sys/vfs/hammer2: Remove redundant chain size calculation in hammer2_chain_create()
[dragonfly.git] / sys / vfs / hammer2 / hammer2_chain.c
1 /*
2  * Copyright (c) 2011-2020 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain structure.
38  *
39  * Chains are the in-memory version on media objects (volume header, inodes,
40  * indirect blocks, data blocks, etc).  Chains represent a portion of the
41  * HAMMER2 topology.
42  *
43  * Chains are no-longer delete-duplicated.  Instead, the original in-memory
44  * chain will be moved along with its block reference (e.g. for things like
45  * renames, hardlink operations, modifications, etc), and will be indexed
46  * on a secondary list for flush handling instead of propagating a flag
47  * upward to the root.
48  *
49  * Concurrent front-end operations can still run against backend flushes
50  * as long as they do not cross the current flush boundary.  An operation
51  * running above the current flush (in areas not yet flushed) can become
52  * part of the current flush while ano peration running below the current
53  * flush can become part of the next flush.
54  */
55 #include <sys/cdefs.h>
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/types.h>
59 #include <sys/lock.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/uuid.h>
62
63 #include <crypto/sha2/sha2.h>
64
65 #include "hammer2.h"
66
67 static hammer2_chain_t *hammer2_chain_create_indirect(
68                 hammer2_chain_t *parent,
69                 hammer2_key_t key, int keybits,
70                 hammer2_tid_t mtid, int for_type, int *errorp);
71 static int hammer2_chain_delete_obref(hammer2_chain_t *parent,
72                 hammer2_chain_t *chain,
73                 hammer2_tid_t mtid, int flags,
74                 hammer2_blockref_t *obref);
75 static hammer2_chain_t *hammer2_combined_find(
76                 hammer2_chain_t *parent,
77                 hammer2_blockref_t *base, int count,
78                 hammer2_key_t *key_nextp,
79                 hammer2_key_t key_beg, hammer2_key_t key_end,
80                 hammer2_blockref_t **bresp);
81 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain,
82                                 int depth);
83 static void hammer2_chain_lru_flush(hammer2_pfs_t *pmp);
84
85 /*
86  * There are many degenerate situations where an extreme rate of console
87  * output can occur from warnings and errors.  Make sure this output does
88  * not impede operations.
89  */
90 static struct krate krate_h2chk = { .freq = 5 };
91 static struct krate krate_h2me = { .freq = 1 };
92 static struct krate krate_h2em = { .freq = 1 };
93
94 /*
95  * Basic RBTree for chains (core.rbtree).
96  */
97 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
98
99 int
100 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
101 {
102         hammer2_key_t c1_beg;
103         hammer2_key_t c1_end;
104         hammer2_key_t c2_beg;
105         hammer2_key_t c2_end;
106
107         /*
108          * Compare chains.  Overlaps are not supposed to happen and catch
109          * any software issues early we count overlaps as a match.
110          */
111         c1_beg = chain1->bref.key;
112         c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
113         c2_beg = chain2->bref.key;
114         c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
115
116         if (c1_end < c2_beg)    /* fully to the left */
117                 return(-1);
118         if (c1_beg > c2_end)    /* fully to the right */
119                 return(1);
120         return(0);              /* overlap (must not cross edge boundary) */
121 }
122
123 /*
124  * Assert that a chain has no media data associated with it.
125  */
126 static __inline void
127 hammer2_chain_assert_no_data(hammer2_chain_t *chain)
128 {
129         KKASSERT(chain->dio == NULL);
130         if (chain->bref.type != HAMMER2_BREF_TYPE_VOLUME &&
131             chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP &&
132             chain->data) {
133                 panic("hammer2_chain_assert_no_data: chain %p still has data",
134                     chain);
135         }
136 }
137
138 /*
139  * Make a chain visible to the flusher.  The flusher operates using a top-down
140  * recursion based on the ONFLUSH flag.  It locates MODIFIED and UPDATE chains,
141  * flushes them, and updates blocks back to the volume root.
142  *
143  * This routine sets the ONFLUSH flag upward from the triggering chain until
144  * it hits an inode root or the volume root.  Inode chains serve as inflection
145  * points, requiring the flusher to bridge across trees.  Inodes include
146  * regular inodes, PFS roots (pmp->iroot), and the media super root
147  * (spmp->iroot).
148  */
149 void
150 hammer2_chain_setflush(hammer2_chain_t *chain)
151 {
152         hammer2_chain_t *parent;
153
154         if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
155                 hammer2_spin_sh(&chain->core.spin);
156                 while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
157                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
158                         if (chain->bref.type == HAMMER2_BREF_TYPE_INODE)
159                                 break;
160                         if ((parent = chain->parent) == NULL)
161                                 break;
162                         hammer2_spin_sh(&parent->core.spin);
163                         hammer2_spin_unsh(&chain->core.spin);
164                         chain = parent;
165                 }
166                 hammer2_spin_unsh(&chain->core.spin);
167         }
168 }
169
170 /*
171  * Allocate a new disconnected chain element representing the specified
172  * bref.  chain->refs is set to 1 and the passed bref is copied to
173  * chain->bref.  chain->bytes is derived from the bref.
174  *
175  * chain->pmp inherits pmp unless the chain is an inode (other than the
176  * super-root inode).
177  *
178  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
179  */
180 hammer2_chain_t *
181 hammer2_chain_alloc(hammer2_dev_t *hmp, hammer2_pfs_t *pmp,
182                     hammer2_blockref_t *bref)
183 {
184         hammer2_chain_t *chain;
185         u_int bytes;
186
187         /*
188          * Special case - radix of 0 indicates a chain that does not
189          * need a data reference (context is completely embedded in the
190          * bref).
191          */
192         if ((int)(bref->data_off & HAMMER2_OFF_MASK_RADIX))
193                 bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
194         else
195                 bytes = 0;
196
197         atomic_add_long(&hammer2_chain_allocs, 1);
198
199         /*
200          * Construct the appropriate system structure.
201          */
202         switch(bref->type) {
203         case HAMMER2_BREF_TYPE_DIRENT:
204         case HAMMER2_BREF_TYPE_INODE:
205         case HAMMER2_BREF_TYPE_INDIRECT:
206         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
207         case HAMMER2_BREF_TYPE_DATA:
208         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
209                 chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
210                 break;
211         case HAMMER2_BREF_TYPE_VOLUME:
212         case HAMMER2_BREF_TYPE_FREEMAP:
213                 /*
214                  * Only hammer2_chain_bulksnap() calls this function with these
215                  * types.
216                  */
217                 chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
218                 break;
219         default:
220                 chain = NULL;
221                 panic("hammer2_chain_alloc: unrecognized blockref type: %d",
222                       bref->type);
223         }
224
225         /*
226          * Initialize the new chain structure.  pmp must be set to NULL for
227          * chains belonging to the super-root topology of a device mount.
228          */
229         if (pmp == hmp->spmp)
230                 chain->pmp = NULL;
231         else
232                 chain->pmp = pmp;
233
234         chain->hmp = hmp;
235         chain->bref = *bref;
236         chain->bytes = bytes;
237         chain->refs = 1;
238         chain->flags = HAMMER2_CHAIN_ALLOCATED;
239         lockinit(&chain->diolk, "chdio", 0, 0);
240
241         /*
242          * Set the PFS boundary flag if this chain represents a PFS root.
243          */
244         if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
245                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_PFSBOUNDARY);
246         hammer2_chain_core_init(chain);
247
248         return (chain);
249 }
250
251 /*
252  * Initialize a chain's core structure.  This structure used to be allocated
253  * but is now embedded.
254  *
255  * The core is not locked.  No additional refs on the chain are made.
256  * (trans) must not be NULL if (core) is not NULL.
257  */
258 void
259 hammer2_chain_core_init(hammer2_chain_t *chain)
260 {
261         /*
262          * Fresh core under nchain (no multi-homing of ochain's
263          * sub-tree).
264          */
265         RB_INIT(&chain->core.rbtree);   /* live chains */
266         hammer2_mtx_init(&chain->lock, "h2chain");
267 }
268
269 /*
270  * Add a reference to a chain element, preventing its destruction.
271  *
272  * (can be called with spinlock held)
273  */
274 void
275 hammer2_chain_ref(hammer2_chain_t *chain)
276 {
277         if (atomic_fetchadd_int(&chain->refs, 1) == 0) {
278                 /*
279                  * Just flag that the chain was used and should be recycled
280                  * on the LRU if it encounters it later.
281                  */
282                 if (chain->flags & HAMMER2_CHAIN_ONLRU)
283                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
284
285 #if 0
286                 /*
287                  * REMOVED - reduces contention, lru_list is more heuristical
288                  * now.
289                  *
290                  * 0->non-zero transition must ensure that chain is removed
291                  * from the LRU list.
292                  *
293                  * NOTE: Already holding lru_spin here so we cannot call
294                  *       hammer2_chain_ref() to get it off lru_list, do
295                  *       it manually.
296                  */
297                 if (chain->flags & HAMMER2_CHAIN_ONLRU) {
298                         hammer2_pfs_t *pmp = chain->pmp;
299                         hammer2_spin_ex(&pmp->lru_spin);
300                         if (chain->flags & HAMMER2_CHAIN_ONLRU) {
301                                 atomic_add_int(&pmp->lru_count, -1);
302                                 atomic_clear_int(&chain->flags,
303                                                  HAMMER2_CHAIN_ONLRU);
304                                 TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
305                         }
306                         hammer2_spin_unex(&pmp->lru_spin);
307                 }
308 #endif
309         }
310 }
311
312 /*
313  * Ref a locked chain and force the data to be held across an unlock.
314  * Chain must be currently locked.  The user of the chain who desires
315  * to release the hold must call hammer2_chain_lock_unhold() to relock
316  * and unhold the chain, then unlock normally, or may simply call
317  * hammer2_chain_drop_unhold() (which is safer against deadlocks).
318  */
319 void
320 hammer2_chain_ref_hold(hammer2_chain_t *chain)
321 {
322         atomic_add_int(&chain->lockcnt, 1);
323         hammer2_chain_ref(chain);
324 }
325
326 /*
327  * Insert the chain in the core rbtree.
328  *
329  * Normal insertions are placed in the live rbtree.  Insertion of a deleted
330  * chain is a special case used by the flush code that is placed on the
331  * unstaged deleted list to avoid confusing the live view.
332  */
333 #define HAMMER2_CHAIN_INSERT_SPIN       0x0001
334 #define HAMMER2_CHAIN_INSERT_LIVE       0x0002
335 #define HAMMER2_CHAIN_INSERT_RACE       0x0004
336
337 static
338 int
339 hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
340                      int flags, int generation)
341 {
342         hammer2_chain_t *xchain;
343         int error = 0;
344
345         if (flags & HAMMER2_CHAIN_INSERT_SPIN)
346                 hammer2_spin_ex(&parent->core.spin);
347
348         /*
349          * Interlocked by spinlock, check for race
350          */
351         if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
352             parent->core.generation != generation) {
353                 error = HAMMER2_ERROR_EAGAIN;
354                 goto failed;
355         }
356
357         /*
358          * Insert chain
359          */
360         xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
361         KASSERT(xchain == NULL,
362                 ("hammer2_chain_insert: collision %p %p (key=%016jx)",
363                 chain, xchain, chain->bref.key));
364         atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
365         chain->parent = parent;
366         ++parent->core.chain_count;
367         ++parent->core.generation;      /* XXX incs for _get() too, XXX */
368
369         /*
370          * We have to keep track of the effective live-view blockref count
371          * so the create code knows when to push an indirect block.
372          */
373         if (flags & HAMMER2_CHAIN_INSERT_LIVE)
374                 atomic_add_int(&parent->core.live_count, 1);
375 failed:
376         if (flags & HAMMER2_CHAIN_INSERT_SPIN)
377                 hammer2_spin_unex(&parent->core.spin);
378         return error;
379 }
380
381 /*
382  * Drop the caller's reference to the chain.  When the ref count drops to
383  * zero this function will try to disassociate the chain from its parent and
384  * deallocate it, then recursely drop the parent using the implied ref
385  * from the chain's chain->parent.
386  *
387  * Nobody should own chain's mutex on the 1->0 transition, unless this drop
388  * races an acquisition by another cpu.  Therefore we can loop if we are
389  * unable to acquire the mutex, and refs is unlikely to be 1 unless we again
390  * race against another drop.
391  */
392 void
393 hammer2_chain_drop(hammer2_chain_t *chain)
394 {
395         u_int refs;
396
397         KKASSERT(chain->refs > 0);
398
399         while (chain) {
400                 refs = chain->refs;
401                 cpu_ccfence();
402                 KKASSERT(refs > 0);
403
404                 if (refs == 1) {
405                         if (hammer2_mtx_ex_try(&chain->lock) == 0)
406                                 chain = hammer2_chain_lastdrop(chain, 0);
407                         /* retry the same chain, or chain from lastdrop */
408                 } else {
409                         if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
410                                 break;
411                         /* retry the same chain */
412                 }
413                 cpu_pause();
414         }
415 }
416
417 /*
418  * Unhold a held and probably not-locked chain, ensure that the data is
419  * dropped on the 1->0 transition of lockcnt by obtaining an exclusive
420  * lock and then simply unlocking the chain.
421  */
422 void
423 hammer2_chain_unhold(hammer2_chain_t *chain)
424 {
425         u_int lockcnt;
426         int iter = 0;
427
428         for (;;) {
429                 lockcnt = chain->lockcnt;
430                 cpu_ccfence();
431                 if (lockcnt > 1) {
432                         if (atomic_cmpset_int(&chain->lockcnt,
433                                               lockcnt, lockcnt - 1)) {
434                                 break;
435                         }
436                 } else if (hammer2_mtx_ex_try(&chain->lock) == 0) {
437                         hammer2_chain_unlock(chain);
438                         break;
439                 } else {
440                         /*
441                          * This situation can easily occur on SMP due to
442                          * the gap inbetween the 1->0 transition and the
443                          * final unlock.  We cannot safely block on the
444                          * mutex because lockcnt might go above 1.
445                          *
446                          * XXX Sleep for one tick if it takes too long.
447                          */
448                         if (++iter > 1000) {
449                                 if (iter > 1000 + hz) {
450                                         kprintf("hammer2: h2race1 %p\n", chain);
451                                         iter = 1000;
452                                 }
453                                 tsleep(&iter, 0, "h2race1", 1);
454                         }
455                         cpu_pause();
456                 }
457         }
458 }
459
460 void
461 hammer2_chain_drop_unhold(hammer2_chain_t *chain)
462 {
463         hammer2_chain_unhold(chain);
464         hammer2_chain_drop(chain);
465 }
466
467 void
468 hammer2_chain_rehold(hammer2_chain_t *chain)
469 {
470         hammer2_chain_lock(chain, HAMMER2_RESOLVE_SHARED);
471         atomic_add_int(&chain->lockcnt, 1);
472         hammer2_chain_unlock(chain);
473 }
474
475 /*
476  * Handles the (potential) last drop of chain->refs from 1->0.  Called with
477  * the mutex exclusively locked, refs == 1, and lockcnt 0.  SMP races are
478  * possible against refs and lockcnt.  We must dispose of the mutex on chain.
479  *
480  * This function returns an unlocked chain for recursive drop or NULL.  It
481  * can return the same chain if it determines it has raced another ref.
482  *
483  * --
484  *
485  * When two chains need to be recursively dropped we use the chain we
486  * would otherwise free to placehold the additional chain.  It's a bit
487  * convoluted but we can't just recurse without potentially blowing out
488  * the kernel stack.
489  *
490  * The chain cannot be freed if it has any children.
491  * The chain cannot be freed if flagged MODIFIED unless we can dispose of it.
492  * The chain cannot be freed if flagged UPDATE unless we can dispose of it.
493  * Any dedup registration can remain intact.
494  *
495  * The core spinlock is allowed to nest child-to-parent (not parent-to-child).
496  */
497 static
498 hammer2_chain_t *
499 hammer2_chain_lastdrop(hammer2_chain_t *chain, int depth)
500 {
501         hammer2_pfs_t *pmp;
502         hammer2_dev_t *hmp;
503         hammer2_chain_t *parent;
504         hammer2_chain_t *rdrop;
505
506         /*
507          * We need chain's spinlock to interlock the sub-tree test.
508          * We already have chain's mutex, protecting chain->parent.
509          *
510          * Remember that chain->refs can be in flux.
511          */
512         hammer2_spin_ex(&chain->core.spin);
513
514         if (chain->parent != NULL) {
515                 /*
516                  * If the chain has a parent the UPDATE bit prevents scrapping
517                  * as the chain is needed to properly flush the parent.  Try
518                  * to complete the 1->0 transition and return NULL.  Retry
519                  * (return chain) if we are unable to complete the 1->0
520                  * transition, else return NULL (nothing more to do).
521                  *
522                  * If the chain has a parent the MODIFIED bit prevents
523                  * scrapping.
524                  *
525                  * Chains with UPDATE/MODIFIED are *not* put on the LRU list!
526                  */
527                 if (chain->flags & (HAMMER2_CHAIN_UPDATE |
528                                     HAMMER2_CHAIN_MODIFIED)) {
529                         if (atomic_cmpset_int(&chain->refs, 1, 0)) {
530                                 hammer2_spin_unex(&chain->core.spin);
531                                 hammer2_chain_assert_no_data(chain);
532                                 hammer2_mtx_unlock(&chain->lock);
533                                 chain = NULL;
534                         } else {
535                                 hammer2_spin_unex(&chain->core.spin);
536                                 hammer2_mtx_unlock(&chain->lock);
537                         }
538                         return (chain);
539                 }
540                 /* spinlock still held */
541         } else if (chain->bref.type == HAMMER2_BREF_TYPE_VOLUME ||
542                    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP) {
543                 /*
544                  * Retain the static vchain and fchain.  Clear bits that
545                  * are not relevant.  Do not clear the MODIFIED bit,
546                  * and certainly do not put it on the delayed-flush queue.
547                  */
548                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
549         } else {
550                 /*
551                  * The chain has no parent and can be flagged for destruction.
552                  * Since it has no parent, UPDATE can also be cleared.
553                  */
554                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
555                 if (chain->flags & HAMMER2_CHAIN_UPDATE)
556                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
557
558                 /*
559                  * If the chain has children we must propagate the DESTROY
560                  * flag downward and rip the disconnected topology apart.
561                  * This is accomplished by calling hammer2_flush() on the
562                  * chain.
563                  *
564                  * Any dedup is already handled by the underlying DIO, so
565                  * we do not have to specifically flush it here.
566                  */
567                 if (chain->core.chain_count) {
568                         hammer2_spin_unex(&chain->core.spin);
569                         hammer2_flush(chain, HAMMER2_FLUSH_TOP |
570                                              HAMMER2_FLUSH_ALL);
571                         hammer2_mtx_unlock(&chain->lock);
572
573                         return(chain);  /* retry drop */
574                 }
575
576                 /*
577                  * Otherwise we can scrap the MODIFIED bit if it is set,
578                  * and continue along the freeing path.
579                  *
580                  * Be sure to clean-out any dedup bits.  Without a parent
581                  * this chain will no longer be visible to the flush code.
582                  * Easy check data_off to avoid the volume root.
583                  */
584                 if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
585                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
586                         atomic_add_long(&hammer2_count_modified_chains, -1);
587                         if (chain->pmp)
588                                 hammer2_pfs_memory_wakeup(chain->pmp, -1);
589                 }
590                 /* spinlock still held */
591         }
592
593         /* spinlock still held */
594
595         /*
596          * If any children exist we must leave the chain intact with refs == 0.
597          * They exist because chains are retained below us which have refs or
598          * may require flushing.
599          *
600          * Retry (return chain) if we fail to transition the refs to 0, else
601          * return NULL indication nothing more to do.
602          *
603          * Chains with children are NOT put on the LRU list.
604          */
605         if (chain->core.chain_count) {
606                 if (atomic_cmpset_int(&chain->refs, 1, 0)) {
607                         hammer2_spin_unex(&chain->core.spin);
608                         hammer2_chain_assert_no_data(chain);
609                         hammer2_mtx_unlock(&chain->lock);
610                         chain = NULL;
611                 } else {
612                         hammer2_spin_unex(&chain->core.spin);
613                         hammer2_mtx_unlock(&chain->lock);
614                 }
615                 return (chain);
616         }
617         /* spinlock still held */
618         /* no chains left under us */
619
620         /*
621          * chain->core has no children left so no accessors can get to our
622          * chain from there.  Now we have to lock the parent core to interlock
623          * remaining possible accessors that might bump chain's refs before
624          * we can safely drop chain's refs with intent to free the chain.
625          */
626         hmp = chain->hmp;
627         pmp = chain->pmp;       /* can be NULL */
628         rdrop = NULL;
629
630         parent = chain->parent;
631
632         /*
633          * WARNING! chain's spin lock is still held here, and other spinlocks
634          *          will be acquired and released in the code below.  We
635          *          cannot be making fancy procedure calls!
636          */
637
638         /*
639          * We can cache the chain if it is associated with a pmp
640          * and not flagged as being destroyed or requesting a full
641          * release.  In this situation the chain is not removed
642          * from its parent, i.e. it can still be looked up.
643          *
644          * We intentionally do not cache DATA chains because these
645          * were likely used to load data into the logical buffer cache
646          * and will not be accessed again for some time.
647          */
648         if ((chain->flags &
649              (HAMMER2_CHAIN_DESTROY | HAMMER2_CHAIN_RELEASE)) == 0 &&
650             chain->pmp &&
651             chain->bref.type != HAMMER2_BREF_TYPE_DATA) {
652                 if (parent)
653                         hammer2_spin_ex(&parent->core.spin);
654                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
655                         /*
656                          * 1->0 transition failed, retry.  Do not drop
657                          * the chain's data yet!
658                          */
659                         if (parent)
660                                 hammer2_spin_unex(&parent->core.spin);
661                         hammer2_spin_unex(&chain->core.spin);
662                         hammer2_mtx_unlock(&chain->lock);
663
664                         return(chain);
665                 }
666
667                 /*
668                  * Success
669                  */
670                 hammer2_chain_assert_no_data(chain);
671
672                 /*
673                  * Make sure we are on the LRU list, clean up excessive
674                  * LRU entries.  We can only really drop one but there might
675                  * be other entries that we can remove from the lru_list
676                  * without dropping.
677                  *
678                  * NOTE: HAMMER2_CHAIN_ONLRU may only be safely set when
679                  *       chain->core.spin AND pmp->lru_spin are held, but
680                  *       can be safely cleared only holding pmp->lru_spin.
