world/kernel: Use the rounddown2() macro in various places.
[dragonfly.git] / sys / vfs / hammer2 / hammer2_chain.c
1 /*
2  * Copyright (c) 2011-2018 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain structure.
38  *
39  * Chains are the in-memory version on media objects (volume header, inodes,
40  * indirect blocks, data blocks, etc).  Chains represent a portion of the
41  * HAMMER2 topology.
42  *
43  * Chains are no-longer delete-duplicated.  Instead, the original in-memory
44  * chain will be moved along with its block reference (e.g. for things like
45  * renames, hardlink operations, modifications, etc), and will be indexed
46  * on a secondary list for flush handling instead of propagating a flag
47  * upward to the root.
48  *
49  * Concurrent front-end operations can still run against backend flushes
50  * as long as they do not cross the current flush boundary.  An operation
51  * running above the current flush (in areas not yet flushed) can become
52  * part of the current flush while ano peration running below the current
53  * flush can become part of the next flush.
54  */
55 #include <sys/cdefs.h>
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/types.h>
59 #include <sys/lock.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/uuid.h>
62
63 #include <crypto/sha2/sha2.h>
64
65 #include "hammer2.h"
66
67 static hammer2_chain_t *hammer2_chain_create_indirect(
68                 hammer2_chain_t *parent,
69                 hammer2_key_t key, int keybits,
70                 hammer2_tid_t mtid, int for_type, int *errorp);
71 static void hammer2_chain_rename_obref(hammer2_chain_t **parentp,
72                 hammer2_chain_t *chain, hammer2_tid_t mtid,
73                 int flags, hammer2_blockref_t *obref);
74 static int hammer2_chain_delete_obref(hammer2_chain_t *parent,
75                 hammer2_chain_t *chain,
76                 hammer2_tid_t mtid, int flags,
77                 hammer2_blockref_t *obref);
78 static hammer2_io_t *hammer2_chain_drop_data(hammer2_chain_t *chain);
79 static hammer2_chain_t *hammer2_combined_find(
80                 hammer2_chain_t *parent,
81                 hammer2_blockref_t *base, int count,
82                 hammer2_key_t *key_nextp,
83                 hammer2_key_t key_beg, hammer2_key_t key_end,
84                 hammer2_blockref_t **bresp);
85
86 /*
87  * There are many degenerate situations where an extreme rate of console
88  * output can occur from warnings and errors.  Make sure this output does
89  * not impede operations.
90  */
91 static struct krate krate_h2chk = { .freq = 5 };
92 static struct krate krate_h2me = { .freq = 1 };
93 static struct krate krate_h2em = { .freq = 1 };
94
95 /*
96  * Basic RBTree for chains (core.rbtree).
97  */
98 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
99
100 int
101 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
102 {
103         hammer2_key_t c1_beg;
104         hammer2_key_t c1_end;
105         hammer2_key_t c2_beg;
106         hammer2_key_t c2_end;
107
108         /*
109          * Compare chains.  Overlaps are not supposed to happen and catch
110          * any software issues early we count overlaps as a match.
111          */
112         c1_beg = chain1->bref.key;
113         c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
114         c2_beg = chain2->bref.key;
115         c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
116
117         if (c1_end < c2_beg)    /* fully to the left */
118                 return(-1);
119         if (c1_beg > c2_end)    /* fully to the right */
120                 return(1);
121         return(0);              /* overlap (must not cross edge boundary) */
122 }
123
124 /*
125  * Assert that a chain has no media data associated with it.
126  */
127 static __inline void
128 hammer2_chain_assert_no_data(hammer2_chain_t *chain)
129 {
130         KKASSERT(chain->dio == NULL);
131         if (chain->bref.type != HAMMER2_BREF_TYPE_VOLUME &&
132             chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP &&
133             chain->data) {
134                 panic("hammer2_chain_assert_no_data: chain %p still has data",
135                     chain);
136         }
137 }
138
139 /*
140  * Make a chain visible to the flusher.  The flusher operates using a top-down
141  * recursion based on the ONFLUSH flag.  It locates MODIFIED and UPDATE chains,
142  * flushes them, and updates blocks back to the volume root.
143  *
144  * This routine sets the ONFLUSH flag upward from the triggering chain until
145  * it hits an inode root or the volume root.  Inode chains serve as inflection
146  * points, requiring the flusher to bridge across trees.  Inodes include
147  * regular inodes, PFS roots (pmp->iroot), and the media super root
148  * (spmp->iroot).
149  */
150 void
151 hammer2_chain_setflush(hammer2_chain_t *chain)
152 {
153         hammer2_chain_t *parent;
154
155         if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
156                 hammer2_spin_sh(&chain->core.spin);
157                 while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
158                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
159                         if (chain->bref.type == HAMMER2_BREF_TYPE_INODE)
160                                 break;
161                         if ((parent = chain->parent) == NULL)
162                                 break;
163                         hammer2_spin_sh(&parent->core.spin);
164                         hammer2_spin_unsh(&chain->core.spin);
165                         chain = parent;
166                 }
167                 hammer2_spin_unsh(&chain->core.spin);
168         }
169 }
170
171 /*
172  * Allocate a new disconnected chain element representing the specified
173  * bref.  chain->refs is set to 1 and the passed bref is copied to
174  * chain->bref.  chain->bytes is derived from the bref.
175  *
176  * chain->pmp inherits pmp unless the chain is an inode (other than the
177  * super-root inode).
178  *
179  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
180  */
181 hammer2_chain_t *
182 hammer2_chain_alloc(hammer2_dev_t *hmp, hammer2_pfs_t *pmp,
183                     hammer2_blockref_t *bref)
184 {
185         hammer2_chain_t *chain;
186         u_int bytes;
187
188         /*
189          * Special case - radix of 0 indicates a chain that does not
190          * need a data reference (context is completely embedded in the
191          * bref).
192          */
193         if ((int)(bref->data_off & HAMMER2_OFF_MASK_RADIX))
194                 bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
195         else
196                 bytes = 0;
197
198         atomic_add_long(&hammer2_chain_allocs, 1);
199
200         /*
201          * Construct the appropriate system structure.
202          */
203         switch(bref->type) {
204         case HAMMER2_BREF_TYPE_DIRENT:
205         case HAMMER2_BREF_TYPE_INODE:
206         case HAMMER2_BREF_TYPE_INDIRECT:
207         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
208         case HAMMER2_BREF_TYPE_DATA:
209         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
210                 chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
211                 break;
212         case HAMMER2_BREF_TYPE_VOLUME:
213         case HAMMER2_BREF_TYPE_FREEMAP:
214                 /*
215                  * Only hammer2_chain_bulksnap() calls this function with these
216                  * types.
217                  */
218                 chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
219                 break;
220         default:
221                 chain = NULL;
222                 panic("hammer2_chain_alloc: unrecognized blockref type: %d",
223                       bref->type);
224         }
225
226         /*
227          * Initialize the new chain structure.  pmp must be set to NULL for
228          * chains belonging to the super-root topology of a device mount.
229          */
230         if (pmp == hmp->spmp)
231                 chain->pmp = NULL;
232         else
233                 chain->pmp = pmp;
234
235         chain->hmp = hmp;
236         chain->bref = *bref;
237         chain->bytes = bytes;
238         chain->refs = 1;
239         chain->flags = HAMMER2_CHAIN_ALLOCATED;
240         lockinit(&chain->diolk, "chdio", 0, 0);
241
242         /*
243          * Set the PFS boundary flag if this chain represents a PFS root.
244          */
245         if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
246                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_PFSBOUNDARY);
247         hammer2_chain_core_init(chain);
248
249         return (chain);
250 }
251
252 /*
253  * Initialize a chain's core structure.  This structure used to be allocated
254  * but is now embedded.
255  *
256  * The core is not locked.  No additional refs on the chain are made.
257  * (trans) must not be NULL if (core) is not NULL.
258  */
259 void
260 hammer2_chain_core_init(hammer2_chain_t *chain)
261 {
262         /*
263          * Fresh core under nchain (no multi-homing of ochain's
264          * sub-tree).
265          */
266         RB_INIT(&chain->core.rbtree);   /* live chains */
267         hammer2_mtx_init(&chain->lock, "h2chain");
268 }
269
270 /*
271  * Add a reference to a chain element, preventing its destruction.
272  *
273  * (can be called with spinlock held)
274  */
275 void
276 hammer2_chain_ref(hammer2_chain_t *chain)
277 {
278         if (atomic_fetchadd_int(&chain->refs, 1) == 0) {
279                 /*
280                  * Just flag that the chain was used and should be recycled
281                  * on the LRU if it encounters it later.
282                  */
283                 if (chain->flags & HAMMER2_CHAIN_ONLRU)
284                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
285
286 #if 0
287                 /*
288                  * REMOVED - reduces contention, lru_list is more heuristical
289                  * now.
290                  *
291                  * 0->non-zero transition must ensure that chain is removed
292                  * from the LRU list.
293                  *
294                  * NOTE: Already holding lru_spin here so we cannot call
295                  *       hammer2_chain_ref() to get it off lru_list, do
296                  *       it manually.
297                  */
298                 if (chain->flags & HAMMER2_CHAIN_ONLRU) {
299                         hammer2_pfs_t *pmp = chain->pmp;
300                         hammer2_spin_ex(&pmp->lru_spin);
301                         if (chain->flags & HAMMER2_CHAIN_ONLRU) {
302                                 atomic_add_int(&pmp->lru_count, -1);
303                                 atomic_clear_int(&chain->flags,
304                                                  HAMMER2_CHAIN_ONLRU);
305                                 TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
306                         }
307                         hammer2_spin_unex(&pmp->lru_spin);
308                 }
309 #endif
310         }
311 }
312
313 /*
314  * Ref a locked chain and force the data to be held across an unlock.
315  * Chain must be currently locked.  The user of the chain who desires
316  * to release the hold must call hammer2_chain_lock_unhold() to relock
317  * and unhold the chain, then unlock normally, or may simply call
318  * hammer2_chain_drop_unhold() (which is safer against deadlocks).
319  */
320 void
321 hammer2_chain_ref_hold(hammer2_chain_t *chain)
322 {
323         atomic_add_int(&chain->lockcnt, 1);
324         hammer2_chain_ref(chain);
325 }
326
327 /*
328  * Insert the chain in the core rbtree.
329  *
330  * Normal insertions are placed in the live rbtree.  Insertion of a deleted
331  * chain is a special case used by the flush code that is placed on the
332  * unstaged deleted list to avoid confusing the live view.
333  */
334 #define HAMMER2_CHAIN_INSERT_SPIN       0x0001
335 #define HAMMER2_CHAIN_INSERT_LIVE       0x0002
336 #define HAMMER2_CHAIN_INSERT_RACE       0x0004
337
338 static
339 int
340 hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
341                      int flags, int generation)
342 {
343         hammer2_chain_t *xchain;
344         int error = 0;
345
346         if (flags & HAMMER2_CHAIN_INSERT_SPIN)
347                 hammer2_spin_ex(&parent->core.spin);
348
349         /*
350          * Interlocked by spinlock, check for race
351          */
352         if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
353             parent->core.generation != generation) {
354                 error = HAMMER2_ERROR_EAGAIN;
355                 goto failed;
356         }
357
358         /*
359          * Insert chain
360          */
361         xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
362         KASSERT(xchain == NULL,
363                 ("hammer2_chain_insert: collision %p %p (key=%016jx)",
364                 chain, xchain, chain->bref.key));
365         atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
366         chain->parent = parent;
367         ++parent->core.chain_count;
368         ++parent->core.generation;      /* XXX incs for _get() too, XXX */
369
370         /*
371          * We have to keep track of the effective live-view blockref count
372          * so the create code knows when to push an indirect block.
373          */
374         if (flags & HAMMER2_CHAIN_INSERT_LIVE)
375                 atomic_add_int(&parent->core.live_count, 1);
376 failed:
377         if (flags & HAMMER2_CHAIN_INSERT_SPIN)
378                 hammer2_spin_unex(&parent->core.spin);
379         return error;
380 }
381
382 /*
383  * Drop the caller's reference to the chain.  When the ref count drops to
384  * zero this function will try to disassociate the chain from its parent and
385  * deallocate it, then recursely drop the parent using the implied ref
386  * from the chain's chain->parent.
387  *
388  * Nobody should own chain's mutex on the 1->0 transition, unless this drop
389  * races an acquisition by another cpu.  Therefore we can loop if we are
390  * unable to acquire the mutex, and refs is unlikely to be 1 unless we again
391  * race against another drop.
392  */
393 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain,
394                                 int depth);
395 static void hammer2_chain_lru_flush(hammer2_pfs_t *pmp);
396
397 void
398 hammer2_chain_drop(hammer2_chain_t *chain)
399 {
400         u_int refs;
401
402         if (hammer2_debug & 0x200000)
403                 Debugger("drop");
404
405         KKASSERT(chain->refs > 0);
406
407         while (chain) {
408                 refs = chain->refs;
409                 cpu_ccfence();
410                 KKASSERT(refs > 0);
411
412                 if (refs == 1) {
413                         if (hammer2_mtx_ex_try(&chain->lock) == 0)
414                                 chain = hammer2_chain_lastdrop(chain, 0);
415                         /* retry the same chain, or chain from lastdrop */
416                 } else {
417                         if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
418                                 break;
419                         /* retry the same chain */
420                 }
421                 cpu_pause();
422         }
423 }
424
425 /*
426  * Unhold a held and probably not-locked chain, ensure that the data is
427  * dropped on the 1->0 transition of lockcnt by obtaining an exclusive
428  * lock and then simply unlocking the chain.
429  */
430 void
431 hammer2_chain_unhold(hammer2_chain_t *chain)
432 {
433         u_int lockcnt;
434         int iter = 0;
435
436         for (;;) {
437                 lockcnt = chain->lockcnt;
438                 cpu_ccfence();
439                 if (lockcnt > 1) {
440                         if (atomic_cmpset_int(&chain->lockcnt,
441                                               lockcnt, lockcnt - 1)) {
442                                 break;
443                         }
444                 } else if (hammer2_mtx_ex_try(&chain->lock) == 0) {
445                         hammer2_chain_unlock(chain);
446                         break;
447                 } else {
448                         /*
449                          * This situation can easily occur on SMP due to
450                          * the gap inbetween the 1->0 transition and the
451                          * final unlock.  We cannot safely block on the
452                          * mutex because lockcnt might go above 1.
453                          *
454                          * XXX Sleep for one tick if it takes too long.
455                          */
456                         if (++iter > 1000) {
457                                 if (iter > 1000 + hz) {
458                                         kprintf("hammer2: h2race1 %p\n", chain);
459                                         iter = 1000;
460                                 }
461                                 tsleep(&iter, 0, "h2race1", 1);
462                         }
463                         cpu_pause();
464                 }
465         }
466 }
467
468 void
469 hammer2_chain_drop_unhold(hammer2_chain_t *chain)
470 {
471         hammer2_chain_unhold(chain);
472         hammer2_chain_drop(chain);
473 }
474
475 void
476 hammer2_chain_rehold(hammer2_chain_t *chain)
477 {
478         hammer2_chain_lock(chain, HAMMER2_RESOLVE_SHARED);
479         atomic_add_int(&chain->lockcnt, 1);
480         hammer2_chain_unlock(chain);
481 }
482
483 /*
484  * Handles the (potential) last drop of chain->refs from 1->0.  Called with
485  * the mutex exclusively locked, refs == 1, and lockcnt 0.  SMP races are
486  * possible against refs and lockcnt.  We must dispose of the mutex on chain.
487  *
488  * This function returns an unlocked chain for recursive drop or NULL.  It
489  * can return the same chain if it determines it has raced another ref.
490  *
491  * --
492  *
493  * When two chains need to be recursively dropped we use the chain we
494  * would otherwise free to placehold the additional chain.  It's a bit
495  * convoluted but we can't just recurse without potentially blowing out
496  * the kernel stack.
497  *
498  * The chain cannot be freed if it has any children.
499  * The chain cannot be freed if flagged MODIFIED unless we can dispose of it.
500  * The chain cannot be freed if flagged UPDATE unless we can dispose of it.
501  * Any dedup registration can remain intact.
502  *
503  * The core spinlock is allowed to nest child-to-parent (not parent-to-child).
504  */
505 static
506 hammer2_chain_t *
507 hammer2_chain_lastdrop(hammer2_chain_t *chain, int depth)
508 {
509         hammer2_pfs_t *pmp;
510         hammer2_dev_t *hmp;
511         hammer2_chain_t *parent;
512         hammer2_chain_t *rdrop;
513
514         /*
515          * We need chain's spinlock to interlock the sub-tree test.
516          * We already have chain's mutex, protecting chain->parent.
517          *
518          * Remember that chain->refs can be in flux.
519          */
520         hammer2_spin_ex(&chain->core.spin);
521
522         if (chain->parent != NULL) {
523                 /*
524                  * If the chain has a parent the UPDATE bit prevents scrapping
525                  * as the chain is needed to properly flush the parent.  Try
526                  * to complete the 1->0 transition and return NULL.  Retry
527                  * (return chain) if we are unable to complete the 1->0
528                  * transition, else return NULL (nothing more to do).
529                  *
530                  * If the chain has a parent the MODIFIED bit prevents
531                  * scrapping.
532                  *
533                  * Chains with UPDATE/MODIFIED are *not* put on the LRU list!
534                  */
535                 if (chain->flags & (HAMMER2_CHAIN_UPDATE |
536                                     HAMMER2_CHAIN_MODIFIED)) {
537                         if (atomic_cmpset_int(&chain->refs, 1, 0)) {
538                                 hammer2_spin_unex(&chain->core.spin);
539                                 hammer2_chain_assert_no_data(chain);
540                                 hammer2_mtx_unlock(&chain->lock);
541                                 chain = NULL;
542                         } else {
543                                 hammer2_spin_unex(&chain->core.spin);
544                                 hammer2_mtx_unlock(&chain->lock);
545                         }
546                         return (chain);
547                 }
548                 /* spinlock still held */
549         } else if (chain->bref.type == HAMMER2_BREF_TYPE_VOLUME ||
550                    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP) {
551                 /*
552                  * Retain the static vchain and fchain.  Clear bits that
553                  * are not relevant.  Do not clear the MODIFIED bit,
554                  * and certainly do not put it on the delayed-flush queue.
555                  */
556                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
557         } else {
558                 /*
559                  * The chain has no parent and can be flagged for destruction.
560                  * Since it has no parent, UPDATE can also be cleared.
561                  */
562                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
563                 if (chain->flags & HAMMER2_CHAIN_UPDATE)
564                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
565
566                 /*
567                  * If the chain has children we must propagate the DESTROY
568                  * flag downward and rip the disconnected topology apart.
569                  * This is accomplished by calling hammer2_flush() on the
570                  * chain.
571                  *
572                  * Any dedup is already handled by the underlying DIO, so
573                  * we do not have to specifically flush it here.
574                  */
575                 if (chain->core.chain_count) {
576                         hammer2_spin_unex(&chain->core.spin);
577                         hammer2_flush(chain, HAMMER2_FLUSH_TOP |
578                                              HAMMER2_FLUSH_ALL);
579                         hammer2_mtx_unlock(&chain->lock);
580
581                         return(chain);  /* retry drop */
582                 }
583
584                 /*
585                  * Otherwise we can scrap the MODIFIED bit if it is set,
586                  * and continue along the freeing path.
587                  *
588                  * Be sure to clean-out any dedup bits.  Without a parent
589                  * this chain will no longer be visible to the flush code.
590                  * Easy check data_off to avoid the volume root.
591                  */
592                 if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
593                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
594                         atomic_add_long(&hammer2_count_modified_chains, -1);
595                         if (chain->pmp)
596                                 hammer2_pfs_memory_wakeup(chain->pmp);
597                 }
598                 /* spinlock still held */
599         }
600
601         /* spinlock still held */
602
603         /*
604          * If any children exist we must leave the chain intact with refs == 0.
605          * They exist because chains are retained below us which have refs or
606          * may require flushing.
607          *
608          * Retry (return chain) if we fail to transition the refs to 0, else
609          * return NULL indication nothing more to do.
610          *
611          * Chains with children are NOT put on the LRU list.
612          */
613         if (chain->core.chain_count) {
614                 if (atomic_cmpset_int(&chain->refs, 1, 0)) {
615                         hammer2_spin_unex(&chain->core.spin);
616                         hammer2_chain_assert_no_data(chain);
617                         hammer2_mtx_unlock(&chain->lock);
618                         chain = NULL;
619                 } else {
620                         hammer2_spin_unex(&chain->core.spin);
621                         hammer2_mtx_unlock(&chain->lock);
622                 }
623                 return (chain);
624         }
625         /* spinlock still held */
626         /* no chains left under us */
627
628         /*
629          * chain->core has no children left so no accessors can get to our
630          * chain from there.  Now we have to lock the parent core to interlock
631          * remaining possible accessors that might bump chain's refs before
632          * we can safely drop chain's refs with intent to free the chain.
633          */
634         hmp = chain->hmp;
635         pmp = chain->pmp;       /* can be NULL */
636         rdrop = NULL;
637
638         parent = chain->parent;
639
640         /*
641          * WARNING! chain's spin lock is still held here, and other spinlocks
642          *          will be acquired and released in the code below.  We
643          *          cannot be making fancy procedure calls!
644          */
645
646         /*
647          * We can cache the chain if it is associated with a pmp
648          * and not flagged as being destroyed or requesting a full
649          * release.  In this situation the chain is not removed
650          * from its parent, i.e. it can still be looked up.
651          *
652          * We intentionally do not cache DATA chains because these
653          * were likely used to load data into the logical buffer cache
654          * and will not be accessed again for some time.
655          */
656         if ((chain->flags &
657              (HAMMER2_CHAIN_DESTROY | HAMMER2_CHAIN_RELEASE)) == 0 &&
658             chain->pmp &&
659             chain->bref.type != HAMMER2_BREF_TYPE_DATA) {
660                 if (parent)
661                         hammer2_spin_ex(&parent->core.spin);
662                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
663                         /*
664                          * 1->0 transition failed, retry.  Do not drop
665                          * the chain's data yet!
666                          */
667                         if (parent)
668                                 hammer2_spin_unex(&parent->core.spin);
669                         hammer2_spin_unex(&chain->core.spin);
670                         hammer2_mtx_unlock(&chain->lock);
671
672                         return(chain);
673                 }
674
675                 /*
676                  * Success
677                  */
678                 hammer2_chain_assert_no_data(chain);
679
680                 /*
681                  * Make sure we are on the LRU list, clean up excessive
682                  * LRU entries.  We can only really drop one but there might
683                  * be other entries that we can remove from the lru_list
684                  * without dropping.
685                  *
686                  * NOTE: HAMMER2_CHAIN_ONLRU may only be safely set when
687                  *       chain->core.spin AND pmp->lru_spin are held, but
688                  *       can be safely cleared only holding pmp->lru_spin.
689                  */
690                 if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
691                         hammer2_spin_ex(&pmp->lru_spin);
692                         if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
693                                 atomic_set_int(&chain->flags,
694                                                HAMMER2_CHAIN_ONLRU);
695                                 TAILQ_INSERT_TAIL(&pmp->lru_list,
696                                                   chain, lru_node);
697                                 atomic_add_int(&pmp->lru_count, 1);
698                         }
699                         if (pmp->lru_count < HAMMER2_LRU_LIMIT)
700                                 depth = 1;      /* disable lru_list flush */
701                         hammer2_spin_unex(&pmp->lru_spin);
702                 } else {
703                         /* disable lru flush */
704                         depth = 1;
705                 }
706
707                 if (parent) {
708                         hammer2_spin_unex(&parent->core.spin);
709                         parent = NULL;  /* safety */
710                 }
711                 hammer2_spin_unex(&chain->core.spin);
712                 hammer2_mtx_unlock(&chain->lock);
713
714                 /*
715                  * lru_list hysteresis (see above for depth overrides).
716                  * Note that depth also prevents excessive lastdrop recursion.
717                  */
718                 if (depth == 0)
719                         hammer2_chain_lru_flush(pmp);
720
721                 return NULL;
722                 /* NOT REACHED */
723         }
724
725         /*
726          * Make sure we are not on the LRU list.
727          */
728         if (chain->flags & HAMMER2_CHAIN_ONLRU) {
729                 hammer2_spin_ex(&pmp->lru_spin);
730                 if (chain->flags & HAMMER2_CHAIN_ONLRU) {
731                         atomic_add_int(&pmp->lru_count, -1);
732                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
733                         TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
734                 }
735                 hammer2_spin_unex(&pmp->lru_spin);
736         }
737
738         /*
739          * Spinlock the parent and try to drop the last ref on chain.
740          * On success determine if we should dispose of the chain
741          * (remove the chain from its parent, etc).
742          *
743          * (normal core locks are top-down recursive but we define
744          * core spinlocks as bottom-up recursive, so this is safe).
745          */
746         if (parent) {
747                 hammer2_spin_ex(&parent->core.spin);
748                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
749                         /*
750                          * 1->0 transition failed, retry.
751                          */
752                         hammer2_spin_unex(&parent->core.spin);
753                         hammer2_spin_unex(&chain->core.spin);
754                         hammer2_mtx_unlock(&chain->lock);
755
756                         return(chain);
757                 }
758
759                 /*
760                  * 1->0 transition successful, parent spin held to prevent
761                  * new lookups, chain spinlock held to protect parent field.
762                  * Remove chain from the parent.
763                  *
764                  * If the chain is being removed from the parent's btree but
765                  * is not bmapped, we have to adjust live_count downward.  If
766                  * it is bmapped then the blockref is retained in the parent
767                  * as is its associated live_count.  This case can occur when
768                  * a chain added to the topology is unable to flush and is
769                  * then later deleted.
770                  */
771                 if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
772                         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) &&
773                             (chain->flags & HAMMER2_CHAIN_BMAPPED) == 0) {
774                                 atomic_add_int(&parent->core.live_count, -1);
775                         }
776                         RB_REMOVE(hammer2_chain_tree,
777                                   &parent->core.rbtree, chain);
778                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
779                         --parent->core.chain_count;
780                         chain->parent = NULL;
781                 }
782
783                 /*
784                  * If our chain was the last chain in the parent's core the
785                  * core is now empty and its parent might have to be
786                  * re-dropped if it has 0 refs.
787                  */
788                 if (parent->core.chain_count == 0) {
789                         rdrop = parent;
790                         atomic_add_int(&rdrop->refs, 1);
791                         /*
792                         if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0)
793                                 rdrop = NULL;
794                         */
795                 }
796                 hammer2_spin_unex(&parent->core.spin);
797                 parent = NULL;  /* safety */
798                 /* FALL THROUGH */
799         } else {
800                 /*
801                  * No-parent case.
802                  */
803                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
804                         /*
805                          * 1->0 transition failed, retry.
806                          */
807                         hammer2_spin_unex(&parent->core.spin);
808                         hammer2_spin_unex(&chain->core.spin);
809                         hammer2_mtx_unlock(&chain->lock);
810
811                         return(chain);
812                 }
813         }
814
815         /*
816          * Successful 1->0 transition, no parent, no children... no way for
817          * anyone to ref this chain any more.  We can clean-up and free it.
