the parallel into two sets if both sets
3298 && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3299 && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
3303 /* Normally, it doesn't matter which of the two is done first,
3304 but it does if one references cc0. In that case, it has to
3307 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
3309 newi2pat = XVECEXP (newpat, 0, 0);
3310 newpat = XVECEXP (newpat, 0, 1);
3315 newi2pat = XVECEXP (newpat, 0, 1);
3316 newpat = XVECEXP (newpat, 0, 0);
3319 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3321 if (i2_code_number >= 0)
3322 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3325 /* If it still isn't recognized, fail and change things back the way they
3327 if ((insn_code_number < 0
3328 /* Is the result a reasonable ASM_OPERANDS? */
3329 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3335 /* If we had to change another insn, make sure it is valid also. */
3336 if (undobuf.other_insn)
3338 CLEAR_HARD_REG_SET (newpat_used_regs);
3340 other_pat = PATTERN (undobuf.other_insn);
3341 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3344 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3352 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3353 they are adjacent to each other or not. */
3355 rtx p = prev_nonnote_insn (i3);
3356 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3357 && sets_cc0_p (newi2pat))
3365 /* Only allow this combination if insn_rtx_costs reports that the
3366 replacement instructions are cheaper than the originals. */
3367 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat, other_pat))
3373 /* If we will be able to accept this, we have made a
3374 change to the destination of I3. This requires us to
3375 do a few adjustments. */
3377 if (changed_i3_dest)
3379 PATTERN (i3) = newpat;
3380 adjust_for_new_dest (i3);
3383 /* We now know that we can do this combination. Merge the insns and
3384 update the status of registers and LOG_LINKS. */
3386 if (undobuf.other_insn)
3390 PATTERN (undobuf.other_insn) = other_pat;
3392 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3393 are still valid. Then add any non-duplicate notes added by
3394 recog_for_combine. */
3395 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3397 next = XEXP (note, 1);
3399 if (REG_NOTE_KIND (note) == REG_UNUSED
3400 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3401 remove_note (undobuf.other_insn, note);
3404 distribute_notes (new_other_notes, undobuf.other_insn,
3405 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
3414 /* I3 now uses what used to be its destination and which is now
3415 I2's destination. This requires us to do a few adjustments. */
3416 PATTERN (i3) = newpat;
3417 adjust_for_new_dest (i3);
3419 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3422 However, some later insn might be using I2's dest and have
3423 a LOG_LINK pointing at I3. We must remove this link.
3424 The simplest way to remove the link is to point it at I1,
3425 which we know will be a NOTE. */
3427 /* newi2pat is usually a SET here; however, recog_for_combine might
3428 have added some clobbers. */
3429 if (GET_CODE (newi2pat) == PARALLEL)
3430 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3432 ni2dest = SET_DEST (newi2pat);
3434 for (insn = NEXT_INSN (i3);
3435 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3436 || insn != BB_HEAD (this_basic_block->next_bb));
3437 insn = NEXT_INSN (insn))
3439 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3441 for (link = LOG_LINKS (insn); link;
3442 link = XEXP (link, 1))
3443 if (XEXP (link, 0) == i3)
3444 XEXP (link, 0) = i1;
3452 rtx i3notes, i2notes, i1notes = 0;
3453 rtx i3links, i2links, i1links = 0;
3456 /* Compute which registers we expect to eliminate. newi2pat may be setting
3457 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3458 same as i3dest, in which case newi2pat may be setting i1dest. */
3459 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3460 || i2dest_in_i2src || i2dest_in_i1src
3463 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3464 || (newi2pat && reg_set_p (i1dest, newi2pat))
3468 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3470 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3471 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3473 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3475 /* Ensure that we do not have something that should not be shared but
3476 occurs multiple times in the new insns. Check this by first
3477 resetting all the `used' flags and then copying anything is shared. */
3479 reset_used_flags (i3notes);
3480 reset_used_flags (i2notes);
3481 reset_used_flags (i1notes);
3482 reset_used_flags (newpat);
3483 reset_used_flags (newi2pat);
3484 if (undobuf.other_insn)
3485 reset_used_flags (PATTERN (undobuf.other_insn));
3487 i3notes = copy_rtx_if_shared (i3notes);
3488 i2notes = copy_rtx_if_shared (i2notes);
3489 i1notes = copy_rtx_if_shared (i1notes);
3490 newpat = copy_rtx_if_shared (newpat);
3491 newi2pat = copy_rtx_if_shared (newi2pat);
3492 if (undobuf.other_insn)
3493 reset_used_flags (PATTERN (undobuf.other_insn));
3495 INSN_CODE (i3) = insn_code_number;
3496 PATTERN (i3) = newpat;
3498 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3500 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3502 reset_used_flags (call_usage);
3503 call_usage = copy_rtx (call_usage);
3506 replace_rtx (call_usage, i2dest, i2src);
3509 replace_rtx (call_usage, i1dest, i1src);
3511 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3514 if (undobuf.other_insn)
3515 INSN_CODE (undobuf.other_insn) = other_code_number;
3517 /* We had one special case above where I2 had more than one set and
3518 we replaced a destination of one of those sets with the destination
3519 of I3. In that case, we have to update LOG_LINKS of insns later
3520 in this basic block. Note that this (expensive) case is rare.
3522 Also, in this case, we must pretend that all REG_NOTEs for I2
3523 actually came from I3, so that REG_UNUSED notes from I2 will be
3524 properly handled. */
3526 if (i3_subst_into_i2)
3528 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3529 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3530 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3531 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3532 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3533 && ! find_reg_note (i2, REG_UNUSED,
3534 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3535 for (temp = NEXT_INSN (i2);
3536 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3537 || BB_HEAD (this_basic_block) != temp);
3538 temp = NEXT_INSN (temp))
3539 if (temp != i3 && INSN_P (temp))
3540 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3541 if (XEXP (link, 0) == i2)
3542 XEXP (link, 0) = i3;
3547 while (XEXP (link, 1))
3548 link = XEXP (link, 1);
3549 XEXP (link, 1) = i2notes;
3563 INSN_CODE (i2) = i2_code_number;
3564 PATTERN (i2) = newi2pat;
3567 SET_INSN_DELETED (i2);
3573 SET_INSN_DELETED (i1);
3576 /* Get death notes for everything that is now used in either I3 or
3577 I2 and used to die in a previous insn. If we built two new
3578 patterns, move from I1 to I2 then I2 to I3 so that we get the
3579 proper movement on registers that I2 modifies. */
3583 move_deaths (newi2pat, NULL_RTX, DF_INSN_LUID (i1), i2, &midnotes);
3584 move_deaths (newpat, newi2pat, DF_INSN_LUID (i1), i3, &midnotes);
3587 move_deaths (newpat, NULL_RTX, i1 ? DF_INSN_LUID (i1) : DF_INSN_LUID (i2),
3590 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3592 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3595 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3598 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3601 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3604 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3605 know these are REG_UNUSED and want them to go to the desired insn,
3606 so we always pass it as i3. */
3608 if (newi2pat && new_i2_notes)
3609 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3612 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3614 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3615 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3616 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3617 in that case, it might delete I2. Similarly for I2 and I1.
3618 Show an additional death due to the REG_DEAD note we make here. If
3619 we discard it in distribute_notes, we will decrement it again. */
3623 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3624 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3626 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3628 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3630 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3634 if (i2dest_in_i2src)
3636 if (newi2pat && reg_set_p (i2dest, newi2pat))
3637 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3638 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3640 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3641 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3642 NULL_RTX, NULL_RTX);
3645 if (i1dest_in_i1src)
3647 if (newi2pat && reg_set_p (i1dest, newi2pat))
3648 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3649 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3651 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3652 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3653 NULL_RTX, NULL_RTX);
3656 distribute_links (i3links);
3657 distribute_links (i2links);
3658 distribute_links (i1links);
3663 rtx i2_insn = 0, i2_val = 0, set;
3665 /* The insn that used to set this register doesn't exist, and
3666 this life of the register may not exist either. See if one of
3667 I3's links points to an insn that sets I2DEST. If it does,
3668 that is now the last known value for I2DEST. If we don't update
3669 this and I2 set the register to a value that depended on its old
3670 contents, we will get confused. If this insn is used, thing
3671 will be set correctly in combine_instructions. */
3673 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3674 if ((set = single_set (XEXP (link, 0))) != 0
3675 && rtx_equal_p (i2dest, SET_DEST (set)))
3676 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3678 record_value_for_reg (i2dest, i2_insn, i2_val);
3680 /* If the reg formerly set in I2 died only once and that was in I3,
3681 zero its use count so it won't make `reload' do any work. */
3683 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3684 && ! i2dest_in_i2src)
3686 regno = REGNO (i2dest);
3687 INC_REG_N_SETS (regno, -1);
3691 if (i1 && REG_P (i1dest))
3694 rtx i1_insn = 0, i1_val = 0, set;
3696 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3697 if ((set = single_set (XEXP (link, 0))) != 0
3698 && rtx_equal_p (i1dest, SET_DEST (set)))
3699 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3701 record_value_for_reg (i1dest, i1_insn, i1_val);
3703 regno = REGNO (i1dest);
3704 if (! added_sets_1 && ! i1dest_in_i1src)
3705 INC_REG_N_SETS (regno, -1);
3708 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3709 been made to this insn. The order of
3710 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3711 can affect nonzero_bits of newpat */
3713 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3714 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3716 /* Set new_direct_jump_p if a new return or simple jump instruction
3719 If I3 is now an unconditional jump, ensure that it has a
3720 BARRIER following it since it may have initially been a
3721 conditional jump. It may also be the last nonnote insn. */
3723 if (returnjump_p (i3) || any_uncondjump_p (i3))
3725 *new_direct_jump_p = 1;
3726 mark_jump_label (PATTERN (i3), i3, 0);
3728 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3729 || !BARRIER_P (temp))
3730 emit_barrier_after (i3);
3733 if (undobuf.other_insn != NULL_RTX
3734 && (returnjump_p (undobuf.other_insn)
3735 || any_uncondjump_p (undobuf.other_insn)))
3737 *new_direct_jump_p = 1;
3739 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3740 || !BARRIER_P (temp))
3741 emit_barrier_after (undobuf.other_insn);
3744 /* An NOOP jump does not need barrier, but it does need cleaning up
3746 if (GET_CODE (newpat) == SET
3747 && SET_SRC (newpat) == pc_rtx
3748 && SET_DEST (newpat) == pc_rtx)
3749 *new_direct_jump_p = 1;
3752 if (undobuf.other_insn != NULL_RTX)
3756 fprintf (dump_file, "modifying other_insn ");
3757 dump_insn_slim (dump_file, undobuf.other_insn);
3759 df_insn_rescan (undobuf.other_insn);
3762 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
3766 fprintf (dump_file, "modifying insn i1 ");
3767 dump_insn_slim (dump_file, i1);
3769 df_insn_rescan (i1);
3772 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
3776 fprintf (dump_file, "modifying insn i2 ");
3777 dump_insn_slim (dump_file, i2);
3779 df_insn_rescan (i2);
3782 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
3786 fprintf (dump_file, "modifying insn i3 ");
3787 dump_insn_slim (dump_file, i3);
3789 df_insn_rescan (i3);
3792 combine_successes++;
3795 if (added_links_insn
3796 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
3797 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
3798 return added_links_insn;
3800 return newi2pat ? i2 : i3;
3803 /* Undo all the modifications recorded in undobuf. */
3808 struct undo *undo, *next;
3810 for (undo = undobuf.undos; undo; undo = next)
3816 *undo->where.r = undo->old_contents.r;
3819 *undo->where.i = undo->old_contents.i;
3822 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
3828 undo->next = undobuf.frees;
3829 undobuf.frees = undo;
3835 /* We've committed to accepting the changes we made. Move all
3836 of the undos to the free list. */
3841 struct undo *undo, *next;
3843 for (undo = undobuf.undos; undo; undo = next)
3846 undo->next = undobuf.frees;
3847 undobuf.frees = undo;
3852 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3853 where we have an arithmetic expression and return that point. LOC will
3856 try_combine will call this function to see if an insn can be split into
3860 find_split_point (rtx *loc, rtx insn)
3863 enum rtx_code code = GET_CODE (x);
3865 unsigned HOST_WIDE_INT len = 0;
3866 HOST_WIDE_INT pos = 0;
3868 rtx inner = NULL_RTX;
3870 /* First special-case some codes. */
3874 #ifdef INSN_SCHEDULING
3875 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3877 if (MEM_P (SUBREG_REG (x)))
3880 return find_split_point (&SUBREG_REG (x), insn);
3884 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3885 using LO_SUM and HIGH. */
3886 if (GET_CODE (XEXP (x, 0)) == CONST
3887 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3890 gen_rtx_LO_SUM (Pmode,
3891 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3893 return &XEXP (XEXP (x, 0), 0);
3897 /* If we have a PLUS whose second operand is a constant and the
3898 address is not valid, perhaps will can split it up using
3899 the machine-specific way to split large constants. We use
3900 the first pseudo-reg (one of the virtual regs) as a placeholder;
3901 it will not remain in the result. */
3902 if (GET_CODE (XEXP (x, 0)) == PLUS
3903 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3904 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3906 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3907 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
3911 /* This should have produced two insns, each of which sets our
3912 placeholder. If the source of the second is a valid address,
3913 we can make put both sources together and make a split point
3917 && NEXT_INSN (seq) != NULL_RTX
3918 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3919 && NONJUMP_INSN_P (seq)
3920 && GET_CODE (PATTERN (seq)) == SET
3921 && SET_DEST (PATTERN (seq)) == reg
3922 && ! reg_mentioned_p (reg,
3923 SET_SRC (PATTERN (seq)))
3924 && NONJUMP_INSN_P (NEXT_INSN (seq))
3925 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3926 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3927 && memory_address_p (GET_MODE (x),
3928 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3930 rtx src1 = SET_SRC (PATTERN (seq));
3931 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3933 /* Replace the placeholder in SRC2 with SRC1. If we can
3934 find where in SRC2 it was placed, that can become our
3935 split point and we can replace this address with SRC2.
3936 Just try two obvious places. */
3938 src2 = replace_rtx (src2, reg, src1);
3940 if (XEXP (src2, 0) == src1)
3941 split = &XEXP (src2, 0);
3942 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3943 && XEXP (XEXP (src2, 0), 0) == src1)
3944 split = &XEXP (XEXP (src2, 0), 0);
3948 SUBST (XEXP (x, 0), src2);
3953 /* If that didn't work, perhaps the first operand is complex and
3954 needs to be computed separately, so make a split point there.
3955 This will occur on machines that just support REG + CONST
3956 and have a constant moved through some previous computation. */
3958 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3959 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3960 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3961 return &XEXP (XEXP (x, 0), 0);
3964 /* If we have a PLUS whose first operand is complex, try computing it
3965 separately by making a split there. */
3966 if (GET_CODE (XEXP (x, 0)) == PLUS
3967 && ! memory_address_p (GET_MODE (x), XEXP (x, 0))
3968 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
3969 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3970 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3971 return &XEXP (XEXP (x, 0), 0);
3976 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3977 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3978 we need to put the operand into a register. So split at that
3981 if (SET_DEST (x) == cc0_rtx
3982 && GET_CODE (SET_SRC (x)) != COMPARE
3983 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3984 && !OBJECT_P (SET_SRC (x))
3985 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3986 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3987 return &SET_SRC (x);
3990 /* See if we can split SET_SRC as it stands. */
3991 split = find_split_point (&SET_SRC (x), insn);
3992 if (split && split != &SET_SRC (x))
3995 /* See if we can split SET_DEST as it stands. */
3996 split = find_split_point (&SET_DEST (x), insn);
3997 if (split && split != &SET_DEST (x))
4000 /* See if this is a bitfield assignment with everything constant. If
4001 so, this is an IOR of an AND, so split it into that. */
4002 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4003 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
4004 <= HOST_BITS_PER_WIDE_INT)
4005 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
4006 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
4007 && GET_CODE (SET_SRC (x)) == CONST_INT
4008 && ((INTVAL (XEXP (SET_DEST (x), 1))
4009 + INTVAL (XEXP (SET_DEST (x), 2)))
4010 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4011 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4013 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4014 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4015 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4016 rtx dest = XEXP (SET_DEST (x), 0);
4017 enum machine_mode mode = GET_MODE (dest);
4018 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
4021 if (BITS_BIG_ENDIAN)
4022 pos = GET_MODE_BITSIZE (mode) - len - pos;
4024 or_mask = gen_int_mode (src << pos, mode);
4027 simplify_gen_binary (IOR, mode, dest, or_mask));
4030 rtx negmask = gen_int_mode (~(mask << pos), mode);
4032 simplify_gen_binary (IOR, mode,
4033 simplify_gen_binary (AND, mode,
4038 SUBST (SET_DEST (x), dest);
4040 split = find_split_point (&SET_SRC (x), insn);
4041 if (split && split != &SET_SRC (x))
4045 /* Otherwise, see if this is an operation that we can split into two.
4046 If so, try to split that. */
4047 code = GET_CODE (SET_SRC (x));
4052 /* If we are AND'ing with a large constant that is only a single
4053 bit and the result is only being used in a context where we
4054 need to know if it is zero or nonzero, replace it with a bit
4055 extraction. This will avoid the large constant, which might
4056 have taken more than one insn to make. If the constant were
4057 not a valid argument to the AND but took only one insn to make,
4058 this is no worse, but if it took more than one insn, it will
4061 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4062 && REG_P (XEXP (SET_SRC (x), 0))
4063 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4064 && REG_P (SET_DEST (x))
4065 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4066 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4067 && XEXP (*split, 0) == SET_DEST (x)
4068 && XEXP (*split, 1) == const0_rtx)
4070 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4071 XEXP (SET_SRC (x), 0),
4072 pos, NULL_RTX, 1, 1, 0, 0);
4073 if (extraction != 0)
4075 SUBST (SET_SRC (x), extraction);
4076 return find_split_point (loc, insn);
4082 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4083 is known to be on, this can be converted into a NEG of a shift. */
4084 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4085 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4086 && 1 <= (pos = exact_log2
4087 (nonzero_bits (XEXP (SET_SRC (x), 0),
4088 GET_MODE (XEXP (SET_SRC (x), 0))))))
4090 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4094 gen_rtx_LSHIFTRT (mode,
4095 XEXP (SET_SRC (x), 0),
4098 split = find_split_point (&SET_SRC (x), insn);
4099 if (split && split != &SET_SRC (x))
4105 inner = XEXP (SET_SRC (x), 0);
4107 /* We can't optimize if either mode is a partial integer
4108 mode as we don't know how many bits are significant
4110 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4111 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4115 len = GET_MODE_BITSIZE (GET_MODE (inner));
4121 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4122 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
4124 inner = XEXP (SET_SRC (x), 0);
4125 len = INTVAL (XEXP (SET_SRC (x), 1));
4126 pos = INTVAL (XEXP (SET_SRC (x), 2));
4128 if (BITS_BIG_ENDIAN)
4129 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4130 unsignedp = (code == ZERO_EXTRACT);
4138 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4140 enum machine_mode mode = GET_MODE (SET_SRC (x));
4142 /* For unsigned, we have a choice of a shift followed by an
4143 AND or two shifts. Use two shifts for field sizes where the
4144 constant might be too large. We assume here that we can
4145 always at least get 8-bit constants in an AND insn, which is
4146 true for every current RISC. */
4148 if (unsignedp && len <= 8)
4153 (mode, gen_lowpart (mode, inner),
4155 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
4157 split = find_split_point (&SET_SRC (x), insn);
4158 if (split && split != &SET_SRC (x))
4165 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4166 gen_rtx_ASHIFT (mode,
4167 gen_lowpart (mode, inner),
4168 GEN_INT (GET_MODE_BITSIZE (mode)
4170 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4172 split = find_split_point (&SET_SRC (x), insn);
4173 if (split && split != &SET_SRC (x))
4178 /* See if this is a simple operation with a constant as the second
4179 operand. It might be that this constant is out of range and hence
4180 could be used as a split point. */
4181 if (BINARY_P (SET_SRC (x))
4182 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4183 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4184 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4185 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4186 return &XEXP (SET_SRC (x), 1);
4188 /* Finally, see if this is a simple operation with its first operand
4189 not in a register. The operation might require this operand in a
4190 register, so return it as a split point. We can always do this
4191 because if the first operand were another operation, we would have
4192 already found it as a split point. */
4193 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4194 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4195 return &XEXP (SET_SRC (x), 0);
4201 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4202 it is better to write this as (not (ior A B)) so we can split it.
4203 Similarly for IOR. */
4204 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4207 gen_rtx_NOT (GET_MODE (x),
4208 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4210 XEXP (XEXP (x, 0), 0),
4211 XEXP (XEXP (x, 1), 0))));
4212 return find_split_point (loc, insn);
4215 /* Many RISC machines have a large set of logical insns. If the
4216 second operand is a NOT, put it first so we will try to split the
4217 other operand first. */
4218 if (GET_CODE (XEXP (x, 1)) == NOT)
4220 rtx tem = XEXP (x, 0);
4221 SUBST (XEXP (x, 0), XEXP (x, 1));
4222 SUBST (XEXP (x, 1), tem);
4230 /* Otherwise, select our actions depending on our rtx class. */
4231 switch (GET_RTX_CLASS (code))
4233 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4235 split = find_split_point (&XEXP (x, 2), insn);
4238 /* ... fall through ... */
4240 case RTX_COMM_ARITH:
4242 case RTX_COMM_COMPARE:
4243 split = find_split_point (&XEXP (x, 1), insn);
4246 /* ... fall through ... */
4248 /* Some machines have (and (shift ...) ...) insns. If X is not
4249 an AND, but XEXP (X, 0) is, use it as our split point. */
4250 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4251 return &XEXP (x, 0);
4253 split = find_split_point (&XEXP (x, 0), insn);
4259 /* Otherwise, we don't have a split point. */
4264 /* Throughout X, replace FROM with TO, and return the result.
4265 The result is TO if X is FROM;
4266 otherwise the result is X, but its contents may have been modified.
4267 If they were modified, a record was made in undobuf so that
4268 undo_all will (among other things) return X to its original state.
4270 If the number of changes necessary is too much to record to undo,
4271 the excess changes are not made, so the result is invalid.
4272 The changes already made can still be undone.
4273 undobuf.num_undo is incremented for such changes, so by testing that
4274 the caller can tell whether the result is valid.
4276 `n_occurrences' is incremented each time FROM is replaced.
4278 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4280 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4281 by copying if `n_occurrences' is nonzero. */
4284 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4286 enum rtx_code code = GET_CODE (x);
4287 enum machine_mode op0_mode = VOIDmode;
4292 /* Two expressions are equal if they are identical copies of a shared
4293 RTX or if they are both registers with the same register number
4296 #define COMBINE_RTX_EQUAL_P(X,Y) \
4298 || (REG_P (X) && REG_P (Y) \
4299 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4301 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4304 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4307 /* If X and FROM are the same register but different modes, they
4308 will not have been seen as equal above. However, the log links code
4309 will make a LOG_LINKS entry for that case. If we do nothing, we
4310 will try to rerecognize our original insn and, when it succeeds,
4311 we will delete the feeding insn, which is incorrect.
4313 So force this insn not to match in this (rare) case. */
4314 if (! in_dest && code == REG && REG_P (from)
4315 && reg_overlap_mentioned_p (x, from))
4316 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4318 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4319 of which may contain things that can be combined. */
4320 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4323 /* It is possible to have a subexpression appear twice in the insn.
4324 Suppose that FROM is a register that appears within TO.
4325 Then, after that subexpression has been scanned once by `subst',
4326 the second time it is scanned, TO may be found. If we were
4327 to scan TO here, we would find FROM within it and create a
4328 self-referent rtl structure which is completely wrong. */
4329 if (COMBINE_RTX_EQUAL_P (x, to))
4332 /* Parallel asm_operands need special attention because all of the
4333 inputs are shared across the arms. Furthermore, unsharing the
4334 rtl results in recognition failures. Failure to handle this case
4335 specially can result in circular rtl.
4337 Solve this by doing a normal pass across the first entry of the
4338 parallel, and only processing the SET_DESTs of the subsequent
4341 if (code == PARALLEL
4342 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4343 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4345 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4347 /* If this substitution failed, this whole thing fails. */
4348 if (GET_CODE (new_rtx) == CLOBBER
4349 && XEXP (new_rtx, 0) == const0_rtx)
4352 SUBST (XVECEXP (x, 0, 0), new_rtx);
4354 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4356 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4359 && GET_CODE (dest) != CC0
4360 && GET_CODE (dest) != PC)
4362 new_rtx = subst (dest, from, to, 0, unique_copy);
4364 /* If this substitution failed, this whole thing fails. */
4365 if (GET_CODE (new_rtx) == CLOBBER
4366 && XEXP (new_rtx, 0) == const0_rtx)
4369 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4375 len = GET_RTX_LENGTH (code);
4376 fmt = GET_RTX_FORMAT (code);
4378 /* We don't need to process a SET_DEST that is a register, CC0,
4379 or PC, so set up to skip this common case. All other cases
4380 where we want to suppress replacing something inside a
4381 SET_SRC are handled via the IN_DEST operand. */
4383 && (REG_P (SET_DEST (x))
4384 || GET_CODE (SET_DEST (x)) == CC0
4385 || GET_CODE (SET_DEST (x)) == PC))
4388 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4391 op0_mode = GET_MODE (XEXP (x, 0));
4393 for (i = 0; i < len; i++)
4398 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4400 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
4402 new_rtx = (unique_copy && n_occurrences
4403 ? copy_rtx (to) : to);
4408 new_rtx = subst (XVECEXP (x, i, j), from, to, 0,
4411 /* If this substitution failed, this whole thing
4413 if (GET_CODE (new_rtx) == CLOBBER
4414 && XEXP (new_rtx, 0) == const0_rtx)
4418 SUBST (XVECEXP (x, i, j), new_rtx);
4421 else if (fmt[i] == 'e')
4423 /* If this is a register being set, ignore it. */
4424 new_rtx = XEXP (x, i);
4427 && (((code == SUBREG || code == ZERO_EXTRACT)
4429 || code == STRICT_LOW_PART))
4432 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4434 /* In general, don't install a subreg involving two
4435 modes not tieable. It can worsen register
4436 allocation, and can even make invalid reload
4437 insns, since the reg inside may need to be copied
4438 from in the outside mode, and that may be invalid
4439 if it is an fp reg copied in integer mode.