681                  */
682                 if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
683                         hammer2_spin_ex(&pmp->lru_spin);
684                         if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
685                                 atomic_set_int(&chain->flags,
686                                                HAMMER2_CHAIN_ONLRU);
687                                 TAILQ_INSERT_TAIL(&pmp->lru_list,
688                                                   chain, lru_node);
689                                 atomic_add_int(&pmp->lru_count, 1);
690                         }
691                         if (pmp->lru_count < HAMMER2_LRU_LIMIT)
692                                 depth = 1;      /* disable lru_list flush */
693                         hammer2_spin_unex(&pmp->lru_spin);
694                 } else {
695                         /* disable lru flush */
696                         depth = 1;
697                 }
698
699                 if (parent) {
700                         hammer2_spin_unex(&parent->core.spin);
701                         parent = NULL;  /* safety */
702                 }
703                 hammer2_spin_unex(&chain->core.spin);
704                 hammer2_mtx_unlock(&chain->lock);
705
706                 /*
707                  * lru_list hysteresis (see above for depth overrides).
708                  * Note that depth also prevents excessive lastdrop recursion.
709                  */
710                 if (depth == 0)
711                         hammer2_chain_lru_flush(pmp);
712
713                 return NULL;
714                 /* NOT REACHED */
715         }
716
717         /*
718          * Make sure we are not on the LRU list.
719          */
720         if (chain->flags & HAMMER2_CHAIN_ONLRU) {
721                 hammer2_spin_ex(&pmp->lru_spin);
722                 if (chain->flags & HAMMER2_CHAIN_ONLRU) {
723                         atomic_add_int(&pmp->lru_count, -1);
724                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
725                         TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
726                 }
727                 hammer2_spin_unex(&pmp->lru_spin);
728         }
729
730         /*
731          * Spinlock the parent and try to drop the last ref on chain.
732          * On success determine if we should dispose of the chain
733          * (remove the chain from its parent, etc).
734          *
735          * (normal core locks are top-down recursive but we define
736          * core spinlocks as bottom-up recursive, so this is safe).
737          */
738         if (parent) {
739                 hammer2_spin_ex(&parent->core.spin);
740                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
741                         /*
742                          * 1->0 transition failed, retry.
743                          */
744                         hammer2_spin_unex(&parent->core.spin);
745                         hammer2_spin_unex(&chain->core.spin);
746                         hammer2_mtx_unlock(&chain->lock);
747
748                         return(chain);
749                 }
750
751                 /*
752                  * 1->0 transition successful, parent spin held to prevent
753                  * new lookups, chain spinlock held to protect parent field.
754                  * Remove chain from the parent.
755                  *
756                  * If the chain is being removed from the parent's btree but
757                  * is not bmapped, we have to adjust live_count downward.  If
758                  * it is bmapped then the blockref is retained in the parent
759                  * as is its associated live_count.  This case can occur when
760                  * a chain added to the topology is unable to flush and is
761                  * then later deleted.
762                  */
763                 if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
764                         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) &&
765                             (chain->flags & HAMMER2_CHAIN_BMAPPED) == 0) {
766                                 atomic_add_int(&parent->core.live_count, -1);
767                         }
768                         RB_REMOVE(hammer2_chain_tree,
769                                   &parent->core.rbtree, chain);
770                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
771                         --parent->core.chain_count;
772                         chain->parent = NULL;
773                 }
774
775                 /*
776                  * If our chain was the last chain in the parent's core the
777                  * core is now empty and its parent might have to be
778                  * re-dropped if it has 0 refs.
779                  */
780                 if (parent->core.chain_count == 0) {
781                         rdrop = parent;
782                         atomic_add_int(&rdrop->refs, 1);
783                         /*
784                         if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0)
785                                 rdrop = NULL;
786                         */
787                 }
788                 hammer2_spin_unex(&parent->core.spin);
789                 parent = NULL;  /* safety */
790                 /* FALL THROUGH */
791         } else {
792                 /*
793                  * No-parent case.
794                  */
795                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
796                         /*
797                          * 1->0 transition failed, retry.
798                          */
799                         hammer2_spin_unex(&parent->core.spin);
800                         hammer2_spin_unex(&chain->core.spin);
801                         hammer2_mtx_unlock(&chain->lock);
802
803                         return(chain);
804                 }
805         }
806
807         /*
808          * Successful 1->0 transition, no parent, no children... no way for
809          * anyone to ref this chain any more.  We can clean-up and free it.
810          *
811          * We still have the core spinlock, and core's chain_count is 0.
812          * Any parent spinlock is gone.
813          */
814         hammer2_spin_unex(&chain->core.spin);
815         hammer2_chain_assert_no_data(chain);
816         hammer2_mtx_unlock(&chain->lock);
817         KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
818                  chain->core.chain_count == 0);
819
820         /*
821          * All locks are gone, no pointers remain to the chain, finish
822          * freeing it.
823          */
824         KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
825                                   HAMMER2_CHAIN_MODIFIED)) == 0);
826
827         /*
828          * Once chain resources are gone we can use the now dead chain
829          * structure to placehold what might otherwise require a recursive
830          * drop, because we have potentially two things to drop and can only
831          * return one directly.
832          */
833         if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
834                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ALLOCATED);
835                 chain->hmp = NULL;
836                 kfree(chain, hmp->mchain);
837         }
838
839         /*
840          * Possible chaining loop when parent re-drop needed.
841          */
842         return(rdrop);
843 }
844
845 /*
846  * Heuristical flush of the LRU, try to reduce the number of entries
847  * on the LRU to (HAMMER2_LRU_LIMIT * 2 / 3).  This procedure is called
848  * only when lru_count exceeds HAMMER2_LRU_LIMIT.
849  */
850 static
851 void
852 hammer2_chain_lru_flush(hammer2_pfs_t *pmp)
853 {
854         hammer2_chain_t *chain;
855
856 again:
857         chain = NULL;
858         hammer2_spin_ex(&pmp->lru_spin);
859         while (pmp->lru_count > HAMMER2_LRU_LIMIT * 2 / 3) {
860                 /*
861                  * Pick a chain off the lru_list, just recycle it quickly
862                  * if LRUHINT is set (the chain was ref'd but left on
863                  * the lru_list, so cycle to the end).
864                  */
865                 chain = TAILQ_FIRST(&pmp->lru_list);
866                 TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
867
868                 if (chain->flags & HAMMER2_CHAIN_LRUHINT) {
869                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
870                         TAILQ_INSERT_TAIL(&pmp->lru_list, chain, lru_node);
871                         chain = NULL;
872                         continue;
873                 }
874
875                 /*
876                  * Ok, we are off the LRU.  We must adjust refs before we
877                  * can safely clear the ONLRU flag.
878                  */
879                 atomic_add_int(&pmp->lru_count, -1);
880                 if (atomic_cmpset_int(&chain->refs, 0, 1)) {
881                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
882                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
883                         break;
884                 }
885                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
886                 chain = NULL;
887         }
888         hammer2_spin_unex(&pmp->lru_spin);
889         if (chain == NULL)
890                 return;
891
892         /*
893          * If we picked a chain off the lru list we may be able to lastdrop
894          * it.  Use a depth of 1 to prevent excessive lastdrop recursion.
895          */
896         while (chain) {
897                 u_int refs;
898
899                 refs = chain->refs;
900                 cpu_ccfence();
901                 KKASSERT(refs > 0);
902
903                 if (refs == 1) {
904                         if (hammer2_mtx_ex_try(&chain->lock) == 0)
905                                 chain = hammer2_chain_lastdrop(chain, 1);
906                         /* retry the same chain, or chain from lastdrop */
907                 } else {
908                         if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
909                                 break;
910                         /* retry the same chain */
911                 }
912                 cpu_pause();
913         }
914         goto again;
915 }
916
917 /*
918  * On last lock release.
919  */
920 static hammer2_io_t *
921 hammer2_chain_drop_data(hammer2_chain_t *chain)
922 {
923         hammer2_io_t *dio;
924
925         if ((dio = chain->dio) != NULL) {
926                 chain->dio = NULL;
927                 chain->data = NULL;
928         } else {
929                 switch(chain->bref.type) {
930                 case HAMMER2_BREF_TYPE_VOLUME:
931                 case HAMMER2_BREF_TYPE_FREEMAP:
932                         break;
933                 default:
934                         if (chain->data != NULL) {
935                                 hammer2_spin_unex(&chain->core.spin);
936                                 panic("chain data not null: "
937                                       "chain %p bref %016jx.%02x "
938                                       "refs %d parent %p dio %p data %p",
939                                       chain, chain->bref.data_off,
940                                       chain->bref.type, chain->refs,
941                                       chain->parent,
942                                       chain->dio, chain->data);
943                         }
944                         KKASSERT(chain->data == NULL);
945                         break;
946                 }
947         }
948         return dio;
949 }
950
951 /*
952  * Lock a referenced chain element, acquiring its data with I/O if necessary,
953  * and specify how you would like the data to be resolved.
954  *
955  * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
956  *
957  * The lock is allowed to recurse, multiple locking ops will aggregate
958  * the requested resolve types.  Once data is assigned it will not be
959  * removed until the last unlock.
960  *
961  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
962  *                         (typically used to avoid device/logical buffer
963  *                          aliasing for data)
964  *
965  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
966  *                         the INITIAL-create state (indirect blocks only).
967  *
968  *                         Do not resolve data elements for DATA chains.
969  *                         (typically used to avoid device/logical buffer
970  *                          aliasing for data)
971  *
972  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
973  *
974  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
975  *                         it will be locked exclusive.
976  *
977  * HAMMER2_RESOLVE_NONBLOCK- (flag) The chain is locked non-blocking.  If
978  *                         the lock fails, EAGAIN is returned.
979  *
980  * NOTE: Embedded elements (volume header, inodes) are always resolved
981  *       regardless.
982  *
983  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
984  *       element will instantiate and zero its buffer, and flush it on
985  *       release.
986  *
987  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
988  *       so as not to instantiate a device buffer, which could alias against
989  *       a logical file buffer.  However, if ALWAYS is specified the
990  *       device buffer will be instantiated anyway.
991  *
992  * NOTE: The return value is always 0 unless NONBLOCK is specified, in which
993  *       case it can be either 0 or EAGAIN.
994  *
995  * WARNING! This function blocks on I/O if data needs to be fetched.  This
996  *          blocking can run concurrent with other compatible lock holders
997  *          who do not need data returning.  The lock is not upgraded to
998  *          exclusive during a data fetch, a separate bit is used to
999  *          interlock I/O.  However, an exclusive lock holder can still count
1000  *          on being interlocked against an I/O fetch managed by a shared
1001  *          lock holder.
1002  */
1003 int
1004 hammer2_chain_lock(hammer2_chain_t *chain, int how)
1005 {
1006         KKASSERT(chain->refs > 0);
1007
1008         if (how & HAMMER2_RESOLVE_NONBLOCK) {
1009                 /*
1010                  * We still have to bump lockcnt before acquiring the lock,
1011                  * even for non-blocking operation, because the unlock code
1012                  * live-loops on lockcnt == 1 when dropping the last lock.
1013                  *
1014                  * If the non-blocking operation fails we have to use an
1015                  * unhold sequence to undo the mess.
1016                  *
1017                  * NOTE: LOCKAGAIN must always succeed without blocking,
1018                  *       even if NONBLOCK is specified.
1019                  */
1020                 atomic_add_int(&chain->lockcnt, 1);
1021                 if (how & HAMMER2_RESOLVE_SHARED) {
1022                         if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1023                                 hammer2_mtx_sh_again(&chain->lock);
1024                         } else {
1025                                 if (hammer2_mtx_sh_try(&chain->lock) != 0) {
1026                                         hammer2_chain_unhold(chain);
1027                                         return EAGAIN;
1028                                 }
1029                         }
1030                 } else {
1031                         if (hammer2_mtx_ex_try(&chain->lock) != 0) {
1032                                 hammer2_chain_unhold(chain);
1033                                 return EAGAIN;
1034                         }
1035                 }
1036         } else {
1037                 /*
1038                  * Get the appropriate lock.  If LOCKAGAIN is flagged with
1039                  * SHARED the caller expects a shared lock to already be
1040                  * present and we are giving it another ref.  This case must
1041                  * importantly not block if there is a pending exclusive lock
1042                  * request.
1043                  */
1044                 atomic_add_int(&chain->lockcnt, 1);
1045                 if (how & HAMMER2_RESOLVE_SHARED) {
1046                         if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1047                                 hammer2_mtx_sh_again(&chain->lock);
1048                         } else {
1049                                 hammer2_mtx_sh(&chain->lock);
1050                         }
1051                 } else {
1052                         hammer2_mtx_ex(&chain->lock);
1053                 }
1054         }
1055
1056         /*
1057          * If we already have a valid data pointer make sure the data is
1058          * synchronized to the current cpu, and then no further action is
1059          * necessary.
1060          */
1061         if (chain->data) {
1062                 if (chain->dio)
1063                         hammer2_io_bkvasync(chain->dio);
1064                 return 0;
1065         }
1066
1067         /*
1068          * Do we have to resolve the data?  This is generally only
1069          * applicable to HAMMER2_BREF_TYPE_DATA which is special-cased.
1070          * Other BREF types expects the data to be there.
1071          */
1072         switch(how & HAMMER2_RESOLVE_MASK) {
1073         case HAMMER2_RESOLVE_NEVER:
1074                 return 0;
1075         case HAMMER2_RESOLVE_MAYBE:
1076                 if (chain->flags & HAMMER2_CHAIN_INITIAL)
1077                         return 0;
1078                 if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
1079                         return 0;
1080 #if 0
1081                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
1082                         return 0;
1083                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
1084                         return 0;
1085 #endif
1086                 /* fall through */
1087         case HAMMER2_RESOLVE_ALWAYS:
1088         default:
1089                 break;
1090         }
1091
1092         /*
1093          * Caller requires data
1094          */
1095         hammer2_chain_load_data(chain);
1096
1097         return 0;
1098 }
1099
1100 /*
1101  * Lock the chain, retain the hold, and drop the data persistence count.
1102  * The data should remain valid because we never transitioned lockcnt
1103  * through 0.
1104  */
1105 void
1106 hammer2_chain_lock_unhold(hammer2_chain_t *chain, int how)
1107 {
1108         hammer2_chain_lock(chain, how);
1109         atomic_add_int(&chain->lockcnt, -1);
1110 }
1111
1112 #if 0
1113 /*
1114  * Downgrade an exclusive chain lock to a shared chain lock.
1115  *
1116  * NOTE: There is no upgrade equivalent due to the ease of
1117  *       deadlocks in that direction.
1118  */
1119 void
1120 hammer2_chain_lock_downgrade(hammer2_chain_t *chain)
1121 {
1122         hammer2_mtx_downgrade(&chain->lock);
1123 }
1124 #endif
1125
1126 /*
1127  * Issue I/O and install chain->data.  Caller must hold a chain lock, lock
1128  * may be of any type.
1129  *
1130  * Once chain->data is set it cannot be disposed of until all locks are
1131  * released.
1132  *
1133  * Make sure the data is synchronized to the current cpu.
1134  */
1135 void
1136 hammer2_chain_load_data(hammer2_chain_t *chain)
1137 {
1138         hammer2_blockref_t *bref;
1139         hammer2_dev_t *hmp;
1140         hammer2_io_t *dio;
1141         char *bdata;
1142         int error;
1143
1144         /*
1145          * Degenerate case, data already present, or chain has no media
1146          * reference to load.
1147          */
1148         KKASSERT(chain->lock.mtx_lock & MTX_MASK);
1149         if (chain->data) {
1150                 if (chain->dio)
1151                         hammer2_io_bkvasync(chain->dio);
1152                 return;
1153         }
1154         if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0)
1155                 return;
1156
1157         hmp = chain->hmp;
1158         KKASSERT(hmp != NULL);
1159
1160         /*
1161          * Gain the IOINPROG bit, interlocked block.
1162          */
1163         for (;;) {
1164                 u_int oflags;
1165                 u_int nflags;
1166
1167                 oflags = chain->flags;
1168                 cpu_ccfence();
1169                 if (oflags & HAMMER2_CHAIN_IOINPROG) {
1170                         nflags = oflags | HAMMER2_CHAIN_IOSIGNAL;
1171                         tsleep_interlock(&chain->flags, 0);
1172                         if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1173                                 tsleep(&chain->flags, PINTERLOCKED,
1174                                         "h2iocw", 0);
1175                         }
1176                         /* retry */
1177                 } else {
1178                         nflags = oflags | HAMMER2_CHAIN_IOINPROG;
1179                         if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1180                                 break;
1181                         }
1182                         /* retry */
1183                 }
1184         }
1185
1186         /*
1187          * We own CHAIN_IOINPROG
1188          *
1189          * Degenerate case if we raced another load.
1190          */
1191         if (chain->data) {
1192                 if (chain->dio)
1193                         hammer2_io_bkvasync(chain->dio);
1194                 goto done;
1195         }
1196
1197         /*
1198          * We must resolve to a device buffer, either by issuing I/O or
1199          * by creating a zero-fill element.  We do not mark the buffer
1200          * dirty when creating a zero-fill element (the hammer2_chain_modify()
1201          * API must still be used to do that).
1202          *
1203          * The device buffer is variable-sized in powers of 2 down
1204          * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
1205          * chunk always contains buffers of the same size. (XXX)
1206          *
1207          * The minimum physical IO size may be larger than the variable
1208          * block size.
1209          */
1210         bref = &chain->bref;
1211
1212         /*
1213          * The getblk() optimization can only be used on newly created
1214          * elements if the physical block size matches the request.
1215          */
1216         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1217                 error = hammer2_io_new(hmp, bref->type,
1218                                        bref->data_off, chain->bytes,
1219                                        &chain->dio);
1220         } else {
1221                 error = hammer2_io_bread(hmp, bref->type,
1222                                          bref->data_off, chain->bytes,
1223                                          &chain->dio);
1224                 hammer2_adjreadcounter(chain->bref.type, chain->bytes);
1225         }
1226         if (error) {
1227                 chain->error = HAMMER2_ERROR_EIO;
1228                 kprintf("hammer2_chain_load_data: I/O error %016jx: %d\n",
1229                         (intmax_t)bref->data_off, error);
1230                 hammer2_io_bqrelse(&chain->dio);
1231                 goto done;
1232         }
1233         chain->error = 0;
1234
1235         /*
1236          * This isn't perfect and can be ignored on OSs which do not have
1237          * an indication as to whether a buffer is coming from cache or
1238          * if I/O was actually issued for the read.  TESTEDGOOD will work
1239          * pretty well without the B_IOISSUED logic because chains are
1240          * cached, but in that situation (without B_IOISSUED) it will not
1241          * detect whether a re-read via I/O is corrupted verses the original
1242          * read.
1243          *
1244          * We can't re-run the CRC on every fresh lock.  That would be
1245          * insanely expensive.
1246          *
1247          * If the underlying kernel buffer covers the entire chain we can
1248          * use the B_IOISSUED indication to determine if we have to re-run
1249          * the CRC on chain data for chains that managed to stay cached
1250          * across the kernel disposal of the original buffer.
1251          */
1252         if ((dio = chain->dio) != NULL && dio->bp) {
1253                 struct buf *bp = dio->bp;
1254
1255                 if (dio->psize == chain->bytes &&
1256                     (bp->b_flags & B_IOISSUED)) {
1257                         atomic_clear_int(&chain->flags,
1258                                          HAMMER2_CHAIN_TESTEDGOOD);
1259                         bp->b_flags &= ~B_IOISSUED;
1260                 }
1261         }
1262
1263         /*
1264          * NOTE: A locked chain's data cannot be modified without first
1265          *       calling hammer2_chain_modify().
1266          */
1267
1268         /*
1269          * NOTE: hammer2_io_data() call issues bkvasync()
1270          */
1271         bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
1272
1273         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1274                 /*
1275                  * Clear INITIAL.  In this case we used io_new() and the
1276                  * buffer has been zero'd and marked dirty.
1277                  *
1278                  * CHAIN_MODIFIED has not been set yet, and we leave it
1279                  * that way for now.  Set a temporary CHAIN_NOTTESTED flag
1280                  * to prevent hammer2_chain_testcheck() from trying to match
1281                  * a check code that has not yet been generated.  This bit
1282                  * should NOT end up on the actual media.
1283                  */
1284                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1285                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_NOTTESTED);
1286         } else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1287                 /*
1288                  * check data not currently synchronized due to
1289                  * modification.  XXX assumes data stays in the buffer
1290                  * cache, which might not be true (need biodep on flush
1291                  * to calculate crc?  or simple crc?).
1292                  */
1293         } else if ((chain->flags & HAMMER2_CHAIN_TESTEDGOOD) == 0) {
1294                 if (hammer2_chain_testcheck(chain, bdata) == 0) {
1295                         chain->error = HAMMER2_ERROR_CHECK;
1296                 } else {
1297                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_TESTEDGOOD);
1298                 }
1299         }
1300
1301         /*
1302          * Setup the data pointer, either pointing it to an embedded data
1303          * structure and copying the data from the buffer, or pointing it
1304          * into the buffer.
1305          *
1306          * The buffer is not retained when copying to an embedded data
1307          * structure in order to avoid potential deadlocks or recursions
1308          * on the same physical buffer.
1309          *
1310          * WARNING! Other threads can start using the data the instant we
1311          *          set chain->data non-NULL.
1312          */
1313         switch (bref->type) {
1314         case HAMMER2_BREF_TYPE_VOLUME:
1315         case HAMMER2_BREF_TYPE_FREEMAP:
1316                 /*
1317                  * Copy data from bp to embedded buffer
1318                  */
1319                 panic("hammer2_chain_load_data: unresolved volume header");
1320                 break;
1321         case HAMMER2_BREF_TYPE_DIRENT:
1322                 KKASSERT(chain->bytes != 0);
1323                 /* fall through */
1324         case HAMMER2_BREF_TYPE_INODE:
1325         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1326         case HAMMER2_BREF_TYPE_INDIRECT:
1327         case HAMMER2_BREF_TYPE_DATA:
1328         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1329         default:
1330                 /*
1331                  * Point data at the device buffer and leave dio intact.
1332                  */
1333                 chain->data = (void *)bdata;
1334                 break;
1335         }
1336
1337         /*
1338          * Release HAMMER2_CHAIN_IOINPROG and signal waiters if requested.
