Upgrade vi(1). 1/2
[dragonfly.git] / sys / vfs / hammer2 / hammer2_chain.c
1 /*
2  * Copyright (c) 2011-2020 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain structure.
38  *
39  * Chains are the in-memory version on media objects (volume header, inodes,
40  * indirect blocks, data blocks, etc).  Chains represent a portion of the
41  * HAMMER2 topology.
42  *
43  * Chains are no-longer delete-duplicated.  Instead, the original in-memory
44  * chain will be moved along with its block reference (e.g. for things like
45  * renames, hardlink operations, modifications, etc), and will be indexed
46  * on a secondary list for flush handling instead of propagating a flag
47  * upward to the root.
48  *
49  * Concurrent front-end operations can still run against backend flushes
50  * as long as they do not cross the current flush boundary.  An operation
51  * running above the current flush (in areas not yet flushed) can become
52  * part of the current flush while ano peration running below the current
53  * flush can become part of the next flush.
54  */
55 #include <sys/cdefs.h>
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/types.h>
59 #include <sys/lock.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/uuid.h>
62
63 #include <crypto/sha2/sha2.h>
64
65 #include "hammer2.h"
66
67 static hammer2_chain_t *hammer2_chain_create_indirect(
68                 hammer2_chain_t *parent,
69                 hammer2_key_t key, int keybits,
70                 hammer2_tid_t mtid, int for_type, int *errorp);
71 static void hammer2_chain_rename_obref(hammer2_chain_t **parentp,
72                 hammer2_chain_t *chain, hammer2_tid_t mtid,
73                 int flags, hammer2_blockref_t *obref);
74 static int hammer2_chain_delete_obref(hammer2_chain_t *parent,
75                 hammer2_chain_t *chain,
76                 hammer2_tid_t mtid, int flags,
77                 hammer2_blockref_t *obref);
78 static hammer2_io_t *hammer2_chain_drop_data(hammer2_chain_t *chain);
79 static hammer2_chain_t *hammer2_combined_find(
80                 hammer2_chain_t *parent,
81                 hammer2_blockref_t *base, int count,
82                 hammer2_key_t *key_nextp,
83                 hammer2_key_t key_beg, hammer2_key_t key_end,
84                 hammer2_blockref_t **bresp);
85
86 /*
87  * There are many degenerate situations where an extreme rate of console
88  * output can occur from warnings and errors.  Make sure this output does
89  * not impede operations.
90  */
91 static struct krate krate_h2chk = { .freq = 5 };
92 static struct krate krate_h2me = { .freq = 1 };
93 static struct krate krate_h2em = { .freq = 1 };
94
95 /*
96  * Basic RBTree for chains (core.rbtree).
97  */
98 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
99
100 int
101 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
102 {
103         hammer2_key_t c1_beg;
104         hammer2_key_t c1_end;
105         hammer2_key_t c2_beg;
106         hammer2_key_t c2_end;
107
108         /*
109          * Compare chains.  Overlaps are not supposed to happen and catch
110          * any software issues early we count overlaps as a match.
111          */
112         c1_beg = chain1->bref.key;
113         c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
114         c2_beg = chain2->bref.key;
115         c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
116
117         if (c1_end < c2_beg)    /* fully to the left */
118                 return(-1);
119         if (c1_beg > c2_end)    /* fully to the right */
120                 return(1);
121         return(0);              /* overlap (must not cross edge boundary) */
122 }
123
124 /*
125  * Assert that a chain has no media data associated with it.
126  */
127 static __inline void
128 hammer2_chain_assert_no_data(hammer2_chain_t *chain)
129 {
130         KKASSERT(chain->dio == NULL);
131         if (chain->bref.type != HAMMER2_BREF_TYPE_VOLUME &&
132             chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP &&
133             chain->data) {
134                 panic("hammer2_chain_assert_no_data: chain %p still has data",
135                     chain);
136         }
137 }
138
139 /*
140  * Make a chain visible to the flusher.  The flusher operates using a top-down
141  * recursion based on the ONFLUSH flag.  It locates MODIFIED and UPDATE chains,
142  * flushes them, and updates blocks back to the volume root.
143  *
144  * This routine sets the ONFLUSH flag upward from the triggering chain until
145  * it hits an inode root or the volume root.  Inode chains serve as inflection
146  * points, requiring the flusher to bridge across trees.  Inodes include
147  * regular inodes, PFS roots (pmp->iroot), and the media super root
148  * (spmp->iroot).
149  */
150 void
151 hammer2_chain_setflush(hammer2_chain_t *chain)
152 {
153         hammer2_chain_t *parent;
154
155         if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
156                 hammer2_spin_sh(&chain->core.spin);
157                 while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
158                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
159                         if (chain->bref.type == HAMMER2_BREF_TYPE_INODE)
160                                 break;
161                         if ((parent = chain->parent) == NULL)
162                                 break;
163                         hammer2_spin_sh(&parent->core.spin);
164                         hammer2_spin_unsh(&chain->core.spin);
165                         chain = parent;
166                 }
167                 hammer2_spin_unsh(&chain->core.spin);
168         }
169 }
170
171 /*
172  * Allocate a new disconnected chain element representing the specified
173  * bref.  chain->refs is set to 1 and the passed bref is copied to
174  * chain->bref.  chain->bytes is derived from the bref.
175  *
176  * chain->pmp inherits pmp unless the chain is an inode (other than the
177  * super-root inode).
178  *
179  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
180  */
181 hammer2_chain_t *
182 hammer2_chain_alloc(hammer2_dev_t *hmp, hammer2_pfs_t *pmp,
183                     hammer2_blockref_t *bref)
184 {
185         hammer2_chain_t *chain;
186         u_int bytes;
187
188         /*
189          * Special case - radix of 0 indicates a chain that does not
190          * need a data reference (context is completely embedded in the
191          * bref).
192          */
193         if ((int)(bref->data_off & HAMMER2_OFF_MASK_RADIX))
194                 bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
195         else
196                 bytes = 0;
197
198         atomic_add_long(&hammer2_chain_allocs, 1);
199
200         /*
201          * Construct the appropriate system structure.
202          */
203         switch(bref->type) {
204         case HAMMER2_BREF_TYPE_DIRENT:
205         case HAMMER2_BREF_TYPE_INODE:
206         case HAMMER2_BREF_TYPE_INDIRECT:
207         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
208         case HAMMER2_BREF_TYPE_DATA:
209         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
210                 chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
211                 break;
212         case HAMMER2_BREF_TYPE_VOLUME:
213         case HAMMER2_BREF_TYPE_FREEMAP:
214                 /*
215                  * Only hammer2_chain_bulksnap() calls this function with these
216                  * types.
217                  */
218                 chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
219                 break;
220         default:
221                 chain = NULL;
222                 panic("hammer2_chain_alloc: unrecognized blockref type: %d",
223                       bref->type);
224         }
225
226         /*
227          * Initialize the new chain structure.  pmp must be set to NULL for
228          * chains belonging to the super-root topology of a device mount.
229          */
230         if (pmp == hmp->spmp)
231                 chain->pmp = NULL;
232         else
233                 chain->pmp = pmp;
234
235         chain->hmp = hmp;
236         chain->bref = *bref;
237         chain->bytes = bytes;
238         chain->refs = 1;
239         chain->flags = HAMMER2_CHAIN_ALLOCATED;
240         lockinit(&chain->diolk, "chdio", 0, 0);
241
242         /*
243          * Set the PFS boundary flag if this chain represents a PFS root.
244          */
245         if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
246                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_PFSBOUNDARY);
247         hammer2_chain_core_init(chain);
248
249         return (chain);
250 }
251
252 /*
253  * Initialize a chain's core structure.  This structure used to be allocated
254  * but is now embedded.
255  *
256  * The core is not locked.  No additional refs on the chain are made.
257  * (trans) must not be NULL if (core) is not NULL.
258  */
259 void
260 hammer2_chain_core_init(hammer2_chain_t *chain)
261 {
262         /*
263          * Fresh core under nchain (no multi-homing of ochain's
264          * sub-tree).
265          */
266         RB_INIT(&chain->core.rbtree);   /* live chains */
267         hammer2_mtx_init(&chain->lock, "h2chain");
268 }
269
270 /*
271  * Add a reference to a chain element, preventing its destruction.
272  *
273  * (can be called with spinlock held)
274  */
275 void
276 hammer2_chain_ref(hammer2_chain_t *chain)
277 {
278         if (atomic_fetchadd_int(&chain->refs, 1) == 0) {
279                 /*
280                  * Just flag that the chain was used and should be recycled
281                  * on the LRU if it encounters it later.
282                  */
283                 if (chain->flags & HAMMER2_CHAIN_ONLRU)
284                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
285
286 #if 0
287                 /*
288                  * REMOVED - reduces contention, lru_list is more heuristical
289                  * now.
290                  *
291                  * 0->non-zero transition must ensure that chain is removed
292                  * from the LRU list.
293                  *
294                  * NOTE: Already holding lru_spin here so we cannot call
295                  *       hammer2_chain_ref() to get it off lru_list, do
296                  *       it manually.
297                  */
298                 if (chain->flags & HAMMER2_CHAIN_ONLRU) {
299                         hammer2_pfs_t *pmp = chain->pmp;
300                         hammer2_spin_ex(&pmp->lru_spin);
301                         if (chain->flags & HAMMER2_CHAIN_ONLRU) {
302                                 atomic_add_int(&pmp->lru_count, -1);
303                                 atomic_clear_int(&chain->flags,
304                                                  HAMMER2_CHAIN_ONLRU);
305                                 TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
306                         }
307                         hammer2_spin_unex(&pmp->lru_spin);
308                 }
309 #endif
310         }
311 }
312
313 /*
314  * Ref a locked chain and force the data to be held across an unlock.
315  * Chain must be currently locked.  The user of the chain who desires
316  * to release the hold must call hammer2_chain_lock_unhold() to relock
317  * and unhold the chain, then unlock normally, or may simply call
318  * hammer2_chain_drop_unhold() (which is safer against deadlocks).
319  */
320 void
321 hammer2_chain_ref_hold(hammer2_chain_t *chain)
322 {
323         atomic_add_int(&chain->lockcnt, 1);
324         hammer2_chain_ref(chain);
325 }
326
327 /*
328  * Insert the chain in the core rbtree.
329  *
330  * Normal insertions are placed in the live rbtree.  Insertion of a deleted
331  * chain is a special case used by the flush code that is placed on the
332  * unstaged deleted list to avoid confusing the live view.
333  */
334 #define HAMMER2_CHAIN_INSERT_SPIN       0x0001
335 #define HAMMER2_CHAIN_INSERT_LIVE       0x0002
336 #define HAMMER2_CHAIN_INSERT_RACE       0x0004
337
338 static
339 int
340 hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
341                      int flags, int generation)
342 {
343         hammer2_chain_t *xchain;
344         int error = 0;
345
346         if (flags & HAMMER2_CHAIN_INSERT_SPIN)
347                 hammer2_spin_ex(&parent->core.spin);
348
349         /*
350          * Interlocked by spinlock, check for race
351          */
352         if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
353             parent->core.generation != generation) {
354                 error = HAMMER2_ERROR_EAGAIN;
355                 goto failed;
356         }
357
358         /*
359          * Insert chain
360          */
361         xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
362         KASSERT(xchain == NULL,
363                 ("hammer2_chain_insert: collision %p %p (key=%016jx)",
364                 chain, xchain, chain->bref.key));
365         atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
366         chain->parent = parent;
367         ++parent->core.chain_count;
368         ++parent->core.generation;      /* XXX incs for _get() too, XXX */
369
370         /*
371          * We have to keep track of the effective live-view blockref count
372          * so the create code knows when to push an indirect block.
373          */
374         if (flags & HAMMER2_CHAIN_INSERT_LIVE)
375                 atomic_add_int(&parent->core.live_count, 1);
376 failed:
377         if (flags & HAMMER2_CHAIN_INSERT_SPIN)
378                 hammer2_spin_unex(&parent->core.spin);
379         return error;
380 }
381
382 /*
383  * Drop the caller's reference to the chain.  When the ref count drops to
384  * zero this function will try to disassociate the chain from its parent and
385  * deallocate it, then recursely drop the parent using the implied ref
386  * from the chain's chain->parent.
387  *
388  * Nobody should own chain's mutex on the 1->0 transition, unless this drop
389  * races an acquisition by another cpu.  Therefore we can loop if we are
390  * unable to acquire the mutex, and refs is unlikely to be 1 unless we again
391  * race against another drop.
392  */
393 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain,
394                                 int depth);
395 static void hammer2_chain_lru_flush(hammer2_pfs_t *pmp);
396
397 void
398 hammer2_chain_drop(hammer2_chain_t *chain)
399 {
400         u_int refs;
401
402         KKASSERT(chain->refs > 0);
403
404         while (chain) {
405                 refs = chain->refs;
406                 cpu_ccfence();
407                 KKASSERT(refs > 0);
408
409                 if (refs == 1) {
410                         if (hammer2_mtx_ex_try(&chain->lock) == 0)
411                                 chain = hammer2_chain_lastdrop(chain, 0);
412                         /* retry the same chain, or chain from lastdrop */
413                 } else {
414                         if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
415                                 break;
416                         /* retry the same chain */
417                 }
418                 cpu_pause();
419         }
420 }
421
422 /*
423  * Unhold a held and probably not-locked chain, ensure that the data is
424  * dropped on the 1->0 transition of lockcnt by obtaining an exclusive
425  * lock and then simply unlocking the chain.
426  */
427 void
428 hammer2_chain_unhold(hammer2_chain_t *chain)
429 {
430         u_int lockcnt;
431         int iter = 0;
432
433         for (;;) {
434                 lockcnt = chain->lockcnt;
435                 cpu_ccfence();
436                 if (lockcnt > 1) {
437                         if (atomic_cmpset_int(&chain->lockcnt,
438                                               lockcnt, lockcnt - 1)) {
439                                 break;
440                         }
441                 } else if (hammer2_mtx_ex_try(&chain->lock) == 0) {
442                         hammer2_chain_unlock(chain);
443                         break;
444                 } else {
445                         /*
446                          * This situation can easily occur on SMP due to
447                          * the gap inbetween the 1->0 transition and the
448                          * final unlock.  We cannot safely block on the
449                          * mutex because lockcnt might go above 1.
450                          *
451                          * XXX Sleep for one tick if it takes too long.
452                          */
453                         if (++iter > 1000) {
454                                 if (iter > 1000 + hz) {
455                                         kprintf("hammer2: h2race1 %p\n", chain);
456                                         iter = 1000;
457                                 }
458                                 tsleep(&iter, 0, "h2race1", 1);
459                         }
460                         cpu_pause();
461                 }
462         }
463 }
464
465 void
466 hammer2_chain_drop_unhold(hammer2_chain_t *chain)
467 {
468         hammer2_chain_unhold(chain);
469         hammer2_chain_drop(chain);
470 }
471
472 void
473 hammer2_chain_rehold(hammer2_chain_t *chain)
474 {
475         hammer2_chain_lock(chain, HAMMER2_RESOLVE_SHARED);
476         atomic_add_int(&chain->lockcnt, 1);
477         hammer2_chain_unlock(chain);
478 }
479
480 /*
481  * Handles the (potential) last drop of chain->refs from 1->0.  Called with
482  * the mutex exclusively locked, refs == 1, and lockcnt 0.  SMP races are
483  * possible against refs and lockcnt.  We must dispose of the mutex on chain.
484  *
485  * This function returns an unlocked chain for recursive drop or NULL.  It
486  * can return the same chain if it determines it has raced another ref.
487  *
488  * --
489  *
490  * When two chains need to be recursively dropped we use the chain we
491  * would otherwise free to placehold the additional chain.  It's a bit
492  * convoluted but we can't just recurse without potentially blowing out
493  * the kernel stack.
494  *
495  * The chain cannot be freed if it has any children.
496  * The chain cannot be freed if flagged MODIFIED unless we can dispose of it.
497  * The chain cannot be freed if flagged UPDATE unless we can dispose of it.
498  * Any dedup registration can remain intact.
499  *
500  * The core spinlock is allowed to nest child-to-parent (not parent-to-child).
501  */
502 static
503 hammer2_chain_t *
504 hammer2_chain_lastdrop(hammer2_chain_t *chain, int depth)
505 {
506         hammer2_pfs_t *pmp;
507         hammer2_dev_t *hmp;
508         hammer2_chain_t *parent;
509         hammer2_chain_t *rdrop;
510
511         /*
512          * We need chain's spinlock to interlock the sub-tree test.
513          * We already have chain's mutex, protecting chain->parent.
514          *
515          * Remember that chain->refs can be in flux.
516          */
517         hammer2_spin_ex(&chain->core.spin);
518
519         if (chain->parent != NULL) {
520                 /*
521                  * If the chain has a parent the UPDATE bit prevents scrapping
522                  * as the chain is needed to properly flush the parent.  Try
523                  * to complete the 1->0 transition and return NULL.  Retry
524                  * (return chain) if we are unable to complete the 1->0
525                  * transition, else return NULL (nothing more to do).
526                  *
527                  * If the chain has a parent the MODIFIED bit prevents
528                  * scrapping.
529                  *
530                  * Chains with UPDATE/MODIFIED are *not* put on the LRU list!
531                  */
532                 if (chain->flags & (HAMMER2_CHAIN_UPDATE |
533                                     HAMMER2_CHAIN_MODIFIED)) {
534                         if (atomic_cmpset_int(&chain->refs, 1, 0)) {
535                                 hammer2_spin_unex(&chain->core.spin);
536                                 hammer2_chain_assert_no_data(chain);
537                                 hammer2_mtx_unlock(&chain->lock);
538                                 chain = NULL;
539                         } else {
540                                 hammer2_spin_unex(&chain->core.spin);
541                                 hammer2_mtx_unlock(&chain->lock);
542                         }
543                         return (chain);
544                 }
545                 /* spinlock still held */
546         } else if (chain->bref.type == HAMMER2_BREF_TYPE_VOLUME ||
547                    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP) {
548                 /*
549                  * Retain the static vchain and fchain.  Clear bits that
550                  * are not relevant.  Do not clear the MODIFIED bit,
551                  * and certainly do not put it on the delayed-flush queue.
552                  */
553                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
554         } else {
555                 /*
556                  * The chain has no parent and can be flagged for destruction.
557                  * Since it has no parent, UPDATE can also be cleared.
558                  */
559                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
560                 if (chain->flags & HAMMER2_CHAIN_UPDATE)
561                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
562
563                 /*
564                  * If the chain has children we must propagate the DESTROY
565                  * flag downward and rip the disconnected topology apart.
566                  * This is accomplished by calling hammer2_flush() on the
567                  * chain.
568                  *
569                  * Any dedup is already handled by the underlying DIO, so
570                  * we do not have to specifically flush it here.
571                  */
572                 if (chain->core.chain_count) {
573                         hammer2_spin_unex(&chain->core.spin);
574                         hammer2_flush(chain, HAMMER2_FLUSH_TOP |
575                                              HAMMER2_FLUSH_ALL);
576                         hammer2_mtx_unlock(&chain->lock);
577
578                         return(chain);  /* retry drop */
579                 }
580
581                 /*
582                  * Otherwise we can scrap the MODIFIED bit if it is set,
583                  * and continue along the freeing path.
584                  *
585                  * Be sure to clean-out any dedup bits.  Without a parent
586                  * this chain will no longer be visible to the flush code.
587                  * Easy check data_off to avoid the volume root.
588                  */
589                 if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
590                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
591                         atomic_add_long(&hammer2_count_modified_chains, -1);
592                         if (chain->pmp)
593                                 hammer2_pfs_memory_wakeup(chain->pmp, -1);
594                 }
595                 /* spinlock still held */
596         }
597
598         /* spinlock still held */
599
600         /*
601          * If any children exist we must leave the chain intact with refs == 0.
602          * They exist because chains are retained below us which have refs or
603          * may require flushing.
604          *
605          * Retry (return chain) if we fail to transition the refs to 0, else
606          * return NULL indication nothing more to do.
607          *
608          * Chains with children are NOT put on the LRU list.
609          */
610         if (chain->core.chain_count) {
611                 if (atomic_cmpset_int(&chain->refs, 1, 0)) {
612                         hammer2_spin_unex(&chain->core.spin);
613                         hammer2_chain_assert_no_data(chain);
614                         hammer2_mtx_unlock(&chain->lock);
615                         chain = NULL;
616                 } else {
617                         hammer2_spin_unex(&chain->core.spin);
618                         hammer2_mtx_unlock(&chain->lock);
619                 }
620                 return (chain);
621         }
622         /* spinlock still held */
623         /* no chains left under us */
624
625         /*
626          * chain->core has no children left so no accessors can get to our
627          * chain from there.  Now we have to lock the parent core to interlock
628          * remaining possible accessors that might bump chain's refs before
629          * we can safely drop chain's refs with intent to free the chain.
630          */
631         hmp = chain->hmp;
632         pmp = chain->pmp;       /* can be NULL */
633         rdrop = NULL;
634
635         parent = chain->parent;
636
637         /*
638          * WARNING! chain's spin lock is still held here, and other spinlocks
639          *          will be acquired and released in the code below.  We
640          *          cannot be making fancy procedure calls!
641          */
642
643         /*
644          * We can cache the chain if it is associated with a pmp
645          * and not flagged as being destroyed or requesting a full
646          * release.  In this situation the chain is not removed
647          * from its parent, i.e. it can still be looked up.
648          *
649          * We intentionally do not cache DATA chains because these
650          * were likely used to load data into the logical buffer cache
651          * and will not be accessed again for some time.
652          */
653         if ((chain->flags &
654              (HAMMER2_CHAIN_DESTROY | HAMMER2_CHAIN_RELEASE)) == 0 &&
655             chain->pmp &&
656             chain->bref.type != HAMMER2_BREF_TYPE_DATA) {
657                 if (parent)
658                         hammer2_spin_ex(&parent->core.spin);
659                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
660                         /*
661                          * 1->0 transition failed, retry.  Do not drop
662                          * the chain's data yet!
663                          */
664                         if (parent)
665                                 hammer2_spin_unex(&parent->core.spin);
666                         hammer2_spin_unex(&chain->core.spin);
667                         hammer2_mtx_unlock(&chain->lock);
668
669                         return(chain);
670                 }
671
672                 /*
673                  * Success
674                  */
675                 hammer2_chain_assert_no_data(chain);
676
677                 /*
678                  * Make sure we are on the LRU list, clean up excessive
679                  * LRU entries.  We can only really drop one but there might
680                  * be other entries that we can remove from the lru_list
681                  * without dropping.
682                  *
683                  * NOTE: HAMMER2_CHAIN_ONLRU may only be safely set when
684                  *       chain->core.spin AND pmp->lru_spin are held, but
685                  *       can be safely cleared only holding pmp->lru_spin.
686                  */
687                 if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
688                         hammer2_spin_ex(&pmp->lru_spin);
689                         if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
690                                 atomic_set_int(&chain->flags,
691                                                HAMMER2_CHAIN_ONLRU);
692                                 TAILQ_INSERT_TAIL(&pmp->lru_list,
693                                                   chain, lru_node);
694                                 atomic_add_int(&pmp->lru_count, 1);
695                         }
696                         if (pmp->lru_count < HAMMER2_LRU_LIMIT)
697                                 depth = 1;      /* disable lru_list flush */
698                         hammer2_spin_unex(&pmp->lru_spin);
699                 } else {
700                         /* disable lru flush */
701                         depth = 1;
702                 }
703
704                 if (parent) {
705                         hammer2_spin_unex(&parent->core.spin);
706                         parent = NULL;  /* safety */
707                 }
708                 hammer2_spin_unex(&chain->core.spin);
709                 hammer2_mtx_unlock(&chain->lock);
710
711                 /*
712                  * lru_list hysteresis (see above for depth overrides).
713                  * Note that depth also prevents excessive lastdrop recursion.
714                  */
715                 if (depth == 0)
716                         hammer2_chain_lru_flush(pmp);
717
718                 return NULL;
719                 /* NOT REACHED */
720         }
721
722         /*
723          * Make sure we are not on the LRU list.
724          */
725         if (chain->flags & HAMMER2_CHAIN_ONLRU) {
726                 hammer2_spin_ex(&pmp->lru_spin);
727                 if (chain->flags & HAMMER2_CHAIN_ONLRU) {
728                         atomic_add_int(&pmp->lru_count, -1);
729                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
730                         TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
731                 }
732                 hammer2_spin_unex(&pmp->lru_spin);
733         }
734
735         /*
736          * Spinlock the parent and try to drop the last ref on chain.
737          * On success determine if we should dispose of the chain
738          * (remove the chain from its parent, etc).
739          *
740          * (normal core locks are top-down recursive but we define
741          * core spinlocks as bottom-up recursive, so this is safe).
742          */
743         if (parent) {
744                 hammer2_spin_ex(&parent->core.spin);
745                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
746                         /*
747                          * 1->0 transition failed, retry.
748                          */
749                         hammer2_spin_unex(&parent->core.spin);
750                         hammer2_spin_unex(&chain->core.spin);
751                         hammer2_mtx_unlock(&chain->lock);
752
753                         return(chain);
754                 }
755
756                 /*
757                  * 1->0 transition successful, parent spin held to prevent
758                  * new lookups, chain spinlock held to protect parent field.
759                  * Remove chain from the parent.
760                  *
761                  * If the chain is being removed from the parent's btree but
762                  * is not bmapped, we have to adjust live_count downward.  If
763                  * it is bmapped then the blockref is retained in the parent
764                  * as is its associated live_count.  This case can occur when
765                  * a chain added to the topology is unable to flush and is
766                  * then later deleted.
767                  */
768                 if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
769                         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) &&
770                             (chain->flags & HAMMER2_CHAIN_BMAPPED) == 0) {
771                                 atomic_add_int(&parent->core.live_count, -1);
772                         }
773                         RB_REMOVE(hammer2_chain_tree,
774                                   &parent->core.rbtree, chain);
775                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
776                         --parent->core.chain_count;
777                         chain->parent = NULL;
778                 }
779
780                 /*
781                  * If our chain was the last chain in the parent's core the
782                  * core is now empty and its parent might have to be
783                  * re-dropped if it has 0 refs.
784                  */
785                 if (parent->core.chain_count == 0) {
786                         rdrop = parent;
787                         atomic_add_int(&rdrop->refs, 1);
788                         /*
789                         if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0)
790                                 rdrop = NULL;
791                         */
792                 }
793                 hammer2_spin_unex(&parent->core.spin);
794                 parent = NULL;  /* safety */
795                 /* FALL THROUGH */
796         } else {
797                 /*
798                  * No-parent case.
799                  */
800                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
801                         /*
802                          * 1->0 transition failed, retry.
803                          */
804                         hammer2_spin_unex(&parent->core.spin);
805                         hammer2_spin_unex(&chain->core.spin);
806                         hammer2_mtx_unlock(&chain->lock);
807
808                         return(chain);
809                 }
810         }
811
812         /*
813          * Successful 1->0 transition, no parent, no children... no way for
814          * anyone to ref this chain any more.  We can clean-up and free it.
815          *
816          * We still have the core spinlock, and core's chain_count is 0.
817          * Any parent spinlock is gone.