4441 We allow two exceptions to this: It is valid if
4442 it is inside another SUBREG and the mode of that
4443 SUBREG and the mode of the inside of TO is
4444 tieable and it is valid if X is a SET that copies
4447 if (GET_CODE (to) == SUBREG
4448 && ! MODES_TIEABLE_P (GET_MODE (to),
4449 GET_MODE (SUBREG_REG (to)))
4450 && ! (code == SUBREG
4451 && MODES_TIEABLE_P (GET_MODE (x),
4452 GET_MODE (SUBREG_REG (to))))
4454 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4457 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4459 #ifdef CANNOT_CHANGE_MODE_CLASS
4462 && REGNO (to) < FIRST_PSEUDO_REGISTER
4463 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4466 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4469 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4473 /* If we are in a SET_DEST, suppress most cases unless we
4474 have gone inside a MEM, in which case we want to
4475 simplify the address. We assume here that things that
4476 are actually part of the destination have their inner
4477 parts in the first expression. This is true for SUBREG,
4478 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4479 things aside from REG and MEM that should appear in a
4481 new_rtx = subst (XEXP (x, i), from, to,
4483 && (code == SUBREG || code == STRICT_LOW_PART
4484 || code == ZERO_EXTRACT))
4486 && i == 0), unique_copy);
4488 /* If we found that we will have to reject this combination,
4489 indicate that by returning the CLOBBER ourselves, rather than
4490 an expression containing it. This will speed things up as
4491 well as prevent accidents where two CLOBBERs are considered
4492 to be equal, thus producing an incorrect simplification. */
4494 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
4497 if (GET_CODE (x) == SUBREG
4498 && (GET_CODE (new_rtx) == CONST_INT
4499 || GET_CODE (new_rtx) == CONST_DOUBLE))
4501 enum machine_mode mode = GET_MODE (x);
4503 x = simplify_subreg (GET_MODE (x), new_rtx,
4504 GET_MODE (SUBREG_REG (x)),
4507 x = gen_rtx_CLOBBER (mode, const0_rtx);
4509 else if (GET_CODE (new_rtx) == CONST_INT
4510 && GET_CODE (x) == ZERO_EXTEND)
4512 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4513 new_rtx, GET_MODE (XEXP (x, 0)));
4517 SUBST (XEXP (x, i), new_rtx);
4522 /* Check if we are loading something from the constant pool via float
4523 extension; in this case we would undo compress_float_constant
4524 optimization and degenerate constant load to an immediate value. */
4525 if (GET_CODE (x) == FLOAT_EXTEND
4526 && MEM_P (XEXP (x, 0))
4527 && MEM_READONLY_P (XEXP (x, 0)))
4529 rtx tmp = avoid_constant_pool_reference (x);
4534 /* Try to simplify X. If the simplification changed the code, it is likely
4535 that further simplification will help, so loop, but limit the number
4536 of repetitions that will be performed. */
4538 for (i = 0; i < 4; i++)
4540 /* If X is sufficiently simple, don't bother trying to do anything
4542 if (code != CONST_INT && code != REG && code != CLOBBER)
4543 x = combine_simplify_rtx (x, op0_mode, in_dest);
4545 if (GET_CODE (x) == code)
4548 code = GET_CODE (x);
4550 /* We no longer know the original mode of operand 0 since we
4551 have changed the form of X) */
4552 op0_mode = VOIDmode;
4558 /* Simplify X, a piece of RTL. We just operate on the expression at the
4559 outer level; call `subst' to simplify recursively. Return the new
4562 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4563 if we are inside a SET_DEST. */
4566 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4568 enum rtx_code code = GET_CODE (x);
4569 enum machine_mode mode = GET_MODE (x);
4573 /* If this is a commutative operation, put a constant last and a complex
4574 expression first. We don't need to do this for comparisons here. */
4575 if (COMMUTATIVE_ARITH_P (x)
4576 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4579 SUBST (XEXP (x, 0), XEXP (x, 1));
4580 SUBST (XEXP (x, 1), temp);
4583 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4584 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4585 things. Check for cases where both arms are testing the same
4588 Don't do anything if all operands are very simple. */
4591 && ((!OBJECT_P (XEXP (x, 0))
4592 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4593 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4594 || (!OBJECT_P (XEXP (x, 1))
4595 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4596 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4598 && (!OBJECT_P (XEXP (x, 0))
4599 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4600 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4602 rtx cond, true_rtx, false_rtx;
4604 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4606 /* If everything is a comparison, what we have is highly unlikely
4607 to be simpler, so don't use it. */
4608 && ! (COMPARISON_P (x)
4609 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4611 rtx cop1 = const0_rtx;
4612 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4614 if (cond_code == NE && COMPARISON_P (cond))
4617 /* Simplify the alternative arms; this may collapse the true and
4618 false arms to store-flag values. Be careful to use copy_rtx
4619 here since true_rtx or false_rtx might share RTL with x as a
4620 result of the if_then_else_cond call above. */
4621 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4622 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4624 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4625 is unlikely to be simpler. */
4626 if (general_operand (true_rtx, VOIDmode)
4627 && general_operand (false_rtx, VOIDmode))
4629 enum rtx_code reversed;
4631 /* Restarting if we generate a store-flag expression will cause
4632 us to loop. Just drop through in this case. */
4634 /* If the result values are STORE_FLAG_VALUE and zero, we can
4635 just make the comparison operation. */
4636 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4637 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4639 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4640 && ((reversed = reversed_comparison_code_parts
4641 (cond_code, cond, cop1, NULL))
4643 x = simplify_gen_relational (reversed, mode, VOIDmode,
4646 /* Likewise, we can make the negate of a comparison operation
4647 if the result values are - STORE_FLAG_VALUE and zero. */
4648 else if (GET_CODE (true_rtx) == CONST_INT
4649 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4650 && false_rtx == const0_rtx)
4651 x = simplify_gen_unary (NEG, mode,
4652 simplify_gen_relational (cond_code,
4656 else if (GET_CODE (false_rtx) == CONST_INT
4657 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4658 && true_rtx == const0_rtx
4659 && ((reversed = reversed_comparison_code_parts
4660 (cond_code, cond, cop1, NULL))
4662 x = simplify_gen_unary (NEG, mode,
4663 simplify_gen_relational (reversed,
4668 return gen_rtx_IF_THEN_ELSE (mode,
4669 simplify_gen_relational (cond_code,
4674 true_rtx, false_rtx);
4676 code = GET_CODE (x);
4677 op0_mode = VOIDmode;
4682 /* Try to fold this expression in case we have constants that weren't
4685 switch (GET_RTX_CLASS (code))
4688 if (op0_mode == VOIDmode)
4689 op0_mode = GET_MODE (XEXP (x, 0));
4690 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4693 case RTX_COMM_COMPARE:
4695 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4696 if (cmp_mode == VOIDmode)
4698 cmp_mode = GET_MODE (XEXP (x, 1));
4699 if (cmp_mode == VOIDmode)
4700 cmp_mode = op0_mode;
4702 temp = simplify_relational_operation (code, mode, cmp_mode,
4703 XEXP (x, 0), XEXP (x, 1));
4706 case RTX_COMM_ARITH:
4708 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4710 case RTX_BITFIELD_OPS:
4712 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4713 XEXP (x, 1), XEXP (x, 2));
4722 code = GET_CODE (temp);
4723 op0_mode = VOIDmode;
4724 mode = GET_MODE (temp);
4727 /* First see if we can apply the inverse distributive law. */
4728 if (code == PLUS || code == MINUS
4729 || code == AND || code == IOR || code == XOR)
4731 x = apply_distributive_law (x);
4732 code = GET_CODE (x);
4733 op0_mode = VOIDmode;
4736 /* If CODE is an associative operation not otherwise handled, see if we
4737 can associate some operands. This can win if they are constants or
4738 if they are logically related (i.e. (a & b) & a). */
4739 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4740 || code == AND || code == IOR || code == XOR
4741 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4742 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4743 || (flag_associative_math && FLOAT_MODE_P (mode))))
4745 if (GET_CODE (XEXP (x, 0)) == code)
4747 rtx other = XEXP (XEXP (x, 0), 0);
4748 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4749 rtx inner_op1 = XEXP (x, 1);
4752 /* Make sure we pass the constant operand if any as the second
4753 one if this is a commutative operation. */
4754 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4756 rtx tem = inner_op0;
4757 inner_op0 = inner_op1;
4760 inner = simplify_binary_operation (code == MINUS ? PLUS
4761 : code == DIV ? MULT
4763 mode, inner_op0, inner_op1);
4765 /* For commutative operations, try the other pair if that one
4767 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4769 other = XEXP (XEXP (x, 0), 1);
4770 inner = simplify_binary_operation (code, mode,
4771 XEXP (XEXP (x, 0), 0),
4776 return simplify_gen_binary (code, mode, other, inner);
4780 /* A little bit of algebraic simplification here. */
4784 /* Ensure that our address has any ASHIFTs converted to MULT in case
4785 address-recognizing predicates are called later. */
4786 temp = make_compound_operation (XEXP (x, 0), MEM);
4787 SUBST (XEXP (x, 0), temp);
4791 if (op0_mode == VOIDmode)
4792 op0_mode = GET_MODE (SUBREG_REG (x));
4794 /* See if this can be moved to simplify_subreg. */
4795 if (CONSTANT_P (SUBREG_REG (x))
4796 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4797 /* Don't call gen_lowpart if the inner mode
4798 is VOIDmode and we cannot simplify it, as SUBREG without
4799 inner mode is invalid. */
4800 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4801 || gen_lowpart_common (mode, SUBREG_REG (x))))
4802 return gen_lowpart (mode, SUBREG_REG (x));
4804 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4808 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4814 /* Don't change the mode of the MEM if that would change the meaning
4816 if (MEM_P (SUBREG_REG (x))
4817 && (MEM_VOLATILE_P (SUBREG_REG (x))
4818 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4819 return gen_rtx_CLOBBER (mode, const0_rtx);
4821 /* Note that we cannot do any narrowing for non-constants since
4822 we might have been counting on using the fact that some bits were
4823 zero. We now do this in the SET. */
4828 temp = expand_compound_operation (XEXP (x, 0));
4830 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4831 replaced by (lshiftrt X C). This will convert
4832 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4834 if (GET_CODE (temp) == ASHIFTRT
4835 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4836 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4837 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
4838 INTVAL (XEXP (temp, 1)));
4840 /* If X has only a single bit that might be nonzero, say, bit I, convert
4841 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4842 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4843 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4844 or a SUBREG of one since we'd be making the expression more
4845 complex if it was just a register. */
4848 && ! (GET_CODE (temp) == SUBREG
4849 && REG_P (SUBREG_REG (temp)))
4850 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4852 rtx temp1 = simplify_shift_const
4853 (NULL_RTX, ASHIFTRT, mode,
4854 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4855 GET_MODE_BITSIZE (mode) - 1 - i),
4856 GET_MODE_BITSIZE (mode) - 1 - i);
4858 /* If all we did was surround TEMP with the two shifts, we
4859 haven't improved anything, so don't use it. Otherwise,
4860 we are better off with TEMP1. */
4861 if (GET_CODE (temp1) != ASHIFTRT
4862 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4863 || XEXP (XEXP (temp1, 0), 0) != temp)
4869 /* We can't handle truncation to a partial integer mode here
4870 because we don't know the real bitsize of the partial
4872 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4875 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4876 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4877 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4879 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4880 GET_MODE_MASK (mode), 0));
4882 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4883 whose value is a comparison can be replaced with a subreg if
4884 STORE_FLAG_VALUE permits. */
4885 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4886 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4887 && (temp = get_last_value (XEXP (x, 0)))
4888 && COMPARISON_P (temp))
4889 return gen_lowpart (mode, XEXP (x, 0));
4894 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4895 using cc0, in which case we want to leave it as a COMPARE
4896 so we can distinguish it from a register-register-copy. */
4897 if (XEXP (x, 1) == const0_rtx)
4900 /* x - 0 is the same as x unless x's mode has signed zeros and
4901 allows rounding towards -infinity. Under those conditions,
4903 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4904 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4905 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4911 /* (const (const X)) can become (const X). Do it this way rather than
4912 returning the inner CONST since CONST can be shared with a
4914 if (GET_CODE (XEXP (x, 0)) == CONST)
4915 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4920 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4921 can add in an offset. find_split_point will split this address up
4922 again if it doesn't match. */
4923 if (GET_CODE (XEXP (x, 0)) == HIGH
4924 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4930 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4931 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4932 bit-field and can be replaced by either a sign_extend or a
4933 sign_extract. The `and' may be a zero_extend and the two
4934 <c>, -<c> constants may be reversed. */
4935 if (GET_CODE (XEXP (x, 0)) == XOR
4936 && GET_CODE (XEXP (x, 1)) == CONST_INT
4937 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4938 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4939 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4940 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4941 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4942 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4943 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4944 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4945 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4946 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4947 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4948 == (unsigned int) i + 1))))
4949 return simplify_shift_const
4950 (NULL_RTX, ASHIFTRT, mode,
4951 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4952 XEXP (XEXP (XEXP (x, 0), 0), 0),
4953 GET_MODE_BITSIZE (mode) - (i + 1)),
4954 GET_MODE_BITSIZE (mode) - (i + 1));
4956 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4957 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4958 the bitsize of the mode - 1. This allows simplification of
4959 "a = (b & 8) == 0;" */
4960 if (XEXP (x, 1) == constm1_rtx
4961 && !REG_P (XEXP (x, 0))
4962 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4963 && REG_P (SUBREG_REG (XEXP (x, 0))))
4964 && nonzero_bits (XEXP (x, 0), mode) == 1)
4965 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4966 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4967 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4968 GET_MODE_BITSIZE (mode) - 1),
4969 GET_MODE_BITSIZE (mode) - 1);
4971 /* If we are adding two things that have no bits in common, convert
4972 the addition into an IOR. This will often be further simplified,
4973 for example in cases like ((a & 1) + (a & 2)), which can
4976 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4977 && (nonzero_bits (XEXP (x, 0), mode)
4978 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4980 /* Try to simplify the expression further. */
4981 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4982 temp = combine_simplify_rtx (tor, mode, in_dest);
4984 /* If we could, great. If not, do not go ahead with the IOR
4985 replacement, since PLUS appears in many special purpose
4986 address arithmetic instructions. */
4987 if (GET_CODE (temp) != CLOBBER && temp != tor)
4993 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4994 (and <foo> (const_int pow2-1)) */
4995 if (GET_CODE (XEXP (x, 1)) == AND
4996 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4997 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4998 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4999 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5000 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5004 /* If we have (mult (plus A B) C), apply the distributive law and then
5005 the inverse distributive law to see if things simplify. This
5006 occurs mostly in addresses, often when unrolling loops. */
5008 if (GET_CODE (XEXP (x, 0)) == PLUS)
5010 rtx result = distribute_and_simplify_rtx (x, 0);
5015 /* Try simplify a*(b/c) as (a*b)/c. */
5016 if (FLOAT_MODE_P (mode) && flag_associative_math
5017 && GET_CODE (XEXP (x, 0)) == DIV)
5019 rtx tem = simplify_binary_operation (MULT, mode,
5020 XEXP (XEXP (x, 0), 0),
5023 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5028 /* If this is a divide by a power of two, treat it as a shift if
5029 its first operand is a shift. */
5030 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5031 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
5032 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5033 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5034 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5035 || GET_CODE (XEXP (x, 0)) == ROTATE
5036 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5037 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5041 case GT: case GTU: case GE: case GEU:
5042 case LT: case LTU: case LE: case LEU:
5043 case UNEQ: case LTGT:
5044 case UNGT: case UNGE:
5045 case UNLT: case UNLE:
5046 case UNORDERED: case ORDERED:
5047 /* If the first operand is a condition code, we can't do anything
5049 if (GET_CODE (XEXP (x, 0)) == COMPARE
5050 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5051 && ! CC0_P (XEXP (x, 0))))
5053 rtx op0 = XEXP (x, 0);
5054 rtx op1 = XEXP (x, 1);
5055 enum rtx_code new_code;
5057 if (GET_CODE (op0) == COMPARE)
5058 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5060 /* Simplify our comparison, if possible. */
5061 new_code = simplify_comparison (code, &op0, &op1);
5063 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5064 if only the low-order bit is possibly nonzero in X (such as when
5065 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5066 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5067 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5070 Remove any ZERO_EXTRACT we made when thinking this was a
5071 comparison. It may now be simpler to use, e.g., an AND. If a
5072 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5073 the call to make_compound_operation in the SET case. */
5075 if (STORE_FLAG_VALUE == 1
5076 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5077 && op1 == const0_rtx
5078 && mode == GET_MODE (op0)
5079 && nonzero_bits (op0, mode) == 1)
5080 return gen_lowpart (mode,
5081 expand_compound_operation (op0));
5083 else if (STORE_FLAG_VALUE == 1
5084 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5085 && op1 == const0_rtx
5086 && mode == GET_MODE (op0)
5087 && (num_sign_bit_copies (op0, mode)
5088 == GET_MODE_BITSIZE (mode)))
5090 op0 = expand_compound_operation (op0);
5091 return simplify_gen_unary (NEG, mode,
5092 gen_lowpart (mode, op0),
5096 else if (STORE_FLAG_VALUE == 1
5097 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5098 && op1 == const0_rtx
5099 && mode == GET_MODE (op0)
5100 && nonzero_bits (op0, mode) == 1)
5102 op0 = expand_compound_operation (op0);
5103 return simplify_gen_binary (XOR, mode,
5104 gen_lowpart (mode, op0),
5108 else if (STORE_FLAG_VALUE == 1
5109 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5110 && op1 == const0_rtx
5111 && mode == GET_MODE (op0)
5112 && (num_sign_bit_copies (op0, mode)
5113 == GET_MODE_BITSIZE (mode)))
5115 op0 = expand_compound_operation (op0);
5116 return plus_constant (gen_lowpart (mode, op0), 1);
5119 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5121 if (STORE_FLAG_VALUE == -1
5122 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5123 && op1 == const0_rtx
5124 && (num_sign_bit_copies (op0, mode)
5125 == GET_MODE_BITSIZE (mode)))
5126 return gen_lowpart (mode,
5127 expand_compound_operation (op0));
5129 else if (STORE_FLAG_VALUE == -1
5130 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5131 && op1 == const0_rtx
5132 && mode == GET_MODE (op0)
5133 && nonzero_bits (op0, mode) == 1)
5135 op0 = expand_compound_operation (op0);
5136 return simplify_gen_unary (NEG, mode,
5137 gen_lowpart (mode, op0),
5141 else if (STORE_FLAG_VALUE == -1
5142 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5143 && op1 == const0_rtx
5144 && mode == GET_MODE (op0)
5145 && (num_sign_bit_copies (op0, mode)
5146 == GET_MODE_BITSIZE (mode)))
5148 op0 = expand_compound_operation (op0);
5149 return simplify_gen_unary (NOT, mode,
5150 gen_lowpart (mode, op0),
5154 /* If X is 0/1, (eq X 0) is X-1. */
5155 else if (STORE_FLAG_VALUE == -1
5156 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5157 && op1 == const0_rtx
5158 && mode == GET_MODE (op0)
5159 && nonzero_bits (op0, mode) == 1)
5161 op0 = expand_compound_operation (op0);
5162 return plus_constant (gen_lowpart (mode, op0), -1);
5165 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5166 one bit that might be nonzero, we can convert (ne x 0) to
5167 (ashift x c) where C puts the bit in the sign bit. Remove any
5168 AND with STORE_FLAG_VALUE when we are done, since we are only
5169 going to test the sign bit. */
5170 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5171 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5172 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5173 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5174 && op1 == const0_rtx
5175 && mode == GET_MODE (op0)
5176 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5178 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5179 expand_compound_operation (op0),
5180 GET_MODE_BITSIZE (mode) - 1 - i);
5181 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5187 /* If the code changed, return a whole new comparison. */
5188 if (new_code != code)
5189 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5191 /* Otherwise, keep this operation, but maybe change its operands.
5192 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5193 SUBST (XEXP (x, 0), op0);
5194 SUBST (XEXP (x, 1), op1);
5199 return simplify_if_then_else (x);
5205 /* If we are processing SET_DEST, we are done. */
5209 return expand_compound_operation (x);
5212 return simplify_set (x);
5216 return simplify_logical (x);
5223 /* If this is a shift by a constant amount, simplify it. */
5224 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
5225 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5226 INTVAL (XEXP (x, 1)));
5228 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5230 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5232 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5244 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5247 simplify_if_then_else (rtx x)
5249 enum machine_mode mode = GET_MODE (x);
5250 rtx cond = XEXP (x, 0);
5251 rtx true_rtx = XEXP (x, 1);
5252 rtx false_rtx = XEXP (x, 2);
5253 enum rtx_code true_code = GET_CODE (cond);
5254 int comparison_p = COMPARISON_P (cond);
5257 enum rtx_code false_code;
5260 /* Simplify storing of the truth value. */
5261 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5262 return simplify_gen_relational (true_code, mode, VOIDmode,
5263 XEXP (cond, 0), XEXP (cond, 1));
5265 /* Also when the truth value has to be reversed. */
5267 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5268 && (reversed = reversed_comparison (cond, mode)))
5271 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5272 in it is being compared against certain values. Get the true and false
5273 comparisons and see if that says anything about the value of each arm. */
5276 && ((false_code = reversed_comparison_code (cond, NULL))
5278 && REG_P (XEXP (cond, 0)))
5281 rtx from = XEXP (cond, 0);
5282 rtx true_val = XEXP (cond, 1);
5283 rtx false_val = true_val;
5286 /* If FALSE_CODE is EQ, swap the codes and arms. */
5288 if (false_code == EQ)
5290 swapped = 1, true_code = EQ, false_code = NE;
5291 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5294 /* If we are comparing against zero and the expression being tested has
5295 only a single bit that might be nonzero, that is its value when it is
5296 not equal to zero. Similarly if it is known to be -1 or 0. */
5298 if (true_code == EQ && true_val == const0_rtx
5299 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5302 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5304 else if (true_code == EQ && true_val == const0_rtx
5305 && (num_sign_bit_copies (from, GET_MODE (from))
5306 == GET_MODE_BITSIZE (GET_MODE (from))))
5309 false_val = constm1_rtx;
5312 /* Now simplify an arm if we know the value of the register in the
5313 branch and it is used in the arm. Be careful due to the potential
5314 of locally-shared RTL. */
5316 if (reg_mentioned_p (from, true_rtx))
5317 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5319 pc_rtx, pc_rtx, 0, 0);
5320 if (reg_mentioned_p (from, false_rtx))
5321 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5323 pc_rtx, pc_rtx, 0, 0);
5325 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5326 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5328 true_rtx = XEXP (x, 1);
5329 false_rtx = XEXP (x, 2);
5330 true_code = GET_CODE (cond);
5333 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5334 reversed, do so to avoid needing two sets of patterns for
5335 subtract-and-branch insns. Similarly if we have a constant in the true
5336 arm, the false arm is the same as the first operand of the comparison, or
5337 the false arm is more complicated than the true arm. */
5340 && reversed_comparison_code (cond, NULL) != UNKNOWN
5341 && (true_rtx == pc_rtx
5342 || (CONSTANT_P (true_rtx)
5343 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
5344 || true_rtx == const0_rtx
5345 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5346 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5347 && !OBJECT_P (false_rtx))
5348 || reg_mentioned_p (true_rtx, false_rtx)
5349 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5351 true_code = reversed_comparison_code (cond, NULL);
5352 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5353 SUBST (XEXP (x, 1), false_rtx);
5354 SUBST (XEXP (x, 2), true_rtx);
5356 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5359 /* It is possible that the conditional has been simplified out. */
5360 true_code = GET_CODE (cond);
5361 comparison_p = COMPARISON_P (cond);
5364 /* If the two arms are identical, we don't need the comparison. */
5366 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5369 /* Convert a == b ? b : a to "a". */
5370 if (true_code == EQ && ! side_effects_p (cond)
5371 && !HONOR_NANS (mode)
5372 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5373 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5375 else if (true_code == NE && ! side_effects_p (cond)
5376 && !HONOR_NANS (mode)
5377 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5378 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5381 /* Look for cases where we have (abs x) or (neg (abs X)). */
5383 if (GET_MODE_CLASS (mode) == MODE_INT
5385 && XEXP (cond, 1) == const0_rtx
5386 && GET_CODE (false_rtx) == NEG
5387 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5388 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5389 && ! side_effects_p (true_rtx))
5394 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5398 simplify_gen_unary (NEG, mode,
5399 simplify_gen_unary (ABS, mode, true_rtx, mode),
5405 /* Look for MIN or MAX. */
5407 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5409 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5410 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5411 && ! side_effects_p (cond))
5416 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5419 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5422 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5425 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5430 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5431 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5432 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5433 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5434 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5435 neither 1 or -1, but it isn't worth checking for. */
5437 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5439 && GET_MODE_CLASS (mode) == MODE_INT
5440 && ! side_effects_p (x))
5442 rtx t = make_compound_operation (true_rtx, SET);
5443 rtx f = make_compound_operation (false_rtx, SET);
5444 rtx cond_op0 = XEXP (cond, 0);
5445 rtx cond_op1 = XEXP (cond, 1);
5446 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5447 enum machine_mode m = mode;
5448 rtx z = 0, c1 = NULL_RTX;
5450 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5451 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5452 || GET_CODE (t) == ASHIFT
5453 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5454 && rtx_equal_p (XEXP (t, 0), f))
5455 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5457 /* If an identity-zero op is commutative, check whether there
5458 would be a match if we swapped the operands. */
5459 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5460 || GET_CODE (t) == XOR)
5461 && rtx_equal_p (XEXP (t, 1), f))
5462 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5463 else if (GET_CODE (t) == SIGN_EXTEND
5464 && (GET_CODE (XEXP (t, 0)) == PLUS
5465 || GET_CODE (XEXP (t, 0)) == MINUS
5466 || GET_CODE (XEXP (t, 0)) == IOR
5467 || GET_CODE (XEXP (t, 0)) == XOR
5468 || GET_CODE (XEXP (t, 0)) == ASHIFT
5469 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5470 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5471 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5472 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5473 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5474 && (num_sign_bit_copies (f, GET_MODE (f))
5476 (GET_MODE_BITSIZE (mode)
5477 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5479 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5480 extend_op = SIGN_EXTEND;
5481 m = GET_MODE (XEXP (t, 0));
5483 else if (GET_CODE (t) == SIGN_EXTEND
5484 && (GET_CODE (XEXP (t, 0)) == PLUS
5485 || GET_CODE (XEXP (t, 0)) == IOR
5486 || GET_CODE (XEXP (t, 0)) == XOR)
5487 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5488 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5489 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5490 && (num_sign_bit_copies (f, GET_MODE (f))
5492 (GET_MODE_BITSIZE (mode)
5493 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5495 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5496 extend_op = SIGN_EXTEND;
5497 m = GET_MODE (XEXP (t, 0));
5499 else if (GET_CODE (t) == ZERO_EXTEND
5500 && (GET_CODE (XEXP (t, 0)) == PLUS
5501 || GET_CODE (XEXP (t, 0)) == MINUS
5502 || GET_CODE (XEXP (t, 0)) == IOR
5503 || GET_CODE (XEXP (t, 0)) == XOR
5504 || GET_CODE (XEXP (t, 0)) == ASHIFT
5505 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5506 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5507 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5508 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5509 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5510 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5511 && ((nonzero_bits (f, GET_MODE (f))
5512 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5515 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5516 extend_op = ZERO_EXTEND;
5517 m = GET_MODE (XEXP (t, 0));
5519 else if (GET_CODE (t) == ZERO_EXTEND
5520 && (GET_CODE (XEXP (t, 0)) == PLUS
5521 || GET_CODE (XEXP (t, 0)) == IOR
5522 || GET_CODE (XEXP (t, 0)) == XOR)
5523 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5524 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5525 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5526 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5527 && ((nonzero_bits (f, GET_MODE (f))
5528 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5531 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5532 extend_op = ZERO_EXTEND;
5533 m = GET_MODE (XEXP (t, 0));
5538 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5539 cond_op0, cond_op1),
5540 pc_rtx, pc_rtx, 0, 0);
5541 temp = simplify_gen_binary (MULT, m, temp,
5542 simplify_gen_binary (MULT, m, c1,
5544 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5545 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5547 if (extend_op != UNKNOWN)
5548 temp = simplify_gen_unary (extend_op, mode, temp, m);
5554 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5555 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5556 negation of a single bit, we can convert this operation to a shift. We
5557 can actually do this more generally, but it doesn't seem worth it. */
5559 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5560 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5561 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5562 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5563 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5564 == GET_MODE_BITSIZE (mode))
5565 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5567 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5568 gen_lowpart (mode, XEXP (cond, 0)), i);
5570 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5571 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5572 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5573 && GET_MODE (XEXP (cond, 0)) == mode
5574 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5575 == nonzero_bits (XEXP (cond, 0), mode)
5576 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5577 return XEXP (cond, 0);
5582 /* Simplify X, a SET expression. Return the new expression. */
5585 simplify_set (rtx x)
5587 rtx src = SET_SRC (x);
5588 rtx dest = SET_DEST (x);
5589 enum machine_mode mode
5590 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5594 /* (set (pc) (return)) gets written as (return). */
5595 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5598 /* Now that we know for sure which bits of SRC we are using, see if we can
5599 simplify the expression for the object knowing that we only need the
5602 if (GET_MODE_CLASS (mode) == MODE_INT
5603 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5605 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5606 SUBST (SET_SRC (x), src);
5609 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5610 the comparison result and try to simplify it unless we already have used
5611 undobuf.other_insn. */
5612 if ((GET_MODE_CLASS (mode) == MODE_CC
5613 || GET_CODE (src) == COMPARE
5615 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5616 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5617 && COMPARISON_P (*cc_use)
5618 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5620 enum rtx_code old_code = GET_CODE (*cc_use);
5621 enum rtx_code new_code;
5623 int other_changed = 0;
5624 enum machine_mode compare_mode = GET_MODE (dest);
5626 if (GET_CODE (src) == COMPARE)
5627 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5629 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5631 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5634 new_code = old_code;
5635 else if (!CONSTANT_P (tmp))
5637 new_code = GET_CODE (tmp);
5638 op0 = XEXP (tmp, 0);
5639 op1 = XEXP (tmp, 1);
5643 rtx pat = PATTERN (other_insn);
5644 undobuf.other_insn = other_insn;
5645 SUBST (*cc_use, tmp);
5647 /* Attempt to simplify CC user. */
5648 if (GET_CODE (pat) == SET)
5650 rtx new_rtx = simplify_rtx (SET_SRC (pat));
5651 if (new_rtx != NULL_RTX)
5652 SUBST (SET_SRC (pat), new_rtx);
5655 /* Convert X into a no-op move. */
5656 SUBST (SET_DEST (x), pc_rtx);
5657 SUBST (SET_SRC (x), pc_rtx);
5661 /* Simplify our comparison, if possible. */
5662 new_code = simplify_comparison (new_code, &op0, &op1);
5664 #ifdef SELECT_CC_MODE
5665 /* If this machine has CC modes other than CCmode, check to see if we
5666 need to use a different CC mode here. */
5667 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5668 compare_mode = GET_MODE (op0);
5670 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5673 /* If the mode changed, we have to change SET_DEST, the mode in the
5674 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5675 a hard register, just build new versions with the proper mode. If it
5676 is a pseudo, we lose unless it is only time we set the pseudo, in
5677 which case we can safely change its mode. */
5678 if (compare_mode != GET_MODE (dest))
5680 if (can_change_dest_mode (dest, 0, compare_mode))
5682 unsigned int regno = REGNO (dest);
5685 if (regno < FIRST_PSEUDO_REGISTER)
5686 new_dest = gen_rtx_REG (compare_mode, regno);
5689 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5690 new_dest = regno_reg_rtx[regno];
5693 SUBST (SET_DEST (x), new_dest);
5694 SUBST (XEXP (*cc_use, 0), new_dest);
5701 #endif /* SELECT_CC_MODE */
5703 /* If the code changed, we have to build a new comparison in
5704 undobuf.other_insn. */
5705 if (new_code != old_code)
5707 int other_changed_previously = other_changed;
5708 unsigned HOST_WIDE_INT mask;
5709 rtx old_cc_use = *cc_use;
5711 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5715 /* If the only change we made was to change an EQ into an NE or
5716 vice versa, OP0 has only one bit that might be nonzero, and OP1
5717 is zero, check if changing the user of the condition code will
5718 produce a valid insn. If it won't, we can keep the original code
5719 in that insn by surrounding our operation with an XOR. */
5721 if (((old_code == NE && new_code == EQ)
5722 || (old_code == EQ && new_code == NE))
5723 && ! other_changed_previously && op1 == const0_rtx
5724 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5725 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5727 rtx pat = PATTERN (other_insn), note = 0;
5729 if ((recog_for_combine (&pat, other_insn, ¬e) < 0
5730 && ! check_asm_operands (pat)))
5732 *cc_use = old_cc_use;
5735 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5736 op0, GEN_INT (mask));
5742 undobuf.other_insn = other_insn;
5745 /* If we are now comparing against zero, change our source if
5746 needed. If we do not use cc0, we always have a COMPARE. */
5747 if (op1 == const0_rtx && dest == cc0_rtx)
5749 SUBST (SET_SRC (x), op0);
5755 /* Otherwise, if we didn't previously have a COMPARE in the
5756 correct mode, we need one. */
5757 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5759 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5762 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5764 SUBST (SET_SRC (x), op0);
5767 /* Otherwise, update the COMPARE if needed. */
5768 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
5770 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5776 /* Get SET_SRC in a form where we have placed back any
5777 compound expressions. Then do the checks below. */
5778 src = make_compound_operation (src, SET);
5779 SUBST (SET_SRC (x), src);
5782 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5783 and X being a REG or (subreg (reg)), we may be able to convert this to
5784 (set (subreg:m2 x) (op)).
