Merge branch 'vendor/DHCPCD'
[dragonfly.git] / sys / vfs / hammer2 / hammer2_chain.c
1 /*
2  * Copyright (c) 2011-2019 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain structure.
38  *
39  * Chains are the in-memory version on media objects (volume header, inodes,
40  * indirect blocks, data blocks, etc).  Chains represent a portion of the
41  * HAMMER2 topology.
42  *
43  * Chains are no-longer delete-duplicated.  Instead, the original in-memory
44  * chain will be moved along with its block reference (e.g. for things like
45  * renames, hardlink operations, modifications, etc), and will be indexed
46  * on a secondary list for flush handling instead of propagating a flag
47  * upward to the root.
48  *
49  * Concurrent front-end operations can still run against backend flushes
50  * as long as they do not cross the current flush boundary.  An operation
51  * running above the current flush (in areas not yet flushed) can become
52  * part of the current flush while ano peration running below the current
53  * flush can become part of the next flush.
54  */
55 #include <sys/cdefs.h>
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/types.h>
59 #include <sys/lock.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/uuid.h>
62
63 #include <crypto/sha2/sha2.h>
64
65 #include "hammer2.h"
66
67 static hammer2_chain_t *hammer2_chain_create_indirect(
68                 hammer2_chain_t *parent,
69                 hammer2_key_t key, int keybits,
70                 hammer2_tid_t mtid, int for_type, int *errorp);
71 static void hammer2_chain_rename_obref(hammer2_chain_t **parentp,
72                 hammer2_chain_t *chain, hammer2_tid_t mtid,
73                 int flags, hammer2_blockref_t *obref);
74 static int hammer2_chain_delete_obref(hammer2_chain_t *parent,
75                 hammer2_chain_t *chain,
76                 hammer2_tid_t mtid, int flags,
77                 hammer2_blockref_t *obref);
78 static hammer2_io_t *hammer2_chain_drop_data(hammer2_chain_t *chain);
79 static hammer2_chain_t *hammer2_combined_find(
80                 hammer2_chain_t *parent,
81                 hammer2_blockref_t *base, int count,
82                 hammer2_key_t *key_nextp,
83                 hammer2_key_t key_beg, hammer2_key_t key_end,
84                 hammer2_blockref_t **bresp);
85
86 /*
87  * There are many degenerate situations where an extreme rate of console
88  * output can occur from warnings and errors.  Make sure this output does
89  * not impede operations.
90  */
91 static struct krate krate_h2chk = { .freq = 5 };
92 static struct krate krate_h2me = { .freq = 1 };
93 static struct krate krate_h2em = { .freq = 1 };
94
95 /*
96  * Basic RBTree for chains (core.rbtree).
97  */
98 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
99
100 int
101 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
102 {
103         hammer2_key_t c1_beg;
104         hammer2_key_t c1_end;
105         hammer2_key_t c2_beg;
106         hammer2_key_t c2_end;
107
108         /*
109          * Compare chains.  Overlaps are not supposed to happen and catch
110          * any software issues early we count overlaps as a match.
111          */
112         c1_beg = chain1->bref.key;
113         c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
114         c2_beg = chain2->bref.key;
115         c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
116
117         if (c1_end < c2_beg)    /* fully to the left */
118                 return(-1);
119         if (c1_beg > c2_end)    /* fully to the right */
120                 return(1);
121         return(0);              /* overlap (must not cross edge boundary) */
122 }
123
124 /*
125  * Assert that a chain has no media data associated with it.
126  */
127 static __inline void
128 hammer2_chain_assert_no_data(hammer2_chain_t *chain)
129 {
130         KKASSERT(chain->dio == NULL);
131         if (chain->bref.type != HAMMER2_BREF_TYPE_VOLUME &&
132             chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP &&
133             chain->data) {
134                 panic("hammer2_chain_assert_no_data: chain %p still has data",
135                     chain);
136         }
137 }
138
139 /*
140  * Make a chain visible to the flusher.  The flusher operates using a top-down
141  * recursion based on the ONFLUSH flag.  It locates MODIFIED and UPDATE chains,
142  * flushes them, and updates blocks back to the volume root.
143  *
144  * This routine sets the ONFLUSH flag upward from the triggering chain until
145  * it hits an inode root or the volume root.  Inode chains serve as inflection
146  * points, requiring the flusher to bridge across trees.  Inodes include
147  * regular inodes, PFS roots (pmp->iroot), and the media super root
148  * (spmp->iroot).
149  */
150 void
151 hammer2_chain_setflush(hammer2_chain_t *chain)
152 {
153         hammer2_chain_t *parent;
154
155         if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
156                 hammer2_spin_sh(&chain->core.spin);
157                 while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
158                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
159                         if (chain->bref.type == HAMMER2_BREF_TYPE_INODE)
160                                 break;
161                         if ((parent = chain->parent) == NULL)
162                                 break;
163                         hammer2_spin_sh(&parent->core.spin);
164                         hammer2_spin_unsh(&chain->core.spin);
165                         chain = parent;
166                 }
167                 hammer2_spin_unsh(&chain->core.spin);
168         }
169 }
170
171 /*
172  * Allocate a new disconnected chain element representing the specified
173  * bref.  chain->refs is set to 1 and the passed bref is copied to
174  * chain->bref.  chain->bytes is derived from the bref.
175  *
176  * chain->pmp inherits pmp unless the chain is an inode (other than the
177  * super-root inode).
178  *
179  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
180  */
181 hammer2_chain_t *
182 hammer2_chain_alloc(hammer2_dev_t *hmp, hammer2_pfs_t *pmp,
183                     hammer2_blockref_t *bref)
184 {
185         hammer2_chain_t *chain;
186         u_int bytes;
187
188         /*
189          * Special case - radix of 0 indicates a chain that does not
190          * need a data reference (context is completely embedded in the
191          * bref).
192          */
193         if ((int)(bref->data_off & HAMMER2_OFF_MASK_RADIX))
194                 bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
195         else
196                 bytes = 0;
197
198         atomic_add_long(&hammer2_chain_allocs, 1);
199
200         /*
201          * Construct the appropriate system structure.
202          */
203         switch(bref->type) {
204         case HAMMER2_BREF_TYPE_DIRENT:
205         case HAMMER2_BREF_TYPE_INODE:
206         case HAMMER2_BREF_TYPE_INDIRECT:
207         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
208         case HAMMER2_BREF_TYPE_DATA:
209         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
210                 chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
211                 break;
212         case HAMMER2_BREF_TYPE_VOLUME:
213         case HAMMER2_BREF_TYPE_FREEMAP:
214                 /*
215                  * Only hammer2_chain_bulksnap() calls this function with these
216                  * types.
217                  */
218                 chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
219                 break;
220         default:
221                 chain = NULL;
222                 panic("hammer2_chain_alloc: unrecognized blockref type: %d",
223                       bref->type);
224         }
225
226         /*
227          * Initialize the new chain structure.  pmp must be set to NULL for
228          * chains belonging to the super-root topology of a device mount.
229          */
230         if (pmp == hmp->spmp)
231                 chain->pmp = NULL;
232         else
233                 chain->pmp = pmp;
234
235         chain->hmp = hmp;
236         chain->bref = *bref;
237         chain->bytes = bytes;
238         chain->refs = 1;
239         chain->flags = HAMMER2_CHAIN_ALLOCATED;
240         lockinit(&chain->diolk, "chdio", 0, 0);
241
242         /*
243          * Set the PFS boundary flag if this chain represents a PFS root.
244          */
245         if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
246                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_PFSBOUNDARY);
247         hammer2_chain_core_init(chain);
248
249         return (chain);
250 }
251
252 /*
253  * Initialize a chain's core structure.  This structure used to be allocated
254  * but is now embedded.
255  *
256  * The core is not locked.  No additional refs on the chain are made.
257  * (trans) must not be NULL if (core) is not NULL.
258  */
259 void
260 hammer2_chain_core_init(hammer2_chain_t *chain)
261 {
262         /*
263          * Fresh core under nchain (no multi-homing of ochain's
264          * sub-tree).
265          */
266         RB_INIT(&chain->core.rbtree);   /* live chains */
267         hammer2_mtx_init(&chain->lock, "h2chain");
268 }
269
270 /*
271  * Add a reference to a chain element, preventing its destruction.
272  *
273  * (can be called with spinlock held)
274  */
275 void
276 hammer2_chain_ref(hammer2_chain_t *chain)
277 {
278         if (atomic_fetchadd_int(&chain->refs, 1) == 0) {
279                 /*
280                  * Just flag that the chain was used and should be recycled
281                  * on the LRU if it encounters it later.
282                  */
283                 if (chain->flags & HAMMER2_CHAIN_ONLRU)
284                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
285
286 #if 0
287                 /*
288                  * REMOVED - reduces contention, lru_list is more heuristical
289                  * now.
290                  *
291                  * 0->non-zero transition must ensure that chain is removed
292                  * from the LRU list.
293                  *
294                  * NOTE: Already holding lru_spin here so we cannot call
295                  *       hammer2_chain_ref() to get it off lru_list, do
296                  *       it manually.
297                  */
298                 if (chain->flags & HAMMER2_CHAIN_ONLRU) {
299                         hammer2_pfs_t *pmp = chain->pmp;
300                         hammer2_spin_ex(&pmp->lru_spin);
301                         if (chain->flags & HAMMER2_CHAIN_ONLRU) {
302                                 atomic_add_int(&pmp->lru_count, -1);
303                                 atomic_clear_int(&chain->flags,
304                                                  HAMMER2_CHAIN_ONLRU);
305                                 TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
306                         }
307                         hammer2_spin_unex(&pmp->lru_spin);
308                 }
309 #endif
310         }
311 }
312
313 /*
314  * Ref a locked chain and force the data to be held across an unlock.
315  * Chain must be currently locked.  The user of the chain who desires
316  * to release the hold must call hammer2_chain_lock_unhold() to relock
317  * and unhold the chain, then unlock normally, or may simply call
318  * hammer2_chain_drop_unhold() (which is safer against deadlocks).
319  */
320 void
321 hammer2_chain_ref_hold(hammer2_chain_t *chain)
322 {
323         atomic_add_int(&chain->lockcnt, 1);
324         hammer2_chain_ref(chain);
325 }
326
327 /*
328  * Insert the chain in the core rbtree.
329  *
330  * Normal insertions are placed in the live rbtree.  Insertion of a deleted
331  * chain is a special case used by the flush code that is placed on the
332  * unstaged deleted list to avoid confusing the live view.
333  */
334 #define HAMMER2_CHAIN_INSERT_SPIN       0x0001
335 #define HAMMER2_CHAIN_INSERT_LIVE       0x0002
336 #define HAMMER2_CHAIN_INSERT_RACE       0x0004
337
338 static
339 int
340 hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
341                      int flags, int generation)
342 {
343         hammer2_chain_t *xchain;
344         int error = 0;
345
346         if (flags & HAMMER2_CHAIN_INSERT_SPIN)
347                 hammer2_spin_ex(&parent->core.spin);
348
349         /*
350          * Interlocked by spinlock, check for race
351          */
352         if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
353             parent->core.generation != generation) {
354                 error = HAMMER2_ERROR_EAGAIN;
355                 goto failed;
356         }
357
358         /*
359          * Insert chain
360          */
361         xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
362         KASSERT(xchain == NULL,
363                 ("hammer2_chain_insert: collision %p %p (key=%016jx)",
364                 chain, xchain, chain->bref.key));
365         atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
366         chain->parent = parent;
367         ++parent->core.chain_count;
368         ++parent->core.generation;      /* XXX incs for _get() too, XXX */
369
370         /*
371          * We have to keep track of the effective live-view blockref count
372          * so the create code knows when to push an indirect block.
373          */
374         if (flags & HAMMER2_CHAIN_INSERT_LIVE)
375                 atomic_add_int(&parent->core.live_count, 1);
376 failed:
377         if (flags & HAMMER2_CHAIN_INSERT_SPIN)
378                 hammer2_spin_unex(&parent->core.spin);
379         return error;
380 }
381
382 /*
383  * Drop the caller's reference to the chain.  When the ref count drops to
384  * zero this function will try to disassociate the chain from its parent and
385  * deallocate it, then recursely drop the parent using the implied ref
386  * from the chain's chain->parent.
387  *
388  * Nobody should own chain's mutex on the 1->0 transition, unless this drop
389  * races an acquisition by another cpu.  Therefore we can loop if we are
390  * unable to acquire the mutex, and refs is unlikely to be 1 unless we again
391  * race against another drop.
392  */
393 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain,
394                                 int depth);
395 static void hammer2_chain_lru_flush(hammer2_pfs_t *pmp);
396
397 void
398 hammer2_chain_drop(hammer2_chain_t *chain)
399 {
400         u_int refs;
401
402         if (hammer2_debug & 0x200000)
403                 Debugger("drop");
404
405         KKASSERT(chain->refs > 0);
406
407         while (chain) {
408                 refs = chain->refs;
409                 cpu_ccfence();
410                 KKASSERT(refs > 0);
411
412                 if (refs == 1) {
413                         if (hammer2_mtx_ex_try(&chain->lock) == 0)
414                                 chain = hammer2_chain_lastdrop(chain, 0);
415                         /* retry the same chain, or chain from lastdrop */
416                 } else {
417                         if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
418                                 break;
419                         /* retry the same chain */
420                 }
421                 cpu_pause();
422         }
423 }
424
425 /*
426  * Unhold a held and probably not-locked chain, ensure that the data is
427  * dropped on the 1->0 transition of lockcnt by obtaining an exclusive
428  * lock and then simply unlocking the chain.
429  */
430 void
431 hammer2_chain_unhold(hammer2_chain_t *chain)
432 {
433         u_int lockcnt;
434         int iter = 0;
435
436         for (;;) {
437                 lockcnt = chain->lockcnt;
438                 cpu_ccfence();
439                 if (lockcnt > 1) {
440                         if (atomic_cmpset_int(&chain->lockcnt,
441                                               lockcnt, lockcnt - 1)) {
442                                 break;
443                         }
444                 } else if (hammer2_mtx_ex_try(&chain->lock) == 0) {
445                         hammer2_chain_unlock(chain);
446                         break;
447                 } else {
448                         /*
449                          * This situation can easily occur on SMP due to
450                          * the gap inbetween the 1->0 transition and the
451                          * final unlock.  We cannot safely block on the
452                          * mutex because lockcnt might go above 1.
453                          *
454                          * XXX Sleep for one tick if it takes too long.
455                          */
456                         if (++iter > 1000) {
457                                 if (iter > 1000 + hz) {
458                                         kprintf("hammer2: h2race1 %p\n", chain);
459                                         iter = 1000;
460                                 }
461                                 tsleep(&iter, 0, "h2race1", 1);
462                         }
463                         cpu_pause();
464                 }
465         }
466 }
467
468 void
469 hammer2_chain_drop_unhold(hammer2_chain_t *chain)
470 {
471         hammer2_chain_unhold(chain);
472         hammer2_chain_drop(chain);
473 }
474
475 void
476 hammer2_chain_rehold(hammer2_chain_t *chain)
477 {
478         hammer2_chain_lock(chain, HAMMER2_RESOLVE_SHARED);
479         atomic_add_int(&chain->lockcnt, 1);
480         hammer2_chain_unlock(chain);
481 }
482
483 /*
484  * Handles the (potential) last drop of chain->refs from 1->0.  Called with
485  * the mutex exclusively locked, refs == 1, and lockcnt 0.  SMP races are
486  * possible against refs and lockcnt.  We must dispose of the mutex on chain.
487  *
488  * This function returns an unlocked chain for recursive drop or NULL.  It
489  * can return the same chain if it determines it has raced another ref.
490  *
491  * --
492  *
493  * When two chains need to be recursively dropped we use the chain we
494  * would otherwise free to placehold the additional chain.  It's a bit
495  * convoluted but we can't just recurse without potentially blowing out
496  * the kernel stack.
497  *
498  * The chain cannot be freed if it has any children.
499  * The chain cannot be freed if flagged MODIFIED unless we can dispose of it.
500  * The chain cannot be freed if flagged UPDATE unless we can dispose of it.
501  * Any dedup registration can remain intact.
502  *
503  * The core spinlock is allowed to nest child-to-parent (not parent-to-child).
504  */
505 static
506 hammer2_chain_t *
507 hammer2_chain_lastdrop(hammer2_chain_t *chain, int depth)
508 {
509         hammer2_pfs_t *pmp;
510         hammer2_dev_t *hmp;
511         hammer2_chain_t *parent;
512         hammer2_chain_t *rdrop;
513
514         /*
515          * We need chain's spinlock to interlock the sub-tree test.
516          * We already have chain's mutex, protecting chain->parent.
517          *
518          * Remember that chain->refs can be in flux.
519          */
520         hammer2_spin_ex(&chain->core.spin);
521
522         if (chain->parent != NULL) {
523                 /*
524                  * If the chain has a parent the UPDATE bit prevents scrapping
525                  * as the chain is needed to properly flush the parent.  Try
526                  * to complete the 1->0 transition and return NULL.  Retry
527                  * (return chain) if we are unable to complete the 1->0
528                  * transition, else return NULL (nothing more to do).
529                  *
530                  * If the chain has a parent the MODIFIED bit prevents
531                  * scrapping.
532                  *
533                  * Chains with UPDATE/MODIFIED are *not* put on the LRU list!
534                  */
535                 if (chain->flags & (HAMMER2_CHAIN_UPDATE |
536                                     HAMMER2_CHAIN_MODIFIED)) {
537                         if (atomic_cmpset_int(&chain->refs, 1, 0)) {
538                                 hammer2_spin_unex(&chain->core.spin);
539                                 hammer2_chain_assert_no_data(chain);
540                                 hammer2_mtx_unlock(&chain->lock);
541                                 chain = NULL;
542                         } else {
543                                 hammer2_spin_unex(&chain->core.spin);
544                                 hammer2_mtx_unlock(&chain->lock);
545                         }
546                         return (chain);
547                 }
548                 /* spinlock still held */
549         } else if (chain->bref.type == HAMMER2_BREF_TYPE_VOLUME ||
550                    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP) {
551                 /*
552                  * Retain the static vchain and fchain.  Clear bits that
553                  * are not relevant.  Do not clear the MODIFIED bit,
554                  * and certainly do not put it on the delayed-flush queue.
555                  */
556                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
557         } else {
558                 /*
559                  * The chain has no parent and can be flagged for destruction.
560                  * Since it has no parent, UPDATE can also be cleared.
561                  */
562                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
563                 if (chain->flags & HAMMER2_CHAIN_UPDATE)
564                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
565
566                 /*
567                  * If the chain has children we must propagate the DESTROY
568                  * flag downward and rip the disconnected topology apart.
569                  * This is accomplished by calling hammer2_flush() on the
570                  * chain.
571                  *
572                  * Any dedup is already handled by the underlying DIO, so
573                  * we do not have to specifically flush it here.
574                  */
575                 if (chain->core.chain_count) {
576                         hammer2_spin_unex(&chain->core.spin);
577                         hammer2_flush(chain, HAMMER2_FLUSH_TOP |
578                                              HAMMER2_FLUSH_ALL);
579                         hammer2_mtx_unlock(&chain->lock);
580
581                         return(chain);  /* retry drop */
582                 }
583
584                 /*
585                  * Otherwise we can scrap the MODIFIED bit if it is set,
586                  * and continue along the freeing path.
587                  *
588                  * Be sure to clean-out any dedup bits.  Without a parent
589                  * this chain will no longer be visible to the flush code.
590                  * Easy check data_off to avoid the volume root.
591                  */
592                 if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
593                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
594                         atomic_add_long(&hammer2_count_modified_chains, -1);
595                         if (chain->pmp)
596                                 hammer2_pfs_memory_wakeup(chain->pmp);
597                 }
598                 /* spinlock still held */
599         }
600
601         /* spinlock still held */
602
603         /*
604          * If any children exist we must leave the chain intact with refs == 0.
605          * They exist because chains are retained below us which have refs or
606          * may require flushing.
607          *
608          * Retry (return chain) if we fail to transition the refs to 0, else
609          * return NULL indication nothing more to do.
610          *
611          * Chains with children are NOT put on the LRU list.
612          */
613         if (chain->core.chain_count) {
614                 if (atomic_cmpset_int(&chain->refs, 1, 0)) {
615                         hammer2_spin_unex(&chain->core.spin);
616                         hammer2_chain_assert_no_data(chain);
617                         hammer2_mtx_unlock(&chain->lock);
618                         chain = NULL;
619                 } else {
620                         hammer2_spin_unex(&chain->core.spin);
621                         hammer2_mtx_unlock(&chain->lock);
622                 }
623                 return (chain);
624         }
625         /* spinlock still held */
626         /* no chains left under us */
627
628         /*
629          * chain->core has no children left so no accessors can get to our
630          * chain from there.  Now we have to lock the parent core to interlock
631          * remaining possible accessors that might bump chain's refs before
632          * we can safely drop chain's refs with intent to free the chain.
633          */
634         hmp = chain->hmp;
635         pmp = chain->pmp;       /* can be NULL */
636         rdrop = NULL;
637
638         parent = chain->parent;
639
640         /*
641          * WARNING! chain's spin lock is still held here, and other spinlocks
642          *          will be acquired and released in the code below.  We
643          *          cannot be making fancy procedure calls!
644          */
645
646         /*
647          * We can cache the chain if it is associated with a pmp
648          * and not flagged as being destroyed or requesting a full
649          * release.  In this situation the chain is not removed
650          * from its parent, i.e. it can still be looked up.
651          *
652          * We intentionally do not cache DATA chains because these
653          * were likely used to load data into the logical buffer cache
654          * and will not be accessed again for some time.
655          */
656         if ((chain->flags &
657              (HAMMER2_CHAIN_DESTROY | HAMMER2_CHAIN_RELEASE)) == 0 &&
658             chain->pmp &&
659             chain->bref.type != HAMMER2_BREF_TYPE_DATA) {
660                 if (parent)
661                         hammer2_spin_ex(&parent->core.spin);
662                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
663                         /*
664                          * 1->0 transition failed, retry.  Do not drop
665                          * the chain's data yet!
666                          */
667                         if (parent)
668                                 hammer2_spin_unex(&parent->core.spin);
669                         hammer2_spin_unex(&chain->core.spin);
670                         hammer2_mtx_unlock(&chain->lock);
671
672                         return(chain);
673                 }
674
675                 /*
676                  * Success
677                  */
678                 hammer2_chain_assert_no_data(chain);
679
680                 /*
681                  * Make sure we are on the LRU list, clean up excessive
682                  * LRU entries.  We can only really drop one but there might
683                  * be other entries that we can remove from the lru_list
684                  * without dropping.
685                  *
686                  * NOTE: HAMMER2_CHAIN_ONLRU may only be safely set when
687                  *       chain->core.spin AND pmp->lru_spin are held, but
688                  *       can be safely cleared only holding pmp->lru_spin.
689                  */
690                 if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
691                         hammer2_spin_ex(&pmp->lru_spin);
692                         if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
693                                 atomic_set_int(&chain->flags,
694                                                HAMMER2_CHAIN_ONLRU);
695                                 TAILQ_INSERT_TAIL(&pmp->lru_list,
696                                                   chain, lru_node);
697                                 atomic_add_int(&pmp->lru_count, 1);
698                         }
699                         if (pmp->lru_count < HAMMER2_LRU_LIMIT)
700                                 depth = 1;      /* disable lru_list flush */
701                         hammer2_spin_unex(&pmp->lru_spin);
702                 } else {
703                         /* disable lru flush */
704                         depth = 1;
705                 }
706
707                 if (parent) {
708                         hammer2_spin_unex(&parent->core.spin);
709                         parent = NULL;  /* safety */
710                 }
711                 hammer2_spin_unex(&chain->core.spin);
712                 hammer2_mtx_unlock(&chain->lock);
713
714                 /*
715                  * lru_list hysteresis (see above for depth overrides).
716                  * Note that depth also prevents excessive lastdrop recursion.
717                  */
718                 if (depth == 0)
719                         hammer2_chain_lru_flush(pmp);
720
721                 return NULL;
722                 /* NOT REACHED */
723         }
724
725         /*
726          * Make sure we are not on the LRU list.
727          */
728         if (chain->flags & HAMMER2_CHAIN_ONLRU) {
729                 hammer2_spin_ex(&pmp->lru_spin);
730                 if (chain->flags & HAMMER2_CHAIN_ONLRU) {
731                         atomic_add_int(&pmp->lru_count, -1);
732                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
733                         TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
734                 }
735                 hammer2_spin_unex(&pmp->lru_spin);
736         }
737
738         /*
739          * Spinlock the parent and try to drop the last ref on chain.
740          * On success determine if we should dispose of the chain
741          * (remove the chain from its parent, etc).
742          *
743          * (normal core locks are top-down recursive but we define
744          * core spinlocks as bottom-up recursive, so this is safe).
745          */
746         if (parent) {
747                 hammer2_spin_ex(&parent->core.spin);
748                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
749                         /*
750                          * 1->0 transition failed, retry.
751                          */
752                         hammer2_spin_unex(&parent->core.spin);
753                         hammer2_spin_unex(&chain->core.spin);
754                         hammer2_mtx_unlock(&chain->lock);
755
756                         return(chain);
757                 }
758
759                 /*
760                  * 1->0 transition successful, parent spin held to prevent
761                  * new lookups, chain spinlock held to protect parent field.
762                  * Remove chain from the parent.
763                  *
764                  * If the chain is being removed from the parent's btree but
765                  * is not bmapped, we have to adjust live_count downward.  If
766                  * it is bmapped then the blockref is retained in the parent
767                  * as is its associated live_count.  This case can occur when
768                  * a chain added to the topology is unable to flush and is
769                  * then later deleted.
770                  */
771                 if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
772                         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) &&
773                             (chain->flags & HAMMER2_CHAIN_BMAPPED) == 0) {
774                                 atomic_add_int(&parent->core.live_count, -1);
775                         }
776                         RB_REMOVE(hammer2_chain_tree,
777                                   &parent->core.rbtree, chain);
778                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
779                         --parent->core.chain_count;
780                         chain->parent = NULL;
781                 }
782
783                 /*
784                  * If our chain was the last chain in the parent's core the
785                  * core is now empty and its parent might have to be
786                  * re-dropped if it has 0 refs.
787                  */
788                 if (parent->core.chain_count == 0) {
789                         rdrop = parent;
790                         atomic_add_int(&rdrop->refs, 1);
791                         /*
792                         if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0)
793                                 rdrop = NULL;
794                         */
795                 }
796                 hammer2_spin_unex(&parent->core.spin);
797                 parent = NULL;  /* safety */
798                 /* FALL THROUGH */
799         } else {
800                 /*
801                  * No-parent case.
802                  */
803                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
804                         /*
805                          * 1->0 transition failed, retry.
806                          */
807                         hammer2_spin_unex(&parent->core.spin);
808                         hammer2_spin_unex(&chain->core.spin);
809                         hammer2_mtx_unlock(&chain->lock);
810
811                         return(chain);
812                 }
813         }
814
815         /*
816          * Successful 1->0 transition, no parent, no children... no way for
817          * anyone to ref this chain any more.  We can clean-up and free it.
