sys/vfs/hammer2: Move voldata functions to hammer2_vfsops.c
[dragonfly.git] / sys / vfs / hammer2 / hammer2_chain.c
1 /*
2  * Copyright (c) 2011-2020 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain structure.
38  *
39  * Chains are the in-memory version on media objects (volume header, inodes,
40  * indirect blocks, data blocks, etc).  Chains represent a portion of the
41  * HAMMER2 topology.
42  *
43  * Chains are no-longer delete-duplicated.  Instead, the original in-memory
44  * chain will be moved along with its block reference (e.g. for things like
45  * renames, hardlink operations, modifications, etc), and will be indexed
46  * on a secondary list for flush handling instead of propagating a flag
47  * upward to the root.
48  *
49  * Concurrent front-end operations can still run against backend flushes
50  * as long as they do not cross the current flush boundary.  An operation
51  * running above the current flush (in areas not yet flushed) can become
52  * part of the current flush while ano peration running below the current
53  * flush can become part of the next flush.
54  */
55 #include <sys/cdefs.h>
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/types.h>
59 #include <sys/lock.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/uuid.h>
62
63 #include <crypto/sha2/sha2.h>
64
65 #include "hammer2.h"
66
67 static hammer2_chain_t *hammer2_chain_create_indirect(
68                 hammer2_chain_t *parent,
69                 hammer2_key_t key, int keybits,
70                 hammer2_tid_t mtid, int for_type, int *errorp);
71 static int hammer2_chain_delete_obref(hammer2_chain_t *parent,
72                 hammer2_chain_t *chain,
73                 hammer2_tid_t mtid, int flags,
74                 hammer2_blockref_t *obref);
75 static hammer2_chain_t *hammer2_combined_find(
76                 hammer2_chain_t *parent,
77                 hammer2_blockref_t *base, int count,
78                 hammer2_key_t *key_nextp,
79                 hammer2_key_t key_beg, hammer2_key_t key_end,
80                 hammer2_blockref_t **bresp);
81 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain,
82                                 int depth);
83 static void hammer2_chain_lru_flush(hammer2_pfs_t *pmp);
84
85 /*
86  * There are many degenerate situations where an extreme rate of console
87  * output can occur from warnings and errors.  Make sure this output does
88  * not impede operations.
89  */
90 static struct krate krate_h2chk = { .freq = 5 };
91 static struct krate krate_h2me = { .freq = 1 };
92 static struct krate krate_h2em = { .freq = 1 };
93
94 /*
95  * Basic RBTree for chains (core.rbtree).
96  */
97 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
98
99 int
100 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
101 {
102         hammer2_key_t c1_beg;
103         hammer2_key_t c1_end;
104         hammer2_key_t c2_beg;
105         hammer2_key_t c2_end;
106
107         /*
108          * Compare chains.  Overlaps are not supposed to happen and catch
109          * any software issues early we count overlaps as a match.
110          */
111         c1_beg = chain1->bref.key;
112         c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
113         c2_beg = chain2->bref.key;
114         c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
115
116         if (c1_end < c2_beg)    /* fully to the left */
117                 return(-1);
118         if (c1_beg > c2_end)    /* fully to the right */
119                 return(1);
120         return(0);              /* overlap (must not cross edge boundary) */
121 }
122
123 /*
124  * Assert that a chain has no media data associated with it.
125  */
126 static __inline void
127 hammer2_chain_assert_no_data(hammer2_chain_t *chain)
128 {
129         KKASSERT(chain->dio == NULL);
130         if (chain->bref.type != HAMMER2_BREF_TYPE_VOLUME &&
131             chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP &&
132             chain->data) {
133                 panic("hammer2_chain_assert_no_data: chain %p still has data",
134                     chain);
135         }
136 }
137
138 /*
139  * Make a chain visible to the flusher.  The flusher operates using a top-down
140  * recursion based on the ONFLUSH flag.  It locates MODIFIED and UPDATE chains,
141  * flushes them, and updates blocks back to the volume root.
142  *
143  * This routine sets the ONFLUSH flag upward from the triggering chain until
144  * it hits an inode root or the volume root.  Inode chains serve as inflection
145  * points, requiring the flusher to bridge across trees.  Inodes include
146  * regular inodes, PFS roots (pmp->iroot), and the media super root
147  * (spmp->iroot).
148  */
149 void
150 hammer2_chain_setflush(hammer2_chain_t *chain)
151 {
152         hammer2_chain_t *parent;
153
154         if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
155                 hammer2_spin_sh(&chain->core.spin);
156                 while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
157                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
158                         if (chain->bref.type == HAMMER2_BREF_TYPE_INODE)
159                                 break;
160                         if ((parent = chain->parent) == NULL)
161                                 break;
162                         hammer2_spin_sh(&parent->core.spin);
163                         hammer2_spin_unsh(&chain->core.spin);
164                         chain = parent;
165                 }
166                 hammer2_spin_unsh(&chain->core.spin);
167         }
168 }
169
170 /*
171  * Allocate a new disconnected chain element representing the specified
172  * bref.  chain->refs is set to 1 and the passed bref is copied to
173  * chain->bref.  chain->bytes is derived from the bref.
174  *
175  * chain->pmp inherits pmp unless the chain is an inode (other than the
176  * super-root inode).
177  *
178  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
179  */
180 hammer2_chain_t *
181 hammer2_chain_alloc(hammer2_dev_t *hmp, hammer2_pfs_t *pmp,
182                     hammer2_blockref_t *bref)
183 {
184         hammer2_chain_t *chain;
185         u_int bytes;
186
187         /*
188          * Special case - radix of 0 indicates a chain that does not
189          * need a data reference (context is completely embedded in the
190          * bref).
191          */
192         if ((int)(bref->data_off & HAMMER2_OFF_MASK_RADIX))
193                 bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
194         else
195                 bytes = 0;
196
197         switch(bref->type) {
198         case HAMMER2_BREF_TYPE_INODE:
199         case HAMMER2_BREF_TYPE_INDIRECT:
200         case HAMMER2_BREF_TYPE_DATA:
201         case HAMMER2_BREF_TYPE_DIRENT:
202         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
203         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
204         case HAMMER2_BREF_TYPE_FREEMAP:
205         case HAMMER2_BREF_TYPE_VOLUME:
206                 chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
207                 atomic_add_long(&hammer2_chain_allocs, 1);
208                 break;
209         case HAMMER2_BREF_TYPE_EMPTY:
210         default:
211                 panic("hammer2_chain_alloc: unrecognized blockref type: %d",
212                       bref->type);
213                 break;
214         }
215
216         /*
217          * Initialize the new chain structure.  pmp must be set to NULL for
218          * chains belonging to the super-root topology of a device mount.
219          */
220         if (pmp == hmp->spmp)
221                 chain->pmp = NULL;
222         else
223                 chain->pmp = pmp;
224
225         chain->hmp = hmp;
226         chain->bref = *bref;
227         chain->bytes = bytes;
228         chain->refs = 1;
229         chain->flags = HAMMER2_CHAIN_ALLOCATED;
230         lockinit(&chain->diolk, "chdio", 0, 0);
231
232         /*
233          * Set the PFS boundary flag if this chain represents a PFS root.
234          */
235         if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
236                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_PFSBOUNDARY);
237         hammer2_chain_core_init(chain);
238
239         return (chain);
240 }
241
242 /*
243  * Initialize a chain's core structure.  This structure used to be allocated
244  * but is now embedded.
245  *
246  * The core is not locked.  No additional refs on the chain are made.
247  * (trans) must not be NULL if (core) is not NULL.
248  */
249 void
250 hammer2_chain_core_init(hammer2_chain_t *chain)
251 {
252         /*
253          * Fresh core under nchain (no multi-homing of ochain's
254          * sub-tree).
255          */
256         RB_INIT(&chain->core.rbtree);   /* live chains */
257         hammer2_mtx_init(&chain->lock, "h2chain");
258 }
259
260 /*
261  * Add a reference to a chain element, preventing its destruction.
262  *
263  * (can be called with spinlock held)
264  */
265 void
266 hammer2_chain_ref(hammer2_chain_t *chain)
267 {
268         if (atomic_fetchadd_int(&chain->refs, 1) == 0) {
269                 /*
270                  * Just flag that the chain was used and should be recycled
271                  * on the LRU if it encounters it later.
272                  */
273                 if (chain->flags & HAMMER2_CHAIN_ONLRU)
274                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
275
276 #if 0
277                 /*
278                  * REMOVED - reduces contention, lru_list is more heuristical
279                  * now.
280                  *
281                  * 0->non-zero transition must ensure that chain is removed
282                  * from the LRU list.
283                  *
284                  * NOTE: Already holding lru_spin here so we cannot call
285                  *       hammer2_chain_ref() to get it off lru_list, do
286                  *       it manually.
287                  */
288                 if (chain->flags & HAMMER2_CHAIN_ONLRU) {
289                         hammer2_pfs_t *pmp = chain->pmp;
290                         hammer2_spin_ex(&pmp->lru_spin);
291                         if (chain->flags & HAMMER2_CHAIN_ONLRU) {
292                                 atomic_add_int(&pmp->lru_count, -1);
293                                 atomic_clear_int(&chain->flags,
294                                                  HAMMER2_CHAIN_ONLRU);
295                                 TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
296                         }
297                         hammer2_spin_unex(&pmp->lru_spin);
298                 }
299 #endif
300         }
301 }
302
303 /*
304  * Ref a locked chain and force the data to be held across an unlock.
305  * Chain must be currently locked.  The user of the chain who desires
306  * to release the hold must call hammer2_chain_lock_unhold() to relock
307  * and unhold the chain, then unlock normally, or may simply call
308  * hammer2_chain_drop_unhold() (which is safer against deadlocks).
309  */
310 void
311 hammer2_chain_ref_hold(hammer2_chain_t *chain)
312 {
313         atomic_add_int(&chain->lockcnt, 1);
314         hammer2_chain_ref(chain);
315 }
316
317 /*
318  * Insert the chain in the core rbtree.
319  *
320  * Normal insertions are placed in the live rbtree.  Insertion of a deleted
321  * chain is a special case used by the flush code that is placed on the
322  * unstaged deleted list to avoid confusing the live view.
323  */
324 #define HAMMER2_CHAIN_INSERT_SPIN       0x0001
325 #define HAMMER2_CHAIN_INSERT_LIVE       0x0002
326 #define HAMMER2_CHAIN_INSERT_RACE       0x0004
327
328 static
329 int
330 hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
331                      int flags, int generation)
332 {
333         hammer2_chain_t *xchain;
334         int error = 0;
335
336         if (flags & HAMMER2_CHAIN_INSERT_SPIN)
337                 hammer2_spin_ex(&parent->core.spin);
338
339         /*
340          * Interlocked by spinlock, check for race
341          */
342         if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
343             parent->core.generation != generation) {
344                 error = HAMMER2_ERROR_EAGAIN;
345                 goto failed;
346         }
347
348         /*
349          * Insert chain
350          */
351         xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
352         KASSERT(xchain == NULL,
353                 ("hammer2_chain_insert: collision %p %p (key=%016jx)",
354                 chain, xchain, chain->bref.key));
355         atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
356         chain->parent = parent;
357         ++parent->core.chain_count;
358         ++parent->core.generation;      /* XXX incs for _get() too, XXX */
359
360         /*
361          * We have to keep track of the effective live-view blockref count
362          * so the create code knows when to push an indirect block.
363          */
364         if (flags & HAMMER2_CHAIN_INSERT_LIVE)
365                 atomic_add_int(&parent->core.live_count, 1);
366 failed:
367         if (flags & HAMMER2_CHAIN_INSERT_SPIN)
368                 hammer2_spin_unex(&parent->core.spin);
369         return error;
370 }
371
372 /*
373  * Drop the caller's reference to the chain.  When the ref count drops to
374  * zero this function will try to disassociate the chain from its parent and
375  * deallocate it, then recursely drop the parent using the implied ref
376  * from the chain's chain->parent.
377  *
378  * Nobody should own chain's mutex on the 1->0 transition, unless this drop
379  * races an acquisition by another cpu.  Therefore we can loop if we are
380  * unable to acquire the mutex, and refs is unlikely to be 1 unless we again
381  * race against another drop.
382  */
383 void
384 hammer2_chain_drop(hammer2_chain_t *chain)
385 {
386         u_int refs;
387
388         KKASSERT(chain->refs > 0);
389
390         while (chain) {
391                 refs = chain->refs;
392                 cpu_ccfence();
393                 KKASSERT(refs > 0);
394
395                 if (refs == 1) {
396                         if (hammer2_mtx_ex_try(&chain->lock) == 0)
397                                 chain = hammer2_chain_lastdrop(chain, 0);
398                         /* retry the same chain, or chain from lastdrop */
399                 } else {
400                         if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
401                                 break;
402                         /* retry the same chain */
403                 }
404                 cpu_pause();
405         }
406 }
407
408 /*
409  * Unhold a held and probably not-locked chain, ensure that the data is
410  * dropped on the 1->0 transition of lockcnt by obtaining an exclusive
411  * lock and then simply unlocking the chain.
412  */
413 void
414 hammer2_chain_unhold(hammer2_chain_t *chain)
415 {
416         u_int lockcnt;
417         int iter = 0;
418
419         for (;;) {
420                 lockcnt = chain->lockcnt;
421                 cpu_ccfence();
422                 if (lockcnt > 1) {
423                         if (atomic_cmpset_int(&chain->lockcnt,
424                                               lockcnt, lockcnt - 1)) {
425                                 break;
426                         }
427                 } else if (hammer2_mtx_ex_try(&chain->lock) == 0) {
428                         hammer2_chain_unlock(chain);
429                         break;
430                 } else {
431                         /*
432                          * This situation can easily occur on SMP due to
433                          * the gap inbetween the 1->0 transition and the
434                          * final unlock.  We cannot safely block on the
435                          * mutex because lockcnt might go above 1.
436                          *
437                          * XXX Sleep for one tick if it takes too long.
438                          */
439                         if (++iter > 1000) {
440                                 if (iter > 1000 + hz) {
441                                         kprintf("hammer2: h2race1 %p\n", chain);
442                                         iter = 1000;
443                                 }
444                                 tsleep(&iter, 0, "h2race1", 1);
445                         }
446                         cpu_pause();
447                 }
448         }
449 }
450
451 void
452 hammer2_chain_drop_unhold(hammer2_chain_t *chain)
453 {
454         hammer2_chain_unhold(chain);
455         hammer2_chain_drop(chain);
456 }
457
458 void
459 hammer2_chain_rehold(hammer2_chain_t *chain)
460 {
461         hammer2_chain_lock(chain, HAMMER2_RESOLVE_SHARED);
462         atomic_add_int(&chain->lockcnt, 1);
463         hammer2_chain_unlock(chain);
464 }
465
466 /*
467  * Handles the (potential) last drop of chain->refs from 1->0.  Called with
468  * the mutex exclusively locked, refs == 1, and lockcnt 0.  SMP races are
469  * possible against refs and lockcnt.  We must dispose of the mutex on chain.
470  *
471  * This function returns an unlocked chain for recursive drop or NULL.  It
472  * can return the same chain if it determines it has raced another ref.
473  *
474  * --
475  *
476  * When two chains need to be recursively dropped we use the chain we
477  * would otherwise free to placehold the additional chain.  It's a bit
478  * convoluted but we can't just recurse without potentially blowing out
479  * the kernel stack.
480  *
481  * The chain cannot be freed if it has any children.
482  * The chain cannot be freed if flagged MODIFIED unless we can dispose of it.
483  * The chain cannot be freed if flagged UPDATE unless we can dispose of it.
484  * Any dedup registration can remain intact.
485  *
486  * The core spinlock is allowed to nest child-to-parent (not parent-to-child).
487  */
488 static
489 hammer2_chain_t *
490 hammer2_chain_lastdrop(hammer2_chain_t *chain, int depth)
491 {
492         hammer2_pfs_t *pmp;
493         hammer2_dev_t *hmp;
494         hammer2_chain_t *parent;
495         hammer2_chain_t *rdrop;
496
497         /*
498          * We need chain's spinlock to interlock the sub-tree test.
499          * We already have chain's mutex, protecting chain->parent.
500          *
501          * Remember that chain->refs can be in flux.
502          */
503         hammer2_spin_ex(&chain->core.spin);
504
505         if (chain->parent != NULL) {
506                 /*
507                  * If the chain has a parent the UPDATE bit prevents scrapping
508                  * as the chain is needed to properly flush the parent.  Try
509                  * to complete the 1->0 transition and return NULL.  Retry
510                  * (return chain) if we are unable to complete the 1->0
511                  * transition, else return NULL (nothing more to do).
512                  *
513                  * If the chain has a parent the MODIFIED bit prevents
514                  * scrapping.
515                  *
516                  * Chains with UPDATE/MODIFIED are *not* put on the LRU list!
517                  */
518                 if (chain->flags & (HAMMER2_CHAIN_UPDATE |
519                                     HAMMER2_CHAIN_MODIFIED)) {
520                         if (atomic_cmpset_int(&chain->refs, 1, 0)) {
521                                 hammer2_spin_unex(&chain->core.spin);
522                                 hammer2_chain_assert_no_data(chain);
523                                 hammer2_mtx_unlock(&chain->lock);
524                                 chain = NULL;
525                         } else {
526                                 hammer2_spin_unex(&chain->core.spin);
527                                 hammer2_mtx_unlock(&chain->lock);
528                         }
529                         return (chain);
530                 }
531                 /* spinlock still held */
532         } else if (chain->bref.type == HAMMER2_BREF_TYPE_VOLUME ||
533                    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP) {
534                 /*
535                  * Retain the static vchain and fchain.  Clear bits that
536                  * are not relevant.  Do not clear the MODIFIED bit,
537                  * and certainly do not put it on the delayed-flush queue.
538                  */
539                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
540         } else {
541                 /*
542                  * The chain has no parent and can be flagged for destruction.
543                  * Since it has no parent, UPDATE can also be cleared.
544                  */
545                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
546                 if (chain->flags & HAMMER2_CHAIN_UPDATE)
547                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
548
549                 /*
550                  * If the chain has children we must propagate the DESTROY
551                  * flag downward and rip the disconnected topology apart.
552                  * This is accomplished by calling hammer2_flush() on the
553                  * chain.
554                  *
555                  * Any dedup is already handled by the underlying DIO, so
556                  * we do not have to specifically flush it here.
557                  */
558                 if (chain->core.chain_count) {
559                         hammer2_spin_unex(&chain->core.spin);
560                         hammer2_flush(chain, HAMMER2_FLUSH_TOP |
561                                              HAMMER2_FLUSH_ALL);
562                         hammer2_mtx_unlock(&chain->lock);
563
564                         return(chain);  /* retry drop */
565                 }
566
567                 /*
568                  * Otherwise we can scrap the MODIFIED bit if it is set,
569                  * and continue along the freeing path.
570                  *
571                  * Be sure to clean-out any dedup bits.  Without a parent
572                  * this chain will no longer be visible to the flush code.
573                  * Easy check data_off to avoid the volume root.
574                  */
575                 if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
576                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
577                         atomic_add_long(&hammer2_count_modified_chains, -1);
578                         if (chain->pmp)
579                                 hammer2_pfs_memory_wakeup(chain->pmp, -1);
580                 }
581                 /* spinlock still held */
582         }
583
584         /* spinlock still held */
585
586         /*
587          * If any children exist we must leave the chain intact with refs == 0.
588          * They exist because chains are retained below us which have refs or
589          * may require flushing.
590          *
591          * Retry (return chain) if we fail to transition the refs to 0, else
592          * return NULL indication nothing more to do.
593          *
594          * Chains with children are NOT put on the LRU list.
595          */
596         if (chain->core.chain_count) {
597                 if (atomic_cmpset_int(&chain->refs, 1, 0)) {
598                         hammer2_spin_unex(&chain->core.spin);
599                         hammer2_chain_assert_no_data(chain);
600                         hammer2_mtx_unlock(&chain->lock);
601                         chain = NULL;
602                 } else {
603                         hammer2_spin_unex(&chain->core.spin);
604                         hammer2_mtx_unlock(&chain->lock);
605                 }
606                 return (chain);
607         }
608         /* spinlock still held */
609         /* no chains left under us */
610
611         /*
612          * chain->core has no children left so no accessors can get to our
613          * chain from there.  Now we have to lock the parent core to interlock
614          * remaining possible accessors that might bump chain's refs before
615          * we can safely drop chain's refs with intent to free the chain.
616          */
617         hmp = chain->hmp;
618         pmp = chain->pmp;       /* can be NULL */
619         rdrop = NULL;
620
621         parent = chain->parent;
622
623         /*
624          * WARNING! chain's spin lock is still held here, and other spinlocks
625          *          will be acquired and released in the code below.  We
626          *          cannot be making fancy procedure calls!
627          */
628
629         /*
630          * We can cache the chain if it is associated with a pmp
631          * and not flagged as being destroyed or requesting a full
632          * release.  In this situation the chain is not removed
633          * from its parent, i.e. it can still be looked up.
634          *
635          * We intentionally do not cache DATA chains because these
636          * were likely used to load data into the logical buffer cache
637          * and will not be accessed again for some time.
638          */
639         if ((chain->flags &
640              (HAMMER2_CHAIN_DESTROY | HAMMER2_CHAIN_RELEASE)) == 0 &&
641             chain->pmp &&
642             chain->bref.type != HAMMER2_BREF_TYPE_DATA) {
643                 if (parent)
644                         hammer2_spin_ex(&parent->core.spin);
645                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
646                         /*
647                          * 1->0 transition failed, retry.  Do not drop
648                          * the chain's data yet!
649                          */
650                         if (parent)
651                                 hammer2_spin_unex(&parent->core.spin);
652                         hammer2_spin_unex(&chain->core.spin);
653                         hammer2_mtx_unlock(&chain->lock);
654
655                         return(chain);
656                 }
657
658                 /*
659                  * Success
660                  */
661                 hammer2_chain_assert_no_data(chain);
662
663                 /*
664                  * Make sure we are on the LRU list, clean up excessive
665                  * LRU entries.  We can only really drop one but there might
666                  * be other entries that we can remove from the lru_list
667                  * without dropping.
668                  *
669                  * NOTE: HAMMER2_CHAIN_ONLRU may only be safely set when
670                  *       chain->core.spin AND pmp->lru_spin are held, but
671                  *       can be safely cleared only holding pmp->lru_spin.
672                  */
673                 if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
674                         hammer2_spin_ex(&pmp->lru_spin);
675                         if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
676                                 atomic_set_int(&chain->flags,
677                                                HAMMER2_CHAIN_ONLRU);
678                                 TAILQ_INSERT_TAIL(&pmp->lru_list,
679                                                   chain, lru_node);
680                                 atomic_add_int(&pmp->lru_count, 1);
681                         }
682                         if (pmp->lru_count < HAMMER2_LRU_LIMIT)
683                                 depth = 1;      /* disable lru_list flush */
684                         hammer2_spin_unex(&pmp->lru_spin);
685                 } else {
686                         /* disable lru flush */
687                         depth = 1;
688                 }
689
690                 if (parent) {
691                         hammer2_spin_unex(&parent->core.spin);
692                         parent = NULL;  /* safety */
693                 }
694                 hammer2_spin_unex(&chain->core.spin);
695                 hammer2_mtx_unlock(&chain->lock);
696
697                 /*
698                  * lru_list hysteresis (see above for depth overrides).
699                  * Note that depth also prevents excessive lastdrop recursion.
700                  */
701                 if (depth == 0)
702                         hammer2_chain_lru_flush(pmp);
703
704                 return NULL;
705                 /* NOT REACHED */
706         }
707
708         /*
709          * Make sure we are not on the LRU list.
710          */
711         if (chain->flags & HAMMER2_CHAIN_ONLRU) {
712                 hammer2_spin_ex(&pmp->lru_spin);
713                 if (chain->flags & HAMMER2_CHAIN_ONLRU) {
714                         atomic_add_int(&pmp->lru_count, -1);
715                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
716                         TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
717                 }
718                 hammer2_spin_unex(&pmp->lru_spin);
719         }
720
721         /*
722          * Spinlock the parent and try to drop the last ref on chain.
723          * On success determine if we should dispose of the chain
724          * (remove the chain from its parent, etc).
725          *
726          * (normal core locks are top-down recursive but we define
727          * core spinlocks as bottom-up recursive, so this is safe).
728          */
729         if (parent) {
730                 hammer2_spin_ex(&parent->core.spin);
731                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
732                         /*
733                          * 1->0 transition failed, retry.
734                          */
735                         hammer2_spin_unex(&parent->core.spin);
736                         hammer2_spin_unex(&chain->core.spin);
737                         hammer2_mtx_unlock(&chain->lock);
738
739                         return(chain);
740                 }
741
742                 /*
743                  * 1->0 transition successful, parent spin held to prevent
744                  * new lookups, chain spinlock held to protect parent field.
745                  * Remove chain from the parent.
746                  *
747                  * If the chain is being removed from the parent's btree but
748                  * is not bmapped, we have to adjust live_count downward.  If
749                  * it is bmapped then the blockref is retained in the parent
750                  * as is its associated live_count.  This case can occur when
751                  * a chain added to the topology is unable to flush and is
752                  * then later deleted.
753                  */
754                 if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
755                         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) &&
756                             (chain->flags & HAMMER2_CHAIN_BMAPPED) == 0) {
757                                 atomic_add_int(&parent->core.live_count, -1);
758                         }
759                         RB_REMOVE(hammer2_chain_tree,
760                                   &parent->core.rbtree, chain);
761                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
762                         --parent->core.chain_count;
763                         chain->parent = NULL;
764                 }
765
766                 /*
767                  * If our chain was the last chain in the parent's core the
768                  * core is now empty and its parent might have to be
769                  * re-dropped if it has 0 refs.
770                  */
771                 if (parent->core.chain_count == 0) {
772                         rdrop = parent;
773                         atomic_add_int(&rdrop->refs, 1);
774                         /*
775                         if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0)
776                                 rdrop = NULL;
777                         */
778                 }
779                 hammer2_spin_unex(&parent->core.spin);
780                 parent = NULL;  /* safety */
781                 /* FALL THROUGH */
782         } else {
783                 /*
784                  * No-parent case.
785                  */
786                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
787                         /*
788                          * 1->0 transition failed, retry.
789                          */
790                         hammer2_spin_unex(&parent->core.spin);
791                         hammer2_spin_unex(&chain->core.spin);
792                         hammer2_mtx_unlock(&chain->lock);
793
794                         return(chain);
795                 }
796         }
797
798         /*
799          * Successful 1->0 transition, no parent, no children... no way for
800          * anyone to ref this chain any more.  We can clean-up and free it.
801          *
802          * We still have the core spinlock, and core's chain_count is 0.
803          * Any parent spinlock is gone.