5786 We can always do this if M1 is narrower than M2 because that means that
5787 we only care about the low bits of the result.
5789 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5790 perform a narrower operation than requested since the high-order bits will
5791 be undefined. On machine where it is defined, this transformation is safe
5792 as long as M1 and M2 have the same number of words. */
5794 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5795 && !OBJECT_P (SUBREG_REG (src))
5796 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5798 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5799 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5800 #ifndef WORD_REGISTER_OPERATIONS
5801 && (GET_MODE_SIZE (GET_MODE (src))
5802 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5804 #ifdef CANNOT_CHANGE_MODE_CLASS
5805 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5806 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5807 GET_MODE (SUBREG_REG (src)),
5811 || (GET_CODE (dest) == SUBREG
5812 && REG_P (SUBREG_REG (dest)))))
5814 SUBST (SET_DEST (x),
5815 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5817 SUBST (SET_SRC (x), SUBREG_REG (src));
5819 src = SET_SRC (x), dest = SET_DEST (x);
5823 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5826 && GET_CODE (src) == SUBREG
5827 && subreg_lowpart_p (src)
5828 && (GET_MODE_BITSIZE (GET_MODE (src))
5829 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5831 rtx inner = SUBREG_REG (src);
5832 enum machine_mode inner_mode = GET_MODE (inner);
5834 /* Here we make sure that we don't have a sign bit on. */
5835 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5836 && (nonzero_bits (inner, inner_mode)
5837 < ((unsigned HOST_WIDE_INT) 1
5838 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5840 SUBST (SET_SRC (x), inner);
5846 #ifdef LOAD_EXTEND_OP
5847 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5848 would require a paradoxical subreg. Replace the subreg with a
5849 zero_extend to avoid the reload that would otherwise be required. */
5851 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5852 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
5853 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5854 && SUBREG_BYTE (src) == 0
5855 && (GET_MODE_SIZE (GET_MODE (src))
5856 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5857 && MEM_P (SUBREG_REG (src)))
5860 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5861 GET_MODE (src), SUBREG_REG (src)));
5867 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5868 are comparing an item known to be 0 or -1 against 0, use a logical
5869 operation instead. Check for one of the arms being an IOR of the other
5870 arm with some value. We compute three terms to be IOR'ed together. In
5871 practice, at most two will be nonzero. Then we do the IOR's. */
5873 if (GET_CODE (dest) != PC
5874 && GET_CODE (src) == IF_THEN_ELSE
5875 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5876 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5877 && XEXP (XEXP (src, 0), 1) == const0_rtx
5878 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5879 #ifdef HAVE_conditional_move
5880 && ! can_conditionally_move_p (GET_MODE (src))
5882 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5883 GET_MODE (XEXP (XEXP (src, 0), 0)))
5884 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5885 && ! side_effects_p (src))
5887 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5888 ? XEXP (src, 1) : XEXP (src, 2));
5889 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5890 ? XEXP (src, 2) : XEXP (src, 1));
5891 rtx term1 = const0_rtx, term2, term3;
5893 if (GET_CODE (true_rtx) == IOR
5894 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5895 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5896 else if (GET_CODE (true_rtx) == IOR
5897 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5898 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5899 else if (GET_CODE (false_rtx) == IOR
5900 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5901 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5902 else if (GET_CODE (false_rtx) == IOR
5903 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5904 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5906 term2 = simplify_gen_binary (AND, GET_MODE (src),
5907 XEXP (XEXP (src, 0), 0), true_rtx);
5908 term3 = simplify_gen_binary (AND, GET_MODE (src),
5909 simplify_gen_unary (NOT, GET_MODE (src),
5910 XEXP (XEXP (src, 0), 0),
5915 simplify_gen_binary (IOR, GET_MODE (src),
5916 simplify_gen_binary (IOR, GET_MODE (src),
5923 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5924 whole thing fail. */
5925 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5927 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5930 /* Convert this into a field assignment operation, if possible. */
5931 return make_field_assignment (x);
5934 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5938 simplify_logical (rtx x)
5940 enum machine_mode mode = GET_MODE (x);
5941 rtx op0 = XEXP (x, 0);
5942 rtx op1 = XEXP (x, 1);
5944 switch (GET_CODE (x))
5947 /* We can call simplify_and_const_int only if we don't lose
5948 any (sign) bits when converting INTVAL (op1) to
5949 "unsigned HOST_WIDE_INT". */
5950 if (GET_CODE (op1) == CONST_INT
5951 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5952 || INTVAL (op1) > 0))
5954 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5955 if (GET_CODE (x) != AND)
5962 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5963 apply the distributive law and then the inverse distributive
5964 law to see if things simplify. */
5965 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5967 rtx result = distribute_and_simplify_rtx (x, 0);
5971 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5973 rtx result = distribute_and_simplify_rtx (x, 1);
5980 /* If we have (ior (and A B) C), apply the distributive law and then
5981 the inverse distributive law to see if things simplify. */
5983 if (GET_CODE (op0) == AND)
5985 rtx result = distribute_and_simplify_rtx (x, 0);
5990 if (GET_CODE (op1) == AND)
5992 rtx result = distribute_and_simplify_rtx (x, 1);
6005 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6006 operations" because they can be replaced with two more basic operations.
6007 ZERO_EXTEND is also considered "compound" because it can be replaced with
6008 an AND operation, which is simpler, though only one operation.
6010 The function expand_compound_operation is called with an rtx expression
6011 and will convert it to the appropriate shifts and AND operations,
6012 simplifying at each stage.
6014 The function make_compound_operation is called to convert an expression
6015 consisting of shifts and ANDs into the equivalent compound expression.
6016 It is the inverse of this function, loosely speaking. */
6019 expand_compound_operation (rtx x)
6021 unsigned HOST_WIDE_INT pos = 0, len;
6023 unsigned int modewidth;
6026 switch (GET_CODE (x))
6031 /* We can't necessarily use a const_int for a multiword mode;
6032 it depends on implicitly extending the value.
6033 Since we don't know the right way to extend it,
6034 we can't tell whether the implicit way is right.
6036 Even for a mode that is no wider than a const_int,
6037 we can't win, because we need to sign extend one of its bits through
6038 the rest of it, and we don't know which bit. */
6039 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
6042 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6043 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6044 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6045 reloaded. If not for that, MEM's would very rarely be safe.
6047 Reject MODEs bigger than a word, because we might not be able
6048 to reference a two-register group starting with an arbitrary register
6049 (and currently gen_lowpart might crash for a SUBREG). */
6051 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6054 /* Reject MODEs that aren't scalar integers because turning vector
6055 or complex modes into shifts causes problems. */
6057 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6060 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6061 /* If the inner object has VOIDmode (the only way this can happen
6062 is if it is an ASM_OPERANDS), we can't do anything since we don't
6063 know how much masking to do. */
6072 /* ... fall through ... */
6075 /* If the operand is a CLOBBER, just return it. */
6076 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6079 if (GET_CODE (XEXP (x, 1)) != CONST_INT
6080 || GET_CODE (XEXP (x, 2)) != CONST_INT
6081 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6084 /* Reject MODEs that aren't scalar integers because turning vector
6085 or complex modes into shifts causes problems. */
6087 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6090 len = INTVAL (XEXP (x, 1));
6091 pos = INTVAL (XEXP (x, 2));
6093 /* This should stay within the object being extracted, fail otherwise. */
6094 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6097 if (BITS_BIG_ENDIAN)
6098 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6105 /* Convert sign extension to zero extension, if we know that the high
6106 bit is not set, as this is easier to optimize. It will be converted
6107 back to cheaper alternative in make_extraction. */
6108 if (GET_CODE (x) == SIGN_EXTEND
6109 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6110 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6111 & ~(((unsigned HOST_WIDE_INT)
6112 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6116 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6117 rtx temp2 = expand_compound_operation (temp);
6119 /* Make sure this is a profitable operation. */
6120 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6121 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6123 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6124 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6130 /* We can optimize some special cases of ZERO_EXTEND. */
6131 if (GET_CODE (x) == ZERO_EXTEND)
6133 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6134 know that the last value didn't have any inappropriate bits
6136 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6137 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6138 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6139 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6140 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6141 return XEXP (XEXP (x, 0), 0);
6143 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6144 if (GET_CODE (XEXP (x, 0)) == SUBREG
6145 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6146 && subreg_lowpart_p (XEXP (x, 0))
6147 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6148 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6149 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6150 return SUBREG_REG (XEXP (x, 0));
6152 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6153 is a comparison and STORE_FLAG_VALUE permits. This is like
6154 the first case, but it works even when GET_MODE (x) is larger
6155 than HOST_WIDE_INT. */
6156 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6157 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6158 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6159 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6160 <= HOST_BITS_PER_WIDE_INT)
6161 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6162 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6163 return XEXP (XEXP (x, 0), 0);
6165 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6166 if (GET_CODE (XEXP (x, 0)) == SUBREG
6167 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6168 && subreg_lowpart_p (XEXP (x, 0))
6169 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6170 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6171 <= HOST_BITS_PER_WIDE_INT)
6172 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6173 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6174 return SUBREG_REG (XEXP (x, 0));
6178 /* If we reach here, we want to return a pair of shifts. The inner
6179 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6180 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6181 logical depending on the value of UNSIGNEDP.
6183 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6184 converted into an AND of a shift.
6186 We must check for the case where the left shift would have a negative
6187 count. This can happen in a case like (x >> 31) & 255 on machines
6188 that can't shift by a constant. On those machines, we would first
6189 combine the shift with the AND to produce a variable-position
6190 extraction. Then the constant of 31 would be substituted in to produce
6191 a such a position. */
6193 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6194 if (modewidth + len >= pos)
6196 enum machine_mode mode = GET_MODE (x);
6197 tem = gen_lowpart (mode, XEXP (x, 0));
6198 if (!tem || GET_CODE (tem) == CLOBBER)
6200 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6201 tem, modewidth - pos - len);
6202 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6203 mode, tem, modewidth - len);
6205 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6206 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6207 simplify_shift_const (NULL_RTX, LSHIFTRT,
6210 ((HOST_WIDE_INT) 1 << len) - 1);
6212 /* Any other cases we can't handle. */
6215 /* If we couldn't do this for some reason, return the original
6217 if (GET_CODE (tem) == CLOBBER)
6223 /* X is a SET which contains an assignment of one object into
6224 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6225 or certain SUBREGS). If possible, convert it into a series of
6228 We half-heartedly support variable positions, but do not at all
6229 support variable lengths. */
6232 expand_field_assignment (const_rtx x)
6235 rtx pos; /* Always counts from low bit. */
6237 rtx mask, cleared, masked;
6238 enum machine_mode compute_mode;
6240 /* Loop until we find something we can't simplify. */
6243 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6244 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6246 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6247 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6248 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6250 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6251 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
6253 inner = XEXP (SET_DEST (x), 0);
6254 len = INTVAL (XEXP (SET_DEST (x), 1));
6255 pos = XEXP (SET_DEST (x), 2);
6257 /* A constant position should stay within the width of INNER. */
6258 if (GET_CODE (pos) == CONST_INT
6259 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6262 if (BITS_BIG_ENDIAN)
6264 if (GET_CODE (pos) == CONST_INT)
6265 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6267 else if (GET_CODE (pos) == MINUS
6268 && GET_CODE (XEXP (pos, 1)) == CONST_INT
6269 && (INTVAL (XEXP (pos, 1))
6270 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6271 /* If position is ADJUST - X, new position is X. */
6272 pos = XEXP (pos, 0);
6274 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6275 GEN_INT (GET_MODE_BITSIZE (
6282 /* A SUBREG between two modes that occupy the same numbers of words
6283 can be done by moving the SUBREG to the source. */
6284 else if (GET_CODE (SET_DEST (x)) == SUBREG
6285 /* We need SUBREGs to compute nonzero_bits properly. */
6286 && nonzero_sign_valid
6287 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6288 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6289 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6290 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6292 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6294 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6301 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6302 inner = SUBREG_REG (inner);
6304 compute_mode = GET_MODE (inner);
6306 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6307 if (! SCALAR_INT_MODE_P (compute_mode))
6309 enum machine_mode imode;
6311 /* Don't do anything for vector or complex integral types. */
6312 if (! FLOAT_MODE_P (compute_mode))
6315 /* Try to find an integral mode to pun with. */
6316 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6317 if (imode == BLKmode)
6320 compute_mode = imode;
6321 inner = gen_lowpart (imode, inner);
6324 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6325 if (len >= HOST_BITS_PER_WIDE_INT)
6328 /* Now compute the equivalent expression. Make a copy of INNER
6329 for the SET_DEST in case it is a MEM into which we will substitute;
6330 we don't want shared RTL in that case. */
6331 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6332 cleared = simplify_gen_binary (AND, compute_mode,
6333 simplify_gen_unary (NOT, compute_mode,
6334 simplify_gen_binary (ASHIFT,
6339 masked = simplify_gen_binary (ASHIFT, compute_mode,
6340 simplify_gen_binary (
6342 gen_lowpart (compute_mode, SET_SRC (x)),
6346 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6347 simplify_gen_binary (IOR, compute_mode,
6354 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6355 it is an RTX that represents a variable starting position; otherwise,
6356 POS is the (constant) starting bit position (counted from the LSB).
6358 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6361 IN_DEST is nonzero if this is a reference in the destination of a
6362 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6363 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6366 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6367 ZERO_EXTRACT should be built even for bits starting at bit 0.
6369 MODE is the desired mode of the result (if IN_DEST == 0).
6371 The result is an RTX for the extraction or NULL_RTX if the target
6375 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6376 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6377 int in_dest, int in_compare)
6379 /* This mode describes the size of the storage area
6380 to fetch the overall value from. Within that, we
6381 ignore the POS lowest bits, etc. */
6382 enum machine_mode is_mode = GET_MODE (inner);
6383 enum machine_mode inner_mode;
6384 enum machine_mode wanted_inner_mode;
6385 enum machine_mode wanted_inner_reg_mode = word_mode;
6386 enum machine_mode pos_mode = word_mode;
6387 enum machine_mode extraction_mode = word_mode;
6388 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6390 rtx orig_pos_rtx = pos_rtx;
6391 HOST_WIDE_INT orig_pos;
6393 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6395 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6396 consider just the QI as the memory to extract from.
6397 The subreg adds or removes high bits; its mode is
6398 irrelevant to the meaning of this extraction,
6399 since POS and LEN count from the lsb. */
6400 if (MEM_P (SUBREG_REG (inner)))
6401 is_mode = GET_MODE (SUBREG_REG (inner));
6402 inner = SUBREG_REG (inner);
6404 else if (GET_CODE (inner) == ASHIFT
6405 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6406 && pos_rtx == 0 && pos == 0
6407 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6409 /* We're extracting the least significant bits of an rtx
6410 (ashift X (const_int C)), where LEN > C. Extract the
6411 least significant (LEN - C) bits of X, giving an rtx
6412 whose mode is MODE, then shift it left C times. */
6413 new_rtx = make_extraction (mode, XEXP (inner, 0),
6414 0, 0, len - INTVAL (XEXP (inner, 1)),
6415 unsignedp, in_dest, in_compare);
6417 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
6420 inner_mode = GET_MODE (inner);
6422 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6423 pos = INTVAL (pos_rtx), pos_rtx = 0;
6425 /* See if this can be done without an extraction. We never can if the
6426 width of the field is not the same as that of some integer mode. For
6427 registers, we can only avoid the extraction if the position is at the
6428 low-order bit and this is either not in the destination or we have the
6429 appropriate STRICT_LOW_PART operation available.
6431 For MEM, we can avoid an extract if the field starts on an appropriate
6432 boundary and we can change the mode of the memory reference. */
6434 if (tmode != BLKmode
6435 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6437 && (inner_mode == tmode
6439 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
6440 GET_MODE_BITSIZE (inner_mode))
6441 || reg_truncated_to_mode (tmode, inner))
6444 && have_insn_for (STRICT_LOW_PART, tmode))))
6445 || (MEM_P (inner) && pos_rtx == 0
6447 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6448 : BITS_PER_UNIT)) == 0
6449 /* We can't do this if we are widening INNER_MODE (it
6450 may not be aligned, for one thing). */
6451 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6452 && (inner_mode == tmode
6453 || (! mode_dependent_address_p (XEXP (inner, 0))
6454 && ! MEM_VOLATILE_P (inner))))))
6456 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6457 field. If the original and current mode are the same, we need not
6458 adjust the offset. Otherwise, we do if bytes big endian.
6460 If INNER is not a MEM, get a piece consisting of just the field
6461 of interest (in this case POS % BITS_PER_WORD must be 0). */
6465 HOST_WIDE_INT offset;
6467 /* POS counts from lsb, but make OFFSET count in memory order. */
6468 if (BYTES_BIG_ENDIAN)
6469 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6471 offset = pos / BITS_PER_UNIT;
6473 new_rtx = adjust_address_nv (inner, tmode, offset);
6475 else if (REG_P (inner))
6477 if (tmode != inner_mode)
6479 /* We can't call gen_lowpart in a DEST since we
6480 always want a SUBREG (see below) and it would sometimes
6481 return a new hard register. */
6484 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6486 if (WORDS_BIG_ENDIAN
6487 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6488 final_word = ((GET_MODE_SIZE (inner_mode)
6489 - GET_MODE_SIZE (tmode))
6490 / UNITS_PER_WORD) - final_word;
6492 final_word *= UNITS_PER_WORD;
6493 if (BYTES_BIG_ENDIAN &&
6494 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6495 final_word += (GET_MODE_SIZE (inner_mode)
6496 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6498 /* Avoid creating invalid subregs, for example when
6499 simplifying (x>>32)&255. */
6500 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6503 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
6506 new_rtx = gen_lowpart (tmode, inner);
6512 new_rtx = force_to_mode (inner, tmode,
6513 len >= HOST_BITS_PER_WIDE_INT
6514 ? ~(unsigned HOST_WIDE_INT) 0
6515 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6518 /* If this extraction is going into the destination of a SET,
6519 make a STRICT_LOW_PART unless we made a MEM. */
6522 return (MEM_P (new_rtx) ? new_rtx
6523 : (GET_CODE (new_rtx) != SUBREG
6524 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6525 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
6530 if (GET_CODE (new_rtx) == CONST_INT)
6531 return gen_int_mode (INTVAL (new_rtx), mode);
6533 /* If we know that no extraneous bits are set, and that the high
6534 bit is not set, convert the extraction to the cheaper of
6535 sign and zero extension, that are equivalent in these cases. */
6536 if (flag_expensive_optimizations
6537 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6538 && ((nonzero_bits (new_rtx, tmode)
6539 & ~(((unsigned HOST_WIDE_INT)
6540 GET_MODE_MASK (tmode))
6544 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
6545 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
6547 /* Prefer ZERO_EXTENSION, since it gives more information to
6549 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
6550 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
6555 /* Otherwise, sign- or zero-extend unless we already are in the
6558 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6562 /* Unless this is a COMPARE or we have a funny memory reference,
6563 don't do anything with zero-extending field extracts starting at
6564 the low-order bit since they are simple AND operations. */
6565 if (pos_rtx == 0 && pos == 0 && ! in_dest
6566 && ! in_compare && unsignedp)
6569 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6570 if the position is not a constant and the length is not 1. In all
6571 other cases, we would only be going outside our object in cases when
6572 an original shift would have been undefined. */
6574 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6575 || (pos_rtx != 0 && len != 1)))
6578 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6579 and the mode for the result. */
6580 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6582 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6583 pos_mode = mode_for_extraction (EP_insv, 2);
6584 extraction_mode = mode_for_extraction (EP_insv, 3);
6587 if (! in_dest && unsignedp
6588 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6590 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6591 pos_mode = mode_for_extraction (EP_extzv, 3);
6592 extraction_mode = mode_for_extraction (EP_extzv, 0);
6595 if (! in_dest && ! unsignedp
6596 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6598 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6599 pos_mode = mode_for_extraction (EP_extv, 3);
6600 extraction_mode = mode_for_extraction (EP_extv, 0);
6603 /* Never narrow an object, since that might not be safe. */
6605 if (mode != VOIDmode
6606 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6607 extraction_mode = mode;
6609 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6610 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6611 pos_mode = GET_MODE (pos_rtx);
6613 /* If this is not from memory, the desired mode is the preferred mode
6614 for an extraction pattern's first input operand, or word_mode if there
6617 wanted_inner_mode = wanted_inner_reg_mode;
6620 /* Be careful not to go beyond the extracted object and maintain the
6621 natural alignment of the memory. */
6622 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6623 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6624 > GET_MODE_BITSIZE (wanted_inner_mode))
6626 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6627 gcc_assert (wanted_inner_mode != VOIDmode);
6630 /* If we have to change the mode of memory and cannot, the desired mode
6631 is EXTRACTION_MODE. */
6632 if (inner_mode != wanted_inner_mode
6633 && (mode_dependent_address_p (XEXP (inner, 0))
6634 || MEM_VOLATILE_P (inner)
6636 wanted_inner_mode = extraction_mode;
6641 if (BITS_BIG_ENDIAN)
6643 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6644 BITS_BIG_ENDIAN style. If position is constant, compute new
6645 position. Otherwise, build subtraction.
6646 Note that POS is relative to the mode of the original argument.
6647 If it's a MEM we need to recompute POS relative to that.
6648 However, if we're extracting from (or inserting into) a register,
6649 we want to recompute POS relative to wanted_inner_mode. */
6650 int width = (MEM_P (inner)
6651 ? GET_MODE_BITSIZE (is_mode)
6652 : GET_MODE_BITSIZE (wanted_inner_mode));
6655 pos = width - len - pos;
6658 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6659 /* POS may be less than 0 now, but we check for that below.
6660 Note that it can only be less than 0 if !MEM_P (inner). */
6663 /* If INNER has a wider mode, and this is a constant extraction, try to
6664 make it smaller and adjust the byte to point to the byte containing
6666 if (wanted_inner_mode != VOIDmode
6667 && inner_mode != wanted_inner_mode
6669 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6671 && ! mode_dependent_address_p (XEXP (inner, 0))
6672 && ! MEM_VOLATILE_P (inner))
6676 /* The computations below will be correct if the machine is big
6677 endian in both bits and bytes or little endian in bits and bytes.
6678 If it is mixed, we must adjust. */
6680 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6681 adjust OFFSET to compensate. */
6682 if (BYTES_BIG_ENDIAN
6683 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6684 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6686 /* We can now move to the desired byte. */
6687 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6688 * GET_MODE_SIZE (wanted_inner_mode);
6689 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6691 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6692 && is_mode != wanted_inner_mode)
6693 offset = (GET_MODE_SIZE (is_mode)
6694 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6696 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6699 /* If INNER is not memory, we can always get it into the proper mode. If we
6700 are changing its mode, POS must be a constant and smaller than the size
6702 else if (!MEM_P (inner))
6704 if (GET_MODE (inner) != wanted_inner_mode
6706 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6712 inner = force_to_mode (inner, wanted_inner_mode,
6714 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6715 ? ~(unsigned HOST_WIDE_INT) 0
6716 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6721 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6722 have to zero extend. Otherwise, we can just use a SUBREG. */
6724 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6726 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6728 /* If we know that no extraneous bits are set, and that the high
6729 bit is not set, convert extraction to cheaper one - either
6730 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6732 if (flag_expensive_optimizations
6733 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6734 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6735 & ~(((unsigned HOST_WIDE_INT)
6736 GET_MODE_MASK (GET_MODE (pos_rtx)))
6740 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6742 /* Prefer ZERO_EXTENSION, since it gives more information to
6744 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
6745 < rtx_cost (temp, SET, optimize_this_for_speed_p))
6750 else if (pos_rtx != 0
6751 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6752 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6754 /* Make POS_RTX unless we already have it and it is correct. If we don't
6755 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6757 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6758 pos_rtx = orig_pos_rtx;
6760 else if (pos_rtx == 0)
6761 pos_rtx = GEN_INT (pos);
6763 /* Make the required operation. See if we can use existing rtx. */
6764 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6765 extraction_mode, inner, GEN_INT (len), pos_rtx);
6767 new_rtx = gen_lowpart (mode, new_rtx);
6772 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6773 with any other operations in X. Return X without that shift if so. */
6776 extract_left_shift (rtx x, int count)
6778 enum rtx_code code = GET_CODE (x);
6779 enum machine_mode mode = GET_MODE (x);
6785 /* This is the shift itself. If it is wide enough, we will return
6786 either the value being shifted if the shift count is equal to
6787 COUNT or a shift for the difference. */
6788 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6789 && INTVAL (XEXP (x, 1)) >= count)
6790 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6791 INTVAL (XEXP (x, 1)) - count);
6795 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6796 return simplify_gen_unary (code, mode, tem, mode);
6800 case PLUS: case IOR: case XOR: case AND:
6801 /* If we can safely shift this constant and we find the inner shift,
6802 make a new operation. */
6803 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6804 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6805 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6806 return simplify_gen_binary (code, mode, tem,
6807 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6818 /* Look at the expression rooted at X. Look for expressions
6819 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6820 Form these expressions.
6822 Return the new rtx, usually just X.
6824 Also, for machines like the VAX that don't have logical shift insns,
6825 try to convert logical to arithmetic shift operations in cases where
6826 they are equivalent. This undoes the canonicalizations to logical
6827 shifts done elsewhere.