818          *
819          * We still have the core spinlock, and core's chain_count is 0.
820          * Any parent spinlock is gone.
821          */
822         hammer2_spin_unex(&chain->core.spin);
823         hammer2_chain_assert_no_data(chain);
824         hammer2_mtx_unlock(&chain->lock);
825         KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
826                  chain->core.chain_count == 0);
827
828         /*
829          * All locks are gone, no pointers remain to the chain, finish
830          * freeing it.
831          */
832         KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
833                                   HAMMER2_CHAIN_MODIFIED)) == 0);
834
835         /*
836          * Once chain resources are gone we can use the now dead chain
837          * structure to placehold what might otherwise require a recursive
838          * drop, because we have potentially two things to drop and can only
839          * return one directly.
840          */
841         if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
842                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ALLOCATED);
843                 chain->hmp = NULL;
844                 kfree(chain, hmp->mchain);
845         }
846
847         /*
848          * Possible chaining loop when parent re-drop needed.
849          */
850         return(rdrop);
851 }
852
853 /*
854  * Heuristical flush of the LRU, try to reduce the number of entries
855  * on the LRU to (HAMMER2_LRU_LIMIT * 2 / 3).  This procedure is called
856  * only when lru_count exceeds HAMMER2_LRU_LIMIT.
857  */
858 static
859 void
860 hammer2_chain_lru_flush(hammer2_pfs_t *pmp)
861 {
862         hammer2_chain_t *chain;
863
864 again:
865         chain = NULL;
866         hammer2_spin_ex(&pmp->lru_spin);
867         while (pmp->lru_count > HAMMER2_LRU_LIMIT * 2 / 3) {
868                 /*
869                  * Pick a chain off the lru_list, just recycle it quickly
870                  * if LRUHINT is set (the chain was ref'd but left on
871                  * the lru_list, so cycle to the end).
872                  */
873                 chain = TAILQ_FIRST(&pmp->lru_list);
874                 TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
875
876                 if (chain->flags & HAMMER2_CHAIN_LRUHINT) {
877                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
878                         TAILQ_INSERT_TAIL(&pmp->lru_list, chain, lru_node);
879                         chain = NULL;
880                         continue;
881                 }
882
883                 /*
884                  * Ok, we are off the LRU.  We must adjust refs before we
885                  * can safely clear the ONLRU flag.
886                  */
887                 atomic_add_int(&pmp->lru_count, -1);
888                 if (atomic_cmpset_int(&chain->refs, 0, 1)) {
889                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
890                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
891                         break;
892                 }
893                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
894                 chain = NULL;
895         }
896         hammer2_spin_unex(&pmp->lru_spin);
897         if (chain == NULL)
898                 return;
899
900         /*
901          * If we picked a chain off the lru list we may be able to lastdrop
902          * it.  Use a depth of 1 to prevent excessive lastdrop recursion.
903          */
904         while (chain) {
905                 u_int refs;
906
907                 refs = chain->refs;
908                 cpu_ccfence();
909                 KKASSERT(refs > 0);
910
911                 if (refs == 1) {
912                         if (hammer2_mtx_ex_try(&chain->lock) == 0)
913                                 chain = hammer2_chain_lastdrop(chain, 1);
914                         /* retry the same chain, or chain from lastdrop */
915                 } else {
916                         if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
917                                 break;
918                         /* retry the same chain */
919                 }
920                 cpu_pause();
921         }
922         goto again;
923 }
924
925 /*
926  * On last lock release.
927  */
928 static hammer2_io_t *
929 hammer2_chain_drop_data(hammer2_chain_t *chain)
930 {
931         hammer2_io_t *dio;
932
933         if ((dio = chain->dio) != NULL) {
934                 chain->dio = NULL;
935                 chain->data = NULL;
936         } else {
937                 switch(chain->bref.type) {
938                 case HAMMER2_BREF_TYPE_VOLUME:
939                 case HAMMER2_BREF_TYPE_FREEMAP:
940                         break;
941                 default:
942                         if (chain->data != NULL) {
943                                 hammer2_spin_unex(&chain->core.spin);
944                                 panic("chain data not null: "
945                                       "chain %p bref %016jx.%02x "
946                                       "refs %d parent %p dio %p data %p",
947                                       chain, chain->bref.data_off,
948                                       chain->bref.type, chain->refs,
949                                       chain->parent,
950                                       chain->dio, chain->data);
951                         }
952                         KKASSERT(chain->data == NULL);
953                         break;
954                 }
955         }
956         return dio;
957 }
958
959 /*
960  * Lock a referenced chain element, acquiring its data with I/O if necessary,
961  * and specify how you would like the data to be resolved.
962  *
963  * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
964  *
965  * The lock is allowed to recurse, multiple locking ops will aggregate
966  * the requested resolve types.  Once data is assigned it will not be
967  * removed until the last unlock.
968  *
969  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
970  *                         (typically used to avoid device/logical buffer
971  *                          aliasing for data)
972  *
973  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
974  *                         the INITIAL-create state (indirect blocks only).
975  *
976  *                         Do not resolve data elements for DATA chains.
977  *                         (typically used to avoid device/logical buffer
978  *                          aliasing for data)
979  *
980  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
981  *
982  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
983  *                         it will be locked exclusive.
984  *
985  * HAMMER2_RESOLVE_NONBLOCK- (flag) The chain is locked non-blocking.  If
986  *                         the lock fails, EAGAIN is returned.
987  *
988  * NOTE: Embedded elements (volume header, inodes) are always resolved
989  *       regardless.
990  *
991  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
992  *       element will instantiate and zero its buffer, and flush it on
993  *       release.
994  *
995  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
996  *       so as not to instantiate a device buffer, which could alias against
997  *       a logical file buffer.  However, if ALWAYS is specified the
998  *       device buffer will be instantiated anyway.
999  *
1000  * NOTE: The return value is always 0 unless NONBLOCK is specified, in which
1001  *       case it can be either 0 or EAGAIN.
1002  *
1003  * WARNING! This function blocks on I/O if data needs to be fetched.  This
1004  *          blocking can run concurrent with other compatible lock holders
1005  *          who do not need data returning.  The lock is not upgraded to
1006  *          exclusive during a data fetch, a separate bit is used to
1007  *          interlock I/O.  However, an exclusive lock holder can still count
1008  *          on being interlocked against an I/O fetch managed by a shared
1009  *          lock holder.
1010  */
1011 int
1012 hammer2_chain_lock(hammer2_chain_t *chain, int how)
1013 {
1014         KKASSERT(chain->refs > 0);
1015
1016         if (how & HAMMER2_RESOLVE_NONBLOCK) {
1017                 /*
1018                  * We still have to bump lockcnt before acquiring the lock,
1019                  * even for non-blocking operation, because the unlock code
1020                  * live-loops on lockcnt == 1 when dropping the last lock.
1021                  *
1022                  * If the non-blocking operation fails we have to use an
1023                  * unhold sequence to undo the mess.
1024                  *
1025                  * NOTE: LOCKAGAIN must always succeed without blocking,
1026                  *       even if NONBLOCK is specified.
1027                  */
1028                 atomic_add_int(&chain->lockcnt, 1);
1029                 if (how & HAMMER2_RESOLVE_SHARED) {
1030                         if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1031                                 hammer2_mtx_sh_again(&chain->lock);
1032                         } else {
1033                                 if (hammer2_mtx_sh_try(&chain->lock) != 0) {
1034                                         hammer2_chain_unhold(chain);
1035                                         return EAGAIN;
1036                                 }
1037                         }
1038                 } else {
1039                         if (hammer2_mtx_ex_try(&chain->lock) != 0) {
1040                                 hammer2_chain_unhold(chain);
1041                                 return EAGAIN;
1042                         }
1043                 }
1044                 ++curthread->td_tracker;
1045         } else {
1046                 /*
1047                  * Get the appropriate lock.  If LOCKAGAIN is flagged with
1048                  * SHARED the caller expects a shared lock to already be
1049                  * present and we are giving it another ref.  This case must
1050                  * importantly not block if there is a pending exclusive lock
1051                  * request.
1052                  */
1053                 atomic_add_int(&chain->lockcnt, 1);
1054                 if (how & HAMMER2_RESOLVE_SHARED) {
1055                         if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1056                                 hammer2_mtx_sh_again(&chain->lock);
1057                         } else {
1058                                 hammer2_mtx_sh(&chain->lock);
1059                         }
1060                 } else {
1061                         hammer2_mtx_ex(&chain->lock);
1062                 }
1063                 ++curthread->td_tracker;
1064         }
1065
1066         /*
1067          * If we already have a valid data pointer make sure the data is
1068          * synchronized to the current cpu, and then no further action is
1069          * necessary.
1070          */
1071         if (chain->data) {
1072                 if (chain->dio)
1073                         hammer2_io_bkvasync(chain->dio);
1074                 return 0;
1075         }
1076
1077         /*
1078          * Do we have to resolve the data?  This is generally only
1079          * applicable to HAMMER2_BREF_TYPE_DATA which is special-cased.
1080          * Other BREF types expects the data to be there.
1081          */
1082         switch(how & HAMMER2_RESOLVE_MASK) {
1083         case HAMMER2_RESOLVE_NEVER:
1084                 return 0;
1085         case HAMMER2_RESOLVE_MAYBE:
1086                 if (chain->flags & HAMMER2_CHAIN_INITIAL)
1087                         return 0;
1088                 if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
1089                         return 0;
1090 #if 0
1091                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
1092                         return 0;
1093                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
1094                         return 0;
1095 #endif
1096                 /* fall through */
1097         case HAMMER2_RESOLVE_ALWAYS:
1098         default:
1099                 break;
1100         }
1101
1102         /*
1103          * Caller requires data
1104          */
1105         hammer2_chain_load_data(chain);
1106
1107         return 0;
1108 }
1109
1110 /*
1111  * Lock the chain, retain the hold, and drop the data persistence count.
1112  * The data should remain valid because we never transitioned lockcnt
1113  * through 0.
1114  */
1115 void
1116 hammer2_chain_lock_unhold(hammer2_chain_t *chain, int how)
1117 {
1118         hammer2_chain_lock(chain, how);
1119         atomic_add_int(&chain->lockcnt, -1);
1120 }
1121
1122 #if 0
1123 /*
1124  * Downgrade an exclusive chain lock to a shared chain lock.
1125  *
1126  * NOTE: There is no upgrade equivalent due to the ease of
1127  *       deadlocks in that direction.
1128  */
1129 void
1130 hammer2_chain_lock_downgrade(hammer2_chain_t *chain)
1131 {
1132         hammer2_mtx_downgrade(&chain->lock);
1133 }
1134 #endif
1135
1136 /*
1137  * Issue I/O and install chain->data.  Caller must hold a chain lock, lock
1138  * may be of any type.
1139  *
1140  * Once chain->data is set it cannot be disposed of until all locks are
1141  * released.
1142  *
1143  * Make sure the data is synchronized to the current cpu.
1144  */
1145 void
1146 hammer2_chain_load_data(hammer2_chain_t *chain)
1147 {
1148         hammer2_blockref_t *bref;
1149         hammer2_dev_t *hmp;
1150         hammer2_io_t *dio;
1151         char *bdata;
1152         int error;
1153
1154         /*
1155          * Degenerate case, data already present, or chain has no media
1156          * reference to load.
1157          */
1158         KKASSERT(chain->lock.mtx_lock & MTX_MASK);
1159         if (chain->data) {
1160                 if (chain->dio)
1161                         hammer2_io_bkvasync(chain->dio);
1162                 return;
1163         }
1164         if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0)
1165                 return;
1166
1167         hmp = chain->hmp;
1168         KKASSERT(hmp != NULL);
1169
1170         /*
1171          * Gain the IOINPROG bit, interlocked block.
1172          */
1173         for (;;) {
1174                 u_int oflags;
1175                 u_int nflags;
1176
1177                 oflags = chain->flags;
1178                 cpu_ccfence();
1179                 if (oflags & HAMMER2_CHAIN_IOINPROG) {
1180                         nflags = oflags | HAMMER2_CHAIN_IOSIGNAL;
1181                         tsleep_interlock(&chain->flags, 0);
1182                         if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1183                                 tsleep(&chain->flags, PINTERLOCKED,
1184                                         "h2iocw", 0);
1185                         }
1186                         /* retry */
1187                 } else {
1188                         nflags = oflags | HAMMER2_CHAIN_IOINPROG;
1189                         if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1190                                 break;
1191                         }
1192                         /* retry */
1193                 }
1194         }
1195
1196         /*
1197          * We own CHAIN_IOINPROG
1198          *
1199          * Degenerate case if we raced another load.
1200          */
1201         if (chain->data) {
1202                 if (chain->dio)
1203                         hammer2_io_bkvasync(chain->dio);
1204                 goto done;
1205         }
1206
1207         /*
1208          * We must resolve to a device buffer, either by issuing I/O or
1209          * by creating a zero-fill element.  We do not mark the buffer
1210          * dirty when creating a zero-fill element (the hammer2_chain_modify()
1211          * API must still be used to do that).
1212          *
1213          * The device buffer is variable-sized in powers of 2 down
1214          * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
1215          * chunk always contains buffers of the same size. (XXX)
1216          *
1217          * The minimum physical IO size may be larger than the variable
1218          * block size.
1219          */
1220         bref = &chain->bref;
1221
1222         /*
1223          * The getblk() optimization can only be used on newly created
1224          * elements if the physical block size matches the request.
1225          */
1226         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1227                 error = hammer2_io_new(hmp, bref->type,
1228                                        bref->data_off, chain->bytes,
1229                                        &chain->dio);
1230         } else {
1231                 error = hammer2_io_bread(hmp, bref->type,
1232                                          bref->data_off, chain->bytes,
1233                                          &chain->dio);
1234                 hammer2_adjreadcounter(&chain->bref, chain->bytes);
1235         }
1236         if (error) {
1237                 chain->error = HAMMER2_ERROR_EIO;
1238                 kprintf("hammer2_chain_lock: I/O error %016jx: %d\n",
1239                         (intmax_t)bref->data_off, error);
1240                 hammer2_io_bqrelse(&chain->dio);
1241                 goto done;
1242         }
1243         chain->error = 0;
1244
1245         /*
1246          * This isn't perfect and can be ignored on OSs which do not have
1247          * an indication as to whether a buffer is coming from cache or
1248          * if I/O was actually issued for the read.  TESTEDGOOD will work
1249          * pretty well without the B_IOISSUED logic because chains are
1250          * cached, but in that situation (without B_IOISSUED) it will not
1251          * detect whether a re-read via I/O is corrupted verses the original
1252          * read.
1253          *
1254          * We can't re-run the CRC on every fresh lock.  That would be
1255          * insanely expensive.
1256          *
1257          * If the underlying kernel buffer covers the entire chain we can
1258          * use the B_IOISSUED indication to determine if we have to re-run
1259          * the CRC on chain data for chains that managed to stay cached
1260          * across the kernel disposal of the original buffer.
1261          */
1262         if ((dio = chain->dio) != NULL && dio->bp) {
1263                 struct buf *bp = dio->bp;
1264
1265                 if (dio->psize == chain->bytes &&
1266                     (bp->b_flags & B_IOISSUED)) {
1267                         atomic_clear_int(&chain->flags,
1268                                          HAMMER2_CHAIN_TESTEDGOOD);
1269                         bp->b_flags &= ~B_IOISSUED;
1270                 }
1271         }
1272
1273         /*
1274          * NOTE: A locked chain's data cannot be modified without first
1275          *       calling hammer2_chain_modify().
1276          */
1277
1278         /*
1279          * Clear INITIAL.  In this case we used io_new() and the buffer has
1280          * been zero'd and marked dirty.
1281          *
1282          * NOTE: hammer2_io_data() call issues bkvasync()
1283          */
1284         bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
1285
1286         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1287                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1288                 chain->bref.flags |= HAMMER2_BREF_FLAG_ZERO;
1289         } else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1290                 /*
1291                  * check data not currently synchronized due to
1292                  * modification.  XXX assumes data stays in the buffer
1293                  * cache, which might not be true (need biodep on flush
1294                  * to calculate crc?  or simple crc?).
1295                  */
1296         } else if ((chain->flags & HAMMER2_CHAIN_TESTEDGOOD) == 0) {
1297                 if (hammer2_chain_testcheck(chain, bdata) == 0) {
1298                         chain->error = HAMMER2_ERROR_CHECK;
1299                 } else {
1300                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_TESTEDGOOD);
1301                 }
1302         }
1303
1304         /*
1305          * Setup the data pointer, either pointing it to an embedded data
1306          * structure and copying the data from the buffer, or pointing it
1307          * into the buffer.
1308          *
1309          * The buffer is not retained when copying to an embedded data
1310          * structure in order to avoid potential deadlocks or recursions
1311          * on the same physical buffer.
1312          *
1313          * WARNING! Other threads can start using the data the instant we
1314          *          set chain->data non-NULL.
1315          */
1316         switch (bref->type) {
1317         case HAMMER2_BREF_TYPE_VOLUME:
1318         case HAMMER2_BREF_TYPE_FREEMAP:
1319                 /*
1320                  * Copy data from bp to embedded buffer
1321                  */
1322                 panic("hammer2_chain_load_data: unresolved volume header");
1323                 break;
1324         case HAMMER2_BREF_TYPE_DIRENT:
1325                 KKASSERT(chain->bytes != 0);
1326                 /* fall through */
1327         case HAMMER2_BREF_TYPE_INODE:
1328         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1329         case HAMMER2_BREF_TYPE_INDIRECT:
1330         case HAMMER2_BREF_TYPE_DATA:
1331         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1332         default:
1333                 /*
1334                  * Point data at the device buffer and leave dio intact.
1335                  */
1336                 chain->data = (void *)bdata;
1337                 break;
1338         }
1339
1340         /*
1341          * Release HAMMER2_CHAIN_IOINPROG and signal waiters if requested.
1342          */
1343 done:
1344         for (;;) {
1345                 u_int oflags;
1346                 u_int nflags;
1347
1348                 oflags = chain->flags;
1349                 nflags = oflags & ~(HAMMER2_CHAIN_IOINPROG |
1350                                     HAMMER2_CHAIN_IOSIGNAL);
1351                 KKASSERT(oflags & HAMMER2_CHAIN_IOINPROG);
1352                 if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1353                         if (oflags & HAMMER2_CHAIN_IOSIGNAL)
1354                                 wakeup(&chain->flags);
1355                         break;
1356                 }
1357         }
1358 }
1359
1360 /*
1361  * Unlock and deref a chain element.
1362  *
1363  * Remember that the presence of children under chain prevent the chain's
1364  * destruction but do not add additional references, so the dio will still
1365  * be dropped.
1366  */
1367 void
1368 hammer2_chain_unlock(hammer2_chain_t *chain)
1369 {
1370         hammer2_io_t *dio;
1371         u_int lockcnt;
1372         int iter = 0;
1373
1374         --curthread->td_tracker;
1375
1376         /*
1377          * If multiple locks are present (or being attempted) on this
1378          * particular chain we can just unlock, drop refs, and return.
1379          *
1380          * Otherwise fall-through on the 1->0 transition.
1381          */
1382         for (;;) {
1383                 lockcnt = chain->lockcnt;
1384                 KKASSERT(lockcnt > 0);
1385                 cpu_ccfence();
1386                 if (lockcnt > 1) {
1387                         if (atomic_cmpset_int(&chain->lockcnt,
1388                                               lockcnt, lockcnt - 1)) {
1389                                 hammer2_mtx_unlock(&chain->lock);
1390                                 return;
1391                         }
1392                 } else if (hammer2_mtx_upgrade_try(&chain->lock) == 0) {
1393                         /* while holding the mutex exclusively */
1394                         if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
1395                                 break;
1396                 } else {
1397                         /*
1398                          * This situation can easily occur on SMP due to
1399                          * the gap inbetween the 1->0 transition and the
1400                          * final unlock.  We cannot safely block on the
1401                          * mutex because lockcnt might go above 1.
1402                          *
1403                          * XXX Sleep for one tick if it takes too long.
1404                          */
1405                         if (++iter > 1000) {
1406                                 if (iter > 1000 + hz) {
1407                                         kprintf("hammer2: h2race2 %p\n", chain);
1408                                         iter = 1000;
1409                                 }
1410                                 tsleep(&iter, 0, "h2race2", 1);
1411                         }
1412                         cpu_pause();
1413                 }
1414                 /* retry */
1415         }
1416
1417         /*
1418          * Last unlock / mutex upgraded to exclusive.  Drop the data
1419          * reference.
1420          */
1421         dio = hammer2_chain_drop_data(chain);
1422         if (dio)
1423                 hammer2_io_bqrelse(&dio);
1424         hammer2_mtx_unlock(&chain->lock);
1425 }
1426
1427 /*
1428  * Unlock and hold chain data intact
1429  */
1430 void
1431 hammer2_chain_unlock_hold(hammer2_chain_t *chain)
1432 {
1433         atomic_add_int(&chain->lockcnt, 1);
1434         hammer2_chain_unlock(chain);
1435 }
1436
1437 /*
1438  * Helper to obtain the blockref[] array base and count for a chain.
1439  *
1440  * XXX Not widely used yet, various use cases need to be validated and
1441  *     converted to use this function.
1442  */
1443 static
1444 hammer2_blockref_t *
1445 hammer2_chain_base_and_count(hammer2_chain_t *parent, int *countp)
1446 {
1447         hammer2_blockref_t *base;
1448         int count;
1449
1450         if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1451                 base = NULL;
1452
1453                 switch(parent->bref.type) {
1454                 case HAMMER2_BREF_TYPE_INODE:
1455                         count = HAMMER2_SET_COUNT;
1456                         break;
1457                 case HAMMER2_BREF_TYPE_INDIRECT:
1458                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1459                         count = parent->bytes / sizeof(hammer2_blockref_t);
1460                         break;
1461                 case HAMMER2_BREF_TYPE_VOLUME:
1462                         count = HAMMER2_SET_COUNT;
1463                         break;
1464                 case HAMMER2_BREF_TYPE_FREEMAP:
1465                         count = HAMMER2_SET_COUNT;
1466                         break;
1467                 default:
1468                         panic("hammer2_chain_base_and_count: "
1469                               "unrecognized blockref type: %d",
1470                               parent->bref.type);
1471                         count = 0;
1472                         break;
1473                 }
1474         } else {
1475                 switch(parent->bref.type) {
1476                 case HAMMER2_BREF_TYPE_INODE:
1477                         base = &parent->data->ipdata.u.blockset.blockref[0];
1478                         count = HAMMER2_SET_COUNT;
1479                         break;
1480                 case HAMMER2_BREF_TYPE_INDIRECT:
1481                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1482                         base = &parent->data->npdata[0];
1483                         count = parent->bytes / sizeof(hammer2_blockref_t);
1484                         break;
1485                 case HAMMER2_BREF_TYPE_VOLUME:
1486                         base = &parent->data->voldata.
1487                                         sroot_blockset.blockref[0];
1488                         count = HAMMER2_SET_COUNT;
1489                         break;
1490                 case HAMMER2_BREF_TYPE_FREEMAP:
1491                         base = &parent->data->blkset.blockref[0];
1492                         count = HAMMER2_SET_COUNT;
1493                         break;
1494                 default:
1495                         panic("hammer2_chain_base_and_count: "
1496                               "unrecognized blockref type: %d",
1497                               parent->bref.type);
1498                         count = 0;
1499                         break;
1500                 }
1501         }
1502         *countp = count;
1503
1504         return base;
1505 }
1506
1507 /*
1508  * This counts the number of live blockrefs in a block array and
1509  * also calculates the point at which all remaining blockrefs are empty.
1510  * This routine can only be called on a live chain.
1511  *
1512  * Caller holds the chain locked, but possibly with a shared lock.  We
1513  * must use an exclusive spinlock to prevent corruption.
1514  *
1515  * NOTE: Flag is not set until after the count is complete, allowing
1516  *       callers to test the flag without holding the spinlock.
1517  *
1518  * NOTE: If base is NULL the related chain is still in the INITIAL
1519  *       state and there are no blockrefs to count.
1520  *
1521  * NOTE: live_count may already have some counts accumulated due to
1522  *       creation and deletion and could even be initially negative.
1523  */
1524 void
1525 hammer2_chain_countbrefs(hammer2_chain_t *chain,
1526                          hammer2_blockref_t *base, int count)
1527 {
1528         hammer2_spin_ex(&chain->core.spin);
1529         if ((chain->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0) {
1530                 if (base) {
1531                         while (--count >= 0) {
1532                                 if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1533                                         break;
1534                         }
1535                         chain->core.live_zero = count + 1;
1536                         while (count >= 0) {
1537                                 if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1538                                         atomic_add_int(&chain->core.live_count,
1539                                                        1);
1540                                 --count;
1541                         }
1542                 } else {
1543                         chain->core.live_zero = 0;
1544                 }
1545                 /* else do not modify live_count */
1546                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_COUNTEDBREFS);
1547         }
1548         hammer2_spin_unex(&chain->core.spin);
1549 }
1550
1551 /*
1552  * Resize the chain's physical storage allocation in-place.  This function does
1553  * not usually adjust the data pointer and must be followed by (typically) a
1554  * hammer2_chain_modify() call to copy any old data over and adjust the
1555  * data pointer.
1556  *
1557  * Chains can be resized smaller without reallocating the storage.  Resizing
1558  * larger will reallocate the storage.  Excess or prior storage is reclaimed
1559  * asynchronously at a later time.
1560  *
1561  * An nradix value of 0 is special-cased to mean that the storage should
1562  * be disassociated, that is the chain is being resized to 0 bytes (not 1
1563  * byte).
1564  *
1565  * Must be passed an exclusively locked parent and chain.
1566  *
1567  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1568  * to avoid instantiating a device buffer that conflicts with the vnode data
1569  * buffer.  However, because H2 can compress or encrypt data, the chain may
1570  * have a dio assigned to it in those situations, and they do not conflict.
1571  *
1572  * XXX return error if cannot resize.
1573  */
1574 int
1575 hammer2_chain_resize(hammer2_chain_t *chain,
1576                      hammer2_tid_t mtid, hammer2_off_t dedup_off,
1577                      int nradix, int flags)
1578 {
1579         hammer2_dev_t *hmp;
1580         size_t obytes;
1581         size_t nbytes;
1582         int error;
1583
1584         hmp = chain->hmp;
1585
1586         /*
1587          * Only data and indirect blocks can be resized for now.
1588          * (The volu root, inodes, and freemap elements use a fixed size).
1589          */
1590         KKASSERT(chain != &hmp->vchain);
1591         KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1592                  chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1593                  chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1594
1595         /*
1596          * Nothing to do if the element is already the proper size
1597          */
1598         obytes = chain->bytes;
1599         nbytes = (nradix) ? (1U << nradix) : 0;
1600         if (obytes == nbytes)
1601                 return (chain->error);
1602
1603         /*
1604          * Make sure the old data is instantiated so we can copy it.  If this
1605          * is a data block, the device data may be superfluous since the data
1606          * might be in a logical block, but compressed or encrypted data is
1607          * another matter.