804          */
805         hammer2_spin_unex(&chain->core.spin);
806         hammer2_chain_assert_no_data(chain);
807         hammer2_mtx_unlock(&chain->lock);
808         KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
809                  chain->core.chain_count == 0);
810
811         /*
812          * All locks are gone, no pointers remain to the chain, finish
813          * freeing it.
814          */
815         KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
816                                   HAMMER2_CHAIN_MODIFIED)) == 0);
817
818         /*
819          * Once chain resources are gone we can use the now dead chain
820          * structure to placehold what might otherwise require a recursive
821          * drop, because we have potentially two things to drop and can only
822          * return one directly.
823          */
824         if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
825                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ALLOCATED);
826                 chain->hmp = NULL;
827                 kfree(chain, hmp->mchain);
828         }
829
830         /*
831          * Possible chaining loop when parent re-drop needed.
832          */
833         return(rdrop);
834 }
835
836 /*
837  * Heuristical flush of the LRU, try to reduce the number of entries
838  * on the LRU to (HAMMER2_LRU_LIMIT * 2 / 3).  This procedure is called
839  * only when lru_count exceeds HAMMER2_LRU_LIMIT.
840  */
841 static
842 void
843 hammer2_chain_lru_flush(hammer2_pfs_t *pmp)
844 {
845         hammer2_chain_t *chain;
846
847 again:
848         chain = NULL;
849         hammer2_spin_ex(&pmp->lru_spin);
850         while (pmp->lru_count > HAMMER2_LRU_LIMIT * 2 / 3) {
851                 /*
852                  * Pick a chain off the lru_list, just recycle it quickly
853                  * if LRUHINT is set (the chain was ref'd but left on
854                  * the lru_list, so cycle to the end).
855                  */
856                 chain = TAILQ_FIRST(&pmp->lru_list);
857                 TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
858
859                 if (chain->flags & HAMMER2_CHAIN_LRUHINT) {
860                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
861                         TAILQ_INSERT_TAIL(&pmp->lru_list, chain, lru_node);
862                         chain = NULL;
863                         continue;
864                 }
865
866                 /*
867                  * Ok, we are off the LRU.  We must adjust refs before we
868                  * can safely clear the ONLRU flag.
869                  */
870                 atomic_add_int(&pmp->lru_count, -1);
871                 if (atomic_cmpset_int(&chain->refs, 0, 1)) {
872                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
873                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
874                         break;
875                 }
876                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
877                 chain = NULL;
878         }
879         hammer2_spin_unex(&pmp->lru_spin);
880         if (chain == NULL)
881                 return;
882
883         /*
884          * If we picked a chain off the lru list we may be able to lastdrop
885          * it.  Use a depth of 1 to prevent excessive lastdrop recursion.
886          */
887         while (chain) {
888                 u_int refs;
889
890                 refs = chain->refs;
891                 cpu_ccfence();
892                 KKASSERT(refs > 0);
893
894                 if (refs == 1) {
895                         if (hammer2_mtx_ex_try(&chain->lock) == 0)
896                                 chain = hammer2_chain_lastdrop(chain, 1);
897                         /* retry the same chain, or chain from lastdrop */
898                 } else {
899                         if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
900                                 break;
901                         /* retry the same chain */
902                 }
903                 cpu_pause();
904         }
905         goto again;
906 }
907
908 /*
909  * On last lock release.
910  */
911 static hammer2_io_t *
912 hammer2_chain_drop_data(hammer2_chain_t *chain)
913 {
914         hammer2_io_t *dio;
915
916         if ((dio = chain->dio) != NULL) {
917                 chain->dio = NULL;
918                 chain->data = NULL;
919         } else {
920                 switch(chain->bref.type) {
921                 case HAMMER2_BREF_TYPE_VOLUME:
922                 case HAMMER2_BREF_TYPE_FREEMAP:
923                         break;
924                 default:
925                         if (chain->data != NULL) {
926                                 hammer2_spin_unex(&chain->core.spin);
927                                 panic("chain data not null: "
928                                       "chain %p bref %016jx.%02x "
929                                       "refs %d parent %p dio %p data %p",
930                                       chain, chain->bref.data_off,
931                                       chain->bref.type, chain->refs,
932                                       chain->parent,
933                                       chain->dio, chain->data);
934                         }
935                         KKASSERT(chain->data == NULL);
936                         break;
937                 }
938         }
939         return dio;
940 }
941
942 /*
943  * Lock a referenced chain element, acquiring its data with I/O if necessary,
944  * and specify how you would like the data to be resolved.
945  *
946  * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
947  *
948  * The lock is allowed to recurse, multiple locking ops will aggregate
949  * the requested resolve types.  Once data is assigned it will not be
950  * removed until the last unlock.
951  *
952  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
953  *                         (typically used to avoid device/logical buffer
954  *                          aliasing for data)
955  *
956  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
957  *                         the INITIAL-create state (indirect blocks only).
958  *
959  *                         Do not resolve data elements for DATA chains.
960  *                         (typically used to avoid device/logical buffer
961  *                          aliasing for data)
962  *
963  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
964  *
965  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
966  *                         it will be locked exclusive.
967  *
968  * HAMMER2_RESOLVE_NONBLOCK- (flag) The chain is locked non-blocking.  If
969  *                         the lock fails, EAGAIN is returned.
970  *
971  * NOTE: Embedded elements (volume header, inodes) are always resolved
972  *       regardless.
973  *
974  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
975  *       element will instantiate and zero its buffer, and flush it on
976  *       release.
977  *
978  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
979  *       so as not to instantiate a device buffer, which could alias against
980  *       a logical file buffer.  However, if ALWAYS is specified the
981  *       device buffer will be instantiated anyway.
982  *
983  * NOTE: The return value is always 0 unless NONBLOCK is specified, in which
984  *       case it can be either 0 or EAGAIN.
985  *
986  * WARNING! This function blocks on I/O if data needs to be fetched.  This
987  *          blocking can run concurrent with other compatible lock holders
988  *          who do not need data returning.  The lock is not upgraded to
989  *          exclusive during a data fetch, a separate bit is used to
990  *          interlock I/O.  However, an exclusive lock holder can still count
991  *          on being interlocked against an I/O fetch managed by a shared
992  *          lock holder.
993  */
994 int
995 hammer2_chain_lock(hammer2_chain_t *chain, int how)
996 {
997         KKASSERT(chain->refs > 0);
998
999         if (how & HAMMER2_RESOLVE_NONBLOCK) {
1000                 /*
1001                  * We still have to bump lockcnt before acquiring the lock,
1002                  * even for non-blocking operation, because the unlock code
1003                  * live-loops on lockcnt == 1 when dropping the last lock.
1004                  *
1005                  * If the non-blocking operation fails we have to use an
1006                  * unhold sequence to undo the mess.
1007                  *
1008                  * NOTE: LOCKAGAIN must always succeed without blocking,
1009                  *       even if NONBLOCK is specified.
1010                  */
1011                 atomic_add_int(&chain->lockcnt, 1);
1012                 if (how & HAMMER2_RESOLVE_SHARED) {
1013                         if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1014                                 hammer2_mtx_sh_again(&chain->lock);
1015                         } else {
1016                                 if (hammer2_mtx_sh_try(&chain->lock) != 0) {
1017                                         hammer2_chain_unhold(chain);
1018                                         return EAGAIN;
1019                                 }
1020                         }
1021                 } else {
1022                         if (hammer2_mtx_ex_try(&chain->lock) != 0) {
1023                                 hammer2_chain_unhold(chain);
1024                                 return EAGAIN;
1025                         }
1026                 }
1027         } else {
1028                 /*
1029                  * Get the appropriate lock.  If LOCKAGAIN is flagged with
1030                  * SHARED the caller expects a shared lock to already be
1031                  * present and we are giving it another ref.  This case must
1032                  * importantly not block if there is a pending exclusive lock
1033                  * request.
1034                  */
1035                 atomic_add_int(&chain->lockcnt, 1);
1036                 if (how & HAMMER2_RESOLVE_SHARED) {
1037                         if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1038                                 hammer2_mtx_sh_again(&chain->lock);
1039                         } else {
1040                                 hammer2_mtx_sh(&chain->lock);
1041                         }
1042                 } else {
1043                         hammer2_mtx_ex(&chain->lock);
1044                 }
1045         }
1046
1047         /*
1048          * If we already have a valid data pointer make sure the data is
1049          * synchronized to the current cpu, and then no further action is
1050          * necessary.
1051          */
1052         if (chain->data) {
1053                 if (chain->dio)
1054                         hammer2_io_bkvasync(chain->dio);
1055                 return 0;
1056         }
1057
1058         /*
1059          * Do we have to resolve the data?  This is generally only
1060          * applicable to HAMMER2_BREF_TYPE_DATA which is special-cased.
1061          * Other BREF types expects the data to be there.
1062          */
1063         switch(how & HAMMER2_RESOLVE_MASK) {
1064         case HAMMER2_RESOLVE_NEVER:
1065                 return 0;
1066         case HAMMER2_RESOLVE_MAYBE:
1067                 if (chain->flags & HAMMER2_CHAIN_INITIAL)
1068                         return 0;
1069                 if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
1070                         return 0;
1071 #if 0
1072                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
1073                         return 0;
1074                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
1075                         return 0;
1076 #endif
1077                 /* fall through */
1078         case HAMMER2_RESOLVE_ALWAYS:
1079         default:
1080                 break;
1081         }
1082
1083         /*
1084          * Caller requires data
1085          */
1086         hammer2_chain_load_data(chain);
1087
1088         return 0;
1089 }
1090
1091 /*
1092  * Lock the chain, retain the hold, and drop the data persistence count.
1093  * The data should remain valid because we never transitioned lockcnt
1094  * through 0.
1095  */
1096 void
1097 hammer2_chain_lock_unhold(hammer2_chain_t *chain, int how)
1098 {
1099         hammer2_chain_lock(chain, how);
1100         atomic_add_int(&chain->lockcnt, -1);
1101 }
1102
1103 #if 0
1104 /*
1105  * Downgrade an exclusive chain lock to a shared chain lock.
1106  *
1107  * NOTE: There is no upgrade equivalent due to the ease of
1108  *       deadlocks in that direction.
1109  */
1110 void
1111 hammer2_chain_lock_downgrade(hammer2_chain_t *chain)
1112 {
1113         hammer2_mtx_downgrade(&chain->lock);
1114 }
1115 #endif
1116
1117 /*
1118  * Issue I/O and install chain->data.  Caller must hold a chain lock, lock
1119  * may be of any type.
1120  *
1121  * Once chain->data is set it cannot be disposed of until all locks are
1122  * released.
1123  *
1124  * Make sure the data is synchronized to the current cpu.
1125  */
1126 void
1127 hammer2_chain_load_data(hammer2_chain_t *chain)
1128 {
1129         hammer2_blockref_t *bref;
1130         hammer2_dev_t *hmp;
1131         hammer2_io_t *dio;
1132         char *bdata;
1133         int error;
1134
1135         /*
1136          * Degenerate case, data already present, or chain has no media
1137          * reference to load.
1138          */
1139         KKASSERT(chain->lock.mtx_lock & MTX_MASK);
1140         if (chain->data) {
1141                 if (chain->dio)
1142                         hammer2_io_bkvasync(chain->dio);
1143                 return;
1144         }
1145         if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0)
1146                 return;
1147
1148         hmp = chain->hmp;
1149         KKASSERT(hmp != NULL);
1150
1151         /*
1152          * Gain the IOINPROG bit, interlocked block.
1153          */
1154         for (;;) {
1155                 u_int oflags;
1156                 u_int nflags;
1157
1158                 oflags = chain->flags;
1159                 cpu_ccfence();
1160                 if (oflags & HAMMER2_CHAIN_IOINPROG) {
1161                         nflags = oflags | HAMMER2_CHAIN_IOSIGNAL;
1162                         tsleep_interlock(&chain->flags, 0);
1163                         if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1164                                 tsleep(&chain->flags, PINTERLOCKED,
1165                                         "h2iocw", 0);
1166                         }
1167                         /* retry */
1168                 } else {
1169                         nflags = oflags | HAMMER2_CHAIN_IOINPROG;
1170                         if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1171                                 break;
1172                         }
1173                         /* retry */
1174                 }
1175         }
1176
1177         /*
1178          * We own CHAIN_IOINPROG
1179          *
1180          * Degenerate case if we raced another load.
1181          */
1182         if (chain->data) {
1183                 if (chain->dio)
1184                         hammer2_io_bkvasync(chain->dio);
1185                 goto done;
1186         }
1187
1188         /*
1189          * We must resolve to a device buffer, either by issuing I/O or
1190          * by creating a zero-fill element.  We do not mark the buffer
1191          * dirty when creating a zero-fill element (the hammer2_chain_modify()
1192          * API must still be used to do that).
1193          *
1194          * The device buffer is variable-sized in powers of 2 down
1195          * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
1196          * chunk always contains buffers of the same size. (XXX)
1197          *
1198          * The minimum physical IO size may be larger than the variable
1199          * block size.
1200          */
1201         bref = &chain->bref;
1202
1203         /*
1204          * The getblk() optimization can only be used on newly created
1205          * elements if the physical block size matches the request.
1206          */
1207         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1208                 error = hammer2_io_new(hmp, bref->type,
1209                                        bref->data_off, chain->bytes,
1210                                        &chain->dio);
1211         } else {
1212                 error = hammer2_io_bread(hmp, bref->type,
1213                                          bref->data_off, chain->bytes,
1214                                          &chain->dio);
1215                 hammer2_adjreadcounter(chain->bref.type, chain->bytes);
1216         }
1217         if (error) {
1218                 chain->error = HAMMER2_ERROR_EIO;
1219                 kprintf("hammer2_chain_load_data: I/O error %016jx: %d\n",
1220                         (intmax_t)bref->data_off, error);
1221                 hammer2_io_bqrelse(&chain->dio);
1222                 goto done;
1223         }
1224         chain->error = 0;
1225
1226         /*
1227          * This isn't perfect and can be ignored on OSs which do not have
1228          * an indication as to whether a buffer is coming from cache or
1229          * if I/O was actually issued for the read.  TESTEDGOOD will work
1230          * pretty well without the B_IOISSUED logic because chains are
1231          * cached, but in that situation (without B_IOISSUED) it will not
1232          * detect whether a re-read via I/O is corrupted verses the original
1233          * read.
1234          *
1235          * We can't re-run the CRC on every fresh lock.  That would be
1236          * insanely expensive.
1237          *
1238          * If the underlying kernel buffer covers the entire chain we can
1239          * use the B_IOISSUED indication to determine if we have to re-run
1240          * the CRC on chain data for chains that managed to stay cached
1241          * across the kernel disposal of the original buffer.
1242          */
1243         if ((dio = chain->dio) != NULL && dio->bp) {
1244                 struct buf *bp = dio->bp;
1245
1246                 if (dio->psize == chain->bytes &&
1247                     (bp->b_flags & B_IOISSUED)) {
1248                         atomic_clear_int(&chain->flags,
1249                                          HAMMER2_CHAIN_TESTEDGOOD);
1250                         bp->b_flags &= ~B_IOISSUED;
1251                 }
1252         }
1253
1254         /*
1255          * NOTE: A locked chain's data cannot be modified without first
1256          *       calling hammer2_chain_modify().
1257          */
1258
1259         /*
1260          * NOTE: hammer2_io_data() call issues bkvasync()
1261          */
1262         bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
1263
1264         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1265                 /*
1266                  * Clear INITIAL.  In this case we used io_new() and the
1267                  * buffer has been zero'd and marked dirty.
1268                  *
1269                  * CHAIN_MODIFIED has not been set yet, and we leave it
1270                  * that way for now.  Set a temporary CHAIN_NOTTESTED flag
1271                  * to prevent hammer2_chain_testcheck() from trying to match
1272                  * a check code that has not yet been generated.  This bit
1273                  * should NOT end up on the actual media.
1274                  */
1275                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1276                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_NOTTESTED);
1277         } else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1278                 /*
1279                  * check data not currently synchronized due to
1280                  * modification.  XXX assumes data stays in the buffer
1281                  * cache, which might not be true (need biodep on flush
1282                  * to calculate crc?  or simple crc?).
1283                  */
1284         } else if ((chain->flags & HAMMER2_CHAIN_TESTEDGOOD) == 0) {
1285                 if (hammer2_chain_testcheck(chain, bdata) == 0) {
1286                         chain->error = HAMMER2_ERROR_CHECK;
1287                 } else {
1288                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_TESTEDGOOD);
1289                 }
1290         }
1291
1292         /*
1293          * Setup the data pointer, either pointing it to an embedded data
1294          * structure and copying the data from the buffer, or pointing it
1295          * into the buffer.
1296          *
1297          * The buffer is not retained when copying to an embedded data
1298          * structure in order to avoid potential deadlocks or recursions
1299          * on the same physical buffer.
1300          *
1301          * WARNING! Other threads can start using the data the instant we
1302          *          set chain->data non-NULL.
1303          */
1304         switch (bref->type) {
1305         case HAMMER2_BREF_TYPE_VOLUME:
1306         case HAMMER2_BREF_TYPE_FREEMAP:
1307                 /*
1308                  * Copy data from bp to embedded buffer
1309                  */
1310                 panic("hammer2_chain_load_data: unresolved volume header");
1311                 break;
1312         case HAMMER2_BREF_TYPE_DIRENT:
1313                 KKASSERT(chain->bytes != 0);
1314                 /* fall through */
1315         case HAMMER2_BREF_TYPE_INODE:
1316         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1317         case HAMMER2_BREF_TYPE_INDIRECT:
1318         case HAMMER2_BREF_TYPE_DATA:
1319         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1320         default:
1321                 /*
1322                  * Point data at the device buffer and leave dio intact.
1323                  */
1324                 chain->data = (void *)bdata;
1325                 break;
1326         }
1327
1328         /*
1329          * Release HAMMER2_CHAIN_IOINPROG and signal waiters if requested.
1330          */
1331 done:
1332         for (;;) {
1333                 u_int oflags;
1334                 u_int nflags;
1335
1336                 oflags = chain->flags;
1337                 nflags = oflags & ~(HAMMER2_CHAIN_IOINPROG |
1338                                     HAMMER2_CHAIN_IOSIGNAL);
1339                 KKASSERT(oflags & HAMMER2_CHAIN_IOINPROG);
1340                 if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1341                         if (oflags & HAMMER2_CHAIN_IOSIGNAL)
1342                                 wakeup(&chain->flags);
1343                         break;
1344                 }
1345         }
1346 }
1347
1348 /*
1349  * Unlock and deref a chain element.
1350  *
1351  * Remember that the presence of children under chain prevent the chain's
1352  * destruction but do not add additional references, so the dio will still
1353  * be dropped.
1354  */
1355 void
1356 hammer2_chain_unlock(hammer2_chain_t *chain)
1357 {
1358         hammer2_io_t *dio;
1359         u_int lockcnt;
1360         int iter = 0;
1361
1362         /*
1363          * If multiple locks are present (or being attempted) on this
1364          * particular chain we can just unlock, drop refs, and return.
1365          *
1366          * Otherwise fall-through on the 1->0 transition.
1367          */
1368         for (;;) {
1369                 lockcnt = chain->lockcnt;
1370                 KKASSERT(lockcnt > 0);
1371                 cpu_ccfence();
1372                 if (lockcnt > 1) {
1373                         if (atomic_cmpset_int(&chain->lockcnt,
1374                                               lockcnt, lockcnt - 1)) {
1375                                 hammer2_mtx_unlock(&chain->lock);
1376                                 return;
1377                         }
1378                 } else if (hammer2_mtx_upgrade_try(&chain->lock) == 0) {
1379                         /* while holding the mutex exclusively */
1380                         if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
1381                                 break;
1382                 } else {
1383                         /*
1384                          * This situation can easily occur on SMP due to
1385                          * the gap inbetween the 1->0 transition and the
1386                          * final unlock.  We cannot safely block on the
1387                          * mutex because lockcnt might go above 1.
1388                          *
1389                          * XXX Sleep for one tick if it takes too long.
1390                          */
1391                         if (++iter > 1000) {
1392                                 if (iter > 1000 + hz) {
1393                                         kprintf("hammer2: h2race2 %p\n", chain);
1394                                         iter = 1000;
1395                                 }
1396                                 tsleep(&iter, 0, "h2race2", 1);
1397                         }
1398                         cpu_pause();
1399                 }
1400                 /* retry */
1401         }
1402
1403         /*
1404          * Last unlock / mutex upgraded to exclusive.  Drop the data
1405          * reference.
1406          */
1407         dio = hammer2_chain_drop_data(chain);
1408         if (dio)
1409                 hammer2_io_bqrelse(&dio);
1410         hammer2_mtx_unlock(&chain->lock);
1411 }
1412
1413 /*
1414  * Unlock and hold chain data intact
1415  */
1416 void
1417 hammer2_chain_unlock_hold(hammer2_chain_t *chain)
1418 {
1419         atomic_add_int(&chain->lockcnt, 1);
1420         hammer2_chain_unlock(chain);
1421 }
1422
1423 /*
1424  * Helper to obtain the blockref[] array base and count for a chain.
1425  *
1426  * XXX Not widely used yet, various use cases need to be validated and
1427  *     converted to use this function.
1428  */
1429 static
1430 hammer2_blockref_t *
1431 hammer2_chain_base_and_count(hammer2_chain_t *parent, int *countp)
1432 {
1433         hammer2_blockref_t *base;
1434         int count;
1435
1436         if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1437                 base = NULL;
1438
1439                 switch(parent->bref.type) {
1440                 case HAMMER2_BREF_TYPE_INODE:
1441                         count = HAMMER2_SET_COUNT;
1442                         break;
1443                 case HAMMER2_BREF_TYPE_INDIRECT:
1444                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1445                         count = parent->bytes / sizeof(hammer2_blockref_t);
1446                         break;
1447                 case HAMMER2_BREF_TYPE_VOLUME:
1448                         count = HAMMER2_SET_COUNT;
1449                         break;
1450                 case HAMMER2_BREF_TYPE_FREEMAP:
1451                         count = HAMMER2_SET_COUNT;
1452                         break;
1453                 default:
1454                         panic("hammer2_chain_base_and_count: "
1455                               "unrecognized blockref type: %d",
1456                               parent->bref.type);
1457                         count = 0;
1458                         break;
1459                 }
1460         } else {
1461                 switch(parent->bref.type) {
1462                 case HAMMER2_BREF_TYPE_INODE:
1463                         base = &parent->data->ipdata.u.blockset.blockref[0];
1464                         count = HAMMER2_SET_COUNT;
1465                         break;
1466                 case HAMMER2_BREF_TYPE_INDIRECT:
1467                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1468                         base = &parent->data->npdata[0];
1469                         count = parent->bytes / sizeof(hammer2_blockref_t);
1470                         break;
1471                 case HAMMER2_BREF_TYPE_VOLUME:
1472                         base = &parent->data->voldata.
1473                                         sroot_blockset.blockref[0];
1474                         count = HAMMER2_SET_COUNT;
1475                         break;
1476                 case HAMMER2_BREF_TYPE_FREEMAP:
1477                         base = &parent->data->blkset.blockref[0];
1478                         count = HAMMER2_SET_COUNT;
1479                         break;
1480                 default:
1481                         panic("hammer2_chain_base_and_count: "
1482                               "unrecognized blockref type: %d",
1483                               parent->bref.type);
1484                         base = NULL;
1485                         count = 0;
1486                         break;
1487                 }
1488         }
1489         *countp = count;
1490
1491         return base;
1492 }
1493
1494 /*
1495  * This counts the number of live blockrefs in a block array and
1496  * also calculates the point at which all remaining blockrefs are empty.
1497  * This routine can only be called on a live chain.
1498  *
1499  * Caller holds the chain locked, but possibly with a shared lock.  We
1500  * must use an exclusive spinlock to prevent corruption.
1501  *
1502  * NOTE: Flag is not set until after the count is complete, allowing
1503  *       callers to test the flag without holding the spinlock.
1504  *
1505  * NOTE: If base is NULL the related chain is still in the INITIAL
1506  *       state and there are no blockrefs to count.
1507  *
1508  * NOTE: live_count may already have some counts accumulated due to
1509  *       creation and deletion and could even be initially negative.
1510  */
1511 void
1512 hammer2_chain_countbrefs(hammer2_chain_t *chain,
1513                          hammer2_blockref_t *base, int count)
1514 {
1515         hammer2_spin_ex(&chain->core.spin);
1516         if ((chain->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0) {
1517                 if (base) {
1518                         while (--count >= 0) {
1519                                 if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1520                                         break;
1521                         }
1522                         chain->core.live_zero = count + 1;
1523                         while (count >= 0) {
1524                                 if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1525                                         atomic_add_int(&chain->core.live_count,
1526                                                        1);
1527                                 --count;
1528                         }
1529                 } else {
1530                         chain->core.live_zero = 0;
1531                 }
1532                 /* else do not modify live_count */
1533                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_COUNTEDBREFS);
1534         }
1535         hammer2_spin_unex(&chain->core.spin);
1536 }
1537
1538 /*
1539  * Resize the chain's physical storage allocation in-place.  This function does
1540  * not usually adjust the data pointer and must be followed by (typically) a
1541  * hammer2_chain_modify() call to copy any old data over and adjust the
1542  * data pointer.
1543  *
1544  * Chains can be resized smaller without reallocating the storage.  Resizing
1545  * larger will reallocate the storage.  Excess or prior storage is reclaimed
1546  * asynchronously at a later time.
1547  *
1548  * An nradix value of 0 is special-cased to mean that the storage should
1549  * be disassociated, that is the chain is being resized to 0 bytes (not 1
1550  * byte).
1551  *
1552  * Must be passed an exclusively locked parent and chain.
1553  *
1554  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1555  * to avoid instantiating a device buffer that conflicts with the vnode data
1556  * buffer.  However, because H2 can compress or encrypt data, the chain may
1557  * have a dio assigned to it in those situations, and they do not conflict.
1558  *
1559  * XXX return error if cannot resize.
1560  */
1561 int
1562 hammer2_chain_resize(hammer2_chain_t *chain,
1563                      hammer2_tid_t mtid, hammer2_off_t dedup_off,
1564                      int nradix, int flags)
1565 {
1566         hammer2_dev_t *hmp;
1567         size_t obytes;
1568         size_t nbytes;
1569         int error;
1570
1571         hmp = chain->hmp;
1572
1573         /*
1574          * Only data and indirect blocks can be resized for now.
1575          * (The volu root, inodes, and freemap elements use a fixed size).
1576          */
1577         KKASSERT(chain != &hmp->vchain);
1578         KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1579                  chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1580                  chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1581
1582         /*
1583          * Nothing to do if the element is already the proper size
1584          */
1585         obytes = chain->bytes;
1586         nbytes = (nradix) ? (1U << nradix) : 0;
1587         if (obytes == nbytes)
1588                 return (chain->error);
1589
1590         /*
1591          * Make sure the old data is instantiated so we can copy it.  If this
1592          * is a data block, the device data may be superfluous since the data
1593          * might be in a logical block, but compressed or encrypted data is
1594          * another matter.