818          *
819          * We still have the core spinlock, and core's chain_count is 0.
820          * Any parent spinlock is gone.
821          */
822         hammer2_spin_unex(&chain->core.spin);
823         hammer2_chain_assert_no_data(chain);
824         hammer2_mtx_unlock(&chain->lock);
825         KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
826                  chain->core.chain_count == 0);
827
828         /*
829          * All locks are gone, no pointers remain to the chain, finish
830          * freeing it.
831          */
832         KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
833                                   HAMMER2_CHAIN_MODIFIED)) == 0);
834
835         /*
836          * Once chain resources are gone we can use the now dead chain
837          * structure to placehold what might otherwise require a recursive
838          * drop, because we have potentially two things to drop and can only
839          * return one directly.
840          */
841         if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
842                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ALLOCATED);
843                 chain->hmp = NULL;
844                 kfree(chain, hmp->mchain);
845         }
846
847         /*
848          * Possible chaining loop when parent re-drop needed.
849          */
850         return(rdrop);
851 }
852
853 /*
854  * Heuristical flush of the LRU, try to reduce the number of entries
855  * on the LRU to (HAMMER2_LRU_LIMIT * 2 / 3).  This procedure is called
856  * only when lru_count exceeds HAMMER2_LRU_LIMIT.
857  */
858 static
859 void
860 hammer2_chain_lru_flush(hammer2_pfs_t *pmp)
861 {
862         hammer2_chain_t *chain;
863
864 again:
865         chain = NULL;
866         hammer2_spin_ex(&pmp->lru_spin);
867         while (pmp->lru_count > HAMMER2_LRU_LIMIT * 2 / 3) {
868                 /*
869                  * Pick a chain off the lru_list, just recycle it quickly
870                  * if LRUHINT is set (the chain was ref'd but left on
871                  * the lru_list, so cycle to the end).
872                  */
873                 chain = TAILQ_FIRST(&pmp->lru_list);
874                 TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
875
876                 if (chain->flags & HAMMER2_CHAIN_LRUHINT) {
877                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
878                         TAILQ_INSERT_TAIL(&pmp->lru_list, chain, lru_node);
879                         chain = NULL;
880                         continue;
881                 }
882
883                 /*
884                  * Ok, we are off the LRU.  We must adjust refs before we
885                  * can safely clear the ONLRU flag.
886                  */
887                 atomic_add_int(&pmp->lru_count, -1);
888                 if (atomic_cmpset_int(&chain->refs, 0, 1)) {
889                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
890                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
891                         break;
892                 }
893                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
894                 chain = NULL;
895         }
896         hammer2_spin_unex(&pmp->lru_spin);
897         if (chain == NULL)
898                 return;
899
900         /*
901          * If we picked a chain off the lru list we may be able to lastdrop
902          * it.  Use a depth of 1 to prevent excessive lastdrop recursion.
903          */
904         while (chain) {
905                 u_int refs;
906
907                 refs = chain->refs;
908                 cpu_ccfence();
909                 KKASSERT(refs > 0);
910
911                 if (refs == 1) {
912                         if (hammer2_mtx_ex_try(&chain->lock) == 0)
913                                 chain = hammer2_chain_lastdrop(chain, 1);
914                         /* retry the same chain, or chain from lastdrop */
915                 } else {
916                         if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
917                                 break;
918                         /* retry the same chain */
919                 }
920                 cpu_pause();
921         }
922         goto again;
923 }
924
925 /*
926  * On last lock release.
927  */
928 static hammer2_io_t *
929 hammer2_chain_drop_data(hammer2_chain_t *chain)
930 {
931         hammer2_io_t *dio;
932
933         if ((dio = chain->dio) != NULL) {
934                 chain->dio = NULL;
935                 chain->data = NULL;
936         } else {
937                 switch(chain->bref.type) {
938                 case HAMMER2_BREF_TYPE_VOLUME:
939                 case HAMMER2_BREF_TYPE_FREEMAP:
940                         break;
941                 default:
942                         if (chain->data != NULL) {
943                                 hammer2_spin_unex(&chain->core.spin);
944                                 panic("chain data not null: "
945                                       "chain %p bref %016jx.%02x "
946                                       "refs %d parent %p dio %p data %p",
947                                       chain, chain->bref.data_off,
948                                       chain->bref.type, chain->refs,
949                                       chain->parent,
950                                       chain->dio, chain->data);
951                         }
952                         KKASSERT(chain->data == NULL);
953                         break;
954                 }
955         }
956         return dio;
957 }
958
959 /*
960  * Lock a referenced chain element, acquiring its data with I/O if necessary,
961  * and specify how you would like the data to be resolved.
962  *
963  * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
964  *
965  * The lock is allowed to recurse, multiple locking ops will aggregate
966  * the requested resolve types.  Once data is assigned it will not be
967  * removed until the last unlock.
968  *
969  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
970  *                         (typically used to avoid device/logical buffer
971  *                          aliasing for data)
972  *
973  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
974  *                         the INITIAL-create state (indirect blocks only).
975  *
976  *                         Do not resolve data elements for DATA chains.
977  *                         (typically used to avoid device/logical buffer
978  *                          aliasing for data)
979  *
980  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
981  *
982  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
983  *                         it will be locked exclusive.
984  *
985  * HAMMER2_RESOLVE_NONBLOCK- (flag) The chain is locked non-blocking.  If
986  *                         the lock fails, EAGAIN is returned.
987  *
988  * NOTE: Embedded elements (volume header, inodes) are always resolved
989  *       regardless.
990  *
991  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
992  *       element will instantiate and zero its buffer, and flush it on
993  *       release.
994  *
995  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
996  *       so as not to instantiate a device buffer, which could alias against
997  *       a logical file buffer.  However, if ALWAYS is specified the
998  *       device buffer will be instantiated anyway.
999  *
1000  * NOTE: The return value is always 0 unless NONBLOCK is specified, in which
1001  *       case it can be either 0 or EAGAIN.
1002  *
1003  * WARNING! This function blocks on I/O if data needs to be fetched.  This
1004  *          blocking can run concurrent with other compatible lock holders
1005  *          who do not need data returning.  The lock is not upgraded to
1006  *          exclusive during a data fetch, a separate bit is used to
1007  *          interlock I/O.  However, an exclusive lock holder can still count
1008  *          on being interlocked against an I/O fetch managed by a shared
1009  *          lock holder.
1010  */
1011 int
1012 hammer2_chain_lock(hammer2_chain_t *chain, int how)
1013 {
1014         KKASSERT(chain->refs > 0);
1015
1016         if (how & HAMMER2_RESOLVE_NONBLOCK) {
1017                 /*
1018                  * We still have to bump lockcnt before acquiring the lock,
1019                  * even for non-blocking operation, because the unlock code
1020                  * live-loops on lockcnt == 1 when dropping the last lock.
1021                  *
1022                  * If the non-blocking operation fails we have to use an
1023                  * unhold sequence to undo the mess.
1024                  *
1025                  * NOTE: LOCKAGAIN must always succeed without blocking,
1026                  *       even if NONBLOCK is specified.
1027                  */
1028                 atomic_add_int(&chain->lockcnt, 1);
1029                 if (how & HAMMER2_RESOLVE_SHARED) {
1030                         if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1031                                 hammer2_mtx_sh_again(&chain->lock);
1032                         } else {
1033                                 if (hammer2_mtx_sh_try(&chain->lock) != 0) {
1034                                         hammer2_chain_unhold(chain);
1035                                         return EAGAIN;
1036                                 }
1037                         }
1038                 } else {
1039                         if (hammer2_mtx_ex_try(&chain->lock) != 0) {
1040                                 hammer2_chain_unhold(chain);
1041                                 return EAGAIN;
1042                         }
1043                 }
1044         } else {
1045                 /*
1046                  * Get the appropriate lock.  If LOCKAGAIN is flagged with
1047                  * SHARED the caller expects a shared lock to already be
1048                  * present and we are giving it another ref.  This case must
1049                  * importantly not block if there is a pending exclusive lock
1050                  * request.
1051                  */
1052                 atomic_add_int(&chain->lockcnt, 1);
1053                 if (how & HAMMER2_RESOLVE_SHARED) {
1054                         if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1055                                 hammer2_mtx_sh_again(&chain->lock);
1056                         } else {
1057                                 hammer2_mtx_sh(&chain->lock);
1058                         }
1059                 } else {
1060                         hammer2_mtx_ex(&chain->lock);
1061                 }
1062         }
1063
1064         /*
1065          * If we already have a valid data pointer make sure the data is
1066          * synchronized to the current cpu, and then no further action is
1067          * necessary.
1068          */
1069         if (chain->data) {
1070                 if (chain->dio)
1071                         hammer2_io_bkvasync(chain->dio);
1072                 return 0;
1073         }
1074
1075         /*
1076          * Do we have to resolve the data?  This is generally only
1077          * applicable to HAMMER2_BREF_TYPE_DATA which is special-cased.
1078          * Other BREF types expects the data to be there.
1079          */
1080         switch(how & HAMMER2_RESOLVE_MASK) {
1081         case HAMMER2_RESOLVE_NEVER:
1082                 return 0;
1083         case HAMMER2_RESOLVE_MAYBE:
1084                 if (chain->flags & HAMMER2_CHAIN_INITIAL)
1085                         return 0;
1086                 if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
1087                         return 0;
1088 #if 0
1089                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
1090                         return 0;
1091                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
1092                         return 0;
1093 #endif
1094                 /* fall through */
1095         case HAMMER2_RESOLVE_ALWAYS:
1096         default:
1097                 break;
1098         }
1099
1100         /*
1101          * Caller requires data
1102          */
1103         hammer2_chain_load_data(chain);
1104
1105         return 0;
1106 }
1107
1108 /*
1109  * Lock the chain, retain the hold, and drop the data persistence count.
1110  * The data should remain valid because we never transitioned lockcnt
1111  * through 0.
1112  */
1113 void
1114 hammer2_chain_lock_unhold(hammer2_chain_t *chain, int how)
1115 {
1116         hammer2_chain_lock(chain, how);
1117         atomic_add_int(&chain->lockcnt, -1);
1118 }
1119
1120 #if 0
1121 /*
1122  * Downgrade an exclusive chain lock to a shared chain lock.
1123  *
1124  * NOTE: There is no upgrade equivalent due to the ease of
1125  *       deadlocks in that direction.
1126  */
1127 void
1128 hammer2_chain_lock_downgrade(hammer2_chain_t *chain)
1129 {
1130         hammer2_mtx_downgrade(&chain->lock);
1131 }
1132 #endif
1133
1134 /*
1135  * Issue I/O and install chain->data.  Caller must hold a chain lock, lock
1136  * may be of any type.
1137  *
1138  * Once chain->data is set it cannot be disposed of until all locks are
1139  * released.
1140  *
1141  * Make sure the data is synchronized to the current cpu.
1142  */
1143 void
1144 hammer2_chain_load_data(hammer2_chain_t *chain)
1145 {
1146         hammer2_blockref_t *bref;
1147         hammer2_dev_t *hmp;
1148         hammer2_io_t *dio;
1149         char *bdata;
1150         int error;
1151
1152         /*
1153          * Degenerate case, data already present, or chain has no media
1154          * reference to load.
1155          */
1156         KKASSERT(chain->lock.mtx_lock & MTX_MASK);
1157         if (chain->data) {
1158                 if (chain->dio)
1159                         hammer2_io_bkvasync(chain->dio);
1160                 return;
1161         }
1162         if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0)
1163                 return;
1164
1165         hmp = chain->hmp;
1166         KKASSERT(hmp != NULL);
1167
1168         /*
1169          * Gain the IOINPROG bit, interlocked block.
1170          */
1171         for (;;) {
1172                 u_int oflags;
1173                 u_int nflags;
1174
1175                 oflags = chain->flags;
1176                 cpu_ccfence();
1177                 if (oflags & HAMMER2_CHAIN_IOINPROG) {
1178                         nflags = oflags | HAMMER2_CHAIN_IOSIGNAL;
1179                         tsleep_interlock(&chain->flags, 0);
1180                         if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1181                                 tsleep(&chain->flags, PINTERLOCKED,
1182                                         "h2iocw", 0);
1183                         }
1184                         /* retry */
1185                 } else {
1186                         nflags = oflags | HAMMER2_CHAIN_IOINPROG;
1187                         if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1188                                 break;
1189                         }
1190                         /* retry */
1191                 }
1192         }
1193
1194         /*
1195          * We own CHAIN_IOINPROG
1196          *
1197          * Degenerate case if we raced another load.
1198          */
1199         if (chain->data) {
1200                 if (chain->dio)
1201                         hammer2_io_bkvasync(chain->dio);
1202                 goto done;
1203         }
1204
1205         /*
1206          * We must resolve to a device buffer, either by issuing I/O or
1207          * by creating a zero-fill element.  We do not mark the buffer
1208          * dirty when creating a zero-fill element (the hammer2_chain_modify()
1209          * API must still be used to do that).
1210          *
1211          * The device buffer is variable-sized in powers of 2 down
1212          * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
1213          * chunk always contains buffers of the same size. (XXX)
1214          *
1215          * The minimum physical IO size may be larger than the variable
1216          * block size.
1217          */
1218         bref = &chain->bref;
1219
1220         /*
1221          * The getblk() optimization can only be used on newly created
1222          * elements if the physical block size matches the request.
1223          */
1224         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1225                 error = hammer2_io_new(hmp, bref->type,
1226                                        bref->data_off, chain->bytes,
1227                                        &chain->dio);
1228         } else {
1229                 error = hammer2_io_bread(hmp, bref->type,
1230                                          bref->data_off, chain->bytes,
1231                                          &chain->dio);
1232                 hammer2_adjreadcounter(&chain->bref, chain->bytes);
1233         }
1234         if (error) {
1235                 chain->error = HAMMER2_ERROR_EIO;
1236                 kprintf("hammer2_chain_lock: I/O error %016jx: %d\n",
1237                         (intmax_t)bref->data_off, error);
1238                 hammer2_io_bqrelse(&chain->dio);
1239                 goto done;
1240         }
1241         chain->error = 0;
1242
1243         /*
1244          * This isn't perfect and can be ignored on OSs which do not have
1245          * an indication as to whether a buffer is coming from cache or
1246          * if I/O was actually issued for the read.  TESTEDGOOD will work
1247          * pretty well without the B_IOISSUED logic because chains are
1248          * cached, but in that situation (without B_IOISSUED) it will not
1249          * detect whether a re-read via I/O is corrupted verses the original
1250          * read.
1251          *
1252          * We can't re-run the CRC on every fresh lock.  That would be
1253          * insanely expensive.
1254          *
1255          * If the underlying kernel buffer covers the entire chain we can
1256          * use the B_IOISSUED indication to determine if we have to re-run
1257          * the CRC on chain data for chains that managed to stay cached
1258          * across the kernel disposal of the original buffer.
1259          */
1260         if ((dio = chain->dio) != NULL && dio->bp) {
1261                 struct buf *bp = dio->bp;
1262
1263                 if (dio->psize == chain->bytes &&
1264                     (bp->b_flags & B_IOISSUED)) {
1265                         atomic_clear_int(&chain->flags,
1266                                          HAMMER2_CHAIN_TESTEDGOOD);
1267                         bp->b_flags &= ~B_IOISSUED;
1268                 }
1269         }
1270
1271         /*
1272          * NOTE: A locked chain's data cannot be modified without first
1273          *       calling hammer2_chain_modify().
1274          */
1275
1276         /*
1277          * Clear INITIAL.  In this case we used io_new() and the buffer has
1278          * been zero'd and marked dirty.
1279          *
1280          * NOTE: hammer2_io_data() call issues bkvasync()
1281          */
1282         bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
1283
1284         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1285                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1286                 chain->bref.flags |= HAMMER2_BREF_FLAG_ZERO;
1287         } else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1288                 /*
1289                  * check data not currently synchronized due to
1290                  * modification.  XXX assumes data stays in the buffer
1291                  * cache, which might not be true (need biodep on flush
1292                  * to calculate crc?  or simple crc?).
1293                  */
1294         } else if ((chain->flags & HAMMER2_CHAIN_TESTEDGOOD) == 0) {
1295                 if (hammer2_chain_testcheck(chain, bdata) == 0) {
1296                         chain->error = HAMMER2_ERROR_CHECK;
1297                 } else {
1298                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_TESTEDGOOD);
1299                 }
1300         }
1301
1302         /*
1303          * Setup the data pointer, either pointing it to an embedded data
1304          * structure and copying the data from the buffer, or pointing it
1305          * into the buffer.
1306          *
1307          * The buffer is not retained when copying to an embedded data
1308          * structure in order to avoid potential deadlocks or recursions
1309          * on the same physical buffer.
1310          *
1311          * WARNING! Other threads can start using the data the instant we
1312          *          set chain->data non-NULL.
1313          */
1314         switch (bref->type) {
1315         case HAMMER2_BREF_TYPE_VOLUME:
1316         case HAMMER2_BREF_TYPE_FREEMAP:
1317                 /*
1318                  * Copy data from bp to embedded buffer
1319                  */
1320                 panic("hammer2_chain_load_data: unresolved volume header");
1321                 break;
1322         case HAMMER2_BREF_TYPE_DIRENT:
1323                 KKASSERT(chain->bytes != 0);
1324                 /* fall through */
1325         case HAMMER2_BREF_TYPE_INODE:
1326         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1327         case HAMMER2_BREF_TYPE_INDIRECT:
1328         case HAMMER2_BREF_TYPE_DATA:
1329         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1330         default:
1331                 /*
1332                  * Point data at the device buffer and leave dio intact.
1333                  */
1334                 chain->data = (void *)bdata;
1335                 break;
1336         }
1337
1338         /*
1339          * Release HAMMER2_CHAIN_IOINPROG and signal waiters if requested.
1340          */
1341 done:
1342         for (;;) {
1343                 u_int oflags;
1344                 u_int nflags;
1345
1346                 oflags = chain->flags;
1347                 nflags = oflags & ~(HAMMER2_CHAIN_IOINPROG |
1348                                     HAMMER2_CHAIN_IOSIGNAL);
1349                 KKASSERT(oflags & HAMMER2_CHAIN_IOINPROG);
1350                 if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1351                         if (oflags & HAMMER2_CHAIN_IOSIGNAL)
1352                                 wakeup(&chain->flags);
1353                         break;
1354                 }
1355         }
1356 }
1357
1358 /*
1359  * Unlock and deref a chain element.
1360  *
1361  * Remember that the presence of children under chain prevent the chain's
1362  * destruction but do not add additional references, so the dio will still
1363  * be dropped.
1364  */
1365 void
1366 hammer2_chain_unlock(hammer2_chain_t *chain)
1367 {
1368         hammer2_io_t *dio;
1369         u_int lockcnt;
1370         int iter = 0;
1371
1372         /*
1373          * If multiple locks are present (or being attempted) on this
1374          * particular chain we can just unlock, drop refs, and return.
1375          *
1376          * Otherwise fall-through on the 1->0 transition.
1377          */
1378         for (;;) {
1379                 lockcnt = chain->lockcnt;
1380                 KKASSERT(lockcnt > 0);
1381                 cpu_ccfence();
1382                 if (lockcnt > 1) {
1383                         if (atomic_cmpset_int(&chain->lockcnt,
1384                                               lockcnt, lockcnt - 1)) {
1385                                 hammer2_mtx_unlock(&chain->lock);
1386                                 return;
1387                         }
1388                 } else if (hammer2_mtx_upgrade_try(&chain->lock) == 0) {
1389                         /* while holding the mutex exclusively */
1390                         if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
1391                                 break;
1392                 } else {
1393                         /*
1394                          * This situation can easily occur on SMP due to
1395                          * the gap inbetween the 1->0 transition and the
1396                          * final unlock.  We cannot safely block on the
1397                          * mutex because lockcnt might go above 1.
1398                          *
1399                          * XXX Sleep for one tick if it takes too long.
1400                          */
1401                         if (++iter > 1000) {
1402                                 if (iter > 1000 + hz) {
1403                                         kprintf("hammer2: h2race2 %p\n", chain);
1404                                         iter = 1000;
1405                                 }
1406                                 tsleep(&iter, 0, "h2race2", 1);
1407                         }
1408                         cpu_pause();
1409                 }
1410                 /* retry */
1411         }
1412
1413         /*
1414          * Last unlock / mutex upgraded to exclusive.  Drop the data
1415          * reference.
1416          */
1417         dio = hammer2_chain_drop_data(chain);
1418         if (dio)
1419                 hammer2_io_bqrelse(&dio);
1420         hammer2_mtx_unlock(&chain->lock);
1421 }
1422
1423 /*
1424  * Unlock and hold chain data intact
1425  */
1426 void
1427 hammer2_chain_unlock_hold(hammer2_chain_t *chain)
1428 {
1429         atomic_add_int(&chain->lockcnt, 1);
1430         hammer2_chain_unlock(chain);
1431 }
1432
1433 /*
1434  * Helper to obtain the blockref[] array base and count for a chain.
1435  *
1436  * XXX Not widely used yet, various use cases need to be validated and
1437  *     converted to use this function.
1438  */
1439 static
1440 hammer2_blockref_t *
1441 hammer2_chain_base_and_count(hammer2_chain_t *parent, int *countp)
1442 {
1443         hammer2_blockref_t *base;
1444         int count;
1445
1446         if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1447                 base = NULL;
1448
1449                 switch(parent->bref.type) {
1450                 case HAMMER2_BREF_TYPE_INODE:
1451                         count = HAMMER2_SET_COUNT;
1452                         break;
1453                 case HAMMER2_BREF_TYPE_INDIRECT:
1454                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1455                         count = parent->bytes / sizeof(hammer2_blockref_t);
1456                         break;
1457                 case HAMMER2_BREF_TYPE_VOLUME:
1458                         count = HAMMER2_SET_COUNT;
1459                         break;
1460                 case HAMMER2_BREF_TYPE_FREEMAP:
1461                         count = HAMMER2_SET_COUNT;
1462                         break;
1463                 default:
1464                         panic("hammer2_chain_base_and_count: "
1465                               "unrecognized blockref type: %d",
1466                               parent->bref.type);
1467                         count = 0;
1468                         break;
1469                 }
1470         } else {
1471                 switch(parent->bref.type) {
1472                 case HAMMER2_BREF_TYPE_INODE:
1473                         base = &parent->data->ipdata.u.blockset.blockref[0];
1474                         count = HAMMER2_SET_COUNT;
1475                         break;
1476                 case HAMMER2_BREF_TYPE_INDIRECT:
1477                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1478                         base = &parent->data->npdata[0];
1479                         count = parent->bytes / sizeof(hammer2_blockref_t);
1480                         break;
1481                 case HAMMER2_BREF_TYPE_VOLUME:
1482                         base = &parent->data->voldata.
1483                                         sroot_blockset.blockref[0];
1484                         count = HAMMER2_SET_COUNT;
1485                         break;
1486                 case HAMMER2_BREF_TYPE_FREEMAP:
1487                         base = &parent->data->blkset.blockref[0];
1488                         count = HAMMER2_SET_COUNT;
1489                         break;
1490                 default:
1491                         panic("hammer2_chain_base_and_count: "
1492                               "unrecognized blockref type: %d",
1493                               parent->bref.type);
1494                         count = 0;
1495                         break;
1496                 }
1497         }
1498         *countp = count;
1499
1500         return base;
1501 }
1502
1503 /*
1504  * This counts the number of live blockrefs in a block array and
1505  * also calculates the point at which all remaining blockrefs are empty.
1506  * This routine can only be called on a live chain.
1507  *
1508  * Caller holds the chain locked, but possibly with a shared lock.  We
1509  * must use an exclusive spinlock to prevent corruption.
1510  *
1511  * NOTE: Flag is not set until after the count is complete, allowing
1512  *       callers to test the flag without holding the spinlock.
1513  *
1514  * NOTE: If base is NULL the related chain is still in the INITIAL
1515  *       state and there are no blockrefs to count.
1516  *
1517  * NOTE: live_count may already have some counts accumulated due to
1518  *       creation and deletion and could even be initially negative.
1519  */
1520 void
1521 hammer2_chain_countbrefs(hammer2_chain_t *chain,
1522                          hammer2_blockref_t *base, int count)
1523 {
1524         hammer2_spin_ex(&chain->core.spin);
1525         if ((chain->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0) {
1526                 if (base) {
1527                         while (--count >= 0) {
1528                                 if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1529                                         break;
1530                         }
1531                         chain->core.live_zero = count + 1;
1532                         while (count >= 0) {
1533                                 if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1534                                         atomic_add_int(&chain->core.live_count,
1535                                                        1);
1536                                 --count;
1537                         }
1538                 } else {
1539                         chain->core.live_zero = 0;
1540                 }
1541                 /* else do not modify live_count */
1542                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_COUNTEDBREFS);
1543         }
1544         hammer2_spin_unex(&chain->core.spin);
1545 }
1546
1547 /*
1548  * Resize the chain's physical storage allocation in-place.  This function does
1549  * not usually adjust the data pointer and must be followed by (typically) a
1550  * hammer2_chain_modify() call to copy any old data over and adjust the
1551  * data pointer.
1552  *
1553  * Chains can be resized smaller without reallocating the storage.  Resizing
1554  * larger will reallocate the storage.  Excess or prior storage is reclaimed
1555  * asynchronously at a later time.
1556  *
1557  * An nradix value of 0 is special-cased to mean that the storage should
1558  * be disassociated, that is the chain is being resized to 0 bytes (not 1
1559  * byte).
1560  *
1561  * Must be passed an exclusively locked parent and chain.
1562  *
1563  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1564  * to avoid instantiating a device buffer that conflicts with the vnode data
1565  * buffer.  However, because H2 can compress or encrypt data, the chain may
1566  * have a dio assigned to it in those situations, and they do not conflict.
1567  *
1568  * XXX return error if cannot resize.
1569  */
1570 int
1571 hammer2_chain_resize(hammer2_chain_t *chain,
1572                      hammer2_tid_t mtid, hammer2_off_t dedup_off,
1573                      int nradix, int flags)
1574 {
1575         hammer2_dev_t *hmp;
1576         size_t obytes;
1577         size_t nbytes;
1578         int error;
1579
1580         hmp = chain->hmp;
1581
1582         /*
1583          * Only data and indirect blocks can be resized for now.
1584          * (The volu root, inodes, and freemap elements use a fixed size).
1585          */
1586         KKASSERT(chain != &hmp->vchain);
1587         KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1588                  chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1589                  chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1590
1591         /*
1592          * Nothing to do if the element is already the proper size
1593          */
1594         obytes = chain->bytes;
1595         nbytes = (nradix) ? (1U << nradix) : 0;
1596         if (obytes == nbytes)
1597                 return (chain->error);
1598
1599         /*
1600          * Make sure the old data is instantiated so we can copy it.  If this
1601          * is a data block, the device data may be superfluous since the data
1602          * might be in a logical block, but compressed or encrypted data is
1603          * another matter.
1604          *
1605          * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
1606          */
1607         error = hammer2_chain_modify(chain, mtid, dedup_off, 0);
1608         if (error)
1609                 return error;
1610
1611         /*
1612          * Relocate the block, even if making it smaller (because different
1613          * block sizes may be in different regions).