1339          */
1340 done:
1341         for (;;) {
1342                 u_int oflags;
1343                 u_int nflags;
1344
1345                 oflags = chain->flags;
1346                 nflags = oflags & ~(HAMMER2_CHAIN_IOINPROG |
1347                                     HAMMER2_CHAIN_IOSIGNAL);
1348                 KKASSERT(oflags & HAMMER2_CHAIN_IOINPROG);
1349                 if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1350                         if (oflags & HAMMER2_CHAIN_IOSIGNAL)
1351                                 wakeup(&chain->flags);
1352                         break;
1353                 }
1354         }
1355 }
1356
1357 /*
1358  * Unlock and deref a chain element.
1359  *
1360  * Remember that the presence of children under chain prevent the chain's
1361  * destruction but do not add additional references, so the dio will still
1362  * be dropped.
1363  */
1364 void
1365 hammer2_chain_unlock(hammer2_chain_t *chain)
1366 {
1367         hammer2_io_t *dio;
1368         u_int lockcnt;
1369         int iter = 0;
1370
1371         /*
1372          * If multiple locks are present (or being attempted) on this
1373          * particular chain we can just unlock, drop refs, and return.
1374          *
1375          * Otherwise fall-through on the 1->0 transition.
1376          */
1377         for (;;) {
1378                 lockcnt = chain->lockcnt;
1379                 KKASSERT(lockcnt > 0);
1380                 cpu_ccfence();
1381                 if (lockcnt > 1) {
1382                         if (atomic_cmpset_int(&chain->lockcnt,
1383                                               lockcnt, lockcnt - 1)) {
1384                                 hammer2_mtx_unlock(&chain->lock);
1385                                 return;
1386                         }
1387                 } else if (hammer2_mtx_upgrade_try(&chain->lock) == 0) {
1388                         /* while holding the mutex exclusively */
1389                         if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
1390                                 break;
1391                 } else {
1392                         /*
1393                          * This situation can easily occur on SMP due to
1394                          * the gap inbetween the 1->0 transition and the
1395                          * final unlock.  We cannot safely block on the
1396                          * mutex because lockcnt might go above 1.
1397                          *
1398                          * XXX Sleep for one tick if it takes too long.
1399                          */
1400                         if (++iter > 1000) {
1401                                 if (iter > 1000 + hz) {
1402                                         kprintf("hammer2: h2race2 %p\n", chain);
1403                                         iter = 1000;
1404                                 }
1405                                 tsleep(&iter, 0, "h2race2", 1);
1406                         }
1407                         cpu_pause();
1408                 }
1409                 /* retry */
1410         }
1411
1412         /*
1413          * Last unlock / mutex upgraded to exclusive.  Drop the data
1414          * reference.
1415          */
1416         dio = hammer2_chain_drop_data(chain);
1417         if (dio)
1418                 hammer2_io_bqrelse(&dio);
1419         hammer2_mtx_unlock(&chain->lock);
1420 }
1421
1422 /*
1423  * Unlock and hold chain data intact
1424  */
1425 void
1426 hammer2_chain_unlock_hold(hammer2_chain_t *chain)
1427 {
1428         atomic_add_int(&chain->lockcnt, 1);
1429         hammer2_chain_unlock(chain);
1430 }
1431
1432 /*
1433  * Helper to obtain the blockref[] array base and count for a chain.
1434  *
1435  * XXX Not widely used yet, various use cases need to be validated and
1436  *     converted to use this function.
1437  */
1438 static
1439 hammer2_blockref_t *
1440 hammer2_chain_base_and_count(hammer2_chain_t *parent, int *countp)
1441 {
1442         hammer2_blockref_t *base;
1443         int count;
1444
1445         if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1446                 base = NULL;
1447
1448                 switch(parent->bref.type) {
1449                 case HAMMER2_BREF_TYPE_INODE:
1450                         count = HAMMER2_SET_COUNT;
1451                         break;
1452                 case HAMMER2_BREF_TYPE_INDIRECT:
1453                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1454                         count = parent->bytes / sizeof(hammer2_blockref_t);
1455                         break;
1456                 case HAMMER2_BREF_TYPE_VOLUME:
1457                         count = HAMMER2_SET_COUNT;
1458                         break;
1459                 case HAMMER2_BREF_TYPE_FREEMAP:
1460                         count = HAMMER2_SET_COUNT;
1461                         break;
1462                 default:
1463                         panic("hammer2_chain_base_and_count: "
1464                               "unrecognized blockref type: %d",
1465                               parent->bref.type);
1466                         count = 0;
1467                         break;
1468                 }
1469         } else {
1470                 switch(parent->bref.type) {
1471                 case HAMMER2_BREF_TYPE_INODE:
1472                         base = &parent->data->ipdata.u.blockset.blockref[0];
1473                         count = HAMMER2_SET_COUNT;
1474                         break;
1475                 case HAMMER2_BREF_TYPE_INDIRECT:
1476                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1477                         base = &parent->data->npdata[0];
1478                         count = parent->bytes / sizeof(hammer2_blockref_t);
1479                         break;
1480                 case HAMMER2_BREF_TYPE_VOLUME:
1481                         base = &parent->data->voldata.
1482                                         sroot_blockset.blockref[0];
1483                         count = HAMMER2_SET_COUNT;
1484                         break;
1485                 case HAMMER2_BREF_TYPE_FREEMAP:
1486                         base = &parent->data->blkset.blockref[0];
1487                         count = HAMMER2_SET_COUNT;
1488                         break;
1489                 default:
1490                         panic("hammer2_chain_base_and_count: "
1491                               "unrecognized blockref type: %d",
1492                               parent->bref.type);
1493                         count = 0;
1494                         break;
1495                 }
1496         }
1497         *countp = count;
1498
1499         return base;
1500 }
1501
1502 /*
1503  * This counts the number of live blockrefs in a block array and
1504  * also calculates the point at which all remaining blockrefs are empty.
1505  * This routine can only be called on a live chain.
1506  *
1507  * Caller holds the chain locked, but possibly with a shared lock.  We
1508  * must use an exclusive spinlock to prevent corruption.
1509  *
1510  * NOTE: Flag is not set until after the count is complete, allowing
1511  *       callers to test the flag without holding the spinlock.
1512  *
1513  * NOTE: If base is NULL the related chain is still in the INITIAL
1514  *       state and there are no blockrefs to count.
1515  *
1516  * NOTE: live_count may already have some counts accumulated due to
1517  *       creation and deletion and could even be initially negative.
1518  */
1519 void
1520 hammer2_chain_countbrefs(hammer2_chain_t *chain,
1521                          hammer2_blockref_t *base, int count)
1522 {
1523         hammer2_spin_ex(&chain->core.spin);
1524         if ((chain->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0) {
1525                 if (base) {
1526                         while (--count >= 0) {
1527                                 if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1528                                         break;
1529                         }
1530                         chain->core.live_zero = count + 1;
1531                         while (count >= 0) {
1532                                 if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1533                                         atomic_add_int(&chain->core.live_count,
1534                                                        1);
1535                                 --count;
1536                         }
1537                 } else {
1538                         chain->core.live_zero = 0;
1539                 }
1540                 /* else do not modify live_count */
1541                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_COUNTEDBREFS);
1542         }
1543         hammer2_spin_unex(&chain->core.spin);
1544 }
1545
1546 /*
1547  * Resize the chain's physical storage allocation in-place.  This function does
1548  * not usually adjust the data pointer and must be followed by (typically) a
1549  * hammer2_chain_modify() call to copy any old data over and adjust the
1550  * data pointer.
1551  *
1552  * Chains can be resized smaller without reallocating the storage.  Resizing
1553  * larger will reallocate the storage.  Excess or prior storage is reclaimed
1554  * asynchronously at a later time.
1555  *
1556  * An nradix value of 0 is special-cased to mean that the storage should
1557  * be disassociated, that is the chain is being resized to 0 bytes (not 1
1558  * byte).
1559  *
1560  * Must be passed an exclusively locked parent and chain.
1561  *
1562  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1563  * to avoid instantiating a device buffer that conflicts with the vnode data
1564  * buffer.  However, because H2 can compress or encrypt data, the chain may
1565  * have a dio assigned to it in those situations, and they do not conflict.
1566  *
1567  * XXX return error if cannot resize.
1568  */
1569 int
1570 hammer2_chain_resize(hammer2_chain_t *chain,
1571                      hammer2_tid_t mtid, hammer2_off_t dedup_off,
1572                      int nradix, int flags)
1573 {
1574         hammer2_dev_t *hmp;
1575         size_t obytes;
1576         size_t nbytes;
1577         int error;
1578
1579         hmp = chain->hmp;
1580
1581         /*
1582          * Only data and indirect blocks can be resized for now.
1583          * (The volu root, inodes, and freemap elements use a fixed size).
1584          */
1585         KKASSERT(chain != &hmp->vchain);
1586         KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1587                  chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1588                  chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1589
1590         /*
1591          * Nothing to do if the element is already the proper size
1592          */
1593         obytes = chain->bytes;
1594         nbytes = (nradix) ? (1U << nradix) : 0;
1595         if (obytes == nbytes)
1596                 return (chain->error);
1597
1598         /*
1599          * Make sure the old data is instantiated so we can copy it.  If this
1600          * is a data block, the device data may be superfluous since the data
1601          * might be in a logical block, but compressed or encrypted data is
1602          * another matter.
1603          *
1604          * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
1605          */
1606         error = hammer2_chain_modify(chain, mtid, dedup_off, 0);
1607         if (error)
1608                 return error;
1609
1610         /*
1611          * Reallocate the block, even if making it smaller (because different
1612          * block sizes may be in different regions).
1613          *
1614          * NOTE: Operation does not copy the data and may only be used
1615          *       to resize data blocks in-place, or directory entry blocks
1616          *       which are about to be modified in some manner.
1617          */
1618         error = hammer2_freemap_alloc(chain, nbytes);
1619         if (error)
1620                 return error;
1621
1622         chain->bytes = nbytes;
1623
1624         /*
1625          * We don't want the followup chain_modify() to try to copy data
1626          * from the old (wrong-sized) buffer.  It won't know how much to
1627          * copy.  This case should only occur during writes when the
1628          * originator already has the data to write in-hand.
1629          */
1630         if (chain->dio) {
1631                 KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1632                          chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1633                 hammer2_io_brelse(&chain->dio);
1634                 chain->data = NULL;
1635         }
1636         return (chain->error);
1637 }
1638
1639 /*
1640  * Set the chain modified so its data can be changed by the caller, or
1641  * install deduplicated data.  The caller must call this routine for each
1642  * set of modifications it makes, even if the chain is already flagged
1643  * MODIFIED.
1644  *
1645  * Sets bref.modify_tid to mtid only if mtid != 0.  Note that bref.modify_tid
1646  * is a CLC (cluster level change) field and is not updated by parent
1647  * propagation during a flush.
1648  *
1649  * Returns an appropriate HAMMER2_ERROR_* code, which will generally reflect
1650  * chain->error except for HAMMER2_ERROR_ENOSPC.  If the allocation fails
1651  * due to no space available, HAMMER2_ERROR_ENOSPC is returned and the chain
1652  * remains unmodified with its old data ref intact and chain->error
1653  * unchanged.
1654  *
1655  *                               Dedup Handling
1656  *
1657  * If the DEDUPABLE flag is set in the chain the storage must be reallocated
1658  * even if the chain is still flagged MODIFIED.  In this case the chain's
1659  * DEDUPABLE flag will be cleared once the new storage has been assigned.
1660  *
1661  * If the caller passes a non-zero dedup_off we will use it to assign the
1662  * new storage.  The MODIFIED flag will be *CLEARED* in this case, and
1663  * DEDUPABLE will be set (NOTE: the UPDATE flag is always set).  The caller
1664  * must not modify the data content upon return.
1665  */
1666 int
1667 hammer2_chain_modify(hammer2_chain_t *chain, hammer2_tid_t mtid,
1668                      hammer2_off_t dedup_off, int flags)
1669 {
1670         hammer2_blockref_t obref;
1671         hammer2_dev_t *hmp;
1672         hammer2_io_t *dio;
1673         int error;
1674         int wasinitial;
1675         int setmodified;
1676         int setupdate;
1677         int newmod;
1678         char *bdata;
1679
1680         hmp = chain->hmp;
1681         obref = chain->bref;
1682         KKASSERT(chain->lock.mtx_lock & MTX_EXCLUSIVE);
1683
1684         /*
1685          * Data is not optional for freemap chains (we must always be sure
1686          * to copy the data on COW storage allocations).
1687          */
1688         if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1689             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1690                 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1691                          (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1692         }
1693
1694         /*
1695          * Data must be resolved if already assigned, unless explicitly
1696          * flagged otherwise.  If we cannot safety load the data the
1697          * modification fails and we return early.
1698          */
1699         if (chain->data == NULL && chain->bytes != 0 &&
1700             (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1701             (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1702                 hammer2_chain_load_data(chain);
1703                 if (chain->error)
1704                         return (chain->error);
1705         }
1706         error = 0;
1707
1708         /*
1709          * Set MODIFIED to indicate that the chain has been modified.  A new
1710          * allocation is required when modifying a chain.
1711          *
1712          * Set UPDATE to ensure that the blockref is updated in the parent.
1713          *
1714          * If MODIFIED is already set determine if we can reuse the assigned
1715          * data block or if we need a new data block.
1716          */
1717         if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1718                 /*
1719                  * Must set modified bit.
1720                  */
1721                 atomic_add_long(&hammer2_count_modified_chains, 1);
1722                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1723                 hammer2_pfs_memory_inc(chain->pmp);  /* can be NULL */
1724                 setmodified = 1;
1725
1726                 /*
1727                  * We may be able to avoid a copy-on-write if the chain's
1728                  * check mode is set to NONE and the chain's current
1729                  * modify_tid is beyond the last explicit snapshot tid.
1730                  *
1731                  * This implements HAMMER2's overwrite-in-place feature.
1732                  *
1733                  * NOTE! This data-block cannot be used as a de-duplication
1734                  *       source when the check mode is set to NONE.
1735                  */
1736                 if ((chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1737                      chain->bref.type == HAMMER2_BREF_TYPE_DIRENT) &&
1738                     (chain->flags & HAMMER2_CHAIN_INITIAL) == 0 &&
1739                     (chain->flags & HAMMER2_CHAIN_DEDUPABLE) == 0 &&
1740                     HAMMER2_DEC_CHECK(chain->bref.methods) ==
1741                      HAMMER2_CHECK_NONE &&
1742                     chain->pmp &&
1743                     chain->bref.modify_tid >
1744                      chain->pmp->iroot->meta.pfs_lsnap_tid) {
1745                         /*
1746                          * Sector overwrite allowed.
1747                          */
1748                         newmod = 0;
1749                 } else if ((hmp->hflags & HMNT2_EMERG) &&
1750                            chain->pmp &&
1751                            chain->bref.modify_tid >
1752                             chain->pmp->iroot->meta.pfs_lsnap_tid) {
1753                         /*
1754                          * If in emergency delete mode then do a modify-in-
1755                          * place on any chain type belonging to the PFS as
1756                          * long as it doesn't mess up a snapshot.  We might
1757                          * be forced to do this anyway a little further down
1758                          * in the code if the allocation fails.
1759                          *
1760                          * Also note that in emergency mode, these modify-in-
1761                          * place operations are NOT SAFE.  A storage failure,
1762                          * power failure, or panic can corrupt the filesystem.
1763                          */
1764                         newmod = 0;
1765                 } else {
1766                         /*
1767                          * Sector overwrite not allowed, must copy-on-write.
1768                          */
1769                         newmod = 1;
1770                 }
1771         } else if (chain->flags & HAMMER2_CHAIN_DEDUPABLE) {
1772                 /*
1773                  * If the modified chain was registered for dedup we need
1774                  * a new allocation.  This only happens for delayed-flush
1775                  * chains (i.e. which run through the front-end buffer
1776                  * cache).
1777                  */
1778                 newmod = 1;
1779                 setmodified = 0;
1780         } else {
1781                 /*
1782                  * Already flagged modified, no new allocation is needed.
1783                  */
1784                 newmod = 0;
1785                 setmodified = 0;
1786         }
1787
1788         /*
1789          * Flag parent update required.
1790          */
1791         if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
1792                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1793                 setupdate = 1;
1794         } else {
1795                 setupdate = 0;
1796         }
1797
1798         /*
1799          * The XOP code returns held but unlocked focus chains.  This
1800          * prevents the chain from being destroyed but does not prevent
1801          * it from being modified.  diolk is used to interlock modifications
1802          * against XOP frontend accesses to the focus.
1803          *
1804          * This allows us to theoretically avoid deadlocking the frontend
1805          * if one of the backends lock up by not formally locking the
1806          * focused chain in the frontend.  In addition, the synchronization
1807          * code relies on this mechanism to avoid deadlocking concurrent
1808          * synchronization threads.
1809          */
1810         lockmgr(&chain->diolk, LK_EXCLUSIVE);
1811
1812         /*
1813          * The modification or re-modification requires an allocation and
1814          * possible COW.  If an error occurs, the previous content and data
1815          * reference is retained and the modification fails.
1816          *
1817          * If dedup_off is non-zero, the caller is requesting a deduplication
1818          * rather than a modification.  The MODIFIED bit is not set and the
1819          * data offset is set to the deduplication offset.  The data cannot
1820          * be modified.
1821          *
1822          * NOTE: The dedup offset is allowed to be in a partially free state
1823          *       and we must be sure to reset it to a fully allocated state
1824          *       to force two bulkfree passes to free it again.
1825          *
1826          * NOTE: Only applicable when chain->bytes != 0.
1827          *
1828          * XXX can a chain already be marked MODIFIED without a data
1829          * assignment?  If not, assert here instead of testing the case.
1830          */
1831         if (chain != &hmp->vchain && chain != &hmp->fchain &&
1832             chain->bytes) {
1833                 if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1834                     newmod
1835                 ) {
1836                         /*
1837                          * NOTE: We do not have to remove the dedup
1838                          *       registration because the area is still
1839                          *       allocated and the underlying DIO will
1840                          *       still be flushed.
1841                          */
1842                         if (dedup_off) {
1843                                 chain->bref.data_off = dedup_off;
1844                                 chain->bytes = 1 << (dedup_off &
1845                                                      HAMMER2_OFF_MASK_RADIX);
1846                                 chain->error = 0;
1847                                 atomic_clear_int(&chain->flags,
1848                                                  HAMMER2_CHAIN_MODIFIED);
1849                                 atomic_add_long(&hammer2_count_modified_chains,
1850                                                 -1);
1851                                 if (chain->pmp) {
1852                                         hammer2_pfs_memory_wakeup(
1853                                                 chain->pmp, -1);
1854                                 }
1855                                 hammer2_freemap_adjust(hmp, &chain->bref,
1856                                                 HAMMER2_FREEMAP_DORECOVER);
1857                                 atomic_set_int(&chain->flags,
1858                                                 HAMMER2_CHAIN_DEDUPABLE);
1859                         } else {
1860                                 error = hammer2_freemap_alloc(chain,
1861                                                               chain->bytes);
1862                                 atomic_clear_int(&chain->flags,
1863                                                 HAMMER2_CHAIN_DEDUPABLE);
1864
1865                                 /*
1866                                  * If we are unable to allocate a new block
1867                                  * but we are in emergency mode, issue a
1868                                  * warning to the console and reuse the same
1869                                  * block.
1870                                  *
1871                                  * We behave as if the allocation were
1872                                  * successful.
1873                                  *
1874                                  * THIS IS IMPORTANT: These modifications
1875                                  * are virtually guaranteed to corrupt any
1876                                  * snapshots related to this filesystem.
1877                                  */
1878                                 if (error && (hmp->hflags & HMNT2_EMERG)) {
1879                                         error = 0;
1880                                         chain->bref.flags |=
1881                                                 HAMMER2_BREF_FLAG_EMERG_MIP;
1882
1883                                         krateprintf(&krate_h2em,
1884                                             "hammer2: Emergency Mode WARNING: "
1885                                             "Operation will likely corrupt "
1886                                             "related snapshot: "
1887                                             "%016jx.%02x key=%016jx\n",
1888                                             chain->bref.data_off,
1889                                             chain->bref.type,
1890                                             chain->bref.key);
1891                                 } else if (error == 0) {
1892                                         chain->bref.flags &=
1893                                                 ~HAMMER2_BREF_FLAG_EMERG_MIP;
1894                                 }
1895                         }
1896                 }
1897         }
1898
1899         /*
1900          * Stop here if error.  We have to undo any flag bits we might
1901          * have set above.
1902          */
1903         if (error) {
1904                 if (setmodified) {
1905                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1906                         atomic_add_long(&hammer2_count_modified_chains, -1);
1907                         if (chain->pmp)
1908                                 hammer2_pfs_memory_wakeup(chain->pmp, -1);
1909                 }
1910                 if (setupdate) {
1911                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1912                 }
1913                 lockmgr(&chain->diolk, LK_RELEASE);
1914
1915                 return error;
1916         }
1917
1918         /*
1919          * Update mirror_tid and modify_tid.  modify_tid is only updated
1920          * if not passed as zero (during flushes, parent propagation passes
1921          * the value 0).
1922          *
1923          * NOTE: chain->pmp could be the device spmp.
1924          */
1925         chain->bref.mirror_tid = hmp->voldata.mirror_tid + 1;
1926         if (mtid)
1927                 chain->bref.modify_tid = mtid;
1928
1929         /*
1930          * Set BMAPUPD to tell the flush code that an existing blockmap entry
1931          * requires updating as well as to tell the delete code that the
1932          * chain's blockref might not exactly match (in terms of physical size
1933          * or block offset) the one in the parent's blocktable.  The base key
1934          * of course will still match.
1935          */
1936         if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1937                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1938
1939         /*
1940          * Short-cut data block handling when the caller does not need an
1941          * actual data reference to (aka OPTDATA), as long as the chain does
1942          * not already have a data pointer to the data and no de-duplication
1943          * occurred.
1944          *
1945          * This generally means that the modifications are being done via the
1946          * logical buffer cache.
1947          *
1948          * NOTE: If deduplication occurred we have to run through the data
1949          *       stuff to clear INITIAL, and the caller will likely want to
1950          *       assign the check code anyway.  Leaving INITIAL set on a
1951          *       dedup can be deadly (it can cause the block to be zero'd!).
1952          *
1953          * This code also handles bytes == 0 (most dirents).
1954          */
1955         if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1956             (flags & HAMMER2_MODIFY_OPTDATA) &&
1957             chain->data == NULL) {
1958                 if (dedup_off == 0) {
1959                         KKASSERT(chain->dio == NULL);
1960                         goto skip2;
1961                 }
1962         }
1963
1964         /*
1965          * Clearing the INITIAL flag (for indirect blocks) indicates that
1966          * we've processed the uninitialized storage allocation.