1608          *
1609          * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
1610          */
1611         error = hammer2_chain_modify(chain, mtid, dedup_off, 0);
1612         if (error)
1613                 return error;
1614
1615         /*
1616          * Relocate the block, even if making it smaller (because different
1617          * block sizes may be in different regions).
1618          *
1619          * NOTE: Operation does not copy the data and may only be used
1620          *        to resize data blocks in-place, or directory entry blocks
1621          *        which are about to be modified in some manner.
1622          */
1623         error = hammer2_freemap_alloc(chain, nbytes);
1624         if (error)
1625                 return error;
1626
1627         chain->bytes = nbytes;
1628
1629         /*
1630          * We don't want the followup chain_modify() to try to copy data
1631          * from the old (wrong-sized) buffer.  It won't know how much to
1632          * copy.  This case should only occur during writes when the
1633          * originator already has the data to write in-hand.
1634          */
1635         if (chain->dio) {
1636                 KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1637                          chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1638                 hammer2_io_brelse(&chain->dio);
1639                 chain->data = NULL;
1640         }
1641         return (chain->error);
1642 }
1643
1644 /*
1645  * Set the chain modified so its data can be changed by the caller, or
1646  * install deduplicated data.  The caller must call this routine for each
1647  * set of modifications it makes, even if the chain is already flagged
1648  * MODIFIED.
1649  *
1650  * Sets bref.modify_tid to mtid only if mtid != 0.  Note that bref.modify_tid
1651  * is a CLC (cluster level change) field and is not updated by parent
1652  * propagation during a flush.
1653  *
1654  * Returns an appropriate HAMMER2_ERROR_* code, which will generally reflect
1655  * chain->error except for HAMMER2_ERROR_ENOSPC.  If the allocation fails
1656  * due to no space available, HAMMER2_ERROR_ENOSPC is returned and the chain
1657  * remains unmodified with its old data ref intact and chain->error
1658  * unchanged.
1659  *
1660  *                               Dedup Handling
1661  *
1662  * If the DEDUPABLE flag is set in the chain the storage must be reallocated
1663  * even if the chain is still flagged MODIFIED.  In this case the chain's
1664  * DEDUPABLE flag will be cleared once the new storage has been assigned.
1665  *
1666  * If the caller passes a non-zero dedup_off we will use it to assign the
1667  * new storage.  The MODIFIED flag will be *CLEARED* in this case, and
1668  * DEDUPABLE will be set (NOTE: the UPDATE flag is always set).  The caller
1669  * must not modify the data content upon return.
1670  */
1671 int
1672 hammer2_chain_modify(hammer2_chain_t *chain, hammer2_tid_t mtid,
1673                      hammer2_off_t dedup_off, int flags)
1674 {
1675         hammer2_blockref_t obref;
1676         hammer2_dev_t *hmp;
1677         hammer2_io_t *dio;
1678         int error;
1679         int wasinitial;
1680         int setmodified;
1681         int setupdate;
1682         int newmod;
1683         char *bdata;
1684
1685         hmp = chain->hmp;
1686         obref = chain->bref;
1687         KKASSERT((chain->flags & HAMMER2_CHAIN_FICTITIOUS) == 0);
1688         KKASSERT(chain->lock.mtx_lock & MTX_EXCLUSIVE);
1689
1690         /*
1691          * Data is not optional for freemap chains (we must always be sure
1692          * to copy the data on COW storage allocations).
1693          */
1694         if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1695             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1696                 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1697                          (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1698         }
1699
1700         /*
1701          * Data must be resolved if already assigned, unless explicitly
1702          * flagged otherwise.  If we cannot safety load the data the
1703          * modification fails and we return early.
1704          */
1705         if (chain->data == NULL && chain->bytes != 0 &&
1706             (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1707             (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1708                 hammer2_chain_load_data(chain);
1709                 if (chain->error)
1710                         return (chain->error);
1711         }
1712         error = 0;
1713
1714         /*
1715          * Set MODIFIED to indicate that the chain has been modified.  A new
1716          * allocation is required when modifying a chain.
1717          *
1718          * Set UPDATE to ensure that the blockref is updated in the parent.
1719          *
1720          * If MODIFIED is already set determine if we can reuse the assigned
1721          * data block or if we need a new data block.
1722          */
1723         if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1724                 /*
1725                  * Must set modified bit.
1726                  */
1727                 atomic_add_long(&hammer2_count_modified_chains, 1);
1728                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1729                 hammer2_pfs_memory_inc(chain->pmp);  /* can be NULL */
1730                 setmodified = 1;
1731
1732                 /*
1733                  * We may be able to avoid a copy-on-write if the chain's
1734                  * check mode is set to NONE and the chain's current
1735                  * modify_tid is beyond the last explicit snapshot tid.
1736                  *
1737                  * This implements HAMMER2's overwrite-in-place feature.
1738                  *
1739                  * NOTE! This data-block cannot be used as a de-duplication
1740                  *       source when the check mode is set to NONE.
1741                  */
1742                 if ((chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1743                      chain->bref.type == HAMMER2_BREF_TYPE_DIRENT) &&
1744                     (chain->flags & HAMMER2_CHAIN_INITIAL) == 0 &&
1745                     (chain->flags & HAMMER2_CHAIN_DEDUPABLE) == 0 &&
1746                     HAMMER2_DEC_CHECK(chain->bref.methods) ==
1747                      HAMMER2_CHECK_NONE &&
1748                     chain->pmp &&
1749                     chain->bref.modify_tid >
1750                      chain->pmp->iroot->meta.pfs_lsnap_tid) {
1751                         /*
1752                          * Sector overwrite allowed.
1753                          */
1754                         newmod = 0;
1755                 } else if ((hmp->hflags & HMNT2_EMERG) &&
1756                            chain->pmp &&
1757                            chain->bref.modify_tid >
1758                             chain->pmp->iroot->meta.pfs_lsnap_tid) {
1759                         /*
1760                          * If in emergency delete mode then do a modify-in-
1761                          * place on any chain type belonging to the PFS as
1762                          * long as it doesn't mess up a snapshot.  We might
1763                          * be forced to do this anyway a little further down
1764                          * in the code if the allocation fails.
1765                          *
1766                          * Also note that in emergency mode, these modify-in-
1767                          * place operations are NOT SAFE.  A storage failure,
1768                          * power failure, or panic can corrupt the filesystem.
1769                          */
1770                         newmod = 0;
1771                 } else {
1772                         /*
1773                          * Sector overwrite not allowed, must copy-on-write.
1774                          */
1775                         newmod = 1;
1776                 }
1777         } else if (chain->flags & HAMMER2_CHAIN_DEDUPABLE) {
1778                 /*
1779                  * If the modified chain was registered for dedup we need
1780                  * a new allocation.  This only happens for delayed-flush
1781                  * chains (i.e. which run through the front-end buffer
1782                  * cache).
1783                  */
1784                 newmod = 1;
1785                 setmodified = 0;
1786         } else {
1787                 /*
1788                  * Already flagged modified, no new allocation is needed.
1789                  */
1790                 newmod = 0;
1791                 setmodified = 0;
1792         }
1793
1794         /*
1795          * Flag parent update required.
1796          */
1797         if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
1798                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1799                 setupdate = 1;
1800         } else {
1801                 setupdate = 0;
1802         }
1803
1804         /*
1805          * The XOP code returns held but unlocked focus chains.  This
1806          * prevents the chain from being destroyed but does not prevent
1807          * it from being modified.  diolk is used to interlock modifications
1808          * against XOP frontend accesses to the focus.
1809          *
1810          * This allows us to theoretically avoid deadlocking the frontend
1811          * if one of the backends lock up by not formally locking the
1812          * focused chain in the frontend.  In addition, the synchronization
1813          * code relies on this mechanism to avoid deadlocking concurrent
1814          * synchronization threads.
1815          */
1816         lockmgr(&chain->diolk, LK_EXCLUSIVE);
1817
1818         /*
1819          * The modification or re-modification requires an allocation and
1820          * possible COW.  If an error occurs, the previous content and data
1821          * reference is retained and the modification fails.
1822          *
1823          * If dedup_off is non-zero, the caller is requesting a deduplication
1824          * rather than a modification.  The MODIFIED bit is not set and the
1825          * data offset is set to the deduplication offset.  The data cannot
1826          * be modified.
1827          *
1828          * NOTE: The dedup offset is allowed to be in a partially free state
1829          *       and we must be sure to reset it to a fully allocated state
1830          *       to force two bulkfree passes to free it again.
1831          *
1832          * NOTE: Only applicable when chain->bytes != 0.
1833          *
1834          * XXX can a chain already be marked MODIFIED without a data
1835          * assignment?  If not, assert here instead of testing the case.
1836          */
1837         if (chain != &hmp->vchain && chain != &hmp->fchain &&
1838             chain->bytes) {
1839                 if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1840                     newmod
1841                 ) {
1842                         /*
1843                          * NOTE: We do not have to remove the dedup
1844                          *       registration because the area is still
1845                          *       allocated and the underlying DIO will
1846                          *       still be flushed.
1847                          */
1848                         if (dedup_off) {
1849                                 chain->bref.data_off = dedup_off;
1850                                 chain->bytes = 1 << (dedup_off &
1851                                                      HAMMER2_OFF_MASK_RADIX);
1852                                 chain->error = 0;
1853                                 atomic_clear_int(&chain->flags,
1854                                                  HAMMER2_CHAIN_MODIFIED);
1855                                 atomic_add_long(&hammer2_count_modified_chains,
1856                                                 -1);
1857                                 if (chain->pmp)
1858                                         hammer2_pfs_memory_wakeup(chain->pmp);
1859                                 hammer2_freemap_adjust(hmp, &chain->bref,
1860                                                 HAMMER2_FREEMAP_DORECOVER);
1861                                 atomic_set_int(&chain->flags,
1862                                                 HAMMER2_CHAIN_DEDUPABLE);
1863                         } else {
1864                                 error = hammer2_freemap_alloc(chain,
1865                                                               chain->bytes);
1866                                 atomic_clear_int(&chain->flags,
1867                                                 HAMMER2_CHAIN_DEDUPABLE);
1868
1869                                 /*
1870                                  * If we are unable to allocate a new block
1871                                  * but we are in emergency mode, issue a
1872                                  * warning to the console and reuse the same
1873                                  * block.
1874                                  *
1875                                  * We behave as if the allocation were
1876                                  * successful.
1877                                  *
1878                                  * THIS IS IMPORTANT: These modifications
1879                                  * are virtually guaranteed to corrupt any
1880                                  * snapshots related to this filesystem.
1881                                  */
1882                                 if (error && (hmp->hflags & HMNT2_EMERG)) {
1883                                         error = 0;
1884                                         chain->bref.flags |=
1885                                                 HAMMER2_BREF_FLAG_EMERG_MIP;
1886
1887                                         krateprintf(&krate_h2em,
1888                                             "hammer2: Emergency Mode WARNING: "
1889                                             "Operation will likely corrupt "
1890                                             "related snapshot: "
1891                                             "%016jx.%02x key=%016jx\n",
1892                                             chain->bref.data_off,
1893                                             chain->bref.type,
1894                                             chain->bref.key);
1895                                 } else if (error == 0) {
1896                                         chain->bref.flags &=
1897                                                 ~HAMMER2_BREF_FLAG_EMERG_MIP;
1898                                 }
1899                         }
1900                 }
1901         }
1902
1903         /*
1904          * Stop here if error.  We have to undo any flag bits we might
1905          * have set above.
1906          */
1907         if (error) {
1908                 if (setmodified) {
1909                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1910                         atomic_add_long(&hammer2_count_modified_chains, -1);
1911                         if (chain->pmp)
1912                                 hammer2_pfs_memory_wakeup(chain->pmp);
1913                 }
1914                 if (setupdate) {
1915                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1916                 }
1917                 lockmgr(&chain->diolk, LK_RELEASE);
1918
1919                 return error;
1920         }
1921
1922         /*
1923          * Update mirror_tid and modify_tid.  modify_tid is only updated
1924          * if not passed as zero (during flushes, parent propagation passes
1925          * the value 0).
1926          *
1927          * NOTE: chain->pmp could be the device spmp.
1928          */
1929         chain->bref.mirror_tid = hmp->voldata.mirror_tid + 1;
1930         if (mtid)
1931                 chain->bref.modify_tid = mtid;
1932
1933         /*
1934          * Set BMAPUPD to tell the flush code that an existing blockmap entry
1935          * requires updating as well as to tell the delete code that the
1936          * chain's blockref might not exactly match (in terms of physical size
1937          * or block offset) the one in the parent's blocktable.  The base key
1938          * of course will still match.
1939          */
1940         if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1941                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1942
1943         /*
1944          * Short-cut data blocks which the caller does not need an actual
1945          * data reference to (aka OPTDATA), as long as the chain does not
1946          * already have a data pointer to the data.  This generally means
1947          * that the modifications are being done via the logical buffer cache.
1948          * The INITIAL flag relates only to the device data buffer and thus
1949          * remains unchange in this situation.
1950          *
1951          * This code also handles bytes == 0 (most dirents).
1952          */
1953         if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1954             (flags & HAMMER2_MODIFY_OPTDATA) &&
1955             chain->data == NULL) {
1956                 KKASSERT(chain->dio == NULL);
1957                 goto skip2;
1958         }
1959
1960         /*
1961          * Clearing the INITIAL flag (for indirect blocks) indicates that
1962          * we've processed the uninitialized storage allocation.
1963          *
1964          * If this flag is already clear we are likely in a copy-on-write
1965          * situation but we have to be sure NOT to bzero the storage if
1966          * no data is present.
1967          */
1968         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1969                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1970                 wasinitial = 1;
1971         } else {
1972                 wasinitial = 0;
1973         }
1974
1975         /*
1976          * Instantiate data buffer and possibly execute COW operation
1977          */
1978         switch(chain->bref.type) {
1979         case HAMMER2_BREF_TYPE_VOLUME:
1980         case HAMMER2_BREF_TYPE_FREEMAP:
1981                 /*
1982                  * The data is embedded, no copy-on-write operation is
1983                  * needed.
1984                  */
1985                 KKASSERT(chain->dio == NULL);
1986                 break;
1987         case HAMMER2_BREF_TYPE_DIRENT:
1988                 /*
1989                  * The data might be fully embedded.
1990                  */
1991                 if (chain->bytes == 0) {
1992                         KKASSERT(chain->dio == NULL);
1993                         break;
1994                 }
1995                 /* fall through */
1996         case HAMMER2_BREF_TYPE_INODE:
1997         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1998         case HAMMER2_BREF_TYPE_DATA:
1999         case HAMMER2_BREF_TYPE_INDIRECT:
2000         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2001                 /*
2002                  * Perform the copy-on-write operation
2003                  *
2004                  * zero-fill or copy-on-write depending on whether
2005                  * chain->data exists or not and set the dirty state for
2006                  * the new buffer.  hammer2_io_new() will handle the
2007                  * zero-fill.
2008                  *
2009                  * If a dedup_off was supplied this is an existing block
2010                  * and no COW, copy, or further modification is required.
2011                  */
2012                 KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
2013
2014                 if (wasinitial && dedup_off == 0) {
2015                         error = hammer2_io_new(hmp, chain->bref.type,
2016                                                chain->bref.data_off,
2017                                                chain->bytes, &dio);
2018                 } else {
2019                         error = hammer2_io_bread(hmp, chain->bref.type,
2020                                                  chain->bref.data_off,
2021                                                  chain->bytes, &dio);
2022                 }
2023                 hammer2_adjreadcounter(&chain->bref, chain->bytes);
2024
2025                 /*
2026                  * If an I/O error occurs make sure callers cannot accidently
2027                  * modify the old buffer's contents and corrupt the filesystem.
2028                  *
2029                  * NOTE: hammer2_io_data() call issues bkvasync()
2030                  */
2031                 if (error) {
2032                         kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
2033                                 hmp);
2034                         chain->error = HAMMER2_ERROR_EIO;
2035                         hammer2_io_brelse(&dio);
2036                         hammer2_io_brelse(&chain->dio);
2037                         chain->data = NULL;
2038                         break;
2039                 }
2040                 chain->error = 0;
2041                 bdata = hammer2_io_data(dio, chain->bref.data_off);
2042
2043                 if (chain->data) {
2044                         /*
2045                          * COW (unless a dedup).
2046                          */
2047                         KKASSERT(chain->dio != NULL);
2048                         if (chain->data != (void *)bdata && dedup_off == 0) {
2049                                 bcopy(chain->data, bdata, chain->bytes);
2050                         }
2051                 } else if (wasinitial == 0) {
2052                         /*
2053                          * We have a problem.  We were asked to COW but
2054                          * we don't have any data to COW with!
2055                          */
2056                         panic("hammer2_chain_modify: having a COW %p\n",
2057                               chain);
2058                 }
2059
2060                 /*
2061                  * Retire the old buffer, replace with the new.  Dirty or
2062                  * redirty the new buffer.
2063                  *
2064                  * WARNING! The system buffer cache may have already flushed
2065                  *          the buffer, so we must be sure to [re]dirty it
2066                  *          for further modification.
2067                  *
2068                  *          If dedup_off was supplied, the caller is not
2069                  *          expected to make any further modification to the
2070                  *          buffer.
2071                  *
2072                  * WARNING! hammer2_get_gdata() assumes dio never transitions
2073                  *          through NULL in order to optimize away unnecessary
2074                  *          diolk operations.
2075                  */
2076                 {
2077                         hammer2_io_t *tio;
2078
2079                         if ((tio = chain->dio) != NULL)
2080                                 hammer2_io_bqrelse(&tio);
2081                         chain->data = (void *)bdata;
2082                         chain->dio = dio;
2083                         if (dedup_off == 0)
2084                                 hammer2_io_setdirty(dio);
2085                 }
2086                 break;
2087         default:
2088                 panic("hammer2_chain_modify: illegal non-embedded type %d",
2089                       chain->bref.type);
2090                 break;
2091
2092         }
2093 skip2:
2094         /*
2095          * setflush on parent indicating that the parent must recurse down
2096          * to us.  Do not call on chain itself which might already have it
2097          * set.
2098          */
2099         if (chain->parent)
2100                 hammer2_chain_setflush(chain->parent);
2101         lockmgr(&chain->diolk, LK_RELEASE);
2102
2103         return (chain->error);
2104 }
2105
2106 /*
2107  * Modify the chain associated with an inode.
2108  */
2109 int
2110 hammer2_chain_modify_ip(hammer2_inode_t *ip, hammer2_chain_t *chain,
2111                         hammer2_tid_t mtid, int flags)
2112 {
2113         int error;
2114
2115         hammer2_inode_modify(ip);
2116         error = hammer2_chain_modify(chain, mtid, 0, flags);
2117
2118         return error;
2119 }
2120
2121 /*
2122  * Volume header data locks
2123  */
2124 void
2125 hammer2_voldata_lock(hammer2_dev_t *hmp)
2126 {
2127         lockmgr(&hmp->vollk, LK_EXCLUSIVE);
2128 }
2129
2130 void
2131 hammer2_voldata_unlock(hammer2_dev_t *hmp)
2132 {
2133         lockmgr(&hmp->vollk, LK_RELEASE);
2134 }
2135
2136 void
2137 hammer2_voldata_modify(hammer2_dev_t *hmp)
2138 {
2139         if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
2140                 atomic_add_long(&hammer2_count_modified_chains, 1);
2141                 atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
2142                 hammer2_pfs_memory_inc(hmp->vchain.pmp);
2143         }
2144 }
2145
2146 /*
2147  * This function returns the chain at the nearest key within the specified
2148  * range.  The returned chain will be referenced but not locked.
2149  *
2150  * This function will recurse through chain->rbtree as necessary and will
2151  * return a *key_nextp suitable for iteration.  *key_nextp is only set if
2152  * the iteration value is less than the current value of *key_nextp.
2153  *
2154  * The caller should use (*key_nextp) to calculate the actual range of
2155  * the returned element, which will be (key_beg to *key_nextp - 1), because
2156  * there might be another element which is superior to the returned element
2157  * and overlaps it.
2158  *
2159  * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
2160  * chains continue to be returned.  On EOF (*key_nextp) may overflow since
2161  * it will wind up being (key_end + 1).
2162  *
2163  * WARNING!  Must be called with child's spinlock held.  Spinlock remains
2164  *           held through the operation.
2165  */
2166 struct hammer2_chain_find_info {
2167         hammer2_chain_t         *best;
2168         hammer2_key_t           key_beg;
2169         hammer2_key_t           key_end;
2170         hammer2_key_t           key_next;
2171 };
2172
2173 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
2174 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
2175
2176 static
2177 hammer2_chain_t *
2178 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
2179                           hammer2_key_t key_beg, hammer2_key_t key_end)
2180 {
2181         struct hammer2_chain_find_info info;
2182
2183         info.best = NULL;
2184         info.key_beg = key_beg;
2185         info.key_end = key_end;
2186         info.key_next = *key_nextp;
2187
2188         RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
2189                 hammer2_chain_find_cmp, hammer2_chain_find_callback,
2190                 &info);
2191         *key_nextp = info.key_next;
2192 #if 0
2193         kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
2194                 parent, key_beg, key_end, *key_nextp);
2195 #endif
2196
2197         return (info.best);
2198 }
2199
2200 static
2201 int
2202 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
2203 {
2204         struct hammer2_chain_find_info *info = data;
2205         hammer2_key_t child_beg;
2206         hammer2_key_t child_end;
2207
2208         child_beg = child->bref.key;
2209         child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
2210
2211         if (child_end < info->key_beg)
2212                 return(-1);
2213         if (child_beg > info->key_end)
2214                 return(1);
2215         return(0);
2216 }
2217
2218 static
2219 int
2220 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
2221 {
2222         struct hammer2_chain_find_info *info = data;
2223         hammer2_chain_t *best;
2224         hammer2_key_t child_end;
2225
2226         /*
2227          * WARNING! Layerq is scanned forwards, exact matches should keep
2228          *          the existing info->best.
2229          */
2230         if ((best = info->best) == NULL) {
2231                 /*
2232                  * No previous best.  Assign best
2233                  */
2234                 info->best = child;
2235         } else if (best->bref.key <= info->key_beg &&
2236                    child->bref.key <= info->key_beg) {
2237                 /*
2238                  * Illegal overlap.
2239                  */
2240                 KKASSERT(0);
2241                 /*info->best = child;*/
2242         } else if (child->bref.key < best->bref.key) {
2243                 /*
2244                  * Child has a nearer key and best is not flush with key_beg.
2245                  * Set best to child.  Truncate key_next to the old best key.
2246                  */
2247                 info->best = child;
2248                 if (info->key_next > best->bref.key || info->key_next == 0)
2249                         info->key_next = best->bref.key;
2250         } else if (child->bref.key == best->bref.key) {
2251                 /*
2252                  * If our current best is flush with the child then this
2253                  * is an illegal overlap.
2254                  *
2255                  * key_next will automatically be limited to the smaller of
2256                  * the two end-points.
2257                  */
2258                 KKASSERT(0);
2259                 info->best = child;
2260         } else {
2261                 /*
2262                  * Keep the current best but truncate key_next to the child's
2263                  * base.
2264                  *
2265                  * key_next will also automatically be limited to the smaller
2266                  * of the two end-points (probably not necessary for this case
2267                  * but we do it anyway).
2268                  */
2269                 if (info->key_next > child->bref.key || info->key_next == 0)
2270                         info->key_next = child->bref.key;
2271         }
2272
2273         /*
2274          * Always truncate key_next based on child's end-of-range.
2275          */
2276         child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
2277         if (child_end && (info->key_next > child_end || info->key_next == 0))
2278                 info->key_next = child_end;
2279
2280         return(0);
2281 }
2282
2283 /*
2284  * Retrieve the specified chain from a media blockref, creating the
2285  * in-memory chain structure which reflects it.  The returned chain is
2286  * held and locked according to (how) (HAMMER2_RESOLVE_*).  The caller must
2287  * handle crc-checks and so forth, and should check chain->error before
2288  * assuming that the data is good.
2289  *
2290  * To handle insertion races pass the INSERT_RACE flag along with the
2291  * generation number of the core.  NULL will be returned if the generation
2292  * number changes before we have a chance to insert the chain.  Insert
2293  * races can occur because the parent might be held shared.
2294  *
2295  * Caller must hold the parent locked shared or exclusive since we may
2296  * need the parent's bref array to find our block.
2297  *
2298  * WARNING! chain->pmp is always set to NULL for any chain representing
2299  *          part of the super-root topology.
2300  */
2301 hammer2_chain_t *
2302 hammer2_chain_get(hammer2_chain_t *parent, int generation,
2303                   hammer2_blockref_t *bref, int how)
2304 {
2305         hammer2_dev_t *hmp = parent->hmp;
2306         hammer2_chain_t *chain;
2307         int error;
2308
2309         /*
2310          * Allocate a chain structure representing the existing media
2311          * entry.  Resulting chain has one ref and is not locked.
2312          */
2313         if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
2314                 chain = hammer2_chain_alloc(hmp, NULL, bref);
2315         else
2316                 chain = hammer2_chain_alloc(hmp, parent->pmp, bref);
2317         /* ref'd chain returned */
2318
2319         /*
2320          * Flag that the chain is in the parent's blockmap so delete/flush
2321          * knows what to do with it.
2322          */
2323         atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
2324
2325         /*
2326          * chain must be locked to avoid unexpected ripouts
2327          */
2328         hammer2_chain_lock(chain, how);
2329
2330         /*
2331          * Link the chain into its parent.  A spinlock is required to safely
2332          * access the RBTREE, and it is possible to collide with another
2333          * hammer2_chain_get() operation because the caller might only hold
2334          * a shared lock on the parent.
2335          *
2336          * NOTE: Get races can occur quite often when we distribute
2337          *       asynchronous read-aheads across multiple threads.
2338          */
2339         KKASSERT(parent->refs > 0);
2340         error = hammer2_chain_insert(parent, chain,
2341                                      HAMMER2_CHAIN_INSERT_SPIN |
2342                                      HAMMER2_CHAIN_INSERT_RACE,
2343                                      generation);
2344         if (error) {
2345                 KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
2346                 /*kprintf("chain %p get race\n", chain);*/
2347                 hammer2_chain_unlock(chain);
2348                 hammer2_chain_drop(chain);
2349                 chain = NULL;
2350         } else {
2351                 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2352         }
2353
2354         /*
2355          * Return our new chain referenced but not locked, or NULL if
2356          * a race occurred.
2357          */
2358         return (chain);
2359 }
2360
2361 /*
2362  * Lookup initialization/completion API
2363  */
2364 hammer2_chain_t *
2365 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
2366 {
2367         hammer2_chain_ref(parent);
2368         if (flags & HAMMER2_LOOKUP_SHARED) {
2369                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
2370                                            HAMMER2_RESOLVE_SHARED);
2371         } else {
2372                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2373         }
2374         return (parent);
2375 }
2376
2377 void
2378 hammer2_chain_lookup_done(hammer2_chain_t *parent)
2379 {
2380         if (parent) {
2381                 hammer2_chain_unlock(parent);
2382                 hammer2_chain_drop(parent);
2383         }
2384 }
2385
2386 /*
2387  * Take the locked chain and return a locked parent.  The chain remains
2388  * locked on return, but may have to be temporarily unlocked to acquire
2389  * the parent.  Because of this, (chain) must be stable and cannot be
2390  * deleted while it was temporarily unlocked (typically means that (chain)
2391  * is an inode).