6829 We try, as much as possible, to re-use rtl expressions to save memory.
6831 IN_CODE says what kind of expression we are processing. Normally, it is
6832 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6833 being kludges), it is MEM. When processing the arguments of a comparison
6834 or a COMPARE against zero, it is COMPARE. */
6837 make_compound_operation (rtx x, enum rtx_code in_code)
6839 enum rtx_code code = GET_CODE (x);
6840 enum machine_mode mode = GET_MODE (x);
6841 int mode_width = GET_MODE_BITSIZE (mode);
6843 enum rtx_code next_code;
6849 /* Select the code to be used in recursive calls. Once we are inside an
6850 address, we stay there. If we have a comparison, set to COMPARE,
6851 but once inside, go back to our default of SET. */
6853 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6854 : ((code == COMPARE || COMPARISON_P (x))
6855 && XEXP (x, 1) == const0_rtx) ? COMPARE
6856 : in_code == COMPARE ? SET : in_code);
6858 /* Process depending on the code of this operation. If NEW is set
6859 nonzero, it will be returned. */
6864 /* Convert shifts by constants into multiplications if inside
6866 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6867 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6868 && INTVAL (XEXP (x, 1)) >= 0)
6870 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
6871 new_rtx = gen_rtx_MULT (mode, new_rtx,
6872 GEN_INT ((HOST_WIDE_INT) 1
6873 << INTVAL (XEXP (x, 1))));
6878 /* If the second operand is not a constant, we can't do anything
6880 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6883 /* If the constant is a power of two minus one and the first operand
6884 is a logical right shift, make an extraction. */
6885 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6886 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6888 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6889 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
6890 0, in_code == COMPARE);
6893 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6894 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6895 && subreg_lowpart_p (XEXP (x, 0))
6896 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6897 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6899 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6901 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
6902 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6903 0, in_code == COMPARE);
6905 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6906 else if ((GET_CODE (XEXP (x, 0)) == XOR
6907 || GET_CODE (XEXP (x, 0)) == IOR)
6908 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6909 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6910 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6912 /* Apply the distributive law, and then try to make extractions. */
6913 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6914 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6916 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6918 new_rtx = make_compound_operation (new_rtx, in_code);
6921 /* If we are have (and (rotate X C) M) and C is larger than the number
6922 of bits in M, this is an extraction. */
6924 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6925 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6926 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6927 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6929 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6930 new_rtx = make_extraction (mode, new_rtx,
6931 (GET_MODE_BITSIZE (mode)
6932 - INTVAL (XEXP (XEXP (x, 0), 1))),
6933 NULL_RTX, i, 1, 0, in_code == COMPARE);
6936 /* On machines without logical shifts, if the operand of the AND is
6937 a logical shift and our mask turns off all the propagated sign
6938 bits, we can replace the logical shift with an arithmetic shift. */
6939 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6940 && !have_insn_for (LSHIFTRT, mode)
6941 && have_insn_for (ASHIFTRT, mode)
6942 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6943 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6944 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6945 && mode_width <= HOST_BITS_PER_WIDE_INT)
6947 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6949 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6950 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6952 gen_rtx_ASHIFTRT (mode,
6953 make_compound_operation
6954 (XEXP (XEXP (x, 0), 0), next_code),
6955 XEXP (XEXP (x, 0), 1)));
6958 /* If the constant is one less than a power of two, this might be
6959 representable by an extraction even if no shift is present.
6960 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6961 we are in a COMPARE. */
6962 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6963 new_rtx = make_extraction (mode,
6964 make_compound_operation (XEXP (x, 0),
6966 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6968 /* If we are in a comparison and this is an AND with a power of two,
6969 convert this into the appropriate bit extract. */
6970 else if (in_code == COMPARE
6971 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6972 new_rtx = make_extraction (mode,
6973 make_compound_operation (XEXP (x, 0),
6975 i, NULL_RTX, 1, 1, 0, 1);
6980 /* If the sign bit is known to be zero, replace this with an
6981 arithmetic shift. */
6982 if (have_insn_for (ASHIFTRT, mode)
6983 && ! have_insn_for (LSHIFTRT, mode)
6984 && mode_width <= HOST_BITS_PER_WIDE_INT
6985 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6987 new_rtx = gen_rtx_ASHIFTRT (mode,
6988 make_compound_operation (XEXP (x, 0),
6994 /* ... fall through ... */
7000 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7001 this is a SIGN_EXTRACT. */
7002 if (GET_CODE (rhs) == CONST_INT
7003 && GET_CODE (lhs) == ASHIFT
7004 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7005 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7006 && INTVAL (rhs) < mode_width)
7008 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7009 new_rtx = make_extraction (mode, new_rtx,
7010 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7011 NULL_RTX, mode_width - INTVAL (rhs),
7012 code == LSHIFTRT, 0, in_code == COMPARE);
7016 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7017 If so, try to merge the shifts into a SIGN_EXTEND. We could
7018 also do this for some cases of SIGN_EXTRACT, but it doesn't
7019 seem worth the effort; the case checked for occurs on Alpha. */
7022 && ! (GET_CODE (lhs) == SUBREG
7023 && (OBJECT_P (SUBREG_REG (lhs))))
7024 && GET_CODE (rhs) == CONST_INT
7025 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7026 && INTVAL (rhs) < mode_width
7027 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7028 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7029 0, NULL_RTX, mode_width - INTVAL (rhs),
7030 code == LSHIFTRT, 0, in_code == COMPARE);
7035 /* Call ourselves recursively on the inner expression. If we are
7036 narrowing the object and it has a different RTL code from
7037 what it originally did, do this SUBREG as a force_to_mode. */
7039 tem = make_compound_operation (SUBREG_REG (x), in_code);
7043 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
7049 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
7050 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
7051 && subreg_lowpart_p (x))
7053 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
7056 /* If we have something other than a SUBREG, we might have
7057 done an expansion, so rerun ourselves. */
7058 if (GET_CODE (newer) != SUBREG)
7059 newer = make_compound_operation (newer, in_code);
7075 x = gen_lowpart (mode, new_rtx);
7076 code = GET_CODE (x);
7079 /* Now recursively process each operand of this operation. */
7080 fmt = GET_RTX_FORMAT (code);
7081 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7084 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7085 SUBST (XEXP (x, i), new_rtx);
7087 else if (fmt[i] == 'E')
7088 for (j = 0; j < XVECLEN (x, i); j++)
7090 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7091 SUBST (XVECEXP (x, i, j), new_rtx);
7094 /* If this is a commutative operation, the changes to the operands
7095 may have made it noncanonical. */
7096 if (COMMUTATIVE_ARITH_P (x)
7097 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7100 SUBST (XEXP (x, 0), XEXP (x, 1));
7101 SUBST (XEXP (x, 1), tem);
7107 /* Given M see if it is a value that would select a field of bits
7108 within an item, but not the entire word. Return -1 if not.
7109 Otherwise, return the starting position of the field, where 0 is the
7112 *PLEN is set to the length of the field. */
7115 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7117 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7118 int pos = exact_log2 (m & -m);
7122 /* Now shift off the low-order zero bits and see if we have a
7123 power of two minus 1. */
7124 len = exact_log2 ((m >> pos) + 1);
7133 /* If X refers to a register that equals REG in value, replace these
7134 references with REG. */
7136 canon_reg_for_combine (rtx x, rtx reg)
7143 enum rtx_code code = GET_CODE (x);
7144 switch (GET_RTX_CLASS (code))
7147 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7148 if (op0 != XEXP (x, 0))
7149 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7154 case RTX_COMM_ARITH:
7155 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7156 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7157 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7158 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7162 case RTX_COMM_COMPARE:
7163 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7164 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7165 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7166 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7167 GET_MODE (op0), op0, op1);
7171 case RTX_BITFIELD_OPS:
7172 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7173 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7174 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7175 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7176 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7177 GET_MODE (op0), op0, op1, op2);
7182 if (rtx_equal_p (get_last_value (reg), x)
7183 || rtx_equal_p (reg, get_last_value (x)))
7192 fmt = GET_RTX_FORMAT (code);
7194 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7197 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7198 if (op != XEXP (x, i))
7208 else if (fmt[i] == 'E')
7211 for (j = 0; j < XVECLEN (x, i); j++)
7213 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7214 if (op != XVECEXP (x, i, j))
7221 XVECEXP (x, i, j) = op;
7232 /* Return X converted to MODE. If the value is already truncated to
7233 MODE we can just return a subreg even though in the general case we
7234 would need an explicit truncation. */
7237 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7239 if (GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (mode)
7240 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7241 GET_MODE_BITSIZE (GET_MODE (x)))
7242 || (REG_P (x) && reg_truncated_to_mode (mode, x)))
7243 return gen_lowpart (mode, x);
7245 return simplify_gen_unary (TRUNCATE, mode, x, GET_MODE (x));
7248 /* See if X can be simplified knowing that we will only refer to it in
7249 MODE and will only refer to those bits that are nonzero in MASK.
7250 If other bits are being computed or if masking operations are done
7251 that select a superset of the bits in MASK, they can sometimes be
7254 Return a possibly simplified expression, but always convert X to
7255 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7257 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7258 are all off in X. This is used when X will be complemented, by either
7259 NOT, NEG, or XOR. */
7262 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7265 enum rtx_code code = GET_CODE (x);
7266 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7267 enum machine_mode op_mode;
7268 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7271 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7272 code below will do the wrong thing since the mode of such an
7273 expression is VOIDmode.
7275 Also do nothing if X is a CLOBBER; this can happen if X was
7276 the return value from a call to gen_lowpart. */
7277 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7280 /* We want to perform the operation is its present mode unless we know
7281 that the operation is valid in MODE, in which case we do the operation
7283 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7284 && have_insn_for (code, mode))
7285 ? mode : GET_MODE (x));
7287 /* It is not valid to do a right-shift in a narrower mode
7288 than the one it came in with. */
7289 if ((code == LSHIFTRT || code == ASHIFTRT)
7290 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7291 op_mode = GET_MODE (x);
7293 /* Truncate MASK to fit OP_MODE. */
7295 mask &= GET_MODE_MASK (op_mode);
7297 /* When we have an arithmetic operation, or a shift whose count we
7298 do not know, we need to assume that all bits up to the highest-order
7299 bit in MASK will be needed. This is how we form such a mask. */
7300 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7301 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7303 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7306 /* Determine what bits of X are guaranteed to be (non)zero. */
7307 nonzero = nonzero_bits (x, mode);
7309 /* If none of the bits in X are needed, return a zero. */
7310 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
7313 /* If X is a CONST_INT, return a new one. Do this here since the
7314 test below will fail. */
7315 if (GET_CODE (x) == CONST_INT)
7317 if (SCALAR_INT_MODE_P (mode))
7318 return gen_int_mode (INTVAL (x) & mask, mode);
7321 x = GEN_INT (INTVAL (x) & mask);
7322 return gen_lowpart_common (mode, x);
7326 /* If X is narrower than MODE and we want all the bits in X's mode, just
7327 get X in the proper mode. */
7328 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7329 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7330 return gen_lowpart (mode, x);
7332 /* The arithmetic simplifications here do the wrong thing on vector modes. */
7333 if (VECTOR_MODE_P (mode) || VECTOR_MODE_P (GET_MODE (x)))
7334 return gen_lowpart (mode, x);
7339 /* If X is a (clobber (const_int)), return it since we know we are
7340 generating something that won't match. */
7347 x = expand_compound_operation (x);
7348 if (GET_CODE (x) != code)
7349 return force_to_mode (x, mode, mask, next_select);
7353 if (subreg_lowpart_p (x)
7354 /* We can ignore the effect of this SUBREG if it narrows the mode or
7355 if the constant masks to zero all the bits the mode doesn't
7357 && ((GET_MODE_SIZE (GET_MODE (x))
7358 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7360 & GET_MODE_MASK (GET_MODE (x))
7361 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7362 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
7366 /* If this is an AND with a constant, convert it into an AND
7367 whose constant is the AND of that constant with MASK. If it
7368 remains an AND of MASK, delete it since it is redundant. */
7370 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7372 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7373 mask & INTVAL (XEXP (x, 1)));
7375 /* If X is still an AND, see if it is an AND with a mask that
7376 is just some low-order bits. If so, and it is MASK, we don't
7379 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7380 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7384 /* If it remains an AND, try making another AND with the bits
7385 in the mode mask that aren't in MASK turned on. If the
7386 constant in the AND is wide enough, this might make a
7387 cheaper constant. */
7389 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7390 && GET_MODE_MASK (GET_MODE (x)) != mask
7391 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7393 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7394 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7395 int width = GET_MODE_BITSIZE (GET_MODE (x));
7398 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7399 number, sign extend it. */
7400 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7401 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7402 cval |= (HOST_WIDE_INT) -1 << width;
7404 y = simplify_gen_binary (AND, GET_MODE (x),
7405 XEXP (x, 0), GEN_INT (cval));
7406 if (rtx_cost (y, SET, optimize_this_for_speed_p)
7407 < rtx_cost (x, SET, optimize_this_for_speed_p))
7417 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7418 low-order bits (as in an alignment operation) and FOO is already
7419 aligned to that boundary, mask C1 to that boundary as well.
7420 This may eliminate that PLUS and, later, the AND. */
7423 unsigned int width = GET_MODE_BITSIZE (mode);
7424 unsigned HOST_WIDE_INT smask = mask;
7426 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7427 number, sign extend it. */
7429 if (width < HOST_BITS_PER_WIDE_INT
7430 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7431 smask |= (HOST_WIDE_INT) -1 << width;
7433 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7434 && exact_log2 (- smask) >= 0
7435 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7436 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7437 return force_to_mode (plus_constant (XEXP (x, 0),
7438 (INTVAL (XEXP (x, 1)) & smask)),
7439 mode, smask, next_select);
7442 /* ... fall through ... */
7445 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7446 most significant bit in MASK since carries from those bits will
7447 affect the bits we are interested in. */
7452 /* If X is (minus C Y) where C's least set bit is larger than any bit
7453 in the mask, then we may replace with (neg Y). */
7454 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7455 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7456 & -INTVAL (XEXP (x, 0))))
7459 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7461 return force_to_mode (x, mode, mask, next_select);
7464 /* Similarly, if C contains every bit in the fuller_mask, then we may
7465 replace with (not Y). */
7466 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7467 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7468 == INTVAL (XEXP (x, 0))))
7470 x = simplify_gen_unary (NOT, GET_MODE (x),
7471 XEXP (x, 1), GET_MODE (x));
7472 return force_to_mode (x, mode, mask, next_select);
7480 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7481 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7482 operation which may be a bitfield extraction. Ensure that the
7483 constant we form is not wider than the mode of X. */
7485 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7486 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7487 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7488 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7489 && GET_CODE (XEXP (x, 1)) == CONST_INT
7490 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7491 + floor_log2 (INTVAL (XEXP (x, 1))))
7492 < GET_MODE_BITSIZE (GET_MODE (x)))
7493 && (INTVAL (XEXP (x, 1))
7494 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7496 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7497 << INTVAL (XEXP (XEXP (x, 0), 1)));
7498 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7499 XEXP (XEXP (x, 0), 0), temp);
7500 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7501 XEXP (XEXP (x, 0), 1));
7502 return force_to_mode (x, mode, mask, next_select);
7506 /* For most binary operations, just propagate into the operation and
7507 change the mode if we have an operation of that mode. */
7509 op0 = gen_lowpart_or_truncate (op_mode,
7510 force_to_mode (XEXP (x, 0), mode, mask,
7512 op1 = gen_lowpart_or_truncate (op_mode,
7513 force_to_mode (XEXP (x, 1), mode, mask,
7516 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7517 x = simplify_gen_binary (code, op_mode, op0, op1);
7521 /* For left shifts, do the same, but just for the first operand.
7522 However, we cannot do anything with shifts where we cannot
7523 guarantee that the counts are smaller than the size of the mode
7524 because such a count will have a different meaning in a
7527 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7528 && INTVAL (XEXP (x, 1)) >= 0
7529 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7530 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7531 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7532 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7535 /* If the shift count is a constant and we can do arithmetic in
7536 the mode of the shift, refine which bits we need. Otherwise, use the
7537 conservative form of the mask. */
7538 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7539 && INTVAL (XEXP (x, 1)) >= 0
7540 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7541 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7542 mask >>= INTVAL (XEXP (x, 1));
7546 op0 = gen_lowpart_or_truncate (op_mode,
7547 force_to_mode (XEXP (x, 0), op_mode,
7548 mask, next_select));
7550 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7551 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7555 /* Here we can only do something if the shift count is a constant,
7556 this shift constant is valid for the host, and we can do arithmetic
7559 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7560 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7561 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7563 rtx inner = XEXP (x, 0);
7564 unsigned HOST_WIDE_INT inner_mask;
7566 /* Select the mask of the bits we need for the shift operand. */
7567 inner_mask = mask << INTVAL (XEXP (x, 1));
7569 /* We can only change the mode of the shift if we can do arithmetic
7570 in the mode of the shift and INNER_MASK is no wider than the
7571 width of X's mode. */
7572 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7573 op_mode = GET_MODE (x);
7575 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7577 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7578 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7581 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7582 shift and AND produces only copies of the sign bit (C2 is one less
7583 than a power of two), we can do this with just a shift. */
7585 if (GET_CODE (x) == LSHIFTRT
7586 && GET_CODE (XEXP (x, 1)) == CONST_INT
7587 /* The shift puts one of the sign bit copies in the least significant
7589 && ((INTVAL (XEXP (x, 1))
7590 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7591 >= GET_MODE_BITSIZE (GET_MODE (x)))
7592 && exact_log2 (mask + 1) >= 0
7593 /* Number of bits left after the shift must be more than the mask
7595 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7596 <= GET_MODE_BITSIZE (GET_MODE (x)))
7597 /* Must be more sign bit copies than the mask needs. */
7598 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7599 >= exact_log2 (mask + 1)))
7600 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7601 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7602 - exact_log2 (mask + 1)));
7607 /* If we are just looking for the sign bit, we don't need this shift at
7608 all, even if it has a variable count. */
7609 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7610 && (mask == ((unsigned HOST_WIDE_INT) 1
7611 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7612 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7614 /* If this is a shift by a constant, get a mask that contains those bits
7615 that are not copies of the sign bit. We then have two cases: If
7616 MASK only includes those bits, this can be a logical shift, which may
7617 allow simplifications. If MASK is a single-bit field not within
7618 those bits, we are requesting a copy of the sign bit and hence can
7619 shift the sign bit to the appropriate location. */
7621 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7622 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7626 /* If the considered data is wider than HOST_WIDE_INT, we can't
7627 represent a mask for all its bits in a single scalar.
7628 But we only care about the lower bits, so calculate these. */
7630 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7632 nonzero = ~(HOST_WIDE_INT) 0;
7634 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7635 is the number of bits a full-width mask would have set.
7636 We need only shift if these are fewer than nonzero can
7637 hold. If not, we must keep all bits set in nonzero. */
7639 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7640 < HOST_BITS_PER_WIDE_INT)
7641 nonzero >>= INTVAL (XEXP (x, 1))
7642 + HOST_BITS_PER_WIDE_INT
7643 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7647 nonzero = GET_MODE_MASK (GET_MODE (x));
7648 nonzero >>= INTVAL (XEXP (x, 1));
7651 if ((mask & ~nonzero) == 0)
7653 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7654 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7655 if (GET_CODE (x) != ASHIFTRT)
7656 return force_to_mode (x, mode, mask, next_select);
7659 else if ((i = exact_log2 (mask)) >= 0)
7661 x = simplify_shift_const
7662 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7663 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7665 if (GET_CODE (x) != ASHIFTRT)
7666 return force_to_mode (x, mode, mask, next_select);
7670 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7671 even if the shift count isn't a constant. */
7673 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7674 XEXP (x, 0), XEXP (x, 1));
7678 /* If this is a zero- or sign-extension operation that just affects bits
7679 we don't care about, remove it. Be sure the call above returned
7680 something that is still a shift. */
7682 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7683 && GET_CODE (XEXP (x, 1)) == CONST_INT
7684 && INTVAL (XEXP (x, 1)) >= 0
7685 && (INTVAL (XEXP (x, 1))
7686 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7687 && GET_CODE (XEXP (x, 0)) == ASHIFT
7688 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7689 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7696 /* If the shift count is constant and we can do computations
7697 in the mode of X, compute where the bits we care about are.
7698 Otherwise, we can't do anything. Don't change the mode of
7699 the shift or propagate MODE into the shift, though. */
7700 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7701 && INTVAL (XEXP (x, 1)) >= 0)
7703 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7704 GET_MODE (x), GEN_INT (mask),
7706 if (temp && GET_CODE (temp) == CONST_INT)
7708 force_to_mode (XEXP (x, 0), GET_MODE (x),
7709 INTVAL (temp), next_select));
7714 /* If we just want the low-order bit, the NEG isn't needed since it
7715 won't change the low-order bit. */
7717 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7719 /* We need any bits less significant than the most significant bit in
7720 MASK since carries from those bits will affect the bits we are
7726 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7727 same as the XOR case above. Ensure that the constant we form is not
7728 wider than the mode of X. */
7730 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7731 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7732 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7733 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7734 < GET_MODE_BITSIZE (GET_MODE (x)))
7735 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7737 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7739 temp = simplify_gen_binary (XOR, GET_MODE (x),
7740 XEXP (XEXP (x, 0), 0), temp);
7741 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7742 temp, XEXP (XEXP (x, 0), 1));
7744 return force_to_mode (x, mode, mask, next_select);
7747 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7748 use the full mask inside the NOT. */
7752 op0 = gen_lowpart_or_truncate (op_mode,
7753 force_to_mode (XEXP (x, 0), mode, mask,
7755 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7756 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7760 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7761 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7762 which is equal to STORE_FLAG_VALUE. */
7763 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7764 && GET_MODE (XEXP (x, 0)) == mode
7765 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7766 && (nonzero_bits (XEXP (x, 0), mode)
7767 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7768 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7773 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7774 written in a narrower mode. We play it safe and do not do so. */
7777 gen_lowpart_or_truncate (GET_MODE (x),
7778 force_to_mode (XEXP (x, 1), mode,
7779 mask, next_select)));
7781 gen_lowpart_or_truncate (GET_MODE (x),
7782 force_to_mode (XEXP (x, 2), mode,
7783 mask, next_select)));
7790 /* Ensure we return a value of the proper mode. */
7791 return gen_lowpart_or_truncate (mode, x);
7794 /* Return nonzero if X is an expression that has one of two values depending on
7795 whether some other value is zero or nonzero. In that case, we return the
7796 value that is being tested, *PTRUE is set to the value if the rtx being
7797 returned has a nonzero value, and *PFALSE is set to the other alternative.
7799 If we return zero, we set *PTRUE and *PFALSE to X. */
7802 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7804 enum machine_mode mode = GET_MODE (x);
7805 enum rtx_code code = GET_CODE (x);
7806 rtx cond0, cond1, true0, true1, false0, false1;
7807 unsigned HOST_WIDE_INT nz;
7809 /* If we are comparing a value against zero, we are done. */
7810 if ((code == NE || code == EQ)
7811 && XEXP (x, 1) == const0_rtx)
7813 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7814 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7818 /* If this is a unary operation whose operand has one of two values, apply
7819 our opcode to compute those values. */
7820 else if (UNARY_P (x)
7821 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7823 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7824 *pfalse = simplify_gen_unary (code, mode, false0,
7825 GET_MODE (XEXP (x, 0)));
7829 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7830 make can't possibly match and would suppress other optimizations. */
7831 else if (code == COMPARE)
7834 /* If this is a binary operation, see if either side has only one of two
7835 values. If either one does or if both do and they are conditional on
7836 the same value, compute the new true and false values. */
7837 else if (BINARY_P (x))
7839 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7840 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7842 if ((cond0 != 0 || cond1 != 0)
7843 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7845 /* If if_then_else_cond returned zero, then true/false are the
7846 same rtl. We must copy one of them to prevent invalid rtl
7849 true0 = copy_rtx (true0);
7850 else if (cond1 == 0)
7851 true1 = copy_rtx (true1);
7853 if (COMPARISON_P (x))
7855 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7857 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7862 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7863 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7866 return cond0 ? cond0 : cond1;
7869 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7870 operands is zero when the other is nonzero, and vice-versa,
7871 and STORE_FLAG_VALUE is 1 or -1. */
7873 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7874 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7876 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7878 rtx op0 = XEXP (XEXP (x, 0), 1);
7879 rtx op1 = XEXP (XEXP (x, 1), 1);
7881 cond0 = XEXP (XEXP (x, 0), 0);
7882 cond1 = XEXP (XEXP (x, 1), 0);
7884 if (COMPARISON_P (cond0)
7885 && COMPARISON_P (cond1)
7886 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7887 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7888 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7889 || ((swap_condition (GET_CODE (cond0))
7890 == reversed_comparison_code (cond1, NULL))
7891 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7892 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7893 && ! side_effects_p (x))
7895 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7896 *pfalse = simplify_gen_binary (MULT, mode,
7898 ? simplify_gen_unary (NEG, mode,
7906 /* Similarly for MULT, AND and UMIN, except that for these the result
7908 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7909 && (code == MULT || code == AND || code == UMIN)
7910 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7912 cond0 = XEXP (XEXP (x, 0), 0);
7913 cond1 = XEXP (XEXP (x, 1), 0);
7915 if (COMPARISON_P (cond0)
7916 && COMPARISON_P (cond1)
7917 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7918 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7919 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7920 || ((swap_condition (GET_CODE (cond0))
7921 == reversed_comparison_code (cond1, NULL))
7922 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7923 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7924 && ! side_effects_p (x))
7926 *ptrue = *pfalse = const0_rtx;
7932 else if (code == IF_THEN_ELSE)
7934 /* If we have IF_THEN_ELSE already, extract the condition and
7935 canonicalize it if it is NE or EQ. */
7936 cond0 = XEXP (x, 0);
7937 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7938 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7939 return XEXP (cond0, 0);
7940 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7942 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7943 return XEXP (cond0, 0);
7949 /* If X is a SUBREG, we can narrow both the true and false values
7950 if the inner expression, if there is a condition. */
7951 else if (code == SUBREG
7952 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7955 true0 = simplify_gen_subreg (mode, true0,
7956 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7957 false0 = simplify_gen_subreg (mode, false0,
7958 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7959 if (true0 && false0)
7967 /* If X is a constant, this isn't special and will cause confusions
7968 if we treat it as such. Likewise if it is equivalent to a constant. */
7969 else if (CONSTANT_P (x)
7970 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7973 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7974 will be least confusing to the rest of the compiler. */
7975 else if (mode == BImode)
7977 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7981 /* If X is known to be either 0 or -1, those are the true and
7982 false values when testing X. */
7983 else if (x == constm1_rtx || x == const0_rtx
7984 || (mode != VOIDmode
7985 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7987 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7991 /* Likewise for 0 or a single bit. */
7992 else if (SCALAR_INT_MODE_P (mode)
7993 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7994 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7996 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8000 /* Otherwise fail; show no condition with true and false values the same. */
8001 *ptrue = *pfalse = x;
8005 /* Return the value of expression X given the fact that condition COND
8006 is known to be true when applied to REG as its first operand and VAL
8007 as its second. X is known to not be shared and so can be modified in
8010 We only handle the simplest cases, and specifically those cases that
8011 arise with IF_THEN_ELSE expressions. */
8014 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8016 enum rtx_code code = GET_CODE (x);
8021 if (side_effects_p (x))
8024 /* If either operand of the condition is a floating point value,
8025 then we have to avoid collapsing an EQ comparison. */
8027 && rtx_equal_p (x, reg)
8028 && ! FLOAT_MODE_P (GET_MODE (x))
8029 && ! FLOAT_MODE_P (GET_MODE (val)))
8032 if (cond == UNEQ && rtx_equal_p (x, reg))
8035 /* If X is (abs REG) and we know something about REG's relationship
8036 with zero, we may be able to simplify this. */
8038 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8041 case GE: case GT: case EQ:
8044 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8046 GET_MODE (XEXP (x, 0)));
8051 /* The only other cases we handle are MIN, MAX, and comparisons if the
8052 operands are the same as REG and VAL. */
8054 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8056 if (rtx_equal_p (XEXP (x, 0), val))
8057 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8059 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8061 if (COMPARISON_P (x))
8063 if (comparison_dominates_p (cond, code))
8064 return const_true_rtx;
8066 code = reversed_comparison_code (x, NULL);
8068 && comparison_dominates_p (cond, code))
8073 else if (code == SMAX || code == SMIN
8074 || code == UMIN || code == UMAX)
8076 int unsignedp = (code == UMIN || code == UMAX);
8078 /* Do not reverse the condition when it is NE or EQ.