818          */
819         hammer2_spin_unex(&chain->core.spin);
820         hammer2_chain_assert_no_data(chain);
821         hammer2_mtx_unlock(&chain->lock);
822         KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
823                  chain->core.chain_count == 0);
824
825         /*
826          * All locks are gone, no pointers remain to the chain, finish
827          * freeing it.
828          */
829         KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
830                                   HAMMER2_CHAIN_MODIFIED)) == 0);
831
832         /*
833          * Once chain resources are gone we can use the now dead chain
834          * structure to placehold what might otherwise require a recursive
835          * drop, because we have potentially two things to drop and can only
836          * return one directly.
837          */
838         if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
839                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ALLOCATED);
840                 chain->hmp = NULL;
841                 kfree(chain, hmp->mchain);
842         }
843
844         /*
845          * Possible chaining loop when parent re-drop needed.
846          */
847         return(rdrop);
848 }
849
850 /*
851  * Heuristical flush of the LRU, try to reduce the number of entries
852  * on the LRU to (HAMMER2_LRU_LIMIT * 2 / 3).  This procedure is called
853  * only when lru_count exceeds HAMMER2_LRU_LIMIT.
854  */
855 static
856 void
857 hammer2_chain_lru_flush(hammer2_pfs_t *pmp)
858 {
859         hammer2_chain_t *chain;
860
861 again:
862         chain = NULL;
863         hammer2_spin_ex(&pmp->lru_spin);
864         while (pmp->lru_count > HAMMER2_LRU_LIMIT * 2 / 3) {
865                 /*
866                  * Pick a chain off the lru_list, just recycle it quickly
867                  * if LRUHINT is set (the chain was ref'd but left on
868                  * the lru_list, so cycle to the end).
869                  */
870                 chain = TAILQ_FIRST(&pmp->lru_list);
871                 TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
872
873                 if (chain->flags & HAMMER2_CHAIN_LRUHINT) {
874                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
875                         TAILQ_INSERT_TAIL(&pmp->lru_list, chain, lru_node);
876                         chain = NULL;
877                         continue;
878                 }
879
880                 /*
881                  * Ok, we are off the LRU.  We must adjust refs before we
882                  * can safely clear the ONLRU flag.
883                  */
884                 atomic_add_int(&pmp->lru_count, -1);
885                 if (atomic_cmpset_int(&chain->refs, 0, 1)) {
886                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
887                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
888                         break;
889                 }
890                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
891                 chain = NULL;
892         }
893         hammer2_spin_unex(&pmp->lru_spin);
894         if (chain == NULL)
895                 return;
896
897         /*
898          * If we picked a chain off the lru list we may be able to lastdrop
899          * it.  Use a depth of 1 to prevent excessive lastdrop recursion.
900          */
901         while (chain) {
902                 u_int refs;
903
904                 refs = chain->refs;
905                 cpu_ccfence();
906                 KKASSERT(refs > 0);
907
908                 if (refs == 1) {
909                         if (hammer2_mtx_ex_try(&chain->lock) == 0)
910                                 chain = hammer2_chain_lastdrop(chain, 1);
911                         /* retry the same chain, or chain from lastdrop */
912                 } else {
913                         if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
914                                 break;
915                         /* retry the same chain */
916                 }
917                 cpu_pause();
918         }
919         goto again;
920 }
921
922 /*
923  * On last lock release.
924  */
925 static hammer2_io_t *
926 hammer2_chain_drop_data(hammer2_chain_t *chain)
927 {
928         hammer2_io_t *dio;
929
930         if ((dio = chain->dio) != NULL) {
931                 chain->dio = NULL;
932                 chain->data = NULL;
933         } else {
934                 switch(chain->bref.type) {
935                 case HAMMER2_BREF_TYPE_VOLUME:
936                 case HAMMER2_BREF_TYPE_FREEMAP:
937                         break;
938                 default:
939                         if (chain->data != NULL) {
940                                 hammer2_spin_unex(&chain->core.spin);
941                                 panic("chain data not null: "
942                                       "chain %p bref %016jx.%02x "
943                                       "refs %d parent %p dio %p data %p",
944                                       chain, chain->bref.data_off,
945                                       chain->bref.type, chain->refs,
946                                       chain->parent,
947                                       chain->dio, chain->data);
948                         }
949                         KKASSERT(chain->data == NULL);
950                         break;
951                 }
952         }
953         return dio;
954 }
955
956 /*
957  * Lock a referenced chain element, acquiring its data with I/O if necessary,
958  * and specify how you would like the data to be resolved.
959  *
960  * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
961  *
962  * The lock is allowed to recurse, multiple locking ops will aggregate
963  * the requested resolve types.  Once data is assigned it will not be
964  * removed until the last unlock.
965  *
966  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
967  *                         (typically used to avoid device/logical buffer
968  *                          aliasing for data)
969  *
970  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
971  *                         the INITIAL-create state (indirect blocks only).
972  *
973  *                         Do not resolve data elements for DATA chains.
974  *                         (typically used to avoid device/logical buffer
975  *                          aliasing for data)
976  *
977  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
978  *
979  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
980  *                         it will be locked exclusive.
981  *
982  * HAMMER2_RESOLVE_NONBLOCK- (flag) The chain is locked non-blocking.  If
983  *                         the lock fails, EAGAIN is returned.
984  *
985  * NOTE: Embedded elements (volume header, inodes) are always resolved
986  *       regardless.
987  *
988  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
989  *       element will instantiate and zero its buffer, and flush it on
990  *       release.
991  *
992  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
993  *       so as not to instantiate a device buffer, which could alias against
994  *       a logical file buffer.  However, if ALWAYS is specified the
995  *       device buffer will be instantiated anyway.
996  *
997  * NOTE: The return value is always 0 unless NONBLOCK is specified, in which
998  *       case it can be either 0 or EAGAIN.
999  *
1000  * WARNING! This function blocks on I/O if data needs to be fetched.  This
1001  *          blocking can run concurrent with other compatible lock holders
1002  *          who do not need data returning.  The lock is not upgraded to
1003  *          exclusive during a data fetch, a separate bit is used to
1004  *          interlock I/O.  However, an exclusive lock holder can still count
1005  *          on being interlocked against an I/O fetch managed by a shared
1006  *          lock holder.
1007  */
1008 int
1009 hammer2_chain_lock(hammer2_chain_t *chain, int how)
1010 {
1011         KKASSERT(chain->refs > 0);
1012
1013         if (how & HAMMER2_RESOLVE_NONBLOCK) {
1014                 /*
1015                  * We still have to bump lockcnt before acquiring the lock,
1016                  * even for non-blocking operation, because the unlock code
1017                  * live-loops on lockcnt == 1 when dropping the last lock.
1018                  *
1019                  * If the non-blocking operation fails we have to use an
1020                  * unhold sequence to undo the mess.
1021                  *
1022                  * NOTE: LOCKAGAIN must always succeed without blocking,
1023                  *       even if NONBLOCK is specified.
1024                  */
1025                 atomic_add_int(&chain->lockcnt, 1);
1026                 if (how & HAMMER2_RESOLVE_SHARED) {
1027                         if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1028                                 hammer2_mtx_sh_again(&chain->lock);
1029                         } else {
1030                                 if (hammer2_mtx_sh_try(&chain->lock) != 0) {
1031                                         hammer2_chain_unhold(chain);
1032                                         return EAGAIN;
1033                                 }
1034                         }
1035                 } else {
1036                         if (hammer2_mtx_ex_try(&chain->lock) != 0) {
1037                                 hammer2_chain_unhold(chain);
1038                                 return EAGAIN;
1039                         }
1040                 }
1041         } else {
1042                 /*
1043                  * Get the appropriate lock.  If LOCKAGAIN is flagged with
1044                  * SHARED the caller expects a shared lock to already be
1045                  * present and we are giving it another ref.  This case must
1046                  * importantly not block if there is a pending exclusive lock
1047                  * request.
1048                  */
1049                 atomic_add_int(&chain->lockcnt, 1);
1050                 if (how & HAMMER2_RESOLVE_SHARED) {
1051                         if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1052                                 hammer2_mtx_sh_again(&chain->lock);
1053                         } else {
1054                                 hammer2_mtx_sh(&chain->lock);
1055                         }
1056                 } else {
1057                         hammer2_mtx_ex(&chain->lock);
1058                 }
1059         }
1060
1061         /*
1062          * If we already have a valid data pointer make sure the data is
1063          * synchronized to the current cpu, and then no further action is
1064          * necessary.
1065          */
1066         if (chain->data) {
1067                 if (chain->dio)
1068                         hammer2_io_bkvasync(chain->dio);
1069                 return 0;
1070         }
1071
1072         /*
1073          * Do we have to resolve the data?  This is generally only
1074          * applicable to HAMMER2_BREF_TYPE_DATA which is special-cased.
1075          * Other BREF types expects the data to be there.
1076          */
1077         switch(how & HAMMER2_RESOLVE_MASK) {
1078         case HAMMER2_RESOLVE_NEVER:
1079                 return 0;
1080         case HAMMER2_RESOLVE_MAYBE:
1081                 if (chain->flags & HAMMER2_CHAIN_INITIAL)
1082                         return 0;
1083                 if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
1084                         return 0;
1085 #if 0
1086                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
1087                         return 0;
1088                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
1089                         return 0;
1090 #endif
1091                 /* fall through */
1092         case HAMMER2_RESOLVE_ALWAYS:
1093         default:
1094                 break;
1095         }
1096
1097         /*
1098          * Caller requires data
1099          */
1100         hammer2_chain_load_data(chain);
1101
1102         return 0;
1103 }
1104
1105 /*
1106  * Lock the chain, retain the hold, and drop the data persistence count.
1107  * The data should remain valid because we never transitioned lockcnt
1108  * through 0.
1109  */
1110 void
1111 hammer2_chain_lock_unhold(hammer2_chain_t *chain, int how)
1112 {
1113         hammer2_chain_lock(chain, how);
1114         atomic_add_int(&chain->lockcnt, -1);
1115 }
1116
1117 #if 0
1118 /*
1119  * Downgrade an exclusive chain lock to a shared chain lock.
1120  *
1121  * NOTE: There is no upgrade equivalent due to the ease of
1122  *       deadlocks in that direction.
1123  */
1124 void
1125 hammer2_chain_lock_downgrade(hammer2_chain_t *chain)
1126 {
1127         hammer2_mtx_downgrade(&chain->lock);
1128 }
1129 #endif
1130
1131 /*
1132  * Issue I/O and install chain->data.  Caller must hold a chain lock, lock
1133  * may be of any type.
1134  *
1135  * Once chain->data is set it cannot be disposed of until all locks are
1136  * released.
1137  *
1138  * Make sure the data is synchronized to the current cpu.
1139  */
1140 void
1141 hammer2_chain_load_data(hammer2_chain_t *chain)
1142 {
1143         hammer2_blockref_t *bref;
1144         hammer2_dev_t *hmp;
1145         hammer2_io_t *dio;
1146         char *bdata;
1147         int error;
1148
1149         /*
1150          * Degenerate case, data already present, or chain has no media
1151          * reference to load.
1152          */
1153         KKASSERT(chain->lock.mtx_lock & MTX_MASK);
1154         if (chain->data) {
1155                 if (chain->dio)
1156                         hammer2_io_bkvasync(chain->dio);
1157                 return;
1158         }
1159         if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0)
1160                 return;
1161
1162         hmp = chain->hmp;
1163         KKASSERT(hmp != NULL);
1164
1165         /*
1166          * Gain the IOINPROG bit, interlocked block.
1167          */
1168         for (;;) {
1169                 u_int oflags;
1170                 u_int nflags;
1171
1172                 oflags = chain->flags;
1173                 cpu_ccfence();
1174                 if (oflags & HAMMER2_CHAIN_IOINPROG) {
1175                         nflags = oflags | HAMMER2_CHAIN_IOSIGNAL;
1176                         tsleep_interlock(&chain->flags, 0);
1177                         if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1178                                 tsleep(&chain->flags, PINTERLOCKED,
1179                                         "h2iocw", 0);
1180                         }
1181                         /* retry */
1182                 } else {
1183                         nflags = oflags | HAMMER2_CHAIN_IOINPROG;
1184                         if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1185                                 break;
1186                         }
1187                         /* retry */
1188                 }
1189         }
1190
1191         /*
1192          * We own CHAIN_IOINPROG
1193          *
1194          * Degenerate case if we raced another load.
1195          */
1196         if (chain->data) {
1197                 if (chain->dio)
1198                         hammer2_io_bkvasync(chain->dio);
1199                 goto done;
1200         }
1201
1202         /*
1203          * We must resolve to a device buffer, either by issuing I/O or
1204          * by creating a zero-fill element.  We do not mark the buffer
1205          * dirty when creating a zero-fill element (the hammer2_chain_modify()
1206          * API must still be used to do that).
1207          *
1208          * The device buffer is variable-sized in powers of 2 down
1209          * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
1210          * chunk always contains buffers of the same size. (XXX)
1211          *
1212          * The minimum physical IO size may be larger than the variable
1213          * block size.
1214          */
1215         bref = &chain->bref;
1216
1217         /*
1218          * The getblk() optimization can only be used on newly created
1219          * elements if the physical block size matches the request.
1220          */
1221         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1222                 error = hammer2_io_new(hmp, bref->type,
1223                                        bref->data_off, chain->bytes,
1224                                        &chain->dio);
1225         } else {
1226                 error = hammer2_io_bread(hmp, bref->type,
1227                                          bref->data_off, chain->bytes,
1228                                          &chain->dio);
1229                 hammer2_adjreadcounter(chain->bref.type, chain->bytes);
1230         }
1231         if (error) {
1232                 chain->error = HAMMER2_ERROR_EIO;
1233                 kprintf("hammer2_chain_load_data: I/O error %016jx: %d\n",
1234                         (intmax_t)bref->data_off, error);
1235                 hammer2_io_bqrelse(&chain->dio);
1236                 goto done;
1237         }
1238         chain->error = 0;
1239
1240         /*
1241          * This isn't perfect and can be ignored on OSs which do not have
1242          * an indication as to whether a buffer is coming from cache or
1243          * if I/O was actually issued for the read.  TESTEDGOOD will work
1244          * pretty well without the B_IOISSUED logic because chains are
1245          * cached, but in that situation (without B_IOISSUED) it will not
1246          * detect whether a re-read via I/O is corrupted verses the original
1247          * read.
1248          *
1249          * We can't re-run the CRC on every fresh lock.  That would be
1250          * insanely expensive.
1251          *
1252          * If the underlying kernel buffer covers the entire chain we can
1253          * use the B_IOISSUED indication to determine if we have to re-run
1254          * the CRC on chain data for chains that managed to stay cached
1255          * across the kernel disposal of the original buffer.
1256          */
1257         if ((dio = chain->dio) != NULL && dio->bp) {
1258                 struct buf *bp = dio->bp;
1259
1260                 if (dio->psize == chain->bytes &&
1261                     (bp->b_flags & B_IOISSUED)) {
1262                         atomic_clear_int(&chain->flags,
1263                                          HAMMER2_CHAIN_TESTEDGOOD);
1264                         bp->b_flags &= ~B_IOISSUED;
1265                 }
1266         }
1267
1268         /*
1269          * NOTE: A locked chain's data cannot be modified without first
1270          *       calling hammer2_chain_modify().
1271          */
1272
1273         /*
1274          * NOTE: hammer2_io_data() call issues bkvasync()
1275          */
1276         bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
1277
1278         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1279                 /*
1280                  * Clear INITIAL.  In this case we used io_new() and the
1281                  * buffer has been zero'd and marked dirty.
1282                  *
1283                  * CHAIN_MODIFIED has not been set yet, and we leave it
1284                  * that way for now.  Set a temporary CHAIN_NOTTESTED flag
1285                  * to prevent hammer2_chain_testcheck() from trying to match
1286                  * a check code that has not yet been generated.  This bit
1287                  * should NOT end up on the actual media.
1288                  */
1289                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1290                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_NOTTESTED);
1291         } else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1292                 /*
1293                  * check data not currently synchronized due to
1294                  * modification.  XXX assumes data stays in the buffer
1295                  * cache, which might not be true (need biodep on flush
1296                  * to calculate crc?  or simple crc?).
1297                  */
1298         } else if ((chain->flags & HAMMER2_CHAIN_TESTEDGOOD) == 0) {
1299                 if (hammer2_chain_testcheck(chain, bdata) == 0) {
1300                         chain->error = HAMMER2_ERROR_CHECK;
1301                 } else {
1302                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_TESTEDGOOD);
1303                 }
1304         }
1305
1306         /*
1307          * Setup the data pointer, either pointing it to an embedded data
1308          * structure and copying the data from the buffer, or pointing it
1309          * into the buffer.
1310          *
1311          * The buffer is not retained when copying to an embedded data
1312          * structure in order to avoid potential deadlocks or recursions
1313          * on the same physical buffer.
1314          *
1315          * WARNING! Other threads can start using the data the instant we
1316          *          set chain->data non-NULL.
1317          */
1318         switch (bref->type) {
1319         case HAMMER2_BREF_TYPE_VOLUME:
1320         case HAMMER2_BREF_TYPE_FREEMAP:
1321                 /*
1322                  * Copy data from bp to embedded buffer
1323                  */
1324                 panic("hammer2_chain_load_data: unresolved volume header");
1325                 break;
1326         case HAMMER2_BREF_TYPE_DIRENT:
1327                 KKASSERT(chain->bytes != 0);
1328                 /* fall through */
1329         case HAMMER2_BREF_TYPE_INODE:
1330         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1331         case HAMMER2_BREF_TYPE_INDIRECT:
1332         case HAMMER2_BREF_TYPE_DATA:
1333         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1334         default:
1335                 /*
1336                  * Point data at the device buffer and leave dio intact.
1337                  */
1338                 chain->data = (void *)bdata;
1339                 break;
1340         }
1341
1342         /*
1343          * Release HAMMER2_CHAIN_IOINPROG and signal waiters if requested.
1344          */
1345 done:
1346         for (;;) {
1347                 u_int oflags;
1348                 u_int nflags;
1349
1350                 oflags = chain->flags;
1351                 nflags = oflags & ~(HAMMER2_CHAIN_IOINPROG |
1352                                     HAMMER2_CHAIN_IOSIGNAL);
1353                 KKASSERT(oflags & HAMMER2_CHAIN_IOINPROG);
1354                 if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1355                         if (oflags & HAMMER2_CHAIN_IOSIGNAL)
1356                                 wakeup(&chain->flags);
1357                         break;
1358                 }
1359         }
1360 }
1361
1362 /*
1363  * Unlock and deref a chain element.
1364  *
1365  * Remember that the presence of children under chain prevent the chain's
1366  * destruction but do not add additional references, so the dio will still
1367  * be dropped.
1368  */
1369 void
1370 hammer2_chain_unlock(hammer2_chain_t *chain)
1371 {
1372         hammer2_io_t *dio;
1373         u_int lockcnt;
1374         int iter = 0;
1375
1376         /*
1377          * If multiple locks are present (or being attempted) on this
1378          * particular chain we can just unlock, drop refs, and return.
1379          *
1380          * Otherwise fall-through on the 1->0 transition.
1381          */
1382         for (;;) {
1383                 lockcnt = chain->lockcnt;
1384                 KKASSERT(lockcnt > 0);
1385                 cpu_ccfence();
1386                 if (lockcnt > 1) {
1387                         if (atomic_cmpset_int(&chain->lockcnt,
1388                                               lockcnt, lockcnt - 1)) {
1389                                 hammer2_mtx_unlock(&chain->lock);
1390                                 return;
1391                         }
1392                 } else if (hammer2_mtx_upgrade_try(&chain->lock) == 0) {
1393                         /* while holding the mutex exclusively */
1394                         if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
1395                                 break;
1396                 } else {
1397                         /*
1398                          * This situation can easily occur on SMP due to
1399                          * the gap inbetween the 1->0 transition and the
1400                          * final unlock.  We cannot safely block on the
1401                          * mutex because lockcnt might go above 1.
1402                          *
1403                          * XXX Sleep for one tick if it takes too long.
1404                          */
1405                         if (++iter > 1000) {
1406                                 if (iter > 1000 + hz) {
1407                                         kprintf("hammer2: h2race2 %p\n", chain);
1408                                         iter = 1000;
1409                                 }
1410                                 tsleep(&iter, 0, "h2race2", 1);
1411                         }
1412                         cpu_pause();
1413                 }
1414                 /* retry */
1415         }
1416
1417         /*
1418          * Last unlock / mutex upgraded to exclusive.  Drop the data
1419          * reference.
1420          */
1421         dio = hammer2_chain_drop_data(chain);
1422         if (dio)
1423                 hammer2_io_bqrelse(&dio);
1424         hammer2_mtx_unlock(&chain->lock);
1425 }
1426
1427 /*
1428  * Unlock and hold chain data intact
1429  */
1430 void
1431 hammer2_chain_unlock_hold(hammer2_chain_t *chain)
1432 {
1433         atomic_add_int(&chain->lockcnt, 1);
1434         hammer2_chain_unlock(chain);
1435 }
1436
1437 /*
1438  * Helper to obtain the blockref[] array base and count for a chain.
1439  *
1440  * XXX Not widely used yet, various use cases need to be validated and
1441  *     converted to use this function.
1442  */
1443 static
1444 hammer2_blockref_t *
1445 hammer2_chain_base_and_count(hammer2_chain_t *parent, int *countp)
1446 {
1447         hammer2_blockref_t *base;
1448         int count;
1449
1450         if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1451                 base = NULL;
1452
1453                 switch(parent->bref.type) {
1454                 case HAMMER2_BREF_TYPE_INODE:
1455                         count = HAMMER2_SET_COUNT;
1456                         break;
1457                 case HAMMER2_BREF_TYPE_INDIRECT:
1458                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1459                         count = parent->bytes / sizeof(hammer2_blockref_t);
1460                         break;
1461                 case HAMMER2_BREF_TYPE_VOLUME:
1462                         count = HAMMER2_SET_COUNT;
1463                         break;
1464                 case HAMMER2_BREF_TYPE_FREEMAP:
1465                         count = HAMMER2_SET_COUNT;
1466                         break;
1467                 default:
1468                         panic("hammer2_chain_base_and_count: "
1469                               "unrecognized blockref type: %d",
1470                               parent->bref.type);
1471                         count = 0;
1472                         break;
1473                 }
1474         } else {
1475                 switch(parent->bref.type) {
1476                 case HAMMER2_BREF_TYPE_INODE:
1477                         base = &parent->data->ipdata.u.blockset.blockref[0];
1478                         count = HAMMER2_SET_COUNT;
1479                         break;
1480                 case HAMMER2_BREF_TYPE_INDIRECT:
1481                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1482                         base = &parent->data->npdata[0];
1483                         count = parent->bytes / sizeof(hammer2_blockref_t);
1484                         break;
1485                 case HAMMER2_BREF_TYPE_VOLUME:
1486                         base = &parent->data->voldata.
1487                                         sroot_blockset.blockref[0];
1488                         count = HAMMER2_SET_COUNT;
1489                         break;
1490                 case HAMMER2_BREF_TYPE_FREEMAP:
1491                         base = &parent->data->blkset.blockref[0];
1492                         count = HAMMER2_SET_COUNT;
1493                         break;
1494                 default:
1495                         panic("hammer2_chain_base_and_count: "
1496                               "unrecognized blockref type: %d",
1497                               parent->bref.type);
1498                         count = 0;
1499                         break;
1500                 }
1501         }
1502         *countp = count;
1503
1504         return base;
1505 }
1506
1507 /*
1508  * This counts the number of live blockrefs in a block array and
1509  * also calculates the point at which all remaining blockrefs are empty.
1510  * This routine can only be called on a live chain.
1511  *
1512  * Caller holds the chain locked, but possibly with a shared lock.  We
1513  * must use an exclusive spinlock to prevent corruption.
1514  *
1515  * NOTE: Flag is not set until after the count is complete, allowing
1516  *       callers to test the flag without holding the spinlock.
1517  *
1518  * NOTE: If base is NULL the related chain is still in the INITIAL
1519  *       state and there are no blockrefs to count.
1520  *
1521  * NOTE: live_count may already have some counts accumulated due to
1522  *       creation and deletion and could even be initially negative.
1523  */
1524 void
1525 hammer2_chain_countbrefs(hammer2_chain_t *chain,
1526                          hammer2_blockref_t *base, int count)
1527 {
1528         hammer2_spin_ex(&chain->core.spin);
1529         if ((chain->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0) {
1530                 if (base) {
1531                         while (--count >= 0) {
1532                                 if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1533                                         break;
1534                         }
1535                         chain->core.live_zero = count + 1;
1536                         while (count >= 0) {
1537                                 if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1538                                         atomic_add_int(&chain->core.live_count,
1539                                                        1);
1540                                 --count;
1541                         }
1542                 } else {
1543                         chain->core.live_zero = 0;
1544                 }
1545                 /* else do not modify live_count */
1546                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_COUNTEDBREFS);
1547         }
1548         hammer2_spin_unex(&chain->core.spin);
1549 }
1550
1551 /*
1552  * Resize the chain's physical storage allocation in-place.  This function does
1553  * not usually adjust the data pointer and must be followed by (typically) a
1554  * hammer2_chain_modify() call to copy any old data over and adjust the
1555  * data pointer.
1556  *
1557  * Chains can be resized smaller without reallocating the storage.  Resizing
1558  * larger will reallocate the storage.  Excess or prior storage is reclaimed
1559  * asynchronously at a later time.
1560  *
1561  * An nradix value of 0 is special-cased to mean that the storage should
1562  * be disassociated, that is the chain is being resized to 0 bytes (not 1
1563  * byte).
1564  *
1565  * Must be passed an exclusively locked parent and chain.
1566  *
1567  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1568  * to avoid instantiating a device buffer that conflicts with the vnode data
1569  * buffer.  However, because H2 can compress or encrypt data, the chain may
1570  * have a dio assigned to it in those situations, and they do not conflict.
1571  *
1572  * XXX return error if cannot resize.
1573  */
1574 int
1575 hammer2_chain_resize(hammer2_chain_t *chain,
1576                      hammer2_tid_t mtid, hammer2_off_t dedup_off,
1577                      int nradix, int flags)
1578 {
1579         hammer2_dev_t *hmp;
1580         size_t obytes;
1581         size_t nbytes;
1582         int error;
1583
1584         hmp = chain->hmp;
1585
1586         /*
1587          * Only data and indirect blocks can be resized for now.
1588          * (The volu root, inodes, and freemap elements use a fixed size).
1589          */
1590         KKASSERT(chain != &hmp->vchain);
1591         KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1592                  chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1593                  chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1594
1595         /*
1596          * Nothing to do if the element is already the proper size
1597          */
1598         obytes = chain->bytes;
1599         nbytes = (nradix) ? (1U << nradix) : 0;
1600         if (obytes == nbytes)
1601                 return (chain->error);
1602
1603         /*
1604          * Make sure the old data is instantiated so we can copy it.  If this
1605          * is a data block, the device data may be superfluous since the data
1606          * might be in a logical block, but compressed or encrypted data is
1607          * another matter.