1595          *
1596          * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
1597          */
1598         error = hammer2_chain_modify(chain, mtid, dedup_off, 0);
1599         if (error)
1600                 return error;
1601
1602         /*
1603          * Reallocate the block, even if making it smaller (because different
1604          * block sizes may be in different regions).
1605          *
1606          * NOTE: Operation does not copy the data and may only be used
1607          *       to resize data blocks in-place, or directory entry blocks
1608          *       which are about to be modified in some manner.
1609          */
1610         error = hammer2_freemap_alloc(chain, nbytes);
1611         if (error)
1612                 return error;
1613
1614         chain->bytes = nbytes;
1615
1616         /*
1617          * We don't want the followup chain_modify() to try to copy data
1618          * from the old (wrong-sized) buffer.  It won't know how much to
1619          * copy.  This case should only occur during writes when the
1620          * originator already has the data to write in-hand.
1621          */
1622         if (chain->dio) {
1623                 KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1624                          chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1625                 hammer2_io_brelse(&chain->dio);
1626                 chain->data = NULL;
1627         }
1628         return (chain->error);
1629 }
1630
1631 /*
1632  * Set the chain modified so its data can be changed by the caller, or
1633  * install deduplicated data.  The caller must call this routine for each
1634  * set of modifications it makes, even if the chain is already flagged
1635  * MODIFIED.
1636  *
1637  * Sets bref.modify_tid to mtid only if mtid != 0.  Note that bref.modify_tid
1638  * is a CLC (cluster level change) field and is not updated by parent
1639  * propagation during a flush.
1640  *
1641  * Returns an appropriate HAMMER2_ERROR_* code, which will generally reflect
1642  * chain->error except for HAMMER2_ERROR_ENOSPC.  If the allocation fails
1643  * due to no space available, HAMMER2_ERROR_ENOSPC is returned and the chain
1644  * remains unmodified with its old data ref intact and chain->error
1645  * unchanged.
1646  *
1647  *                               Dedup Handling
1648  *
1649  * If the DEDUPABLE flag is set in the chain the storage must be reallocated
1650  * even if the chain is still flagged MODIFIED.  In this case the chain's
1651  * DEDUPABLE flag will be cleared once the new storage has been assigned.
1652  *
1653  * If the caller passes a non-zero dedup_off we will use it to assign the
1654  * new storage.  The MODIFIED flag will be *CLEARED* in this case, and
1655  * DEDUPABLE will be set (NOTE: the UPDATE flag is always set).  The caller
1656  * must not modify the data content upon return.
1657  */
1658 int
1659 hammer2_chain_modify(hammer2_chain_t *chain, hammer2_tid_t mtid,
1660                      hammer2_off_t dedup_off, int flags)
1661 {
1662         hammer2_blockref_t obref;
1663         hammer2_dev_t *hmp;
1664         hammer2_io_t *dio;
1665         int error;
1666         int wasinitial;
1667         int setmodified;
1668         int setupdate;
1669         int newmod;
1670         char *bdata;
1671
1672         hmp = chain->hmp;
1673         obref = chain->bref;
1674         KKASSERT(chain->lock.mtx_lock & MTX_EXCLUSIVE);
1675
1676         /*
1677          * Data is not optional for freemap chains (we must always be sure
1678          * to copy the data on COW storage allocations).
1679          */
1680         if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1681             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1682                 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1683                          (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1684         }
1685
1686         /*
1687          * Data must be resolved if already assigned, unless explicitly
1688          * flagged otherwise.  If we cannot safety load the data the
1689          * modification fails and we return early.
1690          */
1691         if (chain->data == NULL && chain->bytes != 0 &&
1692             (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1693             (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1694                 hammer2_chain_load_data(chain);
1695                 if (chain->error)
1696                         return (chain->error);
1697         }
1698         error = 0;
1699
1700         /*
1701          * Set MODIFIED to indicate that the chain has been modified.  A new
1702          * allocation is required when modifying a chain.
1703          *
1704          * Set UPDATE to ensure that the blockref is updated in the parent.
1705          *
1706          * If MODIFIED is already set determine if we can reuse the assigned
1707          * data block or if we need a new data block.
1708          */
1709         if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1710                 /*
1711                  * Must set modified bit.
1712                  */
1713                 atomic_add_long(&hammer2_count_modified_chains, 1);
1714                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1715                 hammer2_pfs_memory_inc(chain->pmp);  /* can be NULL */
1716                 setmodified = 1;
1717
1718                 /*
1719                  * We may be able to avoid a copy-on-write if the chain's
1720                  * check mode is set to NONE and the chain's current
1721                  * modify_tid is beyond the last explicit snapshot tid.
1722                  *
1723                  * This implements HAMMER2's overwrite-in-place feature.
1724                  *
1725                  * NOTE! This data-block cannot be used as a de-duplication
1726                  *       source when the check mode is set to NONE.
1727                  */
1728                 if ((chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1729                      chain->bref.type == HAMMER2_BREF_TYPE_DIRENT) &&
1730                     (chain->flags & HAMMER2_CHAIN_INITIAL) == 0 &&
1731                     (chain->flags & HAMMER2_CHAIN_DEDUPABLE) == 0 &&
1732                     HAMMER2_DEC_CHECK(chain->bref.methods) ==
1733                      HAMMER2_CHECK_NONE &&
1734                     chain->pmp &&
1735                     chain->bref.modify_tid >
1736                      chain->pmp->iroot->meta.pfs_lsnap_tid) {
1737                         /*
1738                          * Sector overwrite allowed.
1739                          */
1740                         newmod = 0;
1741                 } else if ((hmp->hflags & HMNT2_EMERG) &&
1742                            chain->pmp &&
1743                            chain->bref.modify_tid >
1744                             chain->pmp->iroot->meta.pfs_lsnap_tid) {
1745                         /*
1746                          * If in emergency delete mode then do a modify-in-
1747                          * place on any chain type belonging to the PFS as
1748                          * long as it doesn't mess up a snapshot.  We might
1749                          * be forced to do this anyway a little further down
1750                          * in the code if the allocation fails.
1751                          *
1752                          * Also note that in emergency mode, these modify-in-
1753                          * place operations are NOT SAFE.  A storage failure,
1754                          * power failure, or panic can corrupt the filesystem.
1755                          */
1756                         newmod = 0;
1757                 } else {
1758                         /*
1759                          * Sector overwrite not allowed, must copy-on-write.
1760                          */
1761                         newmod = 1;
1762                 }
1763         } else if (chain->flags & HAMMER2_CHAIN_DEDUPABLE) {
1764                 /*
1765                  * If the modified chain was registered for dedup we need
1766                  * a new allocation.  This only happens for delayed-flush
1767                  * chains (i.e. which run through the front-end buffer
1768                  * cache).
1769                  */
1770                 newmod = 1;
1771                 setmodified = 0;
1772         } else {
1773                 /*
1774                  * Already flagged modified, no new allocation is needed.
1775                  */
1776                 newmod = 0;
1777                 setmodified = 0;
1778         }
1779
1780         /*
1781          * Flag parent update required.
1782          */
1783         if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
1784                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1785                 setupdate = 1;
1786         } else {
1787                 setupdate = 0;
1788         }
1789
1790         /*
1791          * The XOP code returns held but unlocked focus chains.  This
1792          * prevents the chain from being destroyed but does not prevent
1793          * it from being modified.  diolk is used to interlock modifications
1794          * against XOP frontend accesses to the focus.
1795          *
1796          * This allows us to theoretically avoid deadlocking the frontend
1797          * if one of the backends lock up by not formally locking the
1798          * focused chain in the frontend.  In addition, the synchronization
1799          * code relies on this mechanism to avoid deadlocking concurrent
1800          * synchronization threads.
1801          */
1802         lockmgr(&chain->diolk, LK_EXCLUSIVE);
1803
1804         /*
1805          * The modification or re-modification requires an allocation and
1806          * possible COW.  If an error occurs, the previous content and data
1807          * reference is retained and the modification fails.
1808          *
1809          * If dedup_off is non-zero, the caller is requesting a deduplication
1810          * rather than a modification.  The MODIFIED bit is not set and the
1811          * data offset is set to the deduplication offset.  The data cannot
1812          * be modified.
1813          *
1814          * NOTE: The dedup offset is allowed to be in a partially free state
1815          *       and we must be sure to reset it to a fully allocated state
1816          *       to force two bulkfree passes to free it again.
1817          *
1818          * NOTE: Only applicable when chain->bytes != 0.
1819          *
1820          * XXX can a chain already be marked MODIFIED without a data
1821          * assignment?  If not, assert here instead of testing the case.
1822          */
1823         if (chain != &hmp->vchain && chain != &hmp->fchain &&
1824             chain->bytes) {
1825                 if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1826                     newmod
1827                 ) {
1828                         /*
1829                          * NOTE: We do not have to remove the dedup
1830                          *       registration because the area is still
1831                          *       allocated and the underlying DIO will
1832                          *       still be flushed.
1833                          */
1834                         if (dedup_off) {
1835                                 chain->bref.data_off = dedup_off;
1836                                 chain->bytes = 1 << (dedup_off &
1837                                                      HAMMER2_OFF_MASK_RADIX);
1838                                 chain->error = 0;
1839                                 atomic_clear_int(&chain->flags,
1840                                                  HAMMER2_CHAIN_MODIFIED);
1841                                 atomic_add_long(&hammer2_count_modified_chains,
1842                                                 -1);
1843                                 if (chain->pmp) {
1844                                         hammer2_pfs_memory_wakeup(
1845                                                 chain->pmp, -1);
1846                                 }
1847                                 hammer2_freemap_adjust(hmp, &chain->bref,
1848                                                 HAMMER2_FREEMAP_DORECOVER);
1849                                 atomic_set_int(&chain->flags,
1850                                                 HAMMER2_CHAIN_DEDUPABLE);
1851                         } else {
1852                                 error = hammer2_freemap_alloc(chain,
1853                                                               chain->bytes);
1854                                 atomic_clear_int(&chain->flags,
1855                                                 HAMMER2_CHAIN_DEDUPABLE);
1856
1857                                 /*
1858                                  * If we are unable to allocate a new block
1859                                  * but we are in emergency mode, issue a
1860                                  * warning to the console and reuse the same
1861                                  * block.
1862                                  *
1863                                  * We behave as if the allocation were
1864                                  * successful.
1865                                  *
1866                                  * THIS IS IMPORTANT: These modifications
1867                                  * are virtually guaranteed to corrupt any
1868                                  * snapshots related to this filesystem.
1869                                  */
1870                                 if (error && (hmp->hflags & HMNT2_EMERG)) {
1871                                         error = 0;
1872                                         chain->bref.flags |=
1873                                                 HAMMER2_BREF_FLAG_EMERG_MIP;
1874
1875                                         krateprintf(&krate_h2em,
1876                                             "hammer2: Emergency Mode WARNING: "
1877                                             "Operation will likely corrupt "
1878                                             "related snapshot: "
1879                                             "%016jx.%02x key=%016jx\n",
1880                                             chain->bref.data_off,
1881                                             chain->bref.type,
1882                                             chain->bref.key);
1883                                 } else if (error == 0) {
1884                                         chain->bref.flags &=
1885                                                 ~HAMMER2_BREF_FLAG_EMERG_MIP;
1886                                 }
1887                         }
1888                 }
1889         }
1890
1891         /*
1892          * Stop here if error.  We have to undo any flag bits we might
1893          * have set above.
1894          */
1895         if (error) {
1896                 if (setmodified) {
1897                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1898                         atomic_add_long(&hammer2_count_modified_chains, -1);
1899                         if (chain->pmp)
1900                                 hammer2_pfs_memory_wakeup(chain->pmp, -1);
1901                 }
1902                 if (setupdate) {
1903                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1904                 }
1905                 lockmgr(&chain->diolk, LK_RELEASE);
1906
1907                 return error;
1908         }
1909
1910         /*
1911          * Update mirror_tid and modify_tid.  modify_tid is only updated
1912          * if not passed as zero (during flushes, parent propagation passes
1913          * the value 0).
1914          *
1915          * NOTE: chain->pmp could be the device spmp.
1916          */
1917         chain->bref.mirror_tid = hmp->voldata.mirror_tid + 1;
1918         if (mtid)
1919                 chain->bref.modify_tid = mtid;
1920
1921         /*
1922          * Set BMAPUPD to tell the flush code that an existing blockmap entry
1923          * requires updating as well as to tell the delete code that the
1924          * chain's blockref might not exactly match (in terms of physical size
1925          * or block offset) the one in the parent's blocktable.  The base key
1926          * of course will still match.
1927          */
1928         if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1929                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1930
1931         /*
1932          * Short-cut data block handling when the caller does not need an
1933          * actual data reference to (aka OPTDATA), as long as the chain does
1934          * not already have a data pointer to the data and no de-duplication
1935          * occurred.
1936          *
1937          * This generally means that the modifications are being done via the
1938          * logical buffer cache.
1939          *
1940          * NOTE: If deduplication occurred we have to run through the data
1941          *       stuff to clear INITIAL, and the caller will likely want to
1942          *       assign the check code anyway.  Leaving INITIAL set on a
1943          *       dedup can be deadly (it can cause the block to be zero'd!).
1944          *
1945          * This code also handles bytes == 0 (most dirents).
1946          */
1947         if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1948             (flags & HAMMER2_MODIFY_OPTDATA) &&
1949             chain->data == NULL) {
1950                 if (dedup_off == 0) {
1951                         KKASSERT(chain->dio == NULL);
1952                         goto skip2;
1953                 }
1954         }
1955
1956         /*
1957          * Clearing the INITIAL flag (for indirect blocks) indicates that
1958          * we've processed the uninitialized storage allocation.
1959          *
1960          * If this flag is already clear we are likely in a copy-on-write
1961          * situation but we have to be sure NOT to bzero the storage if
1962          * no data is present.
1963          *
1964          * Clearing of NOTTESTED is allowed if the MODIFIED bit is set,
1965          */
1966         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1967                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1968                 wasinitial = 1;
1969         } else {
1970                 wasinitial = 0;
1971         }
1972
1973         /*
1974          * Instantiate data buffer and possibly execute COW operation
1975          */
1976         switch(chain->bref.type) {
1977         case HAMMER2_BREF_TYPE_VOLUME:
1978         case HAMMER2_BREF_TYPE_FREEMAP:
1979                 /*
1980                  * The data is embedded, no copy-on-write operation is
1981                  * needed.
1982                  */
1983                 KKASSERT(chain->dio == NULL);
1984                 break;
1985         case HAMMER2_BREF_TYPE_DIRENT:
1986                 /*
1987                  * The data might be fully embedded.
1988                  */
1989                 if (chain->bytes == 0) {
1990                         KKASSERT(chain->dio == NULL);
1991                         break;
1992                 }
1993                 /* fall through */
1994         case HAMMER2_BREF_TYPE_INODE:
1995         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1996         case HAMMER2_BREF_TYPE_DATA:
1997         case HAMMER2_BREF_TYPE_INDIRECT:
1998         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1999                 /*
2000                  * Perform the copy-on-write operation
2001                  *
2002                  * zero-fill or copy-on-write depending on whether
2003                  * chain->data exists or not and set the dirty state for
2004                  * the new buffer.  hammer2_io_new() will handle the
2005                  * zero-fill.
2006                  *
2007                  * If a dedup_off was supplied this is an existing block
2008                  * and no COW, copy, or further modification is required.
2009                  */
2010                 KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
2011
2012                 if (wasinitial && dedup_off == 0) {
2013                         error = hammer2_io_new(hmp, chain->bref.type,
2014                                                chain->bref.data_off,
2015                                                chain->bytes, &dio);
2016                 } else {
2017                         error = hammer2_io_bread(hmp, chain->bref.type,
2018                                                  chain->bref.data_off,
2019                                                  chain->bytes, &dio);
2020                 }
2021                 hammer2_adjreadcounter(chain->bref.type, chain->bytes);
2022
2023                 /*
2024                  * If an I/O error occurs make sure callers cannot accidently
2025                  * modify the old buffer's contents and corrupt the filesystem.
2026                  *
2027                  * NOTE: hammer2_io_data() call issues bkvasync()
2028                  */
2029                 if (error) {
2030                         kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
2031                                 hmp);
2032                         chain->error = HAMMER2_ERROR_EIO;
2033                         hammer2_io_brelse(&dio);
2034                         hammer2_io_brelse(&chain->dio);
2035                         chain->data = NULL;
2036                         break;
2037                 }
2038                 chain->error = 0;
2039                 bdata = hammer2_io_data(dio, chain->bref.data_off);
2040
2041                 if (chain->data) {
2042                         /*
2043                          * COW (unless a dedup).
2044                          */
2045                         KKASSERT(chain->dio != NULL);
2046                         if (chain->data != (void *)bdata && dedup_off == 0) {
2047                                 bcopy(chain->data, bdata, chain->bytes);
2048                         }
2049                 } else if (wasinitial == 0 && dedup_off == 0) {
2050                         /*
2051                          * We have a problem.  We were asked to COW but
2052                          * we don't have any data to COW with!
2053                          */
2054                         panic("hammer2_chain_modify: having a COW %p\n",
2055                               chain);
2056                 }
2057
2058                 /*
2059                  * Retire the old buffer, replace with the new.  Dirty or
2060                  * redirty the new buffer.
2061                  *
2062                  * WARNING! The system buffer cache may have already flushed
2063                  *          the buffer, so we must be sure to [re]dirty it
2064                  *          for further modification.
2065                  *
2066                  *          If dedup_off was supplied, the caller is not
2067                  *          expected to make any further modification to the
2068                  *          buffer.
2069                  *
2070                  * WARNING! hammer2_get_gdata() assumes dio never transitions
2071                  *          through NULL in order to optimize away unnecessary
2072                  *          diolk operations.
2073                  */
2074                 {
2075                         hammer2_io_t *tio;
2076
2077                         if ((tio = chain->dio) != NULL)
2078                                 hammer2_io_bqrelse(&tio);
2079                         chain->data = (void *)bdata;
2080                         chain->dio = dio;
2081                         if (dedup_off == 0)
2082                                 hammer2_io_setdirty(dio);
2083                 }
2084                 break;
2085         default:
2086                 panic("hammer2_chain_modify: illegal non-embedded type %d",
2087                       chain->bref.type);
2088                 break;
2089
2090         }
2091 skip2:
2092         /*
2093          * setflush on parent indicating that the parent must recurse down
2094          * to us.  Do not call on chain itself which might already have it
2095          * set.
2096          */
2097         if (chain->parent)
2098                 hammer2_chain_setflush(chain->parent);
2099         lockmgr(&chain->diolk, LK_RELEASE);
2100
2101         return (chain->error);
2102 }
2103
2104 /*
2105  * Modify the chain associated with an inode.
2106  */
2107 int
2108 hammer2_chain_modify_ip(hammer2_inode_t *ip, hammer2_chain_t *chain,
2109                         hammer2_tid_t mtid, int flags)
2110 {
2111         int error;
2112
2113         hammer2_inode_modify(ip);
2114         error = hammer2_chain_modify(chain, mtid, 0, flags);
2115
2116         return error;
2117 }
2118
2119 /*
2120  * This function returns the chain at the nearest key within the specified
2121  * range.  The returned chain will be referenced but not locked.
2122  *
2123  * This function will recurse through chain->rbtree as necessary and will
2124  * return a *key_nextp suitable for iteration.  *key_nextp is only set if
2125  * the iteration value is less than the current value of *key_nextp.
2126  *
2127  * The caller should use (*key_nextp) to calculate the actual range of
2128  * the returned element, which will be (key_beg to *key_nextp - 1), because
2129  * there might be another element which is superior to the returned element
2130  * and overlaps it.
2131  *
2132  * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
2133  * chains continue to be returned.  On EOF (*key_nextp) may overflow since
2134  * it will wind up being (key_end + 1).
2135  *
2136  * WARNING!  Must be called with child's spinlock held.  Spinlock remains
2137  *           held through the operation.
2138  */
2139 struct hammer2_chain_find_info {
2140         hammer2_chain_t         *best;
2141         hammer2_key_t           key_beg;
2142         hammer2_key_t           key_end;
2143         hammer2_key_t           key_next;
2144 };
2145
2146 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
2147 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
2148
2149 static
2150 hammer2_chain_t *
2151 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
2152                           hammer2_key_t key_beg, hammer2_key_t key_end)
2153 {
2154         struct hammer2_chain_find_info info;
2155
2156         info.best = NULL;
2157         info.key_beg = key_beg;
2158         info.key_end = key_end;
2159         info.key_next = *key_nextp;
2160
2161         RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
2162                 hammer2_chain_find_cmp, hammer2_chain_find_callback,
2163                 &info);
2164         *key_nextp = info.key_next;
2165 #if 0
2166         kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
2167                 parent, key_beg, key_end, *key_nextp);
2168 #endif
2169
2170         return (info.best);
2171 }
2172
2173 static
2174 int
2175 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
2176 {
2177         struct hammer2_chain_find_info *info = data;
2178         hammer2_key_t child_beg;
2179         hammer2_key_t child_end;
2180
2181         child_beg = child->bref.key;
2182         child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
2183
2184         if (child_end < info->key_beg)
2185                 return(-1);
2186         if (child_beg > info->key_end)
2187                 return(1);
2188         return(0);
2189 }
2190
2191 static
2192 int
2193 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
2194 {
2195         struct hammer2_chain_find_info *info = data;
2196         hammer2_chain_t *best;
2197         hammer2_key_t child_end;
2198
2199         /*
2200          * WARNING! Layerq is scanned forwards, exact matches should keep
2201          *          the existing info->best.
2202          */
2203         if ((best = info->best) == NULL) {
2204                 /*
2205                  * No previous best.  Assign best
2206                  */
2207                 info->best = child;
2208         } else if (best->bref.key <= info->key_beg &&
2209                    child->bref.key <= info->key_beg) {
2210                 /*
2211                  * Illegal overlap.
2212                  */
2213                 KKASSERT(0);
2214                 /*info->best = child;*/
2215         } else if (child->bref.key < best->bref.key) {
2216                 /*
2217                  * Child has a nearer key and best is not flush with key_beg.
2218                  * Set best to child.  Truncate key_next to the old best key.
2219                  */
2220                 info->best = child;
2221                 if (info->key_next > best->bref.key || info->key_next == 0)
2222                         info->key_next = best->bref.key;
2223         } else if (child->bref.key == best->bref.key) {
2224                 /*
2225                  * If our current best is flush with the child then this
2226                  * is an illegal overlap.
2227                  *
2228                  * key_next will automatically be limited to the smaller of
2229                  * the two end-points.
2230                  */
2231                 KKASSERT(0);
2232                 info->best = child;
2233         } else {
2234                 /*
2235                  * Keep the current best but truncate key_next to the child's
2236                  * base.
2237                  *
2238                  * key_next will also automatically be limited to the smaller
2239                  * of the two end-points (probably not necessary for this case
2240                  * but we do it anyway).
2241                  */
2242                 if (info->key_next > child->bref.key || info->key_next == 0)
2243                         info->key_next = child->bref.key;
2244         }
2245
2246         /*
2247          * Always truncate key_next based on child's end-of-range.
2248          */
2249         child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
2250         if (child_end && (info->key_next > child_end || info->key_next == 0))
2251                 info->key_next = child_end;
2252
2253         return(0);
2254 }
2255
2256 /*
2257  * Retrieve the specified chain from a media blockref, creating the
2258  * in-memory chain structure which reflects it.  The returned chain is
2259  * held and locked according to (how) (HAMMER2_RESOLVE_*).  The caller must
2260  * handle crc-checks and so forth, and should check chain->error before
2261  * assuming that the data is good.
2262  *
2263  * To handle insertion races pass the INSERT_RACE flag along with the
2264  * generation number of the core.  NULL will be returned if the generation
2265  * number changes before we have a chance to insert the chain.  Insert
2266  * races can occur because the parent might be held shared.
2267  *
2268  * Caller must hold the parent locked shared or exclusive since we may
2269  * need the parent's bref array to find our block.
2270  *
2271  * WARNING! chain->pmp is always set to NULL for any chain representing
2272  *          part of the super-root topology.
2273  */
2274 hammer2_chain_t *
2275 hammer2_chain_get(hammer2_chain_t *parent, int generation,
2276                   hammer2_blockref_t *bref, int how)
2277 {
2278         hammer2_dev_t *hmp = parent->hmp;
2279         hammer2_chain_t *chain;
2280         int error;
2281
2282         /*
2283          * Allocate a chain structure representing the existing media
2284          * entry.  Resulting chain has one ref and is not locked.
2285          */
2286         if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
2287                 chain = hammer2_chain_alloc(hmp, NULL, bref);
2288         else
2289                 chain = hammer2_chain_alloc(hmp, parent->pmp, bref);
2290         /* ref'd chain returned */
2291
2292         /*
2293          * Flag that the chain is in the parent's blockmap so delete/flush
2294          * knows what to do with it.
2295          */
2296         atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
2297
2298         /*
2299          * chain must be locked to avoid unexpected ripouts
2300          */
2301         hammer2_chain_lock(chain, how);
2302
2303         /*
2304          * Link the chain into its parent.  A spinlock is required to safely
2305          * access the RBTREE, and it is possible to collide with another
2306          * hammer2_chain_get() operation because the caller might only hold
2307          * a shared lock on the parent.
2308          *
2309          * NOTE: Get races can occur quite often when we distribute
2310          *       asynchronous read-aheads across multiple threads.
2311          */
2312         KKASSERT(parent->refs > 0);
2313         error = hammer2_chain_insert(parent, chain,
2314                                      HAMMER2_CHAIN_INSERT_SPIN |
2315                                      HAMMER2_CHAIN_INSERT_RACE,
2316                                      generation);
2317         if (error) {
2318                 KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
2319                 /*kprintf("chain %p get race\n", chain);*/
2320                 hammer2_chain_unlock(chain);
2321                 hammer2_chain_drop(chain);
2322                 chain = NULL;
2323         } else {
2324                 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2325         }
2326
2327         /*
2328          * Return our new chain referenced but not locked, or NULL if
2329          * a race occurred.