1967          *
1968          * If this flag is already clear we are likely in a copy-on-write
1969          * situation but we have to be sure NOT to bzero the storage if
1970          * no data is present.
1971          *
1972          * Clearing of NOTTESTED is allowed if the MODIFIED bit is set,
1973          */
1974         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1975                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1976                 wasinitial = 1;
1977         } else {
1978                 wasinitial = 0;
1979         }
1980
1981         /*
1982          * Instantiate data buffer and possibly execute COW operation
1983          */
1984         switch(chain->bref.type) {
1985         case HAMMER2_BREF_TYPE_VOLUME:
1986         case HAMMER2_BREF_TYPE_FREEMAP:
1987                 /*
1988                  * The data is embedded, no copy-on-write operation is
1989                  * needed.
1990                  */
1991                 KKASSERT(chain->dio == NULL);
1992                 break;
1993         case HAMMER2_BREF_TYPE_DIRENT:
1994                 /*
1995                  * The data might be fully embedded.
1996                  */
1997                 if (chain->bytes == 0) {
1998                         KKASSERT(chain->dio == NULL);
1999                         break;
2000                 }
2001                 /* fall through */
2002         case HAMMER2_BREF_TYPE_INODE:
2003         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2004         case HAMMER2_BREF_TYPE_DATA:
2005         case HAMMER2_BREF_TYPE_INDIRECT:
2006         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2007                 /*
2008                  * Perform the copy-on-write operation
2009                  *
2010                  * zero-fill or copy-on-write depending on whether
2011                  * chain->data exists or not and set the dirty state for
2012                  * the new buffer.  hammer2_io_new() will handle the
2013                  * zero-fill.
2014                  *
2015                  * If a dedup_off was supplied this is an existing block
2016                  * and no COW, copy, or further modification is required.
2017                  */
2018                 KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
2019
2020                 if (wasinitial && dedup_off == 0) {
2021                         error = hammer2_io_new(hmp, chain->bref.type,
2022                                                chain->bref.data_off,
2023                                                chain->bytes, &dio);
2024                 } else {
2025                         error = hammer2_io_bread(hmp, chain->bref.type,
2026                                                  chain->bref.data_off,
2027                                                  chain->bytes, &dio);
2028                 }
2029                 hammer2_adjreadcounter(chain->bref.type, chain->bytes);
2030
2031                 /*
2032                  * If an I/O error occurs make sure callers cannot accidently
2033                  * modify the old buffer's contents and corrupt the filesystem.
2034                  *
2035                  * NOTE: hammer2_io_data() call issues bkvasync()
2036                  */
2037                 if (error) {
2038                         kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
2039                                 hmp);
2040                         chain->error = HAMMER2_ERROR_EIO;
2041                         hammer2_io_brelse(&dio);
2042                         hammer2_io_brelse(&chain->dio);
2043                         chain->data = NULL;
2044                         break;
2045                 }
2046                 chain->error = 0;
2047                 bdata = hammer2_io_data(dio, chain->bref.data_off);
2048
2049                 if (chain->data) {
2050                         /*
2051                          * COW (unless a dedup).
2052                          */
2053                         KKASSERT(chain->dio != NULL);
2054                         if (chain->data != (void *)bdata && dedup_off == 0) {
2055                                 bcopy(chain->data, bdata, chain->bytes);
2056                         }
2057                 } else if (wasinitial == 0 && dedup_off == 0) {
2058                         /*
2059                          * We have a problem.  We were asked to COW but
2060                          * we don't have any data to COW with!
2061                          */
2062                         panic("hammer2_chain_modify: having a COW %p\n",
2063                               chain);
2064                 }
2065
2066                 /*
2067                  * Retire the old buffer, replace with the new.  Dirty or
2068                  * redirty the new buffer.
2069                  *
2070                  * WARNING! The system buffer cache may have already flushed
2071                  *          the buffer, so we must be sure to [re]dirty it
2072                  *          for further modification.
2073                  *
2074                  *          If dedup_off was supplied, the caller is not
2075                  *          expected to make any further modification to the
2076                  *          buffer.
2077                  *
2078                  * WARNING! hammer2_get_gdata() assumes dio never transitions
2079                  *          through NULL in order to optimize away unnecessary
2080                  *          diolk operations.
2081                  */
2082                 {
2083                         hammer2_io_t *tio;
2084
2085                         if ((tio = chain->dio) != NULL)
2086                                 hammer2_io_bqrelse(&tio);
2087                         chain->data = (void *)bdata;
2088                         chain->dio = dio;
2089                         if (dedup_off == 0)
2090                                 hammer2_io_setdirty(dio);
2091                 }
2092                 break;
2093         default:
2094                 panic("hammer2_chain_modify: illegal non-embedded type %d",
2095                       chain->bref.type);
2096                 break;
2097
2098         }
2099 skip2:
2100         /*
2101          * setflush on parent indicating that the parent must recurse down
2102          * to us.  Do not call on chain itself which might already have it
2103          * set.
2104          */
2105         if (chain->parent)
2106                 hammer2_chain_setflush(chain->parent);
2107         lockmgr(&chain->diolk, LK_RELEASE);
2108
2109         return (chain->error);
2110 }
2111
2112 /*
2113  * Modify the chain associated with an inode.
2114  */
2115 int
2116 hammer2_chain_modify_ip(hammer2_inode_t *ip, hammer2_chain_t *chain,
2117                         hammer2_tid_t mtid, int flags)
2118 {
2119         int error;
2120
2121         hammer2_inode_modify(ip);
2122         error = hammer2_chain_modify(chain, mtid, 0, flags);
2123
2124         return error;
2125 }
2126
2127 /*
2128  * Volume header data locks
2129  */
2130 void
2131 hammer2_voldata_lock(hammer2_dev_t *hmp)
2132 {
2133         lockmgr(&hmp->vollk, LK_EXCLUSIVE);
2134 }
2135
2136 void
2137 hammer2_voldata_unlock(hammer2_dev_t *hmp)
2138 {
2139         lockmgr(&hmp->vollk, LK_RELEASE);
2140 }
2141
2142 void
2143 hammer2_voldata_modify(hammer2_dev_t *hmp)
2144 {
2145         if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
2146                 atomic_add_long(&hammer2_count_modified_chains, 1);
2147                 atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
2148                 hammer2_pfs_memory_inc(hmp->vchain.pmp);
2149         }
2150 }
2151
2152 /*
2153  * This function returns the chain at the nearest key within the specified
2154  * range.  The returned chain will be referenced but not locked.
2155  *
2156  * This function will recurse through chain->rbtree as necessary and will
2157  * return a *key_nextp suitable for iteration.  *key_nextp is only set if
2158  * the iteration value is less than the current value of *key_nextp.
2159  *
2160  * The caller should use (*key_nextp) to calculate the actual range of
2161  * the returned element, which will be (key_beg to *key_nextp - 1), because
2162  * there might be another element which is superior to the returned element
2163  * and overlaps it.
2164  *
2165  * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
2166  * chains continue to be returned.  On EOF (*key_nextp) may overflow since
2167  * it will wind up being (key_end + 1).
2168  *
2169  * WARNING!  Must be called with child's spinlock held.  Spinlock remains
2170  *           held through the operation.
2171  */
2172 struct hammer2_chain_find_info {
2173         hammer2_chain_t         *best;
2174         hammer2_key_t           key_beg;
2175         hammer2_key_t           key_end;
2176         hammer2_key_t           key_next;
2177 };
2178
2179 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
2180 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
2181
2182 static
2183 hammer2_chain_t *
2184 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
2185                           hammer2_key_t key_beg, hammer2_key_t key_end)
2186 {
2187         struct hammer2_chain_find_info info;
2188
2189         info.best = NULL;
2190         info.key_beg = key_beg;
2191         info.key_end = key_end;
2192         info.key_next = *key_nextp;
2193
2194         RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
2195                 hammer2_chain_find_cmp, hammer2_chain_find_callback,
2196                 &info);
2197         *key_nextp = info.key_next;
2198 #if 0
2199         kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
2200                 parent, key_beg, key_end, *key_nextp);
2201 #endif
2202
2203         return (info.best);
2204 }
2205
2206 static
2207 int
2208 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
2209 {
2210         struct hammer2_chain_find_info *info = data;
2211         hammer2_key_t child_beg;
2212         hammer2_key_t child_end;
2213
2214         child_beg = child->bref.key;
2215         child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
2216
2217         if (child_end < info->key_beg)
2218                 return(-1);
2219         if (child_beg > info->key_end)
2220                 return(1);
2221         return(0);
2222 }
2223
2224 static
2225 int
2226 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
2227 {
2228         struct hammer2_chain_find_info *info = data;
2229         hammer2_chain_t *best;
2230         hammer2_key_t child_end;
2231
2232         /*
2233          * WARNING! Layerq is scanned forwards, exact matches should keep
2234          *          the existing info->best.
2235          */
2236         if ((best = info->best) == NULL) {
2237                 /*
2238                  * No previous best.  Assign best
2239                  */
2240                 info->best = child;
2241         } else if (best->bref.key <= info->key_beg &&
2242                    child->bref.key <= info->key_beg) {
2243                 /*
2244                  * Illegal overlap.
2245                  */
2246                 KKASSERT(0);
2247                 /*info->best = child;*/
2248         } else if (child->bref.key < best->bref.key) {
2249                 /*
2250                  * Child has a nearer key and best is not flush with key_beg.
2251                  * Set best to child.  Truncate key_next to the old best key.
2252                  */
2253                 info->best = child;
2254                 if (info->key_next > best->bref.key || info->key_next == 0)
2255                         info->key_next = best->bref.key;
2256         } else if (child->bref.key == best->bref.key) {
2257                 /*
2258                  * If our current best is flush with the child then this
2259                  * is an illegal overlap.
2260                  *
2261                  * key_next will automatically be limited to the smaller of
2262                  * the two end-points.
2263                  */
2264                 KKASSERT(0);
2265                 info->best = child;
2266         } else {
2267                 /*
2268                  * Keep the current best but truncate key_next to the child's
2269                  * base.
2270                  *
2271                  * key_next will also automatically be limited to the smaller
2272                  * of the two end-points (probably not necessary for this case
2273                  * but we do it anyway).
2274                  */
2275                 if (info->key_next > child->bref.key || info->key_next == 0)
2276                         info->key_next = child->bref.key;
2277         }
2278
2279         /*
2280          * Always truncate key_next based on child's end-of-range.
2281          */
2282         child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
2283         if (child_end && (info->key_next > child_end || info->key_next == 0))
2284                 info->key_next = child_end;
2285
2286         return(0);
2287 }
2288
2289 /*
2290  * Retrieve the specified chain from a media blockref, creating the
2291  * in-memory chain structure which reflects it.  The returned chain is
2292  * held and locked according to (how) (HAMMER2_RESOLVE_*).  The caller must
2293  * handle crc-checks and so forth, and should check chain->error before
2294  * assuming that the data is good.
2295  *
2296  * To handle insertion races pass the INSERT_RACE flag along with the
2297  * generation number of the core.  NULL will be returned if the generation
2298  * number changes before we have a chance to insert the chain.  Insert
2299  * races can occur because the parent might be held shared.
2300  *
2301  * Caller must hold the parent locked shared or exclusive since we may
2302  * need the parent's bref array to find our block.
2303  *
2304  * WARNING! chain->pmp is always set to NULL for any chain representing
2305  *          part of the super-root topology.
2306  */
2307 hammer2_chain_t *
2308 hammer2_chain_get(hammer2_chain_t *parent, int generation,
2309                   hammer2_blockref_t *bref, int how)
2310 {
2311         hammer2_dev_t *hmp = parent->hmp;
2312         hammer2_chain_t *chain;
2313         int error;
2314
2315         /*
2316          * Allocate a chain structure representing the existing media
2317          * entry.  Resulting chain has one ref and is not locked.
2318          */
2319         if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
2320                 chain = hammer2_chain_alloc(hmp, NULL, bref);
2321         else
2322                 chain = hammer2_chain_alloc(hmp, parent->pmp, bref);
2323         /* ref'd chain returned */
2324
2325         /*
2326          * Flag that the chain is in the parent's blockmap so delete/flush
2327          * knows what to do with it.
2328          */
2329         atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
2330
2331         /*
2332          * chain must be locked to avoid unexpected ripouts
2333          */
2334         hammer2_chain_lock(chain, how);
2335
2336         /*
2337          * Link the chain into its parent.  A spinlock is required to safely
2338          * access the RBTREE, and it is possible to collide with another
2339          * hammer2_chain_get() operation because the caller might only hold
2340          * a shared lock on the parent.
2341          *
2342          * NOTE: Get races can occur quite often when we distribute
2343          *       asynchronous read-aheads across multiple threads.
2344          */
2345         KKASSERT(parent->refs > 0);
2346         error = hammer2_chain_insert(parent, chain,
2347                                      HAMMER2_CHAIN_INSERT_SPIN |
2348                                      HAMMER2_CHAIN_INSERT_RACE,
2349                                      generation);
2350         if (error) {
2351                 KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
2352                 /*kprintf("chain %p get race\n", chain);*/
2353                 hammer2_chain_unlock(chain);
2354                 hammer2_chain_drop(chain);
2355                 chain = NULL;
2356         } else {
2357                 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2358         }
2359
2360         /*
2361          * Return our new chain referenced but not locked, or NULL if
2362          * a race occurred.
2363          */
2364         return (chain);
2365 }
2366
2367 /*
2368  * Lookup initialization/completion API
2369  */
2370 hammer2_chain_t *
2371 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
2372 {
2373         hammer2_chain_ref(parent);
2374         if (flags & HAMMER2_LOOKUP_SHARED) {
2375                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
2376                                            HAMMER2_RESOLVE_SHARED);
2377         } else {
2378                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2379         }
2380         return (parent);
2381 }
2382
2383 void
2384 hammer2_chain_lookup_done(hammer2_chain_t *parent)
2385 {
2386         if (parent) {
2387                 hammer2_chain_unlock(parent);
2388                 hammer2_chain_drop(parent);
2389         }
2390 }
2391
2392 /*
2393  * Take the locked chain and return a locked parent.  The chain remains
2394  * locked on return, but may have to be temporarily unlocked to acquire
2395  * the parent.  Because of this, (chain) must be stable and cannot be
2396  * deleted while it was temporarily unlocked (typically means that (chain)
2397  * is an inode).
2398  *
2399  * Pass HAMMER2_RESOLVE_* flags in flags.
2400  *
2401  * This will work even if the chain is errored, and the caller can check
2402  * parent->error on return if desired since the parent will be locked.
2403  *
2404  * This function handles the lock order reversal.
2405  */
2406 hammer2_chain_t *
2407 hammer2_chain_getparent(hammer2_chain_t *chain, int flags)
2408 {
2409         hammer2_chain_t *parent;
2410
2411         /*
2412          * Be careful of order, chain must be unlocked before parent
2413          * is locked below to avoid a deadlock.  Try it trivially first.
2414          */
2415         parent = chain->parent;
2416         if (parent == NULL)
2417                 panic("hammer2_chain_getparent: no parent");
2418         hammer2_chain_ref(parent);
2419         if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0)
2420                 return parent;
2421
2422         for (;;) {
2423                 hammer2_chain_unlock(chain);
2424                 hammer2_chain_lock(parent, flags);
2425                 hammer2_chain_lock(chain, flags);
2426
2427                 /*
2428                  * Parent relinking races are quite common.  We have to get
2429                  * it right or we will blow up the block table.
2430                  */
2431                 if (chain->parent == parent)
2432                         break;
2433                 hammer2_chain_unlock(parent);
2434                 hammer2_chain_drop(parent);
2435                 cpu_ccfence();
2436                 parent = chain->parent;
2437                 if (parent == NULL)
2438                         panic("hammer2_chain_getparent: no parent");
2439                 hammer2_chain_ref(parent);
2440         }
2441         return parent;
2442 }
2443
2444 /*
2445  * Take the locked chain and return a locked parent.  The chain is unlocked
2446  * and dropped.  *chainp is set to the returned parent as a convenience.
2447  * Pass HAMMER2_RESOLVE_* flags in flags.
2448  *
2449  * This will work even if the chain is errored, and the caller can check
2450  * parent->error on return if desired since the parent will be locked.
2451  *
2452  * The chain does NOT need to be stable.  We use a tracking structure
2453  * to track the expected parent if the chain is deleted out from under us.
2454  *
2455  * This function handles the lock order reversal.
2456  */
2457 hammer2_chain_t *
2458 hammer2_chain_repparent(hammer2_chain_t **chainp, int flags)
2459 {
2460         hammer2_chain_t *chain;
2461         hammer2_chain_t *parent;
2462         struct hammer2_reptrack reptrack;
2463         struct hammer2_reptrack **repp;
2464
2465         /*
2466          * Be careful of order, chain must be unlocked before parent
2467          * is locked below to avoid a deadlock.  Try it trivially first.
2468          */
2469         chain = *chainp;
2470         parent = chain->parent;
2471         if (parent == NULL) {
2472                 hammer2_spin_unex(&chain->core.spin);
2473                 panic("hammer2_chain_repparent: no parent");
2474         }
2475         hammer2_chain_ref(parent);
2476         if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0) {
2477                 hammer2_chain_unlock(chain);
2478                 hammer2_chain_drop(chain);
2479                 *chainp = parent;
2480
2481                 return parent;
2482         }
2483
2484         /*
2485          * Ok, now it gets a bit nasty.  There are multiple situations where
2486          * the parent might be in the middle of a deletion, or where the child
2487          * (chain) might be deleted the instant we let go of its lock.
2488          * We can potentially end up in a no-win situation!
2489          *
2490          * In particular, the indirect_maintenance() case can cause these
2491          * situations.
2492          *
2493          * To deal with this we install a reptrack structure in the parent
2494          * This reptrack structure 'owns' the parent ref and will automatically
2495          * migrate to the parent's parent if the parent is deleted permanently.
2496          */
2497         hammer2_spin_init(&reptrack.spin, "h2reptrk");
2498         reptrack.chain = parent;
2499         hammer2_chain_ref(parent);              /* for the reptrack */
2500
2501         hammer2_spin_ex(&parent->core.spin);
2502         reptrack.next = parent->core.reptrack;
2503         parent->core.reptrack = &reptrack;
2504         hammer2_spin_unex(&parent->core.spin);
2505
2506         hammer2_chain_unlock(chain);
2507         hammer2_chain_drop(chain);
2508         chain = NULL;   /* gone */
2509
2510         /*
2511          * At the top of this loop, chain is gone and parent is refd both
2512          * by us explicitly AND via our reptrack.  We are attempting to
2513          * lock parent.
2514          */
2515         for (;;) {
2516                 hammer2_chain_lock(parent, flags);
2517
2518                 if (reptrack.chain == parent)
2519                         break;
2520                 hammer2_chain_unlock(parent);
2521                 hammer2_chain_drop(parent);
2522
2523                 kprintf("hammer2: debug REPTRACK %p->%p\n",
2524                         parent, reptrack.chain);
2525                 hammer2_spin_ex(&reptrack.spin);
2526                 parent = reptrack.chain;
2527                 hammer2_chain_ref(parent);
2528                 hammer2_spin_unex(&reptrack.spin);
2529         }
2530
2531         /*
2532          * Once parent is locked and matches our reptrack, our reptrack
2533          * will be stable and we have our parent.  We can unlink our
2534          * reptrack.
2535          *
2536          * WARNING!  Remember that the chain lock might be shared.  Chains
2537          *           locked shared have stable parent linkages.
2538          */
2539         hammer2_spin_ex(&parent->core.spin);
2540         repp = &parent->core.reptrack;
2541         while (*repp != &reptrack)
2542                 repp = &(*repp)->next;
2543         *repp = reptrack.next;
2544         hammer2_spin_unex(&parent->core.spin);
2545
2546         hammer2_chain_drop(parent);     /* reptrack ref */
2547         *chainp = parent;               /* return parent lock+ref */
2548
2549         return parent;
2550 }
2551
2552 /*
2553  * Dispose of any linked reptrack structures in (chain) by shifting them to
2554  * (parent).  Both (chain) and (parent) must be exclusively locked.
2555  *
2556  * This is interlocked against any children of (chain) on the other side.
2557  * No children so remain as-of when this is called so we can test
2558  * core.reptrack without holding the spin-lock.
2559  *
2560  * Used whenever the caller intends to permanently delete chains related
2561  * to topological recursions (BREF_TYPE_INDIRECT, BREF_TYPE_FREEMAP_NODE),
2562  * where the chains underneath the node being deleted are given a new parent
2563  * above the node being deleted.
2564  */
2565 static
2566 void
2567 hammer2_chain_repchange(hammer2_chain_t *parent, hammer2_chain_t *chain)
2568 {
2569         struct hammer2_reptrack *reptrack;
2570
2571         KKASSERT(chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree));
2572         while (chain->core.reptrack) {
2573                 hammer2_spin_ex(&parent->core.spin);
2574                 hammer2_spin_ex(&chain->core.spin);
2575                 reptrack = chain->core.reptrack;
2576                 if (reptrack == NULL) {
2577                         hammer2_spin_unex(&chain->core.spin);
2578                         hammer2_spin_unex(&parent->core.spin);
2579                         break;
2580                 }
2581                 hammer2_spin_ex(&reptrack->spin);
2582                 chain->core.reptrack = reptrack->next;
2583                 reptrack->chain = parent;
2584                 reptrack->next = parent->core.reptrack;
2585                 parent->core.reptrack = reptrack;
2586                 hammer2_chain_ref(parent);              /* reptrack */
2587
2588                 hammer2_spin_unex(&chain->core.spin);
2589                 hammer2_spin_unex(&parent->core.spin);
2590                 kprintf("hammer2: debug repchange %p %p->%p\n",
2591                         reptrack, chain, parent);
2592                 hammer2_chain_drop(chain);              /* reptrack */
2593         }
2594 }
2595
2596 /*
2597  * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
2598  * (*parentp) typically points to an inode but can also point to a related
2599  * indirect block and this function will recurse upwards and find the inode
2600  * or the nearest undeleted indirect block covering the key range.
2601  *
2602  * This function unconditionally sets *errorp, replacing any previous value.
2603  *
2604  * (*parentp) must be exclusive or shared locked (depending on flags) and
2605  * referenced and can be an inode or an existing indirect block within the
2606  * inode.
2607  *
2608  * If (*parent) is errored out, this function will not attempt to recurse
2609  * the radix tree and will return NULL along with an appropriate *errorp.