1608          *
1609          * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
1610          */
1611         error = hammer2_chain_modify(chain, mtid, dedup_off, 0);
1612         if (error)
1613                 return error;
1614
1615         /*
1616          * Reallocate the block, even if making it smaller (because different
1617          * block sizes may be in different regions).
1618          *
1619          * NOTE: Operation does not copy the data and may only be used
1620          *       to resize data blocks in-place, or directory entry blocks
1621          *       which are about to be modified in some manner.
1622          */
1623         error = hammer2_freemap_alloc(chain, nbytes);
1624         if (error)
1625                 return error;
1626
1627         chain->bytes = nbytes;
1628
1629         /*
1630          * We don't want the followup chain_modify() to try to copy data
1631          * from the old (wrong-sized) buffer.  It won't know how much to
1632          * copy.  This case should only occur during writes when the
1633          * originator already has the data to write in-hand.
1634          */
1635         if (chain->dio) {
1636                 KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1637                          chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1638                 hammer2_io_brelse(&chain->dio);
1639                 chain->data = NULL;
1640         }
1641         return (chain->error);
1642 }
1643
1644 /*
1645  * Set the chain modified so its data can be changed by the caller, or
1646  * install deduplicated data.  The caller must call this routine for each
1647  * set of modifications it makes, even if the chain is already flagged
1648  * MODIFIED.
1649  *
1650  * Sets bref.modify_tid to mtid only if mtid != 0.  Note that bref.modify_tid
1651  * is a CLC (cluster level change) field and is not updated by parent
1652  * propagation during a flush.
1653  *
1654  * Returns an appropriate HAMMER2_ERROR_* code, which will generally reflect
1655  * chain->error except for HAMMER2_ERROR_ENOSPC.  If the allocation fails
1656  * due to no space available, HAMMER2_ERROR_ENOSPC is returned and the chain
1657  * remains unmodified with its old data ref intact and chain->error
1658  * unchanged.
1659  *
1660  *                               Dedup Handling
1661  *
1662  * If the DEDUPABLE flag is set in the chain the storage must be reallocated
1663  * even if the chain is still flagged MODIFIED.  In this case the chain's
1664  * DEDUPABLE flag will be cleared once the new storage has been assigned.
1665  *
1666  * If the caller passes a non-zero dedup_off we will use it to assign the
1667  * new storage.  The MODIFIED flag will be *CLEARED* in this case, and
1668  * DEDUPABLE will be set (NOTE: the UPDATE flag is always set).  The caller
1669  * must not modify the data content upon return.
1670  */
1671 int
1672 hammer2_chain_modify(hammer2_chain_t *chain, hammer2_tid_t mtid,
1673                      hammer2_off_t dedup_off, int flags)
1674 {
1675         hammer2_blockref_t obref;
1676         hammer2_dev_t *hmp;
1677         hammer2_io_t *dio;
1678         int error;
1679         int wasinitial;
1680         int setmodified;
1681         int setupdate;
1682         int newmod;
1683         char *bdata;
1684
1685         hmp = chain->hmp;
1686         obref = chain->bref;
1687         KKASSERT(chain->lock.mtx_lock & MTX_EXCLUSIVE);
1688
1689         /*
1690          * Data is not optional for freemap chains (we must always be sure
1691          * to copy the data on COW storage allocations).
1692          */
1693         if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1694             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1695                 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1696                          (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1697         }
1698
1699         /*
1700          * Data must be resolved if already assigned, unless explicitly
1701          * flagged otherwise.  If we cannot safety load the data the
1702          * modification fails and we return early.
1703          */
1704         if (chain->data == NULL && chain->bytes != 0 &&
1705             (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1706             (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1707                 hammer2_chain_load_data(chain);
1708                 if (chain->error)
1709                         return (chain->error);
1710         }
1711         error = 0;
1712
1713         /*
1714          * Set MODIFIED to indicate that the chain has been modified.  A new
1715          * allocation is required when modifying a chain.
1716          *
1717          * Set UPDATE to ensure that the blockref is updated in the parent.
1718          *
1719          * If MODIFIED is already set determine if we can reuse the assigned
1720          * data block or if we need a new data block.
1721          */
1722         if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1723                 /*
1724                  * Must set modified bit.
1725                  */
1726                 atomic_add_long(&hammer2_count_modified_chains, 1);
1727                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1728                 hammer2_pfs_memory_inc(chain->pmp);  /* can be NULL */
1729                 setmodified = 1;
1730
1731                 /*
1732                  * We may be able to avoid a copy-on-write if the chain's
1733                  * check mode is set to NONE and the chain's current
1734                  * modify_tid is beyond the last explicit snapshot tid.
1735                  *
1736                  * This implements HAMMER2's overwrite-in-place feature.
1737                  *
1738                  * NOTE! This data-block cannot be used as a de-duplication
1739                  *       source when the check mode is set to NONE.
1740                  */
1741                 if ((chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1742                      chain->bref.type == HAMMER2_BREF_TYPE_DIRENT) &&
1743                     (chain->flags & HAMMER2_CHAIN_INITIAL) == 0 &&
1744                     (chain->flags & HAMMER2_CHAIN_DEDUPABLE) == 0 &&
1745                     HAMMER2_DEC_CHECK(chain->bref.methods) ==
1746                      HAMMER2_CHECK_NONE &&
1747                     chain->pmp &&
1748                     chain->bref.modify_tid >
1749                      chain->pmp->iroot->meta.pfs_lsnap_tid) {
1750                         /*
1751                          * Sector overwrite allowed.
1752                          */
1753                         newmod = 0;
1754                 } else if ((hmp->hflags & HMNT2_EMERG) &&
1755                            chain->pmp &&
1756                            chain->bref.modify_tid >
1757                             chain->pmp->iroot->meta.pfs_lsnap_tid) {
1758                         /*
1759                          * If in emergency delete mode then do a modify-in-
1760                          * place on any chain type belonging to the PFS as
1761                          * long as it doesn't mess up a snapshot.  We might
1762                          * be forced to do this anyway a little further down
1763                          * in the code if the allocation fails.
1764                          *
1765                          * Also note that in emergency mode, these modify-in-
1766                          * place operations are NOT SAFE.  A storage failure,
1767                          * power failure, or panic can corrupt the filesystem.
1768                          */
1769                         newmod = 0;
1770                 } else {
1771                         /*
1772                          * Sector overwrite not allowed, must copy-on-write.
1773                          */
1774                         newmod = 1;
1775                 }
1776         } else if (chain->flags & HAMMER2_CHAIN_DEDUPABLE) {
1777                 /*
1778                  * If the modified chain was registered for dedup we need
1779                  * a new allocation.  This only happens for delayed-flush
1780                  * chains (i.e. which run through the front-end buffer
1781                  * cache).
1782                  */
1783                 newmod = 1;
1784                 setmodified = 0;
1785         } else {
1786                 /*
1787                  * Already flagged modified, no new allocation is needed.
1788                  */
1789                 newmod = 0;
1790                 setmodified = 0;
1791         }
1792
1793         /*
1794          * Flag parent update required.
1795          */
1796         if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
1797                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1798                 setupdate = 1;
1799         } else {
1800                 setupdate = 0;
1801         }
1802
1803         /*
1804          * The XOP code returns held but unlocked focus chains.  This
1805          * prevents the chain from being destroyed but does not prevent
1806          * it from being modified.  diolk is used to interlock modifications
1807          * against XOP frontend accesses to the focus.
1808          *
1809          * This allows us to theoretically avoid deadlocking the frontend
1810          * if one of the backends lock up by not formally locking the
1811          * focused chain in the frontend.  In addition, the synchronization
1812          * code relies on this mechanism to avoid deadlocking concurrent
1813          * synchronization threads.
1814          */
1815         lockmgr(&chain->diolk, LK_EXCLUSIVE);
1816
1817         /*
1818          * The modification or re-modification requires an allocation and
1819          * possible COW.  If an error occurs, the previous content and data
1820          * reference is retained and the modification fails.
1821          *
1822          * If dedup_off is non-zero, the caller is requesting a deduplication
1823          * rather than a modification.  The MODIFIED bit is not set and the
1824          * data offset is set to the deduplication offset.  The data cannot
1825          * be modified.
1826          *
1827          * NOTE: The dedup offset is allowed to be in a partially free state
1828          *       and we must be sure to reset it to a fully allocated state
1829          *       to force two bulkfree passes to free it again.
1830          *
1831          * NOTE: Only applicable when chain->bytes != 0.
1832          *
1833          * XXX can a chain already be marked MODIFIED without a data
1834          * assignment?  If not, assert here instead of testing the case.
1835          */
1836         if (chain != &hmp->vchain && chain != &hmp->fchain &&
1837             chain->bytes) {
1838                 if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1839                     newmod
1840                 ) {
1841                         /*
1842                          * NOTE: We do not have to remove the dedup
1843                          *       registration because the area is still
1844                          *       allocated and the underlying DIO will
1845                          *       still be flushed.
1846                          */
1847                         if (dedup_off) {
1848                                 chain->bref.data_off = dedup_off;
1849                                 chain->bytes = 1 << (dedup_off &
1850                                                      HAMMER2_OFF_MASK_RADIX);
1851                                 chain->error = 0;
1852                                 atomic_clear_int(&chain->flags,
1853                                                  HAMMER2_CHAIN_MODIFIED);
1854                                 atomic_add_long(&hammer2_count_modified_chains,
1855                                                 -1);
1856                                 if (chain->pmp) {
1857                                         hammer2_pfs_memory_wakeup(
1858                                                 chain->pmp, -1);
1859                                 }
1860                                 hammer2_freemap_adjust(hmp, &chain->bref,
1861                                                 HAMMER2_FREEMAP_DORECOVER);
1862                                 atomic_set_int(&chain->flags,
1863                                                 HAMMER2_CHAIN_DEDUPABLE);
1864                         } else {
1865                                 error = hammer2_freemap_alloc(chain,
1866                                                               chain->bytes);
1867                                 atomic_clear_int(&chain->flags,
1868                                                 HAMMER2_CHAIN_DEDUPABLE);
1869
1870                                 /*
1871                                  * If we are unable to allocate a new block
1872                                  * but we are in emergency mode, issue a
1873                                  * warning to the console and reuse the same
1874                                  * block.
1875                                  *
1876                                  * We behave as if the allocation were
1877                                  * successful.
1878                                  *
1879                                  * THIS IS IMPORTANT: These modifications
1880                                  * are virtually guaranteed to corrupt any
1881                                  * snapshots related to this filesystem.
1882                                  */
1883                                 if (error && (hmp->hflags & HMNT2_EMERG)) {
1884                                         error = 0;
1885                                         chain->bref.flags |=
1886                                                 HAMMER2_BREF_FLAG_EMERG_MIP;
1887
1888                                         krateprintf(&krate_h2em,
1889                                             "hammer2: Emergency Mode WARNING: "
1890                                             "Operation will likely corrupt "
1891                                             "related snapshot: "
1892                                             "%016jx.%02x key=%016jx\n",
1893                                             chain->bref.data_off,
1894                                             chain->bref.type,
1895                                             chain->bref.key);
1896                                 } else if (error == 0) {
1897                                         chain->bref.flags &=
1898                                                 ~HAMMER2_BREF_FLAG_EMERG_MIP;
1899                                 }
1900                         }
1901                 }
1902         }
1903
1904         /*
1905          * Stop here if error.  We have to undo any flag bits we might
1906          * have set above.
1907          */
1908         if (error) {
1909                 if (setmodified) {
1910                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1911                         atomic_add_long(&hammer2_count_modified_chains, -1);
1912                         if (chain->pmp)
1913                                 hammer2_pfs_memory_wakeup(chain->pmp, -1);
1914                 }
1915                 if (setupdate) {
1916                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1917                 }
1918                 lockmgr(&chain->diolk, LK_RELEASE);
1919
1920                 return error;
1921         }
1922
1923         /*
1924          * Update mirror_tid and modify_tid.  modify_tid is only updated
1925          * if not passed as zero (during flushes, parent propagation passes
1926          * the value 0).
1927          *
1928          * NOTE: chain->pmp could be the device spmp.
1929          */
1930         chain->bref.mirror_tid = hmp->voldata.mirror_tid + 1;
1931         if (mtid)
1932                 chain->bref.modify_tid = mtid;
1933
1934         /*
1935          * Set BMAPUPD to tell the flush code that an existing blockmap entry
1936          * requires updating as well as to tell the delete code that the
1937          * chain's blockref might not exactly match (in terms of physical size
1938          * or block offset) the one in the parent's blocktable.  The base key
1939          * of course will still match.
1940          */
1941         if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1942                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1943
1944         /*
1945          * Short-cut data block handling when the caller does not need an
1946          * actual data reference to (aka OPTDATA), as long as the chain does
1947          * not already have a data pointer to the data and no de-duplication
1948          * occurred.
1949          *
1950          * This generally means that the modifications are being done via the
1951          * logical buffer cache.
1952          *
1953          * NOTE: If deduplication occurred we have to run through the data
1954          *       stuff to clear INITIAL, and the caller will likely want to
1955          *       assign the check code anyway.  Leaving INITIAL set on a
1956          *       dedup can be deadly (it can cause the block to be zero'd!).
1957          *
1958          * This code also handles bytes == 0 (most dirents).
1959          */
1960         if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1961             (flags & HAMMER2_MODIFY_OPTDATA) &&
1962             chain->data == NULL) {
1963                 if (dedup_off == 0) {
1964                         KKASSERT(chain->dio == NULL);
1965                         goto skip2;
1966                 }
1967         }
1968
1969         /*
1970          * Clearing the INITIAL flag (for indirect blocks) indicates that
1971          * we've processed the uninitialized storage allocation.
1972          *
1973          * If this flag is already clear we are likely in a copy-on-write
1974          * situation but we have to be sure NOT to bzero the storage if
1975          * no data is present.
1976          *
1977          * Clearing of NOTTESTED is allowed if the MODIFIED bit is set,
1978          */
1979         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1980                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1981                 wasinitial = 1;
1982         } else {
1983                 wasinitial = 0;
1984         }
1985
1986         /*
1987          * Instantiate data buffer and possibly execute COW operation
1988          */
1989         switch(chain->bref.type) {
1990         case HAMMER2_BREF_TYPE_VOLUME:
1991         case HAMMER2_BREF_TYPE_FREEMAP:
1992                 /*
1993                  * The data is embedded, no copy-on-write operation is
1994                  * needed.
1995                  */
1996                 KKASSERT(chain->dio == NULL);
1997                 break;
1998         case HAMMER2_BREF_TYPE_DIRENT:
1999                 /*
2000                  * The data might be fully embedded.
2001                  */
2002                 if (chain->bytes == 0) {
2003                         KKASSERT(chain->dio == NULL);
2004                         break;
2005                 }
2006                 /* fall through */
2007         case HAMMER2_BREF_TYPE_INODE:
2008         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2009         case HAMMER2_BREF_TYPE_DATA:
2010         case HAMMER2_BREF_TYPE_INDIRECT:
2011         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2012                 /*
2013                  * Perform the copy-on-write operation
2014                  *
2015                  * zero-fill or copy-on-write depending on whether
2016                  * chain->data exists or not and set the dirty state for
2017                  * the new buffer.  hammer2_io_new() will handle the
2018                  * zero-fill.
2019                  *
2020                  * If a dedup_off was supplied this is an existing block
2021                  * and no COW, copy, or further modification is required.
2022                  */
2023                 KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
2024
2025                 if (wasinitial && dedup_off == 0) {
2026                         error = hammer2_io_new(hmp, chain->bref.type,
2027                                                chain->bref.data_off,
2028                                                chain->bytes, &dio);
2029                 } else {
2030                         error = hammer2_io_bread(hmp, chain->bref.type,
2031                                                  chain->bref.data_off,
2032                                                  chain->bytes, &dio);
2033                 }
2034                 hammer2_adjreadcounter(chain->bref.type, chain->bytes);
2035
2036                 /*
2037                  * If an I/O error occurs make sure callers cannot accidently
2038                  * modify the old buffer's contents and corrupt the filesystem.
2039                  *
2040                  * NOTE: hammer2_io_data() call issues bkvasync()
2041                  */
2042                 if (error) {
2043                         kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
2044                                 hmp);
2045                         chain->error = HAMMER2_ERROR_EIO;
2046                         hammer2_io_brelse(&dio);
2047                         hammer2_io_brelse(&chain->dio);
2048                         chain->data = NULL;
2049                         break;
2050                 }
2051                 chain->error = 0;
2052                 bdata = hammer2_io_data(dio, chain->bref.data_off);
2053
2054                 if (chain->data) {
2055                         /*
2056                          * COW (unless a dedup).
2057                          */
2058                         KKASSERT(chain->dio != NULL);
2059                         if (chain->data != (void *)bdata && dedup_off == 0) {
2060                                 bcopy(chain->data, bdata, chain->bytes);
2061                         }
2062                 } else if (wasinitial == 0 && dedup_off == 0) {
2063                         /*
2064                          * We have a problem.  We were asked to COW but
2065                          * we don't have any data to COW with!
2066                          */
2067                         panic("hammer2_chain_modify: having a COW %p\n",
2068                               chain);
2069                 }
2070
2071                 /*
2072                  * Retire the old buffer, replace with the new.  Dirty or
2073                  * redirty the new buffer.
2074                  *
2075                  * WARNING! The system buffer cache may have already flushed
2076                  *          the buffer, so we must be sure to [re]dirty it
2077                  *          for further modification.
2078                  *
2079                  *          If dedup_off was supplied, the caller is not
2080                  *          expected to make any further modification to the
2081                  *          buffer.
2082                  *
2083                  * WARNING! hammer2_get_gdata() assumes dio never transitions
2084                  *          through NULL in order to optimize away unnecessary
2085                  *          diolk operations.
2086                  */
2087                 {
2088                         hammer2_io_t *tio;
2089
2090                         if ((tio = chain->dio) != NULL)
2091                                 hammer2_io_bqrelse(&tio);
2092                         chain->data = (void *)bdata;
2093                         chain->dio = dio;
2094                         if (dedup_off == 0)
2095                                 hammer2_io_setdirty(dio);
2096                 }
2097                 break;
2098         default:
2099                 panic("hammer2_chain_modify: illegal non-embedded type %d",
2100                       chain->bref.type);
2101                 break;
2102
2103         }
2104 skip2:
2105         /*
2106          * setflush on parent indicating that the parent must recurse down
2107          * to us.  Do not call on chain itself which might already have it
2108          * set.
2109          */
2110         if (chain->parent)
2111                 hammer2_chain_setflush(chain->parent);
2112         lockmgr(&chain->diolk, LK_RELEASE);
2113
2114         return (chain->error);
2115 }
2116
2117 /*
2118  * Modify the chain associated with an inode.
2119  */
2120 int
2121 hammer2_chain_modify_ip(hammer2_inode_t *ip, hammer2_chain_t *chain,
2122                         hammer2_tid_t mtid, int flags)
2123 {
2124         int error;
2125
2126         hammer2_inode_modify(ip);
2127         error = hammer2_chain_modify(chain, mtid, 0, flags);
2128
2129         return error;
2130 }
2131
2132 /*
2133  * Volume header data locks
2134  */
2135 void
2136 hammer2_voldata_lock(hammer2_dev_t *hmp)
2137 {
2138         lockmgr(&hmp->vollk, LK_EXCLUSIVE);
2139 }
2140
2141 void
2142 hammer2_voldata_unlock(hammer2_dev_t *hmp)
2143 {
2144         lockmgr(&hmp->vollk, LK_RELEASE);
2145 }
2146
2147 void
2148 hammer2_voldata_modify(hammer2_dev_t *hmp)
2149 {
2150         if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
2151                 atomic_add_long(&hammer2_count_modified_chains, 1);
2152                 atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
2153                 hammer2_pfs_memory_inc(hmp->vchain.pmp);
2154         }
2155 }
2156
2157 /*
2158  * This function returns the chain at the nearest key within the specified
2159  * range.  The returned chain will be referenced but not locked.
2160  *
2161  * This function will recurse through chain->rbtree as necessary and will
2162  * return a *key_nextp suitable for iteration.  *key_nextp is only set if
2163  * the iteration value is less than the current value of *key_nextp.
2164  *
2165  * The caller should use (*key_nextp) to calculate the actual range of
2166  * the returned element, which will be (key_beg to *key_nextp - 1), because
2167  * there might be another element which is superior to the returned element
2168  * and overlaps it.
2169  *
2170  * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
2171  * chains continue to be returned.  On EOF (*key_nextp) may overflow since
2172  * it will wind up being (key_end + 1).
2173  *
2174  * WARNING!  Must be called with child's spinlock held.  Spinlock remains
2175  *           held through the operation.
2176  */
2177 struct hammer2_chain_find_info {
2178         hammer2_chain_t         *best;
2179         hammer2_key_t           key_beg;
2180         hammer2_key_t           key_end;
2181         hammer2_key_t           key_next;
2182 };
2183
2184 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
2185 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
2186
2187 static
2188 hammer2_chain_t *
2189 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
2190                           hammer2_key_t key_beg, hammer2_key_t key_end)
2191 {
2192         struct hammer2_chain_find_info info;
2193
2194         info.best = NULL;
2195         info.key_beg = key_beg;
2196         info.key_end = key_end;
2197         info.key_next = *key_nextp;
2198
2199         RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
2200                 hammer2_chain_find_cmp, hammer2_chain_find_callback,
2201                 &info);
2202         *key_nextp = info.key_next;
2203 #if 0
2204         kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
2205                 parent, key_beg, key_end, *key_nextp);
2206 #endif
2207
2208         return (info.best);
2209 }
2210
2211 static
2212 int
2213 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
2214 {
2215         struct hammer2_chain_find_info *info = data;
2216         hammer2_key_t child_beg;
2217         hammer2_key_t child_end;
2218
2219         child_beg = child->bref.key;
2220         child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
2221
2222         if (child_end < info->key_beg)
2223                 return(-1);
2224         if (child_beg > info->key_end)
2225                 return(1);
2226         return(0);
2227 }
2228
2229 static
2230 int
2231 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
2232 {
2233         struct hammer2_chain_find_info *info = data;
2234         hammer2_chain_t *best;
2235         hammer2_key_t child_end;
2236
2237         /*
2238          * WARNING! Layerq is scanned forwards, exact matches should keep
2239          *          the existing info->best.
2240          */
2241         if ((best = info->best) == NULL) {
2242                 /*
2243                  * No previous best.  Assign best
2244                  */
2245                 info->best = child;
2246         } else if (best->bref.key <= info->key_beg &&
2247                    child->bref.key <= info->key_beg) {
2248                 /*
2249                  * Illegal overlap.
2250                  */
2251                 KKASSERT(0);
2252                 /*info->best = child;*/
2253         } else if (child->bref.key < best->bref.key) {
2254                 /*
2255                  * Child has a nearer key and best is not flush with key_beg.
2256                  * Set best to child.  Truncate key_next to the old best key.
2257                  */
2258                 info->best = child;
2259                 if (info->key_next > best->bref.key || info->key_next == 0)
2260                         info->key_next = best->bref.key;
2261         } else if (child->bref.key == best->bref.key) {
2262                 /*
2263                  * If our current best is flush with the child then this
2264                  * is an illegal overlap.
2265                  *
2266                  * key_next will automatically be limited to the smaller of
2267                  * the two end-points.
2268                  */
2269                 KKASSERT(0);
2270                 info->best = child;
2271         } else {
2272                 /*
2273                  * Keep the current best but truncate key_next to the child's
2274                  * base.
2275                  *
2276                  * key_next will also automatically be limited to the smaller
2277                  * of the two end-points (probably not necessary for this case
2278                  * but we do it anyway).
2279                  */
2280                 if (info->key_next > child->bref.key || info->key_next == 0)
2281                         info->key_next = child->bref.key;
2282         }
2283
2284         /*
2285          * Always truncate key_next based on child's end-of-range.
2286          */
2287         child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
2288         if (child_end && (info->key_next > child_end || info->key_next == 0))
2289                 info->key_next = child_end;
2290
2291         return(0);
2292 }
2293
2294 /*
2295  * Retrieve the specified chain from a media blockref, creating the
2296  * in-memory chain structure which reflects it.  The returned chain is
2297  * held and locked according to (how) (HAMMER2_RESOLVE_*).  The caller must
2298  * handle crc-checks and so forth, and should check chain->error before
2299  * assuming that the data is good.
2300  *
2301  * To handle insertion races pass the INSERT_RACE flag along with the
2302  * generation number of the core.  NULL will be returned if the generation
2303  * number changes before we have a chance to insert the chain.  Insert
2304  * races can occur because the parent might be held shared.
2305  *
2306  * Caller must hold the parent locked shared or exclusive since we may
2307  * need the parent's bref array to find our block.
2308  *
2309  * WARNING! chain->pmp is always set to NULL for any chain representing
2310  *          part of the super-root topology.
2311  */
2312 hammer2_chain_t *
2313 hammer2_chain_get(hammer2_chain_t *parent, int generation,
2314                   hammer2_blockref_t *bref, int how)
2315 {
2316         hammer2_dev_t *hmp = parent->hmp;
2317         hammer2_chain_t *chain;
2318         int error;
2319
2320         /*
2321          * Allocate a chain structure representing the existing media
2322          * entry.  Resulting chain has one ref and is not locked.
2323          */
2324         if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
2325                 chain = hammer2_chain_alloc(hmp, NULL, bref);
2326         else
2327                 chain = hammer2_chain_alloc(hmp, parent->pmp, bref);
2328         /* ref'd chain returned */
2329
2330         /*
2331          * Flag that the chain is in the parent's blockmap so delete/flush
2332          * knows what to do with it.
2333          */
2334         atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
2335
2336         /*
2337          * chain must be locked to avoid unexpected ripouts
2338          */
2339         hammer2_chain_lock(chain, how);
2340
2341         /*
2342          * Link the chain into its parent.  A spinlock is required to safely
2343          * access the RBTREE, and it is possible to collide with another
2344          * hammer2_chain_get() operation because the caller might only hold
2345          * a shared lock on the parent.
2346          *
2347          * NOTE: Get races can occur quite often when we distribute
2348          *       asynchronous read-aheads across multiple threads.
2349          */
2350         KKASSERT(parent->refs > 0);
2351         error = hammer2_chain_insert(parent, chain,
2352                                      HAMMER2_CHAIN_INSERT_SPIN |
2353                                      HAMMER2_CHAIN_INSERT_RACE,
2354                                      generation);
2355         if (error) {
2356                 KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
2357                 /*kprintf("chain %p get race\n", chain);*/
2358                 hammer2_chain_unlock(chain);
2359                 hammer2_chain_drop(chain);
2360                 chain = NULL;
2361         } else {
2362                 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2363         }
2364
2365         /*
2366          * Return our new chain referenced but not locked, or NULL if
2367          * a race occurred.