2330          */
2331         return (chain);
2332 }
2333
2334 /*
2335  * Lookup initialization/completion API
2336  */
2337 hammer2_chain_t *
2338 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
2339 {
2340         hammer2_chain_ref(parent);
2341         if (flags & HAMMER2_LOOKUP_SHARED) {
2342                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
2343                                            HAMMER2_RESOLVE_SHARED);
2344         } else {
2345                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2346         }
2347         return (parent);
2348 }
2349
2350 void
2351 hammer2_chain_lookup_done(hammer2_chain_t *parent)
2352 {
2353         if (parent) {
2354                 hammer2_chain_unlock(parent);
2355                 hammer2_chain_drop(parent);
2356         }
2357 }
2358
2359 /*
2360  * Take the locked chain and return a locked parent.  The chain remains
2361  * locked on return, but may have to be temporarily unlocked to acquire
2362  * the parent.  Because of this, (chain) must be stable and cannot be
2363  * deleted while it was temporarily unlocked (typically means that (chain)
2364  * is an inode).
2365  *
2366  * Pass HAMMER2_RESOLVE_* flags in flags.
2367  *
2368  * This will work even if the chain is errored, and the caller can check
2369  * parent->error on return if desired since the parent will be locked.
2370  *
2371  * This function handles the lock order reversal.
2372  */
2373 hammer2_chain_t *
2374 hammer2_chain_getparent(hammer2_chain_t *chain, int flags)
2375 {
2376         hammer2_chain_t *parent;
2377
2378         /*
2379          * Be careful of order, chain must be unlocked before parent
2380          * is locked below to avoid a deadlock.  Try it trivially first.
2381          */
2382         parent = chain->parent;
2383         if (parent == NULL)
2384                 panic("hammer2_chain_getparent: no parent");
2385         hammer2_chain_ref(parent);
2386         if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0)
2387                 return parent;
2388
2389         for (;;) {
2390                 hammer2_chain_unlock(chain);
2391                 hammer2_chain_lock(parent, flags);
2392                 hammer2_chain_lock(chain, flags);
2393
2394                 /*
2395                  * Parent relinking races are quite common.  We have to get
2396                  * it right or we will blow up the block table.
2397                  */
2398                 if (chain->parent == parent)
2399                         break;
2400                 hammer2_chain_unlock(parent);
2401                 hammer2_chain_drop(parent);
2402                 cpu_ccfence();
2403                 parent = chain->parent;
2404                 if (parent == NULL)
2405                         panic("hammer2_chain_getparent: no parent");
2406                 hammer2_chain_ref(parent);
2407         }
2408         return parent;
2409 }
2410
2411 /*
2412  * Take the locked chain and return a locked parent.  The chain is unlocked
2413  * and dropped.  *chainp is set to the returned parent as a convenience.
2414  * Pass HAMMER2_RESOLVE_* flags in flags.
2415  *
2416  * This will work even if the chain is errored, and the caller can check
2417  * parent->error on return if desired since the parent will be locked.
2418  *
2419  * The chain does NOT need to be stable.  We use a tracking structure
2420  * to track the expected parent if the chain is deleted out from under us.
2421  *
2422  * This function handles the lock order reversal.
2423  */
2424 hammer2_chain_t *
2425 hammer2_chain_repparent(hammer2_chain_t **chainp, int flags)
2426 {
2427         hammer2_chain_t *chain;
2428         hammer2_chain_t *parent;
2429         struct hammer2_reptrack reptrack;
2430         struct hammer2_reptrack **repp;
2431
2432         /*
2433          * Be careful of order, chain must be unlocked before parent
2434          * is locked below to avoid a deadlock.  Try it trivially first.
2435          */
2436         chain = *chainp;
2437         parent = chain->parent;
2438         if (parent == NULL) {
2439                 hammer2_spin_unex(&chain->core.spin);
2440                 panic("hammer2_chain_repparent: no parent");
2441         }
2442         hammer2_chain_ref(parent);
2443         if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0) {
2444                 hammer2_chain_unlock(chain);
2445                 hammer2_chain_drop(chain);
2446                 *chainp = parent;
2447
2448                 return parent;
2449         }
2450
2451         /*
2452          * Ok, now it gets a bit nasty.  There are multiple situations where
2453          * the parent might be in the middle of a deletion, or where the child
2454          * (chain) might be deleted the instant we let go of its lock.
2455          * We can potentially end up in a no-win situation!
2456          *
2457          * In particular, the indirect_maintenance() case can cause these
2458          * situations.
2459          *
2460          * To deal with this we install a reptrack structure in the parent
2461          * This reptrack structure 'owns' the parent ref and will automatically
2462          * migrate to the parent's parent if the parent is deleted permanently.
2463          */
2464         hammer2_spin_init(&reptrack.spin, "h2reptrk");
2465         reptrack.chain = parent;
2466         hammer2_chain_ref(parent);              /* for the reptrack */
2467
2468         hammer2_spin_ex(&parent->core.spin);
2469         reptrack.next = parent->core.reptrack;
2470         parent->core.reptrack = &reptrack;
2471         hammer2_spin_unex(&parent->core.spin);
2472
2473         hammer2_chain_unlock(chain);
2474         hammer2_chain_drop(chain);
2475         chain = NULL;   /* gone */
2476
2477         /*
2478          * At the top of this loop, chain is gone and parent is refd both
2479          * by us explicitly AND via our reptrack.  We are attempting to
2480          * lock parent.
2481          */
2482         for (;;) {
2483                 hammer2_chain_lock(parent, flags);
2484
2485                 if (reptrack.chain == parent)
2486                         break;
2487                 hammer2_chain_unlock(parent);
2488                 hammer2_chain_drop(parent);
2489
2490                 kprintf("hammer2: debug REPTRACK %p->%p\n",
2491                         parent, reptrack.chain);
2492                 hammer2_spin_ex(&reptrack.spin);
2493                 parent = reptrack.chain;
2494                 hammer2_chain_ref(parent);
2495                 hammer2_spin_unex(&reptrack.spin);
2496         }
2497
2498         /*
2499          * Once parent is locked and matches our reptrack, our reptrack
2500          * will be stable and we have our parent.  We can unlink our
2501          * reptrack.
2502          *
2503          * WARNING!  Remember that the chain lock might be shared.  Chains
2504          *           locked shared have stable parent linkages.
2505          */
2506         hammer2_spin_ex(&parent->core.spin);
2507         repp = &parent->core.reptrack;
2508         while (*repp != &reptrack)
2509                 repp = &(*repp)->next;
2510         *repp = reptrack.next;
2511         hammer2_spin_unex(&parent->core.spin);
2512
2513         hammer2_chain_drop(parent);     /* reptrack ref */
2514         *chainp = parent;               /* return parent lock+ref */
2515
2516         return parent;
2517 }
2518
2519 /*
2520  * Dispose of any linked reptrack structures in (chain) by shifting them to
2521  * (parent).  Both (chain) and (parent) must be exclusively locked.
2522  *
2523  * This is interlocked against any children of (chain) on the other side.
2524  * No children so remain as-of when this is called so we can test
2525  * core.reptrack without holding the spin-lock.
2526  *
2527  * Used whenever the caller intends to permanently delete chains related
2528  * to topological recursions (BREF_TYPE_INDIRECT, BREF_TYPE_FREEMAP_NODE),
2529  * where the chains underneath the node being deleted are given a new parent
2530  * above the node being deleted.
2531  */
2532 static
2533 void
2534 hammer2_chain_repchange(hammer2_chain_t *parent, hammer2_chain_t *chain)
2535 {
2536         struct hammer2_reptrack *reptrack;
2537
2538         KKASSERT(chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree));
2539         while (chain->core.reptrack) {
2540                 hammer2_spin_ex(&parent->core.spin);
2541                 hammer2_spin_ex(&chain->core.spin);
2542                 reptrack = chain->core.reptrack;
2543                 if (reptrack == NULL) {
2544                         hammer2_spin_unex(&chain->core.spin);
2545                         hammer2_spin_unex(&parent->core.spin);
2546                         break;
2547                 }
2548                 hammer2_spin_ex(&reptrack->spin);
2549                 chain->core.reptrack = reptrack->next;
2550                 reptrack->chain = parent;
2551                 reptrack->next = parent->core.reptrack;
2552                 parent->core.reptrack = reptrack;
2553                 hammer2_chain_ref(parent);              /* reptrack */
2554
2555                 hammer2_spin_unex(&chain->core.spin);
2556                 hammer2_spin_unex(&parent->core.spin);
2557                 kprintf("hammer2: debug repchange %p %p->%p\n",
2558                         reptrack, chain, parent);
2559                 hammer2_chain_drop(chain);              /* reptrack */
2560         }
2561 }
2562
2563 /*
2564  * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
2565  * (*parentp) typically points to an inode but can also point to a related
2566  * indirect block and this function will recurse upwards and find the inode
2567  * or the nearest undeleted indirect block covering the key range.
2568  *
2569  * This function unconditionally sets *errorp, replacing any previous value.
2570  *
2571  * (*parentp) must be exclusive or shared locked (depending on flags) and
2572  * referenced and can be an inode or an existing indirect block within the
2573  * inode.
2574  *
2575  * If (*parent) is errored out, this function will not attempt to recurse
2576  * the radix tree and will return NULL along with an appropriate *errorp.
2577  * If NULL is returned and *errorp is 0, the requested lookup could not be
2578  * located.
2579  *
2580  * On return (*parentp) will be modified to point at the deepest parent chain
2581  * element encountered during the search, as a helper for an insertion or
2582  * deletion.
2583  *
2584  * The new (*parentp) will be locked shared or exclusive (depending on flags),
2585  * and referenced, and the old will be unlocked and dereferenced (no change
2586  * if they are both the same).  This is particularly important if the caller
2587  * wishes to insert a new chain, (*parentp) will be set properly even if NULL
2588  * is returned, as long as no error occurred.
2589  *
2590  * The matching chain will be returned locked according to flags.
2591  *
2592  * --
2593  *
2594  * NULL is returned if no match was found, but (*parentp) will still
2595  * potentially be adjusted.
2596  *
2597  * On return (*key_nextp) will point to an iterative value for key_beg.
2598  * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
2599  *
2600  * This function will also recurse up the chain if the key is not within the
2601  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
2602  * can simply allow (*parentp) to float inside the loop.
2603  *
2604  * NOTE!  chain->data is not always resolved.  By default it will not be
2605  *        resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
2606  *        HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
2607  *        BREF_TYPE_DATA as the device buffer can alias the logical file
2608  *        buffer).
2609  */
2610
2611 hammer2_chain_t *
2612 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
2613                      hammer2_key_t key_beg, hammer2_key_t key_end,
2614                      int *errorp, int flags)
2615 {
2616         hammer2_dev_t *hmp;
2617         hammer2_chain_t *parent;
2618         hammer2_chain_t *chain;
2619         hammer2_blockref_t *base;
2620         hammer2_blockref_t *bref;
2621         hammer2_blockref_t bsave;
2622         hammer2_key_t scan_beg;
2623         hammer2_key_t scan_end;
2624         int count = 0;
2625         int how_always = HAMMER2_RESOLVE_ALWAYS;
2626         int how_maybe = HAMMER2_RESOLVE_MAYBE;
2627         int how;
2628         int generation;
2629         int maxloops = 300000;
2630         volatile hammer2_mtx_t save_mtx;
2631
2632         if (flags & HAMMER2_LOOKUP_ALWAYS) {
2633                 how_maybe = how_always;
2634                 how = HAMMER2_RESOLVE_ALWAYS;
2635         } else if (flags & HAMMER2_LOOKUP_NODATA) {
2636                 how = HAMMER2_RESOLVE_NEVER;
2637         } else {
2638                 how = HAMMER2_RESOLVE_MAYBE;
2639         }
2640         if (flags & HAMMER2_LOOKUP_SHARED) {
2641                 how_maybe |= HAMMER2_RESOLVE_SHARED;
2642                 how_always |= HAMMER2_RESOLVE_SHARED;
2643                 how |= HAMMER2_RESOLVE_SHARED;
2644         }
2645
2646         /*
2647          * Recurse (*parentp) upward if necessary until the parent completely
2648          * encloses the key range or we hit the inode.
2649          *
2650          * Handle races against the flusher deleting indirect nodes on its
2651          * way back up by continuing to recurse upward past the deletion.
2652          */
2653         parent = *parentp;
2654         hmp = parent->hmp;
2655         *errorp = 0;
2656
2657         while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2658                parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2659                 scan_beg = parent->bref.key;
2660                 scan_end = scan_beg +
2661                            ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2662                 if ((parent->flags & HAMMER2_CHAIN_DELETED) == 0) {
2663                         if (key_beg >= scan_beg && key_end <= scan_end)
2664                                 break;
2665                 }
2666                 parent = hammer2_chain_repparent(parentp, how_maybe);
2667         }
2668 again:
2669         if (--maxloops == 0)
2670                 panic("hammer2_chain_lookup: maxloops");
2671
2672         /*
2673          * MATCHIND case that does not require parent->data (do prior to
2674          * parent->error check).
2675          */
2676         switch(parent->bref.type) {
2677         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2678         case HAMMER2_BREF_TYPE_INDIRECT:
2679                 if (flags & HAMMER2_LOOKUP_MATCHIND) {
2680                         scan_beg = parent->bref.key;
2681                         scan_end = scan_beg +
2682                                ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2683                         if (key_beg == scan_beg && key_end == scan_end) {
2684                                 chain = parent;
2685                                 hammer2_chain_ref(chain);
2686                                 hammer2_chain_lock(chain, how_maybe);
2687                                 *key_nextp = scan_end + 1;
2688                                 goto done;
2689                         }
2690                 }
2691                 break;
2692         default:
2693                 break;
2694         }
2695
2696         /*
2697          * No lookup is possible if the parent is errored.  We delayed
2698          * this check as long as we could to ensure that the parent backup,
2699          * embedded data, and MATCHIND code could still execute.
2700          */
2701         if (parent->error) {
2702                 *errorp = parent->error;
2703                 return NULL;
2704         }
2705
2706         /*
2707          * Locate the blockref array.  Currently we do a fully associative
2708          * search through the array.
2709          */
2710         switch(parent->bref.type) {
2711         case HAMMER2_BREF_TYPE_INODE:
2712                 /*
2713                  * Special shortcut for embedded data returns the inode
2714                  * itself.  Callers must detect this condition and access
2715                  * the embedded data (the strategy code does this for us).
2716                  *
2717                  * This is only applicable to regular files and softlinks.
2718                  *
2719                  * We need a second lock on parent.  Since we already have
2720                  * a lock we must pass LOCKAGAIN to prevent unexpected
2721                  * blocking (we don't want to block on a second shared
2722                  * ref if an exclusive lock is pending)
2723                  */
2724                 if (parent->data->ipdata.meta.op_flags &
2725                     HAMMER2_OPFLAG_DIRECTDATA) {
2726                         if (flags & HAMMER2_LOOKUP_NODIRECT) {
2727                                 chain = NULL;
2728                                 *key_nextp = key_end + 1;
2729                                 goto done;
2730                         }
2731                         hammer2_chain_ref(parent);
2732                         hammer2_chain_lock(parent, how_always |
2733                                                    HAMMER2_RESOLVE_LOCKAGAIN);
2734                         *key_nextp = key_end + 1;
2735                         return (parent);
2736                 }
2737                 base = &parent->data->ipdata.u.blockset.blockref[0];
2738                 count = HAMMER2_SET_COUNT;
2739                 break;
2740         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2741         case HAMMER2_BREF_TYPE_INDIRECT:
2742                 /*
2743                  * Optimize indirect blocks in the INITIAL state to avoid
2744                  * I/O.
2745                  *
2746                  * Debugging: Enter permanent wait state instead of
2747                  * panicing on unexpectedly NULL data for the moment.
2748                  */
2749                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2750                         base = NULL;
2751                 } else {
2752                         if (parent->data == NULL) {
2753                                 kprintf("hammer2: unexpected NULL data "
2754                                         "on %p\n", parent);
2755                                 while (1)
2756                                         tsleep(parent, 0, "xxx", 0);
2757                         }
2758                         base = &parent->data->npdata[0];
2759                 }
2760                 count = parent->bytes / sizeof(hammer2_blockref_t);
2761                 break;
2762         case HAMMER2_BREF_TYPE_VOLUME:
2763                 base = &parent->data->voldata.sroot_blockset.blockref[0];
2764                 count = HAMMER2_SET_COUNT;
2765                 break;
2766         case HAMMER2_BREF_TYPE_FREEMAP:
2767                 base = &parent->data->blkset.blockref[0];
2768                 count = HAMMER2_SET_COUNT;
2769                 break;
2770         default:
2771                 panic("hammer2_chain_lookup: unrecognized "
2772                       "blockref(B) type: %d",
2773                       parent->bref.type);
2774                 base = NULL;    /* safety */
2775                 count = 0;      /* safety */
2776                 break;
2777         }
2778
2779         /*
2780          * Merged scan to find next candidate.
2781          *
2782          * hammer2_base_*() functions require the parent->core.live_* fields
2783          * to be synchronized.
2784          *
2785          * We need to hold the spinlock to access the block array and RB tree
2786          * and to interlock chain creation.
2787          */
2788         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2789                 hammer2_chain_countbrefs(parent, base, count);
2790
2791         /*
2792          * Combined search
2793          */
2794         hammer2_spin_ex(&parent->core.spin);
2795         chain = hammer2_combined_find(parent, base, count,
2796                                       key_nextp,
2797                                       key_beg, key_end,
2798                                       &bref);
2799         generation = parent->core.generation;
2800
2801         /*
2802          * Exhausted parent chain, iterate.
2803          */
2804         if (bref == NULL) {
2805                 KKASSERT(chain == NULL);
2806                 hammer2_spin_unex(&parent->core.spin);
2807                 if (key_beg == key_end) /* short cut single-key case */
2808                         return (NULL);
2809
2810                 /*
2811                  * Stop if we reached the end of the iteration.
2812                  */
2813                 if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2814                     parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2815                         return (NULL);
2816                 }
2817
2818                 /*
2819                  * Calculate next key, stop if we reached the end of the
2820                  * iteration, otherwise go up one level and loop.
2821                  */
2822                 key_beg = parent->bref.key +
2823                           ((hammer2_key_t)1 << parent->bref.keybits);
2824                 if (key_beg == 0 || key_beg > key_end)
2825                         return (NULL);
2826                 parent = hammer2_chain_repparent(parentp, how_maybe);
2827                 goto again;
2828         }
2829
2830         /*
2831          * Selected from blockref or in-memory chain.
2832          */
2833         bsave = *bref;
2834         if (chain == NULL) {
2835                 hammer2_spin_unex(&parent->core.spin);
2836                 if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2837                     bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2838                         chain = hammer2_chain_get(parent, generation,
2839                                                   &bsave, how_maybe);
2840                 } else {
2841                         chain = hammer2_chain_get(parent, generation,
2842                                                   &bsave, how);
2843                 }
2844                 if (chain == NULL)
2845                         goto again;
2846         } else {
2847                 hammer2_chain_ref(chain);
2848                 hammer2_spin_unex(&parent->core.spin);
2849
2850                 /*
2851                  * chain is referenced but not locked.  We must lock the
2852                  * chain to obtain definitive state.
2853                  */
2854                 if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2855                     bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2856                         hammer2_chain_lock(chain, how_maybe);
2857                 } else {
2858                         hammer2_chain_lock(chain, how);
2859                 }
2860                 KKASSERT(chain->parent == parent);
2861         }
2862         if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
2863             chain->parent != parent) {
2864                 hammer2_chain_unlock(chain);
2865                 hammer2_chain_drop(chain);
2866                 chain = NULL;   /* SAFETY */
2867                 goto again;
2868         }
2869
2870
2871         /*
2872          * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2873          *
2874          * NOTE: Chain's key range is not relevant as there might be
2875          *       one-offs within the range that are not deleted.
2876          *
2877          * NOTE: Lookups can race delete-duplicate because
2878          *       delete-duplicate does not lock the parent's core
2879          *       (they just use the spinlock on the core).
2880          */
2881         if (chain->flags & HAMMER2_CHAIN_DELETED) {
2882                 kprintf("skip deleted chain %016jx.%02x key=%016jx\n",
2883                         chain->bref.data_off, chain->bref.type,
2884                         chain->bref.key);
2885                 hammer2_chain_unlock(chain);
2886                 hammer2_chain_drop(chain);
2887                 chain = NULL;   /* SAFETY */
2888                 key_beg = *key_nextp;
2889                 if (key_beg == 0 || key_beg > key_end)
2890                         return(NULL);
2891                 goto again;
2892         }
2893
2894         /*
2895          * If the chain element is an indirect block it becomes the new
2896          * parent and we loop on it.  We must maintain our top-down locks
2897          * to prevent the flusher from interfering (i.e. doing a
2898          * delete-duplicate and leaving us recursing down a deleted chain).
2899          *
2900          * The parent always has to be locked with at least RESOLVE_MAYBE
2901          * so we can access its data.  It might need a fixup if the caller
2902          * passed incompatible flags.  Be careful not to cause a deadlock
2903          * as a data-load requires an exclusive lock.
2904          *
2905          * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2906          * range is within the requested key range we return the indirect
2907          * block and do NOT loop.  This is usually only used to acquire
2908          * freemap nodes.
2909          */
2910         if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2911             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2912                 save_mtx = parent->lock;
2913                 hammer2_chain_unlock(parent);
2914                 hammer2_chain_drop(parent);
2915                 *parentp = parent = chain;
2916                 chain = NULL;   /* SAFETY */
2917                 goto again;
2918         }
2919 done:
2920         /*
2921          * All done, return the locked chain.
2922          *
2923          * If the caller does not want a locked chain, replace the lock with
2924          * a ref.  Perhaps this can eventually be optimized to not obtain the
2925          * lock in the first place for situations where the data does not
2926          * need to be resolved.
2927          *
2928          * NOTE! A chain->error must be tested by the caller upon return.
2929          *       *errorp is only set based on issues which occur while
2930          *       trying to reach the chain.
2931          */
2932         return (chain);
2933 }
2934
2935 /*
2936  * After having issued a lookup we can iterate all matching keys.
2937  *
2938  * If chain is non-NULL we continue the iteration from just after it's index.
2939  *
2940  * If chain is NULL we assume the parent was exhausted and continue the
2941  * iteration at the next parent.
2942  *
2943  * If a fatal error occurs (typically an I/O error), a dummy chain is
2944  * returned with chain->error and error-identifying information set.  This
2945  * chain will assert if you try to do anything fancy with it.
2946  *
2947  * XXX Depending on where the error occurs we should allow continued iteration.
2948  *
2949  * parent must be locked on entry and remains locked throughout.  chain's
2950  * lock status must match flags.  Chain is always at least referenced.
2951  *
2952  * WARNING!  The MATCHIND flag does not apply to this function.
2953  */
2954 hammer2_chain_t *
2955 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
2956                    hammer2_key_t *key_nextp,
2957                    hammer2_key_t key_beg, hammer2_key_t key_end,
2958                    int *errorp, int flags)
2959 {
2960         hammer2_chain_t *parent;
2961         int how_maybe;
2962
2963         /*
2964          * Calculate locking flags for upward recursion.
2965          */
2966         how_maybe = HAMMER2_RESOLVE_MAYBE;
2967         if (flags & HAMMER2_LOOKUP_SHARED)
2968                 how_maybe |= HAMMER2_RESOLVE_SHARED;
2969
2970         parent = *parentp;
2971         *errorp = 0;
2972
2973         /*
2974          * Calculate the next index and recalculate the parent if necessary.
2975          */
2976         if (chain) {
2977                 key_beg = chain->bref.key +
2978                           ((hammer2_key_t)1 << chain->bref.keybits);
2979                 hammer2_chain_unlock(chain);
2980                 hammer2_chain_drop(chain);
2981
2982                 /*
2983                  * chain invalid past this point, but we can still do a
2984                  * pointer comparison w/parent.
2985                  *
2986                  * Any scan where the lookup returned degenerate data embedded
2987                  * in the inode has an invalid index and must terminate.
2988                  */
2989                 if (chain == parent)
2990                         return(NULL);
2991                 if (key_beg == 0 || key_beg > key_end)
2992                         return(NULL);
2993                 chain = NULL;
2994         } else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2995                    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2996                 /*
2997                  * We reached the end of the iteration.
2998                  */
2999                 return (NULL);
3000         } else {
3001                 /*
3002                  * Continue iteration with next parent unless the current
3003                  * parent covers the range.
3004                  *
3005                  * (This also handles the case of a deleted, empty indirect
3006                  * node).
3007                  */
3008                 key_beg = parent->bref.key +
3009                           ((hammer2_key_t)1 << parent->bref.keybits);
3010                 if (key_beg == 0 || key_beg > key_end)
3011                         return (NULL);
3012                 parent = hammer2_chain_repparent(parentp, how_maybe);
3013         }
3014
3015         /*
3016          * And execute
3017          */
3018         return (hammer2_chain_lookup(parentp, key_nextp,
3019                                      key_beg, key_end,
3020                                      errorp, flags));
3021 }
3022
3023 /*
3024  * Caller wishes to iterate chains under parent, loading new chains into
3025  * chainp.  Caller must initialize *chainp to NULL and *firstp to 1, and
3026  * then call hammer2_chain_scan() repeatedly until a non-zero return.
3027  * During the scan, *firstp will be set to 0 and (*chainp) will be replaced
3028  * with the returned chain for the scan.  The returned *chainp will be
3029  * locked and referenced.  Any prior contents will be unlocked and dropped.
3030  *
3031  * Caller should check the return value.  A normal scan EOF will return
3032  * exactly HAMMER2_ERROR_EOF.  Any other non-zero value indicates an
3033  * error trying to access parent data.  Any error in the returned chain
3034  * must be tested separately by the caller.
3035  *
3036  * (*chainp) is dropped on each scan, but will only be set if the returned
3037  * element itself can recurse.  Leaf elements are NOT resolved, loaded, or
3038  * returned via *chainp.  The caller will get their bref only.
3039  *
3040  * The raw scan function is similar to lookup/next but does not seek to a key.
3041  * Blockrefs are iterated via first_bref = (parent, NULL) and
3042  * next_chain = (parent, bref).
3043  *
3044  * The passed-in parent must be locked and its data resolved.  The function
3045  * nominally returns a locked and referenced *chainp != NULL for chains
3046  * the caller might need to recurse on (and will dipose of any *chainp passed
3047  * in).  The caller must check the chain->bref.type either way.
3048  */
3049 int
3050 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t **chainp,
3051                    hammer2_blockref_t *bref, int *firstp,
3052                    int flags)
3053 {
3054         hammer2_dev_t *hmp;
3055         hammer2_blockref_t *base;
3056         hammer2_blockref_t *bref_ptr;
3057         hammer2_key_t key;
3058         hammer2_key_t next_key;
3059         hammer2_chain_t *chain = NULL;
3060         int count = 0;
3061         int how_always = HAMMER2_RESOLVE_ALWAYS;
3062         int how_maybe = HAMMER2_RESOLVE_MAYBE;
3063         int how;
3064         int generation;
3065         int maxloops = 300000;
3066         int error;
3067
3068         hmp = parent->hmp;
3069         error = 0;
3070
3071         /*
3072          * Scan flags borrowed from lookup.