2610  * If NULL is returned and *errorp is 0, the requested lookup could not be
2611  * located.
2612  *
2613  * On return (*parentp) will be modified to point at the deepest parent chain
2614  * element encountered during the search, as a helper for an insertion or
2615  * deletion.
2616  *
2617  * The new (*parentp) will be locked shared or exclusive (depending on flags),
2618  * and referenced, and the old will be unlocked and dereferenced (no change
2619  * if they are both the same).  This is particularly important if the caller
2620  * wishes to insert a new chain, (*parentp) will be set properly even if NULL
2621  * is returned, as long as no error occurred.
2622  *
2623  * The matching chain will be returned locked according to flags.
2624  *
2625  * --
2626  *
2627  * NULL is returned if no match was found, but (*parentp) will still
2628  * potentially be adjusted.
2629  *
2630  * On return (*key_nextp) will point to an iterative value for key_beg.
2631  * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
2632  *
2633  * This function will also recurse up the chain if the key is not within the
2634  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
2635  * can simply allow (*parentp) to float inside the loop.
2636  *
2637  * NOTE!  chain->data is not always resolved.  By default it will not be
2638  *        resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
2639  *        HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
2640  *        BREF_TYPE_DATA as the device buffer can alias the logical file
2641  *        buffer).
2642  */
2643
2644 hammer2_chain_t *
2645 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
2646                      hammer2_key_t key_beg, hammer2_key_t key_end,
2647                      int *errorp, int flags)
2648 {
2649         hammer2_dev_t *hmp;
2650         hammer2_chain_t *parent;
2651         hammer2_chain_t *chain;
2652         hammer2_blockref_t *base;
2653         hammer2_blockref_t *bref;
2654         hammer2_blockref_t bsave;
2655         hammer2_key_t scan_beg;
2656         hammer2_key_t scan_end;
2657         int count = 0;
2658         int how_always = HAMMER2_RESOLVE_ALWAYS;
2659         int how_maybe = HAMMER2_RESOLVE_MAYBE;
2660         int how;
2661         int generation;
2662         int maxloops = 300000;
2663         volatile hammer2_mtx_t save_mtx;
2664
2665         if (flags & HAMMER2_LOOKUP_ALWAYS) {
2666                 how_maybe = how_always;
2667                 how = HAMMER2_RESOLVE_ALWAYS;
2668         } else if (flags & HAMMER2_LOOKUP_NODATA) {
2669                 how = HAMMER2_RESOLVE_NEVER;
2670         } else {
2671                 how = HAMMER2_RESOLVE_MAYBE;
2672         }
2673         if (flags & HAMMER2_LOOKUP_SHARED) {
2674                 how_maybe |= HAMMER2_RESOLVE_SHARED;
2675                 how_always |= HAMMER2_RESOLVE_SHARED;
2676                 how |= HAMMER2_RESOLVE_SHARED;
2677         }
2678
2679         /*
2680          * Recurse (*parentp) upward if necessary until the parent completely
2681          * encloses the key range or we hit the inode.
2682          *
2683          * Handle races against the flusher deleting indirect nodes on its
2684          * way back up by continuing to recurse upward past the deletion.
2685          */
2686         parent = *parentp;
2687         hmp = parent->hmp;
2688         *errorp = 0;
2689
2690         while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2691                parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2692                 scan_beg = parent->bref.key;
2693                 scan_end = scan_beg +
2694                            ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2695                 if ((parent->flags & HAMMER2_CHAIN_DELETED) == 0) {
2696                         if (key_beg >= scan_beg && key_end <= scan_end)
2697                                 break;
2698                 }
2699                 parent = hammer2_chain_repparent(parentp, how_maybe);
2700         }
2701 again:
2702         if (--maxloops == 0)
2703                 panic("hammer2_chain_lookup: maxloops");
2704
2705         /*
2706          * MATCHIND case that does not require parent->data (do prior to
2707          * parent->error check).
2708          */
2709         switch(parent->bref.type) {
2710         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2711         case HAMMER2_BREF_TYPE_INDIRECT:
2712                 if (flags & HAMMER2_LOOKUP_MATCHIND) {
2713                         scan_beg = parent->bref.key;
2714                         scan_end = scan_beg +
2715                                ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2716                         if (key_beg == scan_beg && key_end == scan_end) {
2717                                 chain = parent;
2718                                 hammer2_chain_ref(chain);
2719                                 hammer2_chain_lock(chain, how_maybe);
2720                                 *key_nextp = scan_end + 1;
2721                                 goto done;
2722                         }
2723                 }
2724                 break;
2725         default:
2726                 break;
2727         }
2728
2729         /*
2730          * No lookup is possible if the parent is errored.  We delayed
2731          * this check as long as we could to ensure that the parent backup,
2732          * embedded data, and MATCHIND code could still execute.
2733          */
2734         if (parent->error) {
2735                 *errorp = parent->error;
2736                 return NULL;
2737         }
2738
2739         /*
2740          * Locate the blockref array.  Currently we do a fully associative
2741          * search through the array.
2742          */
2743         switch(parent->bref.type) {
2744         case HAMMER2_BREF_TYPE_INODE:
2745                 /*
2746                  * Special shortcut for embedded data returns the inode
2747                  * itself.  Callers must detect this condition and access
2748                  * the embedded data (the strategy code does this for us).
2749                  *
2750                  * This is only applicable to regular files and softlinks.
2751                  *
2752                  * We need a second lock on parent.  Since we already have
2753                  * a lock we must pass LOCKAGAIN to prevent unexpected
2754                  * blocking (we don't want to block on a second shared
2755                  * ref if an exclusive lock is pending)
2756                  */
2757                 if (parent->data->ipdata.meta.op_flags &
2758                     HAMMER2_OPFLAG_DIRECTDATA) {
2759                         if (flags & HAMMER2_LOOKUP_NODIRECT) {
2760                                 chain = NULL;
2761                                 *key_nextp = key_end + 1;
2762                                 goto done;
2763                         }
2764                         hammer2_chain_ref(parent);
2765                         hammer2_chain_lock(parent, how_always |
2766                                                    HAMMER2_RESOLVE_LOCKAGAIN);
2767                         *key_nextp = key_end + 1;
2768                         return (parent);
2769                 }
2770                 base = &parent->data->ipdata.u.blockset.blockref[0];
2771                 count = HAMMER2_SET_COUNT;
2772                 break;
2773         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2774         case HAMMER2_BREF_TYPE_INDIRECT:
2775                 /*
2776                  * Optimize indirect blocks in the INITIAL state to avoid
2777                  * I/O.
2778                  *
2779                  * Debugging: Enter permanent wait state instead of
2780                  * panicing on unexpectedly NULL data for the moment.
2781                  */
2782                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2783                         base = NULL;
2784                 } else {
2785                         if (parent->data == NULL) {
2786                                 kprintf("hammer2: unexpected NULL data "
2787                                         "on %p\n", parent);
2788                                 while (1)
2789                                         tsleep(parent, 0, "xxx", 0);
2790                         }
2791                         base = &parent->data->npdata[0];
2792                 }
2793                 count = parent->bytes / sizeof(hammer2_blockref_t);
2794                 break;
2795         case HAMMER2_BREF_TYPE_VOLUME:
2796                 base = &parent->data->voldata.sroot_blockset.blockref[0];
2797                 count = HAMMER2_SET_COUNT;
2798                 break;
2799         case HAMMER2_BREF_TYPE_FREEMAP:
2800                 base = &parent->data->blkset.blockref[0];
2801                 count = HAMMER2_SET_COUNT;
2802                 break;
2803         default:
2804                 kprintf("hammer2_chain_lookup: unrecognized "
2805                         "blockref(B) type: %d",
2806                         parent->bref.type);
2807                 while (1)
2808                         tsleep(&base, 0, "dead", 0);
2809                 panic("hammer2_chain_lookup: unrecognized "
2810                       "blockref(B) type: %d",
2811                       parent->bref.type);
2812                 base = NULL;    /* safety */
2813                 count = 0;      /* safety */
2814         }
2815
2816         /*
2817          * Merged scan to find next candidate.
2818          *
2819          * hammer2_base_*() functions require the parent->core.live_* fields
2820          * to be synchronized.
2821          *
2822          * We need to hold the spinlock to access the block array and RB tree
2823          * and to interlock chain creation.
2824          */
2825         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2826                 hammer2_chain_countbrefs(parent, base, count);
2827
2828         /*
2829          * Combined search
2830          */
2831         hammer2_spin_ex(&parent->core.spin);
2832         chain = hammer2_combined_find(parent, base, count,
2833                                       key_nextp,
2834                                       key_beg, key_end,
2835                                       &bref);
2836         generation = parent->core.generation;
2837
2838         /*
2839          * Exhausted parent chain, iterate.
2840          */
2841         if (bref == NULL) {
2842                 KKASSERT(chain == NULL);
2843                 hammer2_spin_unex(&parent->core.spin);
2844                 if (key_beg == key_end) /* short cut single-key case */
2845                         return (NULL);
2846
2847                 /*
2848                  * Stop if we reached the end of the iteration.
2849                  */
2850                 if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2851                     parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2852                         return (NULL);
2853                 }
2854
2855                 /*
2856                  * Calculate next key, stop if we reached the end of the
2857                  * iteration, otherwise go up one level and loop.
2858                  */
2859                 key_beg = parent->bref.key +
2860                           ((hammer2_key_t)1 << parent->bref.keybits);
2861                 if (key_beg == 0 || key_beg > key_end)
2862                         return (NULL);
2863                 parent = hammer2_chain_repparent(parentp, how_maybe);
2864                 goto again;
2865         }
2866
2867         /*
2868          * Selected from blockref or in-memory chain.
2869          */
2870         bsave = *bref;
2871         if (chain == NULL) {
2872                 hammer2_spin_unex(&parent->core.spin);
2873                 if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2874                     bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2875                         chain = hammer2_chain_get(parent, generation,
2876                                                   &bsave, how_maybe);
2877                 } else {
2878                         chain = hammer2_chain_get(parent, generation,
2879                                                   &bsave, how);
2880                 }
2881                 if (chain == NULL)
2882                         goto again;
2883         } else {
2884                 hammer2_chain_ref(chain);
2885                 hammer2_spin_unex(&parent->core.spin);
2886
2887                 /*
2888                  * chain is referenced but not locked.  We must lock the
2889                  * chain to obtain definitive state.
2890                  */
2891                 if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2892                     bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2893                         hammer2_chain_lock(chain, how_maybe);
2894                 } else {
2895                         hammer2_chain_lock(chain, how);
2896                 }
2897                 KKASSERT(chain->parent == parent);
2898         }
2899         if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
2900             chain->parent != parent) {
2901                 hammer2_chain_unlock(chain);
2902                 hammer2_chain_drop(chain);
2903                 chain = NULL;   /* SAFETY */
2904                 goto again;
2905         }
2906
2907
2908         /*
2909          * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2910          *
2911          * NOTE: Chain's key range is not relevant as there might be
2912          *       one-offs within the range that are not deleted.
2913          *
2914          * NOTE: Lookups can race delete-duplicate because
2915          *       delete-duplicate does not lock the parent's core
2916          *       (they just use the spinlock on the core).
2917          */
2918         if (chain->flags & HAMMER2_CHAIN_DELETED) {
2919                 kprintf("skip deleted chain %016jx.%02x key=%016jx\n",
2920                         chain->bref.data_off, chain->bref.type,
2921                         chain->bref.key);
2922                 hammer2_chain_unlock(chain);
2923                 hammer2_chain_drop(chain);
2924                 chain = NULL;   /* SAFETY */
2925                 key_beg = *key_nextp;
2926                 if (key_beg == 0 || key_beg > key_end)
2927                         return(NULL);
2928                 goto again;
2929         }
2930
2931         /*
2932          * If the chain element is an indirect block it becomes the new
2933          * parent and we loop on it.  We must maintain our top-down locks
2934          * to prevent the flusher from interfering (i.e. doing a
2935          * delete-duplicate and leaving us recursing down a deleted chain).
2936          *
2937          * The parent always has to be locked with at least RESOLVE_MAYBE
2938          * so we can access its data.  It might need a fixup if the caller
2939          * passed incompatible flags.  Be careful not to cause a deadlock
2940          * as a data-load requires an exclusive lock.
2941          *
2942          * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2943          * range is within the requested key range we return the indirect
2944          * block and do NOT loop.  This is usually only used to acquire
2945          * freemap nodes.
2946          */
2947         if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2948             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2949                 save_mtx = parent->lock;
2950                 hammer2_chain_unlock(parent);
2951                 hammer2_chain_drop(parent);
2952                 *parentp = parent = chain;
2953                 chain = NULL;   /* SAFETY */
2954                 goto again;
2955         }
2956 done:
2957         /*
2958          * All done, return the locked chain.
2959          *
2960          * If the caller does not want a locked chain, replace the lock with
2961          * a ref.  Perhaps this can eventually be optimized to not obtain the
2962          * lock in the first place for situations where the data does not
2963          * need to be resolved.
2964          *
2965          * NOTE! A chain->error must be tested by the caller upon return.
2966          *       *errorp is only set based on issues which occur while
2967          *       trying to reach the chain.
2968          */
2969         return (chain);
2970 }
2971
2972 /*
2973  * After having issued a lookup we can iterate all matching keys.
2974  *
2975  * If chain is non-NULL we continue the iteration from just after it's index.
2976  *
2977  * If chain is NULL we assume the parent was exhausted and continue the
2978  * iteration at the next parent.
2979  *
2980  * If a fatal error occurs (typically an I/O error), a dummy chain is
2981  * returned with chain->error and error-identifying information set.  This
2982  * chain will assert if you try to do anything fancy with it.
2983  *
2984  * XXX Depending on where the error occurs we should allow continued iteration.
2985  *
2986  * parent must be locked on entry and remains locked throughout.  chain's
2987  * lock status must match flags.  Chain is always at least referenced.
2988  *
2989  * WARNING!  The MATCHIND flag does not apply to this function.
2990  */
2991 hammer2_chain_t *
2992 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
2993                    hammer2_key_t *key_nextp,
2994                    hammer2_key_t key_beg, hammer2_key_t key_end,
2995                    int *errorp, int flags)
2996 {
2997         hammer2_chain_t *parent;
2998         int how_maybe;
2999
3000         /*
3001          * Calculate locking flags for upward recursion.
3002          */
3003         how_maybe = HAMMER2_RESOLVE_MAYBE;
3004         if (flags & HAMMER2_LOOKUP_SHARED)
3005                 how_maybe |= HAMMER2_RESOLVE_SHARED;
3006
3007         parent = *parentp;
3008         *errorp = 0;
3009
3010         /*
3011          * Calculate the next index and recalculate the parent if necessary.
3012          */
3013         if (chain) {
3014                 key_beg = chain->bref.key +
3015                           ((hammer2_key_t)1 << chain->bref.keybits);
3016                 hammer2_chain_unlock(chain);
3017                 hammer2_chain_drop(chain);
3018
3019                 /*
3020                  * chain invalid past this point, but we can still do a
3021                  * pointer comparison w/parent.
3022                  *
3023                  * Any scan where the lookup returned degenerate data embedded
3024                  * in the inode has an invalid index and must terminate.
3025                  */
3026                 if (chain == parent)
3027                         return(NULL);
3028                 if (key_beg == 0 || key_beg > key_end)
3029                         return(NULL);
3030                 chain = NULL;
3031         } else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
3032                    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
3033                 /*
3034                  * We reached the end of the iteration.
3035                  */
3036                 return (NULL);
3037         } else {
3038                 /*
3039                  * Continue iteration with next parent unless the current
3040                  * parent covers the range.
3041                  *
3042                  * (This also handles the case of a deleted, empty indirect
3043                  * node).
3044                  */
3045                 key_beg = parent->bref.key +
3046                           ((hammer2_key_t)1 << parent->bref.keybits);
3047                 if (key_beg == 0 || key_beg > key_end)
3048                         return (NULL);
3049                 parent = hammer2_chain_repparent(parentp, how_maybe);
3050         }
3051
3052         /*
3053          * And execute
3054          */
3055         return (hammer2_chain_lookup(parentp, key_nextp,
3056                                      key_beg, key_end,
3057                                      errorp, flags));
3058 }
3059
3060 /*
3061  * Caller wishes to iterate chains under parent, loading new chains into
3062  * chainp.  Caller must initialize *chainp to NULL and *firstp to 1, and
3063  * then call hammer2_chain_scan() repeatedly until a non-zero return.
3064  * During the scan, *firstp will be set to 0 and (*chainp) will be replaced
3065  * with the returned chain for the scan.  The returned *chainp will be
3066  * locked and referenced.  Any prior contents will be unlocked and dropped.
3067  *
3068  * Caller should check the return value.  A normal scan EOF will return
3069  * exactly HAMMER2_ERROR_EOF.  Any other non-zero value indicates an
3070  * error trying to access parent data.  Any error in the returned chain
3071  * must be tested separately by the caller.
3072  *
3073  * (*chainp) is dropped on each scan, but will only be set if the returned
3074  * element itself can recurse.  Leaf elements are NOT resolved, loaded, or
3075  * returned via *chainp.  The caller will get their bref only.
3076  *
3077  * The raw scan function is similar to lookup/next but does not seek to a key.
3078  * Blockrefs are iterated via first_bref = (parent, NULL) and
3079  * next_chain = (parent, bref).
3080  *
3081  * The passed-in parent must be locked and its data resolved.  The function
3082  * nominally returns a locked and referenced *chainp != NULL for chains
3083  * the caller might need to recurse on (and will dipose of any *chainp passed
3084  * in).  The caller must check the chain->bref.type either way.
3085  */
3086 int
3087 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t **chainp,
3088                    hammer2_blockref_t *bref, int *firstp,
3089                    int flags)
3090 {
3091         hammer2_dev_t *hmp;
3092         hammer2_blockref_t *base;
3093         hammer2_blockref_t *bref_ptr;
3094         hammer2_key_t key;
3095         hammer2_key_t next_key;
3096         hammer2_chain_t *chain = NULL;
3097         int count = 0;
3098         int how_always = HAMMER2_RESOLVE_ALWAYS;
3099         int how_maybe = HAMMER2_RESOLVE_MAYBE;
3100         int how;
3101         int generation;
3102         int maxloops = 300000;
3103         int error;
3104
3105         hmp = parent->hmp;
3106         error = 0;
3107
3108         /*
3109          * Scan flags borrowed from lookup.
3110          */
3111         if (flags & HAMMER2_LOOKUP_ALWAYS) {
3112                 how_maybe = how_always;
3113                 how = HAMMER2_RESOLVE_ALWAYS;
3114         } else if (flags & HAMMER2_LOOKUP_NODATA) {
3115                 how = HAMMER2_RESOLVE_NEVER;
3116         } else {
3117                 how = HAMMER2_RESOLVE_MAYBE;
3118         }
3119         if (flags & HAMMER2_LOOKUP_SHARED) {
3120                 how_maybe |= HAMMER2_RESOLVE_SHARED;
3121                 how_always |= HAMMER2_RESOLVE_SHARED;
3122                 how |= HAMMER2_RESOLVE_SHARED;
3123         }
3124
3125         /*
3126          * Calculate key to locate first/next element, unlocking the previous
3127          * element as we go.  Be careful, the key calculation can overflow.
3128          *
3129          * (also reset bref to NULL)
3130          */
3131         if (*firstp) {
3132                 key = 0;
3133                 *firstp = 0;
3134         } else {
3135                 key = bref->key + ((hammer2_key_t)1 << bref->keybits);
3136                 if ((chain = *chainp) != NULL) {
3137                         *chainp = NULL;
3138                         hammer2_chain_unlock(chain);
3139                         hammer2_chain_drop(chain);
3140                         chain = NULL;
3141                 }
3142                 if (key == 0) {
3143                         error |= HAMMER2_ERROR_EOF;
3144                         goto done;
3145                 }
3146         }
3147
3148 again:
3149         if (parent->error) {
3150                 error = parent->error;
3151                 goto done;
3152         }
3153         if (--maxloops == 0)
3154                 panic("hammer2_chain_scan: maxloops");
3155
3156         /*
3157          * Locate the blockref array.  Currently we do a fully associative
3158          * search through the array.
3159          */
3160         switch(parent->bref.type) {
3161         case HAMMER2_BREF_TYPE_INODE:
3162                 /*
3163                  * An inode with embedded data has no sub-chains.
3164                  *
3165                  * WARNING! Bulk scan code may pass a static chain marked
3166                  *          as BREF_TYPE_INODE with a copy of the volume
3167                  *          root blockset to snapshot the volume.
3168                  */
3169                 if (parent->data->ipdata.meta.op_flags &
3170                     HAMMER2_OPFLAG_DIRECTDATA) {
3171                         error |= HAMMER2_ERROR_EOF;
3172                         goto done;
3173                 }
3174                 base = &parent->data->ipdata.u.blockset.blockref[0];
3175                 count = HAMMER2_SET_COUNT;
3176                 break;
3177         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3178         case HAMMER2_BREF_TYPE_INDIRECT:
3179                 /*
3180                  * Optimize indirect blocks in the INITIAL state to avoid
3181                  * I/O.
3182                  */
3183                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
3184                         base = NULL;
3185                 } else {
3186                         if (parent->data == NULL)
3187                                 panic("parent->data is NULL");
3188                         base = &parent->data->npdata[0];
3189                 }
3190                 count = parent->bytes / sizeof(hammer2_blockref_t);
3191                 break;
3192         case HAMMER2_BREF_TYPE_VOLUME:
3193                 base = &parent->data->voldata.sroot_blockset.blockref[0];
3194                 count = HAMMER2_SET_COUNT;
3195                 break;
3196         case HAMMER2_BREF_TYPE_FREEMAP:
3197                 base = &parent->data->blkset.blockref[0];
3198                 count = HAMMER2_SET_COUNT;
3199                 break;
3200         default:
3201                 panic("hammer2_chain_scan: unrecognized blockref type: %d",
3202                       parent->bref.type);
3203                 base = NULL;    /* safety */
3204                 count = 0;      /* safety */
3205         }
3206
3207         /*
3208          * Merged scan to find next candidate.
3209          *
3210          * hammer2_base_*() functions require the parent->core.live_* fields
3211          * to be synchronized.
3212          *
3213          * We need to hold the spinlock to access the block array and RB tree
3214          * and to interlock chain creation.