2392  *
2393  * Pass HAMMER2_RESOLVE_* flags in flags.
2394  *
2395  * This will work even if the chain is errored, and the caller can check
2396  * parent->error on return if desired since the parent will be locked.
2397  *
2398  * This function handles the lock order reversal.
2399  */
2400 hammer2_chain_t *
2401 hammer2_chain_getparent(hammer2_chain_t *chain, int flags)
2402 {
2403         hammer2_chain_t *parent;
2404
2405         /*
2406          * Be careful of order, chain must be unlocked before parent
2407          * is locked below to avoid a deadlock.  Try it trivially first.
2408          */
2409         parent = chain->parent;
2410         if (parent == NULL)
2411                 panic("hammer2_chain_getparent: no parent");
2412         hammer2_chain_ref(parent);
2413         if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0)
2414                 return parent;
2415
2416         for (;;) {
2417                 hammer2_chain_unlock(chain);
2418                 hammer2_chain_lock(parent, flags);
2419                 hammer2_chain_lock(chain, flags);
2420
2421                 /*
2422                  * Parent relinking races are quite common.  We have to get
2423                  * it right or we will blow up the block table.
2424                  */
2425                 if (chain->parent == parent)
2426                         break;
2427                 hammer2_chain_unlock(parent);
2428                 hammer2_chain_drop(parent);
2429                 cpu_ccfence();
2430                 parent = chain->parent;
2431                 if (parent == NULL)
2432                         panic("hammer2_chain_getparent: no parent");
2433                 hammer2_chain_ref(parent);
2434         }
2435         return parent;
2436 }
2437
2438 /*
2439  * Take the locked chain and return a locked parent.  The chain is unlocked
2440  * and dropped.  *chainp is set to the returned parent as a convenience.
2441  * Pass HAMMER2_RESOLVE_* flags in flags.
2442  *
2443  * This will work even if the chain is errored, and the caller can check
2444  * parent->error on return if desired since the parent will be locked.
2445  *
2446  * The chain does NOT need to be stable.  We use a tracking structure
2447  * to track the expected parent if the chain is deleted out from under us.
2448  *
2449  * This function handles the lock order reversal.
2450  */
2451 hammer2_chain_t *
2452 hammer2_chain_repparent(hammer2_chain_t **chainp, int flags)
2453 {
2454         hammer2_chain_t *chain;
2455         hammer2_chain_t *parent;
2456         struct hammer2_reptrack reptrack;
2457         struct hammer2_reptrack **repp;
2458
2459         /*
2460          * Be careful of order, chain must be unlocked before parent
2461          * is locked below to avoid a deadlock.  Try it trivially first.
2462          */
2463         chain = *chainp;
2464         parent = chain->parent;
2465         if (parent == NULL) {
2466                 hammer2_spin_unex(&chain->core.spin);
2467                 panic("hammer2_chain_repparent: no parent");
2468         }
2469         hammer2_chain_ref(parent);
2470         if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0) {
2471                 hammer2_chain_unlock(chain);
2472                 hammer2_chain_drop(chain);
2473                 *chainp = parent;
2474
2475                 return parent;
2476         }
2477
2478         /*
2479          * Ok, now it gets a bit nasty.  There are multiple situations where
2480          * the parent might be in the middle of a deletion, or where the child
2481          * (chain) might be deleted the instant we let go of its lock.
2482          * We can potentially end up in a no-win situation!
2483          *
2484          * In particular, the indirect_maintenance() case can cause these
2485          * situations.
2486          *
2487          * To deal with this we install a reptrack structure in the parent
2488          * This reptrack structure 'owns' the parent ref and will automatically
2489          * migrate to the parent's parent if the parent is deleted permanently.
2490          */
2491         hammer2_spin_init(&reptrack.spin, "h2reptrk");
2492         reptrack.chain = parent;
2493         hammer2_chain_ref(parent);              /* for the reptrack */
2494
2495         hammer2_spin_ex(&parent->core.spin);
2496         reptrack.next = parent->core.reptrack;
2497         parent->core.reptrack = &reptrack;
2498         hammer2_spin_unex(&parent->core.spin);
2499
2500         hammer2_chain_unlock(chain);
2501         hammer2_chain_drop(chain);
2502         chain = NULL;   /* gone */
2503
2504         /*
2505          * At the top of this loop, chain is gone and parent is refd both
2506          * by us explicitly AND via our reptrack.  We are attempting to
2507          * lock parent.
2508          */
2509         for (;;) {
2510                 hammer2_chain_lock(parent, flags);
2511
2512                 if (reptrack.chain == parent)
2513                         break;
2514                 hammer2_chain_unlock(parent);
2515                 hammer2_chain_drop(parent);
2516
2517                 kprintf("hammer2: debug REPTRACK %p->%p\n",
2518                         parent, reptrack.chain);
2519                 hammer2_spin_ex(&reptrack.spin);
2520                 parent = reptrack.chain;
2521                 hammer2_chain_ref(parent);
2522                 hammer2_spin_unex(&reptrack.spin);
2523         }
2524
2525         /*
2526          * Once parent is locked and matches our reptrack, our reptrack
2527          * will be stable and we have our parent.  We can unlink our
2528          * reptrack.
2529          *
2530          * WARNING!  Remember that the chain lock might be shared.  Chains
2531          *           locked shared have stable parent linkages.
2532          */
2533         hammer2_spin_ex(&parent->core.spin);
2534         repp = &parent->core.reptrack;
2535         while (*repp != &reptrack)
2536                 repp = &(*repp)->next;
2537         *repp = reptrack.next;
2538         hammer2_spin_unex(&parent->core.spin);
2539
2540         hammer2_chain_drop(parent);     /* reptrack ref */
2541         *chainp = parent;               /* return parent lock+ref */
2542
2543         return parent;
2544 }
2545
2546 /*
2547  * Dispose of any linked reptrack structures in (chain) by shifting them to
2548  * (parent).  Both (chain) and (parent) must be exclusively locked.
2549  *
2550  * This is interlocked against any children of (chain) on the other side.
2551  * No children so remain as-of when this is called so we can test
2552  * core.reptrack without holding the spin-lock.
2553  *
2554  * Used whenever the caller intends to permanently delete chains related
2555  * to topological recursions (BREF_TYPE_INDIRECT, BREF_TYPE_FREEMAP_NODE),
2556  * where the chains underneath the node being deleted are given a new parent
2557  * above the node being deleted.
2558  */
2559 static
2560 void
2561 hammer2_chain_repchange(hammer2_chain_t *parent, hammer2_chain_t *chain)
2562 {
2563         struct hammer2_reptrack *reptrack;
2564
2565         KKASSERT(chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree));
2566         while (chain->core.reptrack) {
2567                 hammer2_spin_ex(&parent->core.spin);
2568                 hammer2_spin_ex(&chain->core.spin);
2569                 reptrack = chain->core.reptrack;
2570                 if (reptrack == NULL) {
2571                         hammer2_spin_unex(&chain->core.spin);
2572                         hammer2_spin_unex(&parent->core.spin);
2573                         break;
2574                 }
2575                 hammer2_spin_ex(&reptrack->spin);
2576                 chain->core.reptrack = reptrack->next;
2577                 reptrack->chain = parent;
2578                 reptrack->next = parent->core.reptrack;
2579                 parent->core.reptrack = reptrack;
2580                 hammer2_chain_ref(parent);              /* reptrack */
2581
2582                 hammer2_spin_unex(&chain->core.spin);
2583                 hammer2_spin_unex(&parent->core.spin);
2584                 kprintf("hammer2: debug repchange %p %p->%p\n",
2585                         reptrack, chain, parent);
2586                 hammer2_chain_drop(chain);              /* reptrack */
2587         }
2588 }
2589
2590 /*
2591  * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
2592  * (*parentp) typically points to an inode but can also point to a related
2593  * indirect block and this function will recurse upwards and find the inode
2594  * or the nearest undeleted indirect block covering the key range.
2595  *
2596  * This function unconditionally sets *errorp, replacing any previous value.
2597  *
2598  * (*parentp) must be exclusive or shared locked (depending on flags) and
2599  * referenced and can be an inode or an existing indirect block within the
2600  * inode.
2601  *
2602  * If (*parent) is errored out, this function will not attempt to recurse
2603  * the radix tree and will return NULL along with an appropriate *errorp.
2604  * If NULL is returned and *errorp is 0, the requested lookup could not be
2605  * located.
2606  *
2607  * On return (*parentp) will be modified to point at the deepest parent chain
2608  * element encountered during the search, as a helper for an insertion or
2609  * deletion.
2610  *
2611  * The new (*parentp) will be locked shared or exclusive (depending on flags),
2612  * and referenced, and the old will be unlocked and dereferenced (no change
2613  * if they are both the same).  This is particularly important if the caller
2614  * wishes to insert a new chain, (*parentp) will be set properly even if NULL
2615  * is returned, as long as no error occurred.
2616  *
2617  * The matching chain will be returned locked according to flags.
2618  *
2619  * --
2620  *
2621  * NULL is returned if no match was found, but (*parentp) will still
2622  * potentially be adjusted.
2623  *
2624  * On return (*key_nextp) will point to an iterative value for key_beg.
2625  * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
2626  *
2627  * This function will also recurse up the chain if the key is not within the
2628  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
2629  * can simply allow (*parentp) to float inside the loop.
2630  *
2631  * NOTE!  chain->data is not always resolved.  By default it will not be
2632  *        resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
2633  *        HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
2634  *        BREF_TYPE_DATA as the device buffer can alias the logical file
2635  *        buffer).
2636  */
2637
2638 hammer2_chain_t *
2639 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
2640                      hammer2_key_t key_beg, hammer2_key_t key_end,
2641                      int *errorp, int flags)
2642 {
2643         hammer2_dev_t *hmp;
2644         hammer2_chain_t *parent;
2645         hammer2_chain_t *chain;
2646         hammer2_blockref_t *base;
2647         hammer2_blockref_t *bref;
2648         hammer2_blockref_t bcopy;
2649         hammer2_key_t scan_beg;
2650         hammer2_key_t scan_end;
2651         int count = 0;
2652         int how_always = HAMMER2_RESOLVE_ALWAYS;
2653         int how_maybe = HAMMER2_RESOLVE_MAYBE;
2654         int how;
2655         int generation;
2656         int maxloops = 300000;
2657         volatile hammer2_mtx_t save_mtx;
2658
2659         if (flags & HAMMER2_LOOKUP_ALWAYS) {
2660                 how_maybe = how_always;
2661                 how = HAMMER2_RESOLVE_ALWAYS;
2662         } else if (flags & HAMMER2_LOOKUP_NODATA) {
2663                 how = HAMMER2_RESOLVE_NEVER;
2664         } else {
2665                 how = HAMMER2_RESOLVE_MAYBE;
2666         }
2667         if (flags & HAMMER2_LOOKUP_SHARED) {
2668                 how_maybe |= HAMMER2_RESOLVE_SHARED;
2669                 how_always |= HAMMER2_RESOLVE_SHARED;
2670                 how |= HAMMER2_RESOLVE_SHARED;
2671         }
2672
2673         /*
2674          * Recurse (*parentp) upward if necessary until the parent completely
2675          * encloses the key range or we hit the inode.
2676          *
2677          * Handle races against the flusher deleting indirect nodes on its
2678          * way back up by continuing to recurse upward past the deletion.
2679          */
2680         parent = *parentp;
2681         hmp = parent->hmp;
2682         *errorp = 0;
2683
2684         while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2685                parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2686                 scan_beg = parent->bref.key;
2687                 scan_end = scan_beg +
2688                            ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2689                 if ((parent->flags & HAMMER2_CHAIN_DELETED) == 0) {
2690                         if (key_beg >= scan_beg && key_end <= scan_end)
2691                                 break;
2692                 }
2693                 parent = hammer2_chain_repparent(parentp, how_maybe);
2694         }
2695 again:
2696         if (--maxloops == 0)
2697                 panic("hammer2_chain_lookup: maxloops");
2698         /*
2699          * Locate the blockref array.  Currently we do a fully associative
2700          * search through the array.
2701          */
2702         switch(parent->bref.type) {
2703         case HAMMER2_BREF_TYPE_INODE:
2704                 /*
2705                  * Special shortcut for embedded data returns the inode
2706                  * itself.  Callers must detect this condition and access
2707                  * the embedded data (the strategy code does this for us).
2708                  *
2709                  * This is only applicable to regular files and softlinks.
2710                  *
2711                  * We need a second lock on parent.  Since we already have
2712                  * a lock we must pass LOCKAGAIN to prevent unexpected
2713                  * blocking (we don't want to block on a second shared
2714                  * ref if an exclusive lock is pending)
2715                  */
2716                 if (parent->data->ipdata.meta.op_flags &
2717                     HAMMER2_OPFLAG_DIRECTDATA) {
2718                         if (flags & HAMMER2_LOOKUP_NODIRECT) {
2719                                 chain = NULL;
2720                                 *key_nextp = key_end + 1;
2721                                 goto done;
2722                         }
2723                         hammer2_chain_ref(parent);
2724                         hammer2_chain_lock(parent, how_always |
2725                                                    HAMMER2_RESOLVE_LOCKAGAIN);
2726                         *key_nextp = key_end + 1;
2727                         return (parent);
2728                 }
2729                 base = &parent->data->ipdata.u.blockset.blockref[0];
2730                 count = HAMMER2_SET_COUNT;
2731                 break;
2732         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2733         case HAMMER2_BREF_TYPE_INDIRECT:
2734                 /*
2735                  * Handle MATCHIND on the parent
2736                  */
2737                 if (flags & HAMMER2_LOOKUP_MATCHIND) {
2738                         scan_beg = parent->bref.key;
2739                         scan_end = scan_beg +
2740                                ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2741                         if (key_beg == scan_beg && key_end == scan_end) {
2742                                 chain = parent;
2743                                 hammer2_chain_ref(chain);
2744                                 hammer2_chain_lock(chain, how_maybe);
2745                                 *key_nextp = scan_end + 1;
2746                                 goto done;
2747                         }
2748                 }
2749
2750                 /*
2751                  * Optimize indirect blocks in the INITIAL state to avoid
2752                  * I/O.
2753                  */
2754                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2755                         base = NULL;
2756                 } else {
2757                         if (parent->data == NULL) {
2758                                 kprintf("parent->data is NULL %p\n", parent);
2759                                 while (1)
2760                                         tsleep(parent, 0, "xxx", 0);
2761                         }
2762                         base = &parent->data->npdata[0];
2763                 }
2764                 count = parent->bytes / sizeof(hammer2_blockref_t);
2765                 break;
2766         case HAMMER2_BREF_TYPE_VOLUME:
2767                 base = &parent->data->voldata.sroot_blockset.blockref[0];
2768                 count = HAMMER2_SET_COUNT;
2769                 break;
2770         case HAMMER2_BREF_TYPE_FREEMAP:
2771                 base = &parent->data->blkset.blockref[0];
2772                 count = HAMMER2_SET_COUNT;
2773                 break;
2774         default:
2775                 kprintf("hammer2_chain_lookup: unrecognized "
2776                         "blockref(B) type: %d",
2777                         parent->bref.type);
2778                 while (1)
2779                         tsleep(&base, 0, "dead", 0);
2780                 panic("hammer2_chain_lookup: unrecognized "
2781                       "blockref(B) type: %d",
2782                       parent->bref.type);
2783                 base = NULL;    /* safety */
2784                 count = 0;      /* safety */
2785         }
2786
2787         /*
2788          * No lookup is possible if the parent is errored.  We delayed
2789          * this check as long as we could to ensure that the parent backup,
2790          * embedded data, and MATCHIND code could still execute.
2791          */
2792         if (parent->error) {
2793                 *errorp = parent->error;
2794                 return NULL;
2795         }
2796
2797         /*
2798          * Merged scan to find next candidate.
2799          *
2800          * hammer2_base_*() functions require the parent->core.live_* fields
2801          * to be synchronized.
2802          *
2803          * We need to hold the spinlock to access the block array and RB tree
2804          * and to interlock chain creation.
2805          */
2806         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2807                 hammer2_chain_countbrefs(parent, base, count);
2808
2809         /*
2810          * Combined search
2811          */
2812         hammer2_spin_ex(&parent->core.spin);
2813         chain = hammer2_combined_find(parent, base, count,
2814                                       key_nextp,
2815                                       key_beg, key_end,
2816                                       &bref);
2817         generation = parent->core.generation;
2818
2819         /*
2820          * Exhausted parent chain, iterate.
2821          */
2822         if (bref == NULL) {
2823                 KKASSERT(chain == NULL);
2824                 hammer2_spin_unex(&parent->core.spin);
2825                 if (key_beg == key_end) /* short cut single-key case */
2826                         return (NULL);
2827
2828                 /*
2829                  * Stop if we reached the end of the iteration.
2830                  */
2831                 if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2832                     parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2833                         return (NULL);
2834                 }
2835
2836                 /*
2837                  * Calculate next key, stop if we reached the end of the
2838                  * iteration, otherwise go up one level and loop.
2839                  */
2840                 key_beg = parent->bref.key +
2841                           ((hammer2_key_t)1 << parent->bref.keybits);
2842                 if (key_beg == 0 || key_beg > key_end)
2843                         return (NULL);
2844                 parent = hammer2_chain_repparent(parentp, how_maybe);
2845                 goto again;
2846         }
2847
2848         /*
2849          * Selected from blockref or in-memory chain.
2850          */
2851         bcopy = *bref;
2852         if (chain == NULL) {
2853                 hammer2_spin_unex(&parent->core.spin);
2854                 if (bcopy.type == HAMMER2_BREF_TYPE_INDIRECT ||
2855                     bcopy.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2856                         chain = hammer2_chain_get(parent, generation,
2857                                                   &bcopy, how_maybe);
2858                 } else {
2859                         chain = hammer2_chain_get(parent, generation,
2860                                                   &bcopy, how);
2861                 }
2862                 if (chain == NULL)
2863                         goto again;
2864         } else {
2865                 hammer2_chain_ref(chain);
2866                 hammer2_spin_unex(&parent->core.spin);
2867
2868                 /*
2869                  * chain is referenced but not locked.  We must lock the
2870                  * chain to obtain definitive state.
2871                  */
2872                 if (bcopy.type == HAMMER2_BREF_TYPE_INDIRECT ||
2873                     bcopy.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2874                         hammer2_chain_lock(chain, how_maybe);
2875                 } else {
2876                         hammer2_chain_lock(chain, how);
2877                 }
2878                 KKASSERT(chain->parent == parent);
2879         }
2880         if (bcmp(&bcopy, &chain->bref, sizeof(bcopy)) ||
2881             chain->parent != parent) {
2882                 hammer2_chain_unlock(chain);
2883                 hammer2_chain_drop(chain);
2884                 chain = NULL;   /* SAFETY */
2885                 goto again;
2886         }
2887
2888
2889         /*
2890          * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2891          *
2892          * NOTE: Chain's key range is not relevant as there might be
2893          *       one-offs within the range that are not deleted.
2894          *
2895          * NOTE: Lookups can race delete-duplicate because
2896          *       delete-duplicate does not lock the parent's core
2897          *       (they just use the spinlock on the core).
2898          */
2899         if (chain->flags & HAMMER2_CHAIN_DELETED) {
2900                 kprintf("skip deleted chain %016jx.%02x key=%016jx\n",
2901                         chain->bref.data_off, chain->bref.type,
2902                         chain->bref.key);
2903                 hammer2_chain_unlock(chain);
2904                 hammer2_chain_drop(chain);
2905                 chain = NULL;   /* SAFETY */
2906                 key_beg = *key_nextp;
2907                 if (key_beg == 0 || key_beg > key_end)
2908                         return(NULL);
2909                 goto again;
2910         }
2911
2912         /*
2913          * If the chain element is an indirect block it becomes the new
2914          * parent and we loop on it.  We must maintain our top-down locks
2915          * to prevent the flusher from interfering (i.e. doing a
2916          * delete-duplicate and leaving us recursing down a deleted chain).
2917          *
2918          * The parent always has to be locked with at least RESOLVE_MAYBE
2919          * so we can access its data.  It might need a fixup if the caller
2920          * passed incompatible flags.  Be careful not to cause a deadlock
2921          * as a data-load requires an exclusive lock.
2922          *
2923          * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2924          * range is within the requested key range we return the indirect
2925          * block and do NOT loop.  This is usually only used to acquire
2926          * freemap nodes.
2927          */
2928         if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2929             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2930                 save_mtx = parent->lock;
2931                 hammer2_chain_unlock(parent);
2932                 hammer2_chain_drop(parent);
2933                 *parentp = parent = chain;
2934                 chain = NULL;   /* SAFETY */
2935                 goto again;
2936         }
2937 done:
2938         /*
2939          * All done, return the locked chain.
2940          *
2941          * If the caller does not want a locked chain, replace the lock with
2942          * a ref.  Perhaps this can eventually be optimized to not obtain the
2943          * lock in the first place for situations where the data does not
2944          * need to be resolved.
2945          *
2946          * NOTE! A chain->error must be tested by the caller upon return.
2947          *       *errorp is only set based on issues which occur while
2948          *       trying to reach the chain.
2949          */
2950         return (chain);
2951 }
2952
2953 /*
2954  * After having issued a lookup we can iterate all matching keys.
2955  *
2956  * If chain is non-NULL we continue the iteration from just after it's index.
2957  *
2958  * If chain is NULL we assume the parent was exhausted and continue the
2959  * iteration at the next parent.
2960  *
2961  * If a fatal error occurs (typically an I/O error), a dummy chain is
2962  * returned with chain->error and error-identifying information set.  This
2963  * chain will assert if you try to do anything fancy with it.
2964  *
2965  * XXX Depending on where the error occurs we should allow continued iteration.
2966  *
2967  * parent must be locked on entry and remains locked throughout.  chain's
2968  * lock status must match flags.  Chain is always at least referenced.
2969  *
2970  * WARNING!  The MATCHIND flag does not apply to this function.
2971  */
2972 hammer2_chain_t *
2973 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
2974                    hammer2_key_t *key_nextp,
2975                    hammer2_key_t key_beg, hammer2_key_t key_end,
2976                    int *errorp, int flags)
2977 {
2978         hammer2_chain_t *parent;
2979         int how_maybe;
2980
2981         /*
2982          * Calculate locking flags for upward recursion.
2983          */
2984         how_maybe = HAMMER2_RESOLVE_MAYBE;
2985         if (flags & HAMMER2_LOOKUP_SHARED)
2986                 how_maybe |= HAMMER2_RESOLVE_SHARED;
2987
2988         parent = *parentp;
2989         *errorp = 0;
2990
2991         /*
2992          * Calculate the next index and recalculate the parent if necessary.
2993          */
2994         if (chain) {
2995                 key_beg = chain->bref.key +
2996                           ((hammer2_key_t)1 << chain->bref.keybits);
2997                 hammer2_chain_unlock(chain);
2998                 hammer2_chain_drop(chain);
2999
3000                 /*
3001                  * chain invalid past this point, but we can still do a
3002                  * pointer comparison w/parent.
3003                  *
3004                  * Any scan where the lookup returned degenerate data embedded
3005                  * in the inode has an invalid index and must terminate.
3006                  */
3007                 if (chain == parent)
3008                         return(NULL);
3009                 if (key_beg == 0 || key_beg > key_end)
3010                         return(NULL);
3011                 chain = NULL;
3012         } else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
3013                    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
3014                 /*
3015                  * We reached the end of the iteration.
3016                  */
3017                 return (NULL);
3018         } else {
3019                 /*
3020                  * Continue iteration with next parent unless the current
3021                  * parent covers the range.
3022                  *
3023                  * (This also handles the case of a deleted, empty indirect
3024                  * node).
3025                  */
3026                 key_beg = parent->bref.key +
3027                           ((hammer2_key_t)1 << parent->bref.keybits);
3028                 if (key_beg == 0 || key_beg > key_end)
3029                         return (NULL);
3030                 parent = hammer2_chain_repparent(parentp, how_maybe);
3031         }
3032
3033         /*
3034          * And execute
3035          */
3036         return (hammer2_chain_lookup(parentp, key_nextp,
3037                                      key_beg, key_end,
3038                                      errorp, flags));
3039 }
3040
3041 /*
3042  * Caller wishes to iterate chains under parent, loading new chains into
3043  * chainp.  Caller must initialize *chainp to NULL and *firstp to 1, and
3044  * then call hammer2_chain_scan() repeatedly until a non-zero return.
3045  * During the scan, *firstp will be set to 0 and (*chainp) will be replaced
3046  * with the returned chain for the scan.  The returned *chainp will be
3047  * locked and referenced.  Any prior contents will be unlocked and dropped.
3048  *
3049  * Caller should check the return value.  A normal scan EOF will return
3050  * exactly HAMMER2_ERROR_EOF.  Any other non-zero value indicates an
3051  * error trying to access parent data.  Any error in the returned chain
3052  * must be tested separately by the caller.
3053  *
3054  * (*chainp) is dropped on each scan, but will only be set if the returned
3055  * element itself can recurse.  Leaf elements are NOT resolved, loaded, or
3056  * returned via *chainp.  The caller will get their bref only.
3057  *
3058  * The raw scan function is similar to lookup/next but does not seek to a key.
3059  * Blockrefs are iterated via first_bref = (parent, NULL) and
3060  * next_chain = (parent, bref).
3061  *
3062  * The passed-in parent must be locked and its data resolved.  The function
3063  * nominally returns a locked and referenced *chainp != NULL for chains
3064  * the caller might need to recurse on (and will dipose of any *chainp passed
3065  * in).  The caller must check the chain->bref.type either way.
3066  */
3067 int
3068 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t **chainp,
3069                    hammer2_blockref_t *bref, int *firstp,
3070                    int flags)
3071 {
3072         hammer2_dev_t *hmp;
3073         hammer2_blockref_t *base;
3074         hammer2_blockref_t *bref_ptr;
3075         hammer2_key_t key;
3076         hammer2_key_t next_key;
3077         hammer2_chain_t *chain = NULL;
3078         int count = 0;
3079         int how_always = HAMMER2_RESOLVE_ALWAYS;
3080         int how_maybe = HAMMER2_RESOLVE_MAYBE;
3081         int how;
3082         int generation;
3083         int maxloops = 300000;
3084         int error;
3085
3086         hmp = parent->hmp;
3087         error = 0;
3088
3089         /*
3090          * Scan flags borrowed from lookup.
3091          */
3092         if (flags & HAMMER2_LOOKUP_ALWAYS) {
3093                 how_maybe = how_always;
3094                 how = HAMMER2_RESOLVE_ALWAYS;
3095         } else if (flags & HAMMER2_LOOKUP_NODATA) {
3096                 how = HAMMER2_RESOLVE_NEVER;
3097         } else {
3098                 how = HAMMER2_RESOLVE_MAYBE;
3099         }
3100         if (flags & HAMMER2_LOOKUP_SHARED) {
3101                 how_maybe |= HAMMER2_RESOLVE_SHARED;
3102                 how_always |= HAMMER2_RESOLVE_SHARED;
3103                 how |= HAMMER2_RESOLVE_SHARED;
3104         }
3105
3106         /*
3107          * Calculate key to locate first/next element, unlocking the previous
3108          * element as we go.  Be careful, the key calculation can overflow.