1614          *
1615          * NOTE: Operation does not copy the data and may only be used
1616          *        to resize data blocks in-place, or directory entry blocks
1617          *        which are about to be modified in some manner.
1618          */
1619         error = hammer2_freemap_alloc(chain, nbytes);
1620         if (error)
1621                 return error;
1622
1623         chain->bytes = nbytes;
1624
1625         /*
1626          * We don't want the followup chain_modify() to try to copy data
1627          * from the old (wrong-sized) buffer.  It won't know how much to
1628          * copy.  This case should only occur during writes when the
1629          * originator already has the data to write in-hand.
1630          */
1631         if (chain->dio) {
1632                 KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1633                          chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1634                 hammer2_io_brelse(&chain->dio);
1635                 chain->data = NULL;
1636         }
1637         return (chain->error);
1638 }
1639
1640 /*
1641  * Set the chain modified so its data can be changed by the caller, or
1642  * install deduplicated data.  The caller must call this routine for each
1643  * set of modifications it makes, even if the chain is already flagged
1644  * MODIFIED.
1645  *
1646  * Sets bref.modify_tid to mtid only if mtid != 0.  Note that bref.modify_tid
1647  * is a CLC (cluster level change) field and is not updated by parent
1648  * propagation during a flush.
1649  *
1650  * Returns an appropriate HAMMER2_ERROR_* code, which will generally reflect
1651  * chain->error except for HAMMER2_ERROR_ENOSPC.  If the allocation fails
1652  * due to no space available, HAMMER2_ERROR_ENOSPC is returned and the chain
1653  * remains unmodified with its old data ref intact and chain->error
1654  * unchanged.
1655  *
1656  *                               Dedup Handling
1657  *
1658  * If the DEDUPABLE flag is set in the chain the storage must be reallocated
1659  * even if the chain is still flagged MODIFIED.  In this case the chain's
1660  * DEDUPABLE flag will be cleared once the new storage has been assigned.
1661  *
1662  * If the caller passes a non-zero dedup_off we will use it to assign the
1663  * new storage.  The MODIFIED flag will be *CLEARED* in this case, and
1664  * DEDUPABLE will be set (NOTE: the UPDATE flag is always set).  The caller
1665  * must not modify the data content upon return.
1666  */
1667 int
1668 hammer2_chain_modify(hammer2_chain_t *chain, hammer2_tid_t mtid,
1669                      hammer2_off_t dedup_off, int flags)
1670 {
1671         hammer2_blockref_t obref;
1672         hammer2_dev_t *hmp;
1673         hammer2_io_t *dio;
1674         int error;
1675         int wasinitial;
1676         int setmodified;
1677         int setupdate;
1678         int newmod;
1679         char *bdata;
1680
1681         hmp = chain->hmp;
1682         obref = chain->bref;
1683         KKASSERT((chain->flags & HAMMER2_CHAIN_FICTITIOUS) == 0);
1684         KKASSERT(chain->lock.mtx_lock & MTX_EXCLUSIVE);
1685
1686         /*
1687          * Data is not optional for freemap chains (we must always be sure
1688          * to copy the data on COW storage allocations).
1689          */
1690         if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1691             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1692                 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1693                          (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1694         }
1695
1696         /*
1697          * Data must be resolved if already assigned, unless explicitly
1698          * flagged otherwise.  If we cannot safety load the data the
1699          * modification fails and we return early.
1700          */
1701         if (chain->data == NULL && chain->bytes != 0 &&
1702             (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1703             (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1704                 hammer2_chain_load_data(chain);
1705                 if (chain->error)
1706                         return (chain->error);
1707         }
1708         error = 0;
1709
1710         /*
1711          * Set MODIFIED to indicate that the chain has been modified.  A new
1712          * allocation is required when modifying a chain.
1713          *
1714          * Set UPDATE to ensure that the blockref is updated in the parent.
1715          *
1716          * If MODIFIED is already set determine if we can reuse the assigned
1717          * data block or if we need a new data block.
1718          */
1719         if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1720                 /*
1721                  * Must set modified bit.
1722                  */
1723                 atomic_add_long(&hammer2_count_modified_chains, 1);
1724                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1725                 hammer2_pfs_memory_inc(chain->pmp);  /* can be NULL */
1726                 setmodified = 1;
1727
1728                 /*
1729                  * We may be able to avoid a copy-on-write if the chain's
1730                  * check mode is set to NONE and the chain's current
1731                  * modify_tid is beyond the last explicit snapshot tid.
1732                  *
1733                  * This implements HAMMER2's overwrite-in-place feature.
1734                  *
1735                  * NOTE! This data-block cannot be used as a de-duplication
1736                  *       source when the check mode is set to NONE.
1737                  */
1738                 if ((chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1739                      chain->bref.type == HAMMER2_BREF_TYPE_DIRENT) &&
1740                     (chain->flags & HAMMER2_CHAIN_INITIAL) == 0 &&
1741                     (chain->flags & HAMMER2_CHAIN_DEDUPABLE) == 0 &&
1742                     HAMMER2_DEC_CHECK(chain->bref.methods) ==
1743                      HAMMER2_CHECK_NONE &&
1744                     chain->pmp &&
1745                     chain->bref.modify_tid >
1746                      chain->pmp->iroot->meta.pfs_lsnap_tid) {
1747                         /*
1748                          * Sector overwrite allowed.
1749                          */
1750                         newmod = 0;
1751                 } else if ((hmp->hflags & HMNT2_EMERG) &&
1752                            chain->pmp &&
1753                            chain->bref.modify_tid >
1754                             chain->pmp->iroot->meta.pfs_lsnap_tid) {
1755                         /*
1756                          * If in emergency delete mode then do a modify-in-
1757                          * place on any chain type belonging to the PFS as
1758                          * long as it doesn't mess up a snapshot.  We might
1759                          * be forced to do this anyway a little further down
1760                          * in the code if the allocation fails.
1761                          *
1762                          * Also note that in emergency mode, these modify-in-
1763                          * place operations are NOT SAFE.  A storage failure,
1764                          * power failure, or panic can corrupt the filesystem.
1765                          */
1766                         newmod = 0;
1767                 } else {
1768                         /*
1769                          * Sector overwrite not allowed, must copy-on-write.
1770                          */
1771                         newmod = 1;
1772                 }
1773         } else if (chain->flags & HAMMER2_CHAIN_DEDUPABLE) {
1774                 /*
1775                  * If the modified chain was registered for dedup we need
1776                  * a new allocation.  This only happens for delayed-flush
1777                  * chains (i.e. which run through the front-end buffer
1778                  * cache).
1779                  */
1780                 newmod = 1;
1781                 setmodified = 0;
1782         } else {
1783                 /*
1784                  * Already flagged modified, no new allocation is needed.
1785                  */
1786                 newmod = 0;
1787                 setmodified = 0;
1788         }
1789
1790         /*
1791          * Flag parent update required.
1792          */
1793         if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
1794                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1795                 setupdate = 1;
1796         } else {
1797                 setupdate = 0;
1798         }
1799
1800         /*
1801          * The XOP code returns held but unlocked focus chains.  This
1802          * prevents the chain from being destroyed but does not prevent
1803          * it from being modified.  diolk is used to interlock modifications
1804          * against XOP frontend accesses to the focus.
1805          *
1806          * This allows us to theoretically avoid deadlocking the frontend
1807          * if one of the backends lock up by not formally locking the
1808          * focused chain in the frontend.  In addition, the synchronization
1809          * code relies on this mechanism to avoid deadlocking concurrent
1810          * synchronization threads.
1811          */
1812         lockmgr(&chain->diolk, LK_EXCLUSIVE);
1813
1814         /*
1815          * The modification or re-modification requires an allocation and
1816          * possible COW.  If an error occurs, the previous content and data
1817          * reference is retained and the modification fails.
1818          *
1819          * If dedup_off is non-zero, the caller is requesting a deduplication
1820          * rather than a modification.  The MODIFIED bit is not set and the
1821          * data offset is set to the deduplication offset.  The data cannot
1822          * be modified.
1823          *
1824          * NOTE: The dedup offset is allowed to be in a partially free state
1825          *       and we must be sure to reset it to a fully allocated state
1826          *       to force two bulkfree passes to free it again.
1827          *
1828          * NOTE: Only applicable when chain->bytes != 0.
1829          *
1830          * XXX can a chain already be marked MODIFIED without a data
1831          * assignment?  If not, assert here instead of testing the case.
1832          */
1833         if (chain != &hmp->vchain && chain != &hmp->fchain &&
1834             chain->bytes) {
1835                 if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1836                     newmod
1837                 ) {
1838                         /*
1839                          * NOTE: We do not have to remove the dedup
1840                          *       registration because the area is still
1841                          *       allocated and the underlying DIO will
1842                          *       still be flushed.
1843                          */
1844                         if (dedup_off) {
1845                                 chain->bref.data_off = dedup_off;
1846                                 chain->bytes = 1 << (dedup_off &
1847                                                      HAMMER2_OFF_MASK_RADIX);
1848                                 chain->error = 0;
1849                                 atomic_clear_int(&chain->flags,
1850                                                  HAMMER2_CHAIN_MODIFIED);
1851                                 atomic_add_long(&hammer2_count_modified_chains,
1852                                                 -1);
1853                                 if (chain->pmp)
1854                                         hammer2_pfs_memory_wakeup(chain->pmp);
1855                                 hammer2_freemap_adjust(hmp, &chain->bref,
1856                                                 HAMMER2_FREEMAP_DORECOVER);
1857                                 atomic_set_int(&chain->flags,
1858                                                 HAMMER2_CHAIN_DEDUPABLE);
1859                         } else {
1860                                 error = hammer2_freemap_alloc(chain,
1861                                                               chain->bytes);
1862                                 atomic_clear_int(&chain->flags,
1863                                                 HAMMER2_CHAIN_DEDUPABLE);
1864
1865                                 /*
1866                                  * If we are unable to allocate a new block
1867                                  * but we are in emergency mode, issue a
1868                                  * warning to the console and reuse the same
1869                                  * block.
1870                                  *
1871                                  * We behave as if the allocation were
1872                                  * successful.
1873                                  *
1874                                  * THIS IS IMPORTANT: These modifications
1875                                  * are virtually guaranteed to corrupt any
1876                                  * snapshots related to this filesystem.
1877                                  */
1878                                 if (error && (hmp->hflags & HMNT2_EMERG)) {
1879                                         error = 0;
1880                                         chain->bref.flags |=
1881                                                 HAMMER2_BREF_FLAG_EMERG_MIP;
1882
1883                                         krateprintf(&krate_h2em,
1884                                             "hammer2: Emergency Mode WARNING: "
1885                                             "Operation will likely corrupt "
1886                                             "related snapshot: "
1887                                             "%016jx.%02x key=%016jx\n",
1888                                             chain->bref.data_off,
1889                                             chain->bref.type,
1890                                             chain->bref.key);
1891                                 } else if (error == 0) {
1892                                         chain->bref.flags &=
1893                                                 ~HAMMER2_BREF_FLAG_EMERG_MIP;
1894                                 }
1895                         }
1896                 }
1897         }
1898
1899         /*
1900          * Stop here if error.  We have to undo any flag bits we might
1901          * have set above.
1902          */
1903         if (error) {
1904                 if (setmodified) {
1905                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1906                         atomic_add_long(&hammer2_count_modified_chains, -1);
1907                         if (chain->pmp)
1908                                 hammer2_pfs_memory_wakeup(chain->pmp);
1909                 }
1910                 if (setupdate) {
1911                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1912                 }
1913                 lockmgr(&chain->diolk, LK_RELEASE);
1914
1915                 return error;
1916         }
1917
1918         /*
1919          * Update mirror_tid and modify_tid.  modify_tid is only updated
1920          * if not passed as zero (during flushes, parent propagation passes
1921          * the value 0).
1922          *
1923          * NOTE: chain->pmp could be the device spmp.
1924          */
1925         chain->bref.mirror_tid = hmp->voldata.mirror_tid + 1;
1926         if (mtid)
1927                 chain->bref.modify_tid = mtid;
1928
1929         /*
1930          * Set BMAPUPD to tell the flush code that an existing blockmap entry
1931          * requires updating as well as to tell the delete code that the
1932          * chain's blockref might not exactly match (in terms of physical size
1933          * or block offset) the one in the parent's blocktable.  The base key
1934          * of course will still match.
1935          */
1936         if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1937                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1938
1939         /*
1940          * Short-cut data blocks which the caller does not need an actual
1941          * data reference to (aka OPTDATA), as long as the chain does not
1942          * already have a data pointer to the data.  This generally means
1943          * that the modifications are being done via the logical buffer cache.
1944          * The INITIAL flag relates only to the device data buffer and thus
1945          * remains unchange in this situation.
1946          *
1947          * This code also handles bytes == 0 (most dirents).
1948          */
1949         if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1950             (flags & HAMMER2_MODIFY_OPTDATA) &&
1951             chain->data == NULL) {
1952                 KKASSERT(chain->dio == NULL);
1953                 goto skip2;
1954         }
1955
1956         /*
1957          * Clearing the INITIAL flag (for indirect blocks) indicates that
1958          * we've processed the uninitialized storage allocation.
1959          *
1960          * If this flag is already clear we are likely in a copy-on-write
1961          * situation but we have to be sure NOT to bzero the storage if
1962          * no data is present.
1963          */
1964         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1965                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1966                 wasinitial = 1;
1967         } else {
1968                 wasinitial = 0;
1969         }
1970
1971         /*
1972          * Instantiate data buffer and possibly execute COW operation
1973          */
1974         switch(chain->bref.type) {
1975         case HAMMER2_BREF_TYPE_VOLUME:
1976         case HAMMER2_BREF_TYPE_FREEMAP:
1977                 /*
1978                  * The data is embedded, no copy-on-write operation is
1979                  * needed.
1980                  */
1981                 KKASSERT(chain->dio == NULL);
1982                 break;
1983         case HAMMER2_BREF_TYPE_DIRENT:
1984                 /*
1985                  * The data might be fully embedded.
1986                  */
1987                 if (chain->bytes == 0) {
1988                         KKASSERT(chain->dio == NULL);
1989                         break;
1990                 }
1991                 /* fall through */
1992         case HAMMER2_BREF_TYPE_INODE:
1993         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1994         case HAMMER2_BREF_TYPE_DATA:
1995         case HAMMER2_BREF_TYPE_INDIRECT:
1996         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1997                 /*
1998                  * Perform the copy-on-write operation
1999                  *
2000                  * zero-fill or copy-on-write depending on whether
2001                  * chain->data exists or not and set the dirty state for
2002                  * the new buffer.  hammer2_io_new() will handle the
2003                  * zero-fill.
2004                  *
2005                  * If a dedup_off was supplied this is an existing block
2006                  * and no COW, copy, or further modification is required.
2007                  */
2008                 KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
2009
2010                 if (wasinitial && dedup_off == 0) {
2011                         error = hammer2_io_new(hmp, chain->bref.type,
2012                                                chain->bref.data_off,
2013                                                chain->bytes, &dio);
2014                 } else {
2015                         error = hammer2_io_bread(hmp, chain->bref.type,
2016                                                  chain->bref.data_off,
2017                                                  chain->bytes, &dio);
2018                 }
2019                 hammer2_adjreadcounter(&chain->bref, chain->bytes);
2020
2021                 /*
2022                  * If an I/O error occurs make sure callers cannot accidently
2023                  * modify the old buffer's contents and corrupt the filesystem.
2024                  *
2025                  * NOTE: hammer2_io_data() call issues bkvasync()
2026                  */
2027                 if (error) {
2028                         kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
2029                                 hmp);
2030                         chain->error = HAMMER2_ERROR_EIO;
2031                         hammer2_io_brelse(&dio);
2032                         hammer2_io_brelse(&chain->dio);
2033                         chain->data = NULL;
2034                         break;
2035                 }
2036                 chain->error = 0;
2037                 bdata = hammer2_io_data(dio, chain->bref.data_off);
2038
2039                 if (chain->data) {
2040                         /*
2041                          * COW (unless a dedup).
2042                          */
2043                         KKASSERT(chain->dio != NULL);
2044                         if (chain->data != (void *)bdata && dedup_off == 0) {
2045                                 bcopy(chain->data, bdata, chain->bytes);
2046                         }
2047                 } else if (wasinitial == 0) {
2048                         /*
2049                          * We have a problem.  We were asked to COW but
2050                          * we don't have any data to COW with!
2051                          */
2052                         panic("hammer2_chain_modify: having a COW %p\n",
2053                               chain);
2054                 }
2055
2056                 /*
2057                  * Retire the old buffer, replace with the new.  Dirty or
2058                  * redirty the new buffer.
2059                  *
2060                  * WARNING! The system buffer cache may have already flushed
2061                  *          the buffer, so we must be sure to [re]dirty it
2062                  *          for further modification.
2063                  *
2064                  *          If dedup_off was supplied, the caller is not
2065                  *          expected to make any further modification to the
2066                  *          buffer.
2067                  *
2068                  * WARNING! hammer2_get_gdata() assumes dio never transitions
2069                  *          through NULL in order to optimize away unnecessary
2070                  *          diolk operations.
2071                  */
2072                 {
2073                         hammer2_io_t *tio;
2074
2075                         if ((tio = chain->dio) != NULL)
2076                                 hammer2_io_bqrelse(&tio);
2077                         chain->data = (void *)bdata;
2078                         chain->dio = dio;
2079                         if (dedup_off == 0)
2080                                 hammer2_io_setdirty(dio);
2081                 }
2082                 break;
2083         default:
2084                 panic("hammer2_chain_modify: illegal non-embedded type %d",
2085                       chain->bref.type);
2086                 break;
2087
2088         }
2089 skip2:
2090         /*
2091          * setflush on parent indicating that the parent must recurse down
2092          * to us.  Do not call on chain itself which might already have it
2093          * set.
2094          */
2095         if (chain->parent)
2096                 hammer2_chain_setflush(chain->parent);
2097         lockmgr(&chain->diolk, LK_RELEASE);
2098
2099         return (chain->error);
2100 }
2101
2102 /*
2103  * Modify the chain associated with an inode.
2104  */
2105 int
2106 hammer2_chain_modify_ip(hammer2_inode_t *ip, hammer2_chain_t *chain,
2107                         hammer2_tid_t mtid, int flags)
2108 {
2109         int error;
2110
2111         hammer2_inode_modify(ip);
2112         error = hammer2_chain_modify(chain, mtid, 0, flags);
2113
2114         return error;
2115 }
2116
2117 /*
2118  * Volume header data locks
2119  */
2120 void
2121 hammer2_voldata_lock(hammer2_dev_t *hmp)
2122 {
2123         lockmgr(&hmp->vollk, LK_EXCLUSIVE);
2124 }
2125
2126 void
2127 hammer2_voldata_unlock(hammer2_dev_t *hmp)
2128 {
2129         lockmgr(&hmp->vollk, LK_RELEASE);
2130 }
2131
2132 void
2133 hammer2_voldata_modify(hammer2_dev_t *hmp)
2134 {
2135         if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
2136                 atomic_add_long(&hammer2_count_modified_chains, 1);
2137                 atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
2138                 hammer2_pfs_memory_inc(hmp->vchain.pmp);
2139         }
2140 }
2141
2142 /*
2143  * This function returns the chain at the nearest key within the specified
2144  * range.  The returned chain will be referenced but not locked.
2145  *
2146  * This function will recurse through chain->rbtree as necessary and will
2147  * return a *key_nextp suitable for iteration.  *key_nextp is only set if
2148  * the iteration value is less than the current value of *key_nextp.
2149  *
2150  * The caller should use (*key_nextp) to calculate the actual range of
2151  * the returned element, which will be (key_beg to *key_nextp - 1), because
2152  * there might be another element which is superior to the returned element
2153  * and overlaps it.
2154  *
2155  * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
2156  * chains continue to be returned.  On EOF (*key_nextp) may overflow since
2157  * it will wind up being (key_end + 1).
2158  *
2159  * WARNING!  Must be called with child's spinlock held.  Spinlock remains
2160  *           held through the operation.
2161  */
2162 struct hammer2_chain_find_info {
2163         hammer2_chain_t         *best;
2164         hammer2_key_t           key_beg;
2165         hammer2_key_t           key_end;
2166         hammer2_key_t           key_next;
2167 };
2168
2169 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
2170 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
2171
2172 static
2173 hammer2_chain_t *
2174 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
2175                           hammer2_key_t key_beg, hammer2_key_t key_end)
2176 {
2177         struct hammer2_chain_find_info info;
2178
2179         info.best = NULL;
2180         info.key_beg = key_beg;
2181         info.key_end = key_end;
2182         info.key_next = *key_nextp;
2183
2184         RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
2185                 hammer2_chain_find_cmp, hammer2_chain_find_callback,
2186                 &info);
2187         *key_nextp = info.key_next;
2188 #if 0
2189         kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
2190                 parent, key_beg, key_end, *key_nextp);
2191 #endif
2192
2193         return (info.best);
2194 }
2195
2196 static
2197 int
2198 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
2199 {
2200         struct hammer2_chain_find_info *info = data;
2201         hammer2_key_t child_beg;
2202         hammer2_key_t child_end;
2203
2204         child_beg = child->bref.key;
2205         child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
2206
2207         if (child_end < info->key_beg)
2208                 return(-1);
2209         if (child_beg > info->key_end)
2210                 return(1);
2211         return(0);
2212 }
2213
2214 static
2215 int
2216 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
2217 {
2218         struct hammer2_chain_find_info *info = data;
2219         hammer2_chain_t *best;
2220         hammer2_key_t child_end;
2221
2222         /*
2223          * WARNING! Layerq is scanned forwards, exact matches should keep
2224          *          the existing info->best.
2225          */
2226         if ((best = info->best) == NULL) {
2227                 /*
2228                  * No previous best.  Assign best
2229                  */
2230                 info->best = child;
2231         } else if (best->bref.key <= info->key_beg &&
2232                    child->bref.key <= info->key_beg) {
2233                 /*
2234                  * Illegal overlap.
2235                  */
2236                 KKASSERT(0);
2237                 /*info->best = child;*/
2238         } else if (child->bref.key < best->bref.key) {
2239                 /*
2240                  * Child has a nearer key and best is not flush with key_beg.
2241                  * Set best to child.  Truncate key_next to the old best key.
2242                  */
2243                 info->best = child;
2244                 if (info->key_next > best->bref.key || info->key_next == 0)
2245                         info->key_next = best->bref.key;
2246         } else if (child->bref.key == best->bref.key) {
2247                 /*
2248                  * If our current best is flush with the child then this
2249                  * is an illegal overlap.
2250                  *
2251                  * key_next will automatically be limited to the smaller of
2252                  * the two end-points.
2253                  */
2254                 KKASSERT(0);
2255                 info->best = child;
2256         } else {
2257                 /*
2258                  * Keep the current best but truncate key_next to the child's
2259                  * base.
2260                  *
2261                  * key_next will also automatically be limited to the smaller
2262                  * of the two end-points (probably not necessary for this case
2263                  * but we do it anyway).
2264                  */
2265                 if (info->key_next > child->bref.key || info->key_next == 0)
2266                         info->key_next = child->bref.key;
2267         }
2268
2269         /*
2270          * Always truncate key_next based on child's end-of-range.
2271          */
2272         child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
2273         if (child_end && (info->key_next > child_end || info->key_next == 0))
2274                 info->key_next = child_end;
2275
2276         return(0);
2277 }
2278
2279 /*
2280  * Retrieve the specified chain from a media blockref, creating the
2281  * in-memory chain structure which reflects it.  The returned chain is
2282  * held and locked according to (how) (HAMMER2_RESOLVE_*).  The caller must
2283  * handle crc-checks and so forth, and should check chain->error before
2284  * assuming that the data is good.
2285  *
2286  * To handle insertion races pass the INSERT_RACE flag along with the
2287  * generation number of the core.  NULL will be returned if the generation
2288  * number changes before we have a chance to insert the chain.  Insert
2289  * races can occur because the parent might be held shared.
2290  *
2291  * Caller must hold the parent locked shared or exclusive since we may
2292  * need the parent's bref array to find our block.
2293  *
2294  * WARNING! chain->pmp is always set to NULL for any chain representing
2295  *          part of the super-root topology.
2296  */
2297 hammer2_chain_t *
2298 hammer2_chain_get(hammer2_chain_t *parent, int generation,
2299                   hammer2_blockref_t *bref, int how)
2300 {
2301         hammer2_dev_t *hmp = parent->hmp;
2302         hammer2_chain_t *chain;
2303         int error;
2304
2305         /*
2306          * Allocate a chain structure representing the existing media
2307          * entry.  Resulting chain has one ref and is not locked.
2308          */
2309         if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
2310                 chain = hammer2_chain_alloc(hmp, NULL, bref);
2311         else
2312                 chain = hammer2_chain_alloc(hmp, parent->pmp, bref);
2313         /* ref'd chain returned */
2314
2315         /*
2316          * Flag that the chain is in the parent's blockmap so delete/flush
2317          * knows what to do with it.
2318          */
2319         atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
2320
2321         /*
2322          * chain must be locked to avoid unexpected ripouts
2323          */
2324         hammer2_chain_lock(chain, how);
2325
2326         /*
2327          * Link the chain into its parent.  A spinlock is required to safely
2328          * access the RBTREE, and it is possible to collide with another
2329          * hammer2_chain_get() operation because the caller might only hold
2330          * a shared lock on the parent.
2331          *
2332          * NOTE: Get races can occur quite often when we distribute
2333          *       asynchronous read-aheads across multiple threads.
2334          */
2335         KKASSERT(parent->refs > 0);
2336         error = hammer2_chain_insert(parent, chain,
2337                                      HAMMER2_CHAIN_INSERT_SPIN |
2338                                      HAMMER2_CHAIN_INSERT_RACE,
2339                                      generation);
2340         if (error) {
2341                 KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
2342                 /*kprintf("chain %p get race\n", chain);*/
2343                 hammer2_chain_unlock(chain);
2344                 hammer2_chain_drop(chain);
2345                 chain = NULL;
2346         } else {
2347                 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2348         }
2349
2350         /*
2351          * Return our new chain referenced but not locked, or NULL if
2352          * a race occurred.
2353          */
2354         return (chain);
2355 }
2356
2357 /*
2358  * Lookup initialization/completion API
2359  */
2360 hammer2_chain_t *
2361 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
2362 {
2363         hammer2_chain_ref(parent);
2364         if (flags & HAMMER2_LOOKUP_SHARED) {
2365                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
2366                                            HAMMER2_RESOLVE_SHARED);
2367         } else {
2368                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2369         }
2370         return (parent);
2371 }
2372
2373 void
2374 hammer2_chain_lookup_done(hammer2_chain_t *parent)
2375 {
2376         if (parent) {
2377                 hammer2_chain_unlock(parent);
2378                 hammer2_chain_drop(parent);
2379         }
2380 }
2381
2382 /*
2383  * Take the locked chain and return a locked parent.  The chain remains
2384  * locked on return, but may have to be temporarily unlocked to acquire
2385  * the parent.  Because of this, (chain) must be stable and cannot be
2386  * deleted while it was temporarily unlocked (typically means that (chain)
2387  * is an inode).