3215          */
3216         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3217                 hammer2_chain_countbrefs(parent, base, count);
3218
3219         next_key = 0;
3220         bref_ptr = NULL;
3221         hammer2_spin_ex(&parent->core.spin);
3222         chain = hammer2_combined_find(parent, base, count,
3223                                       &next_key,
3224                                       key, HAMMER2_KEY_MAX,
3225                                       &bref_ptr);
3226         generation = parent->core.generation;
3227
3228         /*
3229          * Exhausted parent chain, we're done.
3230          */
3231         if (bref_ptr == NULL) {
3232                 hammer2_spin_unex(&parent->core.spin);
3233                 KKASSERT(chain == NULL);
3234                 error |= HAMMER2_ERROR_EOF;
3235                 goto done;
3236         }
3237
3238         /*
3239          * Copy into the supplied stack-based blockref.
3240          */
3241         *bref = *bref_ptr;
3242
3243         /*
3244          * Selected from blockref or in-memory chain.
3245          */
3246         if (chain == NULL) {
3247                 switch(bref->type) {
3248                 case HAMMER2_BREF_TYPE_INODE:
3249                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3250                 case HAMMER2_BREF_TYPE_INDIRECT:
3251                 case HAMMER2_BREF_TYPE_VOLUME:
3252                 case HAMMER2_BREF_TYPE_FREEMAP:
3253                         /*
3254                          * Recursion, always get the chain
3255                          */
3256                         hammer2_spin_unex(&parent->core.spin);
3257                         chain = hammer2_chain_get(parent, generation,
3258                                                   bref, how);
3259                         if (chain == NULL)
3260                                 goto again;
3261                         break;
3262                 default:
3263                         /*
3264                          * No recursion, do not waste time instantiating
3265                          * a chain, just iterate using the bref.
3266                          */
3267                         hammer2_spin_unex(&parent->core.spin);
3268                         break;
3269                 }
3270         } else {
3271                 /*
3272                  * Recursion or not we need the chain in order to supply
3273                  * the bref.
3274                  */
3275                 hammer2_chain_ref(chain);
3276                 hammer2_spin_unex(&parent->core.spin);
3277                 hammer2_chain_lock(chain, how);
3278         }
3279         if (chain &&
3280             (bcmp(bref, &chain->bref, sizeof(*bref)) ||
3281              chain->parent != parent)) {
3282                 hammer2_chain_unlock(chain);
3283                 hammer2_chain_drop(chain);
3284                 chain = NULL;
3285                 goto again;
3286         }
3287
3288         /*
3289          * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
3290          *
3291          * NOTE: chain's key range is not relevant as there might be
3292          *       one-offs within the range that are not deleted.
3293          *
3294          * NOTE: XXX this could create problems with scans used in
3295          *       situations other than mount-time recovery.
3296          *
3297          * NOTE: Lookups can race delete-duplicate because
3298          *       delete-duplicate does not lock the parent's core
3299          *       (they just use the spinlock on the core).
3300          */
3301         if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3302                 hammer2_chain_unlock(chain);
3303                 hammer2_chain_drop(chain);
3304                 chain = NULL;
3305
3306                 key = next_key;
3307                 if (key == 0) {
3308                         error |= HAMMER2_ERROR_EOF;
3309                         goto done;
3310                 }
3311                 goto again;
3312         }
3313
3314 done:
3315         /*
3316          * All done, return the bref or NULL, supply chain if necessary.
3317          */
3318         if (chain)
3319                 *chainp = chain;
3320         return (error);
3321 }
3322
3323 /*
3324  * Create and return a new hammer2 system memory structure of the specified
3325  * key, type and size and insert it under (*parentp).  This is a full
3326  * insertion, based on the supplied key/keybits, and may involve creating
3327  * indirect blocks and moving other chains around via delete/duplicate.
3328  *
3329  * This call can be made with parent == NULL as long as a non -1 methods
3330  * is supplied.  hmp must also be supplied in this situation (otherwise
3331  * hmp is extracted from the supplied parent).  The chain will be detached
3332  * from the topology.  A later call with both parent and chain can be made
3333  * to attach it.
3334  *
3335  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
3336  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3337  * FULL.  This typically means that the caller is creating the chain after
3338  * doing a hammer2_chain_lookup().
3339  *
3340  * (*parentp) must be exclusive locked and may be replaced on return
3341  * depending on how much work the function had to do.
3342  *
3343  * (*parentp) must not be errored or this function will assert.
3344  *
3345  * (*chainp) usually starts out NULL and returns the newly created chain,
3346  * but if the caller desires the caller may allocate a disconnected chain
3347  * and pass it in instead.
3348  *
3349  * This function should NOT be used to insert INDIRECT blocks.  It is
3350  * typically used to create/insert inodes and data blocks.
3351  *
3352  * Caller must pass-in an exclusively locked parent the new chain is to
3353  * be inserted under, and optionally pass-in a disconnected, exclusively
3354  * locked chain to insert (else we create a new chain).  The function will
3355  * adjust (*parentp) as necessary, create or connect the chain, and
3356  * return an exclusively locked chain in *chainp.
3357  *
3358  * When creating a PFSROOT inode under the super-root, pmp is typically NULL
3359  * and will be reassigned.
3360  *
3361  * NOTE: returns HAMMER_ERROR_* flags
3362  */
3363 int
3364 hammer2_chain_create(hammer2_chain_t **parentp, hammer2_chain_t **chainp,
3365                      hammer2_dev_t *hmp, hammer2_pfs_t *pmp, int methods,
3366                      hammer2_key_t key, int keybits, int type, size_t bytes,
3367                      hammer2_tid_t mtid, hammer2_off_t dedup_off, int flags)
3368 {
3369         hammer2_chain_t *chain;
3370         hammer2_chain_t *parent;
3371         hammer2_blockref_t *base;
3372         hammer2_blockref_t dummy;
3373         int allocated = 0;
3374         int error = 0;
3375         int count;
3376         int maxloops = 300000;
3377
3378         /*
3379          * Topology may be crossing a PFS boundary.
3380          */
3381         parent = *parentp;
3382         if (parent) {
3383                 KKASSERT(hammer2_mtx_owned(&parent->lock));
3384                 KKASSERT(parent->error == 0);
3385                 hmp = parent->hmp;
3386         }
3387         chain = *chainp;
3388
3389         if (chain == NULL) {
3390                 /*
3391                  * First allocate media space and construct the dummy bref,
3392                  * then allocate the in-memory chain structure.  Set the
3393                  * INITIAL flag for fresh chains which do not have embedded
3394                  * data.
3395                  */
3396                 bzero(&dummy, sizeof(dummy));
3397                 dummy.type = type;
3398                 dummy.key = key;
3399                 dummy.keybits = keybits;
3400                 dummy.data_off = hammer2_getradix(bytes);
3401
3402                 /*
3403                  * Inherit methods from parent by default.  Primarily used
3404                  * for BREF_TYPE_DATA.  Non-data types *must* be set to
3405                  * a non-NONE check algorithm.
3406                  */
3407                 if (methods == -1)
3408                         dummy.methods = parent->bref.methods;
3409                 else
3410                         dummy.methods = (uint8_t)methods;
3411
3412                 if (type != HAMMER2_BREF_TYPE_DATA &&
3413                     HAMMER2_DEC_CHECK(dummy.methods) == HAMMER2_CHECK_NONE) {
3414                         dummy.methods |=
3415                                 HAMMER2_ENC_CHECK(HAMMER2_CHECK_DEFAULT);
3416                 }
3417
3418                 chain = hammer2_chain_alloc(hmp, pmp, &dummy);
3419
3420                 /*
3421                  * Lock the chain manually, chain_lock will load the chain
3422                  * which we do NOT want to do.  (note: chain->refs is set
3423                  * to 1 by chain_alloc() for us, but lockcnt is not).
3424                  */
3425                 chain->lockcnt = 1;
3426                 hammer2_mtx_ex(&chain->lock);
3427                 allocated = 1;
3428
3429                 /*
3430                  * Set INITIAL to optimize I/O.  The flag will generally be
3431                  * processed when we call hammer2_chain_modify().
3432                  */
3433                 switch(type) {
3434                 case HAMMER2_BREF_TYPE_VOLUME:
3435                 case HAMMER2_BREF_TYPE_FREEMAP:
3436                         panic("hammer2_chain_create: called with volume type");
3437                         break;
3438                 case HAMMER2_BREF_TYPE_INDIRECT:
3439                         panic("hammer2_chain_create: cannot be used to"
3440                               "create indirect block");
3441                         break;
3442                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3443                         panic("hammer2_chain_create: cannot be used to"
3444                               "create freemap root or node");
3445                         break;
3446                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3447                         KKASSERT(bytes == sizeof(chain->data->bmdata));
3448                         /* fall through */
3449                 case HAMMER2_BREF_TYPE_DIRENT:
3450                 case HAMMER2_BREF_TYPE_INODE:
3451                 case HAMMER2_BREF_TYPE_DATA:
3452                 default:
3453                         /*
3454                          * leave chain->data NULL, set INITIAL
3455                          */
3456                         KKASSERT(chain->data == NULL);
3457                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
3458                         break;
3459                 }
3460         } else {
3461                 /*
3462                  * We are reattaching a previously deleted chain, possibly
3463                  * under a new parent and possibly with a new key/keybits.
3464                  * The chain does not have to be in a modified state.  The
3465                  * UPDATE flag will be set later on in this routine.
3466                  *
3467                  * Do NOT mess with the current state of the INITIAL flag.
3468                  */
3469                 chain->bref.key = key;
3470                 chain->bref.keybits = keybits;
3471                 if (chain->flags & HAMMER2_CHAIN_DELETED)
3472                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3473                 KKASSERT(chain->parent == NULL);
3474         }
3475
3476         /*
3477          * Set the appropriate bref flag if requested.
3478          *
3479          * NOTE! Callers can call this function to move chains without
3480          *       knowing about special flags, so don't clear bref flags
3481          *       here!
3482          */
3483         if (flags & HAMMER2_INSERT_PFSROOT)
3484                 chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
3485
3486         if (parent == NULL)
3487                 goto skip;
3488
3489         /*
3490          * Calculate how many entries we have in the blockref array and
3491          * determine if an indirect block is required when inserting into
3492          * the parent.
3493          */
3494 again:
3495         if (--maxloops == 0)
3496                 panic("hammer2_chain_create: maxloops");
3497
3498         switch(parent->bref.type) {
3499         case HAMMER2_BREF_TYPE_INODE:
3500                 if ((parent->data->ipdata.meta.op_flags &
3501                      HAMMER2_OPFLAG_DIRECTDATA) != 0) {
3502                         kprintf("hammer2: parent set for direct-data! "
3503                                 "pkey=%016jx ckey=%016jx\n",
3504                                 parent->bref.key,
3505                                 chain->bref.key);
3506                 }
3507                 KKASSERT((parent->data->ipdata.meta.op_flags &
3508                           HAMMER2_OPFLAG_DIRECTDATA) == 0);
3509                 KKASSERT(parent->data != NULL);
3510                 base = &parent->data->ipdata.u.blockset.blockref[0];
3511                 count = HAMMER2_SET_COUNT;
3512                 break;
3513         case HAMMER2_BREF_TYPE_INDIRECT:
3514         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3515                 if (parent->flags & HAMMER2_CHAIN_INITIAL)
3516                         base = NULL;
3517                 else
3518                         base = &parent->data->npdata[0];
3519                 count = parent->bytes / sizeof(hammer2_blockref_t);
3520                 break;
3521         case HAMMER2_BREF_TYPE_VOLUME:
3522                 KKASSERT(parent->data != NULL);
3523                 base = &parent->data->voldata.sroot_blockset.blockref[0];
3524                 count = HAMMER2_SET_COUNT;
3525                 break;
3526         case HAMMER2_BREF_TYPE_FREEMAP:
3527                 KKASSERT(parent->data != NULL);
3528                 base = &parent->data->blkset.blockref[0];
3529                 count = HAMMER2_SET_COUNT;
3530                 break;
3531         default:
3532                 panic("hammer2_chain_create: unrecognized blockref type: %d",
3533                       parent->bref.type);
3534                 base = NULL;
3535                 count = 0;
3536                 break;
3537         }
3538
3539         /*
3540          * Make sure we've counted the brefs
3541          */
3542         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3543                 hammer2_chain_countbrefs(parent, base, count);
3544
3545         KASSERT(parent->core.live_count >= 0 &&
3546                 parent->core.live_count <= count,
3547                 ("bad live_count %d/%d (%02x, %d)",
3548                         parent->core.live_count, count,
3549                         parent->bref.type, parent->bytes));
3550
3551         /*
3552          * If no free blockref could be found we must create an indirect
3553          * block and move a number of blockrefs into it.  With the parent
3554          * locked we can safely lock each child in order to delete+duplicate
3555          * it without causing a deadlock.
3556          *
3557          * This may return the new indirect block or the old parent depending
3558          * on where the key falls.  NULL is returned on error.
3559          */
3560         if (parent->core.live_count == count) {
3561                 hammer2_chain_t *nparent;
3562
3563                 KKASSERT((flags & HAMMER2_INSERT_SAMEPARENT) == 0);
3564
3565                 nparent = hammer2_chain_create_indirect(parent, key, keybits,
3566                                                         mtid, type, &error);
3567                 if (nparent == NULL) {
3568                         if (allocated)
3569                                 hammer2_chain_drop(chain);
3570                         chain = NULL;
3571                         goto done;
3572                 }
3573                 if (parent != nparent) {
3574                         hammer2_chain_unlock(parent);
3575                         hammer2_chain_drop(parent);
3576                         parent = *parentp = nparent;
3577                 }
3578                 goto again;
3579         }
3580
3581         /*
3582          * fall through if parent, or skip to here if no parent.
3583          */
3584 skip:
3585         if (chain->flags & HAMMER2_CHAIN_DELETED)
3586                 kprintf("Inserting deleted chain @%016jx\n",
3587                         chain->bref.key);
3588
3589         /*
3590          * Link the chain into its parent.
3591          */
3592         if (chain->parent != NULL)
3593                 panic("hammer2: hammer2_chain_create: chain already connected");
3594         KKASSERT(chain->parent == NULL);
3595         if (parent) {
3596                 KKASSERT(parent->core.live_count < count);
3597                 hammer2_chain_insert(parent, chain,
3598                                      HAMMER2_CHAIN_INSERT_SPIN |
3599                                      HAMMER2_CHAIN_INSERT_LIVE,
3600                                      0);
3601         }
3602
3603         if (allocated) {
3604                 /*
3605                  * Mark the newly created chain modified.  This will cause
3606                  * UPDATE to be set and process the INITIAL flag.
3607                  *
3608                  * Device buffers are not instantiated for DATA elements
3609                  * as these are handled by logical buffers.
3610                  *
3611                  * Indirect and freemap node indirect blocks are handled
3612                  * by hammer2_chain_create_indirect() and not by this
3613                  * function.
3614                  *
3615                  * Data for all other bref types is expected to be
3616                  * instantiated (INODE, LEAF).
3617                  */
3618                 switch(chain->bref.type) {
3619                 case HAMMER2_BREF_TYPE_DATA:
3620                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3621                 case HAMMER2_BREF_TYPE_DIRENT:
3622                 case HAMMER2_BREF_TYPE_INODE:
3623                         error = hammer2_chain_modify(chain, mtid, dedup_off,
3624                                                      HAMMER2_MODIFY_OPTDATA);
3625                         break;
3626                 default:
3627                         /*
3628                          * Remaining types are not supported by this function.
3629                          * In particular, INDIRECT and LEAF_NODE types are
3630                          * handled by create_indirect().
3631                          */
3632                         panic("hammer2_chain_create: bad type: %d",
3633                               chain->bref.type);
3634                         /* NOT REACHED */
3635                         break;
3636                 }
3637         } else {
3638                 /*
3639                  * When reconnecting a chain we must set UPDATE and
3640                  * setflush so the flush recognizes that it must update
3641                  * the bref in the parent.
3642                  */
3643                 if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0)
3644                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3645         }
3646
3647         /*
3648          * We must setflush(parent) to ensure that it recurses through to
3649          * chain.  setflush(chain) might not work because ONFLUSH is possibly
3650          * already set in the chain (so it won't recurse up to set it in the
3651          * parent).
3652          */
3653         if (parent)
3654                 hammer2_chain_setflush(parent);
3655
3656 done:
3657         *chainp = chain;
3658
3659         return (error);
3660 }
3661
3662 /*
3663  * Move the chain from its old parent to a new parent.  The chain must have
3664  * already been deleted or already disconnected (or never associated) with
3665  * a parent.  The chain is reassociated with the new parent and the deleted
3666  * flag will be cleared (no longer deleted).  The chain's modification state
3667  * is not altered.
3668  *
3669  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
3670  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3671  * FULL.  This typically means that the caller is creating the chain after
3672  * doing a hammer2_chain_lookup().
3673  *
3674  * Neither (parent) or (chain) can be errored.
3675  *
3676  * If (parent) is non-NULL then the chain is inserted under the parent.
3677  *
3678  * If (parent) is NULL then the newly duplicated chain is not inserted
3679  * anywhere, similar to if it had just been chain_alloc()'d (suitable for
3680  * passing into hammer2_chain_create() after this function returns).
3681  *
3682  * WARNING! This function calls create which means it can insert indirect
3683  *          blocks.  This can cause other unrelated chains in the parent to
3684  *          be moved to a newly inserted indirect block in addition to the
3685  *          specific chain.
3686  */
3687 void
3688 hammer2_chain_rename(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3689                      hammer2_tid_t mtid, int flags)
3690 {
3691         hammer2_blockref_t *bref;
3692         hammer2_dev_t *hmp;
3693         hammer2_chain_t *parent;
3694         size_t bytes;
3695
3696         /*
3697          * WARNING!  We should never resolve DATA to device buffers
3698          *           (XXX allow it if the caller did?), and since
3699          *           we currently do not have the logical buffer cache
3700          *           buffer in-hand to fix its cached physical offset
3701          *           we also force the modify code to not COW it. XXX
3702          *
3703          * NOTE!     We allow error'd chains to be renamed.  The bref itself
3704          *           is good and can be renamed.  The content, however, may
3705          *           be inaccessible.
3706          */
3707         hmp = chain->hmp;
3708         KKASSERT(chain->parent == NULL);
3709         /*KKASSERT(chain->error == 0); allow */
3710
3711         /*
3712          * Now create a duplicate of the chain structure, associating
3713          * it with the same core, making it the same size, pointing it
3714          * to the same bref (the same media block).
3715          *
3716          * NOTE: Handle special radix == 0 case (means 0 bytes).
3717          */
3718         bref = &chain->bref;
3719         bytes = (size_t)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
3720         if (bytes)
3721                 bytes = (hammer2_off_t)1 << bytes;
3722
3723         /*
3724          * If parent is not NULL the duplicated chain will be entered under
3725          * the parent and the UPDATE bit set to tell flush to update
3726          * the blockref.
3727          *
3728          * We must setflush(parent) to ensure that it recurses through to
3729          * chain.  setflush(chain) might not work because ONFLUSH is possibly
3730          * already set in the chain (so it won't recurse up to set it in the
3731          * parent).
3732          *
3733          * Having both chains locked is extremely important for atomicy.
3734          */
3735         if (parentp && (parent = *parentp) != NULL) {
3736                 KKASSERT(hammer2_mtx_owned(&parent->lock));
3737                 KKASSERT(parent->refs > 0);
3738                 KKASSERT(parent->error == 0);
3739
3740                 hammer2_chain_create(parentp, &chain, NULL, chain->pmp,
3741                                      HAMMER2_METH_DEFAULT,
3742                                      bref->key, bref->keybits, bref->type,
3743                                      chain->bytes, mtid, 0, flags);
3744                 KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
3745                 hammer2_chain_setflush(*parentp);
3746         }
3747 }
3748
3749 /*
3750  * This works in tandem with delete_obref() to install a blockref in
3751  * (typically) an indirect block that is associated with the chain being
3752  * moved to *parentp.
3753  *
3754  * The reason we need this function is that the caller needs to maintain
3755  * the blockref as it was, and not generate a new blockref for what might
3756  * be a modified chain.  Otherwise stuff will leak into the flush that
3757  * the flush code's FLUSH_INODE_STOP flag is unable to catch.
3758  *
3759  * It is EXTREMELY important that we properly set CHAIN_BMAPUPD and
3760  * CHAIN_UPDATE.  We must set BMAPUPD if the bref does not match, and
3761  * we must clear CHAIN_UPDATE (that was likely set by the chain_rename) if
3762  * it does.  Otherwise we can end up in a situation where H2 is unable to
3763  * clean up the in-memory chain topology.
3764  *
3765  * The reason for this is that flushes do not generally flush through
3766  * BREF_TYPE_INODE chains and depend on a hammer2_inode_t queued to syncq
3767  * or sideq to properly flush and dispose of the related inode chain's flags.
3768  * Situations where the inode is not actually modified by the frontend,
3769  * but where we have to move the related chains around as we insert or cleanup
3770  * indirect blocks, can leave us with a 'dirty' (non-disposable) in-memory
3771  * inode chain that does not have a hammer2_inode_t associated with it.
3772  */
3773 static void
3774 hammer2_chain_rename_obref(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3775                            hammer2_tid_t mtid, int flags,
3776                            hammer2_blockref_t *obref)
3777 {
3778         hammer2_chain_rename(parentp, chain, mtid, flags);
3779
3780         if (obref->type != HAMMER2_BREF_TYPE_EMPTY) {
3781                 hammer2_blockref_t *tbase;
3782                 int tcount;
3783
3784                 KKASSERT((chain->flags & HAMMER2_CHAIN_BMAPPED) == 0);
3785                 hammer2_chain_modify(*parentp, mtid, 0, 0);
3786                 tbase = hammer2_chain_base_and_count(*parentp, &tcount);
3787                 hammer2_base_insert(*parentp, tbase, tcount, chain, obref);
3788                 if (bcmp(obref, &chain->bref, sizeof(chain->bref))) {
3789                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD |
3790                                                       HAMMER2_CHAIN_UPDATE);
3791                 } else {
3792                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3793                 }
3794         }
3795 }
3796
3797 /*
3798  * Helper function for deleting chains.
3799  *
3800  * The chain is removed from the live view (the RBTREE) as well as the parent's
3801  * blockmap.  Both chain and its parent must be locked.
3802  *
3803  * parent may not be errored.  chain can be errored.
3804  */
3805 static int
3806 _hammer2_chain_delete_helper(hammer2_chain_t *parent, hammer2_chain_t *chain,
3807                              hammer2_tid_t mtid, int flags,
3808                              hammer2_blockref_t *obref)
3809 {
3810         hammer2_dev_t *hmp;
3811         int error = 0;
3812
3813         KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0);
3814         KKASSERT(chain->parent == parent);
3815         hmp = chain->hmp;
3816
3817         if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
3818                 /*
3819                  * Chain is blockmapped, so there must be a parent.