3109          *
3110          * (also reset bref to NULL)
3111          */
3112         if (*firstp) {
3113                 key = 0;
3114                 *firstp = 0;
3115         } else {
3116                 key = bref->key + ((hammer2_key_t)1 << bref->keybits);
3117                 if ((chain = *chainp) != NULL) {
3118                         *chainp = NULL;
3119                         hammer2_chain_unlock(chain);
3120                         hammer2_chain_drop(chain);
3121                         chain = NULL;
3122                 }
3123                 if (key == 0) {
3124                         error |= HAMMER2_ERROR_EOF;
3125                         goto done;
3126                 }
3127         }
3128
3129 again:
3130         if (parent->error) {
3131                 error = parent->error;
3132                 goto done;
3133         }
3134         if (--maxloops == 0)
3135                 panic("hammer2_chain_scan: maxloops");
3136
3137         /*
3138          * Locate the blockref array.  Currently we do a fully associative
3139          * search through the array.
3140          */
3141         switch(parent->bref.type) {
3142         case HAMMER2_BREF_TYPE_INODE:
3143                 /*
3144                  * An inode with embedded data has no sub-chains.
3145                  *
3146                  * WARNING! Bulk scan code may pass a static chain marked
3147                  *          as BREF_TYPE_INODE with a copy of the volume
3148                  *          root blockset to snapshot the volume.
3149                  */
3150                 if (parent->data->ipdata.meta.op_flags &
3151                     HAMMER2_OPFLAG_DIRECTDATA) {
3152                         error |= HAMMER2_ERROR_EOF;
3153                         goto done;
3154                 }
3155                 base = &parent->data->ipdata.u.blockset.blockref[0];
3156                 count = HAMMER2_SET_COUNT;
3157                 break;
3158         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3159         case HAMMER2_BREF_TYPE_INDIRECT:
3160                 /*
3161                  * Optimize indirect blocks in the INITIAL state to avoid
3162                  * I/O.
3163                  */
3164                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
3165                         base = NULL;
3166                 } else {
3167                         if (parent->data == NULL)
3168                                 panic("parent->data is NULL");
3169                         base = &parent->data->npdata[0];
3170                 }
3171                 count = parent->bytes / sizeof(hammer2_blockref_t);
3172                 break;
3173         case HAMMER2_BREF_TYPE_VOLUME:
3174                 base = &parent->data->voldata.sroot_blockset.blockref[0];
3175                 count = HAMMER2_SET_COUNT;
3176                 break;
3177         case HAMMER2_BREF_TYPE_FREEMAP:
3178                 base = &parent->data->blkset.blockref[0];
3179                 count = HAMMER2_SET_COUNT;
3180                 break;
3181         default:
3182                 panic("hammer2_chain_scan: unrecognized blockref type: %d",
3183                       parent->bref.type);
3184                 base = NULL;    /* safety */
3185                 count = 0;      /* safety */
3186         }
3187
3188         /*
3189          * Merged scan to find next candidate.
3190          *
3191          * hammer2_base_*() functions require the parent->core.live_* fields
3192          * to be synchronized.
3193          *
3194          * We need to hold the spinlock to access the block array and RB tree
3195          * and to interlock chain creation.
3196          */
3197         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3198                 hammer2_chain_countbrefs(parent, base, count);
3199
3200         next_key = 0;
3201         bref_ptr = NULL;
3202         hammer2_spin_ex(&parent->core.spin);
3203         chain = hammer2_combined_find(parent, base, count,
3204                                       &next_key,
3205                                       key, HAMMER2_KEY_MAX,
3206                                       &bref_ptr);
3207         generation = parent->core.generation;
3208
3209         /*
3210          * Exhausted parent chain, we're done.
3211          */
3212         if (bref_ptr == NULL) {
3213                 hammer2_spin_unex(&parent->core.spin);
3214                 KKASSERT(chain == NULL);
3215                 error |= HAMMER2_ERROR_EOF;
3216                 goto done;
3217         }
3218
3219         /*
3220          * Copy into the supplied stack-based blockref.
3221          */
3222         *bref = *bref_ptr;
3223
3224         /*
3225          * Selected from blockref or in-memory chain.
3226          */
3227         if (chain == NULL) {
3228                 switch(bref->type) {
3229                 case HAMMER2_BREF_TYPE_INODE:
3230                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3231                 case HAMMER2_BREF_TYPE_INDIRECT:
3232                 case HAMMER2_BREF_TYPE_VOLUME:
3233                 case HAMMER2_BREF_TYPE_FREEMAP:
3234                         /*
3235                          * Recursion, always get the chain
3236                          */
3237                         hammer2_spin_unex(&parent->core.spin);
3238                         chain = hammer2_chain_get(parent, generation,
3239                                                   bref, how);
3240                         if (chain == NULL)
3241                                 goto again;
3242                         break;
3243                 default:
3244                         /*
3245                          * No recursion, do not waste time instantiating
3246                          * a chain, just iterate using the bref.
3247                          */
3248                         hammer2_spin_unex(&parent->core.spin);
3249                         break;
3250                 }
3251         } else {
3252                 /*
3253                  * Recursion or not we need the chain in order to supply
3254                  * the bref.
3255                  */
3256                 hammer2_chain_ref(chain);
3257                 hammer2_spin_unex(&parent->core.spin);
3258                 hammer2_chain_lock(chain, how);
3259         }
3260         if (chain &&
3261             (bcmp(bref, &chain->bref, sizeof(*bref)) ||
3262              chain->parent != parent)) {
3263                 hammer2_chain_unlock(chain);
3264                 hammer2_chain_drop(chain);
3265                 chain = NULL;
3266                 goto again;
3267         }
3268
3269         /*
3270          * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
3271          *
3272          * NOTE: chain's key range is not relevant as there might be
3273          *       one-offs within the range that are not deleted.
3274          *
3275          * NOTE: XXX this could create problems with scans used in
3276          *       situations other than mount-time recovery.
3277          *
3278          * NOTE: Lookups can race delete-duplicate because
3279          *       delete-duplicate does not lock the parent's core
3280          *       (they just use the spinlock on the core).
3281          */
3282         if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3283                 hammer2_chain_unlock(chain);
3284                 hammer2_chain_drop(chain);
3285                 chain = NULL;
3286
3287                 key = next_key;
3288                 if (key == 0) {
3289                         error |= HAMMER2_ERROR_EOF;
3290                         goto done;
3291                 }
3292                 goto again;
3293         }
3294
3295 done:
3296         /*
3297          * All done, return the bref or NULL, supply chain if necessary.
3298          */
3299         if (chain)
3300                 *chainp = chain;
3301         return (error);
3302 }
3303
3304 /*
3305  * Create and return a new hammer2 system memory structure of the specified
3306  * key, type and size and insert it under (*parentp).  This is a full
3307  * insertion, based on the supplied key/keybits, and may involve creating
3308  * indirect blocks and moving other chains around via delete/duplicate.
3309  *
3310  * This call can be made with parent == NULL as long as a non -1 methods
3311  * is supplied.  hmp must also be supplied in this situation (otherwise
3312  * hmp is extracted from the supplied parent).  The chain will be detached
3313  * from the topology.  A later call with both parent and chain can be made
3314  * to attach it.
3315  *
3316  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
3317  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3318  * FULL.  This typically means that the caller is creating the chain after
3319  * doing a hammer2_chain_lookup().
3320  *
3321  * (*parentp) must be exclusive locked and may be replaced on return
3322  * depending on how much work the function had to do.
3323  *
3324  * (*parentp) must not be errored or this function will assert.
3325  *
3326  * (*chainp) usually starts out NULL and returns the newly created chain,
3327  * but if the caller desires the caller may allocate a disconnected chain
3328  * and pass it in instead.
3329  *
3330  * This function should NOT be used to insert INDIRECT blocks.  It is
3331  * typically used to create/insert inodes and data blocks.
3332  *
3333  * Caller must pass-in an exclusively locked parent the new chain is to
3334  * be inserted under, and optionally pass-in a disconnected, exclusively
3335  * locked chain to insert (else we create a new chain).  The function will
3336  * adjust (*parentp) as necessary, create or connect the chain, and
3337  * return an exclusively locked chain in *chainp.
3338  *
3339  * When creating a PFSROOT inode under the super-root, pmp is typically NULL
3340  * and will be reassigned.
3341  *
3342  * NOTE: returns HAMMER_ERROR_* flags
3343  */
3344 int
3345 hammer2_chain_create(hammer2_chain_t **parentp, hammer2_chain_t **chainp,
3346                      hammer2_dev_t *hmp, hammer2_pfs_t *pmp, int methods,
3347                      hammer2_key_t key, int keybits, int type, size_t bytes,
3348                      hammer2_tid_t mtid, hammer2_off_t dedup_off, int flags)
3349 {
3350         hammer2_chain_t *chain;
3351         hammer2_chain_t *parent;
3352         hammer2_blockref_t *base;
3353         hammer2_blockref_t dummy;
3354         int allocated = 0;
3355         int error = 0;
3356         int count;
3357         int maxloops = 300000;
3358
3359         /*
3360          * Topology may be crossing a PFS boundary.
3361          */
3362         parent = *parentp;
3363         if (parent) {
3364                 KKASSERT(hammer2_mtx_owned(&parent->lock));
3365                 KKASSERT(parent->error == 0);
3366                 hmp = parent->hmp;
3367         }
3368         chain = *chainp;
3369
3370         if (chain == NULL) {
3371                 /*
3372                  * First allocate media space and construct the dummy bref,
3373                  * then allocate the in-memory chain structure.  Set the
3374                  * INITIAL flag for fresh chains which do not have embedded
3375                  * data.
3376                  *
3377                  * XXX for now set the check mode of the child based on
3378                  *     the parent or, if the parent is an inode, the
3379                  *     specification in the inode.
3380                  */
3381                 bzero(&dummy, sizeof(dummy));
3382                 dummy.type = type;
3383                 dummy.key = key;
3384                 dummy.keybits = keybits;
3385                 dummy.data_off = hammer2_getradix(bytes);
3386
3387                 /*
3388                  * Inherit methods from parent by default.  Primarily used
3389                  * for BREF_TYPE_DATA.  Non-data types *must* be set to
3390                  * a non-NONE check algorithm.
3391                  */
3392                 if (methods == -1)
3393                         dummy.methods = parent->bref.methods;
3394                 else
3395                         dummy.methods = (uint8_t)methods;
3396
3397                 if (type != HAMMER2_BREF_TYPE_DATA &&
3398                     HAMMER2_DEC_CHECK(dummy.methods) == HAMMER2_CHECK_NONE) {
3399                         dummy.methods |=
3400                                 HAMMER2_ENC_CHECK(HAMMER2_CHECK_DEFAULT);
3401                 }
3402
3403                 chain = hammer2_chain_alloc(hmp, pmp, &dummy);
3404
3405                 /*
3406                  * Lock the chain manually, chain_lock will load the chain
3407                  * which we do NOT want to do.  (note: chain->refs is set
3408                  * to 1 by chain_alloc() for us, but lockcnt is not).
3409                  */
3410                 chain->lockcnt = 1;
3411                 hammer2_mtx_ex(&chain->lock);
3412                 allocated = 1;
3413                 ++curthread->td_tracker;
3414
3415                 /*
3416                  * Set INITIAL to optimize I/O.  The flag will generally be
3417                  * processed when we call hammer2_chain_modify().
3418                  *
3419                  * Recalculate bytes to reflect the actual media block
3420                  * allocation.  Handle special case radix 0 == 0 bytes.
3421                  */
3422                 bytes = (size_t)(chain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
3423                 if (bytes)
3424                         bytes = (hammer2_off_t)1 << bytes;
3425                 chain->bytes = bytes;
3426
3427                 switch(type) {
3428                 case HAMMER2_BREF_TYPE_VOLUME:
3429                 case HAMMER2_BREF_TYPE_FREEMAP:
3430                         panic("hammer2_chain_create: called with volume type");
3431                         break;
3432                 case HAMMER2_BREF_TYPE_INDIRECT:
3433                         panic("hammer2_chain_create: cannot be used to"
3434                               "create indirect block");
3435                         break;
3436                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3437                         panic("hammer2_chain_create: cannot be used to"
3438                               "create freemap root or node");
3439                         break;
3440                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3441                         KKASSERT(bytes == sizeof(chain->data->bmdata));
3442                         /* fall through */
3443                 case HAMMER2_BREF_TYPE_DIRENT:
3444                 case HAMMER2_BREF_TYPE_INODE:
3445                 case HAMMER2_BREF_TYPE_DATA:
3446                 default:
3447                         /*
3448                          * leave chain->data NULL, set INITIAL
3449                          */
3450                         KKASSERT(chain->data == NULL);
3451                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
3452                         break;
3453                 }
3454         } else {
3455                 /*
3456                  * We are reattaching a previously deleted chain, possibly
3457                  * under a new parent and possibly with a new key/keybits.
3458                  * The chain does not have to be in a modified state.  The
3459                  * UPDATE flag will be set later on in this routine.
3460                  *
3461                  * Do NOT mess with the current state of the INITIAL flag.
3462                  */
3463                 chain->bref.key = key;
3464                 chain->bref.keybits = keybits;
3465                 if (chain->flags & HAMMER2_CHAIN_DELETED)
3466                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3467                 KKASSERT(chain->parent == NULL);
3468         }
3469
3470         /*
3471          * Set the appropriate bref flag if requested.
3472          *
3473          * NOTE! Callers can call this function to move chains without
3474          *       knowing about special flags, so don't clear bref flags
3475          *       here!
3476          */
3477         if (flags & HAMMER2_INSERT_PFSROOT)
3478                 chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
3479
3480         if (parent == NULL)
3481                 goto skip;
3482
3483         /*
3484          * Calculate how many entries we have in the blockref array and
3485          * determine if an indirect block is required when inserting into
3486          * the parent.
3487          */
3488 again:
3489         if (--maxloops == 0)
3490                 panic("hammer2_chain_create: maxloops");
3491
3492         switch(parent->bref.type) {
3493         case HAMMER2_BREF_TYPE_INODE:
3494                 if ((parent->data->ipdata.meta.op_flags &
3495                      HAMMER2_OPFLAG_DIRECTDATA) != 0) {
3496                         kprintf("hammer2: parent set for direct-data! "
3497                                 "pkey=%016jx ckey=%016jx\n",
3498                                 parent->bref.key,
3499                                 chain->bref.key);
3500                 }
3501                 KKASSERT((parent->data->ipdata.meta.op_flags &
3502                           HAMMER2_OPFLAG_DIRECTDATA) == 0);
3503                 KKASSERT(parent->data != NULL);
3504                 base = &parent->data->ipdata.u.blockset.blockref[0];
3505                 count = HAMMER2_SET_COUNT;
3506                 break;
3507         case HAMMER2_BREF_TYPE_INDIRECT:
3508         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3509                 if (parent->flags & HAMMER2_CHAIN_INITIAL)
3510                         base = NULL;
3511                 else
3512                         base = &parent->data->npdata[0];
3513                 count = parent->bytes / sizeof(hammer2_blockref_t);
3514                 break;
3515         case HAMMER2_BREF_TYPE_VOLUME:
3516                 KKASSERT(parent->data != NULL);
3517                 base = &parent->data->voldata.sroot_blockset.blockref[0];
3518                 count = HAMMER2_SET_COUNT;
3519                 break;
3520         case HAMMER2_BREF_TYPE_FREEMAP:
3521                 KKASSERT(parent->data != NULL);
3522                 base = &parent->data->blkset.blockref[0];
3523                 count = HAMMER2_SET_COUNT;
3524                 break;
3525         default:
3526                 panic("hammer2_chain_create: unrecognized blockref type: %d",
3527                       parent->bref.type);
3528                 base = NULL;
3529                 count = 0;
3530                 break;
3531         }
3532
3533         /*
3534          * Make sure we've counted the brefs
3535          */
3536         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3537                 hammer2_chain_countbrefs(parent, base, count);
3538
3539         KASSERT(parent->core.live_count >= 0 &&
3540                 parent->core.live_count <= count,
3541                 ("bad live_count %d/%d (%02x, %d)",
3542                         parent->core.live_count, count,
3543                         parent->bref.type, parent->bytes));
3544
3545         /*
3546          * If no free blockref could be found we must create an indirect
3547          * block and move a number of blockrefs into it.  With the parent
3548          * locked we can safely lock each child in order to delete+duplicate
3549          * it without causing a deadlock.
3550          *
3551          * This may return the new indirect block or the old parent depending
3552          * on where the key falls.  NULL is returned on error.
3553          */
3554         if (parent->core.live_count == count) {
3555                 hammer2_chain_t *nparent;
3556
3557                 KKASSERT((flags & HAMMER2_INSERT_SAMEPARENT) == 0);
3558
3559                 nparent = hammer2_chain_create_indirect(parent, key, keybits,
3560                                                         mtid, type, &error);
3561                 if (nparent == NULL) {
3562                         if (allocated)
3563                                 hammer2_chain_drop(chain);
3564                         chain = NULL;
3565                         goto done;
3566                 }
3567                 if (parent != nparent) {
3568                         hammer2_chain_unlock(parent);
3569                         hammer2_chain_drop(parent);
3570                         parent = *parentp = nparent;
3571                 }
3572                 goto again;
3573         }
3574
3575         /*
3576          * fall through if parent, or skip to here if no parent.
3577          */
3578 skip:
3579         if (chain->flags & HAMMER2_CHAIN_DELETED)
3580                 kprintf("Inserting deleted chain @%016jx\n",
3581                         chain->bref.key);
3582
3583         /*
3584          * Link the chain into its parent.
3585          */
3586         if (chain->parent != NULL)
3587                 panic("hammer2: hammer2_chain_create: chain already connected");
3588         KKASSERT(chain->parent == NULL);
3589         if (parent) {
3590                 KKASSERT(parent->core.live_count < count);
3591                 hammer2_chain_insert(parent, chain,
3592                                      HAMMER2_CHAIN_INSERT_SPIN |
3593                                      HAMMER2_CHAIN_INSERT_LIVE,
3594                                      0);
3595         }
3596
3597         if (allocated) {
3598                 /*
3599                  * Mark the newly created chain modified.  This will cause
3600                  * UPDATE to be set and process the INITIAL flag.
3601                  *
3602                  * Device buffers are not instantiated for DATA elements
3603                  * as these are handled by logical buffers.
3604                  *
3605                  * Indirect and freemap node indirect blocks are handled
3606                  * by hammer2_chain_create_indirect() and not by this
3607                  * function.
3608                  *
3609                  * Data for all other bref types is expected to be
3610                  * instantiated (INODE, LEAF).
3611                  */
3612                 switch(chain->bref.type) {
3613                 case HAMMER2_BREF_TYPE_DATA:
3614                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3615                 case HAMMER2_BREF_TYPE_DIRENT:
3616                 case HAMMER2_BREF_TYPE_INODE:
3617                         error = hammer2_chain_modify(chain, mtid, dedup_off,
3618                                                      HAMMER2_MODIFY_OPTDATA);
3619                         break;
3620                 default:
3621                         /*
3622                          * Remaining types are not supported by this function.
3623                          * In particular, INDIRECT and LEAF_NODE types are
3624                          * handled by create_indirect().
3625                          */
3626                         panic("hammer2_chain_create: bad type: %d",
3627                               chain->bref.type);
3628                         /* NOT REACHED */
3629                         break;
3630                 }
3631         } else {
3632                 /*
3633                  * When reconnecting a chain we must set UPDATE and
3634                  * setflush so the flush recognizes that it must update
3635                  * the bref in the parent.
3636                  */
3637                 if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0)
3638                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3639         }
3640
3641         /*
3642          * We must setflush(parent) to ensure that it recurses through to
3643          * chain.  setflush(chain) might not work because ONFLUSH is possibly
3644          * already set in the chain (so it won't recurse up to set it in the
3645          * parent).
3646          */
3647         if (parent)
3648                 hammer2_chain_setflush(parent);
3649
3650 done:
3651         *chainp = chain;
3652
3653         return (error);
3654 }
3655
3656 /*
3657  * Move the chain from its old parent to a new parent.  The chain must have
3658  * already been deleted or already disconnected (or never associated) with
3659  * a parent.  The chain is reassociated with the new parent and the deleted
3660  * flag will be cleared (no longer deleted).  The chain's modification state
3661  * is not altered.
3662  *
3663  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
3664  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3665  * FULL.  This typically means that the caller is creating the chain after
3666  * doing a hammer2_chain_lookup().
3667  *
3668  * Neither (parent) or (chain) can be errored.
3669  *
3670  * If (parent) is non-NULL then the chain is inserted under the parent.
3671  *
3672  * If (parent) is NULL then the newly duplicated chain is not inserted
3673  * anywhere, similar to if it had just been chain_alloc()'d (suitable for
3674  * passing into hammer2_chain_create() after this function returns).
3675  *
3676  * WARNING! This function calls create which means it can insert indirect
3677  *          blocks.  This can cause other unrelated chains in the parent to
3678  *          be moved to a newly inserted indirect block in addition to the
3679  *          specific chain.
3680  */
3681 void
3682 hammer2_chain_rename(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3683                      hammer2_tid_t mtid, int flags)
3684 {
3685         hammer2_blockref_t *bref;
3686         hammer2_dev_t *hmp;
3687         hammer2_chain_t *parent;
3688         size_t bytes;
3689
3690         /*
3691          * WARNING!  We should never resolve DATA to device buffers
3692          *           (XXX allow it if the caller did?), and since
3693          *           we currently do not have the logical buffer cache
3694          *           buffer in-hand to fix its cached physical offset
3695          *           we also force the modify code to not COW it. XXX
3696          *
3697          * NOTE!     We allow error'd chains to be renamed.  The bref itself
3698          *           is good and can be renamed.  The content, however, may
3699          *           be inaccessible.
3700          */
3701         hmp = chain->hmp;
3702         KKASSERT(chain->parent == NULL);
3703         /*KKASSERT(chain->error == 0); allow */
3704
3705         /*
3706          * Now create a duplicate of the chain structure, associating
3707          * it with the same core, making it the same size, pointing it
3708          * to the same bref (the same media block).
3709          *
3710          * NOTE: Handle special radix == 0 case (means 0 bytes).
3711          */
3712         bref = &chain->bref;
3713         bytes = (size_t)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
3714         if (bytes)
3715                 bytes = (hammer2_off_t)1 << bytes;
3716
3717         /*
3718          * If parent is not NULL the duplicated chain will be entered under
3719          * the parent and the UPDATE bit set to tell flush to update
3720          * the blockref.
3721          *
3722          * We must setflush(parent) to ensure that it recurses through to
3723          * chain.  setflush(chain) might not work because ONFLUSH is possibly
3724          * already set in the chain (so it won't recurse up to set it in the
3725          * parent).
3726          *
3727          * Having both chains locked is extremely important for atomicy.
3728          */
3729         if (parentp && (parent = *parentp) != NULL) {
3730                 KKASSERT(hammer2_mtx_owned(&parent->lock));
3731                 KKASSERT(parent->refs > 0);
3732                 KKASSERT(parent->error == 0);
3733
3734                 hammer2_chain_create(parentp, &chain, NULL, chain->pmp,
3735                                      HAMMER2_METH_DEFAULT,
3736                                      bref->key, bref->keybits, bref->type,
3737                                      chain->bytes, mtid, 0, flags);
3738                 KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
3739                 hammer2_chain_setflush(*parentp);
3740         }
3741 }
3742
3743 /*
3744  * This works in tandem with delete_obref() to install a blockref in
3745  * (typically) an indirect block that is associated with the chain being
3746  * moved to *parentp.
3747  *
3748  * The reason we need this function is that the caller needs to maintain
3749  * the blockref as it was, and not generate a new blockref for what might
3750  * be a modified chain.  Otherwise stuff will leak into the flush that
3751  * the flush code's FLUSH_INODE_STOP flag is unable to catch.
3752  *
3753  * It is EXTREMELY important that we properly set CHAIN_BMAPUPD and
3754  * CHAIN_UPDATE.  We must set BMAPUPD if the bref does not match, and
3755  * we must clear CHAIN_UPDATE (that was likely set by the chain_rename) if
3756  * it does.  Otherwise we can end up in a situation where H2 is unable to
3757  * clean up the in-memory chain topology.
3758  *
3759  * The reason for this is that flushes do not generally flush through
3760  * BREF_TYPE_INODE chains and depend on a hammer2_inode_t queued to syncq
3761  * or sideq to properly flush and dispose of the related inode chain's flags.
3762  * Situations where the inode is not actually modified by the frontend,
3763  * but where we have to move the related chains around as we insert or cleanup
3764  * indirect blocks, can leave us with a 'dirty' (non-disposable) in-memory
3765  * inode chain that does not have a hammer2_inode_t associated with it.
3766  */
3767 void
3768 hammer2_chain_rename_obref(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3769                            hammer2_tid_t mtid, int flags,
3770                            hammer2_blockref_t *obref)
3771 {
3772         hammer2_chain_rename(parentp, chain, mtid, flags);
3773
3774         if (obref->type != HAMMER2_BREF_TYPE_EMPTY) {
3775                 hammer2_blockref_t *tbase;
3776                 int tcount;
3777
3778                 KKASSERT((chain->flags & HAMMER2_CHAIN_BMAPPED) == 0);
3779                 hammer2_chain_modify(*parentp, mtid, 0, 0);
3780                 tbase = hammer2_chain_base_and_count(*parentp, &tcount);
3781                 hammer2_base_insert(*parentp, tbase, tcount, chain, obref);
3782                 if (bcmp(obref, &chain->bref, sizeof(chain->bref))) {
3783                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD |
3784                                                       HAMMER2_CHAIN_UPDATE);
3785                 } else {
3786                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3787                 }
3788         }
3789 }
3790
3791 /*
3792  * Helper function for deleting chains.
3793  *
3794  * The chain is removed from the live view (the RBTREE) as well as the parent's
3795  * blockmap.  Both chain and its parent must be locked.
3796  *
3797  * parent may not be errored.  chain can be errored.
3798  */
3799 static int
3800 _hammer2_chain_delete_helper(hammer2_chain_t *parent, hammer2_chain_t *chain,
3801                              hammer2_tid_t mtid, int flags,
3802                              hammer2_blockref_t *obref)
3803 {
3804         hammer2_dev_t *hmp;
3805         int error = 0;
3806
3807         KKASSERT((chain->flags & (HAMMER2_CHAIN_DELETED |
3808                                   HAMMER2_CHAIN_FICTITIOUS)) == 0);
3809         KKASSERT(chain->parent == parent);
3810         hmp = chain->hmp;
3811
3812         if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
3813                 /*
3814                  * Chain is blockmapped, so there must be a parent.
3815                  * Atomically remove the chain from the parent and remove
3816                  * the blockmap entry.  The parent must be set modified
3817                  * to remove the blockmap entry.