3073          */
3074         if (flags & HAMMER2_LOOKUP_ALWAYS) {
3075                 how_maybe = how_always;
3076                 how = HAMMER2_RESOLVE_ALWAYS;
3077         } else if (flags & HAMMER2_LOOKUP_NODATA) {
3078                 how = HAMMER2_RESOLVE_NEVER;
3079         } else {
3080                 how = HAMMER2_RESOLVE_MAYBE;
3081         }
3082         if (flags & HAMMER2_LOOKUP_SHARED) {
3083                 how_maybe |= HAMMER2_RESOLVE_SHARED;
3084                 how_always |= HAMMER2_RESOLVE_SHARED;
3085                 how |= HAMMER2_RESOLVE_SHARED;
3086         }
3087
3088         /*
3089          * Calculate key to locate first/next element, unlocking the previous
3090          * element as we go.  Be careful, the key calculation can overflow.
3091          *
3092          * (also reset bref to NULL)
3093          */
3094         if (*firstp) {
3095                 key = 0;
3096                 *firstp = 0;
3097         } else {
3098                 key = bref->key + ((hammer2_key_t)1 << bref->keybits);
3099                 if ((chain = *chainp) != NULL) {
3100                         *chainp = NULL;
3101                         hammer2_chain_unlock(chain);
3102                         hammer2_chain_drop(chain);
3103                         chain = NULL;
3104                 }
3105                 if (key == 0) {
3106                         error |= HAMMER2_ERROR_EOF;
3107                         goto done;
3108                 }
3109         }
3110
3111 again:
3112         if (parent->error) {
3113                 error = parent->error;
3114                 goto done;
3115         }
3116         if (--maxloops == 0)
3117                 panic("hammer2_chain_scan: maxloops");
3118
3119         /*
3120          * Locate the blockref array.  Currently we do a fully associative
3121          * search through the array.
3122          */
3123         switch(parent->bref.type) {
3124         case HAMMER2_BREF_TYPE_INODE:
3125                 /*
3126                  * An inode with embedded data has no sub-chains.
3127                  *
3128                  * WARNING! Bulk scan code may pass a static chain marked
3129                  *          as BREF_TYPE_INODE with a copy of the volume
3130                  *          root blockset to snapshot the volume.
3131                  */
3132                 if (parent->data->ipdata.meta.op_flags &
3133                     HAMMER2_OPFLAG_DIRECTDATA) {
3134                         error |= HAMMER2_ERROR_EOF;
3135                         goto done;
3136                 }
3137                 base = &parent->data->ipdata.u.blockset.blockref[0];
3138                 count = HAMMER2_SET_COUNT;
3139                 break;
3140         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3141         case HAMMER2_BREF_TYPE_INDIRECT:
3142                 /*
3143                  * Optimize indirect blocks in the INITIAL state to avoid
3144                  * I/O.
3145                  */
3146                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
3147                         base = NULL;
3148                 } else {
3149                         if (parent->data == NULL)
3150                                 panic("parent->data is NULL");
3151                         base = &parent->data->npdata[0];
3152                 }
3153                 count = parent->bytes / sizeof(hammer2_blockref_t);
3154                 break;
3155         case HAMMER2_BREF_TYPE_VOLUME:
3156                 base = &parent->data->voldata.sroot_blockset.blockref[0];
3157                 count = HAMMER2_SET_COUNT;
3158                 break;
3159         case HAMMER2_BREF_TYPE_FREEMAP:
3160                 base = &parent->data->blkset.blockref[0];
3161                 count = HAMMER2_SET_COUNT;
3162                 break;
3163         default:
3164                 panic("hammer2_chain_scan: unrecognized blockref type: %d",
3165                       parent->bref.type);
3166                 base = NULL;    /* safety */
3167                 count = 0;      /* safety */
3168                 break;
3169         }
3170
3171         /*
3172          * Merged scan to find next candidate.
3173          *
3174          * hammer2_base_*() functions require the parent->core.live_* fields
3175          * to be synchronized.
3176          *
3177          * We need to hold the spinlock to access the block array and RB tree
3178          * and to interlock chain creation.
3179          */
3180         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3181                 hammer2_chain_countbrefs(parent, base, count);
3182
3183         next_key = 0;
3184         bref_ptr = NULL;
3185         hammer2_spin_ex(&parent->core.spin);
3186         chain = hammer2_combined_find(parent, base, count,
3187                                       &next_key,
3188                                       key, HAMMER2_KEY_MAX,
3189                                       &bref_ptr);
3190         generation = parent->core.generation;
3191
3192         /*
3193          * Exhausted parent chain, we're done.
3194          */
3195         if (bref_ptr == NULL) {
3196                 hammer2_spin_unex(&parent->core.spin);
3197                 KKASSERT(chain == NULL);
3198                 error |= HAMMER2_ERROR_EOF;
3199                 goto done;
3200         }
3201
3202         /*
3203          * Copy into the supplied stack-based blockref.
3204          */
3205         *bref = *bref_ptr;
3206
3207         /*
3208          * Selected from blockref or in-memory chain.
3209          */
3210         if (chain == NULL) {
3211                 switch(bref->type) {
3212                 case HAMMER2_BREF_TYPE_INODE:
3213                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3214                 case HAMMER2_BREF_TYPE_INDIRECT:
3215                 case HAMMER2_BREF_TYPE_VOLUME:
3216                 case HAMMER2_BREF_TYPE_FREEMAP:
3217                         /*
3218                          * Recursion, always get the chain
3219                          */
3220                         hammer2_spin_unex(&parent->core.spin);
3221                         chain = hammer2_chain_get(parent, generation,
3222                                                   bref, how);
3223                         if (chain == NULL)
3224                                 goto again;
3225                         break;
3226                 default:
3227                         /*
3228                          * No recursion, do not waste time instantiating
3229                          * a chain, just iterate using the bref.
3230                          */
3231                         hammer2_spin_unex(&parent->core.spin);
3232                         break;
3233                 }
3234         } else {
3235                 /*
3236                  * Recursion or not we need the chain in order to supply
3237                  * the bref.
3238                  */
3239                 hammer2_chain_ref(chain);
3240                 hammer2_spin_unex(&parent->core.spin);
3241                 hammer2_chain_lock(chain, how);
3242         }
3243         if (chain &&
3244             (bcmp(bref, &chain->bref, sizeof(*bref)) ||
3245              chain->parent != parent)) {
3246                 hammer2_chain_unlock(chain);
3247                 hammer2_chain_drop(chain);
3248                 chain = NULL;
3249                 goto again;
3250         }
3251
3252         /*
3253          * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
3254          *
3255          * NOTE: chain's key range is not relevant as there might be
3256          *       one-offs within the range that are not deleted.
3257          *
3258          * NOTE: XXX this could create problems with scans used in
3259          *       situations other than mount-time recovery.
3260          *
3261          * NOTE: Lookups can race delete-duplicate because
3262          *       delete-duplicate does not lock the parent's core
3263          *       (they just use the spinlock on the core).
3264          */
3265         if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3266                 hammer2_chain_unlock(chain);
3267                 hammer2_chain_drop(chain);
3268                 chain = NULL;
3269
3270                 key = next_key;
3271                 if (key == 0) {
3272                         error |= HAMMER2_ERROR_EOF;
3273                         goto done;
3274                 }
3275                 goto again;
3276         }
3277
3278 done:
3279         /*
3280          * All done, return the bref or NULL, supply chain if necessary.
3281          */
3282         if (chain)
3283                 *chainp = chain;
3284         return (error);
3285 }
3286
3287 /*
3288  * Create and return a new hammer2 system memory structure of the specified
3289  * key, type and size and insert it under (*parentp).  This is a full
3290  * insertion, based on the supplied key/keybits, and may involve creating
3291  * indirect blocks and moving other chains around via delete/duplicate.
3292  *
3293  * This call can be made with parent == NULL as long as a non -1 methods
3294  * is supplied.  hmp must also be supplied in this situation (otherwise
3295  * hmp is extracted from the supplied parent).  The chain will be detached
3296  * from the topology.  A later call with both parent and chain can be made
3297  * to attach it.
3298  *
3299  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
3300  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3301  * FULL.  This typically means that the caller is creating the chain after
3302  * doing a hammer2_chain_lookup().
3303  *
3304  * (*parentp) must be exclusive locked and may be replaced on return
3305  * depending on how much work the function had to do.
3306  *
3307  * (*parentp) must not be errored or this function will assert.
3308  *
3309  * (*chainp) usually starts out NULL and returns the newly created chain,
3310  * but if the caller desires the caller may allocate a disconnected chain
3311  * and pass it in instead.
3312  *
3313  * This function should NOT be used to insert INDIRECT blocks.  It is
3314  * typically used to create/insert inodes and data blocks.
3315  *
3316  * Caller must pass-in an exclusively locked parent the new chain is to
3317  * be inserted under, and optionally pass-in a disconnected, exclusively
3318  * locked chain to insert (else we create a new chain).  The function will
3319  * adjust (*parentp) as necessary, create or connect the chain, and
3320  * return an exclusively locked chain in *chainp.
3321  *
3322  * When creating a PFSROOT inode under the super-root, pmp is typically NULL
3323  * and will be reassigned.
3324  *
3325  * NOTE: returns HAMMER_ERROR_* flags
3326  */
3327 int
3328 hammer2_chain_create(hammer2_chain_t **parentp, hammer2_chain_t **chainp,
3329                      hammer2_dev_t *hmp, hammer2_pfs_t *pmp, int methods,
3330                      hammer2_key_t key, int keybits, int type, size_t bytes,
3331                      hammer2_tid_t mtid, hammer2_off_t dedup_off, int flags)
3332 {
3333         hammer2_chain_t *chain;
3334         hammer2_chain_t *parent;
3335         hammer2_blockref_t *base;
3336         hammer2_blockref_t dummy;
3337         int allocated = 0;
3338         int error = 0;
3339         int count;
3340         int maxloops = 300000;
3341
3342         /*
3343          * Topology may be crossing a PFS boundary.
3344          */
3345         parent = *parentp;
3346         if (parent) {
3347                 KKASSERT(hammer2_mtx_owned(&parent->lock));
3348                 KKASSERT(parent->error == 0);
3349                 hmp = parent->hmp;
3350         }
3351         chain = *chainp;
3352
3353         if (chain == NULL) {
3354                 /*
3355                  * First allocate media space and construct the dummy bref,
3356                  * then allocate the in-memory chain structure.  Set the
3357                  * INITIAL flag for fresh chains which do not have embedded
3358                  * data.
3359                  */
3360                 bzero(&dummy, sizeof(dummy));
3361                 dummy.type = type;
3362                 dummy.key = key;
3363                 dummy.keybits = keybits;
3364                 dummy.data_off = hammer2_getradix(bytes);
3365
3366                 /*
3367                  * Inherit methods from parent by default.  Primarily used
3368                  * for BREF_TYPE_DATA.  Non-data types *must* be set to
3369                  * a non-NONE check algorithm.
3370                  */
3371                 if (methods == -1)
3372                         dummy.methods = parent->bref.methods;
3373                 else
3374                         dummy.methods = (uint8_t)methods;
3375
3376                 if (type != HAMMER2_BREF_TYPE_DATA &&
3377                     HAMMER2_DEC_CHECK(dummy.methods) == HAMMER2_CHECK_NONE) {
3378                         dummy.methods |=
3379                                 HAMMER2_ENC_CHECK(HAMMER2_CHECK_DEFAULT);
3380                 }
3381
3382                 chain = hammer2_chain_alloc(hmp, pmp, &dummy);
3383
3384                 /*
3385                  * Lock the chain manually, chain_lock will load the chain
3386                  * which we do NOT want to do.  (note: chain->refs is set
3387                  * to 1 by chain_alloc() for us, but lockcnt is not).
3388                  */
3389                 chain->lockcnt = 1;
3390                 hammer2_mtx_ex(&chain->lock);
3391                 allocated = 1;
3392
3393                 /*
3394                  * Set INITIAL to optimize I/O.  The flag will generally be
3395                  * processed when we call hammer2_chain_modify().
3396                  */
3397                 switch(type) {
3398                 case HAMMER2_BREF_TYPE_VOLUME:
3399                 case HAMMER2_BREF_TYPE_FREEMAP:
3400                         panic("hammer2_chain_create: called with volume type");
3401                         break;
3402                 case HAMMER2_BREF_TYPE_INDIRECT:
3403                         panic("hammer2_chain_create: cannot be used to"
3404                               "create indirect block");
3405                         break;
3406                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3407                         panic("hammer2_chain_create: cannot be used to"
3408                               "create freemap root or node");
3409                         break;
3410                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3411                         KKASSERT(bytes == sizeof(chain->data->bmdata));
3412                         /* fall through */
3413                 case HAMMER2_BREF_TYPE_DIRENT:
3414                 case HAMMER2_BREF_TYPE_INODE:
3415                 case HAMMER2_BREF_TYPE_DATA:
3416                 default:
3417                         /*
3418                          * leave chain->data NULL, set INITIAL
3419                          */
3420                         KKASSERT(chain->data == NULL);
3421                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
3422                         break;
3423                 }
3424         } else {
3425                 /*
3426                  * We are reattaching a previously deleted chain, possibly
3427                  * under a new parent and possibly with a new key/keybits.
3428                  * The chain does not have to be in a modified state.  The
3429                  * UPDATE flag will be set later on in this routine.
3430                  *
3431                  * Do NOT mess with the current state of the INITIAL flag.
3432                  */
3433                 chain->bref.key = key;
3434                 chain->bref.keybits = keybits;
3435                 if (chain->flags & HAMMER2_CHAIN_DELETED)
3436                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3437                 KKASSERT(chain->parent == NULL);
3438         }
3439
3440         /*
3441          * Set the appropriate bref flag if requested.
3442          *
3443          * NOTE! Callers can call this function to move chains without
3444          *       knowing about special flags, so don't clear bref flags
3445          *       here!
3446          */
3447         if (flags & HAMMER2_INSERT_PFSROOT)
3448                 chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
3449
3450         if (parent == NULL)
3451                 goto skip;
3452
3453         /*
3454          * Calculate how many entries we have in the blockref array and
3455          * determine if an indirect block is required when inserting into
3456          * the parent.
3457          */
3458 again:
3459         if (--maxloops == 0)
3460                 panic("hammer2_chain_create: maxloops");
3461
3462         switch(parent->bref.type) {
3463         case HAMMER2_BREF_TYPE_INODE:
3464                 if ((parent->data->ipdata.meta.op_flags &
3465                      HAMMER2_OPFLAG_DIRECTDATA) != 0) {
3466                         kprintf("hammer2: parent set for direct-data! "
3467                                 "pkey=%016jx ckey=%016jx\n",
3468                                 parent->bref.key,
3469                                 chain->bref.key);
3470                 }
3471                 KKASSERT((parent->data->ipdata.meta.op_flags &
3472                           HAMMER2_OPFLAG_DIRECTDATA) == 0);
3473                 KKASSERT(parent->data != NULL);
3474                 base = &parent->data->ipdata.u.blockset.blockref[0];
3475                 count = HAMMER2_SET_COUNT;
3476                 break;
3477         case HAMMER2_BREF_TYPE_INDIRECT:
3478         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3479                 if (parent->flags & HAMMER2_CHAIN_INITIAL)
3480                         base = NULL;
3481                 else
3482                         base = &parent->data->npdata[0];
3483                 count = parent->bytes / sizeof(hammer2_blockref_t);
3484                 break;
3485         case HAMMER2_BREF_TYPE_VOLUME:
3486                 KKASSERT(parent->data != NULL);
3487                 base = &parent->data->voldata.sroot_blockset.blockref[0];
3488                 count = HAMMER2_SET_COUNT;
3489                 break;
3490         case HAMMER2_BREF_TYPE_FREEMAP:
3491                 KKASSERT(parent->data != NULL);
3492                 base = &parent->data->blkset.blockref[0];
3493                 count = HAMMER2_SET_COUNT;
3494                 break;
3495         default:
3496                 panic("hammer2_chain_create: unrecognized blockref type: %d",
3497                       parent->bref.type);
3498                 base = NULL;
3499                 count = 0;
3500                 break;
3501         }
3502
3503         /*
3504          * Make sure we've counted the brefs
3505          */
3506         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3507                 hammer2_chain_countbrefs(parent, base, count);
3508
3509         KASSERT(parent->core.live_count >= 0 &&
3510                 parent->core.live_count <= count,
3511                 ("bad live_count %d/%d (%02x, %d)",
3512                         parent->core.live_count, count,
3513                         parent->bref.type, parent->bytes));
3514
3515         /*
3516          * If no free blockref could be found we must create an indirect
3517          * block and move a number of blockrefs into it.  With the parent
3518          * locked we can safely lock each child in order to delete+duplicate
3519          * it without causing a deadlock.
3520          *
3521          * This may return the new indirect block or the old parent depending
3522          * on where the key falls.  NULL is returned on error.
3523          */
3524         if (parent->core.live_count == count) {
3525                 hammer2_chain_t *nparent;
3526
3527                 KKASSERT((flags & HAMMER2_INSERT_SAMEPARENT) == 0);
3528
3529                 nparent = hammer2_chain_create_indirect(parent, key, keybits,
3530                                                         mtid, type, &error);
3531                 if (nparent == NULL) {
3532                         if (allocated)
3533                                 hammer2_chain_drop(chain);
3534                         chain = NULL;
3535                         goto done;
3536                 }
3537                 if (parent != nparent) {
3538                         hammer2_chain_unlock(parent);
3539                         hammer2_chain_drop(parent);
3540                         parent = *parentp = nparent;
3541                 }
3542                 goto again;
3543         }
3544
3545         /*
3546          * fall through if parent, or skip to here if no parent.
3547          */
3548 skip:
3549         if (chain->flags & HAMMER2_CHAIN_DELETED)
3550                 kprintf("Inserting deleted chain @%016jx\n",
3551                         chain->bref.key);
3552
3553         /*
3554          * Link the chain into its parent.
3555          */
3556         if (chain->parent != NULL)
3557                 panic("hammer2: hammer2_chain_create: chain already connected");
3558         KKASSERT(chain->parent == NULL);
3559         if (parent) {
3560                 KKASSERT(parent->core.live_count < count);
3561                 hammer2_chain_insert(parent, chain,
3562                                      HAMMER2_CHAIN_INSERT_SPIN |
3563                                      HAMMER2_CHAIN_INSERT_LIVE,
3564                                      0);
3565         }
3566
3567         if (allocated) {
3568                 /*
3569                  * Mark the newly created chain modified.  This will cause
3570                  * UPDATE to be set and process the INITIAL flag.
3571                  *
3572                  * Device buffers are not instantiated for DATA elements
3573                  * as these are handled by logical buffers.
3574                  *
3575                  * Indirect and freemap node indirect blocks are handled
3576                  * by hammer2_chain_create_indirect() and not by this
3577                  * function.
3578                  *
3579                  * Data for all other bref types is expected to be
3580                  * instantiated (INODE, LEAF).
3581                  */
3582                 switch(chain->bref.type) {
3583                 case HAMMER2_BREF_TYPE_DATA:
3584                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3585                 case HAMMER2_BREF_TYPE_DIRENT:
3586                 case HAMMER2_BREF_TYPE_INODE:
3587                         error = hammer2_chain_modify(chain, mtid, dedup_off,
3588                                                      HAMMER2_MODIFY_OPTDATA);
3589                         break;
3590                 default:
3591                         /*
3592                          * Remaining types are not supported by this function.
3593                          * In particular, INDIRECT and LEAF_NODE types are
3594                          * handled by create_indirect().
3595                          */
3596                         panic("hammer2_chain_create: bad type: %d",
3597                               chain->bref.type);
3598                         /* NOT REACHED */
3599                         break;
3600                 }
3601         } else {
3602                 /*
3603                  * When reconnecting a chain we must set UPDATE and
3604                  * setflush so the flush recognizes that it must update
3605                  * the bref in the parent.
3606                  */
3607                 if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0)
3608                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3609         }
3610
3611         /*
3612          * We must setflush(parent) to ensure that it recurses through to
3613          * chain.  setflush(chain) might not work because ONFLUSH is possibly
3614          * already set in the chain (so it won't recurse up to set it in the
3615          * parent).
3616          */
3617         if (parent)
3618                 hammer2_chain_setflush(parent);
3619
3620 done:
3621         *chainp = chain;
3622
3623         return (error);
3624 }
3625
3626 /*
3627  * Move the chain from its old parent to a new parent.  The chain must have
3628  * already been deleted or already disconnected (or never associated) with
3629  * a parent.  The chain is reassociated with the new parent and the deleted
3630  * flag will be cleared (no longer deleted).  The chain's modification state
3631  * is not altered.
3632  *
3633  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
3634  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3635  * FULL.  This typically means that the caller is creating the chain after
3636  * doing a hammer2_chain_lookup().
3637  *
3638  * Neither (parent) or (chain) can be errored.
3639  *
3640  * If (parent) is non-NULL then the chain is inserted under the parent.
3641  *
3642  * If (parent) is NULL then the newly duplicated chain is not inserted
3643  * anywhere, similar to if it had just been chain_alloc()'d (suitable for
3644  * passing into hammer2_chain_create() after this function returns).
3645  *
3646  * WARNING! This function calls create which means it can insert indirect
3647  *          blocks.  This can cause other unrelated chains in the parent to
3648  *          be moved to a newly inserted indirect block in addition to the
3649  *          specific chain.
3650  */
3651 void
3652 hammer2_chain_rename(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3653                      hammer2_tid_t mtid, int flags)
3654 {
3655         hammer2_blockref_t *bref;
3656         hammer2_dev_t *hmp;
3657         hammer2_chain_t *parent;
3658
3659         /*
3660          * WARNING!  We should never resolve DATA to device buffers
3661          *           (XXX allow it if the caller did?), and since
3662          *           we currently do not have the logical buffer cache
3663          *           buffer in-hand to fix its cached physical offset
3664          *           we also force the modify code to not COW it. XXX
3665          *
3666          * NOTE!     We allow error'd chains to be renamed.  The bref itself
3667          *           is good and can be renamed.  The content, however, may
3668          *           be inaccessible.
3669          */
3670         hmp = chain->hmp;
3671         KKASSERT(chain->parent == NULL);
3672         /*KKASSERT(chain->error == 0); allow */
3673         bref = &chain->bref;
3674
3675         /*
3676          * If parent is not NULL the duplicated chain will be entered under
3677          * the parent and the UPDATE bit set to tell flush to update
3678          * the blockref.
3679          *
3680          * We must setflush(parent) to ensure that it recurses through to
3681          * chain.  setflush(chain) might not work because ONFLUSH is possibly
3682          * already set in the chain (so it won't recurse up to set it in the
3683          * parent).
3684          *
3685          * Having both chains locked is extremely important for atomicy.
3686          */
3687         if (parentp && (parent = *parentp) != NULL) {
3688                 KKASSERT(hammer2_mtx_owned(&parent->lock));
3689                 KKASSERT(parent->refs > 0);
3690                 KKASSERT(parent->error == 0);
3691
3692                 hammer2_chain_create(parentp, &chain, NULL, chain->pmp,
3693                                      HAMMER2_METH_DEFAULT,
3694                                      bref->key, bref->keybits, bref->type,
3695                                      chain->bytes, mtid, 0, flags);
3696                 KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
3697                 hammer2_chain_setflush(*parentp);
3698         }
3699 }
3700
3701 /*
3702  * This works in tandem with delete_obref() to install a blockref in
3703  * (typically) an indirect block that is associated with the chain being
3704  * moved to *parentp.
3705  *
3706  * The reason we need this function is that the caller needs to maintain
3707  * the blockref as it was, and not generate a new blockref for what might
3708  * be a modified chain.  Otherwise stuff will leak into the flush that
3709  * the flush code's FLUSH_INODE_STOP flag is unable to catch.
3710  *
3711  * It is EXTREMELY important that we properly set CHAIN_BMAPUPD and
3712  * CHAIN_UPDATE.  We must set BMAPUPD if the bref does not match, and
3713  * we must clear CHAIN_UPDATE (that was likely set by the chain_rename) if
3714  * it does.  Otherwise we can end up in a situation where H2 is unable to
3715  * clean up the in-memory chain topology.
3716  *
3717  * The reason for this is that flushes do not generally flush through
3718  * BREF_TYPE_INODE chains and depend on a hammer2_inode_t queued to syncq
3719  * or sideq to properly flush and dispose of the related inode chain's flags.
3720  * Situations where the inode is not actually modified by the frontend,
3721  * but where we have to move the related chains around as we insert or cleanup
3722  * indirect blocks, can leave us with a 'dirty' (non-disposable) in-memory
3723  * inode chain that does not have a hammer2_inode_t associated with it.
3724  */
3725 static void
3726 hammer2_chain_rename_obref(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3727                            hammer2_tid_t mtid, int flags,
3728                            hammer2_blockref_t *obref)
3729 {
3730         hammer2_chain_rename(parentp, chain, mtid, flags);
3731
3732         if (obref->type != HAMMER2_BREF_TYPE_EMPTY) {
3733                 hammer2_blockref_t *tbase;
3734                 int tcount;
3735
3736                 KKASSERT((chain->flags & HAMMER2_CHAIN_BMAPPED) == 0);
3737                 hammer2_chain_modify(*parentp, mtid, 0, 0);
3738                 tbase = hammer2_chain_base_and_count(*parentp, &tcount);
3739                 hammer2_base_insert(*parentp, tbase, tcount, chain, obref);
3740                 if (bcmp(obref, &chain->bref, sizeof(chain->bref))) {
3741                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD |
3742                                                       HAMMER2_CHAIN_UPDATE);
3743                 } else {
3744                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3745                 }
3746         }
3747 }
3748
3749 /*
3750  * Helper function for deleting chains.
3751  *
3752  * The chain is removed from the live view (the RBTREE) as well as the parent's
3753  * blockmap.  Both chain and its parent must be locked.
3754  *
3755  * parent may not be errored.  chain can be errored.
3756  */
3757 static int
3758 _hammer2_chain_delete_helper(hammer2_chain_t *parent, hammer2_chain_t *chain,
3759                              hammer2_tid_t mtid, int flags,
3760                              hammer2_blockref_t *obref)
3761 {
3762         hammer2_dev_t *hmp;
3763         int error = 0;
3764
3765         KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0);
3766         KKASSERT(chain->parent == parent);
3767         hmp = chain->hmp;
3768
3769         if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
3770                 /*
3771                  * Chain is blockmapped, so there must be a parent.
3772                  * Atomically remove the chain from the parent and remove
3773                  * the blockmap entry.  The parent must be set modified
3774                  * to remove the blockmap entry.