3820                  * Atomically remove the chain from the parent and remove
3821                  * the blockmap entry.  The parent must be set modified
3822                  * to remove the blockmap entry.
3823                  */
3824                 hammer2_blockref_t *base;
3825                 int count;
3826
3827                 KKASSERT(parent != NULL);
3828                 KKASSERT(parent->error == 0);
3829                 KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
3830                 error = hammer2_chain_modify(parent, mtid, 0, 0);
3831                 if (error)
3832                         goto done;
3833
3834                 /*
3835                  * Calculate blockmap pointer
3836                  */
3837                 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
3838                 hammer2_spin_ex(&chain->core.spin);
3839                 hammer2_spin_ex(&parent->core.spin);
3840
3841                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3842                 atomic_add_int(&parent->core.live_count, -1);
3843                 ++parent->core.generation;
3844                 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3845                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3846                 --parent->core.chain_count;
3847                 chain->parent = NULL;
3848
3849                 switch(parent->bref.type) {
3850                 case HAMMER2_BREF_TYPE_INODE:
3851                         /*
3852                          * Access the inode's block array.  However, there
3853                          * is no block array if the inode is flagged
3854                          * DIRECTDATA.
3855                          */
3856                         if (parent->data &&
3857                             (parent->data->ipdata.meta.op_flags &
3858                              HAMMER2_OPFLAG_DIRECTDATA) == 0) {
3859                                 base =
3860                                    &parent->data->ipdata.u.blockset.blockref[0];
3861                         } else {
3862                                 base = NULL;
3863                         }
3864                         count = HAMMER2_SET_COUNT;
3865                         break;
3866                 case HAMMER2_BREF_TYPE_INDIRECT:
3867                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3868                         if (parent->data)
3869                                 base = &parent->data->npdata[0];
3870                         else
3871                                 base = NULL;
3872                         count = parent->bytes / sizeof(hammer2_blockref_t);
3873                         break;
3874                 case HAMMER2_BREF_TYPE_VOLUME:
3875                         base = &parent->data->voldata.
3876                                         sroot_blockset.blockref[0];
3877                         count = HAMMER2_SET_COUNT;
3878                         break;
3879                 case HAMMER2_BREF_TYPE_FREEMAP:
3880                         base = &parent->data->blkset.blockref[0];
3881                         count = HAMMER2_SET_COUNT;
3882                         break;
3883                 default:
3884                         base = NULL;
3885                         count = 0;
3886                         panic("_hammer2_chain_delete_helper: "
3887                               "unrecognized blockref type: %d",
3888                               parent->bref.type);
3889                 }
3890
3891                 /*
3892                  * delete blockmapped chain from its parent.
3893                  *
3894                  * The parent is not affected by any statistics in chain
3895                  * which are pending synchronization.  That is, there is
3896                  * nothing to undo in the parent since they have not yet
3897                  * been incorporated into the parent.
3898                  *
3899                  * The parent is affected by statistics stored in inodes.
3900                  * Those have already been synchronized, so they must be
3901                  * undone.  XXX split update possible w/delete in middle?
3902                  */
3903                 if (base) {
3904                         hammer2_base_delete(parent, base, count, chain, obref);
3905                 }
3906                 hammer2_spin_unex(&parent->core.spin);
3907                 hammer2_spin_unex(&chain->core.spin);
3908         } else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
3909                 /*
3910                  * Chain is not blockmapped but a parent is present.
3911                  * Atomically remove the chain from the parent.  There is
3912                  * no blockmap entry to remove.
3913                  *
3914                  * Because chain was associated with a parent but not
3915                  * synchronized, the chain's *_count_up fields contain
3916                  * inode adjustment statistics which must be undone.
3917                  */
3918                 hammer2_spin_ex(&chain->core.spin);
3919                 hammer2_spin_ex(&parent->core.spin);
3920                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3921                 atomic_add_int(&parent->core.live_count, -1);
3922                 ++parent->core.generation;
3923                 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3924                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3925                 --parent->core.chain_count;
3926                 chain->parent = NULL;
3927                 hammer2_spin_unex(&parent->core.spin);
3928                 hammer2_spin_unex(&chain->core.spin);
3929         } else {
3930                 /*
3931                  * Chain is not blockmapped and has no parent.  This
3932                  * is a degenerate case.
3933                  */
3934                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3935         }
3936 done:
3937         return error;
3938 }
3939
3940 /*
3941  * Create an indirect block that covers one or more of the elements in the
3942  * current parent.  Either returns the existing parent with no locking or
3943  * ref changes or returns the new indirect block locked and referenced
3944  * and leaving the original parent lock/ref intact as well.
3945  *
3946  * If an error occurs, NULL is returned and *errorp is set to the H2 error.
3947  *
3948  * The returned chain depends on where the specified key falls.
3949  *
3950  * The key/keybits for the indirect mode only needs to follow three rules:
3951  *
3952  * (1) That all elements underneath it fit within its key space and
3953  *
3954  * (2) That all elements outside it are outside its key space.
3955  *
3956  * (3) When creating the new indirect block any elements in the current
3957  *     parent that fit within the new indirect block's keyspace must be
3958  *     moved into the new indirect block.
3959  *
3960  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
3961  *     keyspace the the current parent, but lookup/iteration rules will
3962  *     ensure (and must ensure) that rule (2) for all parents leading up
3963  *     to the nearest inode or the root volume header is adhered to.  This
3964  *     is accomplished by always recursing through matching keyspaces in
3965  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
3966  *
3967  * The current implementation calculates the current worst-case keyspace by
3968  * iterating the current parent and then divides it into two halves, choosing
3969  * whichever half has the most elements (not necessarily the half containing
3970  * the requested key).
3971  *
3972  * We can also opt to use the half with the least number of elements.  This
3973  * causes lower-numbered keys (aka logical file offsets) to recurse through
3974  * fewer indirect blocks and higher-numbered keys to recurse through more.
3975  * This also has the risk of not moving enough elements to the new indirect
3976  * block and being forced to create several indirect blocks before the element
3977  * can be inserted.
3978  *
3979  * Must be called with an exclusively locked parent.
3980  *
3981  * NOTE: *errorp set to HAMMER_ERROR_* flags
3982  */
3983 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
3984                                 hammer2_key_t *keyp, int keybits,
3985                                 hammer2_blockref_t *base, int count);
3986 static int hammer2_chain_indkey_file(hammer2_chain_t *parent,
3987                                 hammer2_key_t *keyp, int keybits,
3988                                 hammer2_blockref_t *base, int count,
3989                                 int ncount);
3990 static int hammer2_chain_indkey_dir(hammer2_chain_t *parent,
3991                                 hammer2_key_t *keyp, int keybits,
3992                                 hammer2_blockref_t *base, int count,
3993                                 int ncount);
3994 static
3995 hammer2_chain_t *
3996 hammer2_chain_create_indirect(hammer2_chain_t *parent,
3997                               hammer2_key_t create_key, int create_bits,
3998                               hammer2_tid_t mtid, int for_type, int *errorp)
3999 {
4000         hammer2_dev_t *hmp;
4001         hammer2_blockref_t *base;
4002         hammer2_blockref_t *bref;
4003         hammer2_blockref_t bsave;
4004         hammer2_blockref_t dummy;
4005         hammer2_chain_t *chain;
4006         hammer2_chain_t *ichain;
4007         hammer2_key_t key = create_key;
4008         hammer2_key_t key_beg;
4009         hammer2_key_t key_end;
4010         hammer2_key_t key_next;
4011         int keybits = create_bits;
4012         int count;
4013         int ncount;
4014         int nbytes;
4015         int loops;
4016         int error;
4017         int reason;
4018         int generation;
4019         int maxloops = 300000;
4020
4021         /*
4022          * Calculate the base blockref pointer or NULL if the chain
4023          * is known to be empty.  We need to calculate the array count
4024          * for RB lookups either way.
4025          */
4026         hmp = parent->hmp;
4027         KKASSERT(hammer2_mtx_owned(&parent->lock));
4028
4029         /*
4030          * Pre-modify the parent now to avoid having to deal with error
4031          * processing if we tried to later (in the middle of our loop).
4032          *
4033          * We are going to be moving bref's around, the indirect blocks
4034          * cannot be in an initial state.  Do not pass MODIFY_OPTDATA.
4035          */
4036         *errorp = hammer2_chain_modify(parent, mtid, 0, 0);
4037         if (*errorp) {
4038                 kprintf("hammer2_chain_create_indirect: error %08x %s\n",
4039                         *errorp, hammer2_error_str(*errorp));
4040                 return NULL;
4041         }
4042         KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
4043
4044         /*hammer2_chain_modify(&parent, HAMMER2_MODIFY_OPTDATA);*/
4045         base = hammer2_chain_base_and_count(parent, &count);
4046
4047         /*
4048          * How big should our new indirect block be?  It has to be at least
4049          * as large as its parent for splits to work properly.
4050          *
4051          * The freemap uses a specific indirect block size.  The number of
4052          * levels are built dynamically and ultimately depend on the size
4053          * volume.  Because freemap blocks are taken from the reserved areas
4054          * of the volume our goal is efficiency (fewer levels) and not so
4055          * much to save disk space.
4056          *
4057          * The first indirect block level for a directory usually uses
4058          * HAMMER2_IND_BYTES_MIN (4KB = 32 directory entries).  Due to
4059          * the hash mechanism, this typically gives us a nominal
4060          * 32 * 4 entries with one level of indirection.
4061          *
4062          * We use HAMMER2_IND_BYTES_NOM (16KB = 128 blockrefs) for FILE
4063          * indirect blocks.  The initial 4 entries in the inode gives us
4064          * 256KB.  Up to 4 indirect blocks gives us 32MB.  Three levels
4065          * of indirection gives us 137GB, and so forth.  H2 can support
4066          * huge file sizes but they are not typical, so we try to stick
4067          * with compactness and do not use a larger indirect block size.
4068          *
4069          * We could use 64KB (PBUFSIZE), giving us 512 blockrefs, but
4070          * due to the way indirect blocks are created this usually winds
4071          * up being extremely inefficient for small files.  Even though
4072          * 16KB requires more levels of indirection for very large files,
4073          * the 16KB records can be ganged together into 64KB DIOs.
4074          */
4075         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4076             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4077                 nbytes = HAMMER2_FREEMAP_LEVELN_PSIZE;
4078         } else if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4079                 if (parent->data->ipdata.meta.type ==
4080                     HAMMER2_OBJTYPE_DIRECTORY)
4081                         nbytes = HAMMER2_IND_BYTES_MIN; /* 4KB = 32 entries */
4082                 else
4083                         nbytes = HAMMER2_IND_BYTES_NOM; /* 16KB = ~8MB file */
4084
4085         } else {
4086                 nbytes = HAMMER2_IND_BYTES_NOM;
4087         }
4088         if (nbytes < count * sizeof(hammer2_blockref_t)) {
4089                 KKASSERT(for_type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
4090                          for_type != HAMMER2_BREF_TYPE_FREEMAP_LEAF);
4091                 nbytes = count * sizeof(hammer2_blockref_t);
4092         }
4093         ncount = nbytes / sizeof(hammer2_blockref_t);
4094
4095         /*
4096          * When creating an indirect block for a freemap node or leaf
4097          * the key/keybits must be fitted to static radix levels because
4098          * particular radix levels use particular reserved blocks in the
4099          * related zone.
4100          *
4101          * This routine calculates the key/radix of the indirect block
4102          * we need to create, and whether it is on the high-side or the
4103          * low-side.
4104          */
4105         switch(for_type) {
4106         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
4107         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
4108                 keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
4109                                                        base, count);
4110                 break;
4111         case HAMMER2_BREF_TYPE_DATA:
4112                 keybits = hammer2_chain_indkey_file(parent, &key, keybits,
4113                                                     base, count, ncount);
4114                 break;
4115         case HAMMER2_BREF_TYPE_DIRENT:
4116         case HAMMER2_BREF_TYPE_INODE:
4117                 keybits = hammer2_chain_indkey_dir(parent, &key, keybits,
4118                                                    base, count, ncount);
4119                 break;
4120         default:
4121                 panic("illegal indirect block for bref type %d", for_type);
4122                 break;
4123         }
4124
4125         /*
4126          * Normalize the key for the radix being represented, keeping the
4127          * high bits and throwing away the low bits.
4128          */
4129         key &= ~(((hammer2_key_t)1 << keybits) - 1);
4130
4131         /*
4132          * Ok, create our new indirect block
4133          */
4134         bzero(&dummy, sizeof(dummy));
4135         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4136             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4137                 dummy.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
4138         } else {
4139                 dummy.type = HAMMER2_BREF_TYPE_INDIRECT;
4140         }
4141         dummy.key = key;
4142         dummy.keybits = keybits;
4143         dummy.data_off = hammer2_getradix(nbytes);
4144         dummy.methods =
4145                 HAMMER2_ENC_CHECK(HAMMER2_DEC_CHECK(parent->bref.methods)) |
4146                 HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
4147
4148         ichain = hammer2_chain_alloc(hmp, parent->pmp, &dummy);
4149         atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
4150         hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
4151         /* ichain has one ref at this point */
4152
4153         /*
4154          * We have to mark it modified to allocate its block, but use
4155          * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
4156          * it won't be acted upon by the flush code.
4157          *
4158          * XXX remove OPTDATA, we need a fully initialized indirect block to
4159          * be able to move the original blockref.
4160          */
4161         *errorp = hammer2_chain_modify(ichain, mtid, 0, 0);
4162         if (*errorp) {
4163                 kprintf("hammer2_chain_create_indirect: error %08x %s\n",
4164                         *errorp, hammer2_error_str(*errorp));
4165                 hammer2_chain_unlock(ichain);
4166                 hammer2_chain_drop(ichain);
4167                 return NULL;
4168         }
4169         KKASSERT((ichain->flags & HAMMER2_CHAIN_INITIAL) == 0);
4170
4171         /*
4172          * Iterate the original parent and move the matching brefs into
4173          * the new indirect block.
4174          *
4175          * XXX handle flushes.
4176          */
4177         key_beg = 0;
4178         key_end = HAMMER2_KEY_MAX;
4179         key_next = 0;   /* avoid gcc warnings */
4180         hammer2_spin_ex(&parent->core.spin);
4181         loops = 0;
4182         reason = 0;
4183
4184         for (;;) {
4185                 /*
4186                  * Parent may have been modified, relocating its block array.
4187                  * Reload the base pointer.
4188                  */
4189                 base = hammer2_chain_base_and_count(parent, &count);
4190
4191                 if (++loops > 100000) {
4192                     hammer2_spin_unex(&parent->core.spin);
4193                     panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
4194                           reason, parent, base, count, key_next);
4195                 }
4196
4197                 /*
4198                  * NOTE: spinlock stays intact, returned chain (if not NULL)
4199                  *       is not referenced or locked which means that we
4200                  *       cannot safely check its flagged / deletion status
4201                  *       until we lock it.
4202                  */
4203                 chain = hammer2_combined_find(parent, base, count,
4204                                               &key_next,
4205                                               key_beg, key_end,
4206                                               &bref);
4207                 generation = parent->core.generation;
4208                 if (bref == NULL)
4209                         break;
4210                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4211
4212                 /*
4213                  * Skip keys that are not within the key/radix of the new
4214                  * indirect block.  They stay in the parent.
4215                  */
4216                 if (rounddown2(key ^ bref->key, (hammer2_key_t)1 << keybits) != 0) {
4217                         goto next_key_spinlocked;
4218                 }
4219
4220                 /*
4221                  * Load the new indirect block by acquiring the related
4222                  * chains (potentially from media as it might not be
4223                  * in-memory).  Then move it to the new parent (ichain).
4224                  *
4225                  * chain is referenced but not locked.  We must lock the
4226                  * chain to obtain definitive state.
4227                  */
4228                 bsave = *bref;
4229                 if (chain) {
4230                         /*
4231                          * Use chain already present in the RBTREE
4232                          */
4233                         hammer2_chain_ref(chain);
4234                         hammer2_spin_unex(&parent->core.spin);
4235                         hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
4236                 } else {
4237                         /*
4238                          * Get chain for blockref element.  _get returns NULL
4239                          * on insertion race.
4240                          */
4241                         hammer2_spin_unex(&parent->core.spin);
4242                         chain = hammer2_chain_get(parent, generation, &bsave,
4243                                                   HAMMER2_RESOLVE_NEVER);
4244                         if (chain == NULL) {
4245                                 reason = 1;
4246                                 hammer2_spin_ex(&parent->core.spin);
4247                                 continue;
4248                         }
4249                 }
4250
4251                 /*
4252                  * This is always live so if the chain has been deleted
4253                  * we raced someone and we have to retry.
4254                  *
4255                  * NOTE: Lookups can race delete-duplicate because
4256                  *       delete-duplicate does not lock the parent's core
4257                  *       (they just use the spinlock on the core).
4258                  *
4259                  *       (note reversed logic for this one)
4260                  */
4261                 if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
4262                     chain->parent != parent ||
4263                     (chain->flags & HAMMER2_CHAIN_DELETED)) {
4264                         hammer2_chain_unlock(chain);
4265                         hammer2_chain_drop(chain);
4266                         if (hammer2_debug & 0x0040) {
4267                                 kprintf("LOST PARENT RETRY "
4268                                 "RETRY (%p,%p)->%p %08x\n",
4269                                 parent, chain->parent, chain, chain->flags);
4270                         }
4271                         hammer2_spin_ex(&parent->core.spin);
4272                         continue;
4273                 }
4274
4275                 /*
4276                  * Shift the chain to the indirect block.
4277                  *
4278                  * WARNING! No reason for us to load chain data, pass NOSTATS
4279                  *          to prevent delete/insert from trying to access
4280                  *          inode stats (and thus asserting if there is no
4281                  *          chain->data loaded).
4282                  *
4283                  * WARNING! The (parent, chain) deletion may modify the parent
4284                  *          and invalidate the base pointer.
4285                  *
4286                  * WARNING! Parent must already be marked modified, so we
4287                  *          can assume that chain_delete always suceeds.
4288                  *
4289                  * WARNING! hammer2_chain_repchange() does not have to be
4290                  *          called (and doesn't work anyway because we are
4291                  *          only doing a partial shift).  A recursion that is
4292                  *          in-progress can continue at the current parent
4293                  *          and will be able to properly find its next key.
4294                  */
4295                 error = hammer2_chain_delete_obref(parent, chain, mtid, 0,
4296                                                    &bsave);
4297                 KKASSERT(error == 0);
4298                 hammer2_chain_rename_obref(&ichain, chain, mtid, 0, &bsave);
4299                 hammer2_chain_unlock(chain);
4300                 hammer2_chain_drop(chain);
4301                 KKASSERT(parent->refs > 0);
4302                 chain = NULL;
4303                 base = NULL;    /* safety */
4304                 hammer2_spin_ex(&parent->core.spin);
4305 next_key_spinlocked:
4306                 if (--maxloops == 0)
4307                         panic("hammer2_chain_create_indirect: maxloops");
4308                 reason = 4;
4309                 if (key_next == 0 || key_next > key_end)
4310                         break;
4311                 key_beg = key_next;
4312                 /* loop */
4313         }
4314         hammer2_spin_unex(&parent->core.spin);
4315
4316         /*
4317          * Insert the new indirect block into the parent now that we've
4318          * cleared out some entries in the parent.  We calculated a good
4319          * insertion index in the loop above (ichain->index).
4320          *
4321          * We don't have to set UPDATE here because we mark ichain
4322          * modified down below (so the normal modified -> flush -> set-moved
4323          * sequence applies).
4324          *
4325          * The insertion shouldn't race as this is a completely new block
4326          * and the parent is locked.
4327          */
4328         base = NULL;    /* safety, parent modify may change address */
4329         KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
4330         KKASSERT(parent->core.live_count < count);
4331         hammer2_chain_insert(parent, ichain,
4332                              HAMMER2_CHAIN_INSERT_SPIN |
4333                              HAMMER2_CHAIN_INSERT_LIVE,
4334                              0);
4335
4336         /*
4337          * Make sure flushes propogate after our manual insertion.
4338          */
4339         hammer2_chain_setflush(ichain);
4340         hammer2_chain_setflush(parent);
4341
4342         /*
4343          * Figure out what to return.
4344          */
4345         if (rounddown2(create_key ^ key, (hammer2_key_t)1 << keybits)) {
4346                 /*
4347                  * Key being created is outside the key range,
4348                  * return the original parent.
4349                  */
4350                 hammer2_chain_unlock(ichain);
4351                 hammer2_chain_drop(ichain);
4352         } else {
4353                 /*
4354                  * Otherwise its in the range, return the new parent.
4355                  * (leave both the new and old parent locked).
4356                  */
4357                 parent = ichain;
4358         }
4359
4360         return(parent);
4361 }
4362
4363 /*
4364  * Do maintenance on an indirect chain.  Both parent and chain are locked.
4365  *
4366  * Returns non-zero if (chain) is deleted, either due to being empty or
4367  * because its children were safely moved into the parent.
4368  */
4369 int
4370 hammer2_chain_indirect_maintenance(hammer2_chain_t *parent,
4371                                    hammer2_chain_t *chain)
4372 {
4373         hammer2_blockref_t *chain_base;
4374         hammer2_blockref_t *base;
4375         hammer2_blockref_t *bref;
4376         hammer2_blockref_t bsave;
4377         hammer2_key_t key_next;
4378         hammer2_key_t key_beg;
4379         hammer2_key_t key_end;
4380         hammer2_chain_t *sub;
4381         int chain_count;
4382         int count;
4383         int error;
4384         int generation;
4385
4386         /*
4387          * Make sure we have an accurate live_count
4388          */
4389         if ((chain->flags & (HAMMER2_CHAIN_INITIAL |
4390                              HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4391                 base = &chain->data->npdata[0];
4392                 count = chain->bytes / sizeof(hammer2_blockref_t);
4393                 hammer2_chain_countbrefs(chain, base, count);
4394         }
4395
4396         /*
4397          * If the indirect block is empty we can delete it.
4398          * (ignore deletion error)
4399          */
4400         if (chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree)) {
4401                 hammer2_chain_delete(parent, chain,
4402                                      chain->bref.modify_tid,
4403                                      HAMMER2_DELETE_PERMANENT);
4404                 hammer2_chain_repchange(parent, chain);
4405                 return 1;
4406         }
4407
4408         base = hammer2_chain_base_and_count(parent, &count);
4409
4410         if ((parent->flags & (HAMMER2_CHAIN_INITIAL |
4411                              HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4412                 hammer2_chain_countbrefs(parent, base, count);
4413         }
4414
4415         /*
4416          * Determine if we can collapse chain into parent, calculate
4417          * hysteresis for chain emptiness.