2388  *
2389  * Pass HAMMER2_RESOLVE_* flags in flags.
2390  *
2391  * This will work even if the chain is errored, and the caller can check
2392  * parent->error on return if desired since the parent will be locked.
2393  *
2394  * This function handles the lock order reversal.
2395  */
2396 hammer2_chain_t *
2397 hammer2_chain_getparent(hammer2_chain_t *chain, int flags)
2398 {
2399         hammer2_chain_t *parent;
2400
2401         /*
2402          * Be careful of order, chain must be unlocked before parent
2403          * is locked below to avoid a deadlock.  Try it trivially first.
2404          */
2405         parent = chain->parent;
2406         if (parent == NULL)
2407                 panic("hammer2_chain_getparent: no parent");
2408         hammer2_chain_ref(parent);
2409         if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0)
2410                 return parent;
2411
2412         for (;;) {
2413                 hammer2_chain_unlock(chain);
2414                 hammer2_chain_lock(parent, flags);
2415                 hammer2_chain_lock(chain, flags);
2416
2417                 /*
2418                  * Parent relinking races are quite common.  We have to get
2419                  * it right or we will blow up the block table.
2420                  */
2421                 if (chain->parent == parent)
2422                         break;
2423                 hammer2_chain_unlock(parent);
2424                 hammer2_chain_drop(parent);
2425                 cpu_ccfence();
2426                 parent = chain->parent;
2427                 if (parent == NULL)
2428                         panic("hammer2_chain_getparent: no parent");
2429                 hammer2_chain_ref(parent);
2430         }
2431         return parent;
2432 }
2433
2434 /*
2435  * Take the locked chain and return a locked parent.  The chain is unlocked
2436  * and dropped.  *chainp is set to the returned parent as a convenience.
2437  * Pass HAMMER2_RESOLVE_* flags in flags.
2438  *
2439  * This will work even if the chain is errored, and the caller can check
2440  * parent->error on return if desired since the parent will be locked.
2441  *
2442  * The chain does NOT need to be stable.  We use a tracking structure
2443  * to track the expected parent if the chain is deleted out from under us.
2444  *
2445  * This function handles the lock order reversal.
2446  */
2447 hammer2_chain_t *
2448 hammer2_chain_repparent(hammer2_chain_t **chainp, int flags)
2449 {
2450         hammer2_chain_t *chain;
2451         hammer2_chain_t *parent;
2452         struct hammer2_reptrack reptrack;
2453         struct hammer2_reptrack **repp;
2454
2455         /*
2456          * Be careful of order, chain must be unlocked before parent
2457          * is locked below to avoid a deadlock.  Try it trivially first.
2458          */
2459         chain = *chainp;
2460         parent = chain->parent;
2461         if (parent == NULL) {
2462                 hammer2_spin_unex(&chain->core.spin);
2463                 panic("hammer2_chain_repparent: no parent");
2464         }
2465         hammer2_chain_ref(parent);
2466         if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0) {
2467                 hammer2_chain_unlock(chain);
2468                 hammer2_chain_drop(chain);
2469                 *chainp = parent;
2470
2471                 return parent;
2472         }
2473
2474         /*
2475          * Ok, now it gets a bit nasty.  There are multiple situations where
2476          * the parent might be in the middle of a deletion, or where the child
2477          * (chain) might be deleted the instant we let go of its lock.
2478          * We can potentially end up in a no-win situation!
2479          *
2480          * In particular, the indirect_maintenance() case can cause these
2481          * situations.
2482          *
2483          * To deal with this we install a reptrack structure in the parent
2484          * This reptrack structure 'owns' the parent ref and will automatically
2485          * migrate to the parent's parent if the parent is deleted permanently.
2486          */
2487         hammer2_spin_init(&reptrack.spin, "h2reptrk");
2488         reptrack.chain = parent;
2489         hammer2_chain_ref(parent);              /* for the reptrack */
2490
2491         hammer2_spin_ex(&parent->core.spin);
2492         reptrack.next = parent->core.reptrack;
2493         parent->core.reptrack = &reptrack;
2494         hammer2_spin_unex(&parent->core.spin);
2495
2496         hammer2_chain_unlock(chain);
2497         hammer2_chain_drop(chain);
2498         chain = NULL;   /* gone */
2499
2500         /*
2501          * At the top of this loop, chain is gone and parent is refd both
2502          * by us explicitly AND via our reptrack.  We are attempting to
2503          * lock parent.
2504          */
2505         for (;;) {
2506                 hammer2_chain_lock(parent, flags);
2507
2508                 if (reptrack.chain == parent)
2509                         break;
2510                 hammer2_chain_unlock(parent);
2511                 hammer2_chain_drop(parent);
2512
2513                 kprintf("hammer2: debug REPTRACK %p->%p\n",
2514                         parent, reptrack.chain);
2515                 hammer2_spin_ex(&reptrack.spin);
2516                 parent = reptrack.chain;
2517                 hammer2_chain_ref(parent);
2518                 hammer2_spin_unex(&reptrack.spin);
2519         }
2520
2521         /*
2522          * Once parent is locked and matches our reptrack, our reptrack
2523          * will be stable and we have our parent.  We can unlink our
2524          * reptrack.
2525          *
2526          * WARNING!  Remember that the chain lock might be shared.  Chains
2527          *           locked shared have stable parent linkages.
2528          */
2529         hammer2_spin_ex(&parent->core.spin);
2530         repp = &parent->core.reptrack;
2531         while (*repp != &reptrack)
2532                 repp = &(*repp)->next;
2533         *repp = reptrack.next;
2534         hammer2_spin_unex(&parent->core.spin);
2535
2536         hammer2_chain_drop(parent);     /* reptrack ref */
2537         *chainp = parent;               /* return parent lock+ref */
2538
2539         return parent;
2540 }
2541
2542 /*
2543  * Dispose of any linked reptrack structures in (chain) by shifting them to
2544  * (parent).  Both (chain) and (parent) must be exclusively locked.
2545  *
2546  * This is interlocked against any children of (chain) on the other side.
2547  * No children so remain as-of when this is called so we can test
2548  * core.reptrack without holding the spin-lock.
2549  *
2550  * Used whenever the caller intends to permanently delete chains related
2551  * to topological recursions (BREF_TYPE_INDIRECT, BREF_TYPE_FREEMAP_NODE),
2552  * where the chains underneath the node being deleted are given a new parent
2553  * above the node being deleted.
2554  */
2555 static
2556 void
2557 hammer2_chain_repchange(hammer2_chain_t *parent, hammer2_chain_t *chain)
2558 {
2559         struct hammer2_reptrack *reptrack;
2560
2561         KKASSERT(chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree));
2562         while (chain->core.reptrack) {
2563                 hammer2_spin_ex(&parent->core.spin);
2564                 hammer2_spin_ex(&chain->core.spin);
2565                 reptrack = chain->core.reptrack;
2566                 if (reptrack == NULL) {
2567                         hammer2_spin_unex(&chain->core.spin);
2568                         hammer2_spin_unex(&parent->core.spin);
2569                         break;
2570                 }
2571                 hammer2_spin_ex(&reptrack->spin);
2572                 chain->core.reptrack = reptrack->next;
2573                 reptrack->chain = parent;
2574                 reptrack->next = parent->core.reptrack;
2575                 parent->core.reptrack = reptrack;
2576                 hammer2_chain_ref(parent);              /* reptrack */
2577
2578                 hammer2_spin_unex(&chain->core.spin);
2579                 hammer2_spin_unex(&parent->core.spin);
2580                 kprintf("hammer2: debug repchange %p %p->%p\n",
2581                         reptrack, chain, parent);
2582                 hammer2_chain_drop(chain);              /* reptrack */
2583         }
2584 }
2585
2586 /*
2587  * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
2588  * (*parentp) typically points to an inode but can also point to a related
2589  * indirect block and this function will recurse upwards and find the inode
2590  * or the nearest undeleted indirect block covering the key range.
2591  *
2592  * This function unconditionally sets *errorp, replacing any previous value.
2593  *
2594  * (*parentp) must be exclusive or shared locked (depending on flags) and
2595  * referenced and can be an inode or an existing indirect block within the
2596  * inode.
2597  *
2598  * If (*parent) is errored out, this function will not attempt to recurse
2599  * the radix tree and will return NULL along with an appropriate *errorp.
2600  * If NULL is returned and *errorp is 0, the requested lookup could not be
2601  * located.
2602  *
2603  * On return (*parentp) will be modified to point at the deepest parent chain
2604  * element encountered during the search, as a helper for an insertion or
2605  * deletion.
2606  *
2607  * The new (*parentp) will be locked shared or exclusive (depending on flags),
2608  * and referenced, and the old will be unlocked and dereferenced (no change
2609  * if they are both the same).  This is particularly important if the caller
2610  * wishes to insert a new chain, (*parentp) will be set properly even if NULL
2611  * is returned, as long as no error occurred.
2612  *
2613  * The matching chain will be returned locked according to flags.
2614  *
2615  * --
2616  *
2617  * NULL is returned if no match was found, but (*parentp) will still
2618  * potentially be adjusted.
2619  *
2620  * On return (*key_nextp) will point to an iterative value for key_beg.
2621  * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
2622  *
2623  * This function will also recurse up the chain if the key is not within the
2624  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
2625  * can simply allow (*parentp) to float inside the loop.
2626  *
2627  * NOTE!  chain->data is not always resolved.  By default it will not be
2628  *        resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
2629  *        HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
2630  *        BREF_TYPE_DATA as the device buffer can alias the logical file
2631  *        buffer).
2632  */
2633
2634 hammer2_chain_t *
2635 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
2636                      hammer2_key_t key_beg, hammer2_key_t key_end,
2637                      int *errorp, int flags)
2638 {
2639         hammer2_dev_t *hmp;
2640         hammer2_chain_t *parent;
2641         hammer2_chain_t *chain;
2642         hammer2_blockref_t *base;
2643         hammer2_blockref_t *bref;
2644         hammer2_blockref_t bsave;
2645         hammer2_key_t scan_beg;
2646         hammer2_key_t scan_end;
2647         int count = 0;
2648         int how_always = HAMMER2_RESOLVE_ALWAYS;
2649         int how_maybe = HAMMER2_RESOLVE_MAYBE;
2650         int how;
2651         int generation;
2652         int maxloops = 300000;
2653         volatile hammer2_mtx_t save_mtx;
2654
2655         if (flags & HAMMER2_LOOKUP_ALWAYS) {
2656                 how_maybe = how_always;
2657                 how = HAMMER2_RESOLVE_ALWAYS;
2658         } else if (flags & HAMMER2_LOOKUP_NODATA) {
2659                 how = HAMMER2_RESOLVE_NEVER;
2660         } else {
2661                 how = HAMMER2_RESOLVE_MAYBE;
2662         }
2663         if (flags & HAMMER2_LOOKUP_SHARED) {
2664                 how_maybe |= HAMMER2_RESOLVE_SHARED;
2665                 how_always |= HAMMER2_RESOLVE_SHARED;
2666                 how |= HAMMER2_RESOLVE_SHARED;
2667         }
2668
2669         /*
2670          * Recurse (*parentp) upward if necessary until the parent completely
2671          * encloses the key range or we hit the inode.
2672          *
2673          * Handle races against the flusher deleting indirect nodes on its
2674          * way back up by continuing to recurse upward past the deletion.
2675          */
2676         parent = *parentp;
2677         hmp = parent->hmp;
2678         *errorp = 0;
2679
2680         while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2681                parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2682                 scan_beg = parent->bref.key;
2683                 scan_end = scan_beg +
2684                            ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2685                 if ((parent->flags & HAMMER2_CHAIN_DELETED) == 0) {
2686                         if (key_beg >= scan_beg && key_end <= scan_end)
2687                                 break;
2688                 }
2689                 parent = hammer2_chain_repparent(parentp, how_maybe);
2690         }
2691 again:
2692         if (--maxloops == 0)
2693                 panic("hammer2_chain_lookup: maxloops");
2694
2695         /*
2696          * MATCHIND case that does not require parent->data (do prior to
2697          * parent->error check).
2698          */
2699         switch(parent->bref.type) {
2700         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2701         case HAMMER2_BREF_TYPE_INDIRECT:
2702                 if (flags & HAMMER2_LOOKUP_MATCHIND) {
2703                         scan_beg = parent->bref.key;
2704                         scan_end = scan_beg +
2705                                ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2706                         if (key_beg == scan_beg && key_end == scan_end) {
2707                                 chain = parent;
2708                                 hammer2_chain_ref(chain);
2709                                 hammer2_chain_lock(chain, how_maybe);
2710                                 *key_nextp = scan_end + 1;
2711                                 goto done;
2712                         }
2713                 }
2714                 break;
2715         default:
2716                 break;
2717         }
2718
2719         /*
2720          * No lookup is possible if the parent is errored.  We delayed
2721          * this check as long as we could to ensure that the parent backup,
2722          * embedded data, and MATCHIND code could still execute.
2723          */
2724         if (parent->error) {
2725                 *errorp = parent->error;
2726                 return NULL;
2727         }
2728
2729         /*
2730          * Locate the blockref array.  Currently we do a fully associative
2731          * search through the array.
2732          */
2733         switch(parent->bref.type) {
2734         case HAMMER2_BREF_TYPE_INODE:
2735                 /*
2736                  * Special shortcut for embedded data returns the inode
2737                  * itself.  Callers must detect this condition and access
2738                  * the embedded data (the strategy code does this for us).
2739                  *
2740                  * This is only applicable to regular files and softlinks.
2741                  *
2742                  * We need a second lock on parent.  Since we already have
2743                  * a lock we must pass LOCKAGAIN to prevent unexpected
2744                  * blocking (we don't want to block on a second shared
2745                  * ref if an exclusive lock is pending)
2746                  */
2747                 if (parent->data->ipdata.meta.op_flags &
2748                     HAMMER2_OPFLAG_DIRECTDATA) {
2749                         if (flags & HAMMER2_LOOKUP_NODIRECT) {
2750                                 chain = NULL;
2751                                 *key_nextp = key_end + 1;
2752                                 goto done;
2753                         }
2754                         hammer2_chain_ref(parent);
2755                         hammer2_chain_lock(parent, how_always |
2756                                                    HAMMER2_RESOLVE_LOCKAGAIN);
2757                         *key_nextp = key_end + 1;
2758                         return (parent);
2759                 }
2760                 base = &parent->data->ipdata.u.blockset.blockref[0];
2761                 count = HAMMER2_SET_COUNT;
2762                 break;
2763         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2764         case HAMMER2_BREF_TYPE_INDIRECT:
2765                 /*
2766                  * Optimize indirect blocks in the INITIAL state to avoid
2767                  * I/O.
2768                  *
2769                  * Debugging: Enter permanent wait state instead of
2770                  * panicing on unexpectedly NULL data for the moment.
2771                  */
2772                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2773                         base = NULL;
2774                 } else {
2775                         if (parent->data == NULL) {
2776                                 kprintf("hammer2: unexpected NULL data "
2777                                         "on %p\n", parent);
2778                                 while (1)
2779                                         tsleep(parent, 0, "xxx", 0);
2780                         }
2781                         base = &parent->data->npdata[0];
2782                 }
2783                 count = parent->bytes / sizeof(hammer2_blockref_t);
2784                 break;
2785         case HAMMER2_BREF_TYPE_VOLUME:
2786                 base = &parent->data->voldata.sroot_blockset.blockref[0];
2787                 count = HAMMER2_SET_COUNT;
2788                 break;
2789         case HAMMER2_BREF_TYPE_FREEMAP:
2790                 base = &parent->data->blkset.blockref[0];
2791                 count = HAMMER2_SET_COUNT;
2792                 break;
2793         default:
2794                 kprintf("hammer2_chain_lookup: unrecognized "
2795                         "blockref(B) type: %d",
2796                         parent->bref.type);
2797                 while (1)
2798                         tsleep(&base, 0, "dead", 0);
2799                 panic("hammer2_chain_lookup: unrecognized "
2800                       "blockref(B) type: %d",
2801                       parent->bref.type);
2802                 base = NULL;    /* safety */
2803                 count = 0;      /* safety */
2804         }
2805
2806         /*
2807          * Merged scan to find next candidate.
2808          *
2809          * hammer2_base_*() functions require the parent->core.live_* fields
2810          * to be synchronized.
2811          *
2812          * We need to hold the spinlock to access the block array and RB tree
2813          * and to interlock chain creation.
2814          */
2815         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2816                 hammer2_chain_countbrefs(parent, base, count);
2817
2818         /*
2819          * Combined search
2820          */
2821         hammer2_spin_ex(&parent->core.spin);
2822         chain = hammer2_combined_find(parent, base, count,
2823                                       key_nextp,
2824                                       key_beg, key_end,
2825                                       &bref);
2826         generation = parent->core.generation;
2827
2828         /*
2829          * Exhausted parent chain, iterate.
2830          */
2831         if (bref == NULL) {
2832                 KKASSERT(chain == NULL);
2833                 hammer2_spin_unex(&parent->core.spin);
2834                 if (key_beg == key_end) /* short cut single-key case */
2835                         return (NULL);
2836
2837                 /*
2838                  * Stop if we reached the end of the iteration.
2839                  */
2840                 if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2841                     parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2842                         return (NULL);
2843                 }
2844
2845                 /*
2846                  * Calculate next key, stop if we reached the end of the
2847                  * iteration, otherwise go up one level and loop.
2848                  */
2849                 key_beg = parent->bref.key +
2850                           ((hammer2_key_t)1 << parent->bref.keybits);
2851                 if (key_beg == 0 || key_beg > key_end)
2852                         return (NULL);
2853                 parent = hammer2_chain_repparent(parentp, how_maybe);
2854                 goto again;
2855         }
2856
2857         /*
2858          * Selected from blockref or in-memory chain.
2859          */
2860         bsave = *bref;
2861         if (chain == NULL) {
2862                 hammer2_spin_unex(&parent->core.spin);
2863                 if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2864                     bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2865                         chain = hammer2_chain_get(parent, generation,
2866                                                   &bsave, how_maybe);
2867                 } else {
2868                         chain = hammer2_chain_get(parent, generation,
2869                                                   &bsave, how);
2870                 }
2871                 if (chain == NULL)
2872                         goto again;
2873         } else {
2874                 hammer2_chain_ref(chain);
2875                 hammer2_spin_unex(&parent->core.spin);
2876
2877                 /*
2878                  * chain is referenced but not locked.  We must lock the
2879                  * chain to obtain definitive state.
2880                  */
2881                 if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2882                     bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2883                         hammer2_chain_lock(chain, how_maybe);
2884                 } else {
2885                         hammer2_chain_lock(chain, how);
2886                 }
2887                 KKASSERT(chain->parent == parent);
2888         }
2889         if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
2890             chain->parent != parent) {
2891                 hammer2_chain_unlock(chain);
2892                 hammer2_chain_drop(chain);
2893                 chain = NULL;   /* SAFETY */
2894                 goto again;
2895         }
2896
2897
2898         /*
2899          * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2900          *
2901          * NOTE: Chain's key range is not relevant as there might be
2902          *       one-offs within the range that are not deleted.
2903          *
2904          * NOTE: Lookups can race delete-duplicate because
2905          *       delete-duplicate does not lock the parent's core
2906          *       (they just use the spinlock on the core).
2907          */
2908         if (chain->flags & HAMMER2_CHAIN_DELETED) {
2909                 kprintf("skip deleted chain %016jx.%02x key=%016jx\n",
2910                         chain->bref.data_off, chain->bref.type,
2911                         chain->bref.key);
2912                 hammer2_chain_unlock(chain);
2913                 hammer2_chain_drop(chain);
2914                 chain = NULL;   /* SAFETY */
2915                 key_beg = *key_nextp;
2916                 if (key_beg == 0 || key_beg > key_end)
2917                         return(NULL);
2918                 goto again;
2919         }
2920
2921         /*
2922          * If the chain element is an indirect block it becomes the new
2923          * parent and we loop on it.  We must maintain our top-down locks
2924          * to prevent the flusher from interfering (i.e. doing a
2925          * delete-duplicate and leaving us recursing down a deleted chain).
2926          *
2927          * The parent always has to be locked with at least RESOLVE_MAYBE
2928          * so we can access its data.  It might need a fixup if the caller
2929          * passed incompatible flags.  Be careful not to cause a deadlock
2930          * as a data-load requires an exclusive lock.
2931          *
2932          * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2933          * range is within the requested key range we return the indirect
2934          * block and do NOT loop.  This is usually only used to acquire
2935          * freemap nodes.
2936          */
2937         if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2938             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2939                 save_mtx = parent->lock;
2940                 hammer2_chain_unlock(parent);
2941                 hammer2_chain_drop(parent);
2942                 *parentp = parent = chain;
2943                 chain = NULL;   /* SAFETY */
2944                 goto again;
2945         }
2946 done:
2947         /*
2948          * All done, return the locked chain.
2949          *
2950          * If the caller does not want a locked chain, replace the lock with
2951          * a ref.  Perhaps this can eventually be optimized to not obtain the
2952          * lock in the first place for situations where the data does not
2953          * need to be resolved.
2954          *
2955          * NOTE! A chain->error must be tested by the caller upon return.
2956          *       *errorp is only set based on issues which occur while
2957          *       trying to reach the chain.
2958          */
2959         return (chain);
2960 }
2961
2962 /*
2963  * After having issued a lookup we can iterate all matching keys.
2964  *
2965  * If chain is non-NULL we continue the iteration from just after it's index.
2966  *
2967  * If chain is NULL we assume the parent was exhausted and continue the
2968  * iteration at the next parent.
2969  *
2970  * If a fatal error occurs (typically an I/O error), a dummy chain is
2971  * returned with chain->error and error-identifying information set.  This
2972  * chain will assert if you try to do anything fancy with it.
2973  *
2974  * XXX Depending on where the error occurs we should allow continued iteration.
2975  *
2976  * parent must be locked on entry and remains locked throughout.  chain's
2977  * lock status must match flags.  Chain is always at least referenced.
2978  *
2979  * WARNING!  The MATCHIND flag does not apply to this function.
2980  */
2981 hammer2_chain_t *
2982 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
2983                    hammer2_key_t *key_nextp,
2984                    hammer2_key_t key_beg, hammer2_key_t key_end,
2985                    int *errorp, int flags)
2986 {
2987         hammer2_chain_t *parent;
2988         int how_maybe;
2989
2990         /*
2991          * Calculate locking flags for upward recursion.
2992          */
2993         how_maybe = HAMMER2_RESOLVE_MAYBE;
2994         if (flags & HAMMER2_LOOKUP_SHARED)
2995                 how_maybe |= HAMMER2_RESOLVE_SHARED;
2996
2997         parent = *parentp;
2998         *errorp = 0;
2999
3000         /*
3001          * Calculate the next index and recalculate the parent if necessary.
3002          */
3003         if (chain) {
3004                 key_beg = chain->bref.key +
3005                           ((hammer2_key_t)1 << chain->bref.keybits);
3006                 hammer2_chain_unlock(chain);
3007                 hammer2_chain_drop(chain);
3008
3009                 /*
3010                  * chain invalid past this point, but we can still do a
3011                  * pointer comparison w/parent.
3012                  *
3013                  * Any scan where the lookup returned degenerate data embedded
3014                  * in the inode has an invalid index and must terminate.
3015                  */
3016                 if (chain == parent)
3017                         return(NULL);
3018                 if (key_beg == 0 || key_beg > key_end)
3019                         return(NULL);
3020                 chain = NULL;
3021         } else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
3022                    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
3023                 /*
3024                  * We reached the end of the iteration.
3025                  */
3026                 return (NULL);
3027         } else {
3028                 /*
3029                  * Continue iteration with next parent unless the current
3030                  * parent covers the range.
3031                  *
3032                  * (This also handles the case of a deleted, empty indirect
3033                  * node).
3034                  */
3035                 key_beg = parent->bref.key +
3036                           ((hammer2_key_t)1 << parent->bref.keybits);
3037                 if (key_beg == 0 || key_beg > key_end)
3038                         return (NULL);
3039                 parent = hammer2_chain_repparent(parentp, how_maybe);
3040         }
3041
3042         /*
3043          * And execute
3044          */
3045         return (hammer2_chain_lookup(parentp, key_nextp,
3046                                      key_beg, key_end,
3047                                      errorp, flags));
3048 }
3049
3050 /*
3051  * Caller wishes to iterate chains under parent, loading new chains into
3052  * chainp.  Caller must initialize *chainp to NULL and *firstp to 1, and
3053  * then call hammer2_chain_scan() repeatedly until a non-zero return.
3054  * During the scan, *firstp will be set to 0 and (*chainp) will be replaced
3055  * with the returned chain for the scan.  The returned *chainp will be
3056  * locked and referenced.  Any prior contents will be unlocked and dropped.
3057  *
3058  * Caller should check the return value.  A normal scan EOF will return
3059  * exactly HAMMER2_ERROR_EOF.  Any other non-zero value indicates an
3060  * error trying to access parent data.  Any error in the returned chain
3061  * must be tested separately by the caller.
3062  *
3063  * (*chainp) is dropped on each scan, but will only be set if the returned
3064  * element itself can recurse.  Leaf elements are NOT resolved, loaded, or
3065  * returned via *chainp.  The caller will get their bref only.
3066  *
3067  * The raw scan function is similar to lookup/next but does not seek to a key.
3068  * Blockrefs are iterated via first_bref = (parent, NULL) and
3069  * next_chain = (parent, bref).
3070  *
3071  * The passed-in parent must be locked and its data resolved.  The function
3072  * nominally returns a locked and referenced *chainp != NULL for chains
3073  * the caller might need to recurse on (and will dipose of any *chainp passed
3074  * in).  The caller must check the chain->bref.type either way.
3075  */
3076 int
3077 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t **chainp,
3078                    hammer2_blockref_t *bref, int *firstp,
3079                    int flags)
3080 {
3081         hammer2_dev_t *hmp;
3082         hammer2_blockref_t *base;
3083         hammer2_blockref_t *bref_ptr;
3084         hammer2_key_t key;
3085         hammer2_key_t next_key;
3086         hammer2_chain_t *chain = NULL;
3087         int count = 0;
3088         int how_always = HAMMER2_RESOLVE_ALWAYS;
3089         int how_maybe = HAMMER2_RESOLVE_MAYBE;
3090         int how;
3091         int generation;
3092         int maxloops = 300000;
3093         int error;
3094
3095         hmp = parent->hmp;
3096         error = 0;
3097
3098         /*
3099          * Scan flags borrowed from lookup.
3100          */
3101         if (flags & HAMMER2_LOOKUP_ALWAYS) {
3102                 how_maybe = how_always;
3103                 how = HAMMER2_RESOLVE_ALWAYS;
3104         } else if (flags & HAMMER2_LOOKUP_NODATA) {
3105                 how = HAMMER2_RESOLVE_NEVER;
3106         } else {
3107                 how = HAMMER2_RESOLVE_MAYBE;
3108         }
3109         if (flags & HAMMER2_LOOKUP_SHARED) {
3110                 how_maybe |= HAMMER2_RESOLVE_SHARED;
3111                 how_always |= HAMMER2_RESOLVE_SHARED;
3112                 how |= HAMMER2_RESOLVE_SHARED;
3113         }
3114
3115         /*
3116          * Calculate key to locate first/next element, unlocking the previous
3117          * element as we go.  Be careful, the key calculation can overflow.