3775                  */
3776                 hammer2_blockref_t *base;
3777                 int count;
3778
3779                 KKASSERT(parent != NULL);
3780                 KKASSERT(parent->error == 0);
3781                 KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
3782                 error = hammer2_chain_modify(parent, mtid, 0, 0);
3783                 if (error)
3784                         goto done;
3785
3786                 /*
3787                  * Calculate blockmap pointer
3788                  */
3789                 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
3790                 hammer2_spin_ex(&chain->core.spin);
3791                 hammer2_spin_ex(&parent->core.spin);
3792
3793                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3794                 atomic_add_int(&parent->core.live_count, -1);
3795                 ++parent->core.generation;
3796                 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3797                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3798                 --parent->core.chain_count;
3799                 chain->parent = NULL;
3800
3801                 switch(parent->bref.type) {
3802                 case HAMMER2_BREF_TYPE_INODE:
3803                         /*
3804                          * Access the inode's block array.  However, there
3805                          * is no block array if the inode is flagged
3806                          * DIRECTDATA.
3807                          */
3808                         if (parent->data &&
3809                             (parent->data->ipdata.meta.op_flags &
3810                              HAMMER2_OPFLAG_DIRECTDATA) == 0) {
3811                                 base =
3812                                    &parent->data->ipdata.u.blockset.blockref[0];
3813                         } else {
3814                                 base = NULL;
3815                         }
3816                         count = HAMMER2_SET_COUNT;
3817                         break;
3818                 case HAMMER2_BREF_TYPE_INDIRECT:
3819                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3820                         if (parent->data)
3821                                 base = &parent->data->npdata[0];
3822                         else
3823                                 base = NULL;
3824                         count = parent->bytes / sizeof(hammer2_blockref_t);
3825                         break;
3826                 case HAMMER2_BREF_TYPE_VOLUME:
3827                         base = &parent->data->voldata.
3828                                         sroot_blockset.blockref[0];
3829                         count = HAMMER2_SET_COUNT;
3830                         break;
3831                 case HAMMER2_BREF_TYPE_FREEMAP:
3832                         base = &parent->data->blkset.blockref[0];
3833                         count = HAMMER2_SET_COUNT;
3834                         break;
3835                 default:
3836                         base = NULL;
3837                         count = 0;
3838                         panic("_hammer2_chain_delete_helper: "
3839                               "unrecognized blockref type: %d",
3840                               parent->bref.type);
3841                         break;
3842                 }
3843
3844                 /*
3845                  * delete blockmapped chain from its parent.
3846                  *
3847                  * The parent is not affected by any statistics in chain
3848                  * which are pending synchronization.  That is, there is
3849                  * nothing to undo in the parent since they have not yet
3850                  * been incorporated into the parent.
3851                  *
3852                  * The parent is affected by statistics stored in inodes.
3853                  * Those have already been synchronized, so they must be
3854                  * undone.  XXX split update possible w/delete in middle?
3855                  */
3856                 if (base) {
3857                         hammer2_base_delete(parent, base, count, chain, obref);
3858                 }
3859                 hammer2_spin_unex(&parent->core.spin);
3860                 hammer2_spin_unex(&chain->core.spin);
3861         } else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
3862                 /*
3863                  * Chain is not blockmapped but a parent is present.
3864                  * Atomically remove the chain from the parent.  There is
3865                  * no blockmap entry to remove.
3866                  *
3867                  * Because chain was associated with a parent but not
3868                  * synchronized, the chain's *_count_up fields contain
3869                  * inode adjustment statistics which must be undone.
3870                  */
3871                 hammer2_spin_ex(&chain->core.spin);
3872                 hammer2_spin_ex(&parent->core.spin);
3873                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3874                 atomic_add_int(&parent->core.live_count, -1);
3875                 ++parent->core.generation;
3876                 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3877                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3878                 --parent->core.chain_count;
3879                 chain->parent = NULL;
3880                 hammer2_spin_unex(&parent->core.spin);
3881                 hammer2_spin_unex(&chain->core.spin);
3882         } else {
3883                 /*
3884                  * Chain is not blockmapped and has no parent.  This
3885                  * is a degenerate case.
3886                  */
3887                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3888         }
3889 done:
3890         return error;
3891 }
3892
3893 /*
3894  * Create an indirect block that covers one or more of the elements in the
3895  * current parent.  Either returns the existing parent with no locking or
3896  * ref changes or returns the new indirect block locked and referenced
3897  * and leaving the original parent lock/ref intact as well.
3898  *
3899  * If an error occurs, NULL is returned and *errorp is set to the H2 error.
3900  *
3901  * The returned chain depends on where the specified key falls.
3902  *
3903  * The key/keybits for the indirect mode only needs to follow three rules:
3904  *
3905  * (1) That all elements underneath it fit within its key space and
3906  *
3907  * (2) That all elements outside it are outside its key space.
3908  *
3909  * (3) When creating the new indirect block any elements in the current
3910  *     parent that fit within the new indirect block's keyspace must be
3911  *     moved into the new indirect block.
3912  *
3913  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
3914  *     keyspace the the current parent, but lookup/iteration rules will
3915  *     ensure (and must ensure) that rule (2) for all parents leading up
3916  *     to the nearest inode or the root volume header is adhered to.  This
3917  *     is accomplished by always recursing through matching keyspaces in
3918  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
3919  *
3920  * The current implementation calculates the current worst-case keyspace by
3921  * iterating the current parent and then divides it into two halves, choosing
3922  * whichever half has the most elements (not necessarily the half containing
3923  * the requested key).
3924  *
3925  * We can also opt to use the half with the least number of elements.  This
3926  * causes lower-numbered keys (aka logical file offsets) to recurse through
3927  * fewer indirect blocks and higher-numbered keys to recurse through more.
3928  * This also has the risk of not moving enough elements to the new indirect
3929  * block and being forced to create several indirect blocks before the element
3930  * can be inserted.
3931  *
3932  * Must be called with an exclusively locked parent.
3933  *
3934  * NOTE: *errorp set to HAMMER_ERROR_* flags
3935  */
3936 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
3937                                 hammer2_key_t *keyp, int keybits,
3938                                 hammer2_blockref_t *base, int count);
3939 static int hammer2_chain_indkey_file(hammer2_chain_t *parent,
3940                                 hammer2_key_t *keyp, int keybits,
3941                                 hammer2_blockref_t *base, int count,
3942                                 int ncount);
3943 static int hammer2_chain_indkey_dir(hammer2_chain_t *parent,
3944                                 hammer2_key_t *keyp, int keybits,
3945                                 hammer2_blockref_t *base, int count,
3946                                 int ncount);
3947 static
3948 hammer2_chain_t *
3949 hammer2_chain_create_indirect(hammer2_chain_t *parent,
3950                               hammer2_key_t create_key, int create_bits,
3951                               hammer2_tid_t mtid, int for_type, int *errorp)
3952 {
3953         hammer2_dev_t *hmp;
3954         hammer2_blockref_t *base;
3955         hammer2_blockref_t *bref;
3956         hammer2_blockref_t bsave;
3957         hammer2_blockref_t dummy;
3958         hammer2_chain_t *chain;
3959         hammer2_chain_t *ichain;
3960         hammer2_key_t key = create_key;
3961         hammer2_key_t key_beg;
3962         hammer2_key_t key_end;
3963         hammer2_key_t key_next;
3964         int keybits = create_bits;
3965         int count;
3966         int ncount;
3967         int nbytes;
3968         int loops;
3969         int error;
3970         int reason;
3971         int generation;
3972         int maxloops = 300000;
3973
3974         /*
3975          * Calculate the base blockref pointer or NULL if the chain
3976          * is known to be empty.  We need to calculate the array count
3977          * for RB lookups either way.
3978          */
3979         hmp = parent->hmp;
3980         KKASSERT(hammer2_mtx_owned(&parent->lock));
3981
3982         /*
3983          * Pre-modify the parent now to avoid having to deal with error
3984          * processing if we tried to later (in the middle of our loop).
3985          *
3986          * We are going to be moving bref's around, the indirect blocks
3987          * cannot be in an initial state.  Do not pass MODIFY_OPTDATA.
3988          */
3989         *errorp = hammer2_chain_modify(parent, mtid, 0, 0);
3990         if (*errorp) {
3991                 kprintf("hammer2_chain_create_indirect: error %08x %s\n",
3992                         *errorp, hammer2_error_str(*errorp));
3993                 return NULL;
3994         }
3995         KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
3996
3997         /*hammer2_chain_modify(&parent, HAMMER2_MODIFY_OPTDATA);*/
3998         base = hammer2_chain_base_and_count(parent, &count);
3999
4000         /*
4001          * How big should our new indirect block be?  It has to be at least
4002          * as large as its parent for splits to work properly.
4003          *
4004          * The freemap uses a specific indirect block size.  The number of
4005          * levels are built dynamically and ultimately depend on the size
4006          * volume.  Because freemap blocks are taken from the reserved areas
4007          * of the volume our goal is efficiency (fewer levels) and not so
4008          * much to save disk space.
4009          *
4010          * The first indirect block level for a directory usually uses
4011          * HAMMER2_IND_BYTES_MIN (4KB = 32 directory entries).  Due to
4012          * the hash mechanism, this typically gives us a nominal
4013          * 32 * 4 entries with one level of indirection.
4014          *
4015          * We use HAMMER2_IND_BYTES_NOM (16KB = 128 blockrefs) for FILE
4016          * indirect blocks.  The initial 4 entries in the inode gives us
4017          * 256KB.  Up to 4 indirect blocks gives us 32MB.  Three levels
4018          * of indirection gives us 137GB, and so forth.  H2 can support
4019          * huge file sizes but they are not typical, so we try to stick
4020          * with compactness and do not use a larger indirect block size.
4021          *
4022          * We could use 64KB (PBUFSIZE), giving us 512 blockrefs, but
4023          * due to the way indirect blocks are created this usually winds
4024          * up being extremely inefficient for small files.  Even though
4025          * 16KB requires more levels of indirection for very large files,
4026          * the 16KB records can be ganged together into 64KB DIOs.
4027          */
4028         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4029             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4030                 nbytes = HAMMER2_FREEMAP_LEVELN_PSIZE;
4031         } else if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4032                 if (parent->data->ipdata.meta.type ==
4033                     HAMMER2_OBJTYPE_DIRECTORY)
4034                         nbytes = HAMMER2_IND_BYTES_MIN; /* 4KB = 32 entries */
4035                 else
4036                         nbytes = HAMMER2_IND_BYTES_NOM; /* 16KB = ~8MB file */
4037
4038         } else {
4039                 nbytes = HAMMER2_IND_BYTES_NOM;
4040         }
4041         if (nbytes < count * sizeof(hammer2_blockref_t)) {
4042                 KKASSERT(for_type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
4043                          for_type != HAMMER2_BREF_TYPE_FREEMAP_LEAF);
4044                 nbytes = count * sizeof(hammer2_blockref_t);
4045         }
4046         ncount = nbytes / sizeof(hammer2_blockref_t);
4047
4048         /*
4049          * When creating an indirect block for a freemap node or leaf
4050          * the key/keybits must be fitted to static radix levels because
4051          * particular radix levels use particular reserved blocks in the
4052          * related zone.
4053          *
4054          * This routine calculates the key/radix of the indirect block
4055          * we need to create, and whether it is on the high-side or the
4056          * low-side.
4057          */
4058         switch(for_type) {
4059         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
4060         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
4061                 keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
4062                                                        base, count);
4063                 break;
4064         case HAMMER2_BREF_TYPE_DATA:
4065                 keybits = hammer2_chain_indkey_file(parent, &key, keybits,
4066                                                     base, count, ncount);
4067                 break;
4068         case HAMMER2_BREF_TYPE_DIRENT:
4069         case HAMMER2_BREF_TYPE_INODE:
4070                 keybits = hammer2_chain_indkey_dir(parent, &key, keybits,
4071                                                    base, count, ncount);
4072                 break;
4073         default:
4074                 panic("illegal indirect block for bref type %d", for_type);
4075                 break;
4076         }
4077
4078         /*
4079          * Normalize the key for the radix being represented, keeping the
4080          * high bits and throwing away the low bits.
4081          */
4082         key &= ~(((hammer2_key_t)1 << keybits) - 1);
4083
4084         /*
4085          * Ok, create our new indirect block
4086          */
4087         bzero(&dummy, sizeof(dummy));
4088         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4089             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4090                 dummy.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
4091         } else {
4092                 dummy.type = HAMMER2_BREF_TYPE_INDIRECT;
4093         }
4094         dummy.key = key;
4095         dummy.keybits = keybits;
4096         dummy.data_off = hammer2_getradix(nbytes);
4097         dummy.methods =
4098                 HAMMER2_ENC_CHECK(HAMMER2_DEC_CHECK(parent->bref.methods)) |
4099                 HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
4100
4101         ichain = hammer2_chain_alloc(hmp, parent->pmp, &dummy);
4102         atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
4103         hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
4104         /* ichain has one ref at this point */
4105
4106         /*
4107          * We have to mark it modified to allocate its block, but use
4108          * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
4109          * it won't be acted upon by the flush code.
4110          *
4111          * XXX remove OPTDATA, we need a fully initialized indirect block to
4112          * be able to move the original blockref.
4113          */
4114         *errorp = hammer2_chain_modify(ichain, mtid, 0, 0);
4115         if (*errorp) {
4116                 kprintf("hammer2_chain_create_indirect: error %08x %s\n",
4117                         *errorp, hammer2_error_str(*errorp));
4118                 hammer2_chain_unlock(ichain);
4119                 hammer2_chain_drop(ichain);
4120                 return NULL;
4121         }
4122         KKASSERT((ichain->flags & HAMMER2_CHAIN_INITIAL) == 0);
4123
4124         /*
4125          * Iterate the original parent and move the matching brefs into
4126          * the new indirect block.
4127          *
4128          * XXX handle flushes.
4129          */
4130         key_beg = 0;
4131         key_end = HAMMER2_KEY_MAX;
4132         key_next = 0;   /* avoid gcc warnings */
4133         hammer2_spin_ex(&parent->core.spin);
4134         loops = 0;
4135         reason = 0;
4136
4137         for (;;) {
4138                 /*
4139                  * Parent may have been modified, relocating its block array.
4140                  * Reload the base pointer.
4141                  */
4142                 base = hammer2_chain_base_and_count(parent, &count);
4143
4144                 if (++loops > 100000) {
4145                     hammer2_spin_unex(&parent->core.spin);
4146                     panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
4147                           reason, parent, base, count, key_next);
4148                 }
4149
4150                 /*
4151                  * NOTE: spinlock stays intact, returned chain (if not NULL)
4152                  *       is not referenced or locked which means that we
4153                  *       cannot safely check its flagged / deletion status
4154                  *       until we lock it.
4155                  */
4156                 chain = hammer2_combined_find(parent, base, count,
4157                                               &key_next,
4158                                               key_beg, key_end,
4159                                               &bref);
4160                 generation = parent->core.generation;
4161                 if (bref == NULL)
4162                         break;
4163                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4164
4165                 /*
4166                  * Skip keys that are not within the key/radix of the new
4167                  * indirect block.  They stay in the parent.
4168                  */
4169                 if (rounddown2(key ^ bref->key, (hammer2_key_t)1 << keybits) != 0) {
4170                         goto next_key_spinlocked;
4171                 }
4172
4173                 /*
4174                  * Load the new indirect block by acquiring the related
4175                  * chains (potentially from media as it might not be
4176                  * in-memory).  Then move it to the new parent (ichain).
4177                  *
4178                  * chain is referenced but not locked.  We must lock the
4179                  * chain to obtain definitive state.
4180                  */
4181                 bsave = *bref;
4182                 if (chain) {
4183                         /*
4184                          * Use chain already present in the RBTREE
4185                          */
4186                         hammer2_chain_ref(chain);
4187                         hammer2_spin_unex(&parent->core.spin);
4188                         hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
4189                 } else {
4190                         /*
4191                          * Get chain for blockref element.  _get returns NULL
4192                          * on insertion race.
4193                          */
4194                         hammer2_spin_unex(&parent->core.spin);
4195                         chain = hammer2_chain_get(parent, generation, &bsave,
4196                                                   HAMMER2_RESOLVE_NEVER);
4197                         if (chain == NULL) {
4198                                 reason = 1;
4199                                 hammer2_spin_ex(&parent->core.spin);
4200                                 continue;
4201                         }
4202                 }
4203
4204                 /*
4205                  * This is always live so if the chain has been deleted
4206                  * we raced someone and we have to retry.
4207                  *
4208                  * NOTE: Lookups can race delete-duplicate because
4209                  *       delete-duplicate does not lock the parent's core
4210                  *       (they just use the spinlock on the core).
4211                  *
4212                  *       (note reversed logic for this one)
4213                  */
4214                 if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
4215                     chain->parent != parent ||
4216                     (chain->flags & HAMMER2_CHAIN_DELETED)) {
4217                         hammer2_chain_unlock(chain);
4218                         hammer2_chain_drop(chain);
4219                         if (hammer2_debug & 0x0040) {
4220                                 kprintf("LOST PARENT RETRY "
4221                                 "RETRY (%p,%p)->%p %08x\n",
4222                                 parent, chain->parent, chain, chain->flags);
4223                         }
4224                         hammer2_spin_ex(&parent->core.spin);
4225                         continue;
4226                 }
4227
4228                 /*
4229                  * Shift the chain to the indirect block.
4230                  *
4231                  * WARNING! No reason for us to load chain data, pass NOSTATS
4232                  *          to prevent delete/insert from trying to access
4233                  *          inode stats (and thus asserting if there is no
4234                  *          chain->data loaded).
4235                  *
4236                  * WARNING! The (parent, chain) deletion may modify the parent
4237                  *          and invalidate the base pointer.
4238                  *
4239                  * WARNING! Parent must already be marked modified, so we
4240                  *          can assume that chain_delete always suceeds.
4241                  *
4242                  * WARNING! hammer2_chain_repchange() does not have to be
4243                  *          called (and doesn't work anyway because we are
4244                  *          only doing a partial shift).  A recursion that is
4245                  *          in-progress can continue at the current parent
4246                  *          and will be able to properly find its next key.
4247                  */
4248                 error = hammer2_chain_delete_obref(parent, chain, mtid, 0,
4249                                                    &bsave);
4250                 KKASSERT(error == 0);
4251                 hammer2_chain_rename_obref(&ichain, chain, mtid, 0, &bsave);
4252                 hammer2_chain_unlock(chain);
4253                 hammer2_chain_drop(chain);
4254                 KKASSERT(parent->refs > 0);
4255                 chain = NULL;
4256                 base = NULL;    /* safety */
4257                 hammer2_spin_ex(&parent->core.spin);
4258 next_key_spinlocked:
4259                 if (--maxloops == 0)
4260                         panic("hammer2_chain_create_indirect: maxloops");
4261                 reason = 4;
4262                 if (key_next == 0 || key_next > key_end)
4263                         break;
4264                 key_beg = key_next;
4265                 /* loop */
4266         }
4267         hammer2_spin_unex(&parent->core.spin);
4268
4269         /*
4270          * Insert the new indirect block into the parent now that we've
4271          * cleared out some entries in the parent.  We calculated a good
4272          * insertion index in the loop above (ichain->index).
4273          *
4274          * We don't have to set UPDATE here because we mark ichain
4275          * modified down below (so the normal modified -> flush -> set-moved
4276          * sequence applies).
4277          *
4278          * The insertion shouldn't race as this is a completely new block
4279          * and the parent is locked.
4280          */
4281         base = NULL;    /* safety, parent modify may change address */
4282         KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
4283         KKASSERT(parent->core.live_count < count);
4284         hammer2_chain_insert(parent, ichain,
4285                              HAMMER2_CHAIN_INSERT_SPIN |
4286                              HAMMER2_CHAIN_INSERT_LIVE,
4287                              0);
4288
4289         /*
4290          * Make sure flushes propogate after our manual insertion.
4291          */
4292         hammer2_chain_setflush(ichain);
4293         hammer2_chain_setflush(parent);
4294
4295         /*
4296          * Figure out what to return.
4297          */
4298         if (rounddown2(create_key ^ key, (hammer2_key_t)1 << keybits)) {
4299                 /*
4300                  * Key being created is outside the key range,
4301                  * return the original parent.
4302                  */
4303                 hammer2_chain_unlock(ichain);
4304                 hammer2_chain_drop(ichain);
4305         } else {
4306                 /*
4307                  * Otherwise its in the range, return the new parent.
4308                  * (leave both the new and old parent locked).
4309                  */
4310                 parent = ichain;
4311         }
4312
4313         return(parent);
4314 }
4315
4316 /*
4317  * Do maintenance on an indirect chain.  Both parent and chain are locked.
4318  *
4319  * Returns non-zero if (chain) is deleted, either due to being empty or
4320  * because its children were safely moved into the parent.
4321  */
4322 int
4323 hammer2_chain_indirect_maintenance(hammer2_chain_t *parent,
4324                                    hammer2_chain_t *chain)
4325 {
4326         hammer2_blockref_t *chain_base;
4327         hammer2_blockref_t *base;
4328         hammer2_blockref_t *bref;
4329         hammer2_blockref_t bsave;
4330         hammer2_key_t key_next;
4331         hammer2_key_t key_beg;
4332         hammer2_key_t key_end;
4333         hammer2_chain_t *sub;
4334         int chain_count;
4335         int count;
4336         int error;
4337         int generation;
4338
4339         /*
4340          * Make sure we have an accurate live_count
4341          */
4342         if ((chain->flags & (HAMMER2_CHAIN_INITIAL |
4343                              HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4344                 base = &chain->data->npdata[0];
4345                 count = chain->bytes / sizeof(hammer2_blockref_t);
4346                 hammer2_chain_countbrefs(chain, base, count);
4347         }
4348
4349         /*
4350          * If the indirect block is empty we can delete it.
4351          * (ignore deletion error)
4352          */
4353         if (chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree)) {
4354                 hammer2_chain_delete(parent, chain,
4355                                      chain->bref.modify_tid,
4356                                      HAMMER2_DELETE_PERMANENT);
4357                 hammer2_chain_repchange(parent, chain);
4358                 return 1;
4359         }
4360
4361         base = hammer2_chain_base_and_count(parent, &count);
4362
4363         if ((parent->flags & (HAMMER2_CHAIN_INITIAL |
4364                              HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4365                 hammer2_chain_countbrefs(parent, base, count);
4366         }
4367
4368         /*
4369          * Determine if we can collapse chain into parent, calculate
4370          * hysteresis for chain emptiness.
4371          */
4372         if (parent->core.live_count + chain->core.live_count - 1 > count)
4373                 return 0;
4374         chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4375         if (chain->core.live_count > chain_count * 3 / 4)
4376                 return 0;
4377
4378         /*
4379          * Ok, theoretically we can collapse chain's contents into
4380          * parent.  chain is locked, but any in-memory children of chain
4381          * are not.  For this to work, we must be able to dispose of any
4382          * in-memory children of chain.
4383          *
4384          * For now require that there are no in-memory children of chain.
4385          *
4386          * WARNING! Both chain and parent must remain locked across this
4387          *          entire operation.
4388          */
4389
4390         /*
4391          * Parent must be marked modified.  Don't try to collapse it if we
4392          * can't mark it modified.  Once modified, destroy chain to make room
4393          * and to get rid of what will be a conflicting key (this is included
4394          * in the calculation above).  Finally, move the children of chain
4395          * into chain's parent.
4396          *
4397          * This order creates an accounting problem for bref.embed.stats
4398          * because we destroy chain before we remove its children.  Any
4399          * elements whos blockref is already synchronized will be counted
4400          * twice.  To deal with the problem we clean out chain's stats prior
4401          * to deleting it.
4402          */
4403         error = hammer2_chain_modify(parent, 0, 0, 0);
4404         if (error) {
4405                 krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4406                             hammer2_error_str(error));
4407                 return 0;
4408         }
4409         error = hammer2_chain_modify(chain, chain->bref.modify_tid, 0, 0);
4410         if (error) {
4411                 krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4412                             hammer2_error_str(error));
4413                 return 0;
4414         }
4415
4416         chain->bref.embed.stats.inode_count = 0;
4417         chain->bref.embed.stats.data_count = 0;
4418         error = hammer2_chain_delete(parent, chain,
4419                                      chain->bref.modify_tid,
4420                                      HAMMER2_DELETE_PERMANENT);
4421         KKASSERT(error == 0);
4422
4423         /*
4424          * The combined_find call requires core.spin to be held.  One would
4425          * think there wouldn't be any conflicts since we hold chain
4426          * exclusively locked, but the caching mechanism for 0-ref children
4427          * does not require a chain lock.
4428          */
4429         hammer2_spin_ex(&chain->core.spin);
4430
4431         key_next = 0;
4432         key_beg = 0;
4433         key_end = HAMMER2_KEY_MAX;
4434         for (;;) {
4435                 chain_base = &chain->data->npdata[0];
4436                 chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4437                 sub = hammer2_combined_find(chain, chain_base, chain_count,
4438                                             &key_next,
4439                                             key_beg, key_end,
4440                                             &bref);
4441                 generation = chain->core.generation;
4442                 if (bref == NULL)
4443                         break;
4444                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4445
4446                 bsave = *bref;
4447                 if (sub) {
4448                         hammer2_chain_ref(sub);
4449                         hammer2_spin_unex(&chain->core.spin);
4450                         hammer2_chain_lock(sub, HAMMER2_RESOLVE_NEVER);
4451                 } else {
4452                         hammer2_spin_unex(&chain->core.spin);
4453                         sub = hammer2_chain_get(chain, generation, &bsave,
4454                                                 HAMMER2_RESOLVE_NEVER);
4455                         if (sub == NULL) {
4456                                 hammer2_spin_ex(&chain->core.spin);
4457                                 continue;
4458                         }
4459                 }
4460                 if (bcmp(&bsave, &sub->bref, sizeof(bsave)) ||
4461                     sub->parent != chain ||
4462                     (sub->flags & HAMMER2_CHAIN_DELETED)) {
4463                         hammer2_chain_unlock(sub);
4464                         hammer2_chain_drop(sub);
4465                         hammer2_spin_ex(&chain->core.spin);
4466                         sub = NULL;     /* safety */
4467                         continue;
4468                 }
4469                 error = hammer2_chain_delete_obref(chain, sub,
4470                                                    sub->bref.modify_tid, 0,
4471                                                    &bsave);
4472                 KKASSERT(error == 0);
4473                 hammer2_chain_rename_obref(&parent, sub,
4474                                      sub->bref.modify_tid,
4475                                      HAMMER2_INSERT_SAMEPARENT, &bsave);
4476                 hammer2_chain_unlock(sub);
4477                 hammer2_chain_drop(sub);
4478                 hammer2_spin_ex(&chain->core.spin);
4479
4480                 if (key_next == 0)
4481                         break;
4482                 key_beg = key_next;
4483         }
4484         hammer2_spin_unex(&chain->core.spin);
4485
4486         hammer2_chain_repchange(parent, chain);
4487
4488         return 1;
4489 }
4490
4491 /*
4492  * Freemap indirect blocks
4493  *
4494  * Calculate the keybits and highside/lowside of the freemap node the
4495  * caller is creating.