8079 This is because we cannot conclude anything about
8080 the value of 'SMAX (x, y)' when x is not equal to y,
8081 but we can when x equals y. */
8082 if ((code == SMAX || code == UMAX)
8083 && ! (cond == EQ || cond == NE))
8084 cond = reverse_condition (cond);
8089 return unsignedp ? x : XEXP (x, 1);
8091 return unsignedp ? x : XEXP (x, 0);
8093 return unsignedp ? XEXP (x, 1) : x;
8095 return unsignedp ? XEXP (x, 0) : x;
8102 else if (code == SUBREG)
8104 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8105 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8107 if (SUBREG_REG (x) != r)
8109 /* We must simplify subreg here, before we lose track of the
8110 original inner_mode. */
8111 new_rtx = simplify_subreg (GET_MODE (x), r,
8112 inner_mode, SUBREG_BYTE (x));
8116 SUBST (SUBREG_REG (x), r);
8121 /* We don't have to handle SIGN_EXTEND here, because even in the
8122 case of replacing something with a modeless CONST_INT, a
8123 CONST_INT is already (supposed to be) a valid sign extension for
8124 its narrower mode, which implies it's already properly
8125 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8126 story is different. */
8127 else if (code == ZERO_EXTEND)
8129 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8130 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8132 if (XEXP (x, 0) != r)
8134 /* We must simplify the zero_extend here, before we lose
8135 track of the original inner_mode. */
8136 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8141 SUBST (XEXP (x, 0), r);
8147 fmt = GET_RTX_FORMAT (code);
8148 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8151 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8152 else if (fmt[i] == 'E')
8153 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8154 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8161 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8162 assignment as a field assignment. */
8165 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8167 if (x == y || rtx_equal_p (x, y))
8170 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8173 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8174 Note that all SUBREGs of MEM are paradoxical; otherwise they
8175 would have been rewritten. */
8176 if (MEM_P (x) && GET_CODE (y) == SUBREG
8177 && MEM_P (SUBREG_REG (y))
8178 && rtx_equal_p (SUBREG_REG (y),
8179 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8182 if (MEM_P (y) && GET_CODE (x) == SUBREG
8183 && MEM_P (SUBREG_REG (x))
8184 && rtx_equal_p (SUBREG_REG (x),
8185 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8188 /* We used to see if get_last_value of X and Y were the same but that's
8189 not correct. In one direction, we'll cause the assignment to have
8190 the wrong destination and in the case, we'll import a register into this
8191 insn that might have already have been dead. So fail if none of the
8192 above cases are true. */
8196 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8197 Return that assignment if so.
8199 We only handle the most common cases. */
8202 make_field_assignment (rtx x)
8204 rtx dest = SET_DEST (x);
8205 rtx src = SET_SRC (x);
8210 unsigned HOST_WIDE_INT len;
8212 enum machine_mode mode;
8214 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8215 a clear of a one-bit field. We will have changed it to
8216 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8219 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8220 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
8221 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8222 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8224 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8227 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8231 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8232 && subreg_lowpart_p (XEXP (src, 0))
8233 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8234 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8235 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8236 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
8237 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8238 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8240 assign = make_extraction (VOIDmode, dest, 0,
8241 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8244 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8248 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8250 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8251 && XEXP (XEXP (src, 0), 0) == const1_rtx
8252 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8254 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8257 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8261 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8262 SRC is an AND with all bits of that field set, then we can discard
8264 if (GET_CODE (dest) == ZERO_EXTRACT
8265 && GET_CODE (XEXP (dest, 1)) == CONST_INT
8266 && GET_CODE (src) == AND
8267 && GET_CODE (XEXP (src, 1)) == CONST_INT)
8269 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8270 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8271 unsigned HOST_WIDE_INT ze_mask;
8273 if (width >= HOST_BITS_PER_WIDE_INT)
8276 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8278 /* Complete overlap. We can remove the source AND. */
8279 if ((and_mask & ze_mask) == ze_mask)
8280 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8282 /* Partial overlap. We can reduce the source AND. */
8283 if ((and_mask & ze_mask) != and_mask)
8285 mode = GET_MODE (src);
8286 src = gen_rtx_AND (mode, XEXP (src, 0),
8287 gen_int_mode (and_mask & ze_mask, mode));
8288 return gen_rtx_SET (VOIDmode, dest, src);
8292 /* The other case we handle is assignments into a constant-position
8293 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8294 a mask that has all one bits except for a group of zero bits and
8295 OTHER is known to have zeros where C1 has ones, this is such an
8296 assignment. Compute the position and length from C1. Shift OTHER
8297 to the appropriate position, force it to the required mode, and
8298 make the extraction. Check for the AND in both operands. */
8300 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8303 rhs = expand_compound_operation (XEXP (src, 0));
8304 lhs = expand_compound_operation (XEXP (src, 1));
8306 if (GET_CODE (rhs) == AND
8307 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
8308 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8309 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8310 else if (GET_CODE (lhs) == AND
8311 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
8312 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8313 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8317 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8318 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8319 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8320 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8323 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8327 /* The mode to use for the source is the mode of the assignment, or of
8328 what is inside a possible STRICT_LOW_PART. */
8329 mode = (GET_CODE (assign) == STRICT_LOW_PART
8330 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8332 /* Shift OTHER right POS places and make it the source, restricting it
8333 to the proper length and mode. */
8335 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
8339 src = force_to_mode (src, mode,
8340 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8341 ? ~(unsigned HOST_WIDE_INT) 0
8342 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8345 /* If SRC is masked by an AND that does not make a difference in
8346 the value being stored, strip it. */
8347 if (GET_CODE (assign) == ZERO_EXTRACT
8348 && GET_CODE (XEXP (assign, 1)) == CONST_INT
8349 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8350 && GET_CODE (src) == AND
8351 && GET_CODE (XEXP (src, 1)) == CONST_INT
8352 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8353 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8354 src = XEXP (src, 0);
8356 return gen_rtx_SET (VOIDmode, assign, src);
8359 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8363 apply_distributive_law (rtx x)
8365 enum rtx_code code = GET_CODE (x);
8366 enum rtx_code inner_code;
8367 rtx lhs, rhs, other;
8370 /* Distributivity is not true for floating point as it can change the
8371 value. So we don't do it unless -funsafe-math-optimizations. */
8372 if (FLOAT_MODE_P (GET_MODE (x))
8373 && ! flag_unsafe_math_optimizations)
8376 /* The outer operation can only be one of the following: */
8377 if (code != IOR && code != AND && code != XOR
8378 && code != PLUS && code != MINUS)
8384 /* If either operand is a primitive we can't do anything, so get out
8386 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8389 lhs = expand_compound_operation (lhs);
8390 rhs = expand_compound_operation (rhs);
8391 inner_code = GET_CODE (lhs);
8392 if (inner_code != GET_CODE (rhs))
8395 /* See if the inner and outer operations distribute. */
8402 /* These all distribute except over PLUS. */
8403 if (code == PLUS || code == MINUS)
8408 if (code != PLUS && code != MINUS)
8413 /* This is also a multiply, so it distributes over everything. */
8417 /* Non-paradoxical SUBREGs distributes over all operations,
8418 provided the inner modes and byte offsets are the same, this
8419 is an extraction of a low-order part, we don't convert an fp
8420 operation to int or vice versa, this is not a vector mode,
8421 and we would not be converting a single-word operation into a
8422 multi-word operation. The latter test is not required, but
8423 it prevents generating unneeded multi-word operations. Some
8424 of the previous tests are redundant given the latter test,
8425 but are retained because they are required for correctness.
8427 We produce the result slightly differently in this case. */
8429 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8430 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8431 || ! subreg_lowpart_p (lhs)
8432 || (GET_MODE_CLASS (GET_MODE (lhs))
8433 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8434 || (GET_MODE_SIZE (GET_MODE (lhs))
8435 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8436 || VECTOR_MODE_P (GET_MODE (lhs))
8437 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
8438 /* Result might need to be truncated. Don't change mode if
8439 explicit truncation is needed. */
8440 || !TRULY_NOOP_TRUNCATION
8441 (GET_MODE_BITSIZE (GET_MODE (x)),
8442 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
8445 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8446 SUBREG_REG (lhs), SUBREG_REG (rhs));
8447 return gen_lowpart (GET_MODE (x), tem);
8453 /* Set LHS and RHS to the inner operands (A and B in the example
8454 above) and set OTHER to the common operand (C in the example).
8455 There is only one way to do this unless the inner operation is
8457 if (COMMUTATIVE_ARITH_P (lhs)
8458 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8459 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8460 else if (COMMUTATIVE_ARITH_P (lhs)
8461 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8462 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8463 else if (COMMUTATIVE_ARITH_P (lhs)
8464 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8465 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8466 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8467 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8471 /* Form the new inner operation, seeing if it simplifies first. */
8472 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8474 /* There is one exception to the general way of distributing:
8475 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8476 if (code == XOR && inner_code == IOR)
8479 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8482 /* We may be able to continuing distributing the result, so call
8483 ourselves recursively on the inner operation before forming the
8484 outer operation, which we return. */
8485 return simplify_gen_binary (inner_code, GET_MODE (x),
8486 apply_distributive_law (tem), other);
8489 /* See if X is of the form (* (+ A B) C), and if so convert to
8490 (+ (* A C) (* B C)) and try to simplify.
8492 Most of the time, this results in no change. However, if some of
8493 the operands are the same or inverses of each other, simplifications
8496 For example, (and (ior A B) (not B)) can occur as the result of
8497 expanding a bit field assignment. When we apply the distributive
8498 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8499 which then simplifies to (and (A (not B))).
8501 Note that no checks happen on the validity of applying the inverse
8502 distributive law. This is pointless since we can do it in the
8503 few places where this routine is called.
8505 N is the index of the term that is decomposed (the arithmetic operation,
8506 i.e. (+ A B) in the first example above). !N is the index of the term that
8507 is distributed, i.e. of C in the first example above. */
8509 distribute_and_simplify_rtx (rtx x, int n)
8511 enum machine_mode mode;
8512 enum rtx_code outer_code, inner_code;
8513 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8515 decomposed = XEXP (x, n);
8516 if (!ARITHMETIC_P (decomposed))
8519 mode = GET_MODE (x);
8520 outer_code = GET_CODE (x);
8521 distributed = XEXP (x, !n);
8523 inner_code = GET_CODE (decomposed);
8524 inner_op0 = XEXP (decomposed, 0);
8525 inner_op1 = XEXP (decomposed, 1);
8527 /* Special case (and (xor B C) (not A)), which is equivalent to
8528 (xor (ior A B) (ior A C)) */
8529 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8531 distributed = XEXP (distributed, 0);
8537 /* Distribute the second term. */
8538 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8539 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8543 /* Distribute the first term. */
8544 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8545 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8548 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8550 if (GET_CODE (tmp) != outer_code
8551 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
8552 < rtx_cost (x, SET, optimize_this_for_speed_p))
8558 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8559 in MODE. Return an equivalent form, if different from (and VAROP
8560 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8563 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8564 unsigned HOST_WIDE_INT constop)
8566 unsigned HOST_WIDE_INT nonzero;
8567 unsigned HOST_WIDE_INT orig_constop;
8572 orig_constop = constop;
8573 if (GET_CODE (varop) == CLOBBER)
8576 /* Simplify VAROP knowing that we will be only looking at some of the
8579 Note by passing in CONSTOP, we guarantee that the bits not set in
8580 CONSTOP are not significant and will never be examined. We must
8581 ensure that is the case by explicitly masking out those bits
8582 before returning. */
8583 varop = force_to_mode (varop, mode, constop, 0);
8585 /* If VAROP is a CLOBBER, we will fail so return it. */
8586 if (GET_CODE (varop) == CLOBBER)
8589 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8590 to VAROP and return the new constant. */
8591 if (GET_CODE (varop) == CONST_INT)
8592 return gen_int_mode (INTVAL (varop) & constop, mode);
8594 /* See what bits may be nonzero in VAROP. Unlike the general case of
8595 a call to nonzero_bits, here we don't care about bits outside
8598 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8600 /* Turn off all bits in the constant that are known to already be zero.
8601 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8602 which is tested below. */
8606 /* If we don't have any bits left, return zero. */
8610 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8611 a power of two, we can replace this with an ASHIFT. */
8612 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8613 && (i = exact_log2 (constop)) >= 0)
8614 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8616 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8617 or XOR, then try to apply the distributive law. This may eliminate
8618 operations if either branch can be simplified because of the AND.
8619 It may also make some cases more complex, but those cases probably
8620 won't match a pattern either with or without this. */
8622 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8626 apply_distributive_law
8627 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8628 simplify_and_const_int (NULL_RTX,
8632 simplify_and_const_int (NULL_RTX,
8637 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8638 the AND and see if one of the operands simplifies to zero. If so, we
8639 may eliminate it. */
8641 if (GET_CODE (varop) == PLUS
8642 && exact_log2 (constop + 1) >= 0)
8646 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8647 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8648 if (o0 == const0_rtx)
8650 if (o1 == const0_rtx)
8654 /* Make a SUBREG if necessary. If we can't make it, fail. */
8655 varop = gen_lowpart (mode, varop);
8656 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8659 /* If we are only masking insignificant bits, return VAROP. */
8660 if (constop == nonzero)
8663 if (varop == orig_varop && constop == orig_constop)
8666 /* Otherwise, return an AND. */
8667 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
8671 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8674 Return an equivalent form, if different from X. Otherwise, return X. If
8675 X is zero, we are to always construct the equivalent form. */
8678 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8679 unsigned HOST_WIDE_INT constop)
8681 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8686 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
8687 gen_int_mode (constop, mode));
8688 if (GET_MODE (x) != mode)
8689 x = gen_lowpart (mode, x);
8693 /* Given a REG, X, compute which bits in X can be nonzero.
8694 We don't care about bits outside of those defined in MODE.
8696 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8697 a shift, AND, or zero_extract, we can do better. */
8700 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
8701 const_rtx known_x ATTRIBUTE_UNUSED,
8702 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8703 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8704 unsigned HOST_WIDE_INT *nonzero)
8709 /* If X is a register whose nonzero bits value is current, use it.
8710 Otherwise, if X is a register whose value we can find, use that
8711 value. Otherwise, use the previously-computed global nonzero bits
8712 for this register. */
8714 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8715 if (rsp->last_set_value != 0
8716 && (rsp->last_set_mode == mode
8717 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
8718 && GET_MODE_CLASS (mode) == MODE_INT))
8719 && ((rsp->last_set_label >= label_tick_ebb_start
8720 && rsp->last_set_label < label_tick)
8721 || (rsp->last_set_label == label_tick
8722 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8723 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8724 && REG_N_SETS (REGNO (x)) == 1
8726 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8728 *nonzero &= rsp->last_set_nonzero_bits;
8732 tem = get_last_value (x);
8736 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8737 /* If X is narrower than MODE and TEM is a non-negative
8738 constant that would appear negative in the mode of X,
8739 sign-extend it for use in reg_nonzero_bits because some
8740 machines (maybe most) will actually do the sign-extension
8741 and this is the conservative approach.
8743 ??? For 2.5, try to tighten up the MD files in this regard
8744 instead of this kludge. */
8746 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8747 && GET_CODE (tem) == CONST_INT
8749 && 0 != (INTVAL (tem)
8750 & ((HOST_WIDE_INT) 1
8751 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8752 tem = GEN_INT (INTVAL (tem)
8753 | ((HOST_WIDE_INT) (-1)
8754 << GET_MODE_BITSIZE (GET_MODE (x))));
8758 else if (nonzero_sign_valid && rsp->nonzero_bits)
8760 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
8762 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8763 /* We don't know anything about the upper bits. */
8764 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8771 /* Return the number of bits at the high-order end of X that are known to
8772 be equal to the sign bit. X will be used in mode MODE; if MODE is
8773 VOIDmode, X will be used in its own mode. The returned value will always
8774 be between 1 and the number of bits in MODE. */
8777 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
8778 const_rtx known_x ATTRIBUTE_UNUSED,
8779 enum machine_mode known_mode
8781 unsigned int known_ret ATTRIBUTE_UNUSED,
8782 unsigned int *result)
8787 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8788 if (rsp->last_set_value != 0
8789 && rsp->last_set_mode == mode
8790 && ((rsp->last_set_label >= label_tick_ebb_start
8791 && rsp->last_set_label < label_tick)
8792 || (rsp->last_set_label == label_tick
8793 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8794 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8795 && REG_N_SETS (REGNO (x)) == 1
8797 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8799 *result = rsp->last_set_sign_bit_copies;
8803 tem = get_last_value (x);
8807 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
8808 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8809 *result = rsp->sign_bit_copies;
8814 /* Return the number of "extended" bits there are in X, when interpreted
8815 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8816 unsigned quantities, this is the number of high-order zero bits.
8817 For signed quantities, this is the number of copies of the sign bit
8818 minus 1. In both case, this function returns the number of "spare"
8819 bits. For example, if two quantities for which this function returns
8820 at least 1 are added, the addition is known not to overflow.
8822 This function will always return 0 unless called during combine, which
8823 implies that it must be called from a define_split. */
8826 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
8828 if (nonzero_sign_valid == 0)
8832 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8833 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8834 - floor_log2 (nonzero_bits (x, mode)))
8836 : num_sign_bit_copies (x, mode) - 1);
8839 /* This function is called from `simplify_shift_const' to merge two
8840 outer operations. Specifically, we have already found that we need
8841 to perform operation *POP0 with constant *PCONST0 at the outermost
8842 position. We would now like to also perform OP1 with constant CONST1
8843 (with *POP0 being done last).
8845 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8846 the resulting operation. *PCOMP_P is set to 1 if we would need to
8847 complement the innermost operand, otherwise it is unchanged.
8849 MODE is the mode in which the operation will be done. No bits outside
8850 the width of this mode matter. It is assumed that the width of this mode
8851 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8853 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8854 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8855 result is simply *PCONST0.
8857 If the resulting operation cannot be expressed as one operation, we
8858 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8861 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8863 enum rtx_code op0 = *pop0;
8864 HOST_WIDE_INT const0 = *pconst0;
8866 const0 &= GET_MODE_MASK (mode);
8867 const1 &= GET_MODE_MASK (mode);
8869 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8873 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8876 if (op1 == UNKNOWN || op0 == SET)
8879 else if (op0 == UNKNOWN)
8880 op0 = op1, const0 = const1;
8882 else if (op0 == op1)
8906 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8907 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8910 /* If the two constants aren't the same, we can't do anything. The
8911 remaining six cases can all be done. */
8912 else if (const0 != const1)
8920 /* (a & b) | b == b */
8922 else /* op1 == XOR */
8923 /* (a ^ b) | b == a | b */
8929 /* (a & b) ^ b == (~a) & b */
8930 op0 = AND, *pcomp_p = 1;
8931 else /* op1 == IOR */
8932 /* (a | b) ^ b == a & ~b */
8933 op0 = AND, const0 = ~const0;
8938 /* (a | b) & b == b */
8940 else /* op1 == XOR */
8941 /* (a ^ b) & b) == (~a) & b */
8948 /* Check for NO-OP cases. */
8949 const0 &= GET_MODE_MASK (mode);
8951 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8953 else if (const0 == 0 && op0 == AND)
8955 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8961 /* ??? Slightly redundant with the above mask, but not entirely.
8962 Moving this above means we'd have to sign-extend the mode mask
8963 for the final test. */
8964 if (op0 != UNKNOWN && op0 != NEG)
8965 *pconst0 = trunc_int_for_mode (const0, mode);
8970 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8971 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
8972 simplify it. Otherwise, return a simplified value.
8974 The shift is normally computed in the widest mode we find in VAROP, as
8975 long as it isn't a different number of words than RESULT_MODE. Exceptions
8976 are ASHIFTRT and ROTATE, which are always done in their original mode. */
8979 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
8980 rtx varop, int orig_count)
8982 enum rtx_code orig_code = code;
8983 rtx orig_varop = varop;
8985 enum machine_mode mode = result_mode;
8986 enum machine_mode shift_mode, tmode;
8987 unsigned int mode_words
8988 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8989 /* We form (outer_op (code varop count) (outer_const)). */
8990 enum rtx_code outer_op = UNKNOWN;
8991 HOST_WIDE_INT outer_const = 0;
8992 int complement_p = 0;
8995 /* Make sure and truncate the "natural" shift on the way in. We don't
8996 want to do this inside the loop as it makes it more difficult to
8998 if (SHIFT_COUNT_TRUNCATED)
8999 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9001 /* If we were given an invalid count, don't do anything except exactly
9002 what was requested. */
9004 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9009 /* Unless one of the branches of the `if' in this loop does a `continue',
9010 we will `break' the loop after the `if'. */
9014 /* If we have an operand of (clobber (const_int 0)), fail. */
9015 if (GET_CODE (varop) == CLOBBER)
9018 /* Convert ROTATERT to ROTATE. */
9019 if (code == ROTATERT)
9021 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9023 if (VECTOR_MODE_P (result_mode))
9024 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9026 count = bitsize - count;
9029 /* We need to determine what mode we will do the shift in. If the
9030 shift is a right shift or a ROTATE, we must always do it in the mode
9031 it was originally done in. Otherwise, we can do it in MODE, the
9032 widest mode encountered. */
9034 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9035 ? result_mode : mode);
9037 /* Handle cases where the count is greater than the size of the mode
9038 minus 1. For ASHIFT, use the size minus one as the count (this can
9039 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9040 take the count modulo the size. For other shifts, the result is
9043 Since these shifts are being produced by the compiler by combining
9044 multiple operations, each of which are defined, we know what the
9045 result is supposed to be. */
9047 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9049 if (code == ASHIFTRT)
9050 count = GET_MODE_BITSIZE (shift_mode) - 1;
9051 else if (code == ROTATE || code == ROTATERT)
9052 count %= GET_MODE_BITSIZE (shift_mode);
9055 /* We can't simply return zero because there may be an
9063 /* If we discovered we had to complement VAROP, leave. Making a NOT
9064 here would cause an infinite loop. */
9068 /* An arithmetic right shift of a quantity known to be -1 or 0
9070 if (code == ASHIFTRT
9071 && (num_sign_bit_copies (varop, shift_mode)
9072 == GET_MODE_BITSIZE (shift_mode)))
9078 /* If we are doing an arithmetic right shift and discarding all but
9079 the sign bit copies, this is equivalent to doing a shift by the
9080 bitsize minus one. Convert it into that shift because it will often
9081 allow other simplifications. */
9083 if (code == ASHIFTRT
9084 && (count + num_sign_bit_copies (varop, shift_mode)
9085 >= GET_MODE_BITSIZE (shift_mode)))
9086 count = GET_MODE_BITSIZE (shift_mode) - 1;
9088 /* We simplify the tests below and elsewhere by converting
9089 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9090 `make_compound_operation' will convert it to an ASHIFTRT for
9091 those machines (such as VAX) that don't have an LSHIFTRT. */
9092 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9094 && ((nonzero_bits (varop, shift_mode)
9095 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9099 if (((code == LSHIFTRT
9100 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9101 && !(nonzero_bits (varop, shift_mode) >> count))
9103 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9104 && !((nonzero_bits (varop, shift_mode) << count)
9105 & GET_MODE_MASK (shift_mode))))
9106 && !side_effects_p (varop))
9109 switch (GET_CODE (varop))
9115 new_rtx = expand_compound_operation (varop);
9116 if (new_rtx != varop)
9124 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9125 minus the width of a smaller mode, we can do this with a
9126 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9127 if ((code == ASHIFTRT || code == LSHIFTRT)
9128 && ! mode_dependent_address_p (XEXP (varop, 0))
9129 && ! MEM_VOLATILE_P (varop)
9130 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9131 MODE_INT, 1)) != BLKmode)
9133 new_rtx = adjust_address_nv (varop, tmode,
9134 BYTES_BIG_ENDIAN ? 0
9135 : count / BITS_PER_UNIT);
9137 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9138 : ZERO_EXTEND, mode, new_rtx);
9145 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9146 the same number of words as what we've seen so far. Then store
9147 the widest mode in MODE. */
9148 if (subreg_lowpart_p (varop)
9149 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9150 > GET_MODE_SIZE (GET_MODE (varop)))
9151 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9152 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9155 varop = SUBREG_REG (varop);
9156 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9157 mode = GET_MODE (varop);
9163 /* Some machines use MULT instead of ASHIFT because MULT
9164 is cheaper. But it is still better on those machines to
9165 merge two shifts into one. */
9166 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9167 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9170 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9172 GEN_INT (exact_log2 (
9173 INTVAL (XEXP (varop, 1)))));
9179 /* Similar, for when divides are cheaper. */
9180 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9181 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9184 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9186 GEN_INT (exact_log2 (
9187 INTVAL (XEXP (varop, 1)))));
9193 /* If we are extracting just the sign bit of an arithmetic
9194 right shift, that shift is not needed. However, the sign
9195 bit of a wider mode may be different from what would be
9196 interpreted as the sign bit in a narrower mode, so, if
9197 the result is narrower, don't discard the shift. */
9198 if (code == LSHIFTRT
9199 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9200 && (GET_MODE_BITSIZE (result_mode)
9201 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9203 varop = XEXP (varop, 0);
9207 /* ... fall through ... */
9212 /* Here we have two nested shifts. The result is usually the
9213 AND of a new shift with a mask. We compute the result below. */
9214 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9215 && INTVAL (XEXP (varop, 1)) >= 0
9216 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9217 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9218 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9219 && !VECTOR_MODE_P (result_mode))
9221 enum rtx_code first_code = GET_CODE (varop);
9222 unsigned int first_count = INTVAL (XEXP (varop, 1));
9223 unsigned HOST_WIDE_INT mask;
9226 /* We have one common special case. We can't do any merging if
9227 the inner code is an ASHIFTRT of a smaller mode. However, if
9228 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9229 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9230 we can convert it to
9231 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9232 This simplifies certain SIGN_EXTEND operations. */
9233 if (code == ASHIFT && first_code == ASHIFTRT
9234 && count == (GET_MODE_BITSIZE (result_mode)
9235 - GET_MODE_BITSIZE (GET_MODE (varop))))
9237 /* C3 has the low-order C1 bits zero. */
9239 mask = (GET_MODE_MASK (mode)
9240 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9242 varop = simplify_and_const_int (NULL_RTX, result_mode,
9243 XEXP (varop, 0), mask);
9244 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9246 count = first_count;
9251 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9252 than C1 high-order bits equal to the sign bit, we can convert
9253 this to either an ASHIFT or an ASHIFTRT depending on the
9256 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9258 if (code == ASHIFTRT && first_code == ASHIFT
9259 && GET_MODE (varop) == shift_mode
9260 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9263 varop = XEXP (varop, 0);
9264 count -= first_count;
9274 /* There are some cases we can't do. If CODE is ASHIFTRT,
9275 we can only do this if FIRST_CODE is also ASHIFTRT.
9277 We can't do the case when CODE is ROTATE and FIRST_CODE is
9280 If the mode of this shift is not the mode of the outer shift,
9281 we can't do this if either shift is a right shift or ROTATE.
9283 Finally, we can't do any of these if the mode is too wide
9284 unless the codes are the same.