3118          *
3119          * (also reset bref to NULL)
3120          */
3121         if (*firstp) {
3122                 key = 0;
3123                 *firstp = 0;
3124         } else {
3125                 key = bref->key + ((hammer2_key_t)1 << bref->keybits);
3126                 if ((chain = *chainp) != NULL) {
3127                         *chainp = NULL;
3128                         hammer2_chain_unlock(chain);
3129                         hammer2_chain_drop(chain);
3130                         chain = NULL;
3131                 }
3132                 if (key == 0) {
3133                         error |= HAMMER2_ERROR_EOF;
3134                         goto done;
3135                 }
3136         }
3137
3138 again:
3139         if (parent->error) {
3140                 error = parent->error;
3141                 goto done;
3142         }
3143         if (--maxloops == 0)
3144                 panic("hammer2_chain_scan: maxloops");
3145
3146         /*
3147          * Locate the blockref array.  Currently we do a fully associative
3148          * search through the array.
3149          */
3150         switch(parent->bref.type) {
3151         case HAMMER2_BREF_TYPE_INODE:
3152                 /*
3153                  * An inode with embedded data has no sub-chains.
3154                  *
3155                  * WARNING! Bulk scan code may pass a static chain marked
3156                  *          as BREF_TYPE_INODE with a copy of the volume
3157                  *          root blockset to snapshot the volume.
3158                  */
3159                 if (parent->data->ipdata.meta.op_flags &
3160                     HAMMER2_OPFLAG_DIRECTDATA) {
3161                         error |= HAMMER2_ERROR_EOF;
3162                         goto done;
3163                 }
3164                 base = &parent->data->ipdata.u.blockset.blockref[0];
3165                 count = HAMMER2_SET_COUNT;
3166                 break;
3167         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3168         case HAMMER2_BREF_TYPE_INDIRECT:
3169                 /*
3170                  * Optimize indirect blocks in the INITIAL state to avoid
3171                  * I/O.
3172                  */
3173                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
3174                         base = NULL;
3175                 } else {
3176                         if (parent->data == NULL)
3177                                 panic("parent->data is NULL");
3178                         base = &parent->data->npdata[0];
3179                 }
3180                 count = parent->bytes / sizeof(hammer2_blockref_t);
3181                 break;
3182         case HAMMER2_BREF_TYPE_VOLUME:
3183                 base = &parent->data->voldata.sroot_blockset.blockref[0];
3184                 count = HAMMER2_SET_COUNT;
3185                 break;
3186         case HAMMER2_BREF_TYPE_FREEMAP:
3187                 base = &parent->data->blkset.blockref[0];
3188                 count = HAMMER2_SET_COUNT;
3189                 break;
3190         default:
3191                 panic("hammer2_chain_scan: unrecognized blockref type: %d",
3192                       parent->bref.type);
3193                 base = NULL;    /* safety */
3194                 count = 0;      /* safety */
3195         }
3196
3197         /*
3198          * Merged scan to find next candidate.
3199          *
3200          * hammer2_base_*() functions require the parent->core.live_* fields
3201          * to be synchronized.
3202          *
3203          * We need to hold the spinlock to access the block array and RB tree
3204          * and to interlock chain creation.
3205          */
3206         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3207                 hammer2_chain_countbrefs(parent, base, count);
3208
3209         next_key = 0;
3210         bref_ptr = NULL;
3211         hammer2_spin_ex(&parent->core.spin);
3212         chain = hammer2_combined_find(parent, base, count,
3213                                       &next_key,
3214                                       key, HAMMER2_KEY_MAX,
3215                                       &bref_ptr);
3216         generation = parent->core.generation;
3217
3218         /*
3219          * Exhausted parent chain, we're done.
3220          */
3221         if (bref_ptr == NULL) {
3222                 hammer2_spin_unex(&parent->core.spin);
3223                 KKASSERT(chain == NULL);
3224                 error |= HAMMER2_ERROR_EOF;
3225                 goto done;
3226         }
3227
3228         /*
3229          * Copy into the supplied stack-based blockref.
3230          */
3231         *bref = *bref_ptr;
3232
3233         /*
3234          * Selected from blockref or in-memory chain.
3235          */
3236         if (chain == NULL) {
3237                 switch(bref->type) {
3238                 case HAMMER2_BREF_TYPE_INODE:
3239                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3240                 case HAMMER2_BREF_TYPE_INDIRECT:
3241                 case HAMMER2_BREF_TYPE_VOLUME:
3242                 case HAMMER2_BREF_TYPE_FREEMAP:
3243                         /*
3244                          * Recursion, always get the chain
3245                          */
3246                         hammer2_spin_unex(&parent->core.spin);
3247                         chain = hammer2_chain_get(parent, generation,
3248                                                   bref, how);
3249                         if (chain == NULL)
3250                                 goto again;
3251                         break;
3252                 default:
3253                         /*
3254                          * No recursion, do not waste time instantiating
3255                          * a chain, just iterate using the bref.
3256                          */
3257                         hammer2_spin_unex(&parent->core.spin);
3258                         break;
3259                 }
3260         } else {
3261                 /*
3262                  * Recursion or not we need the chain in order to supply
3263                  * the bref.
3264                  */
3265                 hammer2_chain_ref(chain);
3266                 hammer2_spin_unex(&parent->core.spin);
3267                 hammer2_chain_lock(chain, how);
3268         }
3269         if (chain &&
3270             (bcmp(bref, &chain->bref, sizeof(*bref)) ||
3271              chain->parent != parent)) {
3272                 hammer2_chain_unlock(chain);
3273                 hammer2_chain_drop(chain);
3274                 chain = NULL;
3275                 goto again;
3276         }
3277
3278         /*
3279          * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
3280          *
3281          * NOTE: chain's key range is not relevant as there might be
3282          *       one-offs within the range that are not deleted.
3283          *
3284          * NOTE: XXX this could create problems with scans used in
3285          *       situations other than mount-time recovery.
3286          *
3287          * NOTE: Lookups can race delete-duplicate because
3288          *       delete-duplicate does not lock the parent's core
3289          *       (they just use the spinlock on the core).
3290          */
3291         if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3292                 hammer2_chain_unlock(chain);
3293                 hammer2_chain_drop(chain);
3294                 chain = NULL;
3295
3296                 key = next_key;
3297                 if (key == 0) {
3298                         error |= HAMMER2_ERROR_EOF;
3299                         goto done;
3300                 }
3301                 goto again;
3302         }
3303
3304 done:
3305         /*
3306          * All done, return the bref or NULL, supply chain if necessary.
3307          */
3308         if (chain)
3309                 *chainp = chain;
3310         return (error);
3311 }
3312
3313 /*
3314  * Create and return a new hammer2 system memory structure of the specified
3315  * key, type and size and insert it under (*parentp).  This is a full
3316  * insertion, based on the supplied key/keybits, and may involve creating
3317  * indirect blocks and moving other chains around via delete/duplicate.
3318  *
3319  * This call can be made with parent == NULL as long as a non -1 methods
3320  * is supplied.  hmp must also be supplied in this situation (otherwise
3321  * hmp is extracted from the supplied parent).  The chain will be detached
3322  * from the topology.  A later call with both parent and chain can be made
3323  * to attach it.
3324  *
3325  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
3326  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3327  * FULL.  This typically means that the caller is creating the chain after
3328  * doing a hammer2_chain_lookup().
3329  *
3330  * (*parentp) must be exclusive locked and may be replaced on return
3331  * depending on how much work the function had to do.
3332  *
3333  * (*parentp) must not be errored or this function will assert.
3334  *
3335  * (*chainp) usually starts out NULL and returns the newly created chain,
3336  * but if the caller desires the caller may allocate a disconnected chain
3337  * and pass it in instead.
3338  *
3339  * This function should NOT be used to insert INDIRECT blocks.  It is
3340  * typically used to create/insert inodes and data blocks.
3341  *
3342  * Caller must pass-in an exclusively locked parent the new chain is to
3343  * be inserted under, and optionally pass-in a disconnected, exclusively
3344  * locked chain to insert (else we create a new chain).  The function will
3345  * adjust (*parentp) as necessary, create or connect the chain, and
3346  * return an exclusively locked chain in *chainp.
3347  *
3348  * When creating a PFSROOT inode under the super-root, pmp is typically NULL
3349  * and will be reassigned.
3350  *
3351  * NOTE: returns HAMMER_ERROR_* flags
3352  */
3353 int
3354 hammer2_chain_create(hammer2_chain_t **parentp, hammer2_chain_t **chainp,
3355                      hammer2_dev_t *hmp, hammer2_pfs_t *pmp, int methods,
3356                      hammer2_key_t key, int keybits, int type, size_t bytes,
3357                      hammer2_tid_t mtid, hammer2_off_t dedup_off, int flags)
3358 {
3359         hammer2_chain_t *chain;
3360         hammer2_chain_t *parent;
3361         hammer2_blockref_t *base;
3362         hammer2_blockref_t dummy;
3363         int allocated = 0;
3364         int error = 0;
3365         int count;
3366         int maxloops = 300000;
3367
3368         /*
3369          * Topology may be crossing a PFS boundary.
3370          */
3371         parent = *parentp;
3372         if (parent) {
3373                 KKASSERT(hammer2_mtx_owned(&parent->lock));
3374                 KKASSERT(parent->error == 0);
3375                 hmp = parent->hmp;
3376         }
3377         chain = *chainp;
3378
3379         if (chain == NULL) {
3380                 /*
3381                  * First allocate media space and construct the dummy bref,
3382                  * then allocate the in-memory chain structure.  Set the
3383                  * INITIAL flag for fresh chains which do not have embedded
3384                  * data.
3385                  *
3386                  * XXX for now set the check mode of the child based on
3387                  *     the parent or, if the parent is an inode, the
3388                  *     specification in the inode.
3389                  */
3390                 bzero(&dummy, sizeof(dummy));
3391                 dummy.type = type;
3392                 dummy.key = key;
3393                 dummy.keybits = keybits;
3394                 dummy.data_off = hammer2_getradix(bytes);
3395
3396                 /*
3397                  * Inherit methods from parent by default.  Primarily used
3398                  * for BREF_TYPE_DATA.  Non-data types *must* be set to
3399                  * a non-NONE check algorithm.
3400                  */
3401                 if (methods == -1)
3402                         dummy.methods = parent->bref.methods;
3403                 else
3404                         dummy.methods = (uint8_t)methods;
3405
3406                 if (type != HAMMER2_BREF_TYPE_DATA &&
3407                     HAMMER2_DEC_CHECK(dummy.methods) == HAMMER2_CHECK_NONE) {
3408                         dummy.methods |=
3409                                 HAMMER2_ENC_CHECK(HAMMER2_CHECK_DEFAULT);
3410                 }
3411
3412                 chain = hammer2_chain_alloc(hmp, pmp, &dummy);
3413
3414                 /*
3415                  * Lock the chain manually, chain_lock will load the chain
3416                  * which we do NOT want to do.  (note: chain->refs is set
3417                  * to 1 by chain_alloc() for us, but lockcnt is not).
3418                  */
3419                 chain->lockcnt = 1;
3420                 hammer2_mtx_ex(&chain->lock);
3421                 allocated = 1;
3422
3423                 /*
3424                  * Set INITIAL to optimize I/O.  The flag will generally be
3425                  * processed when we call hammer2_chain_modify().
3426                  *
3427                  * Recalculate bytes to reflect the actual media block
3428                  * allocation.  Handle special case radix 0 == 0 bytes.
3429                  */
3430                 bytes = (size_t)(chain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
3431                 if (bytes)
3432                         bytes = (hammer2_off_t)1 << bytes;
3433                 chain->bytes = bytes;
3434
3435                 switch(type) {
3436                 case HAMMER2_BREF_TYPE_VOLUME:
3437                 case HAMMER2_BREF_TYPE_FREEMAP:
3438                         panic("hammer2_chain_create: called with volume type");
3439                         break;
3440                 case HAMMER2_BREF_TYPE_INDIRECT:
3441                         panic("hammer2_chain_create: cannot be used to"
3442                               "create indirect block");
3443                         break;
3444                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3445                         panic("hammer2_chain_create: cannot be used to"
3446                               "create freemap root or node");
3447                         break;
3448                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3449                         KKASSERT(bytes == sizeof(chain->data->bmdata));
3450                         /* fall through */
3451                 case HAMMER2_BREF_TYPE_DIRENT:
3452                 case HAMMER2_BREF_TYPE_INODE:
3453                 case HAMMER2_BREF_TYPE_DATA:
3454                 default:
3455                         /*
3456                          * leave chain->data NULL, set INITIAL
3457                          */
3458                         KKASSERT(chain->data == NULL);
3459                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
3460                         break;
3461                 }
3462         } else {
3463                 /*
3464                  * We are reattaching a previously deleted chain, possibly
3465                  * under a new parent and possibly with a new key/keybits.
3466                  * The chain does not have to be in a modified state.  The
3467                  * UPDATE flag will be set later on in this routine.
3468                  *
3469                  * Do NOT mess with the current state of the INITIAL flag.
3470                  */
3471                 chain->bref.key = key;
3472                 chain->bref.keybits = keybits;
3473                 if (chain->flags & HAMMER2_CHAIN_DELETED)
3474                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3475                 KKASSERT(chain->parent == NULL);
3476         }
3477
3478         /*
3479          * Set the appropriate bref flag if requested.
3480          *
3481          * NOTE! Callers can call this function to move chains without
3482          *       knowing about special flags, so don't clear bref flags
3483          *       here!
3484          */
3485         if (flags & HAMMER2_INSERT_PFSROOT)
3486                 chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
3487
3488         if (parent == NULL)
3489                 goto skip;
3490
3491         /*
3492          * Calculate how many entries we have in the blockref array and
3493          * determine if an indirect block is required when inserting into
3494          * the parent.
3495          */
3496 again:
3497         if (--maxloops == 0)
3498                 panic("hammer2_chain_create: maxloops");
3499
3500         switch(parent->bref.type) {
3501         case HAMMER2_BREF_TYPE_INODE:
3502                 if ((parent->data->ipdata.meta.op_flags &
3503                      HAMMER2_OPFLAG_DIRECTDATA) != 0) {
3504                         kprintf("hammer2: parent set for direct-data! "
3505                                 "pkey=%016jx ckey=%016jx\n",
3506                                 parent->bref.key,
3507                                 chain->bref.key);
3508                 }
3509                 KKASSERT((parent->data->ipdata.meta.op_flags &
3510                           HAMMER2_OPFLAG_DIRECTDATA) == 0);
3511                 KKASSERT(parent->data != NULL);
3512                 base = &parent->data->ipdata.u.blockset.blockref[0];
3513                 count = HAMMER2_SET_COUNT;
3514                 break;
3515         case HAMMER2_BREF_TYPE_INDIRECT:
3516         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3517                 if (parent->flags & HAMMER2_CHAIN_INITIAL)
3518                         base = NULL;
3519                 else
3520                         base = &parent->data->npdata[0];
3521                 count = parent->bytes / sizeof(hammer2_blockref_t);
3522                 break;
3523         case HAMMER2_BREF_TYPE_VOLUME:
3524                 KKASSERT(parent->data != NULL);
3525                 base = &parent->data->voldata.sroot_blockset.blockref[0];
3526                 count = HAMMER2_SET_COUNT;
3527                 break;
3528         case HAMMER2_BREF_TYPE_FREEMAP:
3529                 KKASSERT(parent->data != NULL);
3530                 base = &parent->data->blkset.blockref[0];
3531                 count = HAMMER2_SET_COUNT;
3532                 break;
3533         default:
3534                 panic("hammer2_chain_create: unrecognized blockref type: %d",
3535                       parent->bref.type);
3536                 base = NULL;
3537                 count = 0;
3538                 break;
3539         }
3540
3541         /*
3542          * Make sure we've counted the brefs
3543          */
3544         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3545                 hammer2_chain_countbrefs(parent, base, count);
3546
3547         KASSERT(parent->core.live_count >= 0 &&
3548                 parent->core.live_count <= count,
3549                 ("bad live_count %d/%d (%02x, %d)",
3550                         parent->core.live_count, count,
3551                         parent->bref.type, parent->bytes));
3552
3553         /*
3554          * If no free blockref could be found we must create an indirect
3555          * block and move a number of blockrefs into it.  With the parent
3556          * locked we can safely lock each child in order to delete+duplicate
3557          * it without causing a deadlock.
3558          *
3559          * This may return the new indirect block or the old parent depending
3560          * on where the key falls.  NULL is returned on error.
3561          */
3562         if (parent->core.live_count == count) {
3563                 hammer2_chain_t *nparent;
3564
3565                 KKASSERT((flags & HAMMER2_INSERT_SAMEPARENT) == 0);
3566
3567                 nparent = hammer2_chain_create_indirect(parent, key, keybits,
3568                                                         mtid, type, &error);
3569                 if (nparent == NULL) {
3570                         if (allocated)
3571                                 hammer2_chain_drop(chain);
3572                         chain = NULL;
3573                         goto done;
3574                 }
3575                 if (parent != nparent) {
3576                         hammer2_chain_unlock(parent);
3577                         hammer2_chain_drop(parent);
3578                         parent = *parentp = nparent;
3579                 }
3580                 goto again;
3581         }
3582
3583         /*
3584          * fall through if parent, or skip to here if no parent.
3585          */
3586 skip:
3587         if (chain->flags & HAMMER2_CHAIN_DELETED)
3588                 kprintf("Inserting deleted chain @%016jx\n",
3589                         chain->bref.key);
3590
3591         /*
3592          * Link the chain into its parent.
3593          */
3594         if (chain->parent != NULL)
3595                 panic("hammer2: hammer2_chain_create: chain already connected");
3596         KKASSERT(chain->parent == NULL);
3597         if (parent) {
3598                 KKASSERT(parent->core.live_count < count);
3599                 hammer2_chain_insert(parent, chain,
3600                                      HAMMER2_CHAIN_INSERT_SPIN |
3601                                      HAMMER2_CHAIN_INSERT_LIVE,
3602                                      0);
3603         }
3604
3605         if (allocated) {
3606                 /*
3607                  * Mark the newly created chain modified.  This will cause
3608                  * UPDATE to be set and process the INITIAL flag.
3609                  *
3610                  * Device buffers are not instantiated for DATA elements
3611                  * as these are handled by logical buffers.
3612                  *
3613                  * Indirect and freemap node indirect blocks are handled
3614                  * by hammer2_chain_create_indirect() and not by this
3615                  * function.
3616                  *
3617                  * Data for all other bref types is expected to be
3618                  * instantiated (INODE, LEAF).
3619                  */
3620                 switch(chain->bref.type) {
3621                 case HAMMER2_BREF_TYPE_DATA:
3622                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3623                 case HAMMER2_BREF_TYPE_DIRENT:
3624                 case HAMMER2_BREF_TYPE_INODE:
3625                         error = hammer2_chain_modify(chain, mtid, dedup_off,
3626                                                      HAMMER2_MODIFY_OPTDATA);
3627                         break;
3628                 default:
3629                         /*
3630                          * Remaining types are not supported by this function.
3631                          * In particular, INDIRECT and LEAF_NODE types are
3632                          * handled by create_indirect().
3633                          */
3634                         panic("hammer2_chain_create: bad type: %d",
3635                               chain->bref.type);
3636                         /* NOT REACHED */
3637                         break;
3638                 }
3639         } else {
3640                 /*
3641                  * When reconnecting a chain we must set UPDATE and
3642                  * setflush so the flush recognizes that it must update
3643                  * the bref in the parent.
3644                  */
3645                 if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0)
3646                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3647         }
3648
3649         /*
3650          * We must setflush(parent) to ensure that it recurses through to
3651          * chain.  setflush(chain) might not work because ONFLUSH is possibly
3652          * already set in the chain (so it won't recurse up to set it in the
3653          * parent).
3654          */
3655         if (parent)
3656                 hammer2_chain_setflush(parent);
3657
3658 done:
3659         *chainp = chain;
3660
3661         return (error);
3662 }
3663
3664 /*
3665  * Move the chain from its old parent to a new parent.  The chain must have
3666  * already been deleted or already disconnected (or never associated) with
3667  * a parent.  The chain is reassociated with the new parent and the deleted
3668  * flag will be cleared (no longer deleted).  The chain's modification state
3669  * is not altered.
3670  *
3671  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
3672  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3673  * FULL.  This typically means that the caller is creating the chain after
3674  * doing a hammer2_chain_lookup().
3675  *
3676  * Neither (parent) or (chain) can be errored.
3677  *
3678  * If (parent) is non-NULL then the chain is inserted under the parent.
3679  *
3680  * If (parent) is NULL then the newly duplicated chain is not inserted
3681  * anywhere, similar to if it had just been chain_alloc()'d (suitable for
3682  * passing into hammer2_chain_create() after this function returns).
3683  *
3684  * WARNING! This function calls create which means it can insert indirect
3685  *          blocks.  This can cause other unrelated chains in the parent to
3686  *          be moved to a newly inserted indirect block in addition to the
3687  *          specific chain.
3688  */
3689 void
3690 hammer2_chain_rename(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3691                      hammer2_tid_t mtid, int flags)
3692 {
3693         hammer2_blockref_t *bref;
3694         hammer2_dev_t *hmp;
3695         hammer2_chain_t *parent;
3696         size_t bytes;
3697
3698         /*
3699          * WARNING!  We should never resolve DATA to device buffers
3700          *           (XXX allow it if the caller did?), and since
3701          *           we currently do not have the logical buffer cache
3702          *           buffer in-hand to fix its cached physical offset
3703          *           we also force the modify code to not COW it. XXX
3704          *
3705          * NOTE!     We allow error'd chains to be renamed.  The bref itself
3706          *           is good and can be renamed.  The content, however, may
3707          *           be inaccessible.
3708          */
3709         hmp = chain->hmp;
3710         KKASSERT(chain->parent == NULL);
3711         /*KKASSERT(chain->error == 0); allow */
3712
3713         /*
3714          * Now create a duplicate of the chain structure, associating
3715          * it with the same core, making it the same size, pointing it
3716          * to the same bref (the same media block).
3717          *
3718          * NOTE: Handle special radix == 0 case (means 0 bytes).
3719          */
3720         bref = &chain->bref;
3721         bytes = (size_t)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
3722         if (bytes)
3723                 bytes = (hammer2_off_t)1 << bytes;
3724
3725         /*
3726          * If parent is not NULL the duplicated chain will be entered under
3727          * the parent and the UPDATE bit set to tell flush to update
3728          * the blockref.
3729          *
3730          * We must setflush(parent) to ensure that it recurses through to
3731          * chain.  setflush(chain) might not work because ONFLUSH is possibly
3732          * already set in the chain (so it won't recurse up to set it in the
3733          * parent).
3734          *
3735          * Having both chains locked is extremely important for atomicy.
3736          */
3737         if (parentp && (parent = *parentp) != NULL) {
3738                 KKASSERT(hammer2_mtx_owned(&parent->lock));
3739                 KKASSERT(parent->refs > 0);
3740                 KKASSERT(parent->error == 0);
3741
3742                 hammer2_chain_create(parentp, &chain, NULL, chain->pmp,
3743                                      HAMMER2_METH_DEFAULT,
3744                                      bref->key, bref->keybits, bref->type,
3745                                      chain->bytes, mtid, 0, flags);
3746                 KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
3747                 hammer2_chain_setflush(*parentp);
3748         }
3749 }
3750
3751 /*
3752  * This works in tandem with delete_obref() to install a blockref in
3753  * (typically) an indirect block that is associated with the chain being
3754  * moved to *parentp.
3755  *
3756  * The reason we need this function is that the caller needs to maintain
3757  * the blockref as it was, and not generate a new blockref for what might
3758  * be a modified chain.  Otherwise stuff will leak into the flush that
3759  * the flush code's FLUSH_INODE_STOP flag is unable to catch.
3760  *
3761  * It is EXTREMELY important that we properly set CHAIN_BMAPUPD and
3762  * CHAIN_UPDATE.  We must set BMAPUPD if the bref does not match, and
3763  * we must clear CHAIN_UPDATE (that was likely set by the chain_rename) if
3764  * it does.  Otherwise we can end up in a situation where H2 is unable to
3765  * clean up the in-memory chain topology.
3766  *
3767  * The reason for this is that flushes do not generally flush through
3768  * BREF_TYPE_INODE chains and depend on a hammer2_inode_t queued to syncq
3769  * or sideq to properly flush and dispose of the related inode chain's flags.
3770  * Situations where the inode is not actually modified by the frontend,
3771  * but where we have to move the related chains around as we insert or cleanup
3772  * indirect blocks, can leave us with a 'dirty' (non-disposable) in-memory
3773  * inode chain that does not have a hammer2_inode_t associated with it.
3774  */
3775 void
3776 hammer2_chain_rename_obref(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3777                            hammer2_tid_t mtid, int flags,
3778                            hammer2_blockref_t *obref)
3779 {
3780         hammer2_chain_rename(parentp, chain, mtid, flags);
3781
3782         if (obref->type != HAMMER2_BREF_TYPE_EMPTY) {
3783                 hammer2_blockref_t *tbase;
3784                 int tcount;
3785
3786                 KKASSERT((chain->flags & HAMMER2_CHAIN_BMAPPED) == 0);
3787                 hammer2_chain_modify(*parentp, mtid, 0, 0);
3788                 tbase = hammer2_chain_base_and_count(*parentp, &tcount);
3789                 hammer2_base_insert(*parentp, tbase, tcount, chain, obref);
3790                 if (bcmp(obref, &chain->bref, sizeof(chain->bref))) {
3791                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD |
3792                                                       HAMMER2_CHAIN_UPDATE);
3793                 } else {
3794                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3795                 }
3796         }
3797 }
3798
3799 /*
3800  * Helper function for deleting chains.
3801  *
3802  * The chain is removed from the live view (the RBTREE) as well as the parent's
3803  * blockmap.  Both chain and its parent must be locked.
3804  *
3805  * parent may not be errored.  chain can be errored.
3806  */
3807 static int
3808 _hammer2_chain_delete_helper(hammer2_chain_t *parent, hammer2_chain_t *chain,
3809                              hammer2_tid_t mtid, int flags,
3810                              hammer2_blockref_t *obref)
3811 {
3812         hammer2_dev_t *hmp;
3813         int error = 0;
3814
3815         KKASSERT((chain->flags & (HAMMER2_CHAIN_DELETED |
3816                                   HAMMER2_CHAIN_FICTITIOUS)) == 0);
3817         KKASSERT(chain->parent == parent);
3818         hmp = chain->hmp;
3819
3820         if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
3821                 /*
3822                  * Chain is blockmapped, so there must be a parent.
3823                  * Atomically remove the chain from the parent and remove
3824                  * the blockmap entry.  The parent must be set modified
3825                  * to remove the blockmap entry.