2368          */
2369         return (chain);
2370 }
2371
2372 /*
2373  * Lookup initialization/completion API
2374  */
2375 hammer2_chain_t *
2376 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
2377 {
2378         hammer2_chain_ref(parent);
2379         if (flags & HAMMER2_LOOKUP_SHARED) {
2380                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
2381                                            HAMMER2_RESOLVE_SHARED);
2382         } else {
2383                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2384         }
2385         return (parent);
2386 }
2387
2388 void
2389 hammer2_chain_lookup_done(hammer2_chain_t *parent)
2390 {
2391         if (parent) {
2392                 hammer2_chain_unlock(parent);
2393                 hammer2_chain_drop(parent);
2394         }
2395 }
2396
2397 /*
2398  * Take the locked chain and return a locked parent.  The chain remains
2399  * locked on return, but may have to be temporarily unlocked to acquire
2400  * the parent.  Because of this, (chain) must be stable and cannot be
2401  * deleted while it was temporarily unlocked (typically means that (chain)
2402  * is an inode).
2403  *
2404  * Pass HAMMER2_RESOLVE_* flags in flags.
2405  *
2406  * This will work even if the chain is errored, and the caller can check
2407  * parent->error on return if desired since the parent will be locked.
2408  *
2409  * This function handles the lock order reversal.
2410  */
2411 hammer2_chain_t *
2412 hammer2_chain_getparent(hammer2_chain_t *chain, int flags)
2413 {
2414         hammer2_chain_t *parent;
2415
2416         /*
2417          * Be careful of order, chain must be unlocked before parent
2418          * is locked below to avoid a deadlock.  Try it trivially first.
2419          */
2420         parent = chain->parent;
2421         if (parent == NULL)
2422                 panic("hammer2_chain_getparent: no parent");
2423         hammer2_chain_ref(parent);
2424         if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0)
2425                 return parent;
2426
2427         for (;;) {
2428                 hammer2_chain_unlock(chain);
2429                 hammer2_chain_lock(parent, flags);
2430                 hammer2_chain_lock(chain, flags);
2431
2432                 /*
2433                  * Parent relinking races are quite common.  We have to get
2434                  * it right or we will blow up the block table.
2435                  */
2436                 if (chain->parent == parent)
2437                         break;
2438                 hammer2_chain_unlock(parent);
2439                 hammer2_chain_drop(parent);
2440                 cpu_ccfence();
2441                 parent = chain->parent;
2442                 if (parent == NULL)
2443                         panic("hammer2_chain_getparent: no parent");
2444                 hammer2_chain_ref(parent);
2445         }
2446         return parent;
2447 }
2448
2449 /*
2450  * Take the locked chain and return a locked parent.  The chain is unlocked
2451  * and dropped.  *chainp is set to the returned parent as a convenience.
2452  * Pass HAMMER2_RESOLVE_* flags in flags.
2453  *
2454  * This will work even if the chain is errored, and the caller can check
2455  * parent->error on return if desired since the parent will be locked.
2456  *
2457  * The chain does NOT need to be stable.  We use a tracking structure
2458  * to track the expected parent if the chain is deleted out from under us.
2459  *
2460  * This function handles the lock order reversal.
2461  */
2462 hammer2_chain_t *
2463 hammer2_chain_repparent(hammer2_chain_t **chainp, int flags)
2464 {
2465         hammer2_chain_t *chain;
2466         hammer2_chain_t *parent;
2467         struct hammer2_reptrack reptrack;
2468         struct hammer2_reptrack **repp;
2469
2470         /*
2471          * Be careful of order, chain must be unlocked before parent
2472          * is locked below to avoid a deadlock.  Try it trivially first.
2473          */
2474         chain = *chainp;
2475         parent = chain->parent;
2476         if (parent == NULL) {
2477                 hammer2_spin_unex(&chain->core.spin);
2478                 panic("hammer2_chain_repparent: no parent");
2479         }
2480         hammer2_chain_ref(parent);
2481         if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0) {
2482                 hammer2_chain_unlock(chain);
2483                 hammer2_chain_drop(chain);
2484                 *chainp = parent;
2485
2486                 return parent;
2487         }
2488
2489         /*
2490          * Ok, now it gets a bit nasty.  There are multiple situations where
2491          * the parent might be in the middle of a deletion, or where the child
2492          * (chain) might be deleted the instant we let go of its lock.
2493          * We can potentially end up in a no-win situation!
2494          *
2495          * In particular, the indirect_maintenance() case can cause these
2496          * situations.
2497          *
2498          * To deal with this we install a reptrack structure in the parent
2499          * This reptrack structure 'owns' the parent ref and will automatically
2500          * migrate to the parent's parent if the parent is deleted permanently.
2501          */
2502         hammer2_spin_init(&reptrack.spin, "h2reptrk");
2503         reptrack.chain = parent;
2504         hammer2_chain_ref(parent);              /* for the reptrack */
2505
2506         hammer2_spin_ex(&parent->core.spin);
2507         reptrack.next = parent->core.reptrack;
2508         parent->core.reptrack = &reptrack;
2509         hammer2_spin_unex(&parent->core.spin);
2510
2511         hammer2_chain_unlock(chain);
2512         hammer2_chain_drop(chain);
2513         chain = NULL;   /* gone */
2514
2515         /*
2516          * At the top of this loop, chain is gone and parent is refd both
2517          * by us explicitly AND via our reptrack.  We are attempting to
2518          * lock parent.
2519          */
2520         for (;;) {
2521                 hammer2_chain_lock(parent, flags);
2522
2523                 if (reptrack.chain == parent)
2524                         break;
2525                 hammer2_chain_unlock(parent);
2526                 hammer2_chain_drop(parent);
2527
2528                 kprintf("hammer2: debug REPTRACK %p->%p\n",
2529                         parent, reptrack.chain);
2530                 hammer2_spin_ex(&reptrack.spin);
2531                 parent = reptrack.chain;
2532                 hammer2_chain_ref(parent);
2533                 hammer2_spin_unex(&reptrack.spin);
2534         }
2535
2536         /*
2537          * Once parent is locked and matches our reptrack, our reptrack
2538          * will be stable and we have our parent.  We can unlink our
2539          * reptrack.
2540          *
2541          * WARNING!  Remember that the chain lock might be shared.  Chains
2542          *           locked shared have stable parent linkages.
2543          */
2544         hammer2_spin_ex(&parent->core.spin);
2545         repp = &parent->core.reptrack;
2546         while (*repp != &reptrack)
2547                 repp = &(*repp)->next;
2548         *repp = reptrack.next;
2549         hammer2_spin_unex(&parent->core.spin);
2550
2551         hammer2_chain_drop(parent);     /* reptrack ref */
2552         *chainp = parent;               /* return parent lock+ref */
2553
2554         return parent;
2555 }
2556
2557 /*
2558  * Dispose of any linked reptrack structures in (chain) by shifting them to
2559  * (parent).  Both (chain) and (parent) must be exclusively locked.
2560  *
2561  * This is interlocked against any children of (chain) on the other side.
2562  * No children so remain as-of when this is called so we can test
2563  * core.reptrack without holding the spin-lock.
2564  *
2565  * Used whenever the caller intends to permanently delete chains related
2566  * to topological recursions (BREF_TYPE_INDIRECT, BREF_TYPE_FREEMAP_NODE),
2567  * where the chains underneath the node being deleted are given a new parent
2568  * above the node being deleted.
2569  */
2570 static
2571 void
2572 hammer2_chain_repchange(hammer2_chain_t *parent, hammer2_chain_t *chain)
2573 {
2574         struct hammer2_reptrack *reptrack;
2575
2576         KKASSERT(chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree));
2577         while (chain->core.reptrack) {
2578                 hammer2_spin_ex(&parent->core.spin);
2579                 hammer2_spin_ex(&chain->core.spin);
2580                 reptrack = chain->core.reptrack;
2581                 if (reptrack == NULL) {
2582                         hammer2_spin_unex(&chain->core.spin);
2583                         hammer2_spin_unex(&parent->core.spin);
2584                         break;
2585                 }
2586                 hammer2_spin_ex(&reptrack->spin);
2587                 chain->core.reptrack = reptrack->next;
2588                 reptrack->chain = parent;
2589                 reptrack->next = parent->core.reptrack;
2590                 parent->core.reptrack = reptrack;
2591                 hammer2_chain_ref(parent);              /* reptrack */
2592
2593                 hammer2_spin_unex(&chain->core.spin);
2594                 hammer2_spin_unex(&parent->core.spin);
2595                 kprintf("hammer2: debug repchange %p %p->%p\n",
2596                         reptrack, chain, parent);
2597                 hammer2_chain_drop(chain);              /* reptrack */
2598         }
2599 }
2600
2601 /*
2602  * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
2603  * (*parentp) typically points to an inode but can also point to a related
2604  * indirect block and this function will recurse upwards and find the inode
2605  * or the nearest undeleted indirect block covering the key range.
2606  *
2607  * This function unconditionally sets *errorp, replacing any previous value.
2608  *
2609  * (*parentp) must be exclusive or shared locked (depending on flags) and
2610  * referenced and can be an inode or an existing indirect block within the
2611  * inode.
2612  *
2613  * If (*parent) is errored out, this function will not attempt to recurse
2614  * the radix tree and will return NULL along with an appropriate *errorp.
2615  * If NULL is returned and *errorp is 0, the requested lookup could not be
2616  * located.
2617  *
2618  * On return (*parentp) will be modified to point at the deepest parent chain
2619  * element encountered during the search, as a helper for an insertion or
2620  * deletion.
2621  *
2622  * The new (*parentp) will be locked shared or exclusive (depending on flags),
2623  * and referenced, and the old will be unlocked and dereferenced (no change
2624  * if they are both the same).  This is particularly important if the caller
2625  * wishes to insert a new chain, (*parentp) will be set properly even if NULL
2626  * is returned, as long as no error occurred.
2627  *
2628  * The matching chain will be returned locked according to flags.
2629  *
2630  * --
2631  *
2632  * NULL is returned if no match was found, but (*parentp) will still
2633  * potentially be adjusted.
2634  *
2635  * On return (*key_nextp) will point to an iterative value for key_beg.
2636  * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
2637  *
2638  * This function will also recurse up the chain if the key is not within the
2639  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
2640  * can simply allow (*parentp) to float inside the loop.
2641  *
2642  * NOTE!  chain->data is not always resolved.  By default it will not be
2643  *        resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
2644  *        HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
2645  *        BREF_TYPE_DATA as the device buffer can alias the logical file
2646  *        buffer).
2647  */
2648
2649 hammer2_chain_t *
2650 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
2651                      hammer2_key_t key_beg, hammer2_key_t key_end,
2652                      int *errorp, int flags)
2653 {
2654         hammer2_dev_t *hmp;
2655         hammer2_chain_t *parent;
2656         hammer2_chain_t *chain;
2657         hammer2_blockref_t *base;
2658         hammer2_blockref_t *bref;
2659         hammer2_blockref_t bsave;
2660         hammer2_key_t scan_beg;
2661         hammer2_key_t scan_end;
2662         int count = 0;
2663         int how_always = HAMMER2_RESOLVE_ALWAYS;
2664         int how_maybe = HAMMER2_RESOLVE_MAYBE;
2665         int how;
2666         int generation;
2667         int maxloops = 300000;
2668         volatile hammer2_mtx_t save_mtx;
2669
2670         if (flags & HAMMER2_LOOKUP_ALWAYS) {
2671                 how_maybe = how_always;
2672                 how = HAMMER2_RESOLVE_ALWAYS;
2673         } else if (flags & HAMMER2_LOOKUP_NODATA) {
2674                 how = HAMMER2_RESOLVE_NEVER;
2675         } else {
2676                 how = HAMMER2_RESOLVE_MAYBE;
2677         }
2678         if (flags & HAMMER2_LOOKUP_SHARED) {
2679                 how_maybe |= HAMMER2_RESOLVE_SHARED;
2680                 how_always |= HAMMER2_RESOLVE_SHARED;
2681                 how |= HAMMER2_RESOLVE_SHARED;
2682         }
2683
2684         /*
2685          * Recurse (*parentp) upward if necessary until the parent completely
2686          * encloses the key range or we hit the inode.
2687          *
2688          * Handle races against the flusher deleting indirect nodes on its
2689          * way back up by continuing to recurse upward past the deletion.
2690          */
2691         parent = *parentp;
2692         hmp = parent->hmp;
2693         *errorp = 0;
2694
2695         while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2696                parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2697                 scan_beg = parent->bref.key;
2698                 scan_end = scan_beg +
2699                            ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2700                 if ((parent->flags & HAMMER2_CHAIN_DELETED) == 0) {
2701                         if (key_beg >= scan_beg && key_end <= scan_end)
2702                                 break;
2703                 }
2704                 parent = hammer2_chain_repparent(parentp, how_maybe);
2705         }
2706 again:
2707         if (--maxloops == 0)
2708                 panic("hammer2_chain_lookup: maxloops");
2709
2710         /*
2711          * MATCHIND case that does not require parent->data (do prior to
2712          * parent->error check).
2713          */
2714         switch(parent->bref.type) {
2715         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2716         case HAMMER2_BREF_TYPE_INDIRECT:
2717                 if (flags & HAMMER2_LOOKUP_MATCHIND) {
2718                         scan_beg = parent->bref.key;
2719                         scan_end = scan_beg +
2720                                ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2721                         if (key_beg == scan_beg && key_end == scan_end) {
2722                                 chain = parent;
2723                                 hammer2_chain_ref(chain);
2724                                 hammer2_chain_lock(chain, how_maybe);
2725                                 *key_nextp = scan_end + 1;
2726                                 goto done;
2727                         }
2728                 }
2729                 break;
2730         default:
2731                 break;
2732         }
2733
2734         /*
2735          * No lookup is possible if the parent is errored.  We delayed
2736          * this check as long as we could to ensure that the parent backup,
2737          * embedded data, and MATCHIND code could still execute.
2738          */
2739         if (parent->error) {
2740                 *errorp = parent->error;
2741                 return NULL;
2742         }
2743
2744         /*
2745          * Locate the blockref array.  Currently we do a fully associative
2746          * search through the array.
2747          */
2748         switch(parent->bref.type) {
2749         case HAMMER2_BREF_TYPE_INODE:
2750                 /*
2751                  * Special shortcut for embedded data returns the inode
2752                  * itself.  Callers must detect this condition and access
2753                  * the embedded data (the strategy code does this for us).
2754                  *
2755                  * This is only applicable to regular files and softlinks.
2756                  *
2757                  * We need a second lock on parent.  Since we already have
2758                  * a lock we must pass LOCKAGAIN to prevent unexpected
2759                  * blocking (we don't want to block on a second shared
2760                  * ref if an exclusive lock is pending)
2761                  */
2762                 if (parent->data->ipdata.meta.op_flags &
2763                     HAMMER2_OPFLAG_DIRECTDATA) {
2764                         if (flags & HAMMER2_LOOKUP_NODIRECT) {
2765                                 chain = NULL;
2766                                 *key_nextp = key_end + 1;
2767                                 goto done;
2768                         }
2769                         hammer2_chain_ref(parent);
2770                         hammer2_chain_lock(parent, how_always |
2771                                                    HAMMER2_RESOLVE_LOCKAGAIN);
2772                         *key_nextp = key_end + 1;
2773                         return (parent);
2774                 }
2775                 base = &parent->data->ipdata.u.blockset.blockref[0];
2776                 count = HAMMER2_SET_COUNT;
2777                 break;
2778         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2779         case HAMMER2_BREF_TYPE_INDIRECT:
2780                 /*
2781                  * Optimize indirect blocks in the INITIAL state to avoid
2782                  * I/O.
2783                  *
2784                  * Debugging: Enter permanent wait state instead of
2785                  * panicing on unexpectedly NULL data for the moment.
2786                  */
2787                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2788                         base = NULL;
2789                 } else {
2790                         if (parent->data == NULL) {
2791                                 kprintf("hammer2: unexpected NULL data "
2792                                         "on %p\n", parent);
2793                                 while (1)
2794                                         tsleep(parent, 0, "xxx", 0);
2795                         }
2796                         base = &parent->data->npdata[0];
2797                 }
2798                 count = parent->bytes / sizeof(hammer2_blockref_t);
2799                 break;
2800         case HAMMER2_BREF_TYPE_VOLUME:
2801                 base = &parent->data->voldata.sroot_blockset.blockref[0];
2802                 count = HAMMER2_SET_COUNT;
2803                 break;
2804         case HAMMER2_BREF_TYPE_FREEMAP:
2805                 base = &parent->data->blkset.blockref[0];
2806                 count = HAMMER2_SET_COUNT;
2807                 break;
2808         default:
2809                 kprintf("hammer2_chain_lookup: unrecognized "
2810                         "blockref(B) type: %d",
2811                         parent->bref.type);
2812                 while (1)
2813                         tsleep(&base, 0, "dead", 0);
2814                 panic("hammer2_chain_lookup: unrecognized "
2815                       "blockref(B) type: %d",
2816                       parent->bref.type);
2817                 base = NULL;    /* safety */
2818                 count = 0;      /* safety */
2819         }
2820
2821         /*
2822          * Merged scan to find next candidate.
2823          *
2824          * hammer2_base_*() functions require the parent->core.live_* fields
2825          * to be synchronized.
2826          *
2827          * We need to hold the spinlock to access the block array and RB tree
2828          * and to interlock chain creation.
2829          */
2830         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2831                 hammer2_chain_countbrefs(parent, base, count);
2832
2833         /*
2834          * Combined search
2835          */
2836         hammer2_spin_ex(&parent->core.spin);
2837         chain = hammer2_combined_find(parent, base, count,
2838                                       key_nextp,
2839                                       key_beg, key_end,
2840                                       &bref);
2841         generation = parent->core.generation;
2842
2843         /*
2844          * Exhausted parent chain, iterate.
2845          */
2846         if (bref == NULL) {
2847                 KKASSERT(chain == NULL);
2848                 hammer2_spin_unex(&parent->core.spin);
2849                 if (key_beg == key_end) /* short cut single-key case */
2850                         return (NULL);
2851
2852                 /*
2853                  * Stop if we reached the end of the iteration.
2854                  */
2855                 if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2856                     parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2857                         return (NULL);
2858                 }
2859
2860                 /*
2861                  * Calculate next key, stop if we reached the end of the
2862                  * iteration, otherwise go up one level and loop.
2863                  */
2864                 key_beg = parent->bref.key +
2865                           ((hammer2_key_t)1 << parent->bref.keybits);
2866                 if (key_beg == 0 || key_beg > key_end)
2867                         return (NULL);
2868                 parent = hammer2_chain_repparent(parentp, how_maybe);
2869                 goto again;
2870         }
2871
2872         /*
2873          * Selected from blockref or in-memory chain.
2874          */
2875         bsave = *bref;
2876         if (chain == NULL) {
2877                 hammer2_spin_unex(&parent->core.spin);
2878                 if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2879                     bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2880                         chain = hammer2_chain_get(parent, generation,
2881                                                   &bsave, how_maybe);
2882                 } else {
2883                         chain = hammer2_chain_get(parent, generation,
2884                                                   &bsave, how);
2885                 }
2886                 if (chain == NULL)
2887                         goto again;
2888         } else {
2889                 hammer2_chain_ref(chain);
2890                 hammer2_spin_unex(&parent->core.spin);
2891
2892                 /*
2893                  * chain is referenced but not locked.  We must lock the
2894                  * chain to obtain definitive state.
2895                  */
2896                 if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2897                     bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2898                         hammer2_chain_lock(chain, how_maybe);
2899                 } else {
2900                         hammer2_chain_lock(chain, how);
2901                 }
2902                 KKASSERT(chain->parent == parent);
2903         }
2904         if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
2905             chain->parent != parent) {
2906                 hammer2_chain_unlock(chain);
2907                 hammer2_chain_drop(chain);
2908                 chain = NULL;   /* SAFETY */
2909                 goto again;
2910         }
2911
2912
2913         /*
2914          * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2915          *
2916          * NOTE: Chain's key range is not relevant as there might be
2917          *       one-offs within the range that are not deleted.
2918          *
2919          * NOTE: Lookups can race delete-duplicate because
2920          *       delete-duplicate does not lock the parent's core
2921          *       (they just use the spinlock on the core).
2922          */
2923         if (chain->flags & HAMMER2_CHAIN_DELETED) {
2924                 kprintf("skip deleted chain %016jx.%02x key=%016jx\n",
2925                         chain->bref.data_off, chain->bref.type,
2926                         chain->bref.key);
2927                 hammer2_chain_unlock(chain);
2928                 hammer2_chain_drop(chain);
2929                 chain = NULL;   /* SAFETY */
2930                 key_beg = *key_nextp;
2931                 if (key_beg == 0 || key_beg > key_end)
2932                         return(NULL);
2933                 goto again;
2934         }
2935
2936         /*
2937          * If the chain element is an indirect block it becomes the new
2938          * parent and we loop on it.  We must maintain our top-down locks
2939          * to prevent the flusher from interfering (i.e. doing a
2940          * delete-duplicate and leaving us recursing down a deleted chain).
2941          *
2942          * The parent always has to be locked with at least RESOLVE_MAYBE
2943          * so we can access its data.  It might need a fixup if the caller
2944          * passed incompatible flags.  Be careful not to cause a deadlock
2945          * as a data-load requires an exclusive lock.
2946          *
2947          * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2948          * range is within the requested key range we return the indirect
2949          * block and do NOT loop.  This is usually only used to acquire
2950          * freemap nodes.
2951          */
2952         if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2953             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2954                 save_mtx = parent->lock;
2955                 hammer2_chain_unlock(parent);
2956                 hammer2_chain_drop(parent);
2957                 *parentp = parent = chain;
2958                 chain = NULL;   /* SAFETY */
2959                 goto again;
2960         }
2961 done:
2962         /*
2963          * All done, return the locked chain.
2964          *
2965          * If the caller does not want a locked chain, replace the lock with
2966          * a ref.  Perhaps this can eventually be optimized to not obtain the
2967          * lock in the first place for situations where the data does not
2968          * need to be resolved.
2969          *
2970          * NOTE! A chain->error must be tested by the caller upon return.
2971          *       *errorp is only set based on issues which occur while
2972          *       trying to reach the chain.
2973          */
2974         return (chain);
2975 }
2976
2977 /*
2978  * After having issued a lookup we can iterate all matching keys.
2979  *
2980  * If chain is non-NULL we continue the iteration from just after it's index.
2981  *
2982  * If chain is NULL we assume the parent was exhausted and continue the
2983  * iteration at the next parent.
2984  *
2985  * If a fatal error occurs (typically an I/O error), a dummy chain is
2986  * returned with chain->error and error-identifying information set.  This
2987  * chain will assert if you try to do anything fancy with it.
2988  *
2989  * XXX Depending on where the error occurs we should allow continued iteration.
2990  *
2991  * parent must be locked on entry and remains locked throughout.  chain's
2992  * lock status must match flags.  Chain is always at least referenced.
2993  *
2994  * WARNING!  The MATCHIND flag does not apply to this function.
2995  */
2996 hammer2_chain_t *
2997 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
2998                    hammer2_key_t *key_nextp,
2999                    hammer2_key_t key_beg, hammer2_key_t key_end,
3000                    int *errorp, int flags)
3001 {
3002         hammer2_chain_t *parent;
3003         int how_maybe;
3004
3005         /*
3006          * Calculate locking flags for upward recursion.
3007          */
3008         how_maybe = HAMMER2_RESOLVE_MAYBE;
3009         if (flags & HAMMER2_LOOKUP_SHARED)
3010                 how_maybe |= HAMMER2_RESOLVE_SHARED;
3011
3012         parent = *parentp;
3013         *errorp = 0;
3014
3015         /*
3016          * Calculate the next index and recalculate the parent if necessary.
3017          */
3018         if (chain) {
3019                 key_beg = chain->bref.key +
3020                           ((hammer2_key_t)1 << chain->bref.keybits);
3021                 hammer2_chain_unlock(chain);
3022                 hammer2_chain_drop(chain);
3023
3024                 /*
3025                  * chain invalid past this point, but we can still do a
3026                  * pointer comparison w/parent.
3027                  *
3028                  * Any scan where the lookup returned degenerate data embedded
3029                  * in the inode has an invalid index and must terminate.
3030                  */
3031                 if (chain == parent)
3032                         return(NULL);
3033                 if (key_beg == 0 || key_beg > key_end)
3034                         return(NULL);
3035                 chain = NULL;
3036         } else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
3037                    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
3038                 /*
3039                  * We reached the end of the iteration.
3040                  */
3041                 return (NULL);
3042         } else {
3043                 /*
3044                  * Continue iteration with next parent unless the current
3045                  * parent covers the range.
3046                  *
3047                  * (This also handles the case of a deleted, empty indirect
3048                  * node).
3049                  */
3050                 key_beg = parent->bref.key +
3051                           ((hammer2_key_t)1 << parent->bref.keybits);
3052                 if (key_beg == 0 || key_beg > key_end)
3053                         return (NULL);
3054                 parent = hammer2_chain_repparent(parentp, how_maybe);
3055         }
3056
3057         /*
3058          * And execute
3059          */
3060         return (hammer2_chain_lookup(parentp, key_nextp,
3061                                      key_beg, key_end,
3062                                      errorp, flags));
3063 }
3064
3065 /*
3066  * Caller wishes to iterate chains under parent, loading new chains into
3067  * chainp.  Caller must initialize *chainp to NULL and *firstp to 1, and
3068  * then call hammer2_chain_scan() repeatedly until a non-zero return.
3069  * During the scan, *firstp will be set to 0 and (*chainp) will be replaced
3070  * with the returned chain for the scan.  The returned *chainp will be
3071  * locked and referenced.  Any prior contents will be unlocked and dropped.
3072  *
3073  * Caller should check the return value.  A normal scan EOF will return
3074  * exactly HAMMER2_ERROR_EOF.  Any other non-zero value indicates an
3075  * error trying to access parent data.  Any error in the returned chain
3076  * must be tested separately by the caller.
3077  *
3078  * (*chainp) is dropped on each scan, but will only be set if the returned
3079  * element itself can recurse.  Leaf elements are NOT resolved, loaded, or
3080  * returned via *chainp.  The caller will get their bref only.
3081  *
3082  * The raw scan function is similar to lookup/next but does not seek to a key.
3083  * Blockrefs are iterated via first_bref = (parent, NULL) and
3084  * next_chain = (parent, bref).
3085  *
3086  * The passed-in parent must be locked and its data resolved.  The function
3087  * nominally returns a locked and referenced *chainp != NULL for chains
3088  * the caller might need to recurse on (and will dipose of any *chainp passed
3089  * in).  The caller must check the chain->bref.type either way.
3090  */
3091 int
3092 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t **chainp,
3093                    hammer2_blockref_t *bref, int *firstp,
3094                    int flags)
3095 {
3096         hammer2_dev_t *hmp;
3097         hammer2_blockref_t *base;
3098         hammer2_blockref_t *bref_ptr;
3099         hammer2_key_t key;
3100         hammer2_key_t next_key;
3101         hammer2_chain_t *chain = NULL;
3102         int count = 0;
3103         int how_always = HAMMER2_RESOLVE_ALWAYS;
3104         int how_maybe = HAMMER2_RESOLVE_MAYBE;
3105         int how;
3106         int generation;
3107         int maxloops = 300000;
3108         int error;
3109
3110         hmp = parent->hmp;
3111         error = 0;
3112
3113         /*
3114          * Scan flags borrowed from lookup.