9286 Handle the case where the shift codes are the same
9289 if (code == first_code)
9291 if (GET_MODE (varop) != result_mode
9292 && (code == ASHIFTRT || code == LSHIFTRT
9296 count += first_count;
9297 varop = XEXP (varop, 0);
9301 if (code == ASHIFTRT
9302 || (code == ROTATE && first_code == ASHIFTRT)
9303 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9304 || (GET_MODE (varop) != result_mode
9305 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9306 || first_code == ROTATE
9307 || code == ROTATE)))
9310 /* To compute the mask to apply after the shift, shift the
9311 nonzero bits of the inner shift the same way the
9312 outer shift will. */
9314 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9317 = simplify_const_binary_operation (code, result_mode, mask_rtx,
9320 /* Give up if we can't compute an outer operation to use. */
9322 || GET_CODE (mask_rtx) != CONST_INT
9323 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9325 result_mode, &complement_p))
9328 /* If the shifts are in the same direction, we add the
9329 counts. Otherwise, we subtract them. */
9330 if ((code == ASHIFTRT || code == LSHIFTRT)
9331 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9332 count += first_count;
9334 count -= first_count;
9336 /* If COUNT is positive, the new shift is usually CODE,
9337 except for the two exceptions below, in which case it is
9338 FIRST_CODE. If the count is negative, FIRST_CODE should
9341 && ((first_code == ROTATE && code == ASHIFT)
9342 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9345 code = first_code, count = -count;
9347 varop = XEXP (varop, 0);
9351 /* If we have (A << B << C) for any shift, we can convert this to
9352 (A << C << B). This wins if A is a constant. Only try this if
9353 B is not a constant. */
9355 else if (GET_CODE (varop) == code
9356 && GET_CODE (XEXP (varop, 0)) == CONST_INT
9357 && GET_CODE (XEXP (varop, 1)) != CONST_INT)
9359 rtx new_rtx = simplify_const_binary_operation (code, mode,
9362 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
9369 if (VECTOR_MODE_P (mode))
9372 /* Make this fit the case below. */
9373 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9374 GEN_INT (GET_MODE_MASK (mode)));
9380 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9381 with C the size of VAROP - 1 and the shift is logical if
9382 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9383 we have an (le X 0) operation. If we have an arithmetic shift
9384 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9385 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9387 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9388 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9389 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9390 && (code == LSHIFTRT || code == ASHIFTRT)
9391 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9392 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9395 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9398 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9399 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9404 /* If we have (shift (logical)), move the logical to the outside
9405 to allow it to possibly combine with another logical and the
9406 shift to combine with another shift. This also canonicalizes to
9407 what a ZERO_EXTRACT looks like. Also, some machines have
9408 (and (shift)) insns. */
9410 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9411 /* We can't do this if we have (ashiftrt (xor)) and the
9412 constant has its sign bit set in shift_mode. */
9413 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9414 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9416 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9418 GEN_INT (count))) != 0
9419 && GET_CODE (new_rtx) == CONST_INT
9420 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9421 INTVAL (new_rtx), result_mode, &complement_p))
9423 varop = XEXP (varop, 0);
9427 /* If we can't do that, try to simplify the shift in each arm of the
9428 logical expression, make a new logical expression, and apply
9429 the inverse distributive law. This also can't be done
9430 for some (ashiftrt (xor)). */
9431 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9432 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9433 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9436 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9437 XEXP (varop, 0), count);
9438 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9439 XEXP (varop, 1), count);
9441 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9443 varop = apply_distributive_law (varop);
9451 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9452 says that the sign bit can be tested, FOO has mode MODE, C is
9453 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9454 that may be nonzero. */
9455 if (code == LSHIFTRT
9456 && XEXP (varop, 1) == const0_rtx
9457 && GET_MODE (XEXP (varop, 0)) == result_mode
9458 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9459 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9460 && STORE_FLAG_VALUE == -1
9461 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9462 && merge_outer_ops (&outer_op, &outer_const, XOR,
9463 (HOST_WIDE_INT) 1, result_mode,
9466 varop = XEXP (varop, 0);
9473 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9474 than the number of bits in the mode is equivalent to A. */
9475 if (code == LSHIFTRT
9476 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9477 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9479 varop = XEXP (varop, 0);
9484 /* NEG commutes with ASHIFT since it is multiplication. Move the
9485 NEG outside to allow shifts to combine. */
9487 && merge_outer_ops (&outer_op, &outer_const, NEG,
9488 (HOST_WIDE_INT) 0, result_mode,
9491 varop = XEXP (varop, 0);
9497 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9498 is one less than the number of bits in the mode is
9499 equivalent to (xor A 1). */
9500 if (code == LSHIFTRT
9501 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9502 && XEXP (varop, 1) == constm1_rtx
9503 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9504 && merge_outer_ops (&outer_op, &outer_const, XOR,
9505 (HOST_WIDE_INT) 1, result_mode,
9509 varop = XEXP (varop, 0);
9513 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9514 that might be nonzero in BAR are those being shifted out and those
9515 bits are known zero in FOO, we can replace the PLUS with FOO.
9516 Similarly in the other operand order. This code occurs when
9517 we are computing the size of a variable-size array. */
9519 if ((code == ASHIFTRT || code == LSHIFTRT)
9520 && count < HOST_BITS_PER_WIDE_INT
9521 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9522 && (nonzero_bits (XEXP (varop, 1), result_mode)
9523 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9525 varop = XEXP (varop, 0);
9528 else if ((code == ASHIFTRT || code == LSHIFTRT)
9529 && count < HOST_BITS_PER_WIDE_INT
9530 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9531 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9533 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9534 & nonzero_bits (XEXP (varop, 1),
9537 varop = XEXP (varop, 1);
9541 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9543 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9544 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
9546 GEN_INT (count))) != 0
9547 && GET_CODE (new_rtx) == CONST_INT
9548 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9549 INTVAL (new_rtx), result_mode, &complement_p))
9551 varop = XEXP (varop, 0);
9555 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9556 signbit', and attempt to change the PLUS to an XOR and move it to
9557 the outer operation as is done above in the AND/IOR/XOR case
9558 leg for shift(logical). See details in logical handling above
9559 for reasoning in doing so. */
9560 if (code == LSHIFTRT
9561 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9562 && mode_signbit_p (result_mode, XEXP (varop, 1))
9563 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9565 GEN_INT (count))) != 0
9566 && GET_CODE (new_rtx) == CONST_INT
9567 && merge_outer_ops (&outer_op, &outer_const, XOR,
9568 INTVAL (new_rtx), result_mode, &complement_p))
9570 varop = XEXP (varop, 0);
9577 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9578 with C the size of VAROP - 1 and the shift is logical if
9579 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9580 we have a (gt X 0) operation. If the shift is arithmetic with
9581 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9582 we have a (neg (gt X 0)) operation. */
9584 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9585 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9586 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9587 && (code == LSHIFTRT || code == ASHIFTRT)
9588 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9589 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9590 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9593 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9596 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9597 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9604 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9605 if the truncate does not affect the value. */
9606 if (code == LSHIFTRT
9607 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9608 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9609 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9610 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9611 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9613 rtx varop_inner = XEXP (varop, 0);
9616 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9617 XEXP (varop_inner, 0),
9619 (count + INTVAL (XEXP (varop_inner, 1))));
9620 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9633 /* We need to determine what mode to do the shift in. If the shift is
9634 a right shift or ROTATE, we must always do it in the mode it was
9635 originally done in. Otherwise, we can do it in MODE, the widest mode
9636 encountered. The code we care about is that of the shift that will
9637 actually be done, not the shift that was originally requested. */
9639 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9640 ? result_mode : mode);
9642 /* We have now finished analyzing the shift. The result should be
9643 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9644 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9645 to the result of the shift. OUTER_CONST is the relevant constant,
9646 but we must turn off all bits turned off in the shift. */
9648 if (outer_op == UNKNOWN
9649 && orig_code == code && orig_count == count
9650 && varop == orig_varop
9651 && shift_mode == GET_MODE (varop))
9654 /* Make a SUBREG if necessary. If we can't make it, fail. */
9655 varop = gen_lowpart (shift_mode, varop);
9656 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9659 /* If we have an outer operation and we just made a shift, it is
9660 possible that we could have simplified the shift were it not
9661 for the outer operation. So try to do the simplification
9664 if (outer_op != UNKNOWN)
9665 x = simplify_shift_const_1 (code, shift_mode, varop, count);
9670 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
9672 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9673 turn off all the bits that the shift would have turned off. */
9674 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9675 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9676 GET_MODE_MASK (result_mode) >> orig_count);
9678 /* Do the remainder of the processing in RESULT_MODE. */
9679 x = gen_lowpart_or_truncate (result_mode, x);
9681 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9684 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9686 if (outer_op != UNKNOWN)
9688 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
9689 && GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9690 outer_const = trunc_int_for_mode (outer_const, result_mode);
9692 if (outer_op == AND)
9693 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9694 else if (outer_op == SET)
9696 /* This means that we have determined that the result is
9697 equivalent to a constant. This should be rare. */
9698 if (!side_effects_p (x))
9699 x = GEN_INT (outer_const);
9701 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9702 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9704 x = simplify_gen_binary (outer_op, result_mode, x,
9705 GEN_INT (outer_const));
9711 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9712 The result of the shift is RESULT_MODE. If we cannot simplify it,
9713 return X or, if it is NULL, synthesize the expression with
9714 simplify_gen_binary. Otherwise, return a simplified value.
9716 The shift is normally computed in the widest mode we find in VAROP, as
9717 long as it isn't a different number of words than RESULT_MODE. Exceptions
9718 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9721 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
9722 rtx varop, int count)
9724 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
9729 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
9730 if (GET_MODE (x) != result_mode)
9731 x = gen_lowpart (result_mode, x);
9736 /* Like recog, but we receive the address of a pointer to a new pattern.
9737 We try to match the rtx that the pointer points to.
9738 If that fails, we may try to modify or replace the pattern,
9739 storing the replacement into the same pointer object.
9741 Modifications include deletion or addition of CLOBBERs.
9743 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9744 the CLOBBERs are placed.
9746 The value is the final insn code from the pattern ultimately matched,
9750 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9753 int insn_code_number;
9754 int num_clobbers_to_add = 0;
9757 rtx old_notes, old_pat;
9759 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9760 we use to indicate that something didn't match. If we find such a
9761 thing, force rejection. */
9762 if (GET_CODE (pat) == PARALLEL)
9763 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9764 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9765 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9768 old_pat = PATTERN (insn);
9769 old_notes = REG_NOTES (insn);
9770 PATTERN (insn) = pat;
9771 REG_NOTES (insn) = 0;
9773 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9774 if (dump_file && (dump_flags & TDF_DETAILS))
9776 if (insn_code_number < 0)
9777 fputs ("Failed to match this instruction:\n", dump_file);
9779 fputs ("Successfully matched this instruction:\n", dump_file);
9780 print_rtl_single (dump_file, pat);
9783 /* If it isn't, there is the possibility that we previously had an insn
9784 that clobbered some register as a side effect, but the combined
9785 insn doesn't need to do that. So try once more without the clobbers
9786 unless this represents an ASM insn. */
9788 if (insn_code_number < 0 && ! check_asm_operands (pat)
9789 && GET_CODE (pat) == PARALLEL)
9793 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9794 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9797 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9801 SUBST_INT (XVECLEN (pat, 0), pos);
9804 pat = XVECEXP (pat, 0, 0);
9806 PATTERN (insn) = pat;
9807 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9808 if (dump_file && (dump_flags & TDF_DETAILS))
9810 if (insn_code_number < 0)
9811 fputs ("Failed to match this instruction:\n", dump_file);
9813 fputs ("Successfully matched this instruction:\n", dump_file);
9814 print_rtl_single (dump_file, pat);
9817 PATTERN (insn) = old_pat;
9818 REG_NOTES (insn) = old_notes;
9820 /* Recognize all noop sets, these will be killed by followup pass. */
9821 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9822 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9824 /* If we had any clobbers to add, make a new pattern than contains
9825 them. Then check to make sure that all of them are dead. */
9826 if (num_clobbers_to_add)
9828 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9829 rtvec_alloc (GET_CODE (pat) == PARALLEL
9831 + num_clobbers_to_add)
9832 : num_clobbers_to_add + 1));
9834 if (GET_CODE (pat) == PARALLEL)
9835 for (i = 0; i < XVECLEN (pat, 0); i++)
9836 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9838 XVECEXP (newpat, 0, 0) = pat;
9840 add_clobbers (newpat, insn_code_number);
9842 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9843 i < XVECLEN (newpat, 0); i++)
9845 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9846 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9848 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
9850 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
9851 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9852 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9861 return insn_code_number;
9864 /* Like gen_lowpart_general but for use by combine. In combine it
9865 is not possible to create any new pseudoregs. However, it is
9866 safe to create invalid memory addresses, because combine will
9867 try to recognize them and all they will do is make the combine
9870 If for some reason this cannot do its job, an rtx
9871 (clobber (const_int 0)) is returned.
9872 An insn containing that will not be recognized. */
9875 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9877 enum machine_mode imode = GET_MODE (x);
9878 unsigned int osize = GET_MODE_SIZE (omode);
9879 unsigned int isize = GET_MODE_SIZE (imode);
9885 /* Return identity if this is a CONST or symbolic reference. */
9887 && (GET_CODE (x) == CONST
9888 || GET_CODE (x) == SYMBOL_REF
9889 || GET_CODE (x) == LABEL_REF))
9892 /* We can only support MODE being wider than a word if X is a
9893 constant integer or has a mode the same size. */
9894 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9895 && ! ((imode == VOIDmode
9896 && (GET_CODE (x) == CONST_INT
9897 || GET_CODE (x) == CONST_DOUBLE))
9901 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9902 won't know what to do. So we will strip off the SUBREG here and
9903 process normally. */
9904 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9908 /* For use in case we fall down into the address adjustments
9909 further below, we need to adjust the known mode and size of
9910 x; imode and isize, since we just adjusted x. */
9911 imode = GET_MODE (x);
9916 isize = GET_MODE_SIZE (imode);
9919 result = gen_lowpart_common (omode, x);
9928 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9930 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9933 /* If we want to refer to something bigger than the original memref,
9934 generate a paradoxical subreg instead. That will force a reload
9935 of the original memref X. */
9937 return gen_rtx_SUBREG (omode, x, 0);
9939 if (WORDS_BIG_ENDIAN)
9940 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9942 /* Adjust the address so that the address-after-the-data is
9944 if (BYTES_BIG_ENDIAN)
9945 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9947 return adjust_address_nv (x, omode, offset);
9950 /* If X is a comparison operator, rewrite it in a new mode. This
9951 probably won't match, but may allow further simplifications. */
9952 else if (COMPARISON_P (x))
9953 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9955 /* If we couldn't simplify X any other way, just enclose it in a
9956 SUBREG. Normally, this SUBREG won't match, but some patterns may
9957 include an explicit SUBREG or we may simplify it further in combine. */
9963 offset = subreg_lowpart_offset (omode, imode);
9964 if (imode == VOIDmode)
9966 imode = int_mode_for_mode (omode);
9967 x = gen_lowpart_common (imode, x);
9971 res = simplify_gen_subreg (omode, x, imode, offset);
9977 return gen_rtx_CLOBBER (omode, const0_rtx);
9980 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9981 comparison code that will be tested.
9983 The result is a possibly different comparison code to use. *POP0 and
9984 *POP1 may be updated.
9986 It is possible that we might detect that a comparison is either always
9987 true or always false. However, we do not perform general constant
9988 folding in combine, so this knowledge isn't useful. Such tautologies
9989 should have been detected earlier. Hence we ignore all such cases. */
9991 static enum rtx_code
9992 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9998 enum machine_mode mode, tmode;
10000 /* Try a few ways of applying the same transformation to both operands. */
10003 #ifndef WORD_REGISTER_OPERATIONS
10004 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10005 so check specially. */
10006 if (code != GTU && code != GEU && code != LTU && code != LEU
10007 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10008 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10009 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10010 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10011 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10012 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10013 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10014 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10015 && XEXP (op0, 1) == XEXP (op1, 1)
10016 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10017 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10018 && (INTVAL (XEXP (op0, 1))
10019 == (GET_MODE_BITSIZE (GET_MODE (op0))
10020 - (GET_MODE_BITSIZE
10021 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10023 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10024 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10028 /* If both operands are the same constant shift, see if we can ignore the
10029 shift. We can if the shift is a rotate or if the bits shifted out of
10030 this shift are known to be zero for both inputs and if the type of
10031 comparison is compatible with the shift. */
10032 if (GET_CODE (op0) == GET_CODE (op1)
10033 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10034 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10035 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10036 && (code != GT && code != LT && code != GE && code != LE))
10037 || (GET_CODE (op0) == ASHIFTRT
10038 && (code != GTU && code != LTU
10039 && code != GEU && code != LEU)))
10040 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10041 && INTVAL (XEXP (op0, 1)) >= 0
10042 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10043 && XEXP (op0, 1) == XEXP (op1, 1))
10045 enum machine_mode mode = GET_MODE (op0);
10046 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10047 int shift_count = INTVAL (XEXP (op0, 1));
10049 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10050 mask &= (mask >> shift_count) << shift_count;
10051 else if (GET_CODE (op0) == ASHIFT)
10052 mask = (mask & (mask << shift_count)) >> shift_count;
10054 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10055 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10056 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10061 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10062 SUBREGs are of the same mode, and, in both cases, the AND would
10063 be redundant if the comparison was done in the narrower mode,
10064 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10065 and the operand's possibly nonzero bits are 0xffffff01; in that case
10066 if we only care about QImode, we don't need the AND). This case
10067 occurs if the output mode of an scc insn is not SImode and
10068 STORE_FLAG_VALUE == 1 (e.g., the 386).
10070 Similarly, check for a case where the AND's are ZERO_EXTEND
10071 operations from some narrower mode even though a SUBREG is not
10074 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10075 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10076 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10078 rtx inner_op0 = XEXP (op0, 0);
10079 rtx inner_op1 = XEXP (op1, 0);
10080 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10081 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10084 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10085 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10086 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10087 && (GET_MODE (SUBREG_REG (inner_op0))
10088 == GET_MODE (SUBREG_REG (inner_op1)))
10089 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10090 <= HOST_BITS_PER_WIDE_INT)
10091 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10092 GET_MODE (SUBREG_REG (inner_op0)))))
10093 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10094 GET_MODE (SUBREG_REG (inner_op1))))))
10096 op0 = SUBREG_REG (inner_op0);
10097 op1 = SUBREG_REG (inner_op1);
10099 /* The resulting comparison is always unsigned since we masked
10100 off the original sign bit. */
10101 code = unsigned_condition (code);
10107 for (tmode = GET_CLASS_NARROWEST_MODE
10108 (GET_MODE_CLASS (GET_MODE (op0)));
10109 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10110 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10112 op0 = gen_lowpart (tmode, inner_op0);
10113 op1 = gen_lowpart (tmode, inner_op1);
10114 code = unsigned_condition (code);
10123 /* If both operands are NOT, we can strip off the outer operation
10124 and adjust the comparison code for swapped operands; similarly for
10125 NEG, except that this must be an equality comparison. */
10126 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10127 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10128 && (code == EQ || code == NE)))
10129 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10135 /* If the first operand is a constant, swap the operands and adjust the
10136 comparison code appropriately, but don't do this if the second operand
10137 is already a constant integer. */
10138 if (swap_commutative_operands_p (op0, op1))
10140 tem = op0, op0 = op1, op1 = tem;
10141 code = swap_condition (code);
10144 /* We now enter a loop during which we will try to simplify the comparison.
10145 For the most part, we only are concerned with comparisons with zero,
10146 but some things may really be comparisons with zero but not start
10147 out looking that way. */
10149 while (GET_CODE (op1) == CONST_INT)
10151 enum machine_mode mode = GET_MODE (op0);
10152 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10153 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10154 int equality_comparison_p;
10155 int sign_bit_comparison_p;
10156 int unsigned_comparison_p;
10157 HOST_WIDE_INT const_op;
10159 /* We only want to handle integral modes. This catches VOIDmode,
10160 CCmode, and the floating-point modes. An exception is that we
10161 can handle VOIDmode if OP0 is a COMPARE or a comparison
10164 if (GET_MODE_CLASS (mode) != MODE_INT
10165 && ! (mode == VOIDmode
10166 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10169 /* Get the constant we are comparing against and turn off all bits
10170 not on in our mode. */
10171 const_op = INTVAL (op1);
10172 if (mode != VOIDmode)
10173 const_op = trunc_int_for_mode (const_op, mode);
10174 op1 = GEN_INT (const_op);
10176 /* If we are comparing against a constant power of two and the value
10177 being compared can only have that single bit nonzero (e.g., it was
10178 `and'ed with that bit), we can replace this with a comparison
10181 && (code == EQ || code == NE || code == GE || code == GEU
10182 || code == LT || code == LTU)
10183 && mode_width <= HOST_BITS_PER_WIDE_INT
10184 && exact_log2 (const_op) >= 0
10185 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10187 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10188 op1 = const0_rtx, const_op = 0;
10191 /* Similarly, if we are comparing a value known to be either -1 or
10192 0 with -1, change it to the opposite comparison against zero. */
10195 && (code == EQ || code == NE || code == GT || code == LE
10196 || code == GEU || code == LTU)
10197 && num_sign_bit_copies (op0, mode) == mode_width)
10199 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10200 op1 = const0_rtx, const_op = 0;
10203 /* Do some canonicalizations based on the comparison code. We prefer
10204 comparisons against zero and then prefer equality comparisons.
10205 If we can reduce the size of a constant, we will do that too. */
10210 /* < C is equivalent to <= (C - 1) */
10214 op1 = GEN_INT (const_op);
10216 /* ... fall through to LE case below. */
10222 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10226 op1 = GEN_INT (const_op);
10230 /* If we are doing a <= 0 comparison on a value known to have
10231 a zero sign bit, we can replace this with == 0. */
10232 else if (const_op == 0
10233 && mode_width <= HOST_BITS_PER_WIDE_INT
10234 && (nonzero_bits (op0, mode)
10235 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10240 /* >= C is equivalent to > (C - 1). */
10244 op1 = GEN_INT (const_op);
10246 /* ... fall through to GT below. */
10252 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10256 op1 = GEN_INT (const_op);
10260 /* If we are doing a > 0 comparison on a value known to have
10261 a zero sign bit, we can replace this with != 0. */
10262 else if (const_op == 0
10263 && mode_width <= HOST_BITS_PER_WIDE_INT
10264 && (nonzero_bits (op0, mode)
10265 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10270 /* < C is equivalent to <= (C - 1). */
10274 op1 = GEN_INT (const_op);
10276 /* ... fall through ... */
10279 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10280 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10281 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10283 const_op = 0, op1 = const0_rtx;
10291 /* unsigned <= 0 is equivalent to == 0 */
10295 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10296 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10297 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10299 const_op = 0, op1 = const0_rtx;
10305 /* >= C is equivalent to > (C - 1). */
10309 op1 = GEN_INT (const_op);
10311 /* ... fall through ... */
10314 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10315 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10316 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10318 const_op = 0, op1 = const0_rtx;
10326 /* unsigned > 0 is equivalent to != 0 */
10330 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10331 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10332 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10334 const_op = 0, op1 = const0_rtx;
10343 /* Compute some predicates to simplify code below. */
10345 equality_comparison_p = (code == EQ || code == NE);
10346 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10347 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10350 /* If this is a sign bit comparison and we can do arithmetic in
10351 MODE, say that we will only be needing the sign bit of OP0. */
10352 if (sign_bit_comparison_p
10353 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10354 op0 = force_to_mode (op0, mode,
10356 << (GET_MODE_BITSIZE (mode) - 1)),
10359 /* Now try cases based on the opcode of OP0. If none of the cases
10360 does a "continue", we exit this loop immediately after the
10363 switch (GET_CODE (op0))
10366 /* If we are extracting a single bit from a variable position in
10367 a constant that has only a single bit set and are comparing it
10368 with zero, we can convert this into an equality comparison
10369 between the position and the location of the single bit. */
10370 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10371 have already reduced the shift count modulo the word size. */
10372 if (!SHIFT_COUNT_TRUNCATED
10373 && GET_CODE (XEXP (op0, 0)) == CONST_INT
10374 && XEXP (op0, 1) == const1_rtx
10375 && equality_comparison_p && const_op == 0
10376 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10378 if (BITS_BIG_ENDIAN)
10380 enum machine_mode new_mode
10381 = mode_for_extraction (EP_extzv, 1);
10382 if (new_mode == MAX_MACHINE_MODE)
10383 i = BITS_PER_WORD - 1 - i;
10387 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10391 op0 = XEXP (op0, 2);
10395 /* Result is nonzero iff shift count is equal to I. */
10396 code = reverse_condition (code);
10400 /* ... fall through ... */
10403 tem = expand_compound_operation (op0);
10412 /* If testing for equality, we can take the NOT of the constant. */
10413 if (equality_comparison_p
10414 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10416 op0 = XEXP (op0, 0);
10421 /* If just looking at the sign bit, reverse the sense of the
10423 if (sign_bit_comparison_p)
10425 op0 = XEXP (op0, 0);
10426 code = (code == GE ? LT : GE);
10432 /* If testing for equality, we can take the NEG of the constant. */
10433 if (equality_comparison_p
10434 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10436 op0 = XEXP (op0, 0);
10441 /* The remaining cases only apply to comparisons with zero. */
10445 /* When X is ABS or is known positive,
10446 (neg X) is < 0 if and only if X != 0. */
10448 if (sign_bit_comparison_p
10449 && (GET_CODE (XEXP (op0, 0)) == ABS
10450 || (mode_width <= HOST_BITS_PER_WIDE_INT
10451 && (nonzero_bits (XEXP (op0, 0), mode)
10452 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10454 op0 = XEXP (op0, 0);
10455 code = (code == LT ? NE : EQ);
10459 /* If we have NEG of something whose two high-order bits are the
10460 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10461 if (num_sign_bit_copies (op0, mode) >= 2)
10463 op0 = XEXP (op0, 0);
10464 code = swap_condition (code);
10470 /* If we are testing equality and our count is a constant, we
10471 can perform the inverse operation on our RHS. */
10472 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10473 && (tem = simplify_binary_operation (ROTATERT, mode,
10474 op1, XEXP (op0, 1))) != 0)
10476 op0 = XEXP (op0, 0);
10481 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10482 a particular bit. Convert it to an AND of a constant of that
10483 bit. This will be converted into a ZERO_EXTRACT. */
10484 if (const_op == 0 && sign_bit_comparison_p
10485 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10486 && mode_width <= HOST_BITS_PER_WIDE_INT)
10488 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10491 - INTVAL (XEXP (op0, 1)))));
10492 code = (code == LT ? NE : EQ);
10496 /* Fall through. */
10499 /* ABS is ignorable inside an equality comparison with zero. */
10500 if (const_op == 0 && equality_comparison_p)
10502 op0 = XEXP (op0, 0);
10508 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10509 (compare FOO CONST) if CONST fits in FOO's mode and we
10510 are either testing inequality or have an unsigned
10511 comparison with ZERO_EXTEND or a signed comparison with
10512 SIGN_EXTEND. But don't do it if we don't have a compare
10513 insn of the given mode, since we'd have to revert it
10514 later on, and then we wouldn't know whether to sign- or
10516 mode = GET_MODE (XEXP (op0, 0));
10517 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10518 && ! unsigned_comparison_p
10519 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10520 && ((unsigned HOST_WIDE_INT) const_op
10521 < (((unsigned HOST_WIDE_INT) 1
10522 << (GET_MODE_BITSIZE (mode) - 1))))
10523 && optab_handler (cmp_optab, mode)->insn_code != CODE_FOR_nothing)
10525 op0 = XEXP (op0, 0);
10531 /* Check for the case where we are comparing A - C1 with C2, that is
10533 (subreg:MODE (plus (A) (-C1))) op (C2)
10535 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10536 comparison in the wider mode. One of the following two conditions
10537 must be true in order for this to be valid:
10539 1. The mode extension results in the same bit pattern being added
10540 on both sides and the comparison is equality or unsigned. As
10541 C2 has been truncated to fit in MODE, the pattern can only be
10544 2. The mode extension results in the sign bit being copied on
10547 The difficulty here is that we have predicates for A but not for
10548 (A - C1) so we need to check that C1 is within proper bounds so
10549 as to perturbate A as little as possible. */
10551 if (mode_width <= HOST_BITS_PER_WIDE_INT
10552 && subreg_lowpart_p (op0)
10553 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10554 && GET_CODE (SUBREG_REG (op0)) == PLUS
10555 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10557 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10558 rtx a = XEXP (SUBREG_REG (op0), 0);
10559 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10562 && (unsigned HOST_WIDE_INT) c1
10563 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10564 && (equality_comparison_p || unsigned_comparison_p)
10565 /* (A - C1) zero-extends if it is positive and sign-extends
10566 if it is negative, C2 both zero- and sign-extends. */
10567 && ((0 == (nonzero_bits (a, inner_mode)
10568 & ~GET_MODE_MASK (mode))
10570 /* (A - C1) sign-extends if it is positive and 1-extends
10571 if it is negative, C2 both sign- and 1-extends. */
10572 || (num_sign_bit_copies (a, inner_mode)
10573 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10576 || ((unsigned HOST_WIDE_INT) c1
10577 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10578 /* (A - C1) always sign-extends, like C2. */
10579 && num_sign_bit_copies (a, inner_mode)
10580 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10581 - (mode_width - 1))))
10583 op0 = SUBREG_REG (op0);
10588 /* If the inner mode is narrower and we are extracting the low part,
10589 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10590 if (subreg_lowpart_p (op0)
10591 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10592 /* Fall through */ ;
10596 /* ... fall through ... */
10599 mode = GET_MODE (XEXP (op0, 0));
10600 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10601 && (unsigned_comparison_p || equality_comparison_p)
10602 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10603 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10604 && optab_handler (cmp_optab, mode)->insn_code != CODE_FOR_nothing)
10606 op0 = XEXP (op0, 0);
10612 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10613 this for equality comparisons due to pathological cases involving
10615 if (equality_comparison_p
10616 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10617 op1, XEXP (op0, 1))))
10619 op0 = XEXP (op0, 0);
10624 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10625 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10626 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10628 op0 = XEXP (XEXP (op0, 0), 0);
10629 code = (code == LT ? EQ : NE);
10635 /* We used to optimize signed comparisons against zero, but that
10636 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10637 arrive here as equality comparisons, or (GEU, LTU) are
10638 optimized away. No need to special-case them. */
10640 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10641 (eq B (minus A C)), whichever simplifies. We can only do
10642 this for equality comparisons due to pathological cases involving
10644 if (equality_comparison_p
10645 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10646 XEXP (op0, 1), op1)))
10648 op0 = XEXP (op0, 0);
10653 if (equality_comparison_p
10654 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10655 XEXP (op0, 0), op1)))
10657 op0 = XEXP (op0, 1);
10662 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10663 of bits in X minus 1, is one iff X > 0. */
10664 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10665 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10666 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10668 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10670 op0 = XEXP (op0, 1);
10671 code = (code == GE ? LE : GT);
10677 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10678 if C is zero or B is a constant. */
10679 if (equality_comparison_p
10680 && 0 != (tem = simplify_binary_operation (XOR, mode,
10681 XEXP (op0, 1), op1)))
10683 op0 = XEXP (op0, 0);
10690 case UNEQ: case LTGT:
10691 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10692 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10693 case UNORDERED: case ORDERED:
10694 /* We can't do anything if OP0 is a condition code value, rather
10695 than an actual data value. */
10697 || CC0_P (XEXP (op0, 0))
10698 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10701 /* Get the two operands being compared. */
10702 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10703 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10705 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10707 /* Check for the cases where we simply want the result of the
10708 earlier test or the opposite of that result. */
10709 if (code == NE || code == EQ
10710 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10711 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10712 && (STORE_FLAG_VALUE
10713 & (((HOST_WIDE_INT) 1
10714 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10715 && (code == LT || code == GE)))
10717 enum rtx_code new_code;
10718 if (code == LT || code == NE)
10719 new_code = GET_CODE (op0);
10721 new_code = reversed_comparison_code (op0, NULL);
10723 if (new_code != UNKNOWN)
10734 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10736 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10737 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10738 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10740 op0 = XEXP (op0, 1);
10741 code = (code == GE ? GT : LE);
10747 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10748 will be converted to a ZERO_EXTRACT later. */
10749 if (const_op == 0 && equality_comparison_p
10750 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10751 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10753 op0 = simplify_and_const_int
10754 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
10756 XEXP (XEXP (op0, 0), 1)),
10757 (HOST_WIDE_INT) 1);
10761 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10762 zero and X is a comparison and C1 and C2 describe only bits set
10763 in STORE_FLAG_VALUE, we can compare with X. */
10764 if (const_op == 0 && equality_comparison_p
10765 && mode_width <= HOST_BITS_PER_WIDE_INT
10766 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10767 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10768 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10769 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10770 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10772 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10773 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10774 if ((~STORE_FLAG_VALUE & mask) == 0
10775 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10776 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10777 && COMPARISON_P (tem))))
10779 op0 = XEXP (XEXP (op0, 0), 0);
10784 /* If we are doing an equality comparison of an AND of a bit equal
10785 to the sign bit, replace this with a LT or GE comparison of
10786 the underlying value. */
10787 if (equality_comparison_p
10789 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10790 && mode_width <= HOST_BITS_PER_WIDE_INT
10791 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10792 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10794 op0 = XEXP (op0, 0);
10795 code = (code == EQ ? GE : LT);
10799 /* If this AND operation is really a ZERO_EXTEND from a narrower
10800 mode, the constant fits within that mode, and this is either an
10801 equality or unsigned comparison, try to do this comparison in
10806 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
10807 -> (ne:DI (reg:SI 4) (const_int 0))
10809 unless TRULY_NOOP_TRUNCATION allows it or the register is
10810 known to hold a value of the required mode the
10811 transformation is invalid. */
10812 if ((equality_comparison_p || unsigned_comparison_p)
10813 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10814 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10815 & GET_MODE_MASK (mode))
10817 && const_op >> i == 0
10818 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
10819 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
10820 GET_MODE_BITSIZE (GET_MODE (op0)))
10821 || (REG_P (XEXP (op0, 0))
10822 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
10824 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10828 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10829 fits in both M1 and M2 and the SUBREG is either paradoxical
10830 or represents the low part, permute the SUBREG and the AND
10832 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10834 unsigned HOST_WIDE_INT c1;
10835 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10836 /* Require an integral mode, to avoid creating something like
10838 if (SCALAR_INT_MODE_P (tmode)
10839 /* It is unsafe to commute the AND into the SUBREG if the
10840 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10841 not defined. As originally written the upper bits
10842 have a defined value due to the AND operation.