3826                  */
3827                 hammer2_blockref_t *base;
3828                 int count;
3829
3830                 KKASSERT(parent != NULL);
3831                 KKASSERT(parent->error == 0);
3832                 KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
3833                 error = hammer2_chain_modify(parent, mtid, 0, 0);
3834                 if (error)
3835                         goto done;
3836
3837                 /*
3838                  * Calculate blockmap pointer
3839                  */
3840                 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
3841                 hammer2_spin_ex(&chain->core.spin);
3842                 hammer2_spin_ex(&parent->core.spin);
3843
3844                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3845                 atomic_add_int(&parent->core.live_count, -1);
3846                 ++parent->core.generation;
3847                 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3848                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3849                 --parent->core.chain_count;
3850                 chain->parent = NULL;
3851
3852                 switch(parent->bref.type) {
3853                 case HAMMER2_BREF_TYPE_INODE:
3854                         /*
3855                          * Access the inode's block array.  However, there
3856                          * is no block array if the inode is flagged
3857                          * DIRECTDATA.
3858                          */
3859                         if (parent->data &&
3860                             (parent->data->ipdata.meta.op_flags &
3861                              HAMMER2_OPFLAG_DIRECTDATA) == 0) {
3862                                 base =
3863                                    &parent->data->ipdata.u.blockset.blockref[0];
3864                         } else {
3865                                 base = NULL;
3866                         }
3867                         count = HAMMER2_SET_COUNT;
3868                         break;
3869                 case HAMMER2_BREF_TYPE_INDIRECT:
3870                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3871                         if (parent->data)
3872                                 base = &parent->data->npdata[0];
3873                         else
3874                                 base = NULL;
3875                         count = parent->bytes / sizeof(hammer2_blockref_t);
3876                         break;
3877                 case HAMMER2_BREF_TYPE_VOLUME:
3878                         base = &parent->data->voldata.
3879                                         sroot_blockset.blockref[0];
3880                         count = HAMMER2_SET_COUNT;
3881                         break;
3882                 case HAMMER2_BREF_TYPE_FREEMAP:
3883                         base = &parent->data->blkset.blockref[0];
3884                         count = HAMMER2_SET_COUNT;
3885                         break;
3886                 default:
3887                         base = NULL;
3888                         count = 0;
3889                         panic("_hammer2_chain_delete_helper: "
3890                               "unrecognized blockref type: %d",
3891                               parent->bref.type);
3892                 }
3893
3894                 /*
3895                  * delete blockmapped chain from its parent.
3896                  *
3897                  * The parent is not affected by any statistics in chain
3898                  * which are pending synchronization.  That is, there is
3899                  * nothing to undo in the parent since they have not yet
3900                  * been incorporated into the parent.
3901                  *
3902                  * The parent is affected by statistics stored in inodes.
3903                  * Those have already been synchronized, so they must be
3904                  * undone.  XXX split update possible w/delete in middle?
3905                  */
3906                 if (base) {
3907                         hammer2_base_delete(parent, base, count, chain, obref);
3908                 }
3909                 hammer2_spin_unex(&parent->core.spin);
3910                 hammer2_spin_unex(&chain->core.spin);
3911         } else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
3912                 /*
3913                  * Chain is not blockmapped but a parent is present.
3914                  * Atomically remove the chain from the parent.  There is
3915                  * no blockmap entry to remove.
3916                  *
3917                  * Because chain was associated with a parent but not
3918                  * synchronized, the chain's *_count_up fields contain
3919                  * inode adjustment statistics which must be undone.
3920                  */
3921                 hammer2_spin_ex(&chain->core.spin);
3922                 hammer2_spin_ex(&parent->core.spin);
3923                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3924                 atomic_add_int(&parent->core.live_count, -1);
3925                 ++parent->core.generation;
3926                 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3927                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3928                 --parent->core.chain_count;
3929                 chain->parent = NULL;
3930                 hammer2_spin_unex(&parent->core.spin);
3931                 hammer2_spin_unex(&chain->core.spin);
3932         } else {
3933                 /*
3934                  * Chain is not blockmapped and has no parent.  This
3935                  * is a degenerate case.
3936                  */
3937                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3938         }
3939 done:
3940         return error;
3941 }
3942
3943 /*
3944  * Create an indirect block that covers one or more of the elements in the
3945  * current parent.  Either returns the existing parent with no locking or
3946  * ref changes or returns the new indirect block locked and referenced
3947  * and leaving the original parent lock/ref intact as well.
3948  *
3949  * If an error occurs, NULL is returned and *errorp is set to the H2 error.
3950  *
3951  * The returned chain depends on where the specified key falls.
3952  *
3953  * The key/keybits for the indirect mode only needs to follow three rules:
3954  *
3955  * (1) That all elements underneath it fit within its key space and
3956  *
3957  * (2) That all elements outside it are outside its key space.
3958  *
3959  * (3) When creating the new indirect block any elements in the current
3960  *     parent that fit within the new indirect block's keyspace must be
3961  *     moved into the new indirect block.
3962  *
3963  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
3964  *     keyspace the the current parent, but lookup/iteration rules will
3965  *     ensure (and must ensure) that rule (2) for all parents leading up
3966  *     to the nearest inode or the root volume header is adhered to.  This
3967  *     is accomplished by always recursing through matching keyspaces in
3968  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
3969  *
3970  * The current implementation calculates the current worst-case keyspace by
3971  * iterating the current parent and then divides it into two halves, choosing
3972  * whichever half has the most elements (not necessarily the half containing
3973  * the requested key).
3974  *
3975  * We can also opt to use the half with the least number of elements.  This
3976  * causes lower-numbered keys (aka logical file offsets) to recurse through
3977  * fewer indirect blocks and higher-numbered keys to recurse through more.
3978  * This also has the risk of not moving enough elements to the new indirect
3979  * block and being forced to create several indirect blocks before the element
3980  * can be inserted.
3981  *
3982  * Must be called with an exclusively locked parent.
3983  *
3984  * NOTE: *errorp set to HAMMER_ERROR_* flags
3985  */
3986 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
3987                                 hammer2_key_t *keyp, int keybits,
3988                                 hammer2_blockref_t *base, int count);
3989 static int hammer2_chain_indkey_file(hammer2_chain_t *parent,
3990                                 hammer2_key_t *keyp, int keybits,
3991                                 hammer2_blockref_t *base, int count,
3992                                 int ncount);
3993 static int hammer2_chain_indkey_dir(hammer2_chain_t *parent,
3994                                 hammer2_key_t *keyp, int keybits,
3995                                 hammer2_blockref_t *base, int count,
3996                                 int ncount);
3997 static
3998 hammer2_chain_t *
3999 hammer2_chain_create_indirect(hammer2_chain_t *parent,
4000                               hammer2_key_t create_key, int create_bits,
4001                               hammer2_tid_t mtid, int for_type, int *errorp)
4002 {
4003         hammer2_dev_t *hmp;
4004         hammer2_blockref_t *base;
4005         hammer2_blockref_t *bref;
4006         hammer2_blockref_t bsave;
4007         hammer2_blockref_t dummy;
4008         hammer2_chain_t *chain;
4009         hammer2_chain_t *ichain;
4010         hammer2_key_t key = create_key;
4011         hammer2_key_t key_beg;
4012         hammer2_key_t key_end;
4013         hammer2_key_t key_next;
4014         int keybits = create_bits;
4015         int count;
4016         int ncount;
4017         int nbytes;
4018         int loops;
4019         int error;
4020         int reason;
4021         int generation;
4022         int maxloops = 300000;
4023
4024         /*
4025          * Calculate the base blockref pointer or NULL if the chain
4026          * is known to be empty.  We need to calculate the array count
4027          * for RB lookups either way.
4028          */
4029         hmp = parent->hmp;
4030         KKASSERT(hammer2_mtx_owned(&parent->lock));
4031
4032         /*
4033          * Pre-modify the parent now to avoid having to deal with error
4034          * processing if we tried to later (in the middle of our loop).
4035          *
4036          * We are going to be moving bref's around, the indirect blocks
4037          * cannot be in an initial state.  Do not pass MODIFY_OPTDATA.
4038          */
4039         *errorp = hammer2_chain_modify(parent, mtid, 0, 0);
4040         if (*errorp) {
4041                 kprintf("hammer2_create_indirect: error %08x %s\n",
4042                         *errorp, hammer2_error_str(*errorp));
4043                 return NULL;
4044         }
4045         KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
4046
4047         /*hammer2_chain_modify(&parent, HAMMER2_MODIFY_OPTDATA);*/
4048         base = hammer2_chain_base_and_count(parent, &count);
4049
4050         /*
4051          * How big should our new indirect block be?  It has to be at least
4052          * as large as its parent for splits to work properly.
4053          *
4054          * The freemap uses a specific indirect block size.  The number of
4055          * levels are built dynamically and ultimately depend on the size
4056          * volume.  Because freemap blocks are taken from the reserved areas
4057          * of the volume our goal is efficiency (fewer levels) and not so
4058          * much to save disk space.
4059          *
4060          * The first indirect block level for a directory usually uses
4061          * HAMMER2_IND_BYTES_MIN (4KB = 32 directory entries).  Due to
4062          * the hash mechanism, this typically gives us a nominal
4063          * 32 * 4 entries with one level of indirection.
4064          *
4065          * We use HAMMER2_IND_BYTES_NOM (16KB = 128 blockrefs) for FILE
4066          * indirect blocks.  The initial 4 entries in the inode gives us
4067          * 256KB.  Up to 4 indirect blocks gives us 32MB.  Three levels
4068          * of indirection gives us 137GB, and so forth.  H2 can support
4069          * huge file sizes but they are not typical, so we try to stick
4070          * with compactness and do not use a larger indirect block size.
4071          *
4072          * We could use 64KB (PBUFSIZE), giving us 512 blockrefs, but
4073          * due to the way indirect blocks are created this usually winds
4074          * up being extremely inefficient for small files.  Even though
4075          * 16KB requires more levels of indirection for very large files,
4076          * the 16KB records can be ganged together into 64KB DIOs.
4077          */
4078         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4079             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4080                 nbytes = HAMMER2_FREEMAP_LEVELN_PSIZE;
4081         } else if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4082                 if (parent->data->ipdata.meta.type ==
4083                     HAMMER2_OBJTYPE_DIRECTORY)
4084                         nbytes = HAMMER2_IND_BYTES_MIN; /* 4KB = 32 entries */
4085                 else
4086                         nbytes = HAMMER2_IND_BYTES_NOM; /* 16KB = ~8MB file */
4087
4088         } else {
4089                 nbytes = HAMMER2_IND_BYTES_NOM;
4090         }
4091         if (nbytes < count * sizeof(hammer2_blockref_t)) {
4092                 KKASSERT(for_type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
4093                          for_type != HAMMER2_BREF_TYPE_FREEMAP_LEAF);
4094                 nbytes = count * sizeof(hammer2_blockref_t);
4095         }
4096         ncount = nbytes / sizeof(hammer2_blockref_t);
4097
4098         /*
4099          * When creating an indirect block for a freemap node or leaf
4100          * the key/keybits must be fitted to static radix levels because
4101          * particular radix levels use particular reserved blocks in the
4102          * related zone.
4103          *
4104          * This routine calculates the key/radix of the indirect block
4105          * we need to create, and whether it is on the high-side or the
4106          * low-side.
4107          */
4108         switch(for_type) {
4109         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
4110         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
4111                 keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
4112                                                        base, count);
4113                 break;
4114         case HAMMER2_BREF_TYPE_DATA:
4115                 keybits = hammer2_chain_indkey_file(parent, &key, keybits,
4116                                                     base, count, ncount);
4117                 break;
4118         case HAMMER2_BREF_TYPE_DIRENT:
4119         case HAMMER2_BREF_TYPE_INODE:
4120                 keybits = hammer2_chain_indkey_dir(parent, &key, keybits,
4121                                                    base, count, ncount);
4122                 break;
4123         default:
4124                 panic("illegal indirect block for bref type %d", for_type);
4125                 break;
4126         }
4127
4128         /*
4129          * Normalize the key for the radix being represented, keeping the
4130          * high bits and throwing away the low bits.
4131          */
4132         key &= ~(((hammer2_key_t)1 << keybits) - 1);
4133
4134         /*
4135          * Ok, create our new indirect block
4136          */
4137         bzero(&dummy, sizeof(dummy));
4138         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4139             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4140                 dummy.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
4141         } else {
4142                 dummy.type = HAMMER2_BREF_TYPE_INDIRECT;
4143         }
4144         dummy.key = key;
4145         dummy.keybits = keybits;
4146         dummy.data_off = hammer2_getradix(nbytes);
4147         dummy.methods =
4148                 HAMMER2_ENC_CHECK(HAMMER2_DEC_CHECK(parent->bref.methods)) |
4149                 HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
4150
4151         ichain = hammer2_chain_alloc(hmp, parent->pmp, &dummy);
4152         atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
4153         hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
4154         /* ichain has one ref at this point */
4155
4156         /*
4157          * We have to mark it modified to allocate its block, but use
4158          * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
4159          * it won't be acted upon by the flush code.
4160          *
4161          * XXX remove OPTDATA, we need a fully initialized indirect block to
4162          * be able to move the original blockref.
4163          */
4164         *errorp = hammer2_chain_modify(ichain, mtid, 0, 0);
4165         if (*errorp) {
4166                 kprintf("hammer2_alloc_indirect: error %08x %s\n",
4167                         *errorp, hammer2_error_str(*errorp));
4168                 hammer2_chain_unlock(ichain);
4169                 hammer2_chain_drop(ichain);
4170                 return NULL;
4171         }
4172         KKASSERT((ichain->flags & HAMMER2_CHAIN_INITIAL) == 0);
4173
4174         /*
4175          * Iterate the original parent and move the matching brefs into
4176          * the new indirect block.
4177          *
4178          * XXX handle flushes.
4179          */
4180         key_beg = 0;
4181         key_end = HAMMER2_KEY_MAX;
4182         key_next = 0;   /* avoid gcc warnings */
4183         hammer2_spin_ex(&parent->core.spin);
4184         loops = 0;
4185         reason = 0;
4186
4187         for (;;) {
4188                 /*
4189                  * Parent may have been modified, relocating its block array.
4190                  * Reload the base pointer.
4191                  */
4192                 base = hammer2_chain_base_and_count(parent, &count);
4193
4194                 if (++loops > 100000) {
4195                     hammer2_spin_unex(&parent->core.spin);
4196                     panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
4197                           reason, parent, base, count, key_next);
4198                 }
4199
4200                 /*
4201                  * NOTE: spinlock stays intact, returned chain (if not NULL)
4202                  *       is not referenced or locked which means that we
4203                  *       cannot safely check its flagged / deletion status
4204                  *       until we lock it.
4205                  */
4206                 chain = hammer2_combined_find(parent, base, count,
4207                                               &key_next,
4208                                               key_beg, key_end,
4209                                               &bref);
4210                 generation = parent->core.generation;
4211                 if (bref == NULL)
4212                         break;
4213                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4214
4215                 /*
4216                  * Skip keys that are not within the key/radix of the new
4217                  * indirect block.  They stay in the parent.
4218                  */
4219                 if (rounddown2(key ^ bref->key, (hammer2_key_t)1 << keybits) != 0) {
4220                         goto next_key_spinlocked;
4221                 }
4222
4223                 /*
4224                  * Load the new indirect block by acquiring the related
4225                  * chains (potentially from media as it might not be
4226                  * in-memory).  Then move it to the new parent (ichain).
4227                  *
4228                  * chain is referenced but not locked.  We must lock the
4229                  * chain to obtain definitive state.
4230                  */
4231                 bsave = *bref;
4232                 if (chain) {
4233                         /*
4234                          * Use chain already present in the RBTREE
4235                          */
4236                         hammer2_chain_ref(chain);
4237                         hammer2_spin_unex(&parent->core.spin);
4238                         hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
4239                 } else {
4240                         /*
4241                          * Get chain for blockref element.  _get returns NULL
4242                          * on insertion race.
4243                          */
4244                         hammer2_spin_unex(&parent->core.spin);
4245                         chain = hammer2_chain_get(parent, generation, &bsave,
4246                                                   HAMMER2_RESOLVE_NEVER);
4247                         if (chain == NULL) {
4248                                 reason = 1;
4249                                 hammer2_spin_ex(&parent->core.spin);
4250                                 continue;
4251                         }
4252                 }
4253
4254                 /*
4255                  * This is always live so if the chain has been deleted
4256                  * we raced someone and we have to retry.
4257                  *
4258                  * NOTE: Lookups can race delete-duplicate because
4259                  *       delete-duplicate does not lock the parent's core
4260                  *       (they just use the spinlock on the core).
4261                  *
4262                  *       (note reversed logic for this one)
4263                  */
4264                 if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
4265                     chain->parent != parent ||
4266                     (chain->flags & HAMMER2_CHAIN_DELETED)) {
4267                         hammer2_chain_unlock(chain);
4268                         hammer2_chain_drop(chain);
4269                         if (hammer2_debug & 0x0040) {
4270                                 kprintf("LOST PARENT RETRY "
4271                                 "RETRY (%p,%p)->%p %08x\n",
4272                                 parent, chain->parent, chain, chain->flags);
4273                         }
4274                         hammer2_spin_ex(&parent->core.spin);
4275                         continue;
4276                 }
4277
4278                 /*
4279                  * Shift the chain to the indirect block.
4280                  *
4281                  * WARNING! No reason for us to load chain data, pass NOSTATS
4282                  *          to prevent delete/insert from trying to access
4283                  *          inode stats (and thus asserting if there is no
4284                  *          chain->data loaded).
4285                  *
4286                  * WARNING! The (parent, chain) deletion may modify the parent
4287                  *          and invalidate the base pointer.
4288                  *
4289                  * WARNING! Parent must already be marked modified, so we
4290                  *          can assume that chain_delete always suceeds.
4291                  *
4292                  * WARNING! hammer2_chain_repchange() does not have to be
4293                  *          called (and doesn't work anyway because we are
4294                  *          only doing a partial shift).  A recursion that is
4295                  *          in-progress can continue at the current parent
4296                  *          and will be able to properly find its next key.
4297                  */
4298                 error = hammer2_chain_delete_obref(parent, chain, mtid, 0,
4299                                                    &bsave);
4300                 KKASSERT(error == 0);
4301                 hammer2_chain_rename_obref(&ichain, chain, mtid, 0, &bsave);
4302                 hammer2_chain_unlock(chain);
4303                 hammer2_chain_drop(chain);
4304                 KKASSERT(parent->refs > 0);
4305                 chain = NULL;
4306                 base = NULL;    /* safety */
4307                 hammer2_spin_ex(&parent->core.spin);
4308 next_key_spinlocked:
4309                 if (--maxloops == 0)
4310                         panic("hammer2_chain_create_indirect: maxloops");
4311                 reason = 4;
4312                 if (key_next == 0 || key_next > key_end)
4313                         break;
4314                 key_beg = key_next;
4315                 /* loop */
4316         }
4317         hammer2_spin_unex(&parent->core.spin);
4318
4319         /*
4320          * Insert the new indirect block into the parent now that we've
4321          * cleared out some entries in the parent.  We calculated a good
4322          * insertion index in the loop above (ichain->index).
4323          *
4324          * We don't have to set UPDATE here because we mark ichain
4325          * modified down below (so the normal modified -> flush -> set-moved
4326          * sequence applies).
4327          *
4328          * The insertion shouldn't race as this is a completely new block
4329          * and the parent is locked.
4330          */
4331         base = NULL;    /* safety, parent modify may change address */
4332         KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
4333         KKASSERT(parent->core.live_count < count);
4334         hammer2_chain_insert(parent, ichain,
4335                              HAMMER2_CHAIN_INSERT_SPIN |
4336                              HAMMER2_CHAIN_INSERT_LIVE,
4337                              0);
4338
4339         /*
4340          * Make sure flushes propogate after our manual insertion.
4341          */
4342         hammer2_chain_setflush(ichain);
4343         hammer2_chain_setflush(parent);
4344
4345         /*
4346          * Figure out what to return.
4347          */
4348         if (rounddown2(create_key ^ key, (hammer2_key_t)1 << keybits)) {
4349                 /*
4350                  * Key being created is outside the key range,
4351                  * return the original parent.
4352                  */
4353                 hammer2_chain_unlock(ichain);
4354                 hammer2_chain_drop(ichain);
4355         } else {
4356                 /*
4357                  * Otherwise its in the range, return the new parent.
4358                  * (leave both the new and old parent locked).
4359                  */
4360                 parent = ichain;
4361         }
4362
4363         return(parent);
4364 }
4365
4366 /*
4367  * Do maintenance on an indirect chain.  Both parent and chain are locked.
4368  *
4369  * Returns non-zero if (chain) is deleted, either due to being empty or
4370  * because its children were safely moved into the parent.
4371  */
4372 int
4373 hammer2_chain_indirect_maintenance(hammer2_chain_t *parent,
4374                                    hammer2_chain_t *chain)
4375 {
4376         hammer2_blockref_t *chain_base;
4377         hammer2_blockref_t *base;
4378         hammer2_blockref_t *bref;
4379         hammer2_blockref_t bsave;
4380         hammer2_key_t key_next;
4381         hammer2_key_t key_beg;
4382         hammer2_key_t key_end;
4383         hammer2_chain_t *sub;
4384         int chain_count;
4385         int count;
4386         int error;
4387         int generation;
4388
4389         /*
4390          * Make sure we have an accurate live_count
4391          */
4392         if ((chain->flags & (HAMMER2_CHAIN_INITIAL |
4393                              HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4394                 base = &chain->data->npdata[0];
4395                 count = chain->bytes / sizeof(hammer2_blockref_t);
4396                 hammer2_chain_countbrefs(chain, base, count);
4397         }
4398
4399         /*
4400          * If the indirect block is empty we can delete it.
4401          * (ignore deletion error)
4402          */
4403         if (chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree)) {
4404                 hammer2_chain_delete(parent, chain,
4405                                      chain->bref.modify_tid,
4406                                      HAMMER2_DELETE_PERMANENT);
4407                 hammer2_chain_repchange(parent, chain);
4408                 return 1;
4409         }
4410
4411         base = hammer2_chain_base_and_count(parent, &count);
4412
4413         if ((parent->flags & (HAMMER2_CHAIN_INITIAL |
4414                              HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4415                 hammer2_chain_countbrefs(parent, base, count);
4416         }
4417
4418         /*
4419          * Determine if we can collapse chain into parent, calculate
4420          * hysteresis for chain emptiness.
4421          */
4422         if (parent->core.live_count + chain->core.live_count - 1 > count)
4423                 return 0;
4424         chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4425         if (chain->core.live_count > chain_count * 3 / 4)
4426                 return 0;
4427
4428         /*
4429          * Ok, theoretically we can collapse chain's contents into
4430          * parent.  chain is locked, but any in-memory children of chain
4431          * are not.  For this to work, we must be able to dispose of any
4432          * in-memory children of chain.
4433          *
4434          * For now require that there are no in-memory children of chain.
4435          *
4436          * WARNING! Both chain and parent must remain locked across this
4437          *          entire operation.
4438          */
4439
4440         /*
4441          * Parent must be marked modified.  Don't try to collapse it if we
4442          * can't mark it modified.  Once modified, destroy chain to make room
4443          * and to get rid of what will be a conflicting key (this is included
4444          * in the calculation above).  Finally, move the children of chain
4445          * into chain's parent.
4446          *
4447          * This order creates an accounting problem for bref.embed.stats
4448          * because we destroy chain before we remove its children.  Any
4449          * elements whos blockref is already synchronized will be counted
4450          * twice.  To deal with the problem we clean out chain's stats prior
4451          * to deleting it.
4452          */
4453         error = hammer2_chain_modify(parent, 0, 0, 0);
4454         if (error) {
4455                 krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4456                             hammer2_error_str(error));
4457                 return 0;
4458         }
4459         error = hammer2_chain_modify(chain, chain->bref.modify_tid, 0, 0);
4460         if (error) {
4461                 krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4462                             hammer2_error_str(error));
4463                 return 0;
4464         }
4465
4466         chain->bref.embed.stats.inode_count = 0;
4467         chain->bref.embed.stats.data_count = 0;
4468         error = hammer2_chain_delete(parent, chain,
4469                                      chain->bref.modify_tid,
4470                                      HAMMER2_DELETE_PERMANENT);
4471         KKASSERT(error == 0);
4472
4473         /*
4474          * The combined_find call requires core.spin to be held.  One would
4475          * think there wouldn't be any conflicts since we hold chain
4476          * exclusively locked, but the caching mechanism for 0-ref children
4477          * does not require a chain lock.
4478          */
4479         hammer2_spin_ex(&chain->core.spin);
4480
4481         key_next = 0;
4482         key_beg = 0;
4483         key_end = HAMMER2_KEY_MAX;
4484         for (;;) {
4485                 chain_base = &chain->data->npdata[0];
4486                 chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4487                 sub = hammer2_combined_find(chain, chain_base, chain_count,
4488                                             &key_next,
4489                                             key_beg, key_end,
4490                                             &bref);
4491                 generation = chain->core.generation;
4492                 if (bref == NULL)
4493                         break;
4494                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4495
4496                 bsave = *bref;
4497                 if (sub) {
4498                         hammer2_chain_ref(sub);
4499                         hammer2_spin_unex(&chain->core.spin);
4500                         hammer2_chain_lock(sub, HAMMER2_RESOLVE_NEVER);
4501                 } else {
4502                         hammer2_spin_unex(&chain->core.spin);
4503                         sub = hammer2_chain_get(chain, generation, &bsave,
4504                                                 HAMMER2_RESOLVE_NEVER);
4505                         if (sub == NULL) {
4506                                 hammer2_spin_ex(&chain->core.spin);
4507                                 continue;
4508                         }
4509                 }
4510                 if (bcmp(&bsave, &sub->bref, sizeof(bsave)) ||
4511                     sub->parent != chain ||
4512                     (sub->flags & HAMMER2_CHAIN_DELETED)) {
4513                         hammer2_chain_unlock(sub);
4514                         hammer2_chain_drop(sub);
4515                         hammer2_spin_ex(&chain->core.spin);
4516                         sub = NULL;     /* safety */
4517                         continue;
4518                 }
4519                 error = hammer2_chain_delete_obref(chain, sub,
4520                                                    sub->bref.modify_tid, 0,
4521                                                    &bsave);
4522                 KKASSERT(error == 0);
4523                 hammer2_chain_rename_obref(&parent, sub,
4524                                      sub->bref.modify_tid,
4525                                      HAMMER2_INSERT_SAMEPARENT, &bsave);
4526                 hammer2_chain_unlock(sub);
4527                 hammer2_chain_drop(sub);
4528                 hammer2_spin_ex(&chain->core.spin);
4529
4530                 if (key_next == 0)
4531                         break;
4532                 key_beg = key_next;
4533         }
4534         hammer2_spin_unex(&chain->core.spin);
4535
4536         hammer2_chain_repchange(parent, chain);
4537
4538         return 1;
4539 }
4540
4541 /*
4542  * Freemap indirect blocks
4543  *
4544  * Calculate the keybits and highside/lowside of the freemap node the
4545  * caller is creating.