3115          */
3116         if (flags & HAMMER2_LOOKUP_ALWAYS) {
3117                 how_maybe = how_always;
3118                 how = HAMMER2_RESOLVE_ALWAYS;
3119         } else if (flags & HAMMER2_LOOKUP_NODATA) {
3120                 how = HAMMER2_RESOLVE_NEVER;
3121         } else {
3122                 how = HAMMER2_RESOLVE_MAYBE;
3123         }
3124         if (flags & HAMMER2_LOOKUP_SHARED) {
3125                 how_maybe |= HAMMER2_RESOLVE_SHARED;
3126                 how_always |= HAMMER2_RESOLVE_SHARED;
3127                 how |= HAMMER2_RESOLVE_SHARED;
3128         }
3129
3130         /*
3131          * Calculate key to locate first/next element, unlocking the previous
3132          * element as we go.  Be careful, the key calculation can overflow.
3133          *
3134          * (also reset bref to NULL)
3135          */
3136         if (*firstp) {
3137                 key = 0;
3138                 *firstp = 0;
3139         } else {
3140                 key = bref->key + ((hammer2_key_t)1 << bref->keybits);
3141                 if ((chain = *chainp) != NULL) {
3142                         *chainp = NULL;
3143                         hammer2_chain_unlock(chain);
3144                         hammer2_chain_drop(chain);
3145                         chain = NULL;
3146                 }
3147                 if (key == 0) {
3148                         error |= HAMMER2_ERROR_EOF;
3149                         goto done;
3150                 }
3151         }
3152
3153 again:
3154         if (parent->error) {
3155                 error = parent->error;
3156                 goto done;
3157         }
3158         if (--maxloops == 0)
3159                 panic("hammer2_chain_scan: maxloops");
3160
3161         /*
3162          * Locate the blockref array.  Currently we do a fully associative
3163          * search through the array.
3164          */
3165         switch(parent->bref.type) {
3166         case HAMMER2_BREF_TYPE_INODE:
3167                 /*
3168                  * An inode with embedded data has no sub-chains.
3169                  *
3170                  * WARNING! Bulk scan code may pass a static chain marked
3171                  *          as BREF_TYPE_INODE with a copy of the volume
3172                  *          root blockset to snapshot the volume.
3173                  */
3174                 if (parent->data->ipdata.meta.op_flags &
3175                     HAMMER2_OPFLAG_DIRECTDATA) {
3176                         error |= HAMMER2_ERROR_EOF;
3177                         goto done;
3178                 }
3179                 base = &parent->data->ipdata.u.blockset.blockref[0];
3180                 count = HAMMER2_SET_COUNT;
3181                 break;
3182         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3183         case HAMMER2_BREF_TYPE_INDIRECT:
3184                 /*
3185                  * Optimize indirect blocks in the INITIAL state to avoid
3186                  * I/O.
3187                  */
3188                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
3189                         base = NULL;
3190                 } else {
3191                         if (parent->data == NULL)
3192                                 panic("parent->data is NULL");
3193                         base = &parent->data->npdata[0];
3194                 }
3195                 count = parent->bytes / sizeof(hammer2_blockref_t);
3196                 break;
3197         case HAMMER2_BREF_TYPE_VOLUME:
3198                 base = &parent->data->voldata.sroot_blockset.blockref[0];
3199                 count = HAMMER2_SET_COUNT;
3200                 break;
3201         case HAMMER2_BREF_TYPE_FREEMAP:
3202                 base = &parent->data->blkset.blockref[0];
3203                 count = HAMMER2_SET_COUNT;
3204                 break;
3205         default:
3206                 panic("hammer2_chain_scan: unrecognized blockref type: %d",
3207                       parent->bref.type);
3208                 base = NULL;    /* safety */
3209                 count = 0;      /* safety */
3210         }
3211
3212         /*
3213          * Merged scan to find next candidate.
3214          *
3215          * hammer2_base_*() functions require the parent->core.live_* fields
3216          * to be synchronized.
3217          *
3218          * We need to hold the spinlock to access the block array and RB tree
3219          * and to interlock chain creation.
3220          */
3221         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3222                 hammer2_chain_countbrefs(parent, base, count);
3223
3224         next_key = 0;
3225         bref_ptr = NULL;
3226         hammer2_spin_ex(&parent->core.spin);
3227         chain = hammer2_combined_find(parent, base, count,
3228                                       &next_key,
3229                                       key, HAMMER2_KEY_MAX,
3230                                       &bref_ptr);
3231         generation = parent->core.generation;
3232
3233         /*
3234          * Exhausted parent chain, we're done.
3235          */
3236         if (bref_ptr == NULL) {
3237                 hammer2_spin_unex(&parent->core.spin);
3238                 KKASSERT(chain == NULL);
3239                 error |= HAMMER2_ERROR_EOF;
3240                 goto done;
3241         }
3242
3243         /*
3244          * Copy into the supplied stack-based blockref.
3245          */
3246         *bref = *bref_ptr;
3247
3248         /*
3249          * Selected from blockref or in-memory chain.
3250          */
3251         if (chain == NULL) {
3252                 switch(bref->type) {
3253                 case HAMMER2_BREF_TYPE_INODE:
3254                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3255                 case HAMMER2_BREF_TYPE_INDIRECT:
3256                 case HAMMER2_BREF_TYPE_VOLUME:
3257                 case HAMMER2_BREF_TYPE_FREEMAP:
3258                         /*
3259                          * Recursion, always get the chain
3260                          */
3261                         hammer2_spin_unex(&parent->core.spin);
3262                         chain = hammer2_chain_get(parent, generation,
3263                                                   bref, how);
3264                         if (chain == NULL)
3265                                 goto again;
3266                         break;
3267                 default:
3268                         /*
3269                          * No recursion, do not waste time instantiating
3270                          * a chain, just iterate using the bref.
3271                          */
3272                         hammer2_spin_unex(&parent->core.spin);
3273                         break;
3274                 }
3275         } else {
3276                 /*
3277                  * Recursion or not we need the chain in order to supply
3278                  * the bref.
3279                  */
3280                 hammer2_chain_ref(chain);
3281                 hammer2_spin_unex(&parent->core.spin);
3282                 hammer2_chain_lock(chain, how);
3283         }
3284         if (chain &&
3285             (bcmp(bref, &chain->bref, sizeof(*bref)) ||
3286              chain->parent != parent)) {
3287                 hammer2_chain_unlock(chain);
3288                 hammer2_chain_drop(chain);
3289                 chain = NULL;
3290                 goto again;
3291         }
3292
3293         /*
3294          * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
3295          *
3296          * NOTE: chain's key range is not relevant as there might be
3297          *       one-offs within the range that are not deleted.
3298          *
3299          * NOTE: XXX this could create problems with scans used in
3300          *       situations other than mount-time recovery.
3301          *
3302          * NOTE: Lookups can race delete-duplicate because
3303          *       delete-duplicate does not lock the parent's core
3304          *       (they just use the spinlock on the core).
3305          */
3306         if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3307                 hammer2_chain_unlock(chain);
3308                 hammer2_chain_drop(chain);
3309                 chain = NULL;
3310
3311                 key = next_key;
3312                 if (key == 0) {
3313                         error |= HAMMER2_ERROR_EOF;
3314                         goto done;
3315                 }
3316                 goto again;
3317         }
3318
3319 done:
3320         /*
3321          * All done, return the bref or NULL, supply chain if necessary.
3322          */
3323         if (chain)
3324                 *chainp = chain;
3325         return (error);
3326 }
3327
3328 /*
3329  * Create and return a new hammer2 system memory structure of the specified
3330  * key, type and size and insert it under (*parentp).  This is a full
3331  * insertion, based on the supplied key/keybits, and may involve creating
3332  * indirect blocks and moving other chains around via delete/duplicate.
3333  *
3334  * This call can be made with parent == NULL as long as a non -1 methods
3335  * is supplied.  hmp must also be supplied in this situation (otherwise
3336  * hmp is extracted from the supplied parent).  The chain will be detached
3337  * from the topology.  A later call with both parent and chain can be made
3338  * to attach it.
3339  *
3340  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
3341  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3342  * FULL.  This typically means that the caller is creating the chain after
3343  * doing a hammer2_chain_lookup().
3344  *
3345  * (*parentp) must be exclusive locked and may be replaced on return
3346  * depending on how much work the function had to do.
3347  *
3348  * (*parentp) must not be errored or this function will assert.
3349  *
3350  * (*chainp) usually starts out NULL and returns the newly created chain,
3351  * but if the caller desires the caller may allocate a disconnected chain
3352  * and pass it in instead.
3353  *
3354  * This function should NOT be used to insert INDIRECT blocks.  It is
3355  * typically used to create/insert inodes and data blocks.
3356  *
3357  * Caller must pass-in an exclusively locked parent the new chain is to
3358  * be inserted under, and optionally pass-in a disconnected, exclusively
3359  * locked chain to insert (else we create a new chain).  The function will
3360  * adjust (*parentp) as necessary, create or connect the chain, and
3361  * return an exclusively locked chain in *chainp.
3362  *
3363  * When creating a PFSROOT inode under the super-root, pmp is typically NULL
3364  * and will be reassigned.
3365  *
3366  * NOTE: returns HAMMER_ERROR_* flags
3367  */
3368 int
3369 hammer2_chain_create(hammer2_chain_t **parentp, hammer2_chain_t **chainp,
3370                      hammer2_dev_t *hmp, hammer2_pfs_t *pmp, int methods,
3371                      hammer2_key_t key, int keybits, int type, size_t bytes,
3372                      hammer2_tid_t mtid, hammer2_off_t dedup_off, int flags)
3373 {
3374         hammer2_chain_t *chain;
3375         hammer2_chain_t *parent;
3376         hammer2_blockref_t *base;
3377         hammer2_blockref_t dummy;
3378         int allocated = 0;
3379         int error = 0;
3380         int count;
3381         int maxloops = 300000;
3382
3383         /*
3384          * Topology may be crossing a PFS boundary.
3385          */
3386         parent = *parentp;
3387         if (parent) {
3388                 KKASSERT(hammer2_mtx_owned(&parent->lock));
3389                 KKASSERT(parent->error == 0);
3390                 hmp = parent->hmp;
3391         }
3392         chain = *chainp;
3393
3394         if (chain == NULL) {
3395                 /*
3396                  * First allocate media space and construct the dummy bref,
3397                  * then allocate the in-memory chain structure.  Set the
3398                  * INITIAL flag for fresh chains which do not have embedded
3399                  * data.
3400                  *
3401                  * XXX for now set the check mode of the child based on
3402                  *     the parent or, if the parent is an inode, the
3403                  *     specification in the inode.
3404                  */
3405                 bzero(&dummy, sizeof(dummy));
3406                 dummy.type = type;
3407                 dummy.key = key;
3408                 dummy.keybits = keybits;
3409                 dummy.data_off = hammer2_getradix(bytes);
3410
3411                 /*
3412                  * Inherit methods from parent by default.  Primarily used
3413                  * for BREF_TYPE_DATA.  Non-data types *must* be set to
3414                  * a non-NONE check algorithm.
3415                  */
3416                 if (methods == -1)
3417                         dummy.methods = parent->bref.methods;
3418                 else
3419                         dummy.methods = (uint8_t)methods;
3420
3421                 if (type != HAMMER2_BREF_TYPE_DATA &&
3422                     HAMMER2_DEC_CHECK(dummy.methods) == HAMMER2_CHECK_NONE) {
3423                         dummy.methods |=
3424                                 HAMMER2_ENC_CHECK(HAMMER2_CHECK_DEFAULT);
3425                 }
3426
3427                 chain = hammer2_chain_alloc(hmp, pmp, &dummy);
3428
3429                 /*
3430                  * Lock the chain manually, chain_lock will load the chain
3431                  * which we do NOT want to do.  (note: chain->refs is set
3432                  * to 1 by chain_alloc() for us, but lockcnt is not).
3433                  */
3434                 chain->lockcnt = 1;
3435                 hammer2_mtx_ex(&chain->lock);
3436                 allocated = 1;
3437
3438                 /*
3439                  * Set INITIAL to optimize I/O.  The flag will generally be
3440                  * processed when we call hammer2_chain_modify().
3441                  *
3442                  * Recalculate bytes to reflect the actual media block
3443                  * allocation.  Handle special case radix 0 == 0 bytes.
3444                  */
3445                 bytes = (size_t)(chain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
3446                 if (bytes)
3447                         bytes = (hammer2_off_t)1 << bytes;
3448                 chain->bytes = bytes;
3449
3450                 switch(type) {
3451                 case HAMMER2_BREF_TYPE_VOLUME:
3452                 case HAMMER2_BREF_TYPE_FREEMAP:
3453                         panic("hammer2_chain_create: called with volume type");
3454                         break;
3455                 case HAMMER2_BREF_TYPE_INDIRECT:
3456                         panic("hammer2_chain_create: cannot be used to"
3457                               "create indirect block");
3458                         break;
3459                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3460                         panic("hammer2_chain_create: cannot be used to"
3461                               "create freemap root or node");
3462                         break;
3463                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3464                         KKASSERT(bytes == sizeof(chain->data->bmdata));
3465                         /* fall through */
3466                 case HAMMER2_BREF_TYPE_DIRENT:
3467                 case HAMMER2_BREF_TYPE_INODE:
3468                 case HAMMER2_BREF_TYPE_DATA:
3469                 default:
3470                         /*
3471                          * leave chain->data NULL, set INITIAL
3472                          */
3473                         KKASSERT(chain->data == NULL);
3474                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
3475                         break;
3476                 }
3477         } else {
3478                 /*
3479                  * We are reattaching a previously deleted chain, possibly
3480                  * under a new parent and possibly with a new key/keybits.
3481                  * The chain does not have to be in a modified state.  The
3482                  * UPDATE flag will be set later on in this routine.
3483                  *
3484                  * Do NOT mess with the current state of the INITIAL flag.
3485                  */
3486                 chain->bref.key = key;
3487                 chain->bref.keybits = keybits;
3488                 if (chain->flags & HAMMER2_CHAIN_DELETED)
3489                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3490                 KKASSERT(chain->parent == NULL);
3491         }
3492
3493         /*
3494          * Set the appropriate bref flag if requested.
3495          *
3496          * NOTE! Callers can call this function to move chains without
3497          *       knowing about special flags, so don't clear bref flags
3498          *       here!
3499          */
3500         if (flags & HAMMER2_INSERT_PFSROOT)
3501                 chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
3502
3503         if (parent == NULL)
3504                 goto skip;
3505
3506         /*
3507          * Calculate how many entries we have in the blockref array and
3508          * determine if an indirect block is required when inserting into
3509          * the parent.
3510          */
3511 again:
3512         if (--maxloops == 0)
3513                 panic("hammer2_chain_create: maxloops");
3514
3515         switch(parent->bref.type) {
3516         case HAMMER2_BREF_TYPE_INODE:
3517                 if ((parent->data->ipdata.meta.op_flags &
3518                      HAMMER2_OPFLAG_DIRECTDATA) != 0) {
3519                         kprintf("hammer2: parent set for direct-data! "
3520                                 "pkey=%016jx ckey=%016jx\n",
3521                                 parent->bref.key,
3522                                 chain->bref.key);
3523                 }
3524                 KKASSERT((parent->data->ipdata.meta.op_flags &
3525                           HAMMER2_OPFLAG_DIRECTDATA) == 0);
3526                 KKASSERT(parent->data != NULL);
3527                 base = &parent->data->ipdata.u.blockset.blockref[0];
3528                 count = HAMMER2_SET_COUNT;
3529                 break;
3530         case HAMMER2_BREF_TYPE_INDIRECT:
3531         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3532                 if (parent->flags & HAMMER2_CHAIN_INITIAL)
3533                         base = NULL;
3534                 else
3535                         base = &parent->data->npdata[0];
3536                 count = parent->bytes / sizeof(hammer2_blockref_t);
3537                 break;
3538         case HAMMER2_BREF_TYPE_VOLUME:
3539                 KKASSERT(parent->data != NULL);
3540                 base = &parent->data->voldata.sroot_blockset.blockref[0];
3541                 count = HAMMER2_SET_COUNT;
3542                 break;
3543         case HAMMER2_BREF_TYPE_FREEMAP:
3544                 KKASSERT(parent->data != NULL);
3545                 base = &parent->data->blkset.blockref[0];
3546                 count = HAMMER2_SET_COUNT;
3547                 break;
3548         default:
3549                 panic("hammer2_chain_create: unrecognized blockref type: %d",
3550                       parent->bref.type);
3551                 base = NULL;
3552                 count = 0;
3553                 break;
3554         }
3555
3556         /*
3557          * Make sure we've counted the brefs
3558          */
3559         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3560                 hammer2_chain_countbrefs(parent, base, count);
3561
3562         KASSERT(parent->core.live_count >= 0 &&
3563                 parent->core.live_count <= count,
3564                 ("bad live_count %d/%d (%02x, %d)",
3565                         parent->core.live_count, count,
3566                         parent->bref.type, parent->bytes));
3567
3568         /*
3569          * If no free blockref could be found we must create an indirect
3570          * block and move a number of blockrefs into it.  With the parent
3571          * locked we can safely lock each child in order to delete+duplicate
3572          * it without causing a deadlock.
3573          *
3574          * This may return the new indirect block or the old parent depending
3575          * on where the key falls.  NULL is returned on error.
3576          */
3577         if (parent->core.live_count == count) {
3578                 hammer2_chain_t *nparent;
3579
3580                 KKASSERT((flags & HAMMER2_INSERT_SAMEPARENT) == 0);
3581
3582                 nparent = hammer2_chain_create_indirect(parent, key, keybits,
3583                                                         mtid, type, &error);
3584                 if (nparent == NULL) {
3585                         if (allocated)
3586                                 hammer2_chain_drop(chain);
3587                         chain = NULL;
3588                         goto done;
3589                 }
3590                 if (parent != nparent) {
3591                         hammer2_chain_unlock(parent);
3592                         hammer2_chain_drop(parent);
3593                         parent = *parentp = nparent;
3594                 }
3595                 goto again;
3596         }
3597
3598         /*
3599          * fall through if parent, or skip to here if no parent.
3600          */
3601 skip:
3602         if (chain->flags & HAMMER2_CHAIN_DELETED)
3603                 kprintf("Inserting deleted chain @%016jx\n",
3604                         chain->bref.key);
3605
3606         /*
3607          * Link the chain into its parent.
3608          */
3609         if (chain->parent != NULL)
3610                 panic("hammer2: hammer2_chain_create: chain already connected");
3611         KKASSERT(chain->parent == NULL);
3612         if (parent) {
3613                 KKASSERT(parent->core.live_count < count);
3614                 hammer2_chain_insert(parent, chain,
3615                                      HAMMER2_CHAIN_INSERT_SPIN |
3616                                      HAMMER2_CHAIN_INSERT_LIVE,
3617                                      0);
3618         }
3619
3620         if (allocated) {
3621                 /*
3622                  * Mark the newly created chain modified.  This will cause
3623                  * UPDATE to be set and process the INITIAL flag.
3624                  *
3625                  * Device buffers are not instantiated for DATA elements
3626                  * as these are handled by logical buffers.
3627                  *
3628                  * Indirect and freemap node indirect blocks are handled
3629                  * by hammer2_chain_create_indirect() and not by this
3630                  * function.
3631                  *
3632                  * Data for all other bref types is expected to be
3633                  * instantiated (INODE, LEAF).
3634                  */
3635                 switch(chain->bref.type) {
3636                 case HAMMER2_BREF_TYPE_DATA:
3637                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3638                 case HAMMER2_BREF_TYPE_DIRENT:
3639                 case HAMMER2_BREF_TYPE_INODE:
3640                         error = hammer2_chain_modify(chain, mtid, dedup_off,
3641                                                      HAMMER2_MODIFY_OPTDATA);
3642                         break;
3643                 default:
3644                         /*
3645                          * Remaining types are not supported by this function.
3646                          * In particular, INDIRECT and LEAF_NODE types are
3647                          * handled by create_indirect().
3648                          */
3649                         panic("hammer2_chain_create: bad type: %d",
3650                               chain->bref.type);
3651                         /* NOT REACHED */
3652                         break;
3653                 }
3654         } else {
3655                 /*
3656                  * When reconnecting a chain we must set UPDATE and
3657                  * setflush so the flush recognizes that it must update
3658                  * the bref in the parent.
3659                  */
3660                 if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0)
3661                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3662         }
3663
3664         /*
3665          * We must setflush(parent) to ensure that it recurses through to
3666          * chain.  setflush(chain) might not work because ONFLUSH is possibly
3667          * already set in the chain (so it won't recurse up to set it in the
3668          * parent).
3669          */
3670         if (parent)
3671                 hammer2_chain_setflush(parent);
3672
3673 done:
3674         *chainp = chain;
3675
3676         return (error);
3677 }
3678
3679 /*
3680  * Move the chain from its old parent to a new parent.  The chain must have
3681  * already been deleted or already disconnected (or never associated) with
3682  * a parent.  The chain is reassociated with the new parent and the deleted
3683  * flag will be cleared (no longer deleted).  The chain's modification state
3684  * is not altered.
3685  *
3686  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
3687  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3688  * FULL.  This typically means that the caller is creating the chain after
3689  * doing a hammer2_chain_lookup().
3690  *
3691  * Neither (parent) or (chain) can be errored.
3692  *
3693  * If (parent) is non-NULL then the chain is inserted under the parent.
3694  *
3695  * If (parent) is NULL then the newly duplicated chain is not inserted
3696  * anywhere, similar to if it had just been chain_alloc()'d (suitable for
3697  * passing into hammer2_chain_create() after this function returns).
3698  *
3699  * WARNING! This function calls create which means it can insert indirect
3700  *          blocks.  This can cause other unrelated chains in the parent to
3701  *          be moved to a newly inserted indirect block in addition to the
3702  *          specific chain.
3703  */
3704 void
3705 hammer2_chain_rename(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3706                      hammer2_tid_t mtid, int flags)
3707 {
3708         hammer2_blockref_t *bref;
3709         hammer2_dev_t *hmp;
3710         hammer2_chain_t *parent;
3711         size_t bytes;
3712
3713         /*
3714          * WARNING!  We should never resolve DATA to device buffers
3715          *           (XXX allow it if the caller did?), and since
3716          *           we currently do not have the logical buffer cache
3717          *           buffer in-hand to fix its cached physical offset
3718          *           we also force the modify code to not COW it. XXX
3719          *
3720          * NOTE!     We allow error'd chains to be renamed.  The bref itself
3721          *           is good and can be renamed.  The content, however, may
3722          *           be inaccessible.
3723          */
3724         hmp = chain->hmp;
3725         KKASSERT(chain->parent == NULL);
3726         /*KKASSERT(chain->error == 0); allow */
3727
3728         /*
3729          * Now create a duplicate of the chain structure, associating
3730          * it with the same core, making it the same size, pointing it
3731          * to the same bref (the same media block).
3732          *
3733          * NOTE: Handle special radix == 0 case (means 0 bytes).
3734          */
3735         bref = &chain->bref;
3736         bytes = (size_t)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
3737         if (bytes)
3738                 bytes = (hammer2_off_t)1 << bytes;
3739
3740         /*
3741          * If parent is not NULL the duplicated chain will be entered under
3742          * the parent and the UPDATE bit set to tell flush to update
3743          * the blockref.
3744          *
3745          * We must setflush(parent) to ensure that it recurses through to
3746          * chain.  setflush(chain) might not work because ONFLUSH is possibly
3747          * already set in the chain (so it won't recurse up to set it in the
3748          * parent).
3749          *
3750          * Having both chains locked is extremely important for atomicy.
3751          */
3752         if (parentp && (parent = *parentp) != NULL) {
3753                 KKASSERT(hammer2_mtx_owned(&parent->lock));
3754                 KKASSERT(parent->refs > 0);
3755                 KKASSERT(parent->error == 0);
3756
3757                 hammer2_chain_create(parentp, &chain, NULL, chain->pmp,
3758                                      HAMMER2_METH_DEFAULT,
3759                                      bref->key, bref->keybits, bref->type,
3760                                      chain->bytes, mtid, 0, flags);
3761                 KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
3762                 hammer2_chain_setflush(*parentp);
3763         }
3764 }
3765
3766 /*
3767  * This works in tandem with delete_obref() to install a blockref in
3768  * (typically) an indirect block that is associated with the chain being
3769  * moved to *parentp.
3770  *
3771  * The reason we need this function is that the caller needs to maintain
3772  * the blockref as it was, and not generate a new blockref for what might
3773  * be a modified chain.  Otherwise stuff will leak into the flush that
3774  * the flush code's FLUSH_INODE_STOP flag is unable to catch.
3775  *
3776  * It is EXTREMELY important that we properly set CHAIN_BMAPUPD and
3777  * CHAIN_UPDATE.  We must set BMAPUPD if the bref does not match, and
3778  * we must clear CHAIN_UPDATE (that was likely set by the chain_rename) if
3779  * it does.  Otherwise we can end up in a situation where H2 is unable to
3780  * clean up the in-memory chain topology.
3781  *
3782  * The reason for this is that flushes do not generally flush through
3783  * BREF_TYPE_INODE chains and depend on a hammer2_inode_t queued to syncq
3784  * or sideq to properly flush and dispose of the related inode chain's flags.
3785  * Situations where the inode is not actually modified by the frontend,
3786  * but where we have to move the related chains around as we insert or cleanup
3787  * indirect blocks, can leave us with a 'dirty' (non-disposable) in-memory
3788  * inode chain that does not have a hammer2_inode_t associated with it.
3789  */
3790 void
3791 hammer2_chain_rename_obref(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3792                            hammer2_tid_t mtid, int flags,
3793                            hammer2_blockref_t *obref)
3794 {
3795         hammer2_chain_rename(parentp, chain, mtid, flags);
3796
3797         if (obref->type != HAMMER2_BREF_TYPE_EMPTY) {
3798                 hammer2_blockref_t *tbase;
3799                 int tcount;
3800
3801                 KKASSERT((chain->flags & HAMMER2_CHAIN_BMAPPED) == 0);
3802                 hammer2_chain_modify(*parentp, mtid, 0, 0);
3803                 tbase = hammer2_chain_base_and_count(*parentp, &tcount);
3804                 hammer2_base_insert(*parentp, tbase, tcount, chain, obref);
3805                 if (bcmp(obref, &chain->bref, sizeof(chain->bref))) {
3806                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD |
3807                                                       HAMMER2_CHAIN_UPDATE);
3808                 } else {
3809                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3810                 }
3811         }
3812 }
3813
3814 /*
3815  * Helper function for deleting chains.
3816  *
3817  * The chain is removed from the live view (the RBTREE) as well as the parent's
3818  * blockmap.  Both chain and its parent must be locked.
3819  *
3820  * parent may not be errored.  chain can be errored.
3821  */
3822 static int
3823 _hammer2_chain_delete_helper(hammer2_chain_t *parent, hammer2_chain_t *chain,
3824                              hammer2_tid_t mtid, int flags,
3825                              hammer2_blockref_t *obref)
3826 {
3827         hammer2_dev_t *hmp;
3828         int error = 0;
3829
3830         KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0);
3831         KKASSERT(chain->parent == parent);
3832         hmp = chain->hmp;
3833
3834         if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
3835                 /*
3836                  * Chain is blockmapped, so there must be a parent.