10843 However, if we commute the AND inside the SUBREG then
10844 they no longer have defined values and the meaning of
10845 the code has been changed. */
10847 #ifdef WORD_REGISTER_OPERATIONS
10848 || (mode_width > GET_MODE_BITSIZE (tmode)
10849 && mode_width <= BITS_PER_WORD)
10851 || (mode_width <= GET_MODE_BITSIZE (tmode)
10852 && subreg_lowpart_p (XEXP (op0, 0))))
10853 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10854 && mode_width <= HOST_BITS_PER_WIDE_INT
10855 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10856 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10857 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10859 && c1 != GET_MODE_MASK (tmode))
10861 op0 = simplify_gen_binary (AND, tmode,
10862 SUBREG_REG (XEXP (op0, 0)),
10863 gen_int_mode (c1, tmode));
10864 op0 = gen_lowpart (mode, op0);
10869 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10870 if (const_op == 0 && equality_comparison_p
10871 && XEXP (op0, 1) == const1_rtx
10872 && GET_CODE (XEXP (op0, 0)) == NOT)
10874 op0 = simplify_and_const_int
10875 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10876 code = (code == NE ? EQ : NE);
10880 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10881 (eq (and (lshiftrt X) 1) 0).
10882 Also handle the case where (not X) is expressed using xor. */
10883 if (const_op == 0 && equality_comparison_p
10884 && XEXP (op0, 1) == const1_rtx
10885 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10887 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10888 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10890 if (GET_CODE (shift_op) == NOT
10891 || (GET_CODE (shift_op) == XOR
10892 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10893 && GET_CODE (shift_count) == CONST_INT
10894 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10895 && (INTVAL (XEXP (shift_op, 1))
10896 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10898 op0 = simplify_and_const_int
10900 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10901 (HOST_WIDE_INT) 1);
10902 code = (code == NE ? EQ : NE);
10909 /* If we have (compare (ashift FOO N) (const_int C)) and
10910 the high order N bits of FOO (N+1 if an inequality comparison)
10911 are known to be zero, we can do this by comparing FOO with C
10912 shifted right N bits so long as the low-order N bits of C are
10914 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10915 && INTVAL (XEXP (op0, 1)) >= 0
10916 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10917 < HOST_BITS_PER_WIDE_INT)
10919 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10920 && mode_width <= HOST_BITS_PER_WIDE_INT
10921 && (nonzero_bits (XEXP (op0, 0), mode)
10922 & ~(mask >> (INTVAL (XEXP (op0, 1))
10923 + ! equality_comparison_p))) == 0)
10925 /* We must perform a logical shift, not an arithmetic one,
10926 as we want the top N bits of C to be zero. */
10927 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10929 temp >>= INTVAL (XEXP (op0, 1));
10930 op1 = gen_int_mode (temp, mode);
10931 op0 = XEXP (op0, 0);
10935 /* If we are doing a sign bit comparison, it means we are testing
10936 a particular bit. Convert it to the appropriate AND. */
10937 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10938 && mode_width <= HOST_BITS_PER_WIDE_INT)
10940 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10943 - INTVAL (XEXP (op0, 1)))));
10944 code = (code == LT ? NE : EQ);
10948 /* If this an equality comparison with zero and we are shifting
10949 the low bit to the sign bit, we can convert this to an AND of the
10951 if (const_op == 0 && equality_comparison_p
10952 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10953 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10956 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10957 (HOST_WIDE_INT) 1);
10963 /* If this is an equality comparison with zero, we can do this
10964 as a logical shift, which might be much simpler. */
10965 if (equality_comparison_p && const_op == 0
10966 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10968 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10970 INTVAL (XEXP (op0, 1)));
10974 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10975 do the comparison in a narrower mode. */
10976 if (! unsigned_comparison_p
10977 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10978 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10979 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10980 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10981 MODE_INT, 1)) != BLKmode
10982 && (((unsigned HOST_WIDE_INT) const_op
10983 + (GET_MODE_MASK (tmode) >> 1) + 1)
10984 <= GET_MODE_MASK (tmode)))
10986 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10990 /* Likewise if OP0 is a PLUS of a sign extension with a
10991 constant, which is usually represented with the PLUS
10992 between the shifts. */
10993 if (! unsigned_comparison_p
10994 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10995 && GET_CODE (XEXP (op0, 0)) == PLUS
10996 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10997 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10998 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10999 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11000 MODE_INT, 1)) != BLKmode
11001 && (((unsigned HOST_WIDE_INT) const_op
11002 + (GET_MODE_MASK (tmode) >> 1) + 1)
11003 <= GET_MODE_MASK (tmode)))
11005 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11006 rtx add_const = XEXP (XEXP (op0, 0), 1);
11007 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11008 add_const, XEXP (op0, 1));
11010 op0 = simplify_gen_binary (PLUS, tmode,
11011 gen_lowpart (tmode, inner),
11016 /* ... fall through ... */
11018 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11019 the low order N bits of FOO are known to be zero, we can do this
11020 by comparing FOO with C shifted left N bits so long as no
11021 overflow occurs. */
11022 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11023 && INTVAL (XEXP (op0, 1)) >= 0
11024 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11025 && mode_width <= HOST_BITS_PER_WIDE_INT
11026 && (nonzero_bits (XEXP (op0, 0), mode)
11027 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11028 && (((unsigned HOST_WIDE_INT) const_op
11029 + (GET_CODE (op0) != LSHIFTRT
11030 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11033 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11035 /* If the shift was logical, then we must make the condition
11037 if (GET_CODE (op0) == LSHIFTRT)
11038 code = unsigned_condition (code);
11040 const_op <<= INTVAL (XEXP (op0, 1));
11041 op1 = GEN_INT (const_op);
11042 op0 = XEXP (op0, 0);
11046 /* If we are using this shift to extract just the sign bit, we
11047 can replace this with an LT or GE comparison. */
11049 && (equality_comparison_p || sign_bit_comparison_p)
11050 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11051 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11054 op0 = XEXP (op0, 0);
11055 code = (code == NE || code == GT ? LT : GE);
11067 /* Now make any compound operations involved in this comparison. Then,
11068 check for an outmost SUBREG on OP0 that is not doing anything or is
11069 paradoxical. The latter transformation must only be performed when
11070 it is known that the "extra" bits will be the same in op0 and op1 or
11071 that they don't matter. There are three cases to consider:
11073 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11074 care bits and we can assume they have any convenient value. So
11075 making the transformation is safe.
11077 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11078 In this case the upper bits of op0 are undefined. We should not make
11079 the simplification in that case as we do not know the contents of
11082 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11083 UNKNOWN. In that case we know those bits are zeros or ones. We must
11084 also be sure that they are the same as the upper bits of op1.
11086 We can never remove a SUBREG for a non-equality comparison because
11087 the sign bit is in a different place in the underlying object. */
11089 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11090 op1 = make_compound_operation (op1, SET);
11092 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11093 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11094 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11095 && (code == NE || code == EQ))
11097 if (GET_MODE_SIZE (GET_MODE (op0))
11098 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11100 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11102 if (REG_P (SUBREG_REG (op0)))
11104 op0 = SUBREG_REG (op0);
11105 op1 = gen_lowpart (GET_MODE (op0), op1);
11108 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11109 <= HOST_BITS_PER_WIDE_INT)
11110 && (nonzero_bits (SUBREG_REG (op0),
11111 GET_MODE (SUBREG_REG (op0)))
11112 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11114 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11116 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11117 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11118 op0 = SUBREG_REG (op0), op1 = tem;
11122 /* We now do the opposite procedure: Some machines don't have compare
11123 insns in all modes. If OP0's mode is an integer mode smaller than a
11124 word and we can't do a compare in that mode, see if there is a larger
11125 mode for which we can do the compare. There are a number of cases in
11126 which we can use the wider mode. */
11128 mode = GET_MODE (op0);
11129 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11130 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11131 && ! have_insn_for (COMPARE, mode))
11132 for (tmode = GET_MODE_WIDER_MODE (mode);
11134 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11135 tmode = GET_MODE_WIDER_MODE (tmode))
11136 if (have_insn_for (COMPARE, tmode))
11140 /* If the only nonzero bits in OP0 and OP1 are those in the
11141 narrower mode and this is an equality or unsigned comparison,
11142 we can use the wider mode. Similarly for sign-extended
11143 values, in which case it is true for all comparisons. */
11144 zero_extended = ((code == EQ || code == NE
11145 || code == GEU || code == GTU
11146 || code == LEU || code == LTU)
11147 && (nonzero_bits (op0, tmode)
11148 & ~GET_MODE_MASK (mode)) == 0
11149 && ((GET_CODE (op1) == CONST_INT
11150 || (nonzero_bits (op1, tmode)
11151 & ~GET_MODE_MASK (mode)) == 0)));
11154 || ((num_sign_bit_copies (op0, tmode)
11155 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11156 - GET_MODE_BITSIZE (mode)))
11157 && (num_sign_bit_copies (op1, tmode)
11158 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11159 - GET_MODE_BITSIZE (mode)))))
11161 /* If OP0 is an AND and we don't have an AND in MODE either,
11162 make a new AND in the proper mode. */
11163 if (GET_CODE (op0) == AND
11164 && !have_insn_for (AND, mode))
11165 op0 = simplify_gen_binary (AND, tmode,
11166 gen_lowpart (tmode,
11168 gen_lowpart (tmode,
11171 op0 = gen_lowpart (tmode, op0);
11172 if (zero_extended && GET_CODE (op1) == CONST_INT)
11173 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11174 op1 = gen_lowpart (tmode, op1);
11178 /* If this is a test for negative, we can make an explicit
11179 test of the sign bit. */
11181 if (op1 == const0_rtx && (code == LT || code == GE)
11182 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11184 op0 = simplify_gen_binary (AND, tmode,
11185 gen_lowpart (tmode, op0),
11186 GEN_INT ((HOST_WIDE_INT) 1
11187 << (GET_MODE_BITSIZE (mode)
11189 code = (code == LT) ? NE : EQ;
11194 #ifdef CANONICALIZE_COMPARISON
11195 /* If this machine only supports a subset of valid comparisons, see if we
11196 can convert an unsupported one into a supported one. */
11197 CANONICALIZE_COMPARISON (code, op0, op1);
11206 /* Utility function for record_value_for_reg. Count number of
11211 enum rtx_code code = GET_CODE (x);
11215 if (GET_RTX_CLASS (code) == '2'
11216 || GET_RTX_CLASS (code) == 'c')
11218 rtx x0 = XEXP (x, 0);
11219 rtx x1 = XEXP (x, 1);
11222 return 1 + 2 * count_rtxs (x0);
11224 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11225 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11226 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11227 return 2 + 2 * count_rtxs (x0)
11228 + count_rtxs (x == XEXP (x1, 0)
11229 ? XEXP (x1, 1) : XEXP (x1, 0));
11231 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11232 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11233 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11234 return 2 + 2 * count_rtxs (x1)
11235 + count_rtxs (x == XEXP (x0, 0)
11236 ? XEXP (x0, 1) : XEXP (x0, 0));
11239 fmt = GET_RTX_FORMAT (code);
11240 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11242 ret += count_rtxs (XEXP (x, i));
11243 else if (fmt[i] == 'E')
11244 for (j = 0; j < XVECLEN (x, i); j++)
11245 ret += count_rtxs (XVECEXP (x, i, j));
11250 /* Utility function for following routine. Called when X is part of a value
11251 being stored into last_set_value. Sets last_set_table_tick
11252 for each register mentioned. Similar to mention_regs in cse.c */
11255 update_table_tick (rtx x)
11257 enum rtx_code code = GET_CODE (x);
11258 const char *fmt = GET_RTX_FORMAT (code);
11263 unsigned int regno = REGNO (x);
11264 unsigned int endregno = END_REGNO (x);
11267 for (r = regno; r < endregno; r++)
11269 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
11270 rsp->last_set_table_tick = label_tick;
11276 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11279 /* Check for identical subexpressions. If x contains
11280 identical subexpression we only have to traverse one of
11282 if (i == 0 && ARITHMETIC_P (x))
11284 /* Note that at this point x1 has already been
11286 rtx x0 = XEXP (x, 0);
11287 rtx x1 = XEXP (x, 1);
11289 /* If x0 and x1 are identical then there is no need to
11294 /* If x0 is identical to a subexpression of x1 then while
11295 processing x1, x0 has already been processed. Thus we
11296 are done with x. */
11297 if (ARITHMETIC_P (x1)
11298 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11301 /* If x1 is identical to a subexpression of x0 then we
11302 still have to process the rest of x0. */
11303 if (ARITHMETIC_P (x0)
11304 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11306 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11311 update_table_tick (XEXP (x, i));
11313 else if (fmt[i] == 'E')
11314 for (j = 0; j < XVECLEN (x, i); j++)
11315 update_table_tick (XVECEXP (x, i, j));
11318 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11319 are saying that the register is clobbered and we no longer know its
11320 value. If INSN is zero, don't update reg_stat[].last_set; this is
11321 only permitted with VALUE also zero and is used to invalidate the
11325 record_value_for_reg (rtx reg, rtx insn, rtx value)
11327 unsigned int regno = REGNO (reg);
11328 unsigned int endregno = END_REGNO (reg);
11330 reg_stat_type *rsp;
11332 /* If VALUE contains REG and we have a previous value for REG, substitute
11333 the previous value. */
11334 if (value && insn && reg_overlap_mentioned_p (reg, value))
11338 /* Set things up so get_last_value is allowed to see anything set up to
11340 subst_low_luid = DF_INSN_LUID (insn);
11341 tem = get_last_value (reg);
11343 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11344 it isn't going to be useful and will take a lot of time to process,
11345 so just use the CLOBBER. */
11349 if (ARITHMETIC_P (tem)
11350 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11351 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11352 tem = XEXP (tem, 0);
11353 else if (count_occurrences (value, reg, 1) >= 2)
11355 /* If there are two or more occurrences of REG in VALUE,
11356 prevent the value from growing too much. */
11357 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11358 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11361 value = replace_rtx (copy_rtx (value), reg, tem);
11365 /* For each register modified, show we don't know its value, that
11366 we don't know about its bitwise content, that its value has been
11367 updated, and that we don't know the location of the death of the
11369 for (i = regno; i < endregno; i++)
11371 rsp = VEC_index (reg_stat_type, reg_stat, i);
11374 rsp->last_set = insn;
11376 rsp->last_set_value = 0;
11377 rsp->last_set_mode = 0;
11378 rsp->last_set_nonzero_bits = 0;
11379 rsp->last_set_sign_bit_copies = 0;
11380 rsp->last_death = 0;
11381 rsp->truncated_to_mode = 0;
11384 /* Mark registers that are being referenced in this value. */
11386 update_table_tick (value);
11388 /* Now update the status of each register being set.
11389 If someone is using this register in this block, set this register
11390 to invalid since we will get confused between the two lives in this
11391 basic block. This makes using this register always invalid. In cse, we
11392 scan the table to invalidate all entries using this register, but this
11393 is too much work for us. */
11395 for (i = regno; i < endregno; i++)
11397 rsp = VEC_index (reg_stat_type, reg_stat, i);
11398 rsp->last_set_label = label_tick;
11400 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
11401 rsp->last_set_invalid = 1;
11403 rsp->last_set_invalid = 0;
11406 /* The value being assigned might refer to X (like in "x++;"). In that
11407 case, we must replace it with (clobber (const_int 0)) to prevent
11409 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11410 if (value && ! get_last_value_validate (&value, insn,
11411 rsp->last_set_label, 0))
11413 value = copy_rtx (value);
11414 if (! get_last_value_validate (&value, insn,
11415 rsp->last_set_label, 1))
11419 /* For the main register being modified, update the value, the mode, the
11420 nonzero bits, and the number of sign bit copies. */
11422 rsp->last_set_value = value;
11426 enum machine_mode mode = GET_MODE (reg);
11427 subst_low_luid = DF_INSN_LUID (insn);
11428 rsp->last_set_mode = mode;
11429 if (GET_MODE_CLASS (mode) == MODE_INT
11430 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11431 mode = nonzero_bits_mode;
11432 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
11433 rsp->last_set_sign_bit_copies
11434 = num_sign_bit_copies (value, GET_MODE (reg));
11438 /* Called via note_stores from record_dead_and_set_regs to handle one
11439 SET or CLOBBER in an insn. DATA is the instruction in which the
11440 set is occurring. */
11443 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
11445 rtx record_dead_insn = (rtx) data;
11447 if (GET_CODE (dest) == SUBREG)
11448 dest = SUBREG_REG (dest);
11450 if (!record_dead_insn)
11453 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
11459 /* If we are setting the whole register, we know its value. Otherwise
11460 show that we don't know the value. We can handle SUBREG in
11462 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11463 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11464 else if (GET_CODE (setter) == SET
11465 && GET_CODE (SET_DEST (setter)) == SUBREG
11466 && SUBREG_REG (SET_DEST (setter)) == dest
11467 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11468 && subreg_lowpart_p (SET_DEST (setter)))
11469 record_value_for_reg (dest, record_dead_insn,
11470 gen_lowpart (GET_MODE (dest),
11471 SET_SRC (setter)));
11473 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11475 else if (MEM_P (dest)
11476 /* Ignore pushes, they clobber nothing. */
11477 && ! push_operand (dest, GET_MODE (dest)))
11478 mem_last_set = DF_INSN_LUID (record_dead_insn);
11481 /* Update the records of when each REG was most recently set or killed
11482 for the things done by INSN. This is the last thing done in processing
11483 INSN in the combiner loop.
11485 We update reg_stat[], in particular fields last_set, last_set_value,
11486 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11487 last_death, and also the similar information mem_last_set (which insn
11488 most recently modified memory) and last_call_luid (which insn was the
11489 most recent subroutine call). */
11492 record_dead_and_set_regs (rtx insn)
11497 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11499 if (REG_NOTE_KIND (link) == REG_DEAD
11500 && REG_P (XEXP (link, 0)))
11502 unsigned int regno = REGNO (XEXP (link, 0));
11503 unsigned int endregno = END_REGNO (XEXP (link, 0));
11505 for (i = regno; i < endregno; i++)
11507 reg_stat_type *rsp;
11509 rsp = VEC_index (reg_stat_type, reg_stat, i);
11510 rsp->last_death = insn;
11513 else if (REG_NOTE_KIND (link) == REG_INC)
11514 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11519 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11520 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11522 reg_stat_type *rsp;
11524 rsp = VEC_index (reg_stat_type, reg_stat, i);
11525 rsp->last_set_invalid = 1;
11526 rsp->last_set = insn;
11527 rsp->last_set_value = 0;
11528 rsp->last_set_mode = 0;
11529 rsp->last_set_nonzero_bits = 0;
11530 rsp->last_set_sign_bit_copies = 0;
11531 rsp->last_death = 0;
11532 rsp->truncated_to_mode = 0;
11535 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
11537 /* We can't combine into a call pattern. Remember, though, that
11538 the return value register is set at this LUID. We could
11539 still replace a register with the return value from the
11540 wrong subroutine call! */
11541 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11544 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11547 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11548 register present in the SUBREG, so for each such SUBREG go back and
11549 adjust nonzero and sign bit information of the registers that are
11550 known to have some zero/sign bits set.
11552 This is needed because when combine blows the SUBREGs away, the
11553 information on zero/sign bits is lost and further combines can be
11554 missed because of that. */
11557 record_promoted_value (rtx insn, rtx subreg)
11560 unsigned int regno = REGNO (SUBREG_REG (subreg));
11561 enum machine_mode mode = GET_MODE (subreg);
11563 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11566 for (links = LOG_LINKS (insn); links;)
11568 reg_stat_type *rsp;
11570 insn = XEXP (links, 0);
11571 set = single_set (insn);
11573 if (! set || !REG_P (SET_DEST (set))
11574 || REGNO (SET_DEST (set)) != regno
11575 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11577 links = XEXP (links, 1);
11581 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11582 if (rsp->last_set == insn)
11584 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11585 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
11588 if (REG_P (SET_SRC (set)))
11590 regno = REGNO (SET_SRC (set));
11591 links = LOG_LINKS (insn);
11598 /* Check if X, a register, is known to contain a value already
11599 truncated to MODE. In this case we can use a subreg to refer to
11600 the truncated value even though in the generic case we would need
11601 an explicit truncation. */
11604 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
11606 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11607 enum machine_mode truncated = rsp->truncated_to_mode;
11610 || rsp->truncation_label < label_tick_ebb_start)
11612 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11614 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11615 GET_MODE_BITSIZE (truncated)))
11620 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
11621 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
11622 might be able to turn a truncate into a subreg using this information.
11623 Return -1 if traversing *P is complete or 0 otherwise. */
11626 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
11629 enum machine_mode truncated_mode;
11630 reg_stat_type *rsp;
11632 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11634 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11635 truncated_mode = GET_MODE (x);
11637 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11640 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11641 GET_MODE_BITSIZE (original_mode)))
11644 x = SUBREG_REG (x);
11646 /* ??? For hard-regs we now record everything. We might be able to
11647 optimize this using last_set_mode. */
11648 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
11649 truncated_mode = GET_MODE (x);
11653 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11654 if (rsp->truncated_to_mode == 0
11655 || rsp->truncation_label < label_tick_ebb_start
11656 || (GET_MODE_SIZE (truncated_mode)
11657 < GET_MODE_SIZE (rsp->truncated_to_mode)))
11659 rsp->truncated_to_mode = truncated_mode;
11660 rsp->truncation_label = label_tick;
11666 /* Callback for note_uses. Find hardregs and subregs of pseudos and
11667 the modes they are used in. This can help truning TRUNCATEs into
11671 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
11673 for_each_rtx (x, record_truncated_value, NULL);
11676 /* Scan X for promoted SUBREGs. For each one found,
11677 note what it implies to the registers used in it. */
11680 check_promoted_subreg (rtx insn, rtx x)
11682 if (GET_CODE (x) == SUBREG
11683 && SUBREG_PROMOTED_VAR_P (x)
11684 && REG_P (SUBREG_REG (x)))
11685 record_promoted_value (insn, x);
11688 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11691 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11695 check_promoted_subreg (insn, XEXP (x, i));
11699 if (XVEC (x, i) != 0)
11700 for (j = 0; j < XVECLEN (x, i); j++)
11701 check_promoted_subreg (insn, XVECEXP (x, i, j));
11707 /* Utility routine for the following function. Verify that all the registers
11708 mentioned in *LOC are valid when *LOC was part of a value set when
11709 label_tick == TICK. Return 0 if some are not.