3818                  */
3819                 hammer2_blockref_t *base;
3820                 int count;
3821
3822                 KKASSERT(parent != NULL);
3823                 KKASSERT(parent->error == 0);
3824                 KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
3825                 error = hammer2_chain_modify(parent, mtid, 0, 0);
3826                 if (error)
3827                         goto done;
3828
3829                 /*
3830                  * Calculate blockmap pointer
3831                  */
3832                 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
3833                 hammer2_spin_ex(&chain->core.spin);
3834                 hammer2_spin_ex(&parent->core.spin);
3835
3836                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3837                 atomic_add_int(&parent->core.live_count, -1);
3838                 ++parent->core.generation;
3839                 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3840                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3841                 --parent->core.chain_count;
3842                 chain->parent = NULL;
3843
3844                 switch(parent->bref.type) {
3845                 case HAMMER2_BREF_TYPE_INODE:
3846                         /*
3847                          * Access the inode's block array.  However, there
3848                          * is no block array if the inode is flagged
3849                          * DIRECTDATA.
3850                          */
3851                         if (parent->data &&
3852                             (parent->data->ipdata.meta.op_flags &
3853                              HAMMER2_OPFLAG_DIRECTDATA) == 0) {
3854                                 base =
3855                                    &parent->data->ipdata.u.blockset.blockref[0];
3856                         } else {
3857                                 base = NULL;
3858                         }
3859                         count = HAMMER2_SET_COUNT;
3860                         break;
3861                 case HAMMER2_BREF_TYPE_INDIRECT:
3862                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3863                         if (parent->data)
3864                                 base = &parent->data->npdata[0];
3865                         else
3866                                 base = NULL;
3867                         count = parent->bytes / sizeof(hammer2_blockref_t);
3868                         break;
3869                 case HAMMER2_BREF_TYPE_VOLUME:
3870                         base = &parent->data->voldata.
3871                                         sroot_blockset.blockref[0];
3872                         count = HAMMER2_SET_COUNT;
3873                         break;
3874                 case HAMMER2_BREF_TYPE_FREEMAP:
3875                         base = &parent->data->blkset.blockref[0];
3876                         count = HAMMER2_SET_COUNT;
3877                         break;
3878                 default:
3879                         base = NULL;
3880                         count = 0;
3881                         panic("_hammer2_chain_delete_helper: "
3882                               "unrecognized blockref type: %d",
3883                               parent->bref.type);
3884                 }
3885
3886                 /*
3887                  * delete blockmapped chain from its parent.
3888                  *
3889                  * The parent is not affected by any statistics in chain
3890                  * which are pending synchronization.  That is, there is
3891                  * nothing to undo in the parent since they have not yet
3892                  * been incorporated into the parent.
3893                  *
3894                  * The parent is affected by statistics stored in inodes.
3895                  * Those have already been synchronized, so they must be
3896                  * undone.  XXX split update possible w/delete in middle?
3897                  */
3898                 if (base) {
3899                         hammer2_base_delete(parent, base, count, chain, obref);
3900                 }
3901                 hammer2_spin_unex(&parent->core.spin);
3902                 hammer2_spin_unex(&chain->core.spin);
3903         } else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
3904                 /*
3905                  * Chain is not blockmapped but a parent is present.
3906                  * Atomically remove the chain from the parent.  There is
3907                  * no blockmap entry to remove.
3908                  *
3909                  * Because chain was associated with a parent but not
3910                  * synchronized, the chain's *_count_up fields contain
3911                  * inode adjustment statistics which must be undone.
3912                  */
3913                 hammer2_spin_ex(&chain->core.spin);
3914                 hammer2_spin_ex(&parent->core.spin);
3915                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3916                 atomic_add_int(&parent->core.live_count, -1);
3917                 ++parent->core.generation;
3918                 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3919                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3920                 --parent->core.chain_count;
3921                 chain->parent = NULL;
3922                 hammer2_spin_unex(&parent->core.spin);
3923                 hammer2_spin_unex(&chain->core.spin);
3924         } else {
3925                 /*
3926                  * Chain is not blockmapped and has no parent.  This
3927                  * is a degenerate case.
3928                  */
3929                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3930         }
3931 done:
3932         return error;
3933 }
3934
3935 /*
3936  * Create an indirect block that covers one or more of the elements in the
3937  * current parent.  Either returns the existing parent with no locking or
3938  * ref changes or returns the new indirect block locked and referenced
3939  * and leaving the original parent lock/ref intact as well.
3940  *
3941  * If an error occurs, NULL is returned and *errorp is set to the H2 error.
3942  *
3943  * The returned chain depends on where the specified key falls.
3944  *
3945  * The key/keybits for the indirect mode only needs to follow three rules:
3946  *
3947  * (1) That all elements underneath it fit within its key space and
3948  *
3949  * (2) That all elements outside it are outside its key space.
3950  *
3951  * (3) When creating the new indirect block any elements in the current
3952  *     parent that fit within the new indirect block's keyspace must be
3953  *     moved into the new indirect block.
3954  *
3955  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
3956  *     keyspace the the current parent, but lookup/iteration rules will
3957  *     ensure (and must ensure) that rule (2) for all parents leading up
3958  *     to the nearest inode or the root volume header is adhered to.  This
3959  *     is accomplished by always recursing through matching keyspaces in
3960  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
3961  *
3962  * The current implementation calculates the current worst-case keyspace by
3963  * iterating the current parent and then divides it into two halves, choosing
3964  * whichever half has the most elements (not necessarily the half containing
3965  * the requested key).
3966  *
3967  * We can also opt to use the half with the least number of elements.  This
3968  * causes lower-numbered keys (aka logical file offsets) to recurse through
3969  * fewer indirect blocks and higher-numbered keys to recurse through more.
3970  * This also has the risk of not moving enough elements to the new indirect
3971  * block and being forced to create several indirect blocks before the element
3972  * can be inserted.
3973  *
3974  * Must be called with an exclusively locked parent.
3975  *
3976  * NOTE: *errorp set to HAMMER_ERROR_* flags
3977  */
3978 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
3979                                 hammer2_key_t *keyp, int keybits,
3980                                 hammer2_blockref_t *base, int count);
3981 static int hammer2_chain_indkey_file(hammer2_chain_t *parent,
3982                                 hammer2_key_t *keyp, int keybits,
3983                                 hammer2_blockref_t *base, int count,
3984                                 int ncount);
3985 static int hammer2_chain_indkey_dir(hammer2_chain_t *parent,
3986                                 hammer2_key_t *keyp, int keybits,
3987                                 hammer2_blockref_t *base, int count,
3988                                 int ncount);
3989 static
3990 hammer2_chain_t *
3991 hammer2_chain_create_indirect(hammer2_chain_t *parent,
3992                               hammer2_key_t create_key, int create_bits,
3993                               hammer2_tid_t mtid, int for_type, int *errorp)
3994 {
3995         hammer2_dev_t *hmp;
3996         hammer2_blockref_t *base;
3997         hammer2_blockref_t *bref;
3998         hammer2_blockref_t bcopy;
3999         hammer2_blockref_t dummy;
4000         hammer2_chain_t *chain;
4001         hammer2_chain_t *ichain;
4002         hammer2_key_t key = create_key;
4003         hammer2_key_t key_beg;
4004         hammer2_key_t key_end;
4005         hammer2_key_t key_next;
4006         int keybits = create_bits;
4007         int count;
4008         int ncount;
4009         int nbytes;
4010         int loops;
4011         int error;
4012         int reason;
4013         int generation;
4014         int maxloops = 300000;
4015
4016         /*
4017          * Calculate the base blockref pointer or NULL if the chain
4018          * is known to be empty.  We need to calculate the array count
4019          * for RB lookups either way.
4020          */
4021         hmp = parent->hmp;
4022         KKASSERT(hammer2_mtx_owned(&parent->lock));
4023
4024         /*
4025          * Pre-modify the parent now to avoid having to deal with error
4026          * processing if we tried to later (in the middle of our loop).
4027          *
4028          * We are going to be moving bref's around, the indirect blocks
4029          * cannot be in an initial state.  Do not pass MODIFY_OPTDATA.
4030          */
4031         *errorp = hammer2_chain_modify(parent, mtid, 0, 0);
4032         if (*errorp) {
4033                 kprintf("hammer2_create_indirect: error %08x %s\n",
4034                         *errorp, hammer2_error_str(*errorp));
4035                 return NULL;
4036         }
4037         KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
4038
4039         /*hammer2_chain_modify(&parent, HAMMER2_MODIFY_OPTDATA);*/
4040         base = hammer2_chain_base_and_count(parent, &count);
4041
4042         /*
4043          * How big should our new indirect block be?  It has to be at least
4044          * as large as its parent for splits to work properly.
4045          *
4046          * The freemap uses a specific indirect block size.  The number of
4047          * levels are built dynamically and ultimately depend on the size
4048          * volume.  Because freemap blocks are taken from the reserved areas
4049          * of the volume our goal is efficiency (fewer levels) and not so
4050          * much to save disk space.
4051          *
4052          * The first indirect block level for a directory usually uses
4053          * HAMMER2_IND_BYTES_MIN (4KB = 32 directory entries).  Due to
4054          * the hash mechanism, this typically gives us a nominal
4055          * 32 * 4 entries with one level of indirection.
4056          *
4057          * We use HAMMER2_IND_BYTES_NOM (16KB = 128 blockrefs) for FILE
4058          * indirect blocks.  The initial 4 entries in the inode gives us
4059          * 256KB.  Up to 4 indirect blocks gives us 32MB.  Three levels
4060          * of indirection gives us 137GB, and so forth.  H2 can support
4061          * huge file sizes but they are not typical, so we try to stick
4062          * with compactness and do not use a larger indirect block size.
4063          *
4064          * We could use 64KB (PBUFSIZE), giving us 512 blockrefs, but
4065          * due to the way indirect blocks are created this usually winds
4066          * up being extremely inefficient for small files.  Even though
4067          * 16KB requires more levels of indirection for very large files,
4068          * the 16KB records can be ganged together into 64KB DIOs.
4069          */
4070         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4071             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4072                 nbytes = HAMMER2_FREEMAP_LEVELN_PSIZE;
4073         } else if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4074                 if (parent->data->ipdata.meta.type ==
4075                     HAMMER2_OBJTYPE_DIRECTORY)
4076                         nbytes = HAMMER2_IND_BYTES_MIN; /* 4KB = 32 entries */
4077                 else
4078                         nbytes = HAMMER2_IND_BYTES_NOM; /* 16KB = ~8MB file */
4079
4080         } else {
4081                 nbytes = HAMMER2_IND_BYTES_NOM;
4082         }
4083         if (nbytes < count * sizeof(hammer2_blockref_t)) {
4084                 KKASSERT(for_type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
4085                          for_type != HAMMER2_BREF_TYPE_FREEMAP_LEAF);
4086                 nbytes = count * sizeof(hammer2_blockref_t);
4087         }
4088         ncount = nbytes / sizeof(hammer2_blockref_t);
4089
4090         /*
4091          * When creating an indirect block for a freemap node or leaf
4092          * the key/keybits must be fitted to static radix levels because
4093          * particular radix levels use particular reserved blocks in the
4094          * related zone.
4095          *
4096          * This routine calculates the key/radix of the indirect block
4097          * we need to create, and whether it is on the high-side or the
4098          * low-side.
4099          */
4100         switch(for_type) {
4101         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
4102         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
4103                 keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
4104                                                        base, count);
4105                 break;
4106         case HAMMER2_BREF_TYPE_DATA:
4107                 keybits = hammer2_chain_indkey_file(parent, &key, keybits,
4108                                                     base, count, ncount);
4109                 break;
4110         case HAMMER2_BREF_TYPE_DIRENT:
4111         case HAMMER2_BREF_TYPE_INODE:
4112                 keybits = hammer2_chain_indkey_dir(parent, &key, keybits,
4113                                                    base, count, ncount);
4114                 break;
4115         default:
4116                 panic("illegal indirect block for bref type %d", for_type);
4117                 break;
4118         }
4119
4120         /*
4121          * Normalize the key for the radix being represented, keeping the
4122          * high bits and throwing away the low bits.
4123          */
4124         key &= ~(((hammer2_key_t)1 << keybits) - 1);
4125
4126         /*
4127          * Ok, create our new indirect block
4128          */
4129         bzero(&dummy, sizeof(dummy));
4130         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4131             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4132                 dummy.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
4133         } else {
4134                 dummy.type = HAMMER2_BREF_TYPE_INDIRECT;
4135         }
4136         dummy.key = key;
4137         dummy.keybits = keybits;
4138         dummy.data_off = hammer2_getradix(nbytes);
4139         dummy.methods =
4140                 HAMMER2_ENC_CHECK(HAMMER2_DEC_CHECK(parent->bref.methods)) |
4141                 HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
4142
4143         ichain = hammer2_chain_alloc(hmp, parent->pmp, &dummy);
4144         atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
4145         hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
4146         /* ichain has one ref at this point */
4147
4148         /*
4149          * We have to mark it modified to allocate its block, but use
4150          * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
4151          * it won't be acted upon by the flush code.
4152          *
4153          * XXX remove OPTDATA, we need a fully initialized indirect block to
4154          * be able to move the original blockref.
4155          */
4156         *errorp = hammer2_chain_modify(ichain, mtid, 0, 0);
4157         if (*errorp) {
4158                 kprintf("hammer2_alloc_indirect: error %08x %s\n",
4159                         *errorp, hammer2_error_str(*errorp));
4160                 hammer2_chain_unlock(ichain);
4161                 hammer2_chain_drop(ichain);
4162                 return NULL;
4163         }
4164         KKASSERT((ichain->flags & HAMMER2_CHAIN_INITIAL) == 0);
4165
4166         /*
4167          * Iterate the original parent and move the matching brefs into
4168          * the new indirect block.
4169          *
4170          * XXX handle flushes.
4171          */
4172         key_beg = 0;
4173         key_end = HAMMER2_KEY_MAX;
4174         key_next = 0;   /* avoid gcc warnings */
4175         hammer2_spin_ex(&parent->core.spin);
4176         loops = 0;
4177         reason = 0;
4178
4179         for (;;) {
4180                 /*
4181                  * Parent may have been modified, relocating its block array.
4182                  * Reload the base pointer.
4183                  */
4184                 base = hammer2_chain_base_and_count(parent, &count);
4185
4186                 if (++loops > 100000) {
4187                     hammer2_spin_unex(&parent->core.spin);
4188                     panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
4189                           reason, parent, base, count, key_next);
4190                 }
4191
4192                 /*
4193                  * NOTE: spinlock stays intact, returned chain (if not NULL)
4194                  *       is not referenced or locked which means that we
4195                  *       cannot safely check its flagged / deletion status
4196                  *       until we lock it.
4197                  */
4198                 chain = hammer2_combined_find(parent, base, count,
4199                                               &key_next,
4200                                               key_beg, key_end,
4201                                               &bref);
4202                 generation = parent->core.generation;
4203                 if (bref == NULL)
4204                         break;
4205                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4206
4207                 /*
4208                  * Skip keys that are not within the key/radix of the new
4209                  * indirect block.  They stay in the parent.
4210                  */
4211                 if (rounddown2(key ^ bref->key, (hammer2_key_t)1 << keybits) != 0) {
4212                         goto next_key_spinlocked;
4213                 }
4214
4215                 /*
4216                  * Load the new indirect block by acquiring the related
4217                  * chains (potentially from media as it might not be
4218                  * in-memory).  Then move it to the new parent (ichain).
4219                  *
4220                  * chain is referenced but not locked.  We must lock the
4221                  * chain to obtain definitive state.
4222                  */
4223                 bcopy = *bref;
4224                 if (chain) {
4225                         /*
4226                          * Use chain already present in the RBTREE
4227                          */
4228                         hammer2_chain_ref(chain);
4229                         hammer2_spin_unex(&parent->core.spin);
4230                         hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
4231                 } else {
4232                         /*
4233                          * Get chain for blockref element.  _get returns NULL
4234                          * on insertion race.
4235                          */
4236                         hammer2_spin_unex(&parent->core.spin);
4237                         chain = hammer2_chain_get(parent, generation, &bcopy,
4238                                                   HAMMER2_RESOLVE_NEVER);
4239                         if (chain == NULL) {
4240                                 reason = 1;
4241                                 hammer2_spin_ex(&parent->core.spin);
4242                                 continue;
4243                         }
4244                 }
4245
4246                 /*
4247                  * This is always live so if the chain has been deleted
4248                  * we raced someone and we have to retry.
4249                  *
4250                  * NOTE: Lookups can race delete-duplicate because
4251                  *       delete-duplicate does not lock the parent's core
4252                  *       (they just use the spinlock on the core).
4253                  *
4254                  *       (note reversed logic for this one)
4255                  */
4256                 if (bcmp(&bcopy, &chain->bref, sizeof(bcopy)) ||
4257                     chain->parent != parent ||
4258                     (chain->flags & HAMMER2_CHAIN_DELETED)) {
4259                         hammer2_chain_unlock(chain);
4260                         hammer2_chain_drop(chain);
4261                         if (hammer2_debug & 0x0040) {
4262                                 kprintf("LOST PARENT RETRY "
4263                                 "RETRY (%p,%p)->%p %08x\n",
4264                                 parent, chain->parent, chain, chain->flags);
4265                         }
4266                         hammer2_spin_ex(&parent->core.spin);
4267                         continue;
4268                 }
4269
4270                 /*
4271                  * Shift the chain to the indirect block.
4272                  *
4273                  * WARNING! No reason for us to load chain data, pass NOSTATS
4274                  *          to prevent delete/insert from trying to access
4275                  *          inode stats (and thus asserting if there is no
4276                  *          chain->data loaded).
4277                  *
4278                  * WARNING! The (parent, chain) deletion may modify the parent
4279                  *          and invalidate the base pointer.
4280                  *
4281                  * WARNING! Parent must already be marked modified, so we
4282                  *          can assume that chain_delete always suceeds.
4283                  *
4284                  * WARNING! hammer2_chain_repchange() does not have to be
4285                  *          called (and doesn't work anyway because we are
4286                  *          only doing a partial shift).  A recursion that is
4287                  *          in-progress can continue at the current parent
4288                  *          and will be able to properly find its next key.
4289                  */
4290                 error = hammer2_chain_delete_obref(parent, chain, mtid, 0,
4291                                                    &bcopy);
4292                 KKASSERT(error == 0);
4293                 hammer2_chain_rename_obref(&ichain, chain, mtid, 0, &bcopy);
4294                 hammer2_chain_unlock(chain);
4295                 hammer2_chain_drop(chain);
4296                 KKASSERT(parent->refs > 0);
4297                 chain = NULL;
4298                 base = NULL;    /* safety */
4299                 hammer2_spin_ex(&parent->core.spin);
4300 next_key_spinlocked:
4301                 if (--maxloops == 0)
4302                         panic("hammer2_chain_create_indirect: maxloops");
4303                 reason = 4;
4304                 if (key_next == 0 || key_next > key_end)
4305                         break;
4306                 key_beg = key_next;
4307                 /* loop */
4308         }
4309         hammer2_spin_unex(&parent->core.spin);
4310
4311         /*
4312          * Insert the new indirect block into the parent now that we've
4313          * cleared out some entries in the parent.  We calculated a good
4314          * insertion index in the loop above (ichain->index).
4315          *
4316          * We don't have to set UPDATE here because we mark ichain
4317          * modified down below (so the normal modified -> flush -> set-moved
4318          * sequence applies).
4319          *
4320          * The insertion shouldn't race as this is a completely new block
4321          * and the parent is locked.
4322          */
4323         base = NULL;    /* safety, parent modify may change address */
4324         KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
4325         KKASSERT(parent->core.live_count < count);
4326         hammer2_chain_insert(parent, ichain,
4327                              HAMMER2_CHAIN_INSERT_SPIN |
4328                              HAMMER2_CHAIN_INSERT_LIVE,
4329                              0);
4330
4331         /*
4332          * Make sure flushes propogate after our manual insertion.
4333          */
4334         hammer2_chain_setflush(ichain);
4335         hammer2_chain_setflush(parent);
4336
4337         /*
4338          * Figure out what to return.
4339          */
4340         if (rounddown2(create_key ^ key, (hammer2_key_t)1 << keybits)) {
4341                 /*
4342                  * Key being created is outside the key range,
4343                  * return the original parent.
4344                  */
4345                 hammer2_chain_unlock(ichain);
4346                 hammer2_chain_drop(ichain);
4347         } else {
4348                 /*
4349                  * Otherwise its in the range, return the new parent.
4350                  * (leave both the new and old parent locked).
4351                  */
4352                 parent = ichain;
4353         }
4354
4355         return(parent);
4356 }
4357
4358 /*
4359  * Do maintenance on an indirect chain.  Both parent and chain are locked.
4360  *
4361  * Returns non-zero if (chain) is deleted, either due to being empty or
4362  * because its children were safely moved into the parent.
4363  */
4364 int
4365 hammer2_chain_indirect_maintenance(hammer2_chain_t *parent,
4366                                    hammer2_chain_t *chain)
4367 {
4368         hammer2_blockref_t *chain_base;
4369         hammer2_blockref_t *base;
4370         hammer2_blockref_t *bref;
4371         hammer2_blockref_t bcopy;
4372         hammer2_key_t key_next;
4373         hammer2_key_t key_beg;
4374         hammer2_key_t key_end;
4375         hammer2_chain_t *sub;
4376         int chain_count;
4377         int count;
4378         int error;
4379         int generation;
4380
4381         /*
4382          * Make sure we have an accurate live_count
4383          */
4384         if ((chain->flags & (HAMMER2_CHAIN_INITIAL |
4385                              HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4386                 base = &chain->data->npdata[0];
4387                 count = chain->bytes / sizeof(hammer2_blockref_t);
4388                 hammer2_chain_countbrefs(chain, base, count);
4389         }
4390
4391         /*
4392          * If the indirect block is empty we can delete it.
4393          * (ignore deletion error)
4394          */
4395         if (chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree)) {
4396                 hammer2_chain_delete(parent, chain,
4397                                      chain->bref.modify_tid,
4398                                      HAMMER2_DELETE_PERMANENT);
4399                 hammer2_chain_repchange(parent, chain);
4400                 return 1;
4401         }
4402
4403         base = hammer2_chain_base_and_count(parent, &count);
4404
4405         if ((parent->flags & (HAMMER2_CHAIN_INITIAL |
4406                              HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4407                 hammer2_chain_countbrefs(parent, base, count);
4408         }
4409
4410         /*
4411          * Determine if we can collapse chain into parent, calculate
4412          * hysteresis for chain emptiness.
4413          */
4414         if (parent->core.live_count + chain->core.live_count - 1 > count)
4415                 return 0;
4416         chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4417         if (chain->core.live_count > chain_count * 3 / 4)
4418                 return 0;
4419
4420         /*
4421          * Ok, theoretically we can collapse chain's contents into
4422          * parent.  chain is locked, but any in-memory children of chain
4423          * are not.  For this to work, we must be able to dispose of any
4424          * in-memory children of chain.
4425          *
4426          * For now require that there are no in-memory children of chain.
4427          *
4428          * WARNING! Both chain and parent must remain locked across this
4429          *          entire operation.
4430          */
4431
4432         /*
4433          * Parent must be marked modified.  Don't try to collapse it if we
4434          * can't mark it modified.  Once modified, destroy chain to make room
4435          * and to get rid of what will be a conflicting key (this is included
4436          * in the calculation above).  Finally, move the children of chain
4437          * into chain's parent.
4438          *
4439          * This order creates an accounting problem for bref.embed.stats
4440          * because we destroy chain before we remove its children.  Any
4441          * elements whos blockref is already synchronized will be counted
4442          * twice.  To deal with the problem we clean out chain's stats prior
4443          * to deleting it.
4444          */
4445         error = hammer2_chain_modify(parent, 0, 0, 0);
4446         if (error) {
4447                 krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4448                             hammer2_error_str(error));
4449                 return 0;
4450         }
4451         error = hammer2_chain_modify(chain, chain->bref.modify_tid, 0, 0);
4452         if (error) {
4453                 krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4454                             hammer2_error_str(error));
4455                 return 0;
4456         }
4457
4458         chain->bref.embed.stats.inode_count = 0;
4459         chain->bref.embed.stats.data_count = 0;
4460         error = hammer2_chain_delete(parent, chain,
4461                                      chain->bref.modify_tid,
4462                                      HAMMER2_DELETE_PERMANENT);
4463         KKASSERT(error == 0);
4464
4465         /*
4466          * The combined_find call requires core.spin to be held.  One would
4467          * think there wouldn't be any conflicts since we hold chain
4468          * exclusively locked, but the caching mechanism for 0-ref children
4469          * does not require a chain lock.
4470          */
4471         hammer2_spin_ex(&chain->core.spin);
4472
4473         key_next = 0;
4474         key_beg = 0;
4475         key_end = HAMMER2_KEY_MAX;
4476         for (;;) {
4477                 chain_base = &chain->data->npdata[0];
4478                 chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4479                 sub = hammer2_combined_find(chain, chain_base, chain_count,
4480                                             &key_next,
4481                                             key_beg, key_end,
4482                                             &bref);
4483                 generation = chain->core.generation;
4484                 if (bref == NULL)
4485                         break;
4486                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4487
4488                 bcopy = *bref;
4489                 if (sub) {
4490                         hammer2_chain_ref(sub);
4491                         hammer2_spin_unex(&chain->core.spin);
4492                         hammer2_chain_lock(sub, HAMMER2_RESOLVE_NEVER);
4493                 } else {
4494                         hammer2_spin_unex(&chain->core.spin);
4495                         sub = hammer2_chain_get(chain, generation, &bcopy,
4496                                                 HAMMER2_RESOLVE_NEVER);
4497                         if (sub == NULL) {
4498                                 hammer2_spin_ex(&chain->core.spin);
4499                                 continue;
4500                         }
4501                 }
4502                 if (bcmp(&bcopy, &sub->bref, sizeof(bcopy)) ||
4503                     sub->parent != chain ||
4504                     (sub->flags & HAMMER2_CHAIN_DELETED)) {
4505                         hammer2_chain_unlock(sub);
4506                         hammer2_chain_drop(sub);
4507                         hammer2_spin_ex(&chain->core.spin);
4508                         sub = NULL;     /* safety */
4509                         continue;
4510                 }
4511                 error = hammer2_chain_delete_obref(chain, sub,
4512                                                    sub->bref.modify_tid, 0,
4513                                                    &bcopy);
4514                 KKASSERT(error == 0);
4515                 hammer2_chain_rename_obref(&parent, sub,
4516                                      sub->bref.modify_tid,
4517                                      HAMMER2_INSERT_SAMEPARENT, &bcopy);
4518                 hammer2_chain_unlock(sub);
4519                 hammer2_chain_drop(sub);
4520                 hammer2_spin_ex(&chain->core.spin);
4521
4522                 if (key_next == 0)
4523                         break;
4524                 key_beg = key_next;
4525         }
4526         hammer2_spin_unex(&chain->core.spin);
4527
4528         hammer2_chain_repchange(parent, chain);
4529
4530         return 1;
4531 }
4532
4533 /*
4534  * Freemap indirect blocks
4535  *
4536  * Calculate the keybits and highside/lowside of the freemap node the
4537  * caller is creating.