3837                  * Atomically remove the chain from the parent and remove
3838                  * the blockmap entry.  The parent must be set modified
3839                  * to remove the blockmap entry.
3840                  */
3841                 hammer2_blockref_t *base;
3842                 int count;
3843
3844                 KKASSERT(parent != NULL);
3845                 KKASSERT(parent->error == 0);
3846                 KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
3847                 error = hammer2_chain_modify(parent, mtid, 0, 0);
3848                 if (error)
3849                         goto done;
3850
3851                 /*
3852                  * Calculate blockmap pointer
3853                  */
3854                 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
3855                 hammer2_spin_ex(&chain->core.spin);
3856                 hammer2_spin_ex(&parent->core.spin);
3857
3858                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3859                 atomic_add_int(&parent->core.live_count, -1);
3860                 ++parent->core.generation;
3861                 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3862                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3863                 --parent->core.chain_count;
3864                 chain->parent = NULL;
3865
3866                 switch(parent->bref.type) {
3867                 case HAMMER2_BREF_TYPE_INODE:
3868                         /*
3869                          * Access the inode's block array.  However, there
3870                          * is no block array if the inode is flagged
3871                          * DIRECTDATA.
3872                          */
3873                         if (parent->data &&
3874                             (parent->data->ipdata.meta.op_flags &
3875                              HAMMER2_OPFLAG_DIRECTDATA) == 0) {
3876                                 base =
3877                                    &parent->data->ipdata.u.blockset.blockref[0];
3878                         } else {
3879                                 base = NULL;
3880                         }
3881                         count = HAMMER2_SET_COUNT;
3882                         break;
3883                 case HAMMER2_BREF_TYPE_INDIRECT:
3884                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3885                         if (parent->data)
3886                                 base = &parent->data->npdata[0];
3887                         else
3888                                 base = NULL;
3889                         count = parent->bytes / sizeof(hammer2_blockref_t);
3890                         break;
3891                 case HAMMER2_BREF_TYPE_VOLUME:
3892                         base = &parent->data->voldata.
3893                                         sroot_blockset.blockref[0];
3894                         count = HAMMER2_SET_COUNT;
3895                         break;
3896                 case HAMMER2_BREF_TYPE_FREEMAP:
3897                         base = &parent->data->blkset.blockref[0];
3898                         count = HAMMER2_SET_COUNT;
3899                         break;
3900                 default:
3901                         base = NULL;
3902                         count = 0;
3903                         panic("_hammer2_chain_delete_helper: "
3904                               "unrecognized blockref type: %d",
3905                               parent->bref.type);
3906                 }
3907
3908                 /*
3909                  * delete blockmapped chain from its parent.
3910                  *
3911                  * The parent is not affected by any statistics in chain
3912                  * which are pending synchronization.  That is, there is
3913                  * nothing to undo in the parent since they have not yet
3914                  * been incorporated into the parent.
3915                  *
3916                  * The parent is affected by statistics stored in inodes.
3917                  * Those have already been synchronized, so they must be
3918                  * undone.  XXX split update possible w/delete in middle?
3919                  */
3920                 if (base) {
3921                         hammer2_base_delete(parent, base, count, chain, obref);
3922                 }
3923                 hammer2_spin_unex(&parent->core.spin);
3924                 hammer2_spin_unex(&chain->core.spin);
3925         } else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
3926                 /*
3927                  * Chain is not blockmapped but a parent is present.
3928                  * Atomically remove the chain from the parent.  There is
3929                  * no blockmap entry to remove.
3930                  *
3931                  * Because chain was associated with a parent but not
3932                  * synchronized, the chain's *_count_up fields contain
3933                  * inode adjustment statistics which must be undone.
3934                  */
3935                 hammer2_spin_ex(&chain->core.spin);
3936                 hammer2_spin_ex(&parent->core.spin);
3937                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3938                 atomic_add_int(&parent->core.live_count, -1);
3939                 ++parent->core.generation;
3940                 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3941                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3942                 --parent->core.chain_count;
3943                 chain->parent = NULL;
3944                 hammer2_spin_unex(&parent->core.spin);
3945                 hammer2_spin_unex(&chain->core.spin);
3946         } else {
3947                 /*
3948                  * Chain is not blockmapped and has no parent.  This
3949                  * is a degenerate case.
3950                  */
3951                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3952         }
3953 done:
3954         return error;
3955 }
3956
3957 /*
3958  * Create an indirect block that covers one or more of the elements in the
3959  * current parent.  Either returns the existing parent with no locking or
3960  * ref changes or returns the new indirect block locked and referenced
3961  * and leaving the original parent lock/ref intact as well.
3962  *
3963  * If an error occurs, NULL is returned and *errorp is set to the H2 error.
3964  *
3965  * The returned chain depends on where the specified key falls.
3966  *
3967  * The key/keybits for the indirect mode only needs to follow three rules:
3968  *
3969  * (1) That all elements underneath it fit within its key space and
3970  *
3971  * (2) That all elements outside it are outside its key space.
3972  *
3973  * (3) When creating the new indirect block any elements in the current
3974  *     parent that fit within the new indirect block's keyspace must be
3975  *     moved into the new indirect block.
3976  *
3977  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
3978  *     keyspace the the current parent, but lookup/iteration rules will
3979  *     ensure (and must ensure) that rule (2) for all parents leading up
3980  *     to the nearest inode or the root volume header is adhered to.  This
3981  *     is accomplished by always recursing through matching keyspaces in
3982  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
3983  *
3984  * The current implementation calculates the current worst-case keyspace by
3985  * iterating the current parent and then divides it into two halves, choosing
3986  * whichever half has the most elements (not necessarily the half containing
3987  * the requested key).
3988  *
3989  * We can also opt to use the half with the least number of elements.  This
3990  * causes lower-numbered keys (aka logical file offsets) to recurse through
3991  * fewer indirect blocks and higher-numbered keys to recurse through more.
3992  * This also has the risk of not moving enough elements to the new indirect
3993  * block and being forced to create several indirect blocks before the element
3994  * can be inserted.
3995  *
3996  * Must be called with an exclusively locked parent.
3997  *
3998  * NOTE: *errorp set to HAMMER_ERROR_* flags
3999  */
4000 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
4001                                 hammer2_key_t *keyp, int keybits,
4002                                 hammer2_blockref_t *base, int count);
4003 static int hammer2_chain_indkey_file(hammer2_chain_t *parent,
4004                                 hammer2_key_t *keyp, int keybits,
4005                                 hammer2_blockref_t *base, int count,
4006                                 int ncount);
4007 static int hammer2_chain_indkey_dir(hammer2_chain_t *parent,
4008                                 hammer2_key_t *keyp, int keybits,
4009                                 hammer2_blockref_t *base, int count,
4010                                 int ncount);
4011 static
4012 hammer2_chain_t *
4013 hammer2_chain_create_indirect(hammer2_chain_t *parent,
4014                               hammer2_key_t create_key, int create_bits,
4015                               hammer2_tid_t mtid, int for_type, int *errorp)
4016 {
4017         hammer2_dev_t *hmp;
4018         hammer2_blockref_t *base;
4019         hammer2_blockref_t *bref;
4020         hammer2_blockref_t bsave;
4021         hammer2_blockref_t dummy;
4022         hammer2_chain_t *chain;
4023         hammer2_chain_t *ichain;
4024         hammer2_key_t key = create_key;
4025         hammer2_key_t key_beg;
4026         hammer2_key_t key_end;
4027         hammer2_key_t key_next;
4028         int keybits = create_bits;
4029         int count;
4030         int ncount;
4031         int nbytes;
4032         int loops;
4033         int error;
4034         int reason;
4035         int generation;
4036         int maxloops = 300000;
4037
4038         /*
4039          * Calculate the base blockref pointer or NULL if the chain
4040          * is known to be empty.  We need to calculate the array count
4041          * for RB lookups either way.
4042          */
4043         hmp = parent->hmp;
4044         KKASSERT(hammer2_mtx_owned(&parent->lock));
4045
4046         /*
4047          * Pre-modify the parent now to avoid having to deal with error
4048          * processing if we tried to later (in the middle of our loop).
4049          *
4050          * We are going to be moving bref's around, the indirect blocks
4051          * cannot be in an initial state.  Do not pass MODIFY_OPTDATA.
4052          */
4053         *errorp = hammer2_chain_modify(parent, mtid, 0, 0);
4054         if (*errorp) {
4055                 kprintf("hammer2_chain_create_indirect: error %08x %s\n",
4056                         *errorp, hammer2_error_str(*errorp));
4057                 return NULL;
4058         }
4059         KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
4060
4061         /*hammer2_chain_modify(&parent, HAMMER2_MODIFY_OPTDATA);*/
4062         base = hammer2_chain_base_and_count(parent, &count);
4063
4064         /*
4065          * How big should our new indirect block be?  It has to be at least
4066          * as large as its parent for splits to work properly.
4067          *
4068          * The freemap uses a specific indirect block size.  The number of
4069          * levels are built dynamically and ultimately depend on the size
4070          * volume.  Because freemap blocks are taken from the reserved areas
4071          * of the volume our goal is efficiency (fewer levels) and not so
4072          * much to save disk space.
4073          *
4074          * The first indirect block level for a directory usually uses
4075          * HAMMER2_IND_BYTES_MIN (4KB = 32 directory entries).  Due to
4076          * the hash mechanism, this typically gives us a nominal
4077          * 32 * 4 entries with one level of indirection.
4078          *
4079          * We use HAMMER2_IND_BYTES_NOM (16KB = 128 blockrefs) for FILE
4080          * indirect blocks.  The initial 4 entries in the inode gives us
4081          * 256KB.  Up to 4 indirect blocks gives us 32MB.  Three levels
4082          * of indirection gives us 137GB, and so forth.  H2 can support
4083          * huge file sizes but they are not typical, so we try to stick
4084          * with compactness and do not use a larger indirect block size.
4085          *
4086          * We could use 64KB (PBUFSIZE), giving us 512 blockrefs, but
4087          * due to the way indirect blocks are created this usually winds
4088          * up being extremely inefficient for small files.  Even though
4089          * 16KB requires more levels of indirection for very large files,
4090          * the 16KB records can be ganged together into 64KB DIOs.
4091          */
4092         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4093             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4094                 nbytes = HAMMER2_FREEMAP_LEVELN_PSIZE;
4095         } else if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4096                 if (parent->data->ipdata.meta.type ==
4097                     HAMMER2_OBJTYPE_DIRECTORY)
4098                         nbytes = HAMMER2_IND_BYTES_MIN; /* 4KB = 32 entries */
4099                 else
4100                         nbytes = HAMMER2_IND_BYTES_NOM; /* 16KB = ~8MB file */
4101
4102         } else {
4103                 nbytes = HAMMER2_IND_BYTES_NOM;
4104         }
4105         if (nbytes < count * sizeof(hammer2_blockref_t)) {
4106                 KKASSERT(for_type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
4107                          for_type != HAMMER2_BREF_TYPE_FREEMAP_LEAF);
4108                 nbytes = count * sizeof(hammer2_blockref_t);
4109         }
4110         ncount = nbytes / sizeof(hammer2_blockref_t);
4111
4112         /*
4113          * When creating an indirect block for a freemap node or leaf
4114          * the key/keybits must be fitted to static radix levels because
4115          * particular radix levels use particular reserved blocks in the
4116          * related zone.
4117          *
4118          * This routine calculates the key/radix of the indirect block
4119          * we need to create, and whether it is on the high-side or the
4120          * low-side.
4121          */
4122         switch(for_type) {
4123         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
4124         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
4125                 keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
4126                                                        base, count);
4127                 break;
4128         case HAMMER2_BREF_TYPE_DATA:
4129                 keybits = hammer2_chain_indkey_file(parent, &key, keybits,
4130                                                     base, count, ncount);
4131                 break;
4132         case HAMMER2_BREF_TYPE_DIRENT:
4133         case HAMMER2_BREF_TYPE_INODE:
4134                 keybits = hammer2_chain_indkey_dir(parent, &key, keybits,
4135                                                    base, count, ncount);
4136                 break;
4137         default:
4138                 panic("illegal indirect block for bref type %d", for_type);
4139                 break;
4140         }
4141
4142         /*
4143          * Normalize the key for the radix being represented, keeping the
4144          * high bits and throwing away the low bits.
4145          */
4146         key &= ~(((hammer2_key_t)1 << keybits) - 1);
4147
4148         /*
4149          * Ok, create our new indirect block
4150          */
4151         bzero(&dummy, sizeof(dummy));
4152         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4153             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4154                 dummy.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
4155         } else {
4156                 dummy.type = HAMMER2_BREF_TYPE_INDIRECT;
4157         }
4158         dummy.key = key;
4159         dummy.keybits = keybits;
4160         dummy.data_off = hammer2_getradix(nbytes);
4161         dummy.methods =
4162                 HAMMER2_ENC_CHECK(HAMMER2_DEC_CHECK(parent->bref.methods)) |
4163                 HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
4164
4165         ichain = hammer2_chain_alloc(hmp, parent->pmp, &dummy);
4166         atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
4167         hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
4168         /* ichain has one ref at this point */
4169
4170         /*
4171          * We have to mark it modified to allocate its block, but use
4172          * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
4173          * it won't be acted upon by the flush code.
4174          *
4175          * XXX remove OPTDATA, we need a fully initialized indirect block to
4176          * be able to move the original blockref.
4177          */
4178         *errorp = hammer2_chain_modify(ichain, mtid, 0, 0);
4179         if (*errorp) {
4180                 kprintf("hammer2_chain_create_indirect: error %08x %s\n",
4181                         *errorp, hammer2_error_str(*errorp));
4182                 hammer2_chain_unlock(ichain);
4183                 hammer2_chain_drop(ichain);
4184                 return NULL;
4185         }
4186         KKASSERT((ichain->flags & HAMMER2_CHAIN_INITIAL) == 0);
4187
4188         /*
4189          * Iterate the original parent and move the matching brefs into
4190          * the new indirect block.
4191          *
4192          * XXX handle flushes.
4193          */
4194         key_beg = 0;
4195         key_end = HAMMER2_KEY_MAX;
4196         key_next = 0;   /* avoid gcc warnings */
4197         hammer2_spin_ex(&parent->core.spin);
4198         loops = 0;
4199         reason = 0;
4200
4201         for (;;) {
4202                 /*
4203                  * Parent may have been modified, relocating its block array.
4204                  * Reload the base pointer.
4205                  */
4206                 base = hammer2_chain_base_and_count(parent, &count);
4207
4208                 if (++loops > 100000) {
4209                     hammer2_spin_unex(&parent->core.spin);
4210                     panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
4211                           reason, parent, base, count, key_next);
4212                 }
4213
4214                 /*
4215                  * NOTE: spinlock stays intact, returned chain (if not NULL)
4216                  *       is not referenced or locked which means that we
4217                  *       cannot safely check its flagged / deletion status
4218                  *       until we lock it.
4219                  */
4220                 chain = hammer2_combined_find(parent, base, count,
4221                                               &key_next,
4222                                               key_beg, key_end,
4223                                               &bref);
4224                 generation = parent->core.generation;
4225                 if (bref == NULL)
4226                         break;
4227                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4228
4229                 /*
4230                  * Skip keys that are not within the key/radix of the new
4231                  * indirect block.  They stay in the parent.
4232                  */
4233                 if (rounddown2(key ^ bref->key, (hammer2_key_t)1 << keybits) != 0) {
4234                         goto next_key_spinlocked;
4235                 }
4236
4237                 /*
4238                  * Load the new indirect block by acquiring the related
4239                  * chains (potentially from media as it might not be
4240                  * in-memory).  Then move it to the new parent (ichain).
4241                  *
4242                  * chain is referenced but not locked.  We must lock the
4243                  * chain to obtain definitive state.
4244                  */
4245                 bsave = *bref;
4246                 if (chain) {
4247                         /*
4248                          * Use chain already present in the RBTREE
4249                          */
4250                         hammer2_chain_ref(chain);
4251                         hammer2_spin_unex(&parent->core.spin);
4252                         hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
4253                 } else {
4254                         /*
4255                          * Get chain for blockref element.  _get returns NULL
4256                          * on insertion race.
4257                          */
4258                         hammer2_spin_unex(&parent->core.spin);
4259                         chain = hammer2_chain_get(parent, generation, &bsave,
4260                                                   HAMMER2_RESOLVE_NEVER);
4261                         if (chain == NULL) {
4262                                 reason = 1;
4263                                 hammer2_spin_ex(&parent->core.spin);
4264                                 continue;
4265                         }
4266                 }
4267
4268                 /*
4269                  * This is always live so if the chain has been deleted
4270                  * we raced someone and we have to retry.
4271                  *
4272                  * NOTE: Lookups can race delete-duplicate because
4273                  *       delete-duplicate does not lock the parent's core
4274                  *       (they just use the spinlock on the core).
4275                  *
4276                  *       (note reversed logic for this one)
4277                  */
4278                 if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
4279                     chain->parent != parent ||
4280                     (chain->flags & HAMMER2_CHAIN_DELETED)) {
4281                         hammer2_chain_unlock(chain);
4282                         hammer2_chain_drop(chain);
4283                         if (hammer2_debug & 0x0040) {
4284                                 kprintf("LOST PARENT RETRY "
4285                                 "RETRY (%p,%p)->%p %08x\n",
4286                                 parent, chain->parent, chain, chain->flags);
4287                         }
4288                         hammer2_spin_ex(&parent->core.spin);
4289                         continue;
4290                 }
4291
4292                 /*
4293                  * Shift the chain to the indirect block.
4294                  *
4295                  * WARNING! No reason for us to load chain data, pass NOSTATS
4296                  *          to prevent delete/insert from trying to access
4297                  *          inode stats (and thus asserting if there is no
4298                  *          chain->data loaded).
4299                  *
4300                  * WARNING! The (parent, chain) deletion may modify the parent
4301                  *          and invalidate the base pointer.
4302                  *
4303                  * WARNING! Parent must already be marked modified, so we
4304                  *          can assume that chain_delete always suceeds.
4305                  *
4306                  * WARNING! hammer2_chain_repchange() does not have to be
4307                  *          called (and doesn't work anyway because we are
4308                  *          only doing a partial shift).  A recursion that is
4309                  *          in-progress can continue at the current parent
4310                  *          and will be able to properly find its next key.
4311                  */
4312                 error = hammer2_chain_delete_obref(parent, chain, mtid, 0,
4313                                                    &bsave);
4314                 KKASSERT(error == 0);
4315                 hammer2_chain_rename_obref(&ichain, chain, mtid, 0, &bsave);
4316                 hammer2_chain_unlock(chain);
4317                 hammer2_chain_drop(chain);
4318                 KKASSERT(parent->refs > 0);
4319                 chain = NULL;
4320                 base = NULL;    /* safety */
4321                 hammer2_spin_ex(&parent->core.spin);
4322 next_key_spinlocked:
4323                 if (--maxloops == 0)
4324                         panic("hammer2_chain_create_indirect: maxloops");
4325                 reason = 4;
4326                 if (key_next == 0 || key_next > key_end)
4327                         break;
4328                 key_beg = key_next;
4329                 /* loop */
4330         }
4331         hammer2_spin_unex(&parent->core.spin);
4332
4333         /*
4334          * Insert the new indirect block into the parent now that we've
4335          * cleared out some entries in the parent.  We calculated a good
4336          * insertion index in the loop above (ichain->index).
4337          *
4338          * We don't have to set UPDATE here because we mark ichain
4339          * modified down below (so the normal modified -> flush -> set-moved
4340          * sequence applies).
4341          *
4342          * The insertion shouldn't race as this is a completely new block
4343          * and the parent is locked.
4344          */
4345         base = NULL;    /* safety, parent modify may change address */
4346         KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
4347         KKASSERT(parent->core.live_count < count);
4348         hammer2_chain_insert(parent, ichain,
4349                              HAMMER2_CHAIN_INSERT_SPIN |
4350                              HAMMER2_CHAIN_INSERT_LIVE,
4351                              0);
4352
4353         /*
4354          * Make sure flushes propogate after our manual insertion.
4355          */
4356         hammer2_chain_setflush(ichain);
4357         hammer2_chain_setflush(parent);
4358
4359         /*
4360          * Figure out what to return.
4361          */
4362         if (rounddown2(create_key ^ key, (hammer2_key_t)1 << keybits)) {
4363                 /*
4364                  * Key being created is outside the key range,
4365                  * return the original parent.
4366                  */
4367                 hammer2_chain_unlock(ichain);
4368                 hammer2_chain_drop(ichain);
4369         } else {
4370                 /*
4371                  * Otherwise its in the range, return the new parent.
4372                  * (leave both the new and old parent locked).
4373                  */
4374                 parent = ichain;
4375         }
4376
4377         return(parent);
4378 }
4379
4380 /*
4381  * Do maintenance on an indirect chain.  Both parent and chain are locked.
4382  *
4383  * Returns non-zero if (chain) is deleted, either due to being empty or
4384  * because its children were safely moved into the parent.
4385  */
4386 int
4387 hammer2_chain_indirect_maintenance(hammer2_chain_t *parent,
4388                                    hammer2_chain_t *chain)
4389 {
4390         hammer2_blockref_t *chain_base;
4391         hammer2_blockref_t *base;
4392         hammer2_blockref_t *bref;
4393         hammer2_blockref_t bsave;
4394         hammer2_key_t key_next;
4395         hammer2_key_t key_beg;
4396         hammer2_key_t key_end;
4397         hammer2_chain_t *sub;
4398         int chain_count;
4399         int count;
4400         int error;
4401         int generation;
4402
4403         /*
4404          * Make sure we have an accurate live_count
4405          */
4406         if ((chain->flags & (HAMMER2_CHAIN_INITIAL |
4407                              HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4408                 base = &chain->data->npdata[0];
4409                 count = chain->bytes / sizeof(hammer2_blockref_t);
4410                 hammer2_chain_countbrefs(chain, base, count);
4411         }
4412
4413         /*
4414          * If the indirect block is empty we can delete it.
4415          * (ignore deletion error)
4416          */
4417         if (chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree)) {
4418                 hammer2_chain_delete(parent, chain,
4419                                      chain->bref.modify_tid,
4420                                      HAMMER2_DELETE_PERMANENT);
4421                 hammer2_chain_repchange(parent, chain);
4422                 return 1;
4423         }
4424
4425         base = hammer2_chain_base_and_count(parent, &count);
4426
4427         if ((parent->flags & (HAMMER2_CHAIN_INITIAL |
4428                              HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4429                 hammer2_chain_countbrefs(parent, base, count);
4430         }
4431
4432         /*
4433          * Determine if we can collapse chain into parent, calculate
4434          * hysteresis for chain emptiness.
4435          */
4436         if (parent->core.live_count + chain->core.live_count - 1 > count)
4437                 return 0;
4438         chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4439         if (chain->core.live_count > chain_count * 3 / 4)
4440                 return 0;
4441
4442         /*
4443          * Ok, theoretically we can collapse chain's contents into
4444          * parent.  chain is locked, but any in-memory children of chain
4445          * are not.  For this to work, we must be able to dispose of any
4446          * in-memory children of chain.
4447          *
4448          * For now require that there are no in-memory children of chain.
4449          *
4450          * WARNING! Both chain and parent must remain locked across this
4451          *          entire operation.
4452          */
4453
4454         /*
4455          * Parent must be marked modified.  Don't try to collapse it if we
4456          * can't mark it modified.  Once modified, destroy chain to make room
4457          * and to get rid of what will be a conflicting key (this is included
4458          * in the calculation above).  Finally, move the children of chain
4459          * into chain's parent.
4460          *
4461          * This order creates an accounting problem for bref.embed.stats
4462          * because we destroy chain before we remove its children.  Any
4463          * elements whos blockref is already synchronized will be counted
4464          * twice.  To deal with the problem we clean out chain's stats prior
4465          * to deleting it.
4466          */
4467         error = hammer2_chain_modify(parent, 0, 0, 0);
4468         if (error) {
4469                 krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4470                             hammer2_error_str(error));
4471                 return 0;
4472         }
4473         error = hammer2_chain_modify(chain, chain->bref.modify_tid, 0, 0);
4474         if (error) {
4475                 krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4476                             hammer2_error_str(error));
4477                 return 0;
4478         }
4479
4480         chain->bref.embed.stats.inode_count = 0;
4481         chain->bref.embed.stats.data_count = 0;
4482         error = hammer2_chain_delete(parent, chain,
4483                                      chain->bref.modify_tid,
4484                                      HAMMER2_DELETE_PERMANENT);
4485         KKASSERT(error == 0);
4486
4487         /*
4488          * The combined_find call requires core.spin to be held.  One would
4489          * think there wouldn't be any conflicts since we hold chain
4490          * exclusively locked, but the caching mechanism for 0-ref children
4491          * does not require a chain lock.
4492          */
4493         hammer2_spin_ex(&chain->core.spin);
4494
4495         key_next = 0;
4496         key_beg = 0;
4497         key_end = HAMMER2_KEY_MAX;
4498         for (;;) {
4499                 chain_base = &chain->data->npdata[0];
4500                 chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4501                 sub = hammer2_combined_find(chain, chain_base, chain_count,
4502                                             &key_next,
4503                                             key_beg, key_end,
4504                                             &bref);
4505                 generation = chain->core.generation;
4506                 if (bref == NULL)
4507                         break;
4508                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4509
4510                 bsave = *bref;
4511                 if (sub) {
4512                         hammer2_chain_ref(sub);
4513                         hammer2_spin_unex(&chain->core.spin);
4514                         hammer2_chain_lock(sub, HAMMER2_RESOLVE_NEVER);
4515                 } else {
4516                         hammer2_spin_unex(&chain->core.spin);
4517                         sub = hammer2_chain_get(chain, generation, &bsave,
4518                                                 HAMMER2_RESOLVE_NEVER);
4519                         if (sub == NULL) {
4520                                 hammer2_spin_ex(&chain->core.spin);
4521                                 continue;
4522                         }
4523                 }
4524                 if (bcmp(&bsave, &sub->bref, sizeof(bsave)) ||
4525                     sub->parent != chain ||
4526                     (sub->flags & HAMMER2_CHAIN_DELETED)) {
4527                         hammer2_chain_unlock(sub);
4528                         hammer2_chain_drop(sub);
4529                         hammer2_spin_ex(&chain->core.spin);
4530                         sub = NULL;     /* safety */
4531                         continue;
4532                 }
4533                 error = hammer2_chain_delete_obref(chain, sub,
4534                                                    sub->bref.modify_tid, 0,
4535                                                    &bsave);
4536                 KKASSERT(error == 0);
4537                 hammer2_chain_rename_obref(&parent, sub,
4538                                      sub->bref.modify_tid,
4539                                      HAMMER2_INSERT_SAMEPARENT, &bsave);
4540                 hammer2_chain_unlock(sub);
4541                 hammer2_chain_drop(sub);
4542                 hammer2_spin_ex(&chain->core.spin);
4543
4544                 if (key_next == 0)
4545                         break;
4546                 key_beg = key_next;
4547         }
4548         hammer2_spin_unex(&chain->core.spin);
4549
4550         hammer2_chain_repchange(parent, chain);
4551
4552         return 1;
4553 }
4554
4555 /*
4556  * Freemap indirect blocks
4557  *
4558  * Calculate the keybits and highside/lowside of the freemap node the
4559  * caller is creating.