4496  *
4497  * This routine will specify the next higher-level freemap key/radix
4498  * representing the lowest-ordered set.  By doing so, eventually all
4499  * low-ordered sets will be moved one level down.
4500  *
4501  * We have to be careful here because the freemap reserves a limited
4502  * number of blocks for a limited number of levels.  So we can't just
4503  * push indiscriminately.
4504  */
4505 int
4506 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
4507                              int keybits, hammer2_blockref_t *base, int count)
4508 {
4509         hammer2_chain_t *chain;
4510         hammer2_blockref_t *bref;
4511         hammer2_key_t key;
4512         hammer2_key_t key_beg;
4513         hammer2_key_t key_end;
4514         hammer2_key_t key_next;
4515         int locount;
4516         int hicount;
4517         int maxloops = 300000;
4518
4519         key = *keyp;
4520         locount = 0;
4521         hicount = 0;
4522         keybits = 64;
4523
4524         /*
4525          * Calculate the range of keys in the array being careful to skip
4526          * slots which are overridden with a deletion.
4527          */
4528         key_beg = 0;
4529         key_end = HAMMER2_KEY_MAX;
4530         hammer2_spin_ex(&parent->core.spin);
4531
4532         for (;;) {
4533                 if (--maxloops == 0) {
4534                         panic("indkey_freemap shit %p %p:%d\n",
4535                               parent, base, count);
4536                 }
4537                 chain = hammer2_combined_find(parent, base, count,
4538                                               &key_next,
4539                                               key_beg, key_end,
4540                                               &bref);
4541
4542                 /*
4543                  * Exhausted search
4544                  */
4545                 if (bref == NULL)
4546                         break;
4547
4548                 /*
4549                  * Skip deleted chains.
4550                  */
4551                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4552                         if (key_next == 0 || key_next > key_end)
4553                                 break;
4554                         key_beg = key_next;
4555                         continue;
4556                 }
4557
4558                 /*
4559                  * Use the full live (not deleted) element for the scan
4560                  * iteration.  HAMMER2 does not allow partial replacements.
4561                  *
4562                  * XXX should be built into hammer2_combined_find().
4563                  */
4564                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4565
4566                 if (keybits > bref->keybits) {
4567                         key = bref->key;
4568                         keybits = bref->keybits;
4569                 } else if (keybits == bref->keybits && bref->key < key) {
4570                         key = bref->key;
4571                 }
4572                 if (key_next == 0)
4573                         break;
4574                 key_beg = key_next;
4575         }
4576         hammer2_spin_unex(&parent->core.spin);
4577
4578         /*
4579          * Return the keybits for a higher-level FREEMAP_NODE covering
4580          * this node.
4581          */
4582         switch(keybits) {
4583         case HAMMER2_FREEMAP_LEVEL0_RADIX:
4584                 keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
4585                 break;
4586         case HAMMER2_FREEMAP_LEVEL1_RADIX:
4587                 keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
4588                 break;
4589         case HAMMER2_FREEMAP_LEVEL2_RADIX:
4590                 keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
4591                 break;
4592         case HAMMER2_FREEMAP_LEVEL3_RADIX:
4593                 keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
4594                 break;
4595         case HAMMER2_FREEMAP_LEVEL4_RADIX:
4596                 keybits = HAMMER2_FREEMAP_LEVEL5_RADIX;
4597                 break;
4598         case HAMMER2_FREEMAP_LEVEL5_RADIX:
4599                 panic("hammer2_chain_indkey_freemap: level too high");
4600                 break;
4601         default:
4602                 panic("hammer2_chain_indkey_freemap: bad radix");
4603                 break;
4604         }
4605         *keyp = key;
4606
4607         return (keybits);
4608 }
4609
4610 /*
4611  * File indirect blocks
4612  *
4613  * Calculate the key/keybits for the indirect block to create by scanning
4614  * existing keys.  The key being created is also passed in *keyp and can be
4615  * inside or outside the indirect block.  Regardless, the indirect block
4616  * must hold at least two keys in order to guarantee sufficient space.
4617  *
4618  * We use a modified version of the freemap's fixed radix tree, but taylored
4619  * for file data.  Basically we configure an indirect block encompassing the
4620  * smallest key.
4621  */
4622 static int
4623 hammer2_chain_indkey_file(hammer2_chain_t *parent, hammer2_key_t *keyp,
4624                             int keybits, hammer2_blockref_t *base, int count,
4625                             int ncount)
4626 {
4627         hammer2_chain_t *chain;
4628         hammer2_blockref_t *bref;
4629         hammer2_key_t key;
4630         hammer2_key_t key_beg;
4631         hammer2_key_t key_end;
4632         hammer2_key_t key_next;
4633         int nradix;
4634         int locount;
4635         int hicount;
4636         int maxloops = 300000;
4637
4638         key = *keyp;
4639         locount = 0;
4640         hicount = 0;
4641         keybits = 64;
4642
4643         /*
4644          * Calculate the range of keys in the array being careful to skip
4645          * slots which are overridden with a deletion.
4646          *
4647          * Locate the smallest key.
4648          */
4649         key_beg = 0;
4650         key_end = HAMMER2_KEY_MAX;
4651         hammer2_spin_ex(&parent->core.spin);
4652
4653         for (;;) {
4654                 if (--maxloops == 0) {
4655                         panic("indkey_freemap shit %p %p:%d\n",
4656                               parent, base, count);
4657                 }
4658                 chain = hammer2_combined_find(parent, base, count,
4659                                               &key_next,
4660                                               key_beg, key_end,
4661                                               &bref);
4662
4663                 /*
4664                  * Exhausted search
4665                  */
4666                 if (bref == NULL)
4667                         break;
4668
4669                 /*
4670                  * Skip deleted chains.
4671                  */
4672                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4673                         if (key_next == 0 || key_next > key_end)
4674                                 break;
4675                         key_beg = key_next;
4676                         continue;
4677                 }
4678
4679                 /*
4680                  * Use the full live (not deleted) element for the scan
4681                  * iteration.  HAMMER2 does not allow partial replacements.
4682                  *
4683                  * XXX should be built into hammer2_combined_find().
4684                  */
4685                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4686
4687                 if (keybits > bref->keybits) {
4688                         key = bref->key;
4689                         keybits = bref->keybits;
4690                 } else if (keybits == bref->keybits && bref->key < key) {
4691                         key = bref->key;
4692                 }
4693                 if (key_next == 0)
4694                         break;
4695                 key_beg = key_next;
4696         }
4697         hammer2_spin_unex(&parent->core.spin);
4698
4699         /*
4700          * Calculate the static keybits for a higher-level indirect block
4701          * that contains the key.
4702          */
4703         *keyp = key;
4704
4705         switch(ncount) {
4706         case HAMMER2_IND_BYTES_MIN / sizeof(hammer2_blockref_t):
4707                 nradix = HAMMER2_IND_RADIX_MIN - HAMMER2_BLOCKREF_RADIX;
4708                 break;
4709         case HAMMER2_IND_BYTES_NOM / sizeof(hammer2_blockref_t):
4710                 nradix = HAMMER2_IND_RADIX_NOM - HAMMER2_BLOCKREF_RADIX;
4711                 break;
4712         case HAMMER2_IND_BYTES_MAX / sizeof(hammer2_blockref_t):
4713                 nradix = HAMMER2_IND_RADIX_MAX - HAMMER2_BLOCKREF_RADIX;
4714                 break;
4715         default:
4716                 panic("bad ncount %d\n", ncount);
4717                 nradix = 0;
4718                 break;
4719         }
4720
4721         /*
4722          * The largest radix that can be returned for an indirect block is
4723          * 63 bits.  (The largest practical indirect block radix is actually
4724          * 62 bits because the top-level inode or volume root contains four
4725          * entries, but allow 63 to be returned).
4726          */
4727         if (nradix >= 64)
4728                 nradix = 63;
4729
4730         return keybits + nradix;
4731 }
4732
4733 #if 1
4734
4735 /*
4736  * Directory indirect blocks.
4737  *
4738  * Covers both the inode index (directory of inodes), and directory contents
4739  * (filenames hardlinked to inodes).
4740  *
4741  * Because directory keys are hashed we generally try to cut the space in
4742  * half.  We accomodate the inode index (which tends to have linearly
4743  * increasing inode numbers) by ensuring that the keyspace is at least large
4744  * enough to fill up the indirect block being created.
4745  */
4746 static int
4747 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4748                          int keybits, hammer2_blockref_t *base, int count,
4749                          int ncount)
4750 {
4751         hammer2_blockref_t *bref;
4752         hammer2_chain_t *chain;
4753         hammer2_key_t key_beg;
4754         hammer2_key_t key_end;
4755         hammer2_key_t key_next;
4756         hammer2_key_t key;
4757         int nkeybits;
4758         int locount;
4759         int hicount;
4760         int maxloops = 300000;
4761
4762         /*
4763          * NOTE: We can't take a shortcut here anymore for inodes because
4764          *       the root directory can contain a mix of inodes and directory
4765          *       entries (we used to just return 63 if parent->bref.type was
4766          *       HAMMER2_BREF_TYPE_INODE.
4767          */
4768         key = *keyp;
4769         locount = 0;
4770         hicount = 0;
4771
4772         /*
4773          * Calculate the range of keys in the array being careful to skip
4774          * slots which are overridden with a deletion.
4775          */
4776         key_beg = 0;
4777         key_end = HAMMER2_KEY_MAX;
4778         hammer2_spin_ex(&parent->core.spin);
4779
4780         for (;;) {
4781                 if (--maxloops == 0) {
4782                         panic("indkey_freemap shit %p %p:%d\n",
4783                               parent, base, count);
4784                 }
4785                 chain = hammer2_combined_find(parent, base, count,
4786                                               &key_next,
4787                                               key_beg, key_end,
4788                                               &bref);
4789
4790                 /*
4791                  * Exhausted search
4792                  */
4793                 if (bref == NULL)
4794                         break;
4795
4796                 /*
4797                  * Deleted object
4798                  */
4799                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4800                         if (key_next == 0 || key_next > key_end)
4801                                 break;
4802                         key_beg = key_next;
4803                         continue;
4804                 }
4805
4806                 /*
4807                  * Use the full live (not deleted) element for the scan
4808                  * iteration.  HAMMER2 does not allow partial replacements.
4809                  *
4810                  * XXX should be built into hammer2_combined_find().
4811                  */
4812                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4813
4814                 /*
4815                  * Expand our calculated key range (key, keybits) to fit
4816                  * the scanned key.  nkeybits represents the full range
4817                  * that we will later cut in half (two halves @ nkeybits - 1).
4818                  */
4819                 nkeybits = keybits;
4820                 if (nkeybits < bref->keybits) {
4821                         if (bref->keybits > 64) {
4822                                 kprintf("bad bref chain %p bref %p\n",
4823                                         chain, bref);
4824                                 Debugger("fubar");
4825                         }
4826                         nkeybits = bref->keybits;
4827                 }
4828                 while (nkeybits < 64 &&
4829                        rounddown2(key ^ bref->key, (hammer2_key_t)1 << nkeybits) != 0) {
4830                         ++nkeybits;
4831                 }
4832
4833                 /*
4834                  * If the new key range is larger we have to determine
4835                  * which side of the new key range the existing keys fall
4836                  * under by checking the high bit, then collapsing the
4837                  * locount into the hicount or vise-versa.
4838                  */
4839                 if (keybits != nkeybits) {
4840                         if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
4841                                 hicount += locount;
4842                                 locount = 0;
4843                         } else {
4844                                 locount += hicount;
4845                                 hicount = 0;
4846                         }
4847                         keybits = nkeybits;
4848                 }
4849
4850                 /*
4851                  * The newly scanned key will be in the lower half or the
4852                  * upper half of the (new) key range.
4853                  */
4854                 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
4855                         ++hicount;
4856                 else
4857                         ++locount;
4858
4859                 if (key_next == 0)
4860                         break;
4861                 key_beg = key_next;
4862         }
4863         hammer2_spin_unex(&parent->core.spin);
4864         bref = NULL;    /* now invalid (safety) */
4865
4866         /*
4867          * Adjust keybits to represent half of the full range calculated
4868          * above (radix 63 max) for our new indirect block.
4869          */
4870         --keybits;
4871
4872         /*
4873          * Expand keybits to hold at least ncount elements.  ncount will be
4874          * a power of 2.  This is to try to completely fill leaf nodes (at
4875          * least for keys which are not hashes).
4876          *
4877          * We aren't counting 'in' or 'out', we are counting 'high side'
4878          * and 'low side' based on the bit at (1LL << keybits).  We want
4879          * everything to be inside in these cases so shift it all to
4880          * the low or high side depending on the new high bit.
4881          */
4882         while (((hammer2_key_t)1 << keybits) < ncount) {
4883                 ++keybits;
4884                 if (key & ((hammer2_key_t)1 << keybits)) {
4885                         hicount += locount;
4886                         locount = 0;
4887                 } else {
4888                         locount += hicount;
4889                         hicount = 0;
4890                 }
4891         }
4892
4893         if (hicount > locount)
4894                 key |= (hammer2_key_t)1 << keybits;
4895         else
4896                 key &= ~(hammer2_key_t)1 << keybits;
4897
4898         *keyp = key;
4899
4900         return (keybits);
4901 }
4902
4903 #else
4904
4905 /*
4906  * Directory indirect blocks.
4907  *
4908  * Covers both the inode index (directory of inodes), and directory contents
4909  * (filenames hardlinked to inodes).
4910  *
4911  * Because directory keys are hashed we generally try to cut the space in
4912  * half.  We accomodate the inode index (which tends to have linearly
4913  * increasing inode numbers) by ensuring that the keyspace is at least large
4914  * enough to fill up the indirect block being created.
4915  */
4916 static int
4917 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4918                          int keybits, hammer2_blockref_t *base, int count,
4919                          int ncount)
4920 {
4921         hammer2_blockref_t *bref;
4922         hammer2_chain_t *chain;
4923         hammer2_key_t key_beg;
4924         hammer2_key_t key_end;
4925         hammer2_key_t key_next;
4926         hammer2_key_t key;
4927         int nkeybits;
4928         int locount;
4929         int hicount;
4930         int maxloops = 300000;
4931
4932         /*
4933          * Shortcut if the parent is the inode.  In this situation the
4934          * parent has 4+1 directory entries and we are creating an indirect
4935          * block capable of holding many more.
4936          */
4937         if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4938                 return 63;
4939         }
4940
4941         key = *keyp;
4942         locount = 0;
4943         hicount = 0;
4944
4945         /*
4946          * Calculate the range of keys in the array being careful to skip
4947          * slots which are overridden with a deletion.
4948          */
4949         key_beg = 0;
4950         key_end = HAMMER2_KEY_MAX;
4951         hammer2_spin_ex(&parent->core.spin);
4952
4953         for (;;) {
4954                 if (--maxloops == 0) {
4955                         panic("indkey_freemap shit %p %p:%d\n",
4956                               parent, base, count);
4957                 }
4958                 chain = hammer2_combined_find(parent, base, count,
4959                                               &key_next,
4960                                               key_beg, key_end,
4961                                               &bref);
4962
4963                 /*
4964                  * Exhausted search
4965                  */
4966                 if (bref == NULL)
4967                         break;
4968
4969                 /*
4970                  * Deleted object
4971                  */
4972                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4973                         if (key_next == 0 || key_next > key_end)
4974                                 break;
4975                         key_beg = key_next;
4976                         continue;
4977                 }
4978
4979                 /*
4980                  * Use the full live (not deleted) element for the scan
4981                  * iteration.  HAMMER2 does not allow partial replacements.
4982                  *
4983                  * XXX should be built into hammer2_combined_find().
4984                  */
4985                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4986
4987                 /*
4988                  * Expand our calculated key range (key, keybits) to fit
4989                  * the scanned key.  nkeybits represents the full range
4990                  * that we will later cut in half (two halves @ nkeybits - 1).
4991                  */
4992                 nkeybits = keybits;
4993                 if (nkeybits < bref->keybits) {
4994                         if (bref->keybits > 64) {
4995                                 kprintf("bad bref chain %p bref %p\n",
4996                                         chain, bref);
4997                                 Debugger("fubar");
4998                         }
4999                         nkeybits = bref->keybits;
5000                 }
5001                 while (nkeybits < 64 &&
5002                        (~(((hammer2_key_t)1 << nkeybits) - 1) &
5003                         (key ^ bref->key)) != 0) {
5004                         ++nkeybits;
5005                 }
5006
5007                 /*
5008                  * If the new key range is larger we have to determine
5009                  * which side of the new key range the existing keys fall
5010                  * under by checking the high bit, then collapsing the
5011                  * locount into the hicount or vise-versa.
5012                  */
5013                 if (keybits != nkeybits) {
5014                         if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
5015                                 hicount += locount;
5016                                 locount = 0;
5017                         } else {
5018                                 locount += hicount;
5019                                 hicount = 0;
5020                         }
5021                         keybits = nkeybits;
5022                 }
5023
5024                 /*
5025                  * The newly scanned key will be in the lower half or the
5026                  * upper half of the (new) key range.
5027                  */
5028                 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
5029                         ++hicount;
5030                 else
5031                         ++locount;
5032
5033                 if (key_next == 0)
5034                         break;
5035                 key_beg = key_next;
5036         }
5037         hammer2_spin_unex(&parent->core.spin);
5038         bref = NULL;    /* now invalid (safety) */
5039
5040         /*
5041          * Adjust keybits to represent half of the full range calculated
5042          * above (radix 63 max) for our new indirect block.
5043          */
5044         --keybits;
5045
5046         /*
5047          * Expand keybits to hold at least ncount elements.  ncount will be
5048          * a power of 2.  This is to try to completely fill leaf nodes (at
5049          * least for keys which are not hashes).
5050          *
5051          * We aren't counting 'in' or 'out', we are counting 'high side'
5052          * and 'low side' based on the bit at (1LL << keybits).  We want
5053          * everything to be inside in these cases so shift it all to
5054          * the low or high side depending on the new high bit.
5055          */
5056         while (((hammer2_key_t)1 << keybits) < ncount) {
5057                 ++keybits;
5058                 if (key & ((hammer2_key_t)1 << keybits)) {
5059                         hicount += locount;
5060                         locount = 0;
5061                 } else {
5062                         locount += hicount;
5063                         hicount = 0;
5064                 }
5065         }
5066
5067         if (hicount > locount)
5068                 key |= (hammer2_key_t)1 << keybits;
5069         else
5070                 key &= ~(hammer2_key_t)1 << keybits;
5071
5072         *keyp = key;
5073
5074         return (keybits);
5075 }
5076
5077 #endif
5078
5079 /*
5080  * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
5081  * it exists.
5082  *
5083  * Both parent and chain must be locked exclusively.
5084  *
5085  * This function will modify the parent if the blockref requires removal
5086  * from the parent's block table.
5087  *
5088  * This function is NOT recursive.  Any entity already pushed into the
5089  * chain (such as an inode) may still need visibility into its contents,
5090  * as well as the ability to read and modify the contents.  For example,
5091  * for an unlinked file which is still open.
5092  *
5093  * Also note that the flusher is responsible for cleaning up empty
5094  * indirect blocks.
5095  */
5096 int
5097 hammer2_chain_delete(hammer2_chain_t *parent, hammer2_chain_t *chain,
5098                      hammer2_tid_t mtid, int flags)
5099 {
5100         int error = 0;
5101
5102         KKASSERT(hammer2_mtx_owned(&chain->lock));
5103
5104         /*
5105          * Nothing to do if already marked.
5106          *
5107          * We need the spinlock on the core whos RBTREE contains chain
5108          * to protect against races.
5109          */
5110         if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5111                 KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5112                          chain->parent == parent);
5113                 error = _hammer2_chain_delete_helper(parent, chain,
5114                                                      mtid, flags, NULL);
5115         }
5116
5117         /*
5118          * Permanent deletions mark the chain as destroyed.
5119          *
5120          * NOTE: We do not setflush the chain unless the deletion is
5121          *       permanent, since the deletion of a chain does not actually
5122          *       require it to be flushed.
5123          */
5124         if (error == 0) {
5125                 if (flags & HAMMER2_DELETE_PERMANENT) {
5126                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5127                         hammer2_chain_setflush(chain);
5128                 }
5129         }
5130
5131         return error;
5132 }
5133
5134 static int
5135 hammer2_chain_delete_obref(hammer2_chain_t *parent, hammer2_chain_t *chain,
5136                      hammer2_tid_t mtid, int flags,
5137                      hammer2_blockref_t *obref)
5138 {
5139         int error = 0;
5140
5141         KKASSERT(hammer2_mtx_owned(&chain->lock));
5142
5143         /*
5144          * Nothing to do if already marked.
5145          *
5146          * We need the spinlock on the core whos RBTREE contains chain
5147          * to protect against races.
5148          */
5149         obref->type = HAMMER2_BREF_TYPE_EMPTY;
5150         if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5151                 KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5152                          chain->parent == parent);
5153                 error = _hammer2_chain_delete_helper(parent, chain,
5154                                                      mtid, flags, obref);
5155         }
5156
5157         /*
5158          * Permanent deletions mark the chain as destroyed.
5159          *
5160          * NOTE: We do not setflush the chain unless the deletion is
5161          *       permanent, since the deletion of a chain does not actually
5162          *       require it to be flushed.
5163          */
5164         if (error == 0) {
5165                 if (flags & HAMMER2_DELETE_PERMANENT) {
5166                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5167                         hammer2_chain_setflush(chain);
5168                 }
5169         }
5170
5171         return error;
5172 }
5173
5174 /*
5175  * Returns the index of the nearest element in the blockref array >= elm.
5176  * Returns (count) if no element could be found.
5177  *
5178  * Sets *key_nextp to the next key for loop purposes but does not modify
5179  * it if the next key would be higher than the current value of *key_nextp.
5180  * Note that *key_nexp can overflow to 0, which should be tested by the
5181  * caller.
5182  *
5183  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5184  *           held through the operation.
5185  */
5186 static int
5187 hammer2_base_find(hammer2_chain_t *parent,
5188                   hammer2_blockref_t *base, int count,
5189                   hammer2_key_t *key_nextp,
5190                   hammer2_key_t key_beg, hammer2_key_t key_end)
5191 {
5192         hammer2_blockref_t *scan;
5193         hammer2_key_t scan_end;
5194         int i;
5195         int limit;
5196
5197         /*
5198          * Require the live chain's already have their core's counted
5199          * so we can optimize operations.
5200          */
5201         KKASSERT(parent->flags & HAMMER2_CHAIN_COUNTEDBREFS);
5202
5203         /*
5204          * Degenerate case
5205          */
5206         if (count == 0 || base == NULL)
5207                 return(count);
5208
5209         /*
5210          * Sequential optimization using parent->cache_index.  This is
5211          * the most likely scenario.
5212          *
5213          * We can avoid trailing empty entries on live chains, otherwise
5214          * we might have to check the whole block array.
5215          */
5216         i = parent->cache_index;        /* SMP RACE OK */
5217         cpu_ccfence();
5218         limit = parent->core.live_zero;
5219         if (i >= limit)
5220                 i = limit - 1;
5221         if (i < 0)
5222                 i = 0;
5223         KKASSERT(i < count);
5224
5225         /*
5226          * Search backwards
5227          */
5228         scan = &base[i];
5229         while (i > 0 && (scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5230             scan->key > key_beg)) {
5231                 --scan;
5232                 --i;
5233         }
5234         parent->cache_index = i;
5235
5236         /*
5237          * Search forwards, stop when we find a scan element which
5238          * encloses the key or until we know that there are no further
5239          * elements.
5240          */
5241         while (i < count) {
5242                 if (scan->type != HAMMER2_BREF_TYPE_EMPTY) {
5243                         scan_end = scan->key +
5244                                    ((hammer2_key_t)1 << scan->keybits) - 1;
5245                         if (scan->key > key_beg || scan_end >= key_beg)
5246                                 break;
5247                 }
5248                 if (i >= limit)
5249                         return (count);
5250                 ++scan;
5251                 ++i;
5252         }
5253         if (i != count) {
5254                 parent->cache_index = i;
5255                 if (i >= limit) {
5256                         i = count;
5257                 } else {
5258                         scan_end = scan->key +
5259                                    ((hammer2_key_t)1 << scan->keybits);
5260                         if (scan_end && (*key_nextp > scan_end ||
5261                                          *key_nextp == 0)) {
5262                                 *key_nextp = scan_end;
5263                         }
5264                 }
5265         }
5266         return (i);
5267 }
5268
5269 /*
5270  * Do a combined search and return the next match either from the blockref
5271  * array or from the in-memory chain.  Sets *bresp to the returned bref in
5272  * both cases, or sets it to NULL if the search exhausted.  Only returns
5273  * a non-NULL chain if the search matched from the in-memory chain.
5274  *
5275  * When no in-memory chain has been found and a non-NULL bref is returned
5276  * in *bresp.
5277  *
5278  *
5279  * The returned chain is not locked or referenced.  Use the returned bref
5280  * to determine if the search exhausted or not.  Iterate if the base find
5281  * is chosen but matches a deleted chain.
5282  *
5283  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5284  *           held through the operation.
5285  */
5286 hammer2_chain_t *
5287 hammer2_combined_find(hammer2_chain_t *parent,
5288                       hammer2_blockref_t *base, int count,
5289                       hammer2_key_t *key_nextp,
5290                       hammer2_key_t key_beg, hammer2_key_t key_end,
5291                       hammer2_blockref_t **bresp)
5292 {
5293         hammer2_blockref_t *bref;
5294         hammer2_chain_t *chain;
5295         int i;
5296
5297         /*
5298          * Lookup in block array and in rbtree.
5299          */
5300         *key_nextp = key_end + 1;
5301         i = hammer2_base_find(parent, base, count, key_nextp,
5302                               key_beg, key_end);
5303         chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
5304
5305         /*
5306          * Neither matched
5307          */
5308         if (i == count && chain == NULL) {
5309                 *bresp = NULL;
5310                 return(NULL);
5311         }
5312
5313         /*
5314          * Only chain matched.
5315          */
5316         if (i == count) {
5317                 bref = &chain->bref;
5318                 goto found;
5319         }
5320
5321         /*
5322          * Only blockref matched.
5323          */
5324         if (chain == NULL) {
5325                 bref = &base[i];
5326                 goto found;
5327         }
5328
5329         /*
5330          * Both in-memory and blockref matched, select the nearer element.
5331          *
5332          * If both are flush with the left-hand side or both are the
5333          * same distance away, select the chain.  In this situation the
5334          * chain must have been loaded from the matching blockmap.