4538  *
4539  * This routine will specify the next higher-level freemap key/radix
4540  * representing the lowest-ordered set.  By doing so, eventually all
4541  * low-ordered sets will be moved one level down.
4542  *
4543  * We have to be careful here because the freemap reserves a limited
4544  * number of blocks for a limited number of levels.  So we can't just
4545  * push indiscriminately.
4546  */
4547 int
4548 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
4549                              int keybits, hammer2_blockref_t *base, int count)
4550 {
4551         hammer2_chain_t *chain;
4552         hammer2_blockref_t *bref;
4553         hammer2_key_t key;
4554         hammer2_key_t key_beg;
4555         hammer2_key_t key_end;
4556         hammer2_key_t key_next;
4557         int locount;
4558         int hicount;
4559         int maxloops = 300000;
4560
4561         key = *keyp;
4562         locount = 0;
4563         hicount = 0;
4564         keybits = 64;
4565
4566         /*
4567          * Calculate the range of keys in the array being careful to skip
4568          * slots which are overridden with a deletion.
4569          */
4570         key_beg = 0;
4571         key_end = HAMMER2_KEY_MAX;
4572         hammer2_spin_ex(&parent->core.spin);
4573
4574         for (;;) {
4575                 if (--maxloops == 0) {
4576                         panic("indkey_freemap shit %p %p:%d\n",
4577                               parent, base, count);
4578                 }
4579                 chain = hammer2_combined_find(parent, base, count,
4580                                               &key_next,
4581                                               key_beg, key_end,
4582                                               &bref);
4583
4584                 /*
4585                  * Exhausted search
4586                  */
4587                 if (bref == NULL)
4588                         break;
4589
4590                 /*
4591                  * Skip deleted chains.
4592                  */
4593                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4594                         if (key_next == 0 || key_next > key_end)
4595                                 break;
4596                         key_beg = key_next;
4597                         continue;
4598                 }
4599
4600                 /*
4601                  * Use the full live (not deleted) element for the scan
4602                  * iteration.  HAMMER2 does not allow partial replacements.
4603                  *
4604                  * XXX should be built into hammer2_combined_find().
4605                  */
4606                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4607
4608                 if (keybits > bref->keybits) {
4609                         key = bref->key;
4610                         keybits = bref->keybits;
4611                 } else if (keybits == bref->keybits && bref->key < key) {
4612                         key = bref->key;
4613                 }
4614                 if (key_next == 0)
4615                         break;
4616                 key_beg = key_next;
4617         }
4618         hammer2_spin_unex(&parent->core.spin);
4619
4620         /*
4621          * Return the keybits for a higher-level FREEMAP_NODE covering
4622          * this node.
4623          */
4624         switch(keybits) {
4625         case HAMMER2_FREEMAP_LEVEL0_RADIX:
4626                 keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
4627                 break;
4628         case HAMMER2_FREEMAP_LEVEL1_RADIX:
4629                 keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
4630                 break;
4631         case HAMMER2_FREEMAP_LEVEL2_RADIX:
4632                 keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
4633                 break;
4634         case HAMMER2_FREEMAP_LEVEL3_RADIX:
4635                 keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
4636                 break;
4637         case HAMMER2_FREEMAP_LEVEL4_RADIX:
4638                 keybits = HAMMER2_FREEMAP_LEVEL5_RADIX;
4639                 break;
4640         case HAMMER2_FREEMAP_LEVEL5_RADIX:
4641                 panic("hammer2_chain_indkey_freemap: level too high");
4642                 break;
4643         default:
4644                 panic("hammer2_chain_indkey_freemap: bad radix");
4645                 break;
4646         }
4647         *keyp = key;
4648
4649         return (keybits);
4650 }
4651
4652 /*
4653  * File indirect blocks
4654  *
4655  * Calculate the key/keybits for the indirect block to create by scanning
4656  * existing keys.  The key being created is also passed in *keyp and can be
4657  * inside or outside the indirect block.  Regardless, the indirect block
4658  * must hold at least two keys in order to guarantee sufficient space.
4659  *
4660  * We use a modified version of the freemap's fixed radix tree, but taylored
4661  * for file data.  Basically we configure an indirect block encompassing the
4662  * smallest key.
4663  */
4664 static int
4665 hammer2_chain_indkey_file(hammer2_chain_t *parent, hammer2_key_t *keyp,
4666                             int keybits, hammer2_blockref_t *base, int count,
4667                             int ncount)
4668 {
4669         hammer2_chain_t *chain;
4670         hammer2_blockref_t *bref;
4671         hammer2_key_t key;
4672         hammer2_key_t key_beg;
4673         hammer2_key_t key_end;
4674         hammer2_key_t key_next;
4675         int nradix;
4676         int locount;
4677         int hicount;
4678         int maxloops = 300000;
4679
4680         key = *keyp;
4681         locount = 0;
4682         hicount = 0;
4683         keybits = 64;
4684
4685         /*
4686          * Calculate the range of keys in the array being careful to skip
4687          * slots which are overridden with a deletion.
4688          *
4689          * Locate the smallest key.
4690          */
4691         key_beg = 0;
4692         key_end = HAMMER2_KEY_MAX;
4693         hammer2_spin_ex(&parent->core.spin);
4694
4695         for (;;) {
4696                 if (--maxloops == 0) {
4697                         panic("indkey_freemap shit %p %p:%d\n",
4698                               parent, base, count);
4699                 }
4700                 chain = hammer2_combined_find(parent, base, count,
4701                                               &key_next,
4702                                               key_beg, key_end,
4703                                               &bref);
4704
4705                 /*
4706                  * Exhausted search
4707                  */
4708                 if (bref == NULL)
4709                         break;
4710
4711                 /*
4712                  * Skip deleted chains.
4713                  */
4714                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4715                         if (key_next == 0 || key_next > key_end)
4716                                 break;
4717                         key_beg = key_next;
4718                         continue;
4719                 }
4720
4721                 /*
4722                  * Use the full live (not deleted) element for the scan
4723                  * iteration.  HAMMER2 does not allow partial replacements.
4724                  *
4725                  * XXX should be built into hammer2_combined_find().
4726                  */
4727                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4728
4729                 if (keybits > bref->keybits) {
4730                         key = bref->key;
4731                         keybits = bref->keybits;
4732                 } else if (keybits == bref->keybits && bref->key < key) {
4733                         key = bref->key;
4734                 }
4735                 if (key_next == 0)
4736                         break;
4737                 key_beg = key_next;
4738         }
4739         hammer2_spin_unex(&parent->core.spin);
4740
4741         /*
4742          * Calculate the static keybits for a higher-level indirect block
4743          * that contains the key.
4744          */
4745         *keyp = key;
4746
4747         switch(ncount) {
4748         case HAMMER2_IND_BYTES_MIN / sizeof(hammer2_blockref_t):
4749                 nradix = HAMMER2_IND_RADIX_MIN - HAMMER2_BLOCKREF_RADIX;
4750                 break;
4751         case HAMMER2_IND_BYTES_NOM / sizeof(hammer2_blockref_t):
4752                 nradix = HAMMER2_IND_RADIX_NOM - HAMMER2_BLOCKREF_RADIX;
4753                 break;
4754         case HAMMER2_IND_BYTES_MAX / sizeof(hammer2_blockref_t):
4755                 nradix = HAMMER2_IND_RADIX_MAX - HAMMER2_BLOCKREF_RADIX;
4756                 break;
4757         default:
4758                 panic("bad ncount %d\n", ncount);
4759                 nradix = 0;
4760                 break;
4761         }
4762
4763         /*
4764          * The largest radix that can be returned for an indirect block is
4765          * 63 bits.  (The largest practical indirect block radix is actually
4766          * 62 bits because the top-level inode or volume root contains four
4767          * entries, but allow 63 to be returned).
4768          */
4769         if (nradix >= 64)
4770                 nradix = 63;
4771
4772         return keybits + nradix;
4773 }
4774
4775 #if 1
4776
4777 /*
4778  * Directory indirect blocks.
4779  *
4780  * Covers both the inode index (directory of inodes), and directory contents
4781  * (filenames hardlinked to inodes).
4782  *
4783  * Because directory keys are hashed we generally try to cut the space in
4784  * half.  We accomodate the inode index (which tends to have linearly
4785  * increasing inode numbers) by ensuring that the keyspace is at least large
4786  * enough to fill up the indirect block being created.
4787  */
4788 static int
4789 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4790                          int keybits, hammer2_blockref_t *base, int count,
4791                          int ncount)
4792 {
4793         hammer2_blockref_t *bref;
4794         hammer2_chain_t *chain;
4795         hammer2_key_t key_beg;
4796         hammer2_key_t key_end;
4797         hammer2_key_t key_next;
4798         hammer2_key_t key;
4799         int nkeybits;
4800         int locount;
4801         int hicount;
4802         int maxloops = 300000;
4803
4804         /*
4805          * NOTE: We can't take a shortcut here anymore for inodes because
4806          *       the root directory can contain a mix of inodes and directory
4807          *       entries (we used to just return 63 if parent->bref.type was
4808          *       HAMMER2_BREF_TYPE_INODE.
4809          */
4810         key = *keyp;
4811         locount = 0;
4812         hicount = 0;
4813
4814         /*
4815          * Calculate the range of keys in the array being careful to skip
4816          * slots which are overridden with a deletion.
4817          */
4818         key_beg = 0;
4819         key_end = HAMMER2_KEY_MAX;
4820         hammer2_spin_ex(&parent->core.spin);
4821
4822         for (;;) {
4823                 if (--maxloops == 0) {
4824                         panic("indkey_freemap shit %p %p:%d\n",
4825                               parent, base, count);
4826                 }
4827                 chain = hammer2_combined_find(parent, base, count,
4828                                               &key_next,
4829                                               key_beg, key_end,
4830                                               &bref);
4831
4832                 /*
4833                  * Exhausted search
4834                  */
4835                 if (bref == NULL)
4836                         break;
4837
4838                 /*
4839                  * Deleted object
4840                  */
4841                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4842                         if (key_next == 0 || key_next > key_end)
4843                                 break;
4844                         key_beg = key_next;
4845                         continue;
4846                 }
4847
4848                 /*
4849                  * Use the full live (not deleted) element for the scan
4850                  * iteration.  HAMMER2 does not allow partial replacements.
4851                  *
4852                  * XXX should be built into hammer2_combined_find().
4853                  */
4854                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4855
4856                 /*
4857                  * Expand our calculated key range (key, keybits) to fit
4858                  * the scanned key.  nkeybits represents the full range
4859                  * that we will later cut in half (two halves @ nkeybits - 1).
4860                  */
4861                 nkeybits = keybits;
4862                 if (nkeybits < bref->keybits) {
4863                         if (bref->keybits > 64) {
4864                                 kprintf("bad bref chain %p bref %p\n",
4865                                         chain, bref);
4866                                 Debugger("fubar");
4867                         }
4868                         nkeybits = bref->keybits;
4869                 }
4870                 while (nkeybits < 64 &&
4871                        rounddown2(key ^ bref->key, (hammer2_key_t)1 << nkeybits) != 0) {
4872                         ++nkeybits;
4873                 }
4874
4875                 /*
4876                  * If the new key range is larger we have to determine
4877                  * which side of the new key range the existing keys fall
4878                  * under by checking the high bit, then collapsing the
4879                  * locount into the hicount or vise-versa.
4880                  */
4881                 if (keybits != nkeybits) {
4882                         if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
4883                                 hicount += locount;
4884                                 locount = 0;
4885                         } else {
4886                                 locount += hicount;
4887                                 hicount = 0;
4888                         }
4889                         keybits = nkeybits;
4890                 }
4891
4892                 /*
4893                  * The newly scanned key will be in the lower half or the
4894                  * upper half of the (new) key range.
4895                  */
4896                 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
4897                         ++hicount;
4898                 else
4899                         ++locount;
4900
4901                 if (key_next == 0)
4902                         break;
4903                 key_beg = key_next;
4904         }
4905         hammer2_spin_unex(&parent->core.spin);
4906         bref = NULL;    /* now invalid (safety) */
4907
4908         /*
4909          * Adjust keybits to represent half of the full range calculated
4910          * above (radix 63 max) for our new indirect block.
4911          */
4912         --keybits;
4913
4914         /*
4915          * Expand keybits to hold at least ncount elements.  ncount will be
4916          * a power of 2.  This is to try to completely fill leaf nodes (at
4917          * least for keys which are not hashes).
4918          *
4919          * We aren't counting 'in' or 'out', we are counting 'high side'
4920          * and 'low side' based on the bit at (1LL << keybits).  We want
4921          * everything to be inside in these cases so shift it all to
4922          * the low or high side depending on the new high bit.
4923          */
4924         while (((hammer2_key_t)1 << keybits) < ncount) {
4925                 ++keybits;
4926                 if (key & ((hammer2_key_t)1 << keybits)) {
4927                         hicount += locount;
4928                         locount = 0;
4929                 } else {
4930                         locount += hicount;
4931                         hicount = 0;
4932                 }
4933         }
4934
4935         if (hicount > locount)
4936                 key |= (hammer2_key_t)1 << keybits;
4937         else
4938                 key &= ~(hammer2_key_t)1 << keybits;
4939
4940         *keyp = key;
4941
4942         return (keybits);
4943 }
4944
4945 #else
4946
4947 /*
4948  * Directory indirect blocks.
4949  *
4950  * Covers both the inode index (directory of inodes), and directory contents
4951  * (filenames hardlinked to inodes).
4952  *
4953  * Because directory keys are hashed we generally try to cut the space in
4954  * half.  We accomodate the inode index (which tends to have linearly
4955  * increasing inode numbers) by ensuring that the keyspace is at least large
4956  * enough to fill up the indirect block being created.
4957  */
4958 static int
4959 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4960                          int keybits, hammer2_blockref_t *base, int count,
4961                          int ncount)
4962 {
4963         hammer2_blockref_t *bref;
4964         hammer2_chain_t *chain;
4965         hammer2_key_t key_beg;
4966         hammer2_key_t key_end;
4967         hammer2_key_t key_next;
4968         hammer2_key_t key;
4969         int nkeybits;
4970         int locount;
4971         int hicount;
4972         int maxloops = 300000;
4973
4974         /*
4975          * Shortcut if the parent is the inode.  In this situation the
4976          * parent has 4+1 directory entries and we are creating an indirect
4977          * block capable of holding many more.
4978          */
4979         if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4980                 return 63;
4981         }
4982
4983         key = *keyp;
4984         locount = 0;
4985         hicount = 0;
4986
4987         /*
4988          * Calculate the range of keys in the array being careful to skip
4989          * slots which are overridden with a deletion.
4990          */
4991         key_beg = 0;
4992         key_end = HAMMER2_KEY_MAX;
4993         hammer2_spin_ex(&parent->core.spin);
4994
4995         for (;;) {
4996                 if (--maxloops == 0) {
4997                         panic("indkey_freemap shit %p %p:%d\n",
4998                               parent, base, count);
4999                 }
5000                 chain = hammer2_combined_find(parent, base, count,
5001                                               &key_next,
5002                                               key_beg, key_end,
5003                                               &bref);
5004
5005                 /*
5006                  * Exhausted search
5007                  */
5008                 if (bref == NULL)
5009                         break;
5010
5011                 /*
5012                  * Deleted object
5013                  */
5014                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
5015                         if (key_next == 0 || key_next > key_end)
5016                                 break;
5017                         key_beg = key_next;
5018                         continue;
5019                 }
5020
5021                 /*
5022                  * Use the full live (not deleted) element for the scan
5023                  * iteration.  HAMMER2 does not allow partial replacements.
5024                  *
5025                  * XXX should be built into hammer2_combined_find().
5026                  */
5027                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
5028
5029                 /*
5030                  * Expand our calculated key range (key, keybits) to fit
5031                  * the scanned key.  nkeybits represents the full range
5032                  * that we will later cut in half (two halves @ nkeybits - 1).
5033                  */
5034                 nkeybits = keybits;
5035                 if (nkeybits < bref->keybits) {
5036                         if (bref->keybits > 64) {
5037                                 kprintf("bad bref chain %p bref %p\n",
5038                                         chain, bref);
5039                                 Debugger("fubar");
5040                         }
5041                         nkeybits = bref->keybits;
5042                 }
5043                 while (nkeybits < 64 &&
5044                        (~(((hammer2_key_t)1 << nkeybits) - 1) &
5045                         (key ^ bref->key)) != 0) {
5046                         ++nkeybits;
5047                 }
5048
5049                 /*
5050                  * If the new key range is larger we have to determine
5051                  * which side of the new key range the existing keys fall
5052                  * under by checking the high bit, then collapsing the
5053                  * locount into the hicount or vise-versa.
5054                  */
5055                 if (keybits != nkeybits) {
5056                         if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
5057                                 hicount += locount;
5058                                 locount = 0;
5059                         } else {
5060                                 locount += hicount;
5061                                 hicount = 0;
5062                         }
5063                         keybits = nkeybits;
5064                 }
5065
5066                 /*
5067                  * The newly scanned key will be in the lower half or the
5068                  * upper half of the (new) key range.
5069                  */
5070                 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
5071                         ++hicount;
5072                 else
5073                         ++locount;
5074
5075                 if (key_next == 0)
5076                         break;
5077                 key_beg = key_next;
5078         }
5079         hammer2_spin_unex(&parent->core.spin);
5080         bref = NULL;    /* now invalid (safety) */
5081
5082         /*
5083          * Adjust keybits to represent half of the full range calculated
5084          * above (radix 63 max) for our new indirect block.
5085          */
5086         --keybits;
5087
5088         /*
5089          * Expand keybits to hold at least ncount elements.  ncount will be
5090          * a power of 2.  This is to try to completely fill leaf nodes (at
5091          * least for keys which are not hashes).
5092          *
5093          * We aren't counting 'in' or 'out', we are counting 'high side'
5094          * and 'low side' based on the bit at (1LL << keybits).  We want
5095          * everything to be inside in these cases so shift it all to
5096          * the low or high side depending on the new high bit.
5097          */
5098         while (((hammer2_key_t)1 << keybits) < ncount) {
5099                 ++keybits;
5100                 if (key & ((hammer2_key_t)1 << keybits)) {
5101                         hicount += locount;
5102                         locount = 0;
5103                 } else {
5104                         locount += hicount;
5105                         hicount = 0;
5106                 }
5107         }
5108
5109         if (hicount > locount)
5110                 key |= (hammer2_key_t)1 << keybits;
5111         else
5112                 key &= ~(hammer2_key_t)1 << keybits;
5113
5114         *keyp = key;
5115
5116         return (keybits);
5117 }
5118
5119 #endif
5120
5121 /*
5122  * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
5123  * it exists.
5124  *
5125  * Both parent and chain must be locked exclusively.
5126  *
5127  * This function will modify the parent if the blockref requires removal
5128  * from the parent's block table.
5129  *
5130  * This function is NOT recursive.  Any entity already pushed into the
5131  * chain (such as an inode) may still need visibility into its contents,
5132  * as well as the ability to read and modify the contents.  For example,
5133  * for an unlinked file which is still open.
5134  *
5135  * Also note that the flusher is responsible for cleaning up empty
5136  * indirect blocks.
5137  */
5138 int
5139 hammer2_chain_delete(hammer2_chain_t *parent, hammer2_chain_t *chain,
5140                      hammer2_tid_t mtid, int flags)
5141 {
5142         int error = 0;
5143
5144         KKASSERT(hammer2_mtx_owned(&chain->lock));
5145
5146         /*
5147          * Nothing to do if already marked.
5148          *
5149          * We need the spinlock on the core whos RBTREE contains chain
5150          * to protect against races.
5151          */
5152         if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5153                 KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5154                          chain->parent == parent);
5155                 error = _hammer2_chain_delete_helper(parent, chain,
5156                                                      mtid, flags, NULL);
5157         }
5158
5159         /*
5160          * Permanent deletions mark the chain as destroyed.
5161          *
5162          * NOTE: We do not setflush the chain unless the deletion is
5163          *       permanent, since the deletion of a chain does not actually
5164          *       require it to be flushed.
5165          */
5166         if (error == 0) {
5167                 if (flags & HAMMER2_DELETE_PERMANENT) {
5168                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5169                         hammer2_chain_setflush(chain);
5170                 }
5171         }
5172
5173         return error;
5174 }
5175
5176 static int
5177 hammer2_chain_delete_obref(hammer2_chain_t *parent, hammer2_chain_t *chain,
5178                      hammer2_tid_t mtid, int flags,
5179                      hammer2_blockref_t *obref)
5180 {
5181         int error = 0;
5182
5183         KKASSERT(hammer2_mtx_owned(&chain->lock));
5184
5185         /*
5186          * Nothing to do if already marked.
5187          *
5188          * We need the spinlock on the core whos RBTREE contains chain
5189          * to protect against races.
5190          */
5191         obref->type = HAMMER2_BREF_TYPE_EMPTY;
5192         if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5193                 KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5194                          chain->parent == parent);
5195                 error = _hammer2_chain_delete_helper(parent, chain,
5196                                                      mtid, flags, obref);
5197         }
5198
5199         /*
5200          * Permanent deletions mark the chain as destroyed.
5201          *
5202          * NOTE: We do not setflush the chain unless the deletion is
5203          *       permanent, since the deletion of a chain does not actually
5204          *       require it to be flushed.
5205          */
5206         if (error == 0) {
5207                 if (flags & HAMMER2_DELETE_PERMANENT) {
5208                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5209                         hammer2_chain_setflush(chain);
5210                 }
5211         }
5212
5213         return error;
5214 }
5215
5216 /*
5217  * Returns the index of the nearest element in the blockref array >= elm.
5218  * Returns (count) if no element could be found.
5219  *
5220  * Sets *key_nextp to the next key for loop purposes but does not modify
5221  * it if the next key would be higher than the current value of *key_nextp.
5222  * Note that *key_nexp can overflow to 0, which should be tested by the
5223  * caller.
5224  *
5225  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5226  *           held through the operation.
5227  */
5228 static int
5229 hammer2_base_find(hammer2_chain_t *parent,
5230                   hammer2_blockref_t *base, int count,
5231                   hammer2_key_t *key_nextp,
5232                   hammer2_key_t key_beg, hammer2_key_t key_end)
5233 {
5234         hammer2_blockref_t *scan;
5235         hammer2_key_t scan_end;
5236         int i;
5237         int limit;
5238
5239         /*
5240          * Require the live chain's already have their core's counted
5241          * so we can optimize operations.
5242          */
5243         KKASSERT(parent->flags & HAMMER2_CHAIN_COUNTEDBREFS);
5244
5245         /*
5246          * Degenerate case
5247          */
5248         if (count == 0 || base == NULL)
5249                 return(count);
5250
5251         /*
5252          * Sequential optimization using parent->cache_index.  This is
5253          * the most likely scenario.
5254          *
5255          * We can avoid trailing empty entries on live chains, otherwise
5256          * we might have to check the whole block array.
5257          */
5258         i = parent->cache_index;        /* SMP RACE OK */
5259         cpu_ccfence();
5260         limit = parent->core.live_zero;
5261         if (i >= limit)
5262                 i = limit - 1;
5263         if (i < 0)
5264                 i = 0;
5265         KKASSERT(i < count);
5266
5267         /*
5268          * Search backwards
5269          */
5270         scan = &base[i];
5271         while (i > 0 && (scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5272             scan->key > key_beg)) {
5273                 --scan;
5274                 --i;
5275         }
5276         parent->cache_index = i;
5277
5278         /*
5279          * Search forwards, stop when we find a scan element which
5280          * encloses the key or until we know that there are no further
5281          * elements.
5282          */
5283         while (i < count) {
5284                 if (scan->type != HAMMER2_BREF_TYPE_EMPTY) {
5285                         scan_end = scan->key +
5286                                    ((hammer2_key_t)1 << scan->keybits) - 1;
5287                         if (scan->key > key_beg || scan_end >= key_beg)
5288                                 break;
5289                 }
5290                 if (i >= limit)
5291                         return (count);
5292                 ++scan;
5293                 ++i;
5294         }
5295         if (i != count) {
5296                 parent->cache_index = i;
5297                 if (i >= limit) {
5298                         i = count;
5299                 } else {
5300                         scan_end = scan->key +
5301                                    ((hammer2_key_t)1 << scan->keybits);
5302                         if (scan_end && (*key_nextp > scan_end ||
5303                                          *key_nextp == 0)) {
5304                                 *key_nextp = scan_end;
5305                         }
5306                 }
5307         }
5308         return (i);
5309 }
5310
5311 /*
5312  * Do a combined search and return the next match either from the blockref
5313  * array or from the in-memory chain.  Sets *bresp to the returned bref in
5314  * both cases, or sets it to NULL if the search exhausted.  Only returns
5315  * a non-NULL chain if the search matched from the in-memory chain.
5316  *
5317  * When no in-memory chain has been found and a non-NULL bref is returned
5318  * in *bresp.
5319  *
5320  *
5321  * The returned chain is not locked or referenced.  Use the returned bref
5322  * to determine if the search exhausted or not.  Iterate if the base find
5323  * is chosen but matches a deleted chain.
5324  *
5325  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5326  *           held through the operation.
5327  */
5328 hammer2_chain_t *
5329 hammer2_combined_find(hammer2_chain_t *parent,
5330                       hammer2_blockref_t *base, int count,
5331                       hammer2_key_t *key_nextp,
5332                       hammer2_key_t key_beg, hammer2_key_t key_end,
5333                       hammer2_blockref_t **bresp)
5334 {
5335         hammer2_blockref_t *bref;
5336         hammer2_chain_t *chain;
5337         int i;
5338
5339         /*
5340          * Lookup in block array and in rbtree.
5341          */
5342         *key_nextp = key_end + 1;
5343         i = hammer2_base_find(parent, base, count, key_nextp,
5344                               key_beg, key_end);
5345         chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
5346
5347         /*
5348          * Neither matched
5349          */
5350         if (i == count && chain == NULL) {
5351                 *bresp = NULL;
5352                 return(NULL);
5353         }
5354
5355         /*
5356          * Only chain matched.
5357          */
5358         if (i == count) {
5359                 bref = &chain->bref;
5360                 goto found;
5361         }
5362
5363         /*
5364          * Only blockref matched.
5365          */
5366         if (chain == NULL) {
5367                 bref = &base[i];
5368                 goto found;
5369         }
5370
5371         /*
5372          * Both in-memory and blockref matched, select the nearer element.
5373          *
5374          * If both are flush with the left-hand side or both are the
5375          * same distance away, select the chain.  In this situation the
5376          * chain must have been loaded from the matching blockmap.
5377          */
5378         if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
5379             chain->bref.key == base[i].key) {
5380                 KKASSERT(chain->bref.key == base[i].key);
5381                 bref = &chain->bref;
5382                 goto found;
5383         }
5384
5385         /*
5386          * Select the nearer key
5387          */
5388         if (chain->bref.key < base[i].key) {
5389                 bref = &chain->bref;
5390         } else {
5391                 bref = &base[i];
5392                 chain = NULL;
5393         }
5394
5395         /*
5396          * If the bref is out of bounds we've exhausted our search.