4418          */
4419         if (parent->core.live_count + chain->core.live_count - 1 > count)
4420                 return 0;
4421         chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4422         if (chain->core.live_count > chain_count * 3 / 4)
4423                 return 0;
4424
4425         /*
4426          * Ok, theoretically we can collapse chain's contents into
4427          * parent.  chain is locked, but any in-memory children of chain
4428          * are not.  For this to work, we must be able to dispose of any
4429          * in-memory children of chain.
4430          *
4431          * For now require that there are no in-memory children of chain.
4432          *
4433          * WARNING! Both chain and parent must remain locked across this
4434          *          entire operation.
4435          */
4436
4437         /*
4438          * Parent must be marked modified.  Don't try to collapse it if we
4439          * can't mark it modified.  Once modified, destroy chain to make room
4440          * and to get rid of what will be a conflicting key (this is included
4441          * in the calculation above).  Finally, move the children of chain
4442          * into chain's parent.
4443          *
4444          * This order creates an accounting problem for bref.embed.stats
4445          * because we destroy chain before we remove its children.  Any
4446          * elements whos blockref is already synchronized will be counted
4447          * twice.  To deal with the problem we clean out chain's stats prior
4448          * to deleting it.
4449          */
4450         error = hammer2_chain_modify(parent, 0, 0, 0);
4451         if (error) {
4452                 krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4453                             hammer2_error_str(error));
4454                 return 0;
4455         }
4456         error = hammer2_chain_modify(chain, chain->bref.modify_tid, 0, 0);
4457         if (error) {
4458                 krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4459                             hammer2_error_str(error));
4460                 return 0;
4461         }
4462
4463         chain->bref.embed.stats.inode_count = 0;
4464         chain->bref.embed.stats.data_count = 0;
4465         error = hammer2_chain_delete(parent, chain,
4466                                      chain->bref.modify_tid,
4467                                      HAMMER2_DELETE_PERMANENT);
4468         KKASSERT(error == 0);
4469
4470         /*
4471          * The combined_find call requires core.spin to be held.  One would
4472          * think there wouldn't be any conflicts since we hold chain
4473          * exclusively locked, but the caching mechanism for 0-ref children
4474          * does not require a chain lock.
4475          */
4476         hammer2_spin_ex(&chain->core.spin);
4477
4478         key_next = 0;
4479         key_beg = 0;
4480         key_end = HAMMER2_KEY_MAX;
4481         for (;;) {
4482                 chain_base = &chain->data->npdata[0];
4483                 chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4484                 sub = hammer2_combined_find(chain, chain_base, chain_count,
4485                                             &key_next,
4486                                             key_beg, key_end,
4487                                             &bref);
4488                 generation = chain->core.generation;
4489                 if (bref == NULL)
4490                         break;
4491                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4492
4493                 bsave = *bref;
4494                 if (sub) {
4495                         hammer2_chain_ref(sub);
4496                         hammer2_spin_unex(&chain->core.spin);
4497                         hammer2_chain_lock(sub, HAMMER2_RESOLVE_NEVER);
4498                 } else {
4499                         hammer2_spin_unex(&chain->core.spin);
4500                         sub = hammer2_chain_get(chain, generation, &bsave,
4501                                                 HAMMER2_RESOLVE_NEVER);
4502                         if (sub == NULL) {
4503                                 hammer2_spin_ex(&chain->core.spin);
4504                                 continue;
4505                         }
4506                 }
4507                 if (bcmp(&bsave, &sub->bref, sizeof(bsave)) ||
4508                     sub->parent != chain ||
4509                     (sub->flags & HAMMER2_CHAIN_DELETED)) {
4510                         hammer2_chain_unlock(sub);
4511                         hammer2_chain_drop(sub);
4512                         hammer2_spin_ex(&chain->core.spin);
4513                         sub = NULL;     /* safety */
4514                         continue;
4515                 }
4516                 error = hammer2_chain_delete_obref(chain, sub,
4517                                                    sub->bref.modify_tid, 0,
4518                                                    &bsave);
4519                 KKASSERT(error == 0);
4520                 hammer2_chain_rename_obref(&parent, sub,
4521                                      sub->bref.modify_tid,
4522                                      HAMMER2_INSERT_SAMEPARENT, &bsave);
4523                 hammer2_chain_unlock(sub);
4524                 hammer2_chain_drop(sub);
4525                 hammer2_spin_ex(&chain->core.spin);
4526
4527                 if (key_next == 0)
4528                         break;
4529                 key_beg = key_next;
4530         }
4531         hammer2_spin_unex(&chain->core.spin);
4532
4533         hammer2_chain_repchange(parent, chain);
4534
4535         return 1;
4536 }
4537
4538 /*
4539  * Freemap indirect blocks
4540  *
4541  * Calculate the keybits and highside/lowside of the freemap node the
4542  * caller is creating.
4543  *
4544  * This routine will specify the next higher-level freemap key/radix
4545  * representing the lowest-ordered set.  By doing so, eventually all
4546  * low-ordered sets will be moved one level down.
4547  *
4548  * We have to be careful here because the freemap reserves a limited
4549  * number of blocks for a limited number of levels.  So we can't just
4550  * push indiscriminately.
4551  */
4552 int
4553 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
4554                              int keybits, hammer2_blockref_t *base, int count)
4555 {
4556         hammer2_chain_t *chain;
4557         hammer2_blockref_t *bref;
4558         hammer2_key_t key;
4559         hammer2_key_t key_beg;
4560         hammer2_key_t key_end;
4561         hammer2_key_t key_next;
4562         int locount;
4563         int hicount;
4564         int maxloops = 300000;
4565
4566         key = *keyp;
4567         locount = 0;
4568         hicount = 0;
4569         keybits = 64;
4570
4571         /*
4572          * Calculate the range of keys in the array being careful to skip
4573          * slots which are overridden with a deletion.
4574          */
4575         key_beg = 0;
4576         key_end = HAMMER2_KEY_MAX;
4577         hammer2_spin_ex(&parent->core.spin);
4578
4579         for (;;) {
4580                 if (--maxloops == 0) {
4581                         panic("indkey_freemap shit %p %p:%d\n",
4582                               parent, base, count);
4583                 }
4584                 chain = hammer2_combined_find(parent, base, count,
4585                                               &key_next,
4586                                               key_beg, key_end,
4587                                               &bref);
4588
4589                 /*
4590                  * Exhausted search
4591                  */
4592                 if (bref == NULL)
4593                         break;
4594
4595                 /*
4596                  * Skip deleted chains.
4597                  */
4598                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4599                         if (key_next == 0 || key_next > key_end)
4600                                 break;
4601                         key_beg = key_next;
4602                         continue;
4603                 }
4604
4605                 /*
4606                  * Use the full live (not deleted) element for the scan
4607                  * iteration.  HAMMER2 does not allow partial replacements.
4608                  *
4609                  * XXX should be built into hammer2_combined_find().
4610                  */
4611                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4612
4613                 if (keybits > bref->keybits) {
4614                         key = bref->key;
4615                         keybits = bref->keybits;
4616                 } else if (keybits == bref->keybits && bref->key < key) {
4617                         key = bref->key;
4618                 }
4619                 if (key_next == 0)
4620                         break;
4621                 key_beg = key_next;
4622         }
4623         hammer2_spin_unex(&parent->core.spin);
4624
4625         /*
4626          * Return the keybits for a higher-level FREEMAP_NODE covering
4627          * this node.
4628          */
4629         switch(keybits) {
4630         case HAMMER2_FREEMAP_LEVEL0_RADIX:
4631                 keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
4632                 break;
4633         case HAMMER2_FREEMAP_LEVEL1_RADIX:
4634                 keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
4635                 break;
4636         case HAMMER2_FREEMAP_LEVEL2_RADIX:
4637                 keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
4638                 break;
4639         case HAMMER2_FREEMAP_LEVEL3_RADIX:
4640                 keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
4641                 break;
4642         case HAMMER2_FREEMAP_LEVEL4_RADIX:
4643                 keybits = HAMMER2_FREEMAP_LEVEL5_RADIX;
4644                 break;
4645         case HAMMER2_FREEMAP_LEVEL5_RADIX:
4646                 panic("hammer2_chain_indkey_freemap: level too high");
4647                 break;
4648         default:
4649                 panic("hammer2_chain_indkey_freemap: bad radix");
4650                 break;
4651         }
4652         *keyp = key;
4653
4654         return (keybits);
4655 }
4656
4657 /*
4658  * File indirect blocks
4659  *
4660  * Calculate the key/keybits for the indirect block to create by scanning
4661  * existing keys.  The key being created is also passed in *keyp and can be
4662  * inside or outside the indirect block.  Regardless, the indirect block
4663  * must hold at least two keys in order to guarantee sufficient space.
4664  *
4665  * We use a modified version of the freemap's fixed radix tree, but taylored
4666  * for file data.  Basically we configure an indirect block encompassing the
4667  * smallest key.
4668  */
4669 static int
4670 hammer2_chain_indkey_file(hammer2_chain_t *parent, hammer2_key_t *keyp,
4671                             int keybits, hammer2_blockref_t *base, int count,
4672                             int ncount)
4673 {
4674         hammer2_chain_t *chain;
4675         hammer2_blockref_t *bref;
4676         hammer2_key_t key;
4677         hammer2_key_t key_beg;
4678         hammer2_key_t key_end;
4679         hammer2_key_t key_next;
4680         int nradix;
4681         int locount;
4682         int hicount;
4683         int maxloops = 300000;
4684
4685         key = *keyp;
4686         locount = 0;
4687         hicount = 0;
4688         keybits = 64;
4689
4690         /*
4691          * Calculate the range of keys in the array being careful to skip
4692          * slots which are overridden with a deletion.
4693          *
4694          * Locate the smallest key.
4695          */
4696         key_beg = 0;
4697         key_end = HAMMER2_KEY_MAX;
4698         hammer2_spin_ex(&parent->core.spin);
4699
4700         for (;;) {
4701                 if (--maxloops == 0) {
4702                         panic("indkey_freemap shit %p %p:%d\n",
4703                               parent, base, count);
4704                 }
4705                 chain = hammer2_combined_find(parent, base, count,
4706                                               &key_next,
4707                                               key_beg, key_end,
4708                                               &bref);
4709
4710                 /*
4711                  * Exhausted search
4712                  */
4713                 if (bref == NULL)
4714                         break;
4715
4716                 /*
4717                  * Skip deleted chains.
4718                  */
4719                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4720                         if (key_next == 0 || key_next > key_end)
4721                                 break;
4722                         key_beg = key_next;
4723                         continue;
4724                 }
4725
4726                 /*
4727                  * Use the full live (not deleted) element for the scan
4728                  * iteration.  HAMMER2 does not allow partial replacements.
4729                  *
4730                  * XXX should be built into hammer2_combined_find().
4731                  */
4732                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4733
4734                 if (keybits > bref->keybits) {
4735                         key = bref->key;
4736                         keybits = bref->keybits;
4737                 } else if (keybits == bref->keybits && bref->key < key) {
4738                         key = bref->key;
4739                 }
4740                 if (key_next == 0)
4741                         break;
4742                 key_beg = key_next;
4743         }
4744         hammer2_spin_unex(&parent->core.spin);
4745
4746         /*
4747          * Calculate the static keybits for a higher-level indirect block
4748          * that contains the key.
4749          */
4750         *keyp = key;
4751
4752         switch(ncount) {
4753         case HAMMER2_IND_BYTES_MIN / sizeof(hammer2_blockref_t):
4754                 nradix = HAMMER2_IND_RADIX_MIN - HAMMER2_BLOCKREF_RADIX;
4755                 break;
4756         case HAMMER2_IND_BYTES_NOM / sizeof(hammer2_blockref_t):
4757                 nradix = HAMMER2_IND_RADIX_NOM - HAMMER2_BLOCKREF_RADIX;
4758                 break;
4759         case HAMMER2_IND_BYTES_MAX / sizeof(hammer2_blockref_t):
4760                 nradix = HAMMER2_IND_RADIX_MAX - HAMMER2_BLOCKREF_RADIX;
4761                 break;
4762         default:
4763                 panic("bad ncount %d\n", ncount);
4764                 nradix = 0;
4765                 break;
4766         }
4767
4768         /*
4769          * The largest radix that can be returned for an indirect block is
4770          * 63 bits.  (The largest practical indirect block radix is actually
4771          * 62 bits because the top-level inode or volume root contains four
4772          * entries, but allow 63 to be returned).
4773          */
4774         if (nradix >= 64)
4775                 nradix = 63;
4776
4777         return keybits + nradix;
4778 }
4779
4780 #if 1
4781
4782 /*
4783  * Directory indirect blocks.
4784  *
4785  * Covers both the inode index (directory of inodes), and directory contents
4786  * (filenames hardlinked to inodes).
4787  *
4788  * Because directory keys are hashed we generally try to cut the space in
4789  * half.  We accomodate the inode index (which tends to have linearly
4790  * increasing inode numbers) by ensuring that the keyspace is at least large
4791  * enough to fill up the indirect block being created.
4792  */
4793 static int
4794 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4795                          int keybits, hammer2_blockref_t *base, int count,
4796                          int ncount)
4797 {
4798         hammer2_blockref_t *bref;
4799         hammer2_chain_t *chain;
4800         hammer2_key_t key_beg;
4801         hammer2_key_t key_end;
4802         hammer2_key_t key_next;
4803         hammer2_key_t key;
4804         int nkeybits;
4805         int locount;
4806         int hicount;
4807         int maxloops = 300000;
4808
4809         /*
4810          * NOTE: We can't take a shortcut here anymore for inodes because
4811          *       the root directory can contain a mix of inodes and directory
4812          *       entries (we used to just return 63 if parent->bref.type was
4813          *       HAMMER2_BREF_TYPE_INODE.
4814          */
4815         key = *keyp;
4816         locount = 0;
4817         hicount = 0;
4818
4819         /*
4820          * Calculate the range of keys in the array being careful to skip
4821          * slots which are overridden with a deletion.
4822          */
4823         key_beg = 0;
4824         key_end = HAMMER2_KEY_MAX;
4825         hammer2_spin_ex(&parent->core.spin);
4826
4827         for (;;) {
4828                 if (--maxloops == 0) {
4829                         panic("indkey_freemap shit %p %p:%d\n",
4830                               parent, base, count);
4831                 }
4832                 chain = hammer2_combined_find(parent, base, count,
4833                                               &key_next,
4834                                               key_beg, key_end,
4835                                               &bref);
4836
4837                 /*
4838                  * Exhausted search
4839                  */
4840                 if (bref == NULL)
4841                         break;
4842
4843                 /*
4844                  * Deleted object
4845                  */
4846                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4847                         if (key_next == 0 || key_next > key_end)
4848                                 break;
4849                         key_beg = key_next;
4850                         continue;
4851                 }
4852
4853                 /*
4854                  * Use the full live (not deleted) element for the scan
4855                  * iteration.  HAMMER2 does not allow partial replacements.
4856                  *
4857                  * XXX should be built into hammer2_combined_find().
4858                  */
4859                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4860
4861                 /*
4862                  * Expand our calculated key range (key, keybits) to fit
4863                  * the scanned key.  nkeybits represents the full range
4864                  * that we will later cut in half (two halves @ nkeybits - 1).
4865                  */
4866                 nkeybits = keybits;
4867                 if (nkeybits < bref->keybits) {
4868                         if (bref->keybits > 64) {
4869                                 kprintf("bad bref chain %p bref %p\n",
4870                                         chain, bref);
4871                                 Debugger("fubar");
4872                         }
4873                         nkeybits = bref->keybits;
4874                 }
4875                 while (nkeybits < 64 &&
4876                        rounddown2(key ^ bref->key, (hammer2_key_t)1 << nkeybits) != 0) {
4877                         ++nkeybits;
4878                 }
4879
4880                 /*
4881                  * If the new key range is larger we have to determine
4882                  * which side of the new key range the existing keys fall
4883                  * under by checking the high bit, then collapsing the
4884                  * locount into the hicount or vise-versa.
4885                  */
4886                 if (keybits != nkeybits) {
4887                         if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
4888                                 hicount += locount;
4889                                 locount = 0;
4890                         } else {
4891                                 locount += hicount;
4892                                 hicount = 0;
4893                         }
4894                         keybits = nkeybits;
4895                 }
4896
4897                 /*
4898                  * The newly scanned key will be in the lower half or the
4899                  * upper half of the (new) key range.
4900                  */
4901                 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
4902                         ++hicount;
4903                 else
4904                         ++locount;
4905
4906                 if (key_next == 0)
4907                         break;
4908                 key_beg = key_next;
4909         }
4910         hammer2_spin_unex(&parent->core.spin);
4911         bref = NULL;    /* now invalid (safety) */
4912
4913         /*
4914          * Adjust keybits to represent half of the full range calculated
4915          * above (radix 63 max) for our new indirect block.
4916          */
4917         --keybits;
4918
4919         /*
4920          * Expand keybits to hold at least ncount elements.  ncount will be
4921          * a power of 2.  This is to try to completely fill leaf nodes (at
4922          * least for keys which are not hashes).
4923          *
4924          * We aren't counting 'in' or 'out', we are counting 'high side'
4925          * and 'low side' based on the bit at (1LL << keybits).  We want
4926          * everything to be inside in these cases so shift it all to
4927          * the low or high side depending on the new high bit.
4928          */
4929         while (((hammer2_key_t)1 << keybits) < ncount) {
4930                 ++keybits;
4931                 if (key & ((hammer2_key_t)1 << keybits)) {
4932                         hicount += locount;
4933                         locount = 0;
4934                 } else {
4935                         locount += hicount;
4936                         hicount = 0;
4937                 }
4938         }
4939
4940         if (hicount > locount)
4941                 key |= (hammer2_key_t)1 << keybits;
4942         else
4943                 key &= ~(hammer2_key_t)1 << keybits;
4944
4945         *keyp = key;
4946
4947         return (keybits);
4948 }
4949
4950 #else
4951
4952 /*
4953  * Directory indirect blocks.
4954  *
4955  * Covers both the inode index (directory of inodes), and directory contents
4956  * (filenames hardlinked to inodes).
4957  *
4958  * Because directory keys are hashed we generally try to cut the space in
4959  * half.  We accomodate the inode index (which tends to have linearly
4960  * increasing inode numbers) by ensuring that the keyspace is at least large
4961  * enough to fill up the indirect block being created.
4962  */
4963 static int
4964 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4965                          int keybits, hammer2_blockref_t *base, int count,
4966                          int ncount)
4967 {
4968         hammer2_blockref_t *bref;
4969         hammer2_chain_t *chain;
4970         hammer2_key_t key_beg;
4971         hammer2_key_t key_end;
4972         hammer2_key_t key_next;
4973         hammer2_key_t key;
4974         int nkeybits;
4975         int locount;
4976         int hicount;
4977         int maxloops = 300000;
4978
4979         /*
4980          * Shortcut if the parent is the inode.  In this situation the
4981          * parent has 4+1 directory entries and we are creating an indirect
4982          * block capable of holding many more.
4983          */
4984         if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4985                 return 63;
4986         }
4987
4988         key = *keyp;
4989         locount = 0;
4990         hicount = 0;
4991
4992         /*
4993          * Calculate the range of keys in the array being careful to skip
4994          * slots which are overridden with a deletion.
4995          */
4996         key_beg = 0;
4997         key_end = HAMMER2_KEY_MAX;
4998         hammer2_spin_ex(&parent->core.spin);
4999
5000         for (;;) {
5001                 if (--maxloops == 0) {
5002                         panic("indkey_freemap shit %p %p:%d\n",
5003                               parent, base, count);
5004                 }
5005                 chain = hammer2_combined_find(parent, base, count,
5006                                               &key_next,
5007                                               key_beg, key_end,
5008                                               &bref);
5009
5010                 /*
5011                  * Exhausted search
5012                  */
5013                 if (bref == NULL)
5014                         break;
5015
5016                 /*
5017                  * Deleted object
5018                  */
5019                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
5020                         if (key_next == 0 || key_next > key_end)
5021                                 break;
5022                         key_beg = key_next;
5023                         continue;
5024                 }
5025
5026                 /*
5027                  * Use the full live (not deleted) element for the scan
5028                  * iteration.  HAMMER2 does not allow partial replacements.
5029                  *
5030                  * XXX should be built into hammer2_combined_find().
5031                  */
5032                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
5033
5034                 /*
5035                  * Expand our calculated key range (key, keybits) to fit
5036                  * the scanned key.  nkeybits represents the full range
5037                  * that we will later cut in half (two halves @ nkeybits - 1).
5038                  */
5039                 nkeybits = keybits;
5040                 if (nkeybits < bref->keybits) {
5041                         if (bref->keybits > 64) {
5042                                 kprintf("bad bref chain %p bref %p\n",
5043                                         chain, bref);
5044                                 Debugger("fubar");
5045                         }
5046                         nkeybits = bref->keybits;
5047                 }
5048                 while (nkeybits < 64 &&
5049                        (~(((hammer2_key_t)1 << nkeybits) - 1) &
5050                         (key ^ bref->key)) != 0) {
5051                         ++nkeybits;
5052                 }
5053
5054                 /*
5055                  * If the new key range is larger we have to determine
5056                  * which side of the new key range the existing keys fall
5057                  * under by checking the high bit, then collapsing the
5058                  * locount into the hicount or vise-versa.
5059                  */
5060                 if (keybits != nkeybits) {
5061                         if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
5062                                 hicount += locount;
5063                                 locount = 0;
5064                         } else {
5065                                 locount += hicount;
5066                                 hicount = 0;
5067                         }
5068                         keybits = nkeybits;
5069                 }
5070
5071                 /*
5072                  * The newly scanned key will be in the lower half or the
5073                  * upper half of the (new) key range.
5074                  */
5075                 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
5076                         ++hicount;
5077                 else
5078                         ++locount;
5079
5080                 if (key_next == 0)
5081                         break;
5082                 key_beg = key_next;
5083         }
5084         hammer2_spin_unex(&parent->core.spin);
5085         bref = NULL;    /* now invalid (safety) */
5086
5087         /*
5088          * Adjust keybits to represent half of the full range calculated
5089          * above (radix 63 max) for our new indirect block.
5090          */
5091         --keybits;
5