5335          */
5336         if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
5337             chain->bref.key == base[i].key) {
5338                 KKASSERT(chain->bref.key == base[i].key);
5339                 bref = &chain->bref;
5340                 goto found;
5341         }
5342
5343         /*
5344          * Select the nearer key
5345          */
5346         if (chain->bref.key < base[i].key) {
5347                 bref = &chain->bref;
5348         } else {
5349                 bref = &base[i];
5350                 chain = NULL;
5351         }
5352
5353         /*
5354          * If the bref is out of bounds we've exhausted our search.
5355          */
5356 found:
5357         if (bref->key > key_end) {
5358                 *bresp = NULL;
5359                 chain = NULL;
5360         } else {
5361                 *bresp = bref;
5362         }
5363         return(chain);
5364 }
5365
5366 /*
5367  * Locate the specified block array element and delete it.  The element
5368  * must exist.
5369  *
5370  * The spin lock on the related chain must be held.
5371  *
5372  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5373  *       need to be adjusted when we commit the media change.
5374  */
5375 void
5376 hammer2_base_delete(hammer2_chain_t *parent,
5377                     hammer2_blockref_t *base, int count,
5378                     hammer2_chain_t *chain,
5379                     hammer2_blockref_t *obref)
5380 {
5381         hammer2_blockref_t *elm = &chain->bref;
5382         hammer2_blockref_t *scan;
5383         hammer2_key_t key_next;
5384         int i;
5385
5386         /*
5387          * Delete element.  Expect the element to exist.
5388          *
5389          * XXX see caller, flush code not yet sophisticated enough to prevent
5390          *     re-flushed in some cases.
5391          */
5392         key_next = 0; /* max range */
5393         i = hammer2_base_find(parent, base, count, &key_next,
5394                               elm->key, elm->key);
5395         scan = &base[i];
5396         if (i == count || scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5397             scan->key != elm->key ||
5398             ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
5399              scan->keybits != elm->keybits)) {
5400                 hammer2_spin_unex(&parent->core.spin);
5401                 panic("delete base %p element not found at %d/%d elm %p\n",
5402                       base, i, count, elm);
5403                 return;
5404         }
5405
5406         /*
5407          * Update stats and zero the entry.
5408          *
5409          * NOTE: Handle radix == 0 (0 bytes) case.
5410          */
5411         if ((int)(scan->data_off & HAMMER2_OFF_MASK_RADIX)) {
5412                 parent->bref.embed.stats.data_count -= (hammer2_off_t)1 <<
5413                                 (int)(scan->data_off & HAMMER2_OFF_MASK_RADIX);
5414         }
5415         switch(scan->type) {
5416         case HAMMER2_BREF_TYPE_INODE:
5417                 --parent->bref.embed.stats.inode_count;
5418                 /* fall through */
5419         case HAMMER2_BREF_TYPE_DATA:
5420                 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5421                         atomic_set_int(&chain->flags,
5422                                        HAMMER2_CHAIN_HINT_LEAF_COUNT);
5423                 } else {
5424                         if (parent->bref.leaf_count)
5425                                 --parent->bref.leaf_count;
5426                 }
5427                 /* fall through */
5428         case HAMMER2_BREF_TYPE_INDIRECT:
5429                 if (scan->type != HAMMER2_BREF_TYPE_DATA) {
5430                         parent->bref.embed.stats.data_count -=
5431                                 scan->embed.stats.data_count;
5432                         parent->bref.embed.stats.inode_count -=
5433                                 scan->embed.stats.inode_count;
5434                 }
5435                 if (scan->type == HAMMER2_BREF_TYPE_INODE)
5436                         break;
5437                 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5438                         atomic_set_int(&chain->flags,
5439                                        HAMMER2_CHAIN_HINT_LEAF_COUNT);
5440                 } else {
5441                         if (parent->bref.leaf_count <= scan->leaf_count)
5442                                 parent->bref.leaf_count = 0;
5443                         else
5444                                 parent->bref.leaf_count -= scan->leaf_count;
5445                 }
5446                 break;
5447         case HAMMER2_BREF_TYPE_DIRENT:
5448                 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5449                         atomic_set_int(&chain->flags,
5450                                        HAMMER2_CHAIN_HINT_LEAF_COUNT);
5451                 } else {
5452                         if (parent->bref.leaf_count)
5453                                 --parent->bref.leaf_count;
5454                 }
5455         default:
5456                 break;
5457         }
5458
5459         if (obref)
5460                 *obref = *scan;
5461         bzero(scan, sizeof(*scan));
5462
5463         /*
5464          * We can only optimize parent->core.live_zero for live chains.
5465          */
5466         if (parent->core.live_zero == i + 1) {
5467                 while (--i >= 0 && base[i].type == HAMMER2_BREF_TYPE_EMPTY)
5468                         ;
5469                 parent->core.live_zero = i + 1;
5470         }
5471
5472         /*
5473          * Clear appropriate blockmap flags in chain.
5474          */
5475         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
5476                                         HAMMER2_CHAIN_BMAPUPD);
5477 }
5478
5479 /*
5480  * Insert the specified element.  The block array must not already have the
5481  * element and must have space available for the insertion.
5482  *
5483  * The spin lock on the related chain must be held.
5484  *
5485  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5486  *       need to be adjusted when we commit the media change.
5487  */
5488 void
5489 hammer2_base_insert(hammer2_chain_t *parent,
5490                     hammer2_blockref_t *base, int count,
5491                     hammer2_chain_t *chain, hammer2_blockref_t *elm)
5492 {
5493         hammer2_key_t key_next;
5494         hammer2_key_t xkey;
5495         int i;
5496         int j;
5497         int k;
5498         int l;
5499         int u = 1;
5500
5501         /*
5502          * Insert new element.  Expect the element to not already exist
5503          * unless we are replacing it.
5504          *
5505          * XXX see caller, flush code not yet sophisticated enough to prevent
5506          *     re-flushed in some cases.
5507          */
5508         key_next = 0; /* max range */
5509         i = hammer2_base_find(parent, base, count, &key_next,
5510                               elm->key, elm->key);
5511
5512         /*
5513          * Shortcut fill optimization, typical ordered insertion(s) may not
5514          * require a search.
5515          */
5516         KKASSERT(i >= 0 && i <= count);
5517
5518         /*
5519          * Set appropriate blockmap flags in chain (if not NULL)
5520          */
5521         if (chain)
5522                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
5523
5524         /*
5525          * Update stats and zero the entry
5526          */
5527         if ((int)(elm->data_off & HAMMER2_OFF_MASK_RADIX)) {
5528                 parent->bref.embed.stats.data_count += (hammer2_off_t)1 <<
5529                                 (int)(elm->data_off & HAMMER2_OFF_MASK_RADIX);
5530         }
5531         switch(elm->type) {
5532         case HAMMER2_BREF_TYPE_INODE:
5533                 ++parent->bref.embed.stats.inode_count;
5534                 /* fall through */
5535         case HAMMER2_BREF_TYPE_DATA:
5536                 if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5537                         ++parent->bref.leaf_count;
5538                 /* fall through */
5539         case HAMMER2_BREF_TYPE_INDIRECT:
5540                 if (elm->type != HAMMER2_BREF_TYPE_DATA) {
5541                         parent->bref.embed.stats.data_count +=
5542                                 elm->embed.stats.data_count;
5543                         parent->bref.embed.stats.inode_count +=
5544                                 elm->embed.stats.inode_count;
5545                 }
5546                 if (elm->type == HAMMER2_BREF_TYPE_INODE)
5547                         break;
5548                 if (parent->bref.leaf_count + elm->leaf_count <
5549                     HAMMER2_BLOCKREF_LEAF_MAX) {
5550                         parent->bref.leaf_count += elm->leaf_count;
5551                 } else {
5552                         parent->bref.leaf_count = HAMMER2_BLOCKREF_LEAF_MAX;
5553                 }
5554                 break;
5555         case HAMMER2_BREF_TYPE_DIRENT:
5556                 if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5557                         ++parent->bref.leaf_count;
5558                 break;
5559         default:
5560                 break;
5561         }
5562
5563
5564         /*
5565          * We can only optimize parent->core.live_zero for live chains.
5566          */
5567         if (i == count && parent->core.live_zero < count) {
5568                 i = parent->core.live_zero++;
5569                 base[i] = *elm;
5570                 return;
5571         }
5572
5573         xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
5574         if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
5575                 hammer2_spin_unex(&parent->core.spin);
5576                 panic("insert base %p overlapping elements at %d elm %p\n",
5577                       base, i, elm);
5578         }
5579
5580         /*
5581          * Try to find an empty slot before or after.
5582          */
5583         j = i;
5584         k = i;
5585         while (j > 0 || k < count) {
5586                 --j;
5587                 if (j >= 0 && base[j].type == HAMMER2_BREF_TYPE_EMPTY) {
5588                         if (j == i - 1) {
5589                                 base[j] = *elm;
5590                         } else {
5591                                 bcopy(&base[j+1], &base[j],
5592                                       (i - j - 1) * sizeof(*base));
5593                                 base[i - 1] = *elm;
5594                         }
5595                         goto validate;
5596                 }
5597                 ++k;
5598                 if (k < count && base[k].type == HAMMER2_BREF_TYPE_EMPTY) {
5599                         bcopy(&base[i], &base[i+1],
5600                               (k - i) * sizeof(hammer2_blockref_t));
5601                         base[i] = *elm;
5602
5603                         /*
5604                          * We can only update parent->core.live_zero for live
5605                          * chains.
5606                          */
5607                         if (parent->core.live_zero <= k)
5608                                 parent->core.live_zero = k + 1;
5609                         u = 2;
5610                         goto validate;
5611                 }
5612         }
5613         panic("hammer2_base_insert: no room!");
5614
5615         /*
5616          * Debugging
5617          */
5618 validate:
5619         key_next = 0;
5620         for (l = 0; l < count; ++l) {
5621                 if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5622                         key_next = base[l].key +
5623                                    ((hammer2_key_t)1 << base[l].keybits) - 1;
5624                         break;
5625                 }
5626         }
5627         while (++l < count) {
5628                 if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5629                         if (base[l].key <= key_next)
5630                                 panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
5631                         key_next = base[l].key +
5632                                    ((hammer2_key_t)1 << base[l].keybits) - 1;
5633
5634                 }
5635         }
5636
5637 }
5638
5639 #if 0
5640
5641 /*
5642  * Sort the blockref array for the chain.  Used by the flush code to
5643  * sort the blockref[] array.
5644  *
5645  * The chain must be exclusively locked AND spin-locked.
5646  */
5647 typedef hammer2_blockref_t *hammer2_blockref_p;
5648
5649 static
5650 int
5651 hammer2_base_sort_callback(const void *v1, const void *v2)
5652 {
5653         hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
5654         hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
5655
5656         /*
5657          * Make sure empty elements are placed at the end of the array
5658          */
5659         if (bref1->type == HAMMER2_BREF_TYPE_EMPTY) {
5660                 if (bref2->type == HAMMER2_BREF_TYPE_EMPTY)
5661                         return(0);
5662                 return(1);
5663         } else if (bref2->type == HAMMER2_BREF_TYPE_EMPTY) {
5664                 return(-1);
5665         }
5666
5667         /*
5668          * Sort by key
5669          */
5670         if (bref1->key < bref2->key)
5671                 return(-1);
5672         if (bref1->key > bref2->key)
5673                 return(1);
5674         return(0);
5675 }
5676
5677 void
5678 hammer2_base_sort(hammer2_chain_t *chain)
5679 {
5680         hammer2_blockref_t *base;
5681         int count;
5682
5683         switch(chain->bref.type) {
5684         case HAMMER2_BREF_TYPE_INODE:
5685                 /*
5686                  * Special shortcut for embedded data returns the inode
5687                  * itself.  Callers must detect this condition and access
5688                  * the embedded data (the strategy code does this for us).
5689                  *
5690                  * This is only applicable to regular files and softlinks.
5691                  */
5692                 if (chain->data->ipdata.meta.op_flags &
5693                     HAMMER2_OPFLAG_DIRECTDATA) {
5694                         return;
5695                 }
5696                 base = &chain->data->ipdata.u.blockset.blockref[0];
5697                 count = HAMMER2_SET_COUNT;
5698                 break;
5699         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
5700         case HAMMER2_BREF_TYPE_INDIRECT:
5701                 /*
5702                  * Optimize indirect blocks in the INITIAL state to avoid
5703                  * I/O.
5704                  */
5705                 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
5706                 base = &chain->data->npdata[0];
5707                 count = chain->bytes / sizeof(hammer2_blockref_t);
5708                 break;
5709         case HAMMER2_BREF_TYPE_VOLUME:
5710                 base = &chain->data->voldata.sroot_blockset.blockref[0];
5711                 count = HAMMER2_SET_COUNT;
5712                 break;
5713         case HAMMER2_BREF_TYPE_FREEMAP:
5714                 base = &chain->data->blkset.blockref[0];
5715                 count = HAMMER2_SET_COUNT;
5716                 break;
5717         default:
5718                 panic("hammer2_base_sort: unrecognized "
5719                       "blockref(A) type: %d",
5720                       chain->bref.type);
5721                 base = NULL;    /* safety */
5722                 count = 0;      /* safety */
5723                 break;
5724         }
5725         kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
5726 }
5727
5728 #endif
5729
5730 /*
5731  * Set the check data for a chain.  This can be a heavy-weight operation
5732  * and typically only runs on-flush.  For file data check data is calculated
5733  * when the logical buffers are flushed.
5734  */
5735 void
5736 hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
5737 {
5738         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_NOTTESTED);
5739
5740         switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5741         case HAMMER2_CHECK_NONE:
5742                 break;
5743         case HAMMER2_CHECK_DISABLED:
5744                 break;
5745         case HAMMER2_CHECK_ISCSI32:
5746                 chain->bref.check.iscsi32.value =
5747                         hammer2_icrc32(bdata, chain->bytes);
5748                 break;
5749         case HAMMER2_CHECK_XXHASH64:
5750                 chain->bref.check.xxhash64.value =
5751                         XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5752                 break;
5753         case HAMMER2_CHECK_SHA192:
5754                 {
5755                         SHA256_CTX hash_ctx;
5756                         union {
5757                                 uint8_t digest[SHA256_DIGEST_LENGTH];
5758                                 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5759                         } u;
5760
5761                         SHA256_Init(&hash_ctx);
5762                         SHA256_Update(&hash_ctx, bdata, chain->bytes);
5763                         SHA256_Final(u.digest, &hash_ctx);
5764                         u.digest64[2] ^= u.digest64[3];
5765                         bcopy(u.digest,
5766                               chain->bref.check.sha192.data,
5767                               sizeof(chain->bref.check.sha192.data));
5768                 }
5769                 break;
5770         case HAMMER2_CHECK_FREEMAP:
5771                 chain->bref.check.freemap.icrc32 =
5772                         hammer2_icrc32(bdata, chain->bytes);
5773                 break;
5774         default:
5775                 kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5776                         chain->bref.methods);
5777                 break;
5778         }
5779 }
5780
5781 /*
5782  * Characterize a failed check code and try to trace back to the inode.
5783  */
5784 static void
5785 hammer2_characterize_failed_chain(hammer2_chain_t *chain, uint64_t check,
5786                                   int bits)
5787 {
5788         hammer2_chain_t *lchain;
5789         hammer2_chain_t *ochain;
5790         int did;
5791
5792         did = krateprintf(&krate_h2chk,
5793                 "chain %016jx.%02x (%s) meth=%02x CHECK FAIL "
5794                 "(flags=%08x, bref/data ",
5795                 chain->bref.data_off,
5796                 chain->bref.type,
5797                 hammer2_bref_type_str(chain->bref.type),
5798                 chain->bref.methods,
5799                 chain->flags);
5800         if (did == 0)
5801                 return;
5802
5803         if (bits == 32) {
5804                 kprintf("%08x/%08x)\n",
5805                         chain->bref.check.iscsi32.value,
5806                         (uint32_t)check);
5807         } else {
5808                 kprintf("%016jx/%016jx)\n",
5809                         chain->bref.check.xxhash64.value,
5810                         check);
5811         }
5812
5813         /*
5814          * Run up the chains to try to find the governing inode so we
5815          * can report it.
5816          *
5817          * XXX This error reporting is not really MPSAFE
5818          */
5819         ochain = chain;
5820         lchain = chain;
5821         while (chain && chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
5822                 lchain = chain;
5823                 chain = chain->parent;
5824         }
5825
5826         if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
5827             ((chain->bref.flags & HAMMER2_BREF_FLAG_PFSROOT) == 0 ||
5828              (lchain->bref.key & HAMMER2_DIRHASH_VISIBLE))) {
5829                 kprintf("   Resides at/in inode %ld\n",
5830                         chain->bref.key);
5831         } else if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
5832                 kprintf("   Resides in inode index - CRITICAL!!!\n");
5833         } else {
5834                 kprintf("   Resides in root index - CRITICAL!!!\n");
5835         }
5836         if (ochain->hmp) {
5837                 const char *pfsname = "UNKNOWN";
5838                 int i;
5839
5840                 if (ochain->pmp) {
5841                         for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
5842                                 if (ochain->pmp->pfs_hmps[i] == ochain->hmp &&
5843                                     ochain->pmp->pfs_names[i]) {
5844                                         pfsname = ochain->pmp->pfs_names[i];
5845                                         break;
5846                                 }
5847                         }
5848                 }
5849                 kprintf("   In pfs %s on device %s\n",
5850                         pfsname, ochain->hmp->devrepname);
5851         }
5852 }
5853
5854 /*
5855  * Returns non-zero on success, 0 on failure.
5856  */
5857 int
5858 hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
5859 {
5860         uint32_t check32;
5861         uint64_t check64;
5862         int r;
5863
5864         if (chain->flags & HAMMER2_CHAIN_NOTTESTED)
5865                 return 1;
5866
5867         switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5868         case HAMMER2_CHECK_NONE:
5869                 r = 1;
5870                 break;
5871         case HAMMER2_CHECK_DISABLED:
5872                 r = 1;
5873                 break;
5874         case HAMMER2_CHECK_ISCSI32:
5875                 check32 = hammer2_icrc32(bdata, chain->bytes);
5876                 r = (chain->bref.check.iscsi32.value == check32);
5877                 if (r == 0) {
5878                         hammer2_characterize_failed_chain(chain, check32, 32);
5879                 }
5880                 hammer2_process_icrc32 += chain->bytes;
5881                 break;
5882         case HAMMER2_CHECK_XXHASH64:
5883                 check64 = XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5884                 r = (chain->bref.check.xxhash64.value == check64);
5885                 if (r == 0) {
5886                         hammer2_characterize_failed_chain(chain, check64, 64);
5887                 }
5888                 hammer2_process_xxhash64 += chain->bytes;
5889                 break;
5890         case HAMMER2_CHECK_SHA192:
5891                 {
5892                         SHA256_CTX hash_ctx;
5893                         union {
5894                                 uint8_t digest[SHA256_DIGEST_LENGTH];
5895                                 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5896                         } u;
5897
5898                         SHA256_Init(&hash_ctx);
5899                         SHA256_Update(&hash_ctx, bdata, chain->bytes);
5900                         SHA256_Final(u.digest, &hash_ctx);
5901                         u.digest64[2] ^= u.digest64[3];
5902                         if (bcmp(u.digest,
5903                                  chain->bref.check.sha192.data,
5904                                  sizeof(chain->bref.check.sha192.data)) == 0) {
5905                                 r = 1;
5906                         } else {
5907                                 r = 0;
5908                                 krateprintf(&krate_h2chk,
5909                                         "chain %016jx.%02x meth=%02x "
5910                                         "CHECK FAIL\n",
5911                                         chain->bref.data_off,
5912                                         chain->bref.type,
5913                                         chain->bref.methods);
5914                         }
5915                 }
5916                 break;
5917         case HAMMER2_CHECK_FREEMAP:
5918                 r = (chain->bref.check.freemap.icrc32 ==
5919                      hammer2_icrc32(bdata, chain->bytes));
5920                 if (r == 0) {
5921                         int did;
5922
5923                         did = krateprintf(&krate_h2chk,
5924                                           "chain %016jx.%02x meth=%02x "
5925                                           "CHECK FAIL\n",
5926                                           chain->bref.data_off,
5927                                           chain->bref.type,
5928                                           chain->bref.methods);
5929                         if (did) {
5930                                 kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
5931                                         chain->bref.check.freemap.icrc32,
5932                                         hammer2_icrc32(bdata, chain->bytes),
5933                                         chain->bytes);
5934                                 if (chain->dio) {
5935                                         kprintf("dio %p buf %016jx,%d "
5936                                                 "bdata %p/%p\n",
5937                                                 chain->dio,
5938                                                 chain->dio->bp->b_loffset,
5939                                                 chain->dio->bp->b_bufsize,
5940                                                 bdata,
5941                                                 chain->dio->bp->b_data);
5942                                 }
5943                         }
5944                 }
5945                 break;
5946         default:
5947                 kprintf("hammer2_chain_testcheck: unknown check type %02x\n",
5948                         chain->bref.methods);
5949                 r = 1;
5950                 break;
5951         }
5952         return r;
5953 }
5954
5955 /*
5956  * Acquire the chain and parent representing the specified inode for the
5957  * device at the specified cluster index.
5958  *
5959  * The flags passed in are LOOKUP flags, not RESOLVE flags.
5960  *
5961  * If we are unable to locate the inode, HAMMER2_ERROR_EIO is returned and
5962  * *chainp will be NULL.  *parentp may still be set error or not, or NULL
5963  * if the parent itself could not be resolved.
5964  *
5965  * The caller may pass-in a locked *parentp and/or *chainp, or neither.
5966  * They will be unlocked and released by this function.  The *parentp and
5967  * *chainp representing the located inode are returned locked.
5968  */
5969 int
5970 hammer2_chain_inode_find(hammer2_pfs_t *pmp, hammer2_key_t inum,
5971                          int clindex, int flags,
5972                          hammer2_chain_t **parentp, hammer2_chain_t **chainp)
5973 {
5974         hammer2_chain_t *parent;
5975         hammer2_chain_t *rchain;
5976         hammer2_key_t key_dummy;
5977         hammer2_inode_t *ip;
5978         int resolve_flags;
5979         int error;
5980
5981         resolve_flags = (flags & HAMMER2_LOOKUP_SHARED) ?
5982                         HAMMER2_RESOLVE_SHARED : 0;
5983
5984         /*
5985          * Caller expects us to replace these.
5986          */
5987         if (*chainp) {
5988                 hammer2_chain_unlock(*chainp);
5989                 hammer2_chain_drop(*chainp);
5990                 *chainp = NULL;
5991         }
5992         if (*parentp) {
5993                 hammer2_chain_unlock(*parentp);
5994                 hammer2_chain_drop(*parentp);
5995                 *parentp = NULL;
5996         }
5997
5998         /*
5999          * Be very careful, this is a backend function and we CANNOT
6000          * lock any frontend inode structure we find.  But we have to
6001          * look the inode up this way first in case it exists but is
6002          * detached from the radix tree.
6003          */
6004         ip = hammer2_inode_lookup(pmp, inum);
6005         if (ip) {
6006                 *chainp = hammer2_inode_chain_and_parent(ip, clindex,
6007                                                        parentp,
6008                                                        resolve_flags);
6009                 hammer2_inode_drop(ip);
6010                 if (*chainp)
6011                         return 0;
6012                 hammer2_chain_unlock(*chainp);
6013                 hammer2_chain_drop(*chainp);
6014                 *chainp = NULL;
6015                 if (*parentp) {
6016                         hammer2_chain_unlock(*parentp);
6017                         hammer2_chain_drop(*parentp);
6018                         *parentp = NULL;
6019                 }
6020         }
6021
6022         /*
6023          * Inodes hang off of the iroot (bit 63 is clear, differentiating
6024          * inodes from root directory entries in the key lookup).
6025          */
6026         parent = hammer2_inode_chain(pmp->iroot, clindex, resolve_flags);
6027         rchain = NULL;
6028         if (parent) {
6029                 rchain = hammer2_chain_lookup(&parent, &key_dummy,
6030                                               inum, inum,
6031                                               &error, flags);
6032         } else {
6033                 error = HAMMER2_ERROR_EIO;
6034         }
6035         *parentp = parent;
6036         *chainp = rchain;
6037
6038         return error;
6039 }
6040
6041 /*
6042  * Used by the bulkscan code to snapshot the synchronized storage for
6043  * a volume, allowing it to be scanned concurrently against normal
6044  * operation.
6045  */
6046 hammer2_chain_t *
6047 hammer2_chain_bulksnap(hammer2_dev_t *hmp)
6048 {
6049         hammer2_chain_t *copy;
6050
6051         copy = hammer2_chain_alloc(hmp, hmp->spmp, &hmp->vchain.bref);
6052         copy->data = kmalloc(sizeof(copy->data->voldata),
6053                              hmp->mchain,
6054                              M_WAITOK | M_ZERO);
6055         hammer2_voldata_lock(hmp);
6056         copy->data->voldata = hmp->volsync;
6057         hammer2_voldata_unlock(hmp);
6058
6059         return copy;
6060 }
6061
6062 void
6063 hammer2_chain_bulkdrop(hammer2_chain_t *copy)
6064 {
6065         KKASSERT(copy->bref.type == HAMMER2_BREF_TYPE_VOLUME);
6066         KKASSERT(copy->data);
6067         kfree(copy->data, copy->hmp->mchain);
6068         copy->data = NULL;
6069         atomic_add_long(&hammer2_chain_allocs, -1);
6070         hammer2_chain_drop(copy);
6071 }
6072
6073 /*
6074  * Returns non-zero if the chain (INODE or DIRENT) matches the
6075  * filename.
6076  */
6077 int
6078 hammer2_chain_dirent_test(hammer2_chain_t *chain, const char *name,
6079                           size_t name_len)
6080 {
6081         const hammer2_inode_data_t *ripdata;
6082         const hammer2_dirent_head_t *den;
6083
6084         if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
6085                 ripdata = &chain->data->ipdata;
6086                 if (ripdata->meta.name_len == name_len &&
6087                     bcmp(ripdata->filename, name, name_len) == 0) {
6088                         return 1;
6089                 }
6090         }
6091         if (chain->bref.type == HAMMER2_BREF_TYPE_DIRENT &&
6092            chain->bref.embed.dirent.namlen == name_len) {
6093                 den = &chain->bref.embed.dirent;
6094                 if (name_len > sizeof(chain->bref.check.buf) &&
6095                     bcmp(chain->data->buf, name, name_len) == 0) {
6096                         return 1;
6097                 }
6098                 if (name_len <= sizeof(chain->bref.check.buf) &&
6099                     bcmp(chain->bref.check.buf, name, name_len) == 0) {
6100                         return 1;
6101                 }
6102         }
6103         return 0;
6104 }