5397          */
5398 found:
5399         if (bref->key > key_end) {
5400                 *bresp = NULL;
5401                 chain = NULL;
5402         } else {
5403                 *bresp = bref;
5404         }
5405         return(chain);
5406 }
5407
5408 /*
5409  * Locate the specified block array element and delete it.  The element
5410  * must exist.
5411  *
5412  * The spin lock on the related chain must be held.
5413  *
5414  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5415  *       need to be adjusted when we commit the media change.
5416  */
5417 void
5418 hammer2_base_delete(hammer2_chain_t *parent,
5419                     hammer2_blockref_t *base, int count,
5420                     hammer2_chain_t *chain,
5421                     hammer2_blockref_t *obref)
5422 {
5423         hammer2_blockref_t *elm = &chain->bref;
5424         hammer2_blockref_t *scan;
5425         hammer2_key_t key_next;
5426         int i;
5427
5428         /*
5429          * Delete element.  Expect the element to exist.
5430          *
5431          * XXX see caller, flush code not yet sophisticated enough to prevent
5432          *     re-flushed in some cases.
5433          */
5434         key_next = 0; /* max range */
5435         i = hammer2_base_find(parent, base, count, &key_next,
5436                               elm->key, elm->key);
5437         scan = &base[i];
5438         if (i == count || scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5439             scan->key != elm->key ||
5440             ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
5441              scan->keybits != elm->keybits)) {
5442                 hammer2_spin_unex(&parent->core.spin);
5443                 panic("delete base %p element not found at %d/%d elm %p\n",
5444                       base, i, count, elm);
5445                 return;
5446         }
5447
5448         /*
5449          * Update stats and zero the entry.
5450          *
5451          * NOTE: Handle radix == 0 (0 bytes) case.
5452          */
5453         if ((int)(scan->data_off & HAMMER2_OFF_MASK_RADIX)) {
5454                 parent->bref.embed.stats.data_count -= (hammer2_off_t)1 <<
5455                                 (int)(scan->data_off & HAMMER2_OFF_MASK_RADIX);
5456         }
5457         switch(scan->type) {
5458         case HAMMER2_BREF_TYPE_INODE:
5459                 --parent->bref.embed.stats.inode_count;
5460                 /* fall through */
5461         case HAMMER2_BREF_TYPE_DATA:
5462                 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5463                         atomic_set_int(&chain->flags,
5464                                        HAMMER2_CHAIN_HINT_LEAF_COUNT);
5465                 } else {
5466                         if (parent->bref.leaf_count)
5467                                 --parent->bref.leaf_count;
5468                 }
5469                 /* fall through */
5470         case HAMMER2_BREF_TYPE_INDIRECT:
5471                 if (scan->type != HAMMER2_BREF_TYPE_DATA) {
5472                         parent->bref.embed.stats.data_count -=
5473                                 scan->embed.stats.data_count;
5474                         parent->bref.embed.stats.inode_count -=
5475                                 scan->embed.stats.inode_count;
5476                 }
5477                 if (scan->type == HAMMER2_BREF_TYPE_INODE)
5478                         break;
5479                 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5480                         atomic_set_int(&chain->flags,
5481                                        HAMMER2_CHAIN_HINT_LEAF_COUNT);
5482                 } else {
5483                         if (parent->bref.leaf_count <= scan->leaf_count)
5484                                 parent->bref.leaf_count = 0;
5485                         else
5486                                 parent->bref.leaf_count -= scan->leaf_count;
5487                 }
5488                 break;
5489         case HAMMER2_BREF_TYPE_DIRENT:
5490                 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5491                         atomic_set_int(&chain->flags,
5492                                        HAMMER2_CHAIN_HINT_LEAF_COUNT);
5493                 } else {
5494                         if (parent->bref.leaf_count)
5495                                 --parent->bref.leaf_count;
5496                 }
5497         default:
5498                 break;
5499         }
5500
5501         if (obref)
5502                 *obref = *scan;
5503         bzero(scan, sizeof(*scan));
5504
5505         /*
5506          * We can only optimize parent->core.live_zero for live chains.
5507          */
5508         if (parent->core.live_zero == i + 1) {
5509                 while (--i >= 0 && base[i].type == HAMMER2_BREF_TYPE_EMPTY)
5510                         ;
5511                 parent->core.live_zero = i + 1;
5512         }
5513
5514         /*
5515          * Clear appropriate blockmap flags in chain.
5516          */
5517         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
5518                                         HAMMER2_CHAIN_BMAPUPD);
5519 }
5520
5521 /*
5522  * Insert the specified element.  The block array must not already have the
5523  * element and must have space available for the insertion.
5524  *
5525  * The spin lock on the related chain must be held.
5526  *
5527  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5528  *       need to be adjusted when we commit the media change.
5529  */
5530 void
5531 hammer2_base_insert(hammer2_chain_t *parent,
5532                     hammer2_blockref_t *base, int count,
5533                     hammer2_chain_t *chain, hammer2_blockref_t *elm)
5534 {
5535         hammer2_key_t key_next;
5536         hammer2_key_t xkey;
5537         int i;
5538         int j;
5539         int k;
5540         int l;
5541         int u = 1;
5542
5543         /*
5544          * Insert new element.  Expect the element to not already exist
5545          * unless we are replacing it.
5546          *
5547          * XXX see caller, flush code not yet sophisticated enough to prevent
5548          *     re-flushed in some cases.
5549          */
5550         key_next = 0; /* max range */
5551         i = hammer2_base_find(parent, base, count, &key_next,
5552                               elm->key, elm->key);
5553
5554         /*
5555          * Shortcut fill optimization, typical ordered insertion(s) may not
5556          * require a search.
5557          */
5558         KKASSERT(i >= 0 && i <= count);
5559
5560         /*
5561          * Set appropriate blockmap flags in chain (if not NULL)
5562          */
5563         if (chain)
5564                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
5565
5566         /*
5567          * Update stats and zero the entry
5568          */
5569         if ((int)(elm->data_off & HAMMER2_OFF_MASK_RADIX)) {
5570                 parent->bref.embed.stats.data_count += (hammer2_off_t)1 <<
5571                                 (int)(elm->data_off & HAMMER2_OFF_MASK_RADIX);
5572         }
5573         switch(elm->type) {
5574         case HAMMER2_BREF_TYPE_INODE:
5575                 ++parent->bref.embed.stats.inode_count;
5576                 /* fall through */
5577         case HAMMER2_BREF_TYPE_DATA:
5578                 if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5579                         ++parent->bref.leaf_count;
5580                 /* fall through */
5581         case HAMMER2_BREF_TYPE_INDIRECT:
5582                 if (elm->type != HAMMER2_BREF_TYPE_DATA) {
5583                         parent->bref.embed.stats.data_count +=
5584                                 elm->embed.stats.data_count;
5585                         parent->bref.embed.stats.inode_count +=
5586                                 elm->embed.stats.inode_count;
5587                 }
5588                 if (elm->type == HAMMER2_BREF_TYPE_INODE)
5589                         break;
5590                 if (parent->bref.leaf_count + elm->leaf_count <
5591                     HAMMER2_BLOCKREF_LEAF_MAX) {
5592                         parent->bref.leaf_count += elm->leaf_count;
5593                 } else {
5594                         parent->bref.leaf_count = HAMMER2_BLOCKREF_LEAF_MAX;
5595                 }
5596                 break;
5597         case HAMMER2_BREF_TYPE_DIRENT:
5598                 if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5599                         ++parent->bref.leaf_count;
5600                 break;
5601         default:
5602                 break;
5603         }
5604
5605
5606         /*
5607          * We can only optimize parent->core.live_zero for live chains.
5608          */
5609         if (i == count && parent->core.live_zero < count) {
5610                 i = parent->core.live_zero++;
5611                 base[i] = *elm;
5612                 return;
5613         }
5614
5615         xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
5616         if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
5617                 hammer2_spin_unex(&parent->core.spin);
5618                 panic("insert base %p overlapping elements at %d elm %p\n",
5619                       base, i, elm);
5620         }
5621
5622         /*
5623          * Try to find an empty slot before or after.
5624          */
5625         j = i;
5626         k = i;
5627         while (j > 0 || k < count) {
5628                 --j;
5629                 if (j >= 0 && base[j].type == HAMMER2_BREF_TYPE_EMPTY) {
5630                         if (j == i - 1) {
5631                                 base[j] = *elm;
5632                         } else {
5633                                 bcopy(&base[j+1], &base[j],
5634                                       (i - j - 1) * sizeof(*base));
5635                                 base[i - 1] = *elm;
5636                         }
5637                         goto validate;
5638                 }
5639                 ++k;
5640                 if (k < count && base[k].type == HAMMER2_BREF_TYPE_EMPTY) {
5641                         bcopy(&base[i], &base[i+1],
5642                               (k - i) * sizeof(hammer2_blockref_t));
5643                         base[i] = *elm;
5644
5645                         /*
5646                          * We can only update parent->core.live_zero for live
5647                          * chains.
5648                          */
5649                         if (parent->core.live_zero <= k)
5650                                 parent->core.live_zero = k + 1;
5651                         u = 2;
5652                         goto validate;
5653                 }
5654         }
5655         panic("hammer2_base_insert: no room!");
5656
5657         /*
5658          * Debugging
5659          */
5660 validate:
5661         key_next = 0;
5662         for (l = 0; l < count; ++l) {
5663                 if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5664                         key_next = base[l].key +
5665                                    ((hammer2_key_t)1 << base[l].keybits) - 1;
5666                         break;
5667                 }
5668         }
5669         while (++l < count) {
5670                 if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5671                         if (base[l].key <= key_next)
5672                                 panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
5673                         key_next = base[l].key +
5674                                    ((hammer2_key_t)1 << base[l].keybits) - 1;
5675
5676                 }
5677         }
5678
5679 }
5680
5681 #if 0
5682
5683 /*
5684  * Sort the blockref array for the chain.  Used by the flush code to
5685  * sort the blockref[] array.
5686  *
5687  * The chain must be exclusively locked AND spin-locked.
5688  */
5689 typedef hammer2_blockref_t *hammer2_blockref_p;
5690
5691 static
5692 int
5693 hammer2_base_sort_callback(const void *v1, const void *v2)
5694 {
5695         hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
5696         hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
5697
5698         /*
5699          * Make sure empty elements are placed at the end of the array
5700          */
5701         if (bref1->type == HAMMER2_BREF_TYPE_EMPTY) {
5702                 if (bref2->type == HAMMER2_BREF_TYPE_EMPTY)
5703                         return(0);
5704                 return(1);
5705         } else if (bref2->type == HAMMER2_BREF_TYPE_EMPTY) {
5706                 return(-1);
5707         }
5708
5709         /*
5710          * Sort by key
5711          */
5712         if (bref1->key < bref2->key)
5713                 return(-1);
5714         if (bref1->key > bref2->key)
5715                 return(1);
5716         return(0);
5717 }
5718
5719 void
5720 hammer2_base_sort(hammer2_chain_t *chain)
5721 {
5722         hammer2_blockref_t *base;
5723         int count;
5724
5725         switch(chain->bref.type) {
5726         case HAMMER2_BREF_TYPE_INODE:
5727                 /*
5728                  * Special shortcut for embedded data returns the inode
5729                  * itself.  Callers must detect this condition and access
5730                  * the embedded data (the strategy code does this for us).
5731                  *
5732                  * This is only applicable to regular files and softlinks.
5733                  */
5734                 if (chain->data->ipdata.meta.op_flags &
5735                     HAMMER2_OPFLAG_DIRECTDATA) {
5736                         return;
5737                 }
5738                 base = &chain->data->ipdata.u.blockset.blockref[0];
5739                 count = HAMMER2_SET_COUNT;
5740                 break;
5741         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
5742         case HAMMER2_BREF_TYPE_INDIRECT:
5743                 /*
5744                  * Optimize indirect blocks in the INITIAL state to avoid
5745                  * I/O.
5746                  */
5747                 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
5748                 base = &chain->data->npdata[0];
5749                 count = chain->bytes / sizeof(hammer2_blockref_t);
5750                 break;
5751         case HAMMER2_BREF_TYPE_VOLUME:
5752                 base = &chain->data->voldata.sroot_blockset.blockref[0];
5753                 count = HAMMER2_SET_COUNT;
5754                 break;
5755         case HAMMER2_BREF_TYPE_FREEMAP:
5756                 base = &chain->data->blkset.blockref[0];
5757                 count = HAMMER2_SET_COUNT;
5758                 break;
5759         default:
5760                 kprintf("hammer2_chain_lookup: unrecognized "
5761                         "blockref(A) type: %d",
5762                         chain->bref.type);
5763                 while (1)
5764                         tsleep(&base, 0, "dead", 0);
5765                 panic("hammer2_base_sort: unrecognized "
5766                       "blockref(A) type: %d",
5767                       chain->bref.type);
5768                 base = NULL;    /* safety */
5769                 count = 0;      /* safety */
5770         }
5771         kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
5772 }
5773
5774 #endif
5775
5776 /*
5777  * Chain memory management
5778  */
5779 void
5780 hammer2_chain_wait(hammer2_chain_t *chain)
5781 {
5782         tsleep(chain, 0, "chnflw", 1);
5783 }
5784
5785 const hammer2_media_data_t *
5786 hammer2_chain_rdata(hammer2_chain_t *chain)
5787 {
5788         KKASSERT(chain->data != NULL);
5789         return (chain->data);
5790 }
5791
5792 hammer2_media_data_t *
5793 hammer2_chain_wdata(hammer2_chain_t *chain)
5794 {
5795         KKASSERT(chain->data != NULL);
5796         return (chain->data);
5797 }
5798
5799 /*
5800  * Set the check data for a chain.  This can be a heavy-weight operation
5801  * and typically only runs on-flush.  For file data check data is calculated
5802  * when the logical buffers are flushed.
5803  */
5804 void
5805 hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
5806 {
5807         chain->bref.flags &= ~HAMMER2_BREF_FLAG_ZERO;
5808
5809         switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5810         case HAMMER2_CHECK_NONE:
5811                 break;
5812         case HAMMER2_CHECK_DISABLED:
5813                 break;
5814         case HAMMER2_CHECK_ISCSI32:
5815                 chain->bref.check.iscsi32.value =
5816                         hammer2_icrc32(bdata, chain->bytes);
5817                 break;
5818         case HAMMER2_CHECK_XXHASH64:
5819                 chain->bref.check.xxhash64.value =
5820                         XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5821                 break;
5822         case HAMMER2_CHECK_SHA192:
5823                 {
5824                         SHA256_CTX hash_ctx;
5825                         union {
5826                                 uint8_t digest[SHA256_DIGEST_LENGTH];
5827                                 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5828                         } u;
5829
5830                         SHA256_Init(&hash_ctx);
5831                         SHA256_Update(&hash_ctx, bdata, chain->bytes);
5832                         SHA256_Final(u.digest, &hash_ctx);
5833                         u.digest64[2] ^= u.digest64[3];
5834                         bcopy(u.digest,
5835                               chain->bref.check.sha192.data,
5836                               sizeof(chain->bref.check.sha192.data));
5837                 }
5838                 break;
5839         case HAMMER2_CHECK_FREEMAP:
5840                 chain->bref.check.freemap.icrc32 =
5841                         hammer2_icrc32(bdata, chain->bytes);
5842                 break;
5843         default:
5844                 kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5845                         chain->bref.methods);
5846                 break;
5847         }
5848 }
5849
5850 /*
5851  * Characterize a failed check code and try to trace back to the inode.
5852  */
5853 static void
5854 hammer2_characterize_failed_chain(hammer2_chain_t *chain, uint64_t check,
5855                                   int bits)
5856 {
5857         hammer2_chain_t *lchain;
5858         hammer2_chain_t *ochain;
5859         int did;
5860
5861         did = krateprintf(&krate_h2chk,
5862                 "chain %016jx.%02x (%s) meth=%02x CHECK FAIL "
5863                 "(flags=%08x, bref/data ",
5864                 chain->bref.data_off,
5865                 chain->bref.type,
5866                 hammer2_bref_type_str(&chain->bref),
5867                 chain->bref.methods,
5868                 chain->flags);
5869         if (did == 0)
5870                 return;
5871
5872         if (bits == 32) {
5873                 kprintf("%08x/%08x)\n",
5874                         chain->bref.check.iscsi32.value,
5875                         (uint32_t)check);
5876         } else {
5877                 kprintf("%016jx/%016jx)\n",
5878                         chain->bref.check.xxhash64.value,
5879                         check);
5880         }
5881
5882         /*
5883          * Run up the chains to try to find the governing inode so we
5884          * can report it.
5885          *
5886          * XXX This error reporting is not really MPSAFE
5887          */
5888         ochain = chain;
5889         lchain = chain;
5890         while (chain && chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
5891                 lchain = chain;
5892                 chain = chain->parent;
5893         }
5894
5895         if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
5896             ((chain->bref.flags & HAMMER2_BREF_FLAG_PFSROOT) == 0 ||
5897              (lchain->bref.key & HAMMER2_DIRHASH_VISIBLE))) {
5898                 kprintf("   Resides at/in inode %ld\n",
5899                         chain->bref.key);
5900         } else if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
5901                 kprintf("   Resides in inode index - CRITICAL!!!\n");
5902         } else {
5903                 kprintf("   Resides in root index - CRITICAL!!!\n");
5904         }
5905         if (ochain->hmp) {
5906                 const char *pfsname = "UNKNOWN";
5907                 int i;
5908
5909                 if (ochain->pmp) {
5910                         for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
5911                                 if (ochain->pmp->pfs_hmps[i] == ochain->hmp &&
5912                                     ochain->pmp->pfs_names[i]) {
5913                                         pfsname = ochain->pmp->pfs_names[i];
5914                                         break;
5915                                 }
5916                         }
5917                 }
5918                 kprintf("   In pfs %s on device %s\n",
5919                         pfsname, ochain->hmp->devrepname);
5920         }
5921 }
5922
5923 /*
5924  * Returns non-zero on success, 0 on failure.
5925  */
5926 int
5927 hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
5928 {
5929         uint32_t check32;
5930         uint64_t check64;
5931         int r;
5932
5933         if (chain->bref.flags & HAMMER2_BREF_FLAG_ZERO)
5934                 return 1;
5935
5936         switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5937         case HAMMER2_CHECK_NONE:
5938                 r = 1;
5939                 break;
5940         case HAMMER2_CHECK_DISABLED:
5941                 r = 1;
5942                 break;
5943         case HAMMER2_CHECK_ISCSI32:
5944                 check32 = hammer2_icrc32(bdata, chain->bytes);
5945                 r = (chain->bref.check.iscsi32.value == check32);
5946                 if (r == 0) {
5947                         hammer2_characterize_failed_chain(chain, check32, 32);
5948                 }
5949                 hammer2_process_icrc32 += chain->bytes;
5950                 break;
5951         case HAMMER2_CHECK_XXHASH64:
5952                 check64 = XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5953                 r = (chain->bref.check.xxhash64.value == check64);
5954                 if (r == 0) {
5955                         hammer2_characterize_failed_chain(chain, check64, 64);
5956                 }
5957                 hammer2_process_xxhash64 += chain->bytes;
5958                 break;
5959         case HAMMER2_CHECK_SHA192:
5960                 {
5961                         SHA256_CTX hash_ctx;
5962                         union {
5963                                 uint8_t digest[SHA256_DIGEST_LENGTH];
5964                                 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5965                         } u;
5966
5967                         SHA256_Init(&hash_ctx);
5968                         SHA256_Update(&hash_ctx, bdata, chain->bytes);
5969                         SHA256_Final(u.digest, &hash_ctx);
5970                         u.digest64[2] ^= u.digest64[3];
5971                         if (bcmp(u.digest,
5972                                  chain->bref.check.sha192.data,
5973                                  sizeof(chain->bref.check.sha192.data)) == 0) {
5974                                 r = 1;
5975                         } else {
5976                                 r = 0;
5977                                 krateprintf(&krate_h2chk,
5978                                         "chain %016jx.%02x meth=%02x "
5979                                         "CHECK FAIL\n",
5980                                         chain->bref.data_off,
5981                                         chain->bref.type,
5982                                         chain->bref.methods);
5983                         }
5984                 }
5985                 break;
5986         case HAMMER2_CHECK_FREEMAP:
5987                 r = (chain->bref.check.freemap.icrc32 ==
5988                      hammer2_icrc32(bdata, chain->bytes));
5989                 if (r == 0) {
5990                         int did;
5991
5992                         did = krateprintf(&krate_h2chk,
5993                                           "chain %016jx.%02x meth=%02x "
5994                                           "CHECK FAIL\n",
5995                                           chain->bref.data_off,
5996                                           chain->bref.type,
5997                                           chain->bref.methods);
5998                         if (did) {
5999                                 kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
6000                                         chain->bref.check.freemap.icrc32,
6001                                         hammer2_icrc32(bdata, chain->bytes),
6002                                         chain->bytes);
6003                                 if (chain->dio) {
6004                                         kprintf("dio %p buf %016jx,%d "
6005                                                 "bdata %p/%p\n",
6006                                                 chain->dio,
6007                                                 chain->dio->bp->b_loffset,
6008                                                 chain->dio->bp->b_bufsize,
6009                                                 bdata,
6010                                                 chain->dio->bp->b_data);
6011                                 }
6012                         }
6013                 }
6014                 break;
6015         default:
6016                 kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
6017                         chain->bref.methods);
6018                 r = 1;
6019                 break;
6020         }
6021         return r;
6022 }
6023
6024 /*
6025  * Acquire the chain and parent representing the specified inode for the
6026  * device at the specified cluster index.
6027  *
6028  * The flags passed in are LOOKUP flags, not RESOLVE flags.
6029  *
6030  * If we are unable to locate the inode, HAMMER2_ERROR_EIO is returned and
6031  * *chainp will be NULL.  *parentp may still be set error or not, or NULL
6032  * if the parent itself could not be resolved.
6033  *
6034  * The caller may pass-in a locked *parentp and/or *chainp, or neither.
6035  * They will be unlocked and released by this function.  The *parentp and
6036  * *chainp representing the located inode are returned locked.
6037  */
6038 int
6039 hammer2_chain_inode_find(hammer2_pfs_t *pmp, hammer2_key_t inum,
6040                          int clindex, int flags,
6041                          hammer2_chain_t **parentp, hammer2_chain_t **chainp)
6042 {
6043         hammer2_chain_t *parent;
6044         hammer2_chain_t *rchain;
6045         hammer2_key_t key_dummy;
6046         hammer2_inode_t *ip;
6047         int resolve_flags;
6048         int error;
6049
6050         resolve_flags = (flags & HAMMER2_LOOKUP_SHARED) ?
6051                         HAMMER2_RESOLVE_SHARED : 0;
6052
6053         /*
6054          * Caller expects us to replace these.
6055          */
6056         if (*chainp) {
6057                 hammer2_chain_unlock(*chainp);
6058                 hammer2_chain_drop(*chainp);
6059                 *chainp = NULL;
6060         }
6061         if (*parentp) {
6062                 hammer2_chain_unlock(*parentp);
6063                 hammer2_chain_drop(*parentp);
6064                 *parentp = NULL;
6065         }
6066
6067         /*
6068          * Be very careful, this is a backend function and we CANNOT
6069          * lock any frontend inode structure we find.  But we have to
6070          * look the inode up this way first in case it exists but is
6071          * detached from the radix tree.
6072          */
6073         ip = hammer2_inode_lookup(pmp, inum);
6074         if (ip) {
6075                 *chainp = hammer2_inode_chain_and_parent(ip, clindex,
6076                                                        parentp,
6077                                                        resolve_flags);
6078                 hammer2_inode_drop(ip);
6079                 if (*chainp)
6080                         return 0;
6081                 hammer2_chain_unlock(*chainp);
6082                 hammer2_chain_drop(*chainp);
6083                 *chainp = NULL;
6084                 if (*parentp) {
6085                         hammer2_chain_unlock(*parentp);
6086                         hammer2_chain_drop(*parentp);
6087                         *parentp = NULL;
6088                 }
6089         }
6090
6091         /*
6092          * Inodes hang off of the iroot (bit 63 is clear, differentiating
6093          * inodes from root directory entries in the key lookup).
6094          */
6095         parent = hammer2_inode_chain(pmp->iroot, clindex, resolve_flags);
6096         rchain = NULL;
6097         if (parent) {
6098                 rchain = hammer2_chain_lookup(&parent, &key_dummy,
6099                                               inum, inum,
6100                                               &error, flags);
6101         } else {
6102                 error = HAMMER2_ERROR_EIO;
6103         }
6104         *parentp = parent;
6105         *chainp = rchain;
6106
6107         return error;
6108 }
6109
6110 /*
6111  * Used by the bulkscan code to snapshot the synchronized storage for
6112  * a volume, allowing it to be scanned concurrently against normal
6113  * operation.
6114  */
6115 hammer2_chain_t *
6116 hammer2_chain_bulksnap(hammer2_dev_t *hmp)
6117 {
6118         hammer2_chain_t *copy;
6119
6120         copy = hammer2_chain_alloc(hmp, hmp->spmp, &hmp->vchain.bref);
6121         copy->data = kmalloc(sizeof(copy->data->voldata),
6122                              hmp->mchain,
6123                              M_WAITOK | M_ZERO);
6124         hammer2_voldata_lock(hmp);
6125         copy->data->voldata = hmp->volsync;
6126         hammer2_voldata_unlock(hmp);
6127
6128         return copy;
6129 }
6130
6131 void
6132 hammer2_chain_bulkdrop(hammer2_chain_t *copy)
6133 {
6134         KKASSERT(copy->bref.type == HAMMER2_BREF_TYPE_VOLUME);
6135         KKASSERT(copy->data);
6136         kfree(copy->data, copy->hmp->mchain);
6137         copy->data = NULL;
6138         atomic_add_long(&hammer2_chain_allocs, -1);
6139         hammer2_chain_drop(copy);
6140 }
6141
6142 /*
6143  * Returns non-zero if the chain (INODE or DIRENT) matches the
6144  * filename.
6145  */
6146 int
6147 hammer2_chain_dirent_test(hammer2_chain_t *chain, const char *name,
6148                           size_t name_len)
6149 {
6150         const hammer2_inode_data_t *ripdata;
6151         const hammer2_dirent_head_t *den;
6152
6153         if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
6154                 ripdata = &chain->data->ipdata;
6155                 if (ripdata->meta.name_len == name_len &&
6156                     bcmp(ripdata->filename, name, name_len) == 0) {
6157                         return 1;
6158                 }
6159         }
6160         if (chain->bref.type == HAMMER2_BREF_TYPE_DIRENT &&
6161            chain->bref.embed.dirent.namlen == name_len) {
6162                 den = &chain->bref.embed.dirent;
6163                 if (name_len > sizeof(chain->bref.check.buf) &&
6164                     bcmp(chain->data->buf, name, name_len) == 0) {
6165                         return 1;
6166                 }
6167                 if (name_len <= sizeof(chain->bref.check.buf) &&
6168                     bcmp(chain->bref.check.buf, name, name_len) == 0) {
6169                         return 1;
6170                 }
6171         }
6172         return 0;
6173 }