4546  *
4547  * This routine will specify the next higher-level freemap key/radix
4548  * representing the lowest-ordered set.  By doing so, eventually all
4549  * low-ordered sets will be moved one level down.
4550  *
4551  * We have to be careful here because the freemap reserves a limited
4552  * number of blocks for a limited number of levels.  So we can't just
4553  * push indiscriminately.
4554  */
4555 int
4556 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
4557                              int keybits, hammer2_blockref_t *base, int count)
4558 {
4559         hammer2_chain_t *chain;
4560         hammer2_blockref_t *bref;
4561         hammer2_key_t key;
4562         hammer2_key_t key_beg;
4563         hammer2_key_t key_end;
4564         hammer2_key_t key_next;
4565         int locount;
4566         int hicount;
4567         int maxloops = 300000;
4568
4569         key = *keyp;
4570         locount = 0;
4571         hicount = 0;
4572         keybits = 64;
4573
4574         /*
4575          * Calculate the range of keys in the array being careful to skip
4576          * slots which are overridden with a deletion.
4577          */
4578         key_beg = 0;
4579         key_end = HAMMER2_KEY_MAX;
4580         hammer2_spin_ex(&parent->core.spin);
4581
4582         for (;;) {
4583                 if (--maxloops == 0) {
4584                         panic("indkey_freemap shit %p %p:%d\n",
4585                               parent, base, count);
4586                 }
4587                 chain = hammer2_combined_find(parent, base, count,
4588                                               &key_next,
4589                                               key_beg, key_end,
4590                                               &bref);
4591
4592                 /*
4593                  * Exhausted search
4594                  */
4595                 if (bref == NULL)
4596                         break;
4597
4598                 /*
4599                  * Skip deleted chains.
4600                  */
4601                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4602                         if (key_next == 0 || key_next > key_end)
4603                                 break;
4604                         key_beg = key_next;
4605                         continue;
4606                 }
4607
4608                 /*
4609                  * Use the full live (not deleted) element for the scan
4610                  * iteration.  HAMMER2 does not allow partial replacements.
4611                  *
4612                  * XXX should be built into hammer2_combined_find().
4613                  */
4614                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4615
4616                 if (keybits > bref->keybits) {
4617                         key = bref->key;
4618                         keybits = bref->keybits;
4619                 } else if (keybits == bref->keybits && bref->key < key) {
4620                         key = bref->key;
4621                 }
4622                 if (key_next == 0)
4623                         break;
4624                 key_beg = key_next;
4625         }
4626         hammer2_spin_unex(&parent->core.spin);
4627
4628         /*
4629          * Return the keybits for a higher-level FREEMAP_NODE covering
4630          * this node.
4631          */
4632         switch(keybits) {
4633         case HAMMER2_FREEMAP_LEVEL0_RADIX:
4634                 keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
4635                 break;
4636         case HAMMER2_FREEMAP_LEVEL1_RADIX:
4637                 keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
4638                 break;
4639         case HAMMER2_FREEMAP_LEVEL2_RADIX:
4640                 keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
4641                 break;
4642         case HAMMER2_FREEMAP_LEVEL3_RADIX:
4643                 keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
4644                 break;
4645         case HAMMER2_FREEMAP_LEVEL4_RADIX:
4646                 keybits = HAMMER2_FREEMAP_LEVEL5_RADIX;
4647                 break;
4648         case HAMMER2_FREEMAP_LEVEL5_RADIX:
4649                 panic("hammer2_chain_indkey_freemap: level too high");
4650                 break;
4651         default:
4652                 panic("hammer2_chain_indkey_freemap: bad radix");
4653                 break;
4654         }
4655         *keyp = key;
4656
4657         return (keybits);
4658 }
4659
4660 /*
4661  * File indirect blocks
4662  *
4663  * Calculate the key/keybits for the indirect block to create by scanning
4664  * existing keys.  The key being created is also passed in *keyp and can be
4665  * inside or outside the indirect block.  Regardless, the indirect block
4666  * must hold at least two keys in order to guarantee sufficient space.
4667  *
4668  * We use a modified version of the freemap's fixed radix tree, but taylored
4669  * for file data.  Basically we configure an indirect block encompassing the
4670  * smallest key.
4671  */
4672 static int
4673 hammer2_chain_indkey_file(hammer2_chain_t *parent, hammer2_key_t *keyp,
4674                             int keybits, hammer2_blockref_t *base, int count,
4675                             int ncount)
4676 {
4677         hammer2_chain_t *chain;
4678         hammer2_blockref_t *bref;
4679         hammer2_key_t key;
4680         hammer2_key_t key_beg;
4681         hammer2_key_t key_end;
4682         hammer2_key_t key_next;
4683         int nradix;
4684         int locount;
4685         int hicount;
4686         int maxloops = 300000;
4687
4688         key = *keyp;
4689         locount = 0;
4690         hicount = 0;
4691         keybits = 64;
4692
4693         /*
4694          * Calculate the range of keys in the array being careful to skip
4695          * slots which are overridden with a deletion.
4696          *
4697          * Locate the smallest key.
4698          */
4699         key_beg = 0;
4700         key_end = HAMMER2_KEY_MAX;
4701         hammer2_spin_ex(&parent->core.spin);
4702
4703         for (;;) {
4704                 if (--maxloops == 0) {
4705                         panic("indkey_freemap shit %p %p:%d\n",
4706                               parent, base, count);
4707                 }
4708                 chain = hammer2_combined_find(parent, base, count,
4709                                               &key_next,
4710                                               key_beg, key_end,
4711                                               &bref);
4712
4713                 /*
4714                  * Exhausted search
4715                  */
4716                 if (bref == NULL)
4717                         break;
4718
4719                 /*
4720                  * Skip deleted chains.
4721                  */
4722                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4723                         if (key_next == 0 || key_next > key_end)
4724                                 break;
4725                         key_beg = key_next;
4726                         continue;
4727                 }
4728
4729                 /*
4730                  * Use the full live (not deleted) element for the scan
4731                  * iteration.  HAMMER2 does not allow partial replacements.
4732                  *
4733                  * XXX should be built into hammer2_combined_find().
4734                  */
4735                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4736
4737                 if (keybits > bref->keybits) {
4738                         key = bref->key;
4739                         keybits = bref->keybits;
4740                 } else if (keybits == bref->keybits && bref->key < key) {
4741                         key = bref->key;
4742                 }
4743                 if (key_next == 0)
4744                         break;
4745                 key_beg = key_next;
4746         }
4747         hammer2_spin_unex(&parent->core.spin);
4748
4749         /*
4750          * Calculate the static keybits for a higher-level indirect block
4751          * that contains the key.
4752          */
4753         *keyp = key;
4754
4755         switch(ncount) {
4756         case HAMMER2_IND_BYTES_MIN / sizeof(hammer2_blockref_t):
4757                 nradix = HAMMER2_IND_RADIX_MIN - HAMMER2_BLOCKREF_RADIX;
4758                 break;
4759         case HAMMER2_IND_BYTES_NOM / sizeof(hammer2_blockref_t):
4760                 nradix = HAMMER2_IND_RADIX_NOM - HAMMER2_BLOCKREF_RADIX;
4761                 break;
4762         case HAMMER2_IND_BYTES_MAX / sizeof(hammer2_blockref_t):
4763                 nradix = HAMMER2_IND_RADIX_MAX - HAMMER2_BLOCKREF_RADIX;
4764                 break;
4765         default:
4766                 panic("bad ncount %d\n", ncount);
4767                 nradix = 0;
4768                 break;
4769         }
4770
4771         /*
4772          * The largest radix that can be returned for an indirect block is
4773          * 63 bits.  (The largest practical indirect block radix is actually
4774          * 62 bits because the top-level inode or volume root contains four
4775          * entries, but allow 63 to be returned).
4776          */
4777         if (nradix >= 64)
4778                 nradix = 63;
4779
4780         return keybits + nradix;
4781 }
4782
4783 #if 1
4784
4785 /*
4786  * Directory indirect blocks.
4787  *
4788  * Covers both the inode index (directory of inodes), and directory contents
4789  * (filenames hardlinked to inodes).
4790  *
4791  * Because directory keys are hashed we generally try to cut the space in
4792  * half.  We accomodate the inode index (which tends to have linearly
4793  * increasing inode numbers) by ensuring that the keyspace is at least large
4794  * enough to fill up the indirect block being created.
4795  */
4796 static int
4797 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4798                          int keybits, hammer2_blockref_t *base, int count,
4799                          int ncount)
4800 {
4801         hammer2_blockref_t *bref;
4802         hammer2_chain_t *chain;
4803         hammer2_key_t key_beg;
4804         hammer2_key_t key_end;
4805         hammer2_key_t key_next;
4806         hammer2_key_t key;
4807         int nkeybits;
4808         int locount;
4809         int hicount;
4810         int maxloops = 300000;
4811
4812         /*
4813          * NOTE: We can't take a shortcut here anymore for inodes because
4814          *       the root directory can contain a mix of inodes and directory
4815          *       entries (we used to just return 63 if parent->bref.type was
4816          *       HAMMER2_BREF_TYPE_INODE.
4817          */
4818         key = *keyp;
4819         locount = 0;
4820         hicount = 0;
4821
4822         /*
4823          * Calculate the range of keys in the array being careful to skip
4824          * slots which are overridden with a deletion.
4825          */
4826         key_beg = 0;
4827         key_end = HAMMER2_KEY_MAX;
4828         hammer2_spin_ex(&parent->core.spin);
4829
4830         for (;;) {
4831                 if (--maxloops == 0) {
4832                         panic("indkey_freemap shit %p %p:%d\n",
4833                               parent, base, count);
4834                 }
4835                 chain = hammer2_combined_find(parent, base, count,
4836                                               &key_next,
4837                                               key_beg, key_end,
4838                                               &bref);
4839
4840                 /*
4841                  * Exhausted search
4842                  */
4843                 if (bref == NULL)
4844                         break;
4845
4846                 /*
4847                  * Deleted object
4848                  */
4849                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4850                         if (key_next == 0 || key_next > key_end)
4851                                 break;
4852                         key_beg = key_next;
4853                         continue;
4854                 }
4855
4856                 /*
4857                  * Use the full live (not deleted) element for the scan
4858                  * iteration.  HAMMER2 does not allow partial replacements.
4859                  *
4860                  * XXX should be built into hammer2_combined_find().
4861                  */
4862                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4863
4864                 /*
4865                  * Expand our calculated key range (key, keybits) to fit
4866                  * the scanned key.  nkeybits represents the full range
4867                  * that we will later cut in half (two halves @ nkeybits - 1).
4868                  */
4869                 nkeybits = keybits;
4870                 if (nkeybits < bref->keybits) {
4871                         if (bref->keybits > 64) {
4872                                 kprintf("bad bref chain %p bref %p\n",
4873                                         chain, bref);
4874                                 Debugger("fubar");
4875                         }
4876                         nkeybits = bref->keybits;
4877                 }
4878                 while (nkeybits < 64 &&
4879                        rounddown2(key ^ bref->key, (hammer2_key_t)1 << nkeybits) != 0) {
4880                         ++nkeybits;
4881                 }
4882
4883                 /*
4884                  * If the new key range is larger we have to determine
4885                  * which side of the new key range the existing keys fall
4886                  * under by checking the high bit, then collapsing the
4887                  * locount into the hicount or vise-versa.
4888                  */
4889                 if (keybits != nkeybits) {
4890                         if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
4891                                 hicount += locount;
4892                                 locount = 0;
4893                         } else {
4894                                 locount += hicount;
4895                                 hicount = 0;
4896                         }
4897                         keybits = nkeybits;
4898                 }
4899
4900                 /*
4901                  * The newly scanned key will be in the lower half or the
4902                  * upper half of the (new) key range.
4903                  */
4904                 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
4905                         ++hicount;
4906                 else
4907                         ++locount;
4908
4909                 if (key_next == 0)
4910                         break;
4911                 key_beg = key_next;
4912         }
4913         hammer2_spin_unex(&parent->core.spin);
4914         bref = NULL;    /* now invalid (safety) */
4915
4916         /*
4917          * Adjust keybits to represent half of the full range calculated
4918          * above (radix 63 max) for our new indirect block.
4919          */
4920         --keybits;
4921
4922         /*
4923          * Expand keybits to hold at least ncount elements.  ncount will be
4924          * a power of 2.  This is to try to completely fill leaf nodes (at
4925          * least for keys which are not hashes).
4926          *
4927          * We aren't counting 'in' or 'out', we are counting 'high side'
4928          * and 'low side' based on the bit at (1LL << keybits).  We want
4929          * everything to be inside in these cases so shift it all to
4930          * the low or high side depending on the new high bit.
4931          */
4932         while (((hammer2_key_t)1 << keybits) < ncount) {
4933                 ++keybits;
4934                 if (key & ((hammer2_key_t)1 << keybits)) {
4935                         hicount += locount;
4936                         locount = 0;
4937                 } else {
4938                         locount += hicount;
4939                         hicount = 0;
4940                 }
4941         }
4942
4943         if (hicount > locount)
4944                 key |= (hammer2_key_t)1 << keybits;
4945         else
4946                 key &= ~(hammer2_key_t)1 << keybits;
4947
4948         *keyp = key;
4949
4950         return (keybits);
4951 }
4952
4953 #else
4954
4955 /*
4956  * Directory indirect blocks.
4957  *
4958  * Covers both the inode index (directory of inodes), and directory contents
4959  * (filenames hardlinked to inodes).
4960  *
4961  * Because directory keys are hashed we generally try to cut the space in
4962  * half.  We accomodate the inode index (which tends to have linearly
4963  * increasing inode numbers) by ensuring that the keyspace is at least large
4964  * enough to fill up the indirect block being created.
4965  */
4966 static int
4967 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4968                          int keybits, hammer2_blockref_t *base, int count,
4969                          int ncount)
4970 {
4971         hammer2_blockref_t *bref;
4972         hammer2_chain_t *chain;
4973         hammer2_key_t key_beg;
4974         hammer2_key_t key_end;
4975         hammer2_key_t key_next;
4976         hammer2_key_t key;
4977         int nkeybits;
4978         int locount;
4979         int hicount;
4980         int maxloops = 300000;
4981
4982         /*
4983          * Shortcut if the parent is the inode.  In this situation the
4984          * parent has 4+1 directory entries and we are creating an indirect
4985          * block capable of holding many more.
4986          */
4987         if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4988                 return 63;
4989         }
4990
4991         key = *keyp;
4992         locount = 0;
4993         hicount = 0;
4994
4995         /*
4996          * Calculate the range of keys in the array being careful to skip
4997          * slots which are overridden with a deletion.
4998          */
4999         key_beg = 0;
5000         key_end = HAMMER2_KEY_MAX;
5001         hammer2_spin_ex(&parent->core.spin);
5002
5003         for (;;) {
5004                 if (--maxloops == 0) {
5005                         panic("indkey_freemap shit %p %p:%d\n",
5006                               parent, base, count);
5007                 }
5008                 chain = hammer2_combined_find(parent, base, count,
5009                                               &key_next,
5010                                               key_beg, key_end,
5011                                               &bref);
5012
5013                 /*
5014                  * Exhausted search
5015                  */
5016                 if (bref == NULL)
5017                         break;
5018
5019                 /*
5020                  * Deleted object
5021                  */
5022                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
5023                         if (key_next == 0 || key_next > key_end)
5024                                 break;
5025                         key_beg = key_next;
5026                         continue;
5027                 }
5028
5029                 /*
5030                  * Use the full live (not deleted) element for the scan
5031                  * iteration.  HAMMER2 does not allow partial replacements.
5032                  *
5033                  * XXX should be built into hammer2_combined_find().
5034                  */
5035                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
5036
5037                 /*
5038                  * Expand our calculated key range (key, keybits) to fit
5039                  * the scanned key.  nkeybits represents the full range
5040                  * that we will later cut in half (two halves @ nkeybits - 1).
5041                  */
5042                 nkeybits = keybits;
5043                 if (nkeybits < bref->keybits) {
5044                         if (bref->keybits > 64) {
5045                                 kprintf("bad bref chain %p bref %p\n",
5046                                         chain, bref);
5047                                 Debugger("fubar");
5048                         }
5049                         nkeybits = bref->keybits;
5050                 }
5051                 while (nkeybits < 64 &&
5052                        (~(((hammer2_key_t)1 << nkeybits) - 1) &
5053                         (key ^ bref->key)) != 0) {
5054                         ++nkeybits;
5055                 }
5056
5057                 /*
5058                  * If the new key range is larger we have to determine
5059                  * which side of the new key range the existing keys fall
5060                  * under by checking the high bit, then collapsing the
5061                  * locount into the hicount or vise-versa.
5062                  */
5063                 if (keybits != nkeybits) {
5064                         if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
5065                                 hicount += locount;
5066                                 locount = 0;
5067                         } else {
5068                                 locount += hicount;
5069                                 hicount = 0;
5070                         }
5071                         keybits = nkeybits;
5072                 }
5073
5074                 /*
5075                  * The newly scanned key will be in the lower half or the
5076                  * upper half of the (new) key range.
5077                  */
5078                 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
5079                         ++hicount;
5080                 else
5081                         ++locount;
5082
5083                 if (key_next == 0)
5084                         break;
5085                 key_beg = key_next;
5086         }
5087         hammer2_spin_unex(&parent->core.spin);
5088         bref = NULL;    /* now invalid (safety) */
5089
5090         /*
5091          * Adjust keybits to represent half of the full range calculated
5092          * above (radix 63 max) for our new indirect block.
5093          */
5094         --keybits;
5095
5096         /*
5097          * Expand keybits to hold at least ncount elements.  ncount will be
5098          * a power of 2.  This is to try to completely fill leaf nodes (at
5099          * least for keys which are not hashes).
5100          *
5101          * We aren't counting 'in' or 'out', we are counting 'high side'
5102          * and 'low side' based on the bit at (1LL << keybits).  We want
5103          * everything to be inside in these cases so shift it all to
5104          * the low or high side depending on the new high bit.
5105          */
5106         while (((hammer2_key_t)1 << keybits) < ncount) {
5107                 ++keybits;
5108                 if (key & ((hammer2_key_t)1 << keybits)) {
5109                         hicount += locount;
5110                         locount = 0;
5111                 } else {
5112                         locount += hicount;
5113                         hicount = 0;
5114                 }
5115         }
5116
5117         if (hicount > locount)
5118                 key |= (hammer2_key_t)1 << keybits;
5119         else
5120                 key &= ~(hammer2_key_t)1 << keybits;
5121
5122         *keyp = key;
5123
5124         return (keybits);
5125 }
5126
5127 #endif
5128
5129 /*
5130  * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
5131  * it exists.
5132  *
5133  * Both parent and chain must be locked exclusively.
5134  *
5135  * This function will modify the parent if the blockref requires removal
5136  * from the parent's block table.
5137  *
5138  * This function is NOT recursive.  Any entity already pushed into the
5139  * chain (such as an inode) may still need visibility into its contents,
5140  * as well as the ability to read and modify the contents.  For example,
5141  * for an unlinked file which is still open.
5142  *
5143  * Also note that the flusher is responsible for cleaning up empty
5144  * indirect blocks.
5145  */
5146 int
5147 hammer2_chain_delete(hammer2_chain_t *parent, hammer2_chain_t *chain,
5148                      hammer2_tid_t mtid, int flags)
5149 {
5150         int error = 0;
5151
5152         KKASSERT(hammer2_mtx_owned(&chain->lock));
5153
5154         /*
5155          * Nothing to do if already marked.
5156          *
5157          * We need the spinlock on the core whos RBTREE contains chain
5158          * to protect against races.
5159          */
5160         if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5161                 KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5162                          chain->parent == parent);
5163                 error = _hammer2_chain_delete_helper(parent, chain,
5164                                                      mtid, flags, NULL);
5165         }
5166
5167         /*
5168          * Permanent deletions mark the chain as destroyed.
5169          *
5170          * NOTE: We do not setflush the chain unless the deletion is
5171          *       permanent, since the deletion of a chain does not actually
5172          *       require it to be flushed.
5173          */
5174         if (error == 0) {
5175                 if (flags & HAMMER2_DELETE_PERMANENT) {
5176                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5177                         hammer2_chain_setflush(chain);
5178                 }
5179         }
5180
5181         return error;
5182 }
5183
5184 static int
5185 hammer2_chain_delete_obref(hammer2_chain_t *parent, hammer2_chain_t *chain,
5186                      hammer2_tid_t mtid, int flags,
5187                      hammer2_blockref_t *obref)
5188 {
5189         int error = 0;
5190
5191         KKASSERT(hammer2_mtx_owned(&chain->lock));
5192
5193         /*
5194          * Nothing to do if already marked.
5195          *
5196          * We need the spinlock on the core whos RBTREE contains chain
5197          * to protect against races.
5198          */
5199         obref->type = HAMMER2_BREF_TYPE_EMPTY;
5200         if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5201                 KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5202                          chain->parent == parent);
5203                 error = _hammer2_chain_delete_helper(parent, chain,
5204                                                      mtid, flags, obref);
5205         }
5206
5207         /*
5208          * Permanent deletions mark the chain as destroyed.
5209          *
5210          * NOTE: We do not setflush the chain unless the deletion is
5211          *       permanent, since the deletion of a chain does not actually
5212          *       require it to be flushed.
5213          */
5214         if (error == 0) {
5215                 if (flags & HAMMER2_DELETE_PERMANENT) {
5216                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5217                         hammer2_chain_setflush(chain);
5218                 }
5219         }
5220
5221         return error;
5222 }
5223
5224 /*
5225  * Returns the index of the nearest element in the blockref array >= elm.
5226  * Returns (count) if no element could be found.
5227  *
5228  * Sets *key_nextp to the next key for loop purposes but does not modify
5229  * it if the next key would be higher than the current value of *key_nextp.
5230  * Note that *key_nexp can overflow to 0, which should be tested by the
5231  * caller.
5232  *
5233  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5234  *           held through the operation.
5235  */
5236 static int
5237 hammer2_base_find(hammer2_chain_t *parent,
5238                   hammer2_blockref_t *base, int count,
5239                   hammer2_key_t *key_nextp,
5240                   hammer2_key_t key_beg, hammer2_key_t key_end)
5241 {
5242         hammer2_blockref_t *scan;
5243         hammer2_key_t scan_end;
5244         int i;
5245         int limit;
5246
5247         /*
5248          * Require the live chain's already have their core's counted
5249          * so we can optimize operations.
5250          */
5251         KKASSERT(parent->flags & HAMMER2_CHAIN_COUNTEDBREFS);
5252
5253         /*
5254          * Degenerate case
5255          */
5256         if (count == 0 || base == NULL)
5257                 return(count);
5258
5259         /*
5260          * Sequential optimization using parent->cache_index.  This is
5261          * the most likely scenario.
5262          *
5263          * We can avoid trailing empty entries on live chains, otherwise
5264          * we might have to check the whole block array.
5265          */
5266         i = parent->cache_index;        /* SMP RACE OK */
5267         cpu_ccfence();
5268         limit = parent->core.live_zero;
5269         if (i >= limit)
5270                 i = limit - 1;
5271         if (i < 0)
5272                 i = 0;
5273         KKASSERT(i < count);
5274
5275         /*
5276          * Search backwards
5277          */
5278         scan = &base[i];
5279         while (i > 0 && (scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5280             scan->key > key_beg)) {
5281                 --scan;
5282                 --i;
5283         }
5284         parent->cache_index = i;
5285
5286         /*
5287          * Search forwards, stop when we find a scan element which
5288          * encloses the key or until we know that there are no further
5289          * elements.
5290          */
5291         while (i < count) {
5292                 if (scan->type != HAMMER2_BREF_TYPE_EMPTY) {
5293                         scan_end = scan->key +
5294                                    ((hammer2_key_t)1 << scan->keybits) - 1;
5295                         if (scan->key > key_beg || scan_end >= key_beg)
5296                                 break;
5297                 }
5298                 if (i >= limit)
5299                         return (count);
5300                 ++scan;
5301                 ++i;
5302         }
5303         if (i != count) {
5304                 parent->cache_index = i;
5305                 if (i >= limit) {
5306                         i = count;
5307                 } else {
5308                         scan_end = scan->key +
5309                                    ((hammer2_key_t)1 << scan->keybits);
5310                         if (scan_end && (*key_nextp > scan_end ||
5311                                          *key_nextp == 0)) {
5312                                 *key_nextp = scan_end;
5313                         }
5314                 }
5315         }
5316         return (i);
5317 }
5318
5319 /*
5320  * Do a combined search and return the next match either from the blockref
5321  * array or from the in-memory chain.  Sets *bresp to the returned bref in
5322  * both cases, or sets it to NULL if the search exhausted.  Only returns
5323  * a non-NULL chain if the search matched from the in-memory chain.
5324  *
5325  * When no in-memory chain has been found and a non-NULL bref is returned
5326  * in *bresp.
5327  *
5328  *
5329  * The returned chain is not locked or referenced.  Use the returned bref
5330  * to determine if the search exhausted or not.  Iterate if the base find
5331  * is chosen but matches a deleted chain.
5332  *
5333  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5334  *           held through the operation.
5335  */
5336 hammer2_chain_t *
5337 hammer2_combined_find(hammer2_chain_t *parent,
5338                       hammer2_blockref_t *base, int count,
5339                       hammer2_key_t *key_nextp,
5340                       hammer2_key_t key_beg, hammer2_key_t key_end,
5341                       hammer2_blockref_t **bresp)
5342 {
5343         hammer2_blockref_t *bref;
5344         hammer2_chain_t *chain;
5345         int i;
5346
5347         /*
5348          * Lookup in block array and in rbtree.
5349          */
5350         *key_nextp = key_end + 1;
5351         i = hammer2_base_find(parent, base, count, key_nextp,
5352                               key_beg, key_end);
5353         chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
5354
5355         /*
5356          * Neither matched
5357          */
5358         if (i == count && chain == NULL) {
5359                 *bresp = NULL;
5360                 return(NULL);
5361         }
5362
5363         /*
5364          * Only chain matched.
5365          */
5366         if (i == count) {
5367                 bref = &chain->bref;
5368                 goto found;
5369         }
5370
5371         /*
5372          * Only blockref matched.
5373          */
5374         if (chain == NULL) {
5375                 bref = &base[i];
5376                 goto found;
5377         }
5378
5379         /*
5380          * Both in-memory and blockref matched, select the nearer element.
5381          *
5382          * If both are flush with the left-hand side or both are the
5383          * same distance away, select the chain.  In this situation the
5384          * chain must have been loaded from the matching blockmap.
5385          */
5386         if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
5387             chain->bref.key == base[i].key) {
5388                 KKASSERT(chain->bref.key == base[i].key);
5389                 bref = &chain->bref;
5390                 goto found;
5391         }
5392
5393         /*
5394          * Select the nearer key
5395          */
5396         if (chain->bref.key < base[i].key) {
5397                 bref = &chain->bref;
5398         } else {
5399                 bref = &base[i];
5400                 chain = NULL;
5401         }
5402
5403         /*
5404          * If the bref is out of bounds we've exhausted our search.