4560  *
4561  * This routine will specify the next higher-level freemap key/radix
4562  * representing the lowest-ordered set.  By doing so, eventually all
4563  * low-ordered sets will be moved one level down.
4564  *
4565  * We have to be careful here because the freemap reserves a limited
4566  * number of blocks for a limited number of levels.  So we can't just
4567  * push indiscriminately.
4568  */
4569 int
4570 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
4571                              int keybits, hammer2_blockref_t *base, int count)
4572 {
4573         hammer2_chain_t *chain;
4574         hammer2_blockref_t *bref;
4575         hammer2_key_t key;
4576         hammer2_key_t key_beg;
4577         hammer2_key_t key_end;
4578         hammer2_key_t key_next;
4579         int locount;
4580         int hicount;
4581         int maxloops = 300000;
4582
4583         key = *keyp;
4584         locount = 0;
4585         hicount = 0;
4586         keybits = 64;
4587
4588         /*
4589          * Calculate the range of keys in the array being careful to skip
4590          * slots which are overridden with a deletion.
4591          */
4592         key_beg = 0;
4593         key_end = HAMMER2_KEY_MAX;
4594         hammer2_spin_ex(&parent->core.spin);
4595
4596         for (;;) {
4597                 if (--maxloops == 0) {
4598                         panic("indkey_freemap shit %p %p:%d\n",
4599                               parent, base, count);
4600                 }
4601                 chain = hammer2_combined_find(parent, base, count,
4602                                               &key_next,
4603                                               key_beg, key_end,
4604                                               &bref);
4605
4606                 /*
4607                  * Exhausted search
4608                  */
4609                 if (bref == NULL)
4610                         break;
4611
4612                 /*
4613                  * Skip deleted chains.
4614                  */
4615                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4616                         if (key_next == 0 || key_next > key_end)
4617                                 break;
4618                         key_beg = key_next;
4619                         continue;
4620                 }
4621
4622                 /*
4623                  * Use the full live (not deleted) element for the scan
4624                  * iteration.  HAMMER2 does not allow partial replacements.
4625                  *
4626                  * XXX should be built into hammer2_combined_find().
4627                  */
4628                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4629
4630                 if (keybits > bref->keybits) {
4631                         key = bref->key;
4632                         keybits = bref->keybits;
4633                 } else if (keybits == bref->keybits && bref->key < key) {
4634                         key = bref->key;
4635                 }
4636                 if (key_next == 0)
4637                         break;
4638                 key_beg = key_next;
4639         }
4640         hammer2_spin_unex(&parent->core.spin);
4641
4642         /*
4643          * Return the keybits for a higher-level FREEMAP_NODE covering
4644          * this node.
4645          */
4646         switch(keybits) {
4647         case HAMMER2_FREEMAP_LEVEL0_RADIX:
4648                 keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
4649                 break;
4650         case HAMMER2_FREEMAP_LEVEL1_RADIX:
4651                 keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
4652                 break;
4653         case HAMMER2_FREEMAP_LEVEL2_RADIX:
4654                 keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
4655                 break;
4656         case HAMMER2_FREEMAP_LEVEL3_RADIX:
4657                 keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
4658                 break;
4659         case HAMMER2_FREEMAP_LEVEL4_RADIX:
4660                 keybits = HAMMER2_FREEMAP_LEVEL5_RADIX;
4661                 break;
4662         case HAMMER2_FREEMAP_LEVEL5_RADIX:
4663                 panic("hammer2_chain_indkey_freemap: level too high");
4664                 break;
4665         default:
4666                 panic("hammer2_chain_indkey_freemap: bad radix");
4667                 break;
4668         }
4669         *keyp = key;
4670
4671         return (keybits);
4672 }
4673
4674 /*
4675  * File indirect blocks
4676  *
4677  * Calculate the key/keybits for the indirect block to create by scanning
4678  * existing keys.  The key being created is also passed in *keyp and can be
4679  * inside or outside the indirect block.  Regardless, the indirect block
4680  * must hold at least two keys in order to guarantee sufficient space.
4681  *
4682  * We use a modified version of the freemap's fixed radix tree, but taylored
4683  * for file data.  Basically we configure an indirect block encompassing the
4684  * smallest key.
4685  */
4686 static int
4687 hammer2_chain_indkey_file(hammer2_chain_t *parent, hammer2_key_t *keyp,
4688                             int keybits, hammer2_blockref_t *base, int count,
4689                             int ncount)
4690 {
4691         hammer2_chain_t *chain;
4692         hammer2_blockref_t *bref;
4693         hammer2_key_t key;
4694         hammer2_key_t key_beg;
4695         hammer2_key_t key_end;
4696         hammer2_key_t key_next;
4697         int nradix;
4698         int locount;
4699         int hicount;
4700         int maxloops = 300000;
4701
4702         key = *keyp;
4703         locount = 0;
4704         hicount = 0;
4705         keybits = 64;
4706
4707         /*
4708          * Calculate the range of keys in the array being careful to skip
4709          * slots which are overridden with a deletion.
4710          *
4711          * Locate the smallest key.
4712          */
4713         key_beg = 0;
4714         key_end = HAMMER2_KEY_MAX;
4715         hammer2_spin_ex(&parent->core.spin);
4716
4717         for (;;) {
4718                 if (--maxloops == 0) {
4719                         panic("indkey_freemap shit %p %p:%d\n",
4720                               parent, base, count);
4721                 }
4722                 chain = hammer2_combined_find(parent, base, count,
4723                                               &key_next,
4724                                               key_beg, key_end,
4725                                               &bref);
4726
4727                 /*
4728                  * Exhausted search
4729                  */
4730                 if (bref == NULL)
4731                         break;
4732
4733                 /*
4734                  * Skip deleted chains.
4735                  */
4736                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4737                         if (key_next == 0 || key_next > key_end)
4738                                 break;
4739                         key_beg = key_next;
4740                         continue;
4741                 }
4742
4743                 /*
4744                  * Use the full live (not deleted) element for the scan
4745                  * iteration.  HAMMER2 does not allow partial replacements.
4746                  *
4747                  * XXX should be built into hammer2_combined_find().
4748                  */
4749                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4750
4751                 if (keybits > bref->keybits) {
4752                         key = bref->key;
4753                         keybits = bref->keybits;
4754                 } else if (keybits == bref->keybits && bref->key < key) {
4755                         key = bref->key;
4756                 }
4757                 if (key_next == 0)
4758                         break;
4759                 key_beg = key_next;
4760         }
4761         hammer2_spin_unex(&parent->core.spin);
4762
4763         /*
4764          * Calculate the static keybits for a higher-level indirect block
4765          * that contains the key.
4766          */
4767         *keyp = key;
4768
4769         switch(ncount) {
4770         case HAMMER2_IND_BYTES_MIN / sizeof(hammer2_blockref_t):
4771                 nradix = HAMMER2_IND_RADIX_MIN - HAMMER2_BLOCKREF_RADIX;
4772                 break;
4773         case HAMMER2_IND_BYTES_NOM / sizeof(hammer2_blockref_t):
4774                 nradix = HAMMER2_IND_RADIX_NOM - HAMMER2_BLOCKREF_RADIX;
4775                 break;
4776         case HAMMER2_IND_BYTES_MAX / sizeof(hammer2_blockref_t):
4777                 nradix = HAMMER2_IND_RADIX_MAX - HAMMER2_BLOCKREF_RADIX;
4778                 break;
4779         default:
4780                 panic("bad ncount %d\n", ncount);
4781                 nradix = 0;
4782                 break;
4783         }
4784
4785         /*
4786          * The largest radix that can be returned for an indirect block is
4787          * 63 bits.  (The largest practical indirect block radix is actually
4788          * 62 bits because the top-level inode or volume root contains four
4789          * entries, but allow 63 to be returned).
4790          */
4791         if (nradix >= 64)
4792                 nradix = 63;
4793
4794         return keybits + nradix;
4795 }
4796
4797 #if 1
4798
4799 /*
4800  * Directory indirect blocks.
4801  *
4802  * Covers both the inode index (directory of inodes), and directory contents
4803  * (filenames hardlinked to inodes).
4804  *
4805  * Because directory keys are hashed we generally try to cut the space in
4806  * half.  We accomodate the inode index (which tends to have linearly
4807  * increasing inode numbers) by ensuring that the keyspace is at least large
4808  * enough to fill up the indirect block being created.
4809  */
4810 static int
4811 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4812                          int keybits, hammer2_blockref_t *base, int count,
4813                          int ncount)
4814 {
4815         hammer2_blockref_t *bref;
4816         hammer2_chain_t *chain;
4817         hammer2_key_t key_beg;
4818         hammer2_key_t key_end;
4819         hammer2_key_t key_next;
4820         hammer2_key_t key;
4821         int nkeybits;
4822         int locount;
4823         int hicount;
4824         int maxloops = 300000;
4825
4826         /*
4827          * NOTE: We can't take a shortcut here anymore for inodes because
4828          *       the root directory can contain a mix of inodes and directory
4829          *       entries (we used to just return 63 if parent->bref.type was
4830          *       HAMMER2_BREF_TYPE_INODE.
4831          */
4832         key = *keyp;
4833         locount = 0;
4834         hicount = 0;
4835
4836         /*
4837          * Calculate the range of keys in the array being careful to skip
4838          * slots which are overridden with a deletion.
4839          */
4840         key_beg = 0;
4841         key_end = HAMMER2_KEY_MAX;
4842         hammer2_spin_ex(&parent->core.spin);
4843
4844         for (;;) {
4845                 if (--maxloops == 0) {
4846                         panic("indkey_freemap shit %p %p:%d\n",
4847                               parent, base, count);
4848                 }
4849                 chain = hammer2_combined_find(parent, base, count,
4850                                               &key_next,
4851                                               key_beg, key_end,
4852                                               &bref);
4853
4854                 /*
4855                  * Exhausted search
4856                  */
4857                 if (bref == NULL)
4858                         break;
4859
4860                 /*
4861                  * Deleted object
4862                  */
4863                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4864                         if (key_next == 0 || key_next > key_end)
4865                                 break;
4866                         key_beg = key_next;
4867                         continue;
4868                 }
4869
4870                 /*
4871                  * Use the full live (not deleted) element for the scan
4872                  * iteration.  HAMMER2 does not allow partial replacements.
4873                  *
4874                  * XXX should be built into hammer2_combined_find().
4875                  */
4876                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4877
4878                 /*
4879                  * Expand our calculated key range (key, keybits) to fit
4880                  * the scanned key.  nkeybits represents the full range
4881                  * that we will later cut in half (two halves @ nkeybits - 1).
4882                  */
4883                 nkeybits = keybits;
4884                 if (nkeybits < bref->keybits) {
4885                         if (bref->keybits > 64) {
4886                                 kprintf("bad bref chain %p bref %p\n",
4887                                         chain, bref);
4888                                 Debugger("fubar");
4889                         }
4890                         nkeybits = bref->keybits;
4891                 }
4892                 while (nkeybits < 64 &&
4893                        rounddown2(key ^ bref->key, (hammer2_key_t)1 << nkeybits) != 0) {
4894                         ++nkeybits;
4895                 }
4896
4897                 /*
4898                  * If the new key range is larger we have to determine
4899                  * which side of the new key range the existing keys fall
4900                  * under by checking the high bit, then collapsing the
4901                  * locount into the hicount or vise-versa.
4902                  */
4903                 if (keybits != nkeybits) {
4904                         if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
4905                                 hicount += locount;
4906                                 locount = 0;
4907                         } else {
4908                                 locount += hicount;
4909                                 hicount = 0;
4910                         }
4911                         keybits = nkeybits;
4912                 }
4913
4914                 /*
4915                  * The newly scanned key will be in the lower half or the
4916                  * upper half of the (new) key range.
4917                  */
4918                 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
4919                         ++hicount;
4920                 else
4921                         ++locount;
4922
4923                 if (key_next == 0)
4924                         break;
4925                 key_beg = key_next;
4926         }
4927         hammer2_spin_unex(&parent->core.spin);
4928         bref = NULL;    /* now invalid (safety) */
4929
4930         /*
4931          * Adjust keybits to represent half of the full range calculated
4932          * above (radix 63 max) for our new indirect block.
4933          */
4934         --keybits;
4935
4936         /*
4937          * Expand keybits to hold at least ncount elements.  ncount will be
4938          * a power of 2.  This is to try to completely fill leaf nodes (at
4939          * least for keys which are not hashes).
4940          *
4941          * We aren't counting 'in' or 'out', we are counting 'high side'
4942          * and 'low side' based on the bit at (1LL << keybits).  We want
4943          * everything to be inside in these cases so shift it all to
4944          * the low or high side depending on the new high bit.
4945          */
4946         while (((hammer2_key_t)1 << keybits) < ncount) {
4947                 ++keybits;
4948                 if (key & ((hammer2_key_t)1 << keybits)) {
4949                         hicount += locount;
4950                         locount = 0;
4951                 } else {
4952                         locount += hicount;
4953                         hicount = 0;
4954                 }
4955         }
4956
4957         if (hicount > locount)
4958                 key |= (hammer2_key_t)1 << keybits;
4959         else
4960                 key &= ~(hammer2_key_t)1 << keybits;
4961
4962         *keyp = key;
4963
4964         return (keybits);
4965 }
4966
4967 #else
4968
4969 /*
4970  * Directory indirect blocks.
4971  *
4972  * Covers both the inode index (directory of inodes), and directory contents
4973  * (filenames hardlinked to inodes).
4974  *
4975  * Because directory keys are hashed we generally try to cut the space in
4976  * half.  We accomodate the inode index (which tends to have linearly
4977  * increasing inode numbers) by ensuring that the keyspace is at least large
4978  * enough to fill up the indirect block being created.
4979  */
4980 static int
4981 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4982                          int keybits, hammer2_blockref_t *base, int count,
4983                          int ncount)
4984 {
4985         hammer2_blockref_t *bref;
4986         hammer2_chain_t *chain;
4987         hammer2_key_t key_beg;
4988         hammer2_key_t key_end;
4989         hammer2_key_t key_next;
4990         hammer2_key_t key;
4991         int nkeybits;
4992         int locount;
4993         int hicount;
4994         int maxloops = 300000;
4995
4996         /*
4997          * Shortcut if the parent is the inode.  In this situation the
4998          * parent has 4+1 directory entries and we are creating an indirect
4999          * block capable of holding many more.
5000          */
5001         if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
5002                 return 63;
5003         }
5004
5005         key = *keyp;
5006         locount = 0;
5007         hicount = 0;
5008
5009         /*
5010          * Calculate the range of keys in the array being careful to skip
5011          * slots which are overridden with a deletion.
5012          */
5013         key_beg = 0;
5014         key_end = HAMMER2_KEY_MAX;
5015         hammer2_spin_ex(&parent->core.spin);
5016
5017         for (;;) {
5018                 if (--maxloops == 0) {
5019                         panic("indkey_freemap shit %p %p:%d\n",
5020                               parent, base, count);
5021                 }
5022                 chain = hammer2_combined_find(parent, base, count,
5023                                               &key_next,
5024                                               key_beg, key_end,
5025                                               &bref);
5026
5027                 /*
5028                  * Exhausted search
5029                  */
5030                 if (bref == NULL)
5031                         break;
5032
5033                 /*
5034                  * Deleted object
5035                  */
5036                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
5037                         if (key_next == 0 || key_next > key_end)
5038                                 break;
5039                         key_beg = key_next;
5040                         continue;
5041                 }
5042
5043                 /*
5044                  * Use the full live (not deleted) element for the scan
5045                  * iteration.  HAMMER2 does not allow partial replacements.
5046                  *
5047                  * XXX should be built into hammer2_combined_find().
5048                  */
5049                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
5050
5051                 /*
5052                  * Expand our calculated key range (key, keybits) to fit
5053                  * the scanned key.  nkeybits represents the full range
5054                  * that we will later cut in half (two halves @ nkeybits - 1).
5055                  */
5056                 nkeybits = keybits;
5057                 if (nkeybits < bref->keybits) {
5058                         if (bref->keybits > 64) {
5059                                 kprintf("bad bref chain %p bref %p\n",
5060                                         chain, bref);
5061                                 Debugger("fubar");
5062                         }
5063                         nkeybits = bref->keybits;
5064                 }
5065                 while (nkeybits < 64 &&
5066                        (~(((hammer2_key_t)1 << nkeybits) - 1) &
5067                         (key ^ bref->key)) != 0) {
5068                         ++nkeybits;
5069                 }
5070
5071                 /*
5072                  * If the new key range is larger we have to determine
5073                  * which side of the new key range the existing keys fall
5074                  * under by checking the high bit, then collapsing the
5075                  * locount into the hicount or vise-versa.
5076                  */
5077                 if (keybits != nkeybits) {
5078                         if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
5079                                 hicount += locount;
5080                                 locount = 0;
5081                         } else {
5082                                 locount += hicount;
5083                                 hicount = 0;
5084                         }
5085                         keybits = nkeybits;
5086                 }
5087
5088                 /*
5089                  * The newly scanned key will be in the lower half or the
5090                  * upper half of the (new) key range.
5091                  */
5092                 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
5093                         ++hicount;
5094                 else
5095                         ++locount;
5096
5097                 if (key_next == 0)
5098                         break;
5099                 key_beg = key_next;
5100         }
5101         hammer2_spin_unex(&parent->core.spin);
5102         bref = NULL;    /* now invalid (safety) */
5103
5104         /*
5105          * Adjust keybits to represent half of the full range calculated
5106          * above (radix 63 max) for our new indirect block.
5107          */
5108         --keybits;
5109
5110         /*
5111          * Expand keybits to hold at least ncount elements.  ncount will be
5112          * a power of 2.  This is to try to completely fill leaf nodes (at
5113          * least for keys which are not hashes).
5114          *
5115          * We aren't counting 'in' or 'out', we are counting 'high side'
5116          * and 'low side' based on the bit at (1LL << keybits).  We want
5117          * everything to be inside in these cases so shift it all to
5118          * the low or high side depending on the new high bit.
5119          */
5120         while (((hammer2_key_t)1 << keybits) < ncount) {
5121                 ++keybits;
5122                 if (key & ((hammer2_key_t)1 << keybits)) {
5123                         hicount += locount;
5124                         locount = 0;
5125                 } else {
5126                         locount += hicount;
5127                         hicount = 0;
5128                 }
5129         }
5130
5131         if (hicount > locount)
5132                 key |= (hammer2_key_t)1 << keybits;
5133         else
5134                 key &= ~(hammer2_key_t)1 << keybits;
5135
5136         *keyp = key;
5137
5138         return (keybits);
5139 }
5140
5141 #endif
5142
5143 /*
5144  * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
5145  * it exists.
5146  *
5147  * Both parent and chain must be locked exclusively.
5148  *
5149  * This function will modify the parent if the blockref requires removal
5150  * from the parent's block table.
5151  *
5152  * This function is NOT recursive.  Any entity already pushed into the
5153  * chain (such as an inode) may still need visibility into its contents,
5154  * as well as the ability to read and modify the contents.  For example,
5155  * for an unlinked file which is still open.
5156  *
5157  * Also note that the flusher is responsible for cleaning up empty
5158  * indirect blocks.
5159  */
5160 int
5161 hammer2_chain_delete(hammer2_chain_t *parent, hammer2_chain_t *chain,
5162                      hammer2_tid_t mtid, int flags)
5163 {
5164         int error = 0;
5165
5166         KKASSERT(hammer2_mtx_owned(&chain->lock));
5167
5168         /*
5169          * Nothing to do if already marked.
5170          *
5171          * We need the spinlock on the core whos RBTREE contains chain
5172          * to protect against races.
5173          */
5174         if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5175                 KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5176                          chain->parent == parent);
5177                 error = _hammer2_chain_delete_helper(parent, chain,
5178                                                      mtid, flags, NULL);
5179         }
5180
5181         /*
5182          * Permanent deletions mark the chain as destroyed.
5183          *
5184          * NOTE: We do not setflush the chain unless the deletion is
5185          *       permanent, since the deletion of a chain does not actually
5186          *       require it to be flushed.
5187          */
5188         if (error == 0) {
5189                 if (flags & HAMMER2_DELETE_PERMANENT) {
5190                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5191                         hammer2_chain_setflush(chain);
5192                 }
5193         }
5194
5195         return error;
5196 }
5197
5198 static int
5199 hammer2_chain_delete_obref(hammer2_chain_t *parent, hammer2_chain_t *chain,
5200                      hammer2_tid_t mtid, int flags,
5201                      hammer2_blockref_t *obref)
5202 {
5203         int error = 0;
5204
5205         KKASSERT(hammer2_mtx_owned(&chain->lock));
5206
5207         /*
5208          * Nothing to do if already marked.
5209          *
5210          * We need the spinlock on the core whos RBTREE contains chain
5211          * to protect against races.
5212          */
5213         obref->type = HAMMER2_BREF_TYPE_EMPTY;
5214         if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5215                 KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5216                          chain->parent == parent);
5217                 error = _hammer2_chain_delete_helper(parent, chain,
5218                                                      mtid, flags, obref);
5219         }
5220
5221         /*
5222          * Permanent deletions mark the chain as destroyed.
5223          *
5224          * NOTE: We do not setflush the chain unless the deletion is
5225          *       permanent, since the deletion of a chain does not actually
5226          *       require it to be flushed.
5227          */
5228         if (error == 0) {
5229                 if (flags & HAMMER2_DELETE_PERMANENT) {
5230                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5231                         hammer2_chain_setflush(chain);
5232                 }
5233         }
5234
5235         return error;
5236 }
5237
5238 /*
5239  * Returns the index of the nearest element in the blockref array >= elm.
5240  * Returns (count) if no element could be found.
5241  *
5242  * Sets *key_nextp to the next key for loop purposes but does not modify
5243  * it if the next key would be higher than the current value of *key_nextp.
5244  * Note that *key_nexp can overflow to 0, which should be tested by the
5245  * caller.
5246  *
5247  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5248  *           held through the operation.
5249  */
5250 static int
5251 hammer2_base_find(hammer2_chain_t *parent,
5252                   hammer2_blockref_t *base, int count,
5253                   hammer2_key_t *key_nextp,
5254                   hammer2_key_t key_beg, hammer2_key_t key_end)
5255 {
5256         hammer2_blockref_t *scan;
5257         hammer2_key_t scan_end;
5258         int i;
5259         int limit;
5260
5261         /*
5262          * Require the live chain's already have their core's counted
5263          * so we can optimize operations.
5264          */
5265         KKASSERT(parent->flags & HAMMER2_CHAIN_COUNTEDBREFS);
5266
5267         /*
5268          * Degenerate case
5269          */
5270         if (count == 0 || base == NULL)
5271                 return(count);
5272
5273         /*
5274          * Sequential optimization using parent->cache_index.  This is
5275          * the most likely scenario.
5276          *
5277          * We can avoid trailing empty entries on live chains, otherwise
5278          * we might have to check the whole block array.
5279          */
5280         i = parent->cache_index;        /* SMP RACE OK */
5281         cpu_ccfence();
5282         limit = parent->core.live_zero;
5283         if (i >= limit)
5284                 i = limit - 1;
5285         if (i < 0)
5286                 i = 0;
5287         KKASSERT(i < count);
5288
5289         /*
5290          * Search backwards
5291          */
5292         scan = &base[i];
5293         while (i > 0 && (scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5294             scan->key > key_beg)) {
5295                 --scan;
5296                 --i;
5297         }
5298         parent->cache_index = i;
5299
5300         /*
5301          * Search forwards, stop when we find a scan element which
5302          * encloses the key or until we know that there are no further
5303          * elements.
5304          */
5305         while (i < count) {
5306                 if (scan->type != HAMMER2_BREF_TYPE_EMPTY) {
5307                         scan_end = scan->key +
5308                                    ((hammer2_key_t)1 << scan->keybits) - 1;
5309                         if (scan->key > key_beg || scan_end >= key_beg)
5310                                 break;
5311                 }
5312                 if (i >= limit)
5313                         return (count);
5314                 ++scan;
5315                 ++i;
5316         }
5317         if (i != count) {
5318                 parent->cache_index = i;
5319                 if (i >= limit) {
5320                         i = count;
5321                 } else {
5322                         scan_end = scan->key +
5323                                    ((hammer2_key_t)1 << scan->keybits);
5324                         if (scan_end && (*key_nextp > scan_end ||
5325                                          *key_nextp == 0)) {
5326                                 *key_nextp = scan_end;
5327                         }
5328                 }
5329         }
5330         return (i);
5331 }
5332
5333 /*
5334  * Do a combined search and return the next match either from the blockref
5335  * array or from the in-memory chain.  Sets *bresp to the returned bref in
5336  * both cases, or sets it to NULL if the search exhausted.  Only returns
5337  * a non-NULL chain if the search matched from the in-memory chain.
5338  *
5339  * When no in-memory chain has been found and a non-NULL bref is returned
5340  * in *bresp.
5341  *
5342  *
5343  * The returned chain is not locked or referenced.  Use the returned bref
5344  * to determine if the search exhausted or not.  Iterate if the base find
5345  * is chosen but matches a deleted chain.
5346  *
5347  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5348  *           held through the operation.
5349  */
5350 hammer2_chain_t *
5351 hammer2_combined_find(hammer2_chain_t *parent,
5352                       hammer2_blockref_t *base, int count,
5353                       hammer2_key_t *key_nextp,
5354                       hammer2_key_t key_beg, hammer2_key_t key_end,
5355                       hammer2_blockref_t **bresp)
5356 {
5357         hammer2_blockref_t *bref;
5358         hammer2_chain_t *chain;
5359         int i;
5360
5361         /*
5362          * Lookup in block array and in rbtree.
5363          */
5364         *key_nextp = key_end + 1;
5365         i = hammer2_base_find(parent, base, count, key_nextp,
5366                               key_beg, key_end);
5367         chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
5368
5369         /*
5370          * Neither matched
5371          */
5372         if (i == count && chain == NULL) {
5373                 *bresp = NULL;
5374                 return(NULL);
5375         }
5376
5377         /*
5378          * Only chain matched.
5379          */
5380         if (i == count) {
5381                 bref = &chain->bref;
5382                 goto found;
5383         }
5384
5385         /*
5386          * Only blockref matched.
5387          */
5388         if (chain == NULL) {
5389                 bref = &base[i];
5390                 goto found;
5391         }
5392
5393         /*
5394          * Both in-memory and blockref matched, select the nearer element.
5395          *
5396          * If both are flush with the left-hand side or both are the
5397          * same distance away, select the chain.  In this situation the
5398          * chain must have been loaded from the matching blockmap.
5399          */
5400         if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
5401             chain->bref.key == base[i].key) {
5402                 KKASSERT(chain->bref.key == base[i].key);
5403                 bref = &chain->bref;
5404                 goto found;
5405         }
5406
5407         /*
5408          * Select the nearer key
5409          */
5410         if (chain->bref.key < base[i].key) {
5411                 bref = &chain->bref;
5412         } else {
5413                 bref = &base[i];
5414                 chain = NULL;
5415         }
5416
5417         /*
5418          * If the bref is out of bounds we've exhausted our search.