11711 If REPLACE is nonzero, replace the invalid reference with
11712 (clobber (const_int 0)) and return 1. This replacement is useful because
11713 we often can get useful information about the form of a value (e.g., if
11714 it was produced by a shift that always produces -1 or 0) even though
11715 we don't know exactly what registers it was produced from. */
11718 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11721 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11722 int len = GET_RTX_LENGTH (GET_CODE (x));
11727 unsigned int regno = REGNO (x);
11728 unsigned int endregno = END_REGNO (x);
11731 for (j = regno; j < endregno; j++)
11733 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
11734 if (rsp->last_set_invalid
11735 /* If this is a pseudo-register that was only set once and not
11736 live at the beginning of the function, it is always valid. */
11737 || (! (regno >= FIRST_PSEUDO_REGISTER
11738 && REG_N_SETS (regno) == 1
11739 && (!REGNO_REG_SET_P
11740 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
11741 && rsp->last_set_label > tick))
11744 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11751 /* If this is a memory reference, make sure that there were
11752 no stores after it that might have clobbered the value. We don't
11753 have alias info, so we assume any store invalidates it. */
11754 else if (MEM_P (x) && !MEM_READONLY_P (x)
11755 && DF_INSN_LUID (insn) <= mem_last_set)
11758 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11762 for (i = 0; i < len; i++)
11766 /* Check for identical subexpressions. If x contains
11767 identical subexpression we only have to traverse one of
11769 if (i == 1 && ARITHMETIC_P (x))
11771 /* Note that at this point x0 has already been checked
11772 and found valid. */
11773 rtx x0 = XEXP (x, 0);
11774 rtx x1 = XEXP (x, 1);
11776 /* If x0 and x1 are identical then x is also valid. */
11780 /* If x1 is identical to a subexpression of x0 then
11781 while checking x0, x1 has already been checked. Thus
11782 it is valid and so as x. */
11783 if (ARITHMETIC_P (x0)
11784 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11787 /* If x0 is identical to a subexpression of x1 then x is
11788 valid iff the rest of x1 is valid. */
11789 if (ARITHMETIC_P (x1)
11790 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11792 get_last_value_validate (&XEXP (x1,
11793 x0 == XEXP (x1, 0) ? 1 : 0),
11794 insn, tick, replace);
11797 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11801 else if (fmt[i] == 'E')
11802 for (j = 0; j < XVECLEN (x, i); j++)
11803 if (get_last_value_validate (&XVECEXP (x, i, j),
11804 insn, tick, replace) == 0)
11808 /* If we haven't found a reason for it to be invalid, it is valid. */
11812 /* Get the last value assigned to X, if known. Some registers
11813 in the value may be replaced with (clobber (const_int 0)) if their value
11814 is known longer known reliably. */
11817 get_last_value (const_rtx x)
11819 unsigned int regno;
11821 reg_stat_type *rsp;
11823 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11824 then convert it to the desired mode. If this is a paradoxical SUBREG,
11825 we cannot predict what values the "extra" bits might have. */
11826 if (GET_CODE (x) == SUBREG
11827 && subreg_lowpart_p (x)
11828 && (GET_MODE_SIZE (GET_MODE (x))
11829 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11830 && (value = get_last_value (SUBREG_REG (x))) != 0)
11831 return gen_lowpart (GET_MODE (x), value);
11837 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11838 value = rsp->last_set_value;
11840 /* If we don't have a value, or if it isn't for this basic block and
11841 it's either a hard register, set more than once, or it's a live
11842 at the beginning of the function, return 0.
11844 Because if it's not live at the beginning of the function then the reg
11845 is always set before being used (is never used without being set).
11846 And, if it's set only once, and it's always set before use, then all
11847 uses must have the same last value, even if it's not from this basic
11851 || (rsp->last_set_label < label_tick_ebb_start
11852 && (regno < FIRST_PSEUDO_REGISTER
11853 || REG_N_SETS (regno) != 1
11855 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
11858 /* If the value was set in a later insn than the ones we are processing,
11859 we can't use it even if the register was only set once. */
11860 if (rsp->last_set_label == label_tick
11861 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
11864 /* If the value has all its registers valid, return it. */
11865 if (get_last_value_validate (&value, rsp->last_set,
11866 rsp->last_set_label, 0))
11869 /* Otherwise, make a copy and replace any invalid register with
11870 (clobber (const_int 0)). If that fails for some reason, return 0. */
11872 value = copy_rtx (value);
11873 if (get_last_value_validate (&value, rsp->last_set,
11874 rsp->last_set_label, 1))
11880 /* Return nonzero if expression X refers to a REG or to memory
11881 that is set in an instruction more recent than FROM_LUID. */
11884 use_crosses_set_p (const_rtx x, int from_luid)
11888 enum rtx_code code = GET_CODE (x);
11892 unsigned int regno = REGNO (x);
11893 unsigned endreg = END_REGNO (x);
11895 #ifdef PUSH_ROUNDING
11896 /* Don't allow uses of the stack pointer to be moved,
11897 because we don't know whether the move crosses a push insn. */
11898 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11901 for (; regno < endreg; regno++)
11903 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
11905 && rsp->last_set_label == label_tick
11906 && DF_INSN_LUID (rsp->last_set) > from_luid)
11912 if (code == MEM && mem_last_set > from_luid)
11915 fmt = GET_RTX_FORMAT (code);
11917 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11922 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11923 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
11926 else if (fmt[i] == 'e'
11927 && use_crosses_set_p (XEXP (x, i), from_luid))
11933 /* Define three variables used for communication between the following
11936 static unsigned int reg_dead_regno, reg_dead_endregno;
11937 static int reg_dead_flag;
11939 /* Function called via note_stores from reg_dead_at_p.
11941 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11942 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11945 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
11947 unsigned int regno, endregno;
11952 regno = REGNO (dest);
11953 endregno = END_REGNO (dest);
11954 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11955 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11958 /* Return nonzero if REG is known to be dead at INSN.
11960 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11961 referencing REG, it is dead. If we hit a SET referencing REG, it is
11962 live. Otherwise, see if it is live or dead at the start of the basic
11963 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11964 must be assumed to be always live. */
11967 reg_dead_at_p (rtx reg, rtx insn)
11972 /* Set variables for reg_dead_at_p_1. */
11973 reg_dead_regno = REGNO (reg);
11974 reg_dead_endregno = END_REGNO (reg);
11978 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11979 we allow the machine description to decide whether use-and-clobber
11980 patterns are OK. */
11981 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11983 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11984 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11988 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11989 beginning of function. */
11990 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11991 insn = prev_nonnote_insn (insn))
11993 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11995 return reg_dead_flag == 1 ? 1 : 0;
11997 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12001 /* Get the basic block that we were in. */
12003 block = ENTRY_BLOCK_PTR->next_bb;
12006 FOR_EACH_BB (block)
12007 if (insn == BB_HEAD (block))
12010 if (block == EXIT_BLOCK_PTR)
12014 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12015 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12021 /* Note hard registers in X that are used. */
12024 mark_used_regs_combine (rtx x)
12026 RTX_CODE code = GET_CODE (x);
12027 unsigned int regno;
12040 case ADDR_DIFF_VEC:
12043 /* CC0 must die in the insn after it is set, so we don't need to take
12044 special note of it here. */
12050 /* If we are clobbering a MEM, mark any hard registers inside the
12051 address as used. */
12052 if (MEM_P (XEXP (x, 0)))
12053 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12058 /* A hard reg in a wide mode may really be multiple registers.
12059 If so, mark all of them just like the first. */
12060 if (regno < FIRST_PSEUDO_REGISTER)
12062 /* None of this applies to the stack, frame or arg pointers. */
12063 if (regno == STACK_POINTER_REGNUM
12064 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12065 || regno == HARD_FRAME_POINTER_REGNUM
12067 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12068 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12070 || regno == FRAME_POINTER_REGNUM)
12073 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12079 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12081 rtx testreg = SET_DEST (x);
12083 while (GET_CODE (testreg) == SUBREG
12084 || GET_CODE (testreg) == ZERO_EXTRACT
12085 || GET_CODE (testreg) == STRICT_LOW_PART)
12086 testreg = XEXP (testreg, 0);
12088 if (MEM_P (testreg))
12089 mark_used_regs_combine (XEXP (testreg, 0));
12091 mark_used_regs_combine (SET_SRC (x));
12099 /* Recursively scan the operands of this expression. */
12102 const char *fmt = GET_RTX_FORMAT (code);
12104 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12107 mark_used_regs_combine (XEXP (x, i));
12108 else if (fmt[i] == 'E')
12112 for (j = 0; j < XVECLEN (x, i); j++)
12113 mark_used_regs_combine (XVECEXP (x, i, j));
12119 /* Remove register number REGNO from the dead registers list of INSN.
12121 Return the note used to record the death, if there was one. */
12124 remove_death (unsigned int regno, rtx insn)
12126 rtx note = find_regno_note (insn, REG_DEAD, regno);
12129 remove_note (insn, note);
12134 /* For each register (hardware or pseudo) used within expression X, if its
12135 death is in an instruction with luid between FROM_LUID (inclusive) and
12136 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12137 list headed by PNOTES.
12139 That said, don't move registers killed by maybe_kill_insn.
12141 This is done when X is being merged by combination into TO_INSN. These
12142 notes will then be distributed as needed. */
12145 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12150 enum rtx_code code = GET_CODE (x);
12154 unsigned int regno = REGNO (x);
12155 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12157 /* Don't move the register if it gets killed in between from and to. */
12158 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12159 && ! reg_referenced_p (x, maybe_kill_insn))
12163 && DF_INSN_LUID (where_dead) >= from_luid
12164 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12166 rtx note = remove_death (regno, where_dead);
12168 /* It is possible for the call above to return 0. This can occur
12169 when last_death points to I2 or I1 that we combined with.
12170 In that case make a new note.
12172 We must also check for the case where X is a hard register
12173 and NOTE is a death note for a range of hard registers
12174 including X. In that case, we must put REG_DEAD notes for
12175 the remaining registers in place of NOTE. */
12177 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12178 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12179 > GET_MODE_SIZE (GET_MODE (x))))
12181 unsigned int deadregno = REGNO (XEXP (note, 0));
12182 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12183 unsigned int ourend = END_HARD_REGNO (x);
12186 for (i = deadregno; i < deadend; i++)
12187 if (i < regno || i >= ourend)
12188 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12191 /* If we didn't find any note, or if we found a REG_DEAD note that
12192 covers only part of the given reg, and we have a multi-reg hard
12193 register, then to be safe we must check for REG_DEAD notes
12194 for each register other than the first. They could have
12195 their own REG_DEAD notes lying around. */
12196 else if ((note == 0
12198 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12199 < GET_MODE_SIZE (GET_MODE (x)))))
12200 && regno < FIRST_PSEUDO_REGISTER
12201 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12203 unsigned int ourend = END_HARD_REGNO (x);
12204 unsigned int i, offset;
12208 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12212 for (i = regno + offset; i < ourend; i++)
12213 move_deaths (regno_reg_rtx[i],
12214 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12217 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12219 XEXP (note, 1) = *pnotes;
12223 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12229 else if (GET_CODE (x) == SET)
12231 rtx dest = SET_DEST (x);
12233 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12235 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12236 that accesses one word of a multi-word item, some
12237 piece of everything register in the expression is used by
12238 this insn, so remove any old death. */
12239 /* ??? So why do we test for equality of the sizes? */
12241 if (GET_CODE (dest) == ZERO_EXTRACT
12242 || GET_CODE (dest) == STRICT_LOW_PART
12243 || (GET_CODE (dest) == SUBREG
12244 && (((GET_MODE_SIZE (GET_MODE (dest))
12245 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12246 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12247 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12249 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
12253 /* If this is some other SUBREG, we know it replaces the entire
12254 value, so use that as the destination. */
12255 if (GET_CODE (dest) == SUBREG)
12256 dest = SUBREG_REG (dest);
12258 /* If this is a MEM, adjust deaths of anything used in the address.
12259 For a REG (the only other possibility), the entire value is
12260 being replaced so the old value is not used in this insn. */
12263 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
12268 else if (GET_CODE (x) == CLOBBER)
12271 len = GET_RTX_LENGTH (code);
12272 fmt = GET_RTX_FORMAT (code);
12274 for (i = 0; i < len; i++)
12279 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12280 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
12283 else if (fmt[i] == 'e')
12284 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
12288 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12289 pattern of an insn. X must be a REG. */
12292 reg_bitfield_target_p (rtx x, rtx body)
12296 if (GET_CODE (body) == SET)
12298 rtx dest = SET_DEST (body);
12300 unsigned int regno, tregno, endregno, endtregno;
12302 if (GET_CODE (dest) == ZERO_EXTRACT)
12303 target = XEXP (dest, 0);
12304 else if (GET_CODE (dest) == STRICT_LOW_PART)
12305 target = SUBREG_REG (XEXP (dest, 0));
12309 if (GET_CODE (target) == SUBREG)
12310 target = SUBREG_REG (target);
12312 if (!REG_P (target))
12315 tregno = REGNO (target), regno = REGNO (x);
12316 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12317 return target == x;
12319 endtregno = end_hard_regno (GET_MODE (target), tregno);
12320 endregno = end_hard_regno (GET_MODE (x), regno);
12322 return endregno > tregno && regno < endtregno;
12325 else if (GET_CODE (body) == PARALLEL)
12326 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12327 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12333 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12334 as appropriate. I3 and I2 are the insns resulting from the combination
12335 insns including FROM (I2 may be zero).
12337 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12338 not need REG_DEAD notes because they are being substituted for. This
12339 saves searching in the most common cases.
12341 Each note in the list is either ignored or placed on some insns, depending
12342 on the type of note. */
12345 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
12348 rtx note, next_note;
12351 for (note = notes; note; note = next_note)
12353 rtx place = 0, place2 = 0;
12355 next_note = XEXP (note, 1);
12356 switch (REG_NOTE_KIND (note))
12360 /* Doesn't matter much where we put this, as long as it's somewhere.
12361 It is preferable to keep these notes on branches, which is most
12362 likely to be i3. */
12366 case REG_VALUE_PROFILE:
12367 /* Just get rid of this note, as it is unused later anyway. */
12370 case REG_NON_LOCAL_GOTO:
12375 gcc_assert (i2 && JUMP_P (i2));
12380 case REG_EH_REGION:
12381 /* These notes must remain with the call or trapping instruction. */
12384 else if (i2 && CALL_P (i2))
12388 gcc_assert (flag_non_call_exceptions);
12389 if (may_trap_p (i3))
12391 else if (i2 && may_trap_p (i2))
12393 /* ??? Otherwise assume we've combined things such that we
12394 can now prove that the instructions can't trap. Drop the
12395 note in this case. */
12401 /* These notes must remain with the call. It should not be
12402 possible for both I2 and I3 to be a call. */
12407 gcc_assert (i2 && CALL_P (i2));
12413 /* Any clobbers for i3 may still exist, and so we must process
12414 REG_UNUSED notes from that insn.
12416 Any clobbers from i2 or i1 can only exist if they were added by
12417 recog_for_combine. In that case, recog_for_combine created the
12418 necessary REG_UNUSED notes. Trying to keep any original
12419 REG_UNUSED notes from these insns can cause incorrect output
12420 if it is for the same register as the original i3 dest.
12421 In that case, we will notice that the register is set in i3,
12422 and then add a REG_UNUSED note for the destination of i3, which
12423 is wrong. However, it is possible to have REG_UNUSED notes from
12424 i2 or i1 for register which were both used and clobbered, so
12425 we keep notes from i2 or i1 if they will turn into REG_DEAD
12428 /* If this register is set or clobbered in I3, put the note there
12429 unless there is one already. */
12430 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12432 if (from_insn != i3)
12435 if (! (REG_P (XEXP (note, 0))
12436 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12437 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12440 /* Otherwise, if this register is used by I3, then this register
12441 now dies here, so we must put a REG_DEAD note here unless there
12443 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12444 && ! (REG_P (XEXP (note, 0))
12445 ? find_regno_note (i3, REG_DEAD,
12446 REGNO (XEXP (note, 0)))
12447 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12449 PUT_REG_NOTE_KIND (note, REG_DEAD);
12457 /* These notes say something about results of an insn. We can
12458 only support them if they used to be on I3 in which case they
12459 remain on I3. Otherwise they are ignored.
12461 If the note refers to an expression that is not a constant, we
12462 must also ignore the note since we cannot tell whether the
12463 equivalence is still true. It might be possible to do
12464 slightly better than this (we only have a problem if I2DEST
12465 or I1DEST is present in the expression), but it doesn't
12466 seem worth the trouble. */
12468 if (from_insn == i3
12469 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12474 /* These notes say something about how a register is used. They must
12475 be present on any use of the register in I2 or I3. */
12476 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12479 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12488 case REG_LABEL_TARGET:
12489 case REG_LABEL_OPERAND:
12490 /* This can show up in several ways -- either directly in the
12491 pattern, or hidden off in the constant pool with (or without?)
12492 a REG_EQUAL note. */
12493 /* ??? Ignore the without-reg_equal-note problem for now. */
12494 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12495 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12496 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12497 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12501 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12502 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12503 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12504 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12512 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
12513 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
12515 if (place && JUMP_P (place)
12516 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12517 && (JUMP_LABEL (place) == NULL
12518 || JUMP_LABEL (place) == XEXP (note, 0)))
12520 rtx label = JUMP_LABEL (place);
12523 JUMP_LABEL (place) = XEXP (note, 0);
12524 else if (LABEL_P (label))
12525 LABEL_NUSES (label)--;
12528 if (place2 && JUMP_P (place2)
12529 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12530 && (JUMP_LABEL (place2) == NULL
12531 || JUMP_LABEL (place2) == XEXP (note, 0)))
12533 rtx label = JUMP_LABEL (place2);
12536 JUMP_LABEL (place2) = XEXP (note, 0);
12537 else if (LABEL_P (label))
12538 LABEL_NUSES (label)--;
12544 /* This note says something about the value of a register prior
12545 to the execution of an insn. It is too much trouble to see
12546 if the note is still correct in all situations. It is better
12547 to simply delete it. */
12551 /* If we replaced the right hand side of FROM_INSN with a
12552 REG_EQUAL note, the original use of the dying register
12553 will not have been combined into I3 and I2. In such cases,
12554 FROM_INSN is guaranteed to be the first of the combined
12555 instructions, so we simply need to search back before
12556 FROM_INSN for the previous use or set of this register,
12557 then alter the notes there appropriately.
12559 If the register is used as an input in I3, it dies there.
12560 Similarly for I2, if it is nonzero and adjacent to I3.
12562 If the register is not used as an input in either I3 or I2
12563 and it is not one of the registers we were supposed to eliminate,
12564 there are two possibilities. We might have a non-adjacent I2
12565 or we might have somehow eliminated an additional register
12566 from a computation. For example, we might have had A & B where
12567 we discover that B will always be zero. In this case we will
12568 eliminate the reference to A.
12570 In both cases, we must search to see if we can find a previous
12571 use of A and put the death note there. */
12574 && from_insn == i2mod
12575 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
12580 && CALL_P (from_insn)
12581 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12583 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12585 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12586 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12588 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
12590 && reg_overlap_mentioned_p (XEXP (note, 0),
12592 || rtx_equal_p (XEXP (note, 0), elim_i1))
12599 basic_block bb = this_basic_block;
12601 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
12603 if (! INSN_P (tem))
12605 if (tem == BB_HEAD (bb))
12610 /* If the register is being set at TEM, see if that is all
12611 TEM is doing. If so, delete TEM. Otherwise, make this
12612 into a REG_UNUSED note instead. Don't delete sets to
12613 global register vars. */
12614 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12615 || !global_regs[REGNO (XEXP (note, 0))])
12616 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12618 rtx set = single_set (tem);
12619 rtx inner_dest = 0;
12621 rtx cc0_setter = NULL_RTX;
12625 for (inner_dest = SET_DEST (set);
12626 (GET_CODE (inner_dest) == STRICT_LOW_PART
12627 || GET_CODE (inner_dest) == SUBREG
12628 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12629 inner_dest = XEXP (inner_dest, 0))
12632 /* Verify that it was the set, and not a clobber that
12633 modified the register.
12635 CC0 targets must be careful to maintain setter/user
12636 pairs. If we cannot delete the setter due to side
12637 effects, mark the user with an UNUSED note instead
12640 if (set != 0 && ! side_effects_p (SET_SRC (set))
12641 && rtx_equal_p (XEXP (note, 0), inner_dest)
12643 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12644 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12645 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12649 /* Move the notes and links of TEM elsewhere.
12650 This might delete other dead insns recursively.
12651 First set the pattern to something that won't use
12653 rtx old_notes = REG_NOTES (tem);
12655 PATTERN (tem) = pc_rtx;
12656 REG_NOTES (tem) = NULL;
12658 distribute_notes (old_notes, tem, tem, NULL_RTX,
12659 NULL_RTX, NULL_RTX);
12660 distribute_links (LOG_LINKS (tem));
12662 SET_INSN_DELETED (tem);
12667 /* Delete the setter too. */
12670 PATTERN (cc0_setter) = pc_rtx;
12671 old_notes = REG_NOTES (cc0_setter);
12672 REG_NOTES (cc0_setter) = NULL;
12674 distribute_notes (old_notes, cc0_setter,
12675 cc0_setter, NULL_RTX,
12676 NULL_RTX, NULL_RTX);
12677 distribute_links (LOG_LINKS (cc0_setter));
12679 SET_INSN_DELETED (cc0_setter);
12680 if (cc0_setter == i2)
12687 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12689 /* If there isn't already a REG_UNUSED note, put one
12690 here. Do not place a REG_DEAD note, even if
12691 the register is also used here; that would not
12692 match the algorithm used in lifetime analysis
12693 and can cause the consistency check in the
12694 scheduler to fail. */
12695 if (! find_regno_note (tem, REG_UNUSED,
12696 REGNO (XEXP (note, 0))))
12701 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12703 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12707 /* If we are doing a 3->2 combination, and we have a
12708 register which formerly died in i3 and was not used
12709 by i2, which now no longer dies in i3 and is used in
12710 i2 but does not die in i2, and place is between i2
12711 and i3, then we may need to move a link from place to
12713 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
12715 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
12716 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12718 rtx links = LOG_LINKS (place);
12719 LOG_LINKS (place) = 0;
12720 distribute_links (links);
12725 if (tem == BB_HEAD (bb))
12731 /* If the register is set or already dead at PLACE, we needn't do
12732 anything with this note if it is still a REG_DEAD note.
12733 We check here if it is set at all, not if is it totally replaced,
12734 which is what `dead_or_set_p' checks, so also check for it being
12737 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12739 unsigned int regno = REGNO (XEXP (note, 0));
12740 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12742 if (dead_or_set_p (place, XEXP (note, 0))
12743 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12745 /* Unless the register previously died in PLACE, clear
12746 last_death. [I no longer understand why this is
12748 if (rsp->last_death != place)
12749 rsp->last_death = 0;
12753 rsp->last_death = place;
12755 /* If this is a death note for a hard reg that is occupying
12756 multiple registers, ensure that we are still using all
12757 parts of the object. If we find a piece of the object
12758 that is unused, we must arrange for an appropriate REG_DEAD
12759 note to be added for it. However, we can't just emit a USE
12760 and tag the note to it, since the register might actually
12761 be dead; so we recourse, and the recursive call then finds
12762 the previous insn that used this register. */
12764 if (place && regno < FIRST_PSEUDO_REGISTER
12765 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12767 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
12771 for (i = regno; i < endregno; i++)
12772 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12773 && ! find_regno_fusage (place, USE, i))
12774 || dead_or_set_regno_p (place, i))
12779 /* Put only REG_DEAD notes for pieces that are
12780 not already dead or set. */
12782 for (i = regno; i < endregno;
12783 i += hard_regno_nregs[i][reg_raw_mode[i]])
12785 rtx piece = regno_reg_rtx[i];
12786 basic_block bb = this_basic_block;
12788 if (! dead_or_set_p (place, piece)
12789 && ! reg_bitfield_target_p (piece,
12793 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12795 distribute_notes (new_note, place, place,
12796 NULL_RTX, NULL_RTX, NULL_RTX);
12798 else if (! refers_to_regno_p (i, i + 1,
12799 PATTERN (place), 0)
12800 && ! find_regno_fusage (place, USE, i))
12801 for (tem = PREV_INSN (place); ;
12802 tem = PREV_INSN (tem))
12804 if (! INSN_P (tem))
12806 if (tem == BB_HEAD (bb))
12810 if (dead_or_set_p (tem, piece)
12811 || reg_bitfield_target_p (piece,
12814 add_reg_note (tem, REG_UNUSED, piece);
12828 /* Any other notes should not be present at this point in the
12830 gcc_unreachable ();
12835 XEXP (note, 1) = REG_NOTES (place);
12836 REG_NOTES (place) = note;
12841 = gen_rtx_fmt_ee (GET_CODE (note), REG_NOTE_KIND (note),
12842 XEXP (note, 0), REG_NOTES (place2));
12846 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12847 I3, I2, and I1 to new locations. This is also called to add a link
12848 pointing at I3 when I3's destination is changed. */
12851 distribute_links (rtx links)
12853 rtx link, next_link;
12855 for (link = links; link; link = next_link)
12861 next_link = XEXP (link, 1);
12863 /* If the insn that this link points to is a NOTE or isn't a single
12864 set, ignore it. In the latter case, it isn't clear what we
12865 can do other than ignore the link, since we can't tell which
12866 register it was for. Such links wouldn't be used by combine
12869 It is not possible for the destination of the target of the link to
12870 have been changed by combine. The only potential of this is if we
12871 replace I3, I2, and I1 by I3 and I2. But in that case the
12872 destination of I2 also remains unchanged. */
12874 if (NOTE_P (XEXP (link, 0))
12875 || (set = single_set (XEXP (link, 0))) == 0)
12878 reg = SET_DEST (set);
12879 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12880 || GET_CODE (reg) == STRICT_LOW_PART)
12881 reg = XEXP (reg, 0);
12883 /* A LOG_LINK is defined as being placed on the first insn that uses
12884 a register and points to the insn that sets the register. Start
12885 searching at the next insn after the target of the link and stop
12886 when we reach a set of the register or the end of the basic block.
12888 Note that this correctly handles the link that used to point from
12889 I3 to I2. Also note that not much searching is typically done here
12890 since most links don't point very far away. */
12892 for (insn = NEXT_INSN (XEXP (link, 0));
12893 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12894 || BB_HEAD (this_basic_block->next_bb) != insn));
12895 insn = NEXT_INSN (insn))
12896 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12898 if (reg_referenced_p (reg, PATTERN (insn)))
12902 else if (CALL_P (insn)
12903 && find_reg_fusage (insn, USE, reg))
12908 else if (INSN_P (insn) && reg_set_p (reg, insn))
12911 /* If we found a place to put the link, place it there unless there
12912 is already a link to the same insn as LINK at that point. */
12918 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12919 if (XEXP (link2, 0) == XEXP (link, 0))
12924 XEXP (link, 1) = LOG_LINKS (place);
12925 LOG_LINKS (place) = link;
12927 /* Set added_links_insn to the earliest insn we added a
12929 if (added_links_insn == 0
12930 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
12931 added_links_insn = place;
12937 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12938 Check whether the expression pointer to by LOC is a register or
12939 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12940 Otherwise return zero. */
12943 unmentioned_reg_p_1 (rtx *loc, void *expr)
12948 && (REG_P (x) || MEM_P (x))
12949 && ! reg_mentioned_p (x, (rtx) expr))
12954 /* Check for any register or memory mentioned in EQUIV that is not
12955 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12956 of EXPR where some registers may have been replaced by constants. */
12959 unmentioned_reg_p (rtx equiv, rtx expr)
12961 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12965 dump_combine_stats (FILE *file)
12969 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12970 combine_attempts, combine_merges, combine_extras, combine_successes);
12974 dump_combine_total_stats (FILE *file)
12978 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12979 total_attempts, total_merges, total_extras, total_successes);
12983 gate_handle_combine (void)
12985 return (optimize > 0);
12988 /* Try combining insns through substitution. */
12989 static unsigned int
12990 rest_of_handle_combine (void)
12992 int rebuild_jump_labels_after_combine;
12994 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
12995 df_note_add_problem ();
12998 regstat_init_n_sets_and_refs ();
13000 rebuild_jump_labels_after_combine
13001 = combine_instructions (get_insns (), max_reg_num ());
13003 /* Combining insns may have turned an indirect jump into a
13004 direct jump. Rebuild the JUMP_LABEL fields of jumping
13006 if (rebuild_jump_labels_after_combine)
13008 timevar_push (TV_JUMP);
13009 rebuild_jump_labels (get_insns ());
13011 timevar_pop (TV_JUMP);
13014 regstat_free_n_sets_and_refs ();
13018 struct rtl_opt_pass pass_combine =
13022 "combine", /* name */
13023 gate_handle_combine, /* gate */
13024 rest_of_handle_combine, /* execute */
13027 0, /* static_pass_number */
13028 TV_COMBINE, /* tv_id */
13029 0, /* properties_required */
13030 0, /* properties_provided */
13031 0, /* properties_destroyed */
13032 0, /* todo_flags_start */
13034 TODO_df_finish | TODO_verify_rtl_sharing |
13035 TODO_ggc_collect, /* todo_flags_finish */