5405          */
5406 found:
5407         if (bref->key > key_end) {
5408                 *bresp = NULL;
5409                 chain = NULL;
5410         } else {
5411                 *bresp = bref;
5412         }
5413         return(chain);
5414 }
5415
5416 /*
5417  * Locate the specified block array element and delete it.  The element
5418  * must exist.
5419  *
5420  * The spin lock on the related chain must be held.
5421  *
5422  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5423  *       need to be adjusted when we commit the media change.
5424  */
5425 void
5426 hammer2_base_delete(hammer2_chain_t *parent,
5427                     hammer2_blockref_t *base, int count,
5428                     hammer2_chain_t *chain,
5429                     hammer2_blockref_t *obref)
5430 {
5431         hammer2_blockref_t *elm = &chain->bref;
5432         hammer2_blockref_t *scan;
5433         hammer2_key_t key_next;
5434         int i;
5435
5436         /*
5437          * Delete element.  Expect the element to exist.
5438          *
5439          * XXX see caller, flush code not yet sophisticated enough to prevent
5440          *     re-flushed in some cases.
5441          */
5442         key_next = 0; /* max range */
5443         i = hammer2_base_find(parent, base, count, &key_next,
5444                               elm->key, elm->key);
5445         scan = &base[i];
5446         if (i == count || scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5447             scan->key != elm->key ||
5448             ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
5449              scan->keybits != elm->keybits)) {
5450                 hammer2_spin_unex(&parent->core.spin);
5451                 panic("delete base %p element not found at %d/%d elm %p\n",
5452                       base, i, count, elm);
5453                 return;
5454         }
5455
5456         /*
5457          * Update stats and zero the entry.
5458          *
5459          * NOTE: Handle radix == 0 (0 bytes) case.
5460          */
5461         if ((int)(scan->data_off & HAMMER2_OFF_MASK_RADIX)) {
5462                 parent->bref.embed.stats.data_count -= (hammer2_off_t)1 <<
5463                                 (int)(scan->data_off & HAMMER2_OFF_MASK_RADIX);
5464         }
5465         switch(scan->type) {
5466         case HAMMER2_BREF_TYPE_INODE:
5467                 --parent->bref.embed.stats.inode_count;
5468                 /* fall through */
5469         case HAMMER2_BREF_TYPE_DATA:
5470                 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5471                         atomic_set_int(&chain->flags,
5472                                        HAMMER2_CHAIN_HINT_LEAF_COUNT);
5473                 } else {
5474                         if (parent->bref.leaf_count)
5475                                 --parent->bref.leaf_count;
5476                 }
5477                 /* fall through */
5478         case HAMMER2_BREF_TYPE_INDIRECT:
5479                 if (scan->type != HAMMER2_BREF_TYPE_DATA) {
5480                         parent->bref.embed.stats.data_count -=
5481                                 scan->embed.stats.data_count;
5482                         parent->bref.embed.stats.inode_count -=
5483                                 scan->embed.stats.inode_count;
5484                 }
5485                 if (scan->type == HAMMER2_BREF_TYPE_INODE)
5486                         break;
5487                 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5488                         atomic_set_int(&chain->flags,
5489                                        HAMMER2_CHAIN_HINT_LEAF_COUNT);
5490                 } else {
5491                         if (parent->bref.leaf_count <= scan->leaf_count)
5492                                 parent->bref.leaf_count = 0;
5493                         else
5494                                 parent->bref.leaf_count -= scan->leaf_count;
5495                 }
5496                 break;
5497         case HAMMER2_BREF_TYPE_DIRENT:
5498                 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5499                         atomic_set_int(&chain->flags,
5500                                        HAMMER2_CHAIN_HINT_LEAF_COUNT);
5501                 } else {
5502                         if (parent->bref.leaf_count)
5503                                 --parent->bref.leaf_count;
5504                 }
5505         default:
5506                 break;
5507         }
5508
5509         if (obref)
5510                 *obref = *scan;
5511         bzero(scan, sizeof(*scan));
5512
5513         /*
5514          * We can only optimize parent->core.live_zero for live chains.
5515          */
5516         if (parent->core.live_zero == i + 1) {
5517                 while (--i >= 0 && base[i].type == HAMMER2_BREF_TYPE_EMPTY)
5518                         ;
5519                 parent->core.live_zero = i + 1;
5520         }
5521
5522         /*
5523          * Clear appropriate blockmap flags in chain.
5524          */
5525         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
5526                                         HAMMER2_CHAIN_BMAPUPD);
5527 }
5528
5529 /*
5530  * Insert the specified element.  The block array must not already have the
5531  * element and must have space available for the insertion.
5532  *
5533  * The spin lock on the related chain must be held.
5534  *
5535  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5536  *       need to be adjusted when we commit the media change.
5537  */
5538 void
5539 hammer2_base_insert(hammer2_chain_t *parent,
5540                     hammer2_blockref_t *base, int count,
5541                     hammer2_chain_t *chain, hammer2_blockref_t *elm)
5542 {
5543         hammer2_key_t key_next;
5544         hammer2_key_t xkey;
5545         int i;
5546         int j;
5547         int k;
5548         int l;
5549         int u = 1;
5550
5551         /*
5552          * Insert new element.  Expect the element to not already exist
5553          * unless we are replacing it.
5554          *
5555          * XXX see caller, flush code not yet sophisticated enough to prevent
5556          *     re-flushed in some cases.
5557          */
5558         key_next = 0; /* max range */
5559         i = hammer2_base_find(parent, base, count, &key_next,
5560                               elm->key, elm->key);
5561
5562         /*
5563          * Shortcut fill optimization, typical ordered insertion(s) may not
5564          * require a search.
5565          */
5566         KKASSERT(i >= 0 && i <= count);
5567
5568         /*
5569          * Set appropriate blockmap flags in chain (if not NULL)
5570          */
5571         if (chain)
5572                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
5573
5574         /*
5575          * Update stats and zero the entry
5576          */
5577         if ((int)(elm->data_off & HAMMER2_OFF_MASK_RADIX)) {
5578                 parent->bref.embed.stats.data_count += (hammer2_off_t)1 <<
5579                                 (int)(elm->data_off & HAMMER2_OFF_MASK_RADIX);
5580         }
5581         switch(elm->type) {
5582         case HAMMER2_BREF_TYPE_INODE:
5583                 ++parent->bref.embed.stats.inode_count;
5584                 /* fall through */
5585         case HAMMER2_BREF_TYPE_DATA:
5586                 if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5587                         ++parent->bref.leaf_count;
5588                 /* fall through */
5589         case HAMMER2_BREF_TYPE_INDIRECT:
5590                 if (elm->type != HAMMER2_BREF_TYPE_DATA) {
5591                         parent->bref.embed.stats.data_count +=
5592                                 elm->embed.stats.data_count;
5593                         parent->bref.embed.stats.inode_count +=
5594                                 elm->embed.stats.inode_count;
5595                 }
5596                 if (elm->type == HAMMER2_BREF_TYPE_INODE)
5597                         break;
5598                 if (parent->bref.leaf_count + elm->leaf_count <
5599                     HAMMER2_BLOCKREF_LEAF_MAX) {
5600                         parent->bref.leaf_count += elm->leaf_count;
5601                 } else {
5602                         parent->bref.leaf_count = HAMMER2_BLOCKREF_LEAF_MAX;
5603                 }
5604                 break;
5605         case HAMMER2_BREF_TYPE_DIRENT:
5606                 if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5607                         ++parent->bref.leaf_count;
5608                 break;
5609         default:
5610                 break;
5611         }
5612
5613
5614         /*
5615          * We can only optimize parent->core.live_zero for live chains.
5616          */
5617         if (i == count && parent->core.live_zero < count) {
5618                 i = parent->core.live_zero++;
5619                 base[i] = *elm;
5620                 return;
5621         }
5622
5623         xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
5624         if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
5625                 hammer2_spin_unex(&parent->core.spin);
5626                 panic("insert base %p overlapping elements at %d elm %p\n",
5627                       base, i, elm);
5628         }
5629
5630         /*
5631          * Try to find an empty slot before or after.
5632          */
5633         j = i;
5634         k = i;
5635         while (j > 0 || k < count) {
5636                 --j;
5637                 if (j >= 0 && base[j].type == HAMMER2_BREF_TYPE_EMPTY) {
5638                         if (j == i - 1) {
5639                                 base[j] = *elm;
5640                         } else {
5641                                 bcopy(&base[j+1], &base[j],
5642                                       (i - j - 1) * sizeof(*base));
5643                                 base[i - 1] = *elm;
5644                         }
5645                         goto validate;
5646                 }
5647                 ++k;
5648                 if (k < count && base[k].type == HAMMER2_BREF_TYPE_EMPTY) {
5649                         bcopy(&base[i], &base[i+1],
5650                               (k - i) * sizeof(hammer2_blockref_t));
5651                         base[i] = *elm;
5652
5653                         /*
5654                          * We can only update parent->core.live_zero for live
5655                          * chains.
5656                          */
5657                         if (parent->core.live_zero <= k)
5658                                 parent->core.live_zero = k + 1;
5659                         u = 2;
5660                         goto validate;
5661                 }
5662         }
5663         panic("hammer2_base_insert: no room!");
5664
5665         /*
5666          * Debugging
5667          */
5668 validate:
5669         key_next = 0;
5670         for (l = 0; l < count; ++l) {
5671                 if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5672                         key_next = base[l].key +
5673                                    ((hammer2_key_t)1 << base[l].keybits) - 1;
5674                         break;
5675                 }
5676         }
5677         while (++l < count) {
5678                 if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5679                         if (base[l].key <= key_next)
5680                                 panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
5681                         key_next = base[l].key +
5682                                    ((hammer2_key_t)1 << base[l].keybits) - 1;
5683
5684                 }
5685         }
5686
5687 }
5688
5689 #if 0
5690
5691 /*
5692  * Sort the blockref array for the chain.  Used by the flush code to
5693  * sort the blockref[] array.
5694  *
5695  * The chain must be exclusively locked AND spin-locked.
5696  */
5697 typedef hammer2_blockref_t *hammer2_blockref_p;
5698
5699 static
5700 int
5701 hammer2_base_sort_callback(const void *v1, const void *v2)
5702 {
5703         hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
5704         hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
5705
5706         /*
5707          * Make sure empty elements are placed at the end of the array
5708          */
5709         if (bref1->type == HAMMER2_BREF_TYPE_EMPTY) {
5710                 if (bref2->type == HAMMER2_BREF_TYPE_EMPTY)
5711                         return(0);
5712                 return(1);
5713         } else if (bref2->type == HAMMER2_BREF_TYPE_EMPTY) {
5714                 return(-1);
5715         }
5716
5717         /*
5718          * Sort by key
5719          */
5720         if (bref1->key < bref2->key)
5721                 return(-1);
5722         if (bref1->key > bref2->key)
5723                 return(1);
5724         return(0);
5725 }
5726
5727 void
5728 hammer2_base_sort(hammer2_chain_t *chain)
5729 {
5730         hammer2_blockref_t *base;
5731         int count;
5732
5733         switch(chain->bref.type) {
5734         case HAMMER2_BREF_TYPE_INODE:
5735                 /*
5736                  * Special shortcut for embedded data returns the inode
5737                  * itself.  Callers must detect this condition and access
5738                  * the embedded data (the strategy code does this for us).
5739                  *
5740                  * This is only applicable to regular files and softlinks.
5741                  */
5742                 if (chain->data->ipdata.meta.op_flags &
5743                     HAMMER2_OPFLAG_DIRECTDATA) {
5744                         return;
5745                 }
5746                 base = &chain->data->ipdata.u.blockset.blockref[0];
5747                 count = HAMMER2_SET_COUNT;
5748                 break;
5749         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
5750         case HAMMER2_BREF_TYPE_INDIRECT:
5751                 /*
5752                  * Optimize indirect blocks in the INITIAL state to avoid
5753                  * I/O.
5754                  */
5755                 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
5756                 base = &chain->data->npdata[0];
5757                 count = chain->bytes / sizeof(hammer2_blockref_t);
5758                 break;
5759         case HAMMER2_BREF_TYPE_VOLUME:
5760                 base = &chain->data->voldata.sroot_blockset.blockref[0];
5761                 count = HAMMER2_SET_COUNT;
5762                 break;
5763         case HAMMER2_BREF_TYPE_FREEMAP:
5764                 base = &chain->data->blkset.blockref[0];
5765                 count = HAMMER2_SET_COUNT;
5766                 break;
5767         default:
5768                 kprintf("hammer2_chain_lookup: unrecognized "
5769                         "blockref(A) type: %d",
5770                         chain->bref.type);
5771                 while (1)
5772                         tsleep(&base, 0, "dead", 0);
5773                 panic("hammer2_base_sort: unrecognized "
5774                       "blockref(A) type: %d",
5775                       chain->bref.type);
5776                 base = NULL;    /* safety */
5777                 count = 0;      /* safety */
5778         }
5779         kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
5780 }
5781
5782 #endif
5783
5784 /*
5785  * Chain memory management
5786  */
5787 void
5788 hammer2_chain_wait(hammer2_chain_t *chain)
5789 {
5790         tsleep(chain, 0, "chnflw", 1);
5791 }
5792
5793 const hammer2_media_data_t *
5794 hammer2_chain_rdata(hammer2_chain_t *chain)
5795 {
5796         KKASSERT(chain->data != NULL);
5797         return (chain->data);
5798 }
5799
5800 hammer2_media_data_t *
5801 hammer2_chain_wdata(hammer2_chain_t *chain)
5802 {
5803         KKASSERT(chain->data != NULL);
5804         return (chain->data);
5805 }
5806
5807 /*
5808  * Set the check data for a chain.  This can be a heavy-weight operation
5809  * and typically only runs on-flush.  For file data check data is calculated
5810  * when the logical buffers are flushed.
5811  */
5812 void
5813 hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
5814 {
5815         chain->bref.flags &= ~HAMMER2_BREF_FLAG_ZERO;
5816
5817         switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5818         case HAMMER2_CHECK_NONE:
5819                 break;
5820         case HAMMER2_CHECK_DISABLED:
5821                 break;
5822         case HAMMER2_CHECK_ISCSI32:
5823                 chain->bref.check.iscsi32.value =
5824                         hammer2_icrc32(bdata, chain->bytes);
5825                 break;
5826         case HAMMER2_CHECK_XXHASH64:
5827                 chain->bref.check.xxhash64.value =
5828                         XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5829                 break;
5830         case HAMMER2_CHECK_SHA192:
5831                 {
5832                         SHA256_CTX hash_ctx;
5833                         union {
5834                                 uint8_t digest[SHA256_DIGEST_LENGTH];
5835                                 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5836                         } u;
5837
5838                         SHA256_Init(&hash_ctx);
5839                         SHA256_Update(&hash_ctx, bdata, chain->bytes);
5840                         SHA256_Final(u.digest, &hash_ctx);
5841                         u.digest64[2] ^= u.digest64[3];
5842                         bcopy(u.digest,
5843                               chain->bref.check.sha192.data,
5844                               sizeof(chain->bref.check.sha192.data));
5845                 }
5846                 break;
5847         case HAMMER2_CHECK_FREEMAP:
5848                 chain->bref.check.freemap.icrc32 =
5849                         hammer2_icrc32(bdata, chain->bytes);
5850                 break;
5851         default:
5852                 kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5853                         chain->bref.methods);
5854                 break;
5855         }
5856 }
5857
5858 /*
5859  * Characterize a failed check code and try to trace back to the inode.
5860  */
5861 static void
5862 hammer2_characterize_failed_chain(hammer2_chain_t *chain, uint64_t check,
5863                                   int bits)
5864 {
5865         hammer2_chain_t *lchain;
5866         hammer2_chain_t *ochain;
5867         int did;
5868
5869         did = krateprintf(&krate_h2chk,
5870                 "chain %016jx.%02x (%s) meth=%02x CHECK FAIL "
5871                 "(flags=%08x, bref/data ",
5872                 chain->bref.data_off,
5873                 chain->bref.type,
5874                 hammer2_bref_type_str(&chain->bref),
5875                 chain->bref.methods,
5876                 chain->flags);
5877         if (did == 0)
5878                 return;
5879
5880         if (bits == 32) {
5881                 kprintf("%08x/%08x)\n",
5882                         chain->bref.check.iscsi32.value,
5883                         (uint32_t)check);
5884         } else {
5885                 kprintf("%016jx/%016jx)\n",
5886                         chain->bref.check.xxhash64.value,
5887                         check);
5888         }
5889
5890         /*
5891          * Run up the chains to try to find the governing inode so we
5892          * can report it.
5893          *
5894          * XXX This error reporting is not really MPSAFE
5895          */
5896         ochain = chain;
5897         lchain = chain;
5898         while (chain && chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
5899                 lchain = chain;
5900                 chain = chain->parent;
5901         }
5902
5903         if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
5904             ((chain->bref.flags & HAMMER2_BREF_FLAG_PFSROOT) == 0 ||
5905              (lchain->bref.key & HAMMER2_DIRHASH_VISIBLE))) {
5906                 kprintf("   Resides at/in inode %ld\n",
5907                         chain->bref.key);
5908         } else if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
5909                 kprintf("   Resides in inode index - CRITICAL!!!\n");
5910         } else {
5911                 kprintf("   Resides in root index - CRITICAL!!!\n");
5912         }
5913         if (ochain->hmp) {
5914                 const char *pfsname = "UNKNOWN";
5915                 int i;
5916
5917                 if (ochain->pmp) {
5918                         for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
5919                                 if (ochain->pmp->pfs_hmps[i] == ochain->hmp &&
5920                                     ochain->pmp->pfs_names[i]) {
5921                                         pfsname = ochain->pmp->pfs_names[i];
5922                                         break;
5923                                 }
5924                         }
5925                 }
5926                 kprintf("   In pfs %s on device %s\n",
5927                         pfsname, ochain->hmp->devrepname);
5928         }
5929 }
5930
5931 /*
5932  * Returns non-zero on success, 0 on failure.
5933  */
5934 int
5935 hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
5936 {
5937         uint32_t check32;
5938         uint64_t check64;
5939         int r;
5940
5941         if (chain->bref.flags & HAMMER2_BREF_FLAG_ZERO)
5942                 return 1;
5943
5944         switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5945         case HAMMER2_CHECK_NONE:
5946                 r = 1;
5947                 break;
5948         case HAMMER2_CHECK_DISABLED:
5949                 r = 1;
5950                 break;
5951         case HAMMER2_CHECK_ISCSI32:
5952                 check32 = hammer2_icrc32(bdata, chain->bytes);
5953                 r = (chain->bref.check.iscsi32.value == check32);
5954                 if (r == 0) {
5955                         hammer2_characterize_failed_chain(chain, check32, 32);
5956                 }
5957                 hammer2_process_icrc32 += chain->bytes;
5958                 break;
5959         case HAMMER2_CHECK_XXHASH64:
5960                 check64 = XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5961                 r = (chain->bref.check.xxhash64.value == check64);
5962                 if (r == 0) {
5963                         hammer2_characterize_failed_chain(chain, check64, 64);
5964                 }
5965                 hammer2_process_xxhash64 += chain->bytes;
5966                 break;
5967         case HAMMER2_CHECK_SHA192:
5968                 {
5969                         SHA256_CTX hash_ctx;
5970                         union {
5971                                 uint8_t digest[SHA256_DIGEST_LENGTH];
5972                                 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5973                         } u;
5974
5975                         SHA256_Init(&hash_ctx);
5976                         SHA256_Update(&hash_ctx, bdata, chain->bytes);
5977                         SHA256_Final(u.digest, &hash_ctx);
5978                         u.digest64[2] ^= u.digest64[3];
5979                         if (bcmp(u.digest,
5980                                  chain->bref.check.sha192.data,
5981                                  sizeof(chain->bref.check.sha192.data)) == 0) {
5982                                 r = 1;
5983                         } else {
5984                                 r = 0;
5985                                 krateprintf(&krate_h2chk,
5986                                         "chain %016jx.%02x meth=%02x "
5987                                         "CHECK FAIL\n",
5988                                         chain->bref.data_off,
5989                                         chain->bref.type,
5990                                         chain->bref.methods);
5991                         }
5992                 }
5993                 break;
5994         case HAMMER2_CHECK_FREEMAP:
5995                 r = (chain->bref.check.freemap.icrc32 ==
5996                      hammer2_icrc32(bdata, chain->bytes));
5997                 if (r == 0) {
5998                         int did;
5999
6000                         did = krateprintf(&krate_h2chk,
6001                                           "chain %016jx.%02x meth=%02x "
6002                                           "CHECK FAIL\n",
6003                                           chain->bref.data_off,
6004                                           chain->bref.type,
6005                                           chain->bref.methods);
6006                         if (did) {
6007                                 kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
6008                                         chain->bref.check.freemap.icrc32,
6009                                         hammer2_icrc32(bdata, chain->bytes),
6010                                         chain->bytes);
6011                                 if (chain->dio) {
6012                                         kprintf("dio %p buf %016jx,%d "
6013                                                 "bdata %p/%p\n",
6014                                                 chain->dio,
6015                                                 chain->dio->bp->b_loffset,
6016                                                 chain->dio->bp->b_bufsize,
6017                                                 bdata,
6018                                                 chain->dio->bp->b_data);
6019                                 }
6020                         }
6021                 }
6022                 break;
6023         default:
6024                 kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
6025                         chain->bref.methods);
6026                 r = 1;
6027                 break;
6028         }
6029         return r;
6030 }
6031
6032 /*
6033  * Acquire the chain and parent representing the specified inode for the
6034  * device at the specified cluster index.
6035  *
6036  * The flags passed in are LOOKUP flags, not RESOLVE flags.
6037  *
6038  * If we are unable to locate the inode, HAMMER2_ERROR_EIO is returned and
6039  * *chainp will be NULL.  *parentp may still be set error or not, or NULL
6040  * if the parent itself could not be resolved.
6041  *
6042  * The caller may pass-in a locked *parentp and/or *chainp, or neither.
6043  * They will be unlocked and released by this function.  The *parentp and
6044  * *chainp representing the located inode are returned locked.
6045  */
6046 int
6047 hammer2_chain_inode_find(hammer2_pfs_t *pmp, hammer2_key_t inum,
6048                          int clindex, int flags,
6049                          hammer2_chain_t **parentp, hammer2_chain_t **chainp)
6050 {
6051         hammer2_chain_t *parent;
6052         hammer2_chain_t *rchain;
6053         hammer2_key_t key_dummy;
6054         hammer2_inode_t *ip;
6055         int resolve_flags;
6056         int error;
6057
6058         resolve_flags = (flags & HAMMER2_LOOKUP_SHARED) ?
6059                         HAMMER2_RESOLVE_SHARED : 0;
6060
6061         /*
6062          * Caller expects us to replace these.
6063          */
6064         if (*chainp) {
6065                 hammer2_chain_unlock(*chainp);
6066                 hammer2_chain_drop(*chainp);
6067                 *chainp = NULL;
6068         }
6069         if (*parentp) {
6070                 hammer2_chain_unlock(*parentp);
6071                 hammer2_chain_drop(*parentp);
6072                 *parentp = NULL;
6073         }
6074
6075         /*
6076          * Be very careful, this is a backend function and we CANNOT
6077          * lock any frontend inode structure we find.  But we have to
6078          * look the inode up this way first in case it exists but is
6079          * detached from the radix tree.
6080          */
6081         ip = hammer2_inode_lookup(pmp, inum);
6082         if (ip) {
6083                 *chainp = hammer2_inode_chain_and_parent(ip, clindex,
6084                                                        parentp,
6085                                                        resolve_flags);
6086                 hammer2_inode_drop(ip);
6087                 if (*chainp)
6088                         return 0;
6089                 hammer2_chain_unlock(*chainp);
6090                 hammer2_chain_drop(*chainp);
6091                 *chainp = NULL;
6092                 if (*parentp) {
6093                         hammer2_chain_unlock(*parentp);
6094                         hammer2_chain_drop(*parentp);
6095                         *parentp = NULL;
6096                 }
6097         }
6098
6099         /*
6100          * Inodes hang off of the iroot (bit 63 is clear, differentiating
6101          * inodes from root directory entries in the key lookup).
6102          */
6103         parent = hammer2_inode_chain(pmp->iroot, clindex, resolve_flags);
6104         rchain = NULL;
6105         if (parent) {
6106                 rchain = hammer2_chain_lookup(&parent, &key_dummy,
6107                                               inum, inum,
6108                                               &error, flags);
6109         } else {
6110                 error = HAMMER2_ERROR_EIO;
6111         }
6112         *parentp = parent;
6113         *chainp = rchain;
6114
6115         return error;
6116 }
6117
6118 /*
6119  * Used by the bulkscan code to snapshot the synchronized storage for
6120  * a volume, allowing it to be scanned concurrently against normal
6121  * operation.
6122  */
6123 hammer2_chain_t *
6124 hammer2_chain_bulksnap(hammer2_dev_t *hmp)
6125 {
6126         hammer2_chain_t *copy;
6127
6128         copy = hammer2_chain_alloc(hmp, hmp->spmp, &hmp->vchain.bref);
6129         copy->data = kmalloc(sizeof(copy->data->voldata),
6130                              hmp->mchain,
6131                              M_WAITOK | M_ZERO);
6132         hammer2_voldata_lock(hmp);
6133         copy->data->voldata = hmp->volsync;
6134         hammer2_voldata_unlock(hmp);
6135
6136         return copy;
6137 }
6138
6139 void
6140 hammer2_chain_bulkdrop(hammer2_chain_t *copy)
6141 {
6142         KKASSERT(copy->bref.type == HAMMER2_BREF_TYPE_VOLUME);
6143         KKASSERT(copy->data);
6144         kfree(copy->data, copy->hmp->mchain);
6145         copy->data = NULL;
6146         atomic_add_long(&hammer2_chain_allocs, -1);
6147         hammer2_chain_drop(copy);
6148 }
6149
6150 /*
6151  * Returns non-zero if the chain (INODE or DIRENT) matches the
6152  * filename.
6153  */
6154 int
6155 hammer2_chain_dirent_test(hammer2_chain_t *chain, const char *name,
6156                           size_t name_len)
6157 {
6158         const hammer2_inode_data_t *ripdata;
6159         const hammer2_dirent_head_t *den;
6160
6161         if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
6162                 ripdata = &chain->data->ipdata;
6163                 if (ripdata->meta.name_len == name_len &&
6164                     bcmp(ripdata->filename, name, name_len) == 0) {
6165                         return 1;
6166                 }
6167         }
6168         if (chain->bref.type == HAMMER2_BREF_TYPE_DIRENT &&
6169            chain->bref.embed.dirent.namlen == name_len) {
6170                 den = &chain->bref.embed.dirent;
6171                 if (name_len > sizeof(chain->bref.check.buf) &&
6172                     bcmp(chain->data->buf, name, name_len) == 0) {
6173                         return 1;
6174                 }
6175                 if (name_len <= sizeof(chain->bref.check.buf) &&
6176                     bcmp(chain->bref.check.buf, name, name_len) == 0) {
6177                         return 1;
6178                 }
6179         }
6180         return 0;
6181 }