5419          */
5420 found:
5421         if (bref->key > key_end) {
5422                 *bresp = NULL;
5423                 chain = NULL;
5424         } else {
5425                 *bresp = bref;
5426         }
5427         return(chain);
5428 }
5429
5430 /*
5431  * Locate the specified block array element and delete it.  The element
5432  * must exist.
5433  *
5434  * The spin lock on the related chain must be held.
5435  *
5436  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5437  *       need to be adjusted when we commit the media change.
5438  */
5439 void
5440 hammer2_base_delete(hammer2_chain_t *parent,
5441                     hammer2_blockref_t *base, int count,
5442                     hammer2_chain_t *chain,
5443                     hammer2_blockref_t *obref)
5444 {
5445         hammer2_blockref_t *elm = &chain->bref;
5446         hammer2_blockref_t *scan;
5447         hammer2_key_t key_next;
5448         int i;
5449
5450         /*
5451          * Delete element.  Expect the element to exist.
5452          *
5453          * XXX see caller, flush code not yet sophisticated enough to prevent
5454          *     re-flushed in some cases.
5455          */
5456         key_next = 0; /* max range */
5457         i = hammer2_base_find(parent, base, count, &key_next,
5458                               elm->key, elm->key);
5459         scan = &base[i];
5460         if (i == count || scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5461             scan->key != elm->key ||
5462             ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
5463              scan->keybits != elm->keybits)) {
5464                 hammer2_spin_unex(&parent->core.spin);
5465                 panic("delete base %p element not found at %d/%d elm %p\n",
5466                       base, i, count, elm);
5467                 return;
5468         }
5469
5470         /*
5471          * Update stats and zero the entry.
5472          *
5473          * NOTE: Handle radix == 0 (0 bytes) case.
5474          */
5475         if ((int)(scan->data_off & HAMMER2_OFF_MASK_RADIX)) {
5476                 parent->bref.embed.stats.data_count -= (hammer2_off_t)1 <<
5477                                 (int)(scan->data_off & HAMMER2_OFF_MASK_RADIX);
5478         }
5479         switch(scan->type) {
5480         case HAMMER2_BREF_TYPE_INODE:
5481                 --parent->bref.embed.stats.inode_count;
5482                 /* fall through */
5483         case HAMMER2_BREF_TYPE_DATA:
5484                 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5485                         atomic_set_int(&chain->flags,
5486                                        HAMMER2_CHAIN_HINT_LEAF_COUNT);
5487                 } else {
5488                         if (parent->bref.leaf_count)
5489                                 --parent->bref.leaf_count;
5490                 }
5491                 /* fall through */
5492         case HAMMER2_BREF_TYPE_INDIRECT:
5493                 if (scan->type != HAMMER2_BREF_TYPE_DATA) {
5494                         parent->bref.embed.stats.data_count -=
5495                                 scan->embed.stats.data_count;
5496                         parent->bref.embed.stats.inode_count -=
5497                                 scan->embed.stats.inode_count;
5498                 }
5499                 if (scan->type == HAMMER2_BREF_TYPE_INODE)
5500                         break;
5501                 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5502                         atomic_set_int(&chain->flags,
5503                                        HAMMER2_CHAIN_HINT_LEAF_COUNT);
5504                 } else {
5505                         if (parent->bref.leaf_count <= scan->leaf_count)
5506                                 parent->bref.leaf_count = 0;
5507                         else
5508                                 parent->bref.leaf_count -= scan->leaf_count;
5509                 }
5510                 break;
5511         case HAMMER2_BREF_TYPE_DIRENT:
5512                 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5513                         atomic_set_int(&chain->flags,
5514                                        HAMMER2_CHAIN_HINT_LEAF_COUNT);
5515                 } else {
5516                         if (parent->bref.leaf_count)
5517                                 --parent->bref.leaf_count;
5518                 }
5519         default:
5520                 break;
5521         }
5522
5523         if (obref)
5524                 *obref = *scan;
5525         bzero(scan, sizeof(*scan));
5526
5527         /*
5528          * We can only optimize parent->core.live_zero for live chains.
5529          */
5530         if (parent->core.live_zero == i + 1) {
5531                 while (--i >= 0 && base[i].type == HAMMER2_BREF_TYPE_EMPTY)
5532                         ;
5533                 parent->core.live_zero = i + 1;
5534         }
5535
5536         /*
5537          * Clear appropriate blockmap flags in chain.
5538          */
5539         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
5540                                         HAMMER2_CHAIN_BMAPUPD);
5541 }
5542
5543 /*
5544  * Insert the specified element.  The block array must not already have the
5545  * element and must have space available for the insertion.
5546  *
5547  * The spin lock on the related chain must be held.
5548  *
5549  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5550  *       need to be adjusted when we commit the media change.
5551  */
5552 void
5553 hammer2_base_insert(hammer2_chain_t *parent,
5554                     hammer2_blockref_t *base, int count,
5555                     hammer2_chain_t *chain, hammer2_blockref_t *elm)
5556 {
5557         hammer2_key_t key_next;
5558         hammer2_key_t xkey;
5559         int i;
5560         int j;
5561         int k;
5562         int l;
5563         int u = 1;
5564
5565         /*
5566          * Insert new element.  Expect the element to not already exist
5567          * unless we are replacing it.
5568          *
5569          * XXX see caller, flush code not yet sophisticated enough to prevent
5570          *     re-flushed in some cases.
5571          */
5572         key_next = 0; /* max range */
5573         i = hammer2_base_find(parent, base, count, &key_next,
5574                               elm->key, elm->key);
5575
5576         /*
5577          * Shortcut fill optimization, typical ordered insertion(s) may not
5578          * require a search.
5579          */
5580         KKASSERT(i >= 0 && i <= count);
5581
5582         /*
5583          * Set appropriate blockmap flags in chain (if not NULL)
5584          */
5585         if (chain)
5586                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
5587
5588         /*
5589          * Update stats and zero the entry
5590          */
5591         if ((int)(elm->data_off & HAMMER2_OFF_MASK_RADIX)) {
5592                 parent->bref.embed.stats.data_count += (hammer2_off_t)1 <<
5593                                 (int)(elm->data_off & HAMMER2_OFF_MASK_RADIX);
5594         }
5595         switch(elm->type) {
5596         case HAMMER2_BREF_TYPE_INODE:
5597                 ++parent->bref.embed.stats.inode_count;
5598                 /* fall through */
5599         case HAMMER2_BREF_TYPE_DATA:
5600                 if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5601                         ++parent->bref.leaf_count;
5602                 /* fall through */
5603         case HAMMER2_BREF_TYPE_INDIRECT:
5604                 if (elm->type != HAMMER2_BREF_TYPE_DATA) {
5605                         parent->bref.embed.stats.data_count +=
5606                                 elm->embed.stats.data_count;
5607                         parent->bref.embed.stats.inode_count +=
5608                                 elm->embed.stats.inode_count;
5609                 }
5610                 if (elm->type == HAMMER2_BREF_TYPE_INODE)
5611                         break;
5612                 if (parent->bref.leaf_count + elm->leaf_count <
5613                     HAMMER2_BLOCKREF_LEAF_MAX) {
5614                         parent->bref.leaf_count += elm->leaf_count;
5615                 } else {
5616                         parent->bref.leaf_count = HAMMER2_BLOCKREF_LEAF_MAX;
5617                 }
5618                 break;
5619         case HAMMER2_BREF_TYPE_DIRENT:
5620                 if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5621                         ++parent->bref.leaf_count;
5622                 break;
5623         default:
5624                 break;
5625         }
5626
5627
5628         /*
5629          * We can only optimize parent->core.live_zero for live chains.
5630          */
5631         if (i == count && parent->core.live_zero < count) {
5632                 i = parent->core.live_zero++;
5633                 base[i] = *elm;
5634                 return;
5635         }
5636
5637         xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
5638         if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
5639                 hammer2_spin_unex(&parent->core.spin);
5640                 panic("insert base %p overlapping elements at %d elm %p\n",
5641                       base, i, elm);
5642         }
5643
5644         /*
5645          * Try to find an empty slot before or after.
5646          */
5647         j = i;
5648         k = i;
5649         while (j > 0 || k < count) {
5650                 --j;
5651                 if (j >= 0 && base[j].type == HAMMER2_BREF_TYPE_EMPTY) {
5652                         if (j == i - 1) {
5653                                 base[j] = *elm;
5654                         } else {
5655                                 bcopy(&base[j+1], &base[j],
5656                                       (i - j - 1) * sizeof(*base));
5657                                 base[i - 1] = *elm;
5658                         }
5659                         goto validate;
5660                 }
5661                 ++k;
5662                 if (k < count && base[k].type == HAMMER2_BREF_TYPE_EMPTY) {
5663                         bcopy(&base[i], &base[i+1],
5664                               (k - i) * sizeof(hammer2_blockref_t));
5665                         base[i] = *elm;
5666
5667                         /*
5668                          * We can only update parent->core.live_zero for live
5669                          * chains.
5670                          */
5671                         if (parent->core.live_zero <= k)
5672                                 parent->core.live_zero = k + 1;
5673                         u = 2;
5674                         goto validate;
5675                 }
5676         }
5677         panic("hammer2_base_insert: no room!");
5678
5679         /*
5680          * Debugging
5681          */
5682 validate:
5683         key_next = 0;
5684         for (l = 0; l < count; ++l) {
5685                 if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5686                         key_next = base[l].key +
5687                                    ((hammer2_key_t)1 << base[l].keybits) - 1;
5688                         break;
5689                 }
5690         }
5691         while (++l < count) {
5692                 if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5693                         if (base[l].key <= key_next)
5694                                 panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
5695                         key_next = base[l].key +
5696                                    ((hammer2_key_t)1 << base[l].keybits) - 1;
5697
5698                 }
5699         }
5700
5701 }
5702
5703 #if 0
5704
5705 /*
5706  * Sort the blockref array for the chain.  Used by the flush code to
5707  * sort the blockref[] array.
5708  *
5709  * The chain must be exclusively locked AND spin-locked.
5710  */
5711 typedef hammer2_blockref_t *hammer2_blockref_p;
5712
5713 static
5714 int
5715 hammer2_base_sort_callback(const void *v1, const void *v2)
5716 {
5717         hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
5718         hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
5719
5720         /*
5721          * Make sure empty elements are placed at the end of the array
5722          */
5723         if (bref1->type == HAMMER2_BREF_TYPE_EMPTY) {
5724                 if (bref2->type == HAMMER2_BREF_TYPE_EMPTY)
5725                         return(0);
5726                 return(1);
5727         } else if (bref2->type == HAMMER2_BREF_TYPE_EMPTY) {
5728                 return(-1);
5729         }
5730
5731         /*
5732          * Sort by key
5733          */
5734         if (bref1->key < bref2->key)
5735                 return(-1);
5736         if (bref1->key > bref2->key)
5737                 return(1);
5738         return(0);
5739 }
5740
5741 void
5742 hammer2_base_sort(hammer2_chain_t *chain)
5743 {
5744         hammer2_blockref_t *base;
5745         int count;
5746
5747         switch(chain->bref.type) {
5748         case HAMMER2_BREF_TYPE_INODE:
5749                 /*
5750                  * Special shortcut for embedded data returns the inode
5751                  * itself.  Callers must detect this condition and access
5752                  * the embedded data (the strategy code does this for us).
5753                  *
5754                  * This is only applicable to regular files and softlinks.
5755                  */
5756                 if (chain->data->ipdata.meta.op_flags &
5757                     HAMMER2_OPFLAG_DIRECTDATA) {
5758                         return;
5759                 }
5760                 base = &chain->data->ipdata.u.blockset.blockref[0];
5761                 count = HAMMER2_SET_COUNT;
5762                 break;
5763         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
5764         case HAMMER2_BREF_TYPE_INDIRECT:
5765                 /*
5766                  * Optimize indirect blocks in the INITIAL state to avoid
5767                  * I/O.
5768                  */
5769                 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
5770                 base = &chain->data->npdata[0];
5771                 count = chain->bytes / sizeof(hammer2_blockref_t);
5772                 break;
5773         case HAMMER2_BREF_TYPE_VOLUME:
5774                 base = &chain->data->voldata.sroot_blockset.blockref[0];
5775                 count = HAMMER2_SET_COUNT;
5776                 break;
5777         case HAMMER2_BREF_TYPE_FREEMAP:
5778                 base = &chain->data->blkset.blockref[0];
5779                 count = HAMMER2_SET_COUNT;
5780                 break;
5781         default:
5782                 kprintf("hammer2_base_sort: unrecognized "
5783                         "blockref(A) type: %d",
5784                         chain->bref.type);
5785                 while (1)
5786                         tsleep(&base, 0, "dead", 0);
5787                 panic("hammer2_base_sort: unrecognized "
5788                       "blockref(A) type: %d",
5789                       chain->bref.type);
5790                 base = NULL;    /* safety */
5791                 count = 0;      /* safety */
5792         }
5793         kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
5794 }
5795
5796 #endif
5797
5798 /*
5799  * Chain memory management
5800  */
5801 void
5802 hammer2_chain_wait(hammer2_chain_t *chain)
5803 {
5804         tsleep(chain, 0, "chnflw", 1);
5805 }
5806
5807 const hammer2_media_data_t *
5808 hammer2_chain_rdata(hammer2_chain_t *chain)
5809 {
5810         KKASSERT(chain->data != NULL);
5811         return (chain->data);
5812 }
5813
5814 hammer2_media_data_t *
5815 hammer2_chain_wdata(hammer2_chain_t *chain)
5816 {
5817         KKASSERT(chain->data != NULL);
5818         return (chain->data);
5819 }
5820
5821 /*
5822  * Set the check data for a chain.  This can be a heavy-weight operation
5823  * and typically only runs on-flush.  For file data check data is calculated
5824  * when the logical buffers are flushed.
5825  */
5826 void
5827 hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
5828 {
5829         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_NOTTESTED);
5830
5831         switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5832         case HAMMER2_CHECK_NONE:
5833                 break;
5834         case HAMMER2_CHECK_DISABLED:
5835                 break;
5836         case HAMMER2_CHECK_ISCSI32:
5837                 chain->bref.check.iscsi32.value =
5838                         hammer2_icrc32(bdata, chain->bytes);
5839                 break;
5840         case HAMMER2_CHECK_XXHASH64:
5841                 chain->bref.check.xxhash64.value =
5842                         XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5843                 break;
5844         case HAMMER2_CHECK_SHA192:
5845                 {
5846                         SHA256_CTX hash_ctx;
5847                         union {
5848                                 uint8_t digest[SHA256_DIGEST_LENGTH];
5849                                 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5850                         } u;
5851
5852                         SHA256_Init(&hash_ctx);
5853                         SHA256_Update(&hash_ctx, bdata, chain->bytes);
5854                         SHA256_Final(u.digest, &hash_ctx);
5855                         u.digest64[2] ^= u.digest64[3];
5856                         bcopy(u.digest,
5857                               chain->bref.check.sha192.data,
5858                               sizeof(chain->bref.check.sha192.data));
5859                 }
5860                 break;
5861         case HAMMER2_CHECK_FREEMAP:
5862                 chain->bref.check.freemap.icrc32 =
5863                         hammer2_icrc32(bdata, chain->bytes);
5864                 break;
5865         default:
5866                 kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5867                         chain->bref.methods);
5868                 break;
5869         }
5870 }
5871
5872 /*
5873  * Characterize a failed check code and try to trace back to the inode.
5874  */
5875 static void
5876 hammer2_characterize_failed_chain(hammer2_chain_t *chain, uint64_t check,
5877                                   int bits)
5878 {
5879         hammer2_chain_t *lchain;
5880         hammer2_chain_t *ochain;
5881         int did;
5882
5883         did = krateprintf(&krate_h2chk,
5884                 "chain %016jx.%02x (%s) meth=%02x CHECK FAIL "
5885                 "(flags=%08x, bref/data ",
5886                 chain->bref.data_off,
5887                 chain->bref.type,
5888                 hammer2_bref_type_str(chain->bref.type),
5889                 chain->bref.methods,
5890                 chain->flags);
5891         if (did == 0)
5892                 return;
5893
5894         if (bits == 32) {
5895                 kprintf("%08x/%08x)\n",
5896                         chain->bref.check.iscsi32.value,
5897                         (uint32_t)check);
5898         } else {
5899                 kprintf("%016jx/%016jx)\n",
5900                         chain->bref.check.xxhash64.value,
5901                         check);
5902         }
5903
5904         /*
5905          * Run up the chains to try to find the governing inode so we
5906          * can report it.
5907          *
5908          * XXX This error reporting is not really MPSAFE
5909          */
5910         ochain = chain;
5911         lchain = chain;
5912         while (chain && chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
5913                 lchain = chain;
5914                 chain = chain->parent;
5915         }
5916
5917         if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
5918             ((chain->bref.flags & HAMMER2_BREF_FLAG_PFSROOT) == 0 ||
5919              (lchain->bref.key & HAMMER2_DIRHASH_VISIBLE))) {
5920                 kprintf("   Resides at/in inode %ld\n",
5921                         chain->bref.key);
5922         } else if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
5923                 kprintf("   Resides in inode index - CRITICAL!!!\n");
5924         } else {
5925                 kprintf("   Resides in root index - CRITICAL!!!\n");
5926         }
5927         if (ochain->hmp) {
5928                 const char *pfsname = "UNKNOWN";
5929                 int i;
5930
5931                 if (ochain->pmp) {
5932                         for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
5933                                 if (ochain->pmp->pfs_hmps[i] == ochain->hmp &&
5934                                     ochain->pmp->pfs_names[i]) {
5935                                         pfsname = ochain->pmp->pfs_names[i];
5936                                         break;
5937                                 }
5938                         }
5939                 }
5940                 kprintf("   In pfs %s on device %s\n",
5941                         pfsname, ochain->hmp->devrepname);
5942         }
5943 }
5944
5945 /*
5946  * Returns non-zero on success, 0 on failure.
5947  */
5948 int
5949 hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
5950 {
5951         uint32_t check32;
5952         uint64_t check64;
5953         int r;
5954
5955         if (chain->flags & HAMMER2_CHAIN_NOTTESTED)
5956                 return 1;
5957
5958         switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5959         case HAMMER2_CHECK_NONE:
5960                 r = 1;
5961                 break;
5962         case HAMMER2_CHECK_DISABLED:
5963                 r = 1;
5964                 break;
5965         case HAMMER2_CHECK_ISCSI32:
5966                 check32 = hammer2_icrc32(bdata, chain->bytes);
5967                 r = (chain->bref.check.iscsi32.value == check32);
5968                 if (r == 0) {
5969                         hammer2_characterize_failed_chain(chain, check32, 32);
5970                 }
5971                 hammer2_process_icrc32 += chain->bytes;
5972                 break;
5973         case HAMMER2_CHECK_XXHASH64:
5974                 check64 = XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5975                 r = (chain->bref.check.xxhash64.value == check64);
5976                 if (r == 0) {
5977                         hammer2_characterize_failed_chain(chain, check64, 64);
5978                 }
5979                 hammer2_process_xxhash64 += chain->bytes;
5980                 break;
5981         case HAMMER2_CHECK_SHA192:
5982                 {
5983                         SHA256_CTX hash_ctx;
5984                         union {
5985                                 uint8_t digest[SHA256_DIGEST_LENGTH];
5986                                 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5987                         } u;
5988
5989                         SHA256_Init(&hash_ctx);
5990                         SHA256_Update(&hash_ctx, bdata, chain->bytes);
5991                         SHA256_Final(u.digest, &hash_ctx);
5992                         u.digest64[2] ^= u.digest64[3];
5993                         if (bcmp(u.digest,
5994                                  chain->bref.check.sha192.data,
5995                                  sizeof(chain->bref.check.sha192.data)) == 0) {
5996                                 r = 1;
5997                         } else {
5998                                 r = 0;
5999                                 krateprintf(&krate_h2chk,
6000                                         "chain %016jx.%02x meth=%02x "
6001                                         "CHECK FAIL\n",
6002                                         chain->bref.data_off,
6003                                         chain->bref.type,
6004                                         chain->bref.methods);
6005                         }
6006                 }
6007                 break;
6008         case HAMMER2_CHECK_FREEMAP:
6009                 r = (chain->bref.check.freemap.icrc32 ==
6010                      hammer2_icrc32(bdata, chain->bytes));
6011                 if (r == 0) {
6012                         int did;
6013
6014                         did = krateprintf(&krate_h2chk,
6015                                           "chain %016jx.%02x meth=%02x "
6016                                           "CHECK FAIL\n",
6017                                           chain->bref.data_off,
6018                                           chain->bref.type,
6019                                           chain->bref.methods);
6020                         if (did) {
6021                                 kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
6022                                         chain->bref.check.freemap.icrc32,
6023                                         hammer2_icrc32(bdata, chain->bytes),
6024                                         chain->bytes);
6025                                 if (chain->dio) {
6026                                         kprintf("dio %p buf %016jx,%d "
6027                                                 "bdata %p/%p\n",
6028                                                 chain->dio,
6029                                                 chain->dio->bp->b_loffset,
6030                                                 chain->dio->bp->b_bufsize,
6031                                                 bdata,
6032                                                 chain->dio->bp->b_data);
6033                                 }
6034                         }
6035                 }
6036                 break;
6037         default:
6038                 kprintf("hammer2_chain_testcheck: unknown check type %02x\n",
6039                         chain->bref.methods);
6040                 r = 1;
6041                 break;
6042         }
6043         return r;
6044 }
6045
6046 /*
6047  * Acquire the chain and parent representing the specified inode for the
6048  * device at the specified cluster index.
6049  *
6050  * The flags passed in are LOOKUP flags, not RESOLVE flags.
6051  *
6052  * If we are unable to locate the inode, HAMMER2_ERROR_EIO is returned and
6053  * *chainp will be NULL.  *parentp may still be set error or not, or NULL
6054  * if the parent itself could not be resolved.
6055  *
6056  * The caller may pass-in a locked *parentp and/or *chainp, or neither.
6057  * They will be unlocked and released by this function.  The *parentp and
6058  * *chainp representing the located inode are returned locked.
6059  */
6060 int
6061 hammer2_chain_inode_find(hammer2_pfs_t *pmp, hammer2_key_t inum,
6062                          int clindex, int flags,
6063                          hammer2_chain_t **parentp, hammer2_chain_t **chainp)
6064 {
6065         hammer2_chain_t *parent;
6066         hammer2_chain_t *rchain;
6067         hammer2_key_t key_dummy;
6068         hammer2_inode_t *ip;
6069         int resolve_flags;
6070         int error;
6071
6072         resolve_flags = (flags & HAMMER2_LOOKUP_SHARED) ?
6073                         HAMMER2_RESOLVE_SHARED : 0;
6074
6075         /*
6076          * Caller expects us to replace these.
6077          */
6078         if (*chainp) {
6079                 hammer2_chain_unlock(*chainp);
6080                 hammer2_chain_drop(*chainp);
6081                 *chainp = NULL;
6082         }
6083         if (*parentp) {
6084                 hammer2_chain_unlock(*parentp);
6085                 hammer2_chain_drop(*parentp);
6086                 *parentp = NULL;
6087         }
6088
6089         /*
6090          * Be very careful, this is a backend function and we CANNOT
6091          * lock any frontend inode structure we find.  But we have to
6092          * look the inode up this way first in case it exists but is
6093          * detached from the radix tree.
6094          */
6095         ip = hammer2_inode_lookup(pmp, inum);
6096         if (ip) {
6097                 *chainp = hammer2_inode_chain_and_parent(ip, clindex,
6098                                                        parentp,
6099                                                        resolve_flags);
6100                 hammer2_inode_drop(ip);
6101                 if (*chainp)
6102                         return 0;
6103                 hammer2_chain_unlock(*chainp);
6104                 hammer2_chain_drop(*chainp);
6105                 *chainp = NULL;
6106                 if (*parentp) {
6107                         hammer2_chain_unlock(*parentp);
6108                         hammer2_chain_drop(*parentp);
6109                         *parentp = NULL;
6110                 }
6111         }
6112
6113         /*
6114          * Inodes hang off of the iroot (bit 63 is clear, differentiating
6115          * inodes from root directory entries in the key lookup).
6116          */
6117         parent = hammer2_inode_chain(pmp->iroot, clindex, resolve_flags);
6118         rchain = NULL;
6119         if (parent) {
6120                 rchain = hammer2_chain_lookup(&parent, &key_dummy,
6121                                               inum, inum,
6122                                               &error, flags);
6123         } else {
6124                 error = HAMMER2_ERROR_EIO;
6125         }
6126         *parentp = parent;
6127         *chainp = rchain;
6128
6129         return error;
6130 }
6131
6132 /*
6133  * Used by the bulkscan code to snapshot the synchronized storage for
6134  * a volume, allowing it to be scanned concurrently against normal
6135  * operation.
6136  */
6137 hammer2_chain_t *
6138 hammer2_chain_bulksnap(hammer2_dev_t *hmp)
6139 {
6140         hammer2_chain_t *copy;
6141
6142         copy = hammer2_chain_alloc(hmp, hmp->spmp, &hmp->vchain.bref);
6143         copy->data = kmalloc(sizeof(copy->data->voldata),
6144                              hmp->mchain,
6145                              M_WAITOK | M_ZERO);
6146         hammer2_voldata_lock(hmp);
6147         copy->data->voldata = hmp->volsync;
6148         hammer2_voldata_unlock(hmp);
6149
6150         return copy;
6151 }
6152
6153 void
6154 hammer2_chain_bulkdrop(hammer2_chain_t *copy)
6155 {
6156         KKASSERT(copy->bref.type == HAMMER2_BREF_TYPE_VOLUME);
6157         KKASSERT(copy->data);
6158         kfree(copy->data, copy->hmp->mchain);
6159         copy->data = NULL;
6160         atomic_add_long(&hammer2_chain_allocs, -1);
6161         hammer2_chain_drop(copy);
6162 }
6163
6164 /*
6165  * Returns non-zero if the chain (INODE or DIRENT) matches the
6166  * filename.
6167  */
6168 int
6169 hammer2_chain_dirent_test(hammer2_chain_t *chain, const char *name,
6170                           size_t name_len)
6171 {
6172         const hammer2_inode_data_t *ripdata;
6173         const hammer2_dirent_head_t *den;
6174
6175         if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
6176                 ripdata = &chain->data->ipdata;
6177                 if (ripdata->meta.name_len == name_len &&
6178                     bcmp(ripdata->filename, name, name_len) == 0) {
6179                         return 1;
6180                 }
6181         }
6182         if (chain->bref.type == HAMMER2_BREF_TYPE_DIRENT &&
6183            chain->bref.embed.dirent.namlen == name_len) {
6184                 den = &chain->bref.embed.dirent;
6185                 if (name_len > sizeof(chain->bref.check.buf) &&
6186                     bcmp(chain->data->buf, name, name_len) == 0) {
6187                         return 1;
6188                 }
6189                 if (name_len <= sizeof(chain->bref.check.buf) &&
6190                     bcmp(chain->bref.check.buf, name, name_len) == 0) {
6191                         return 1;
6192                 }
6193         }
6194         return 0;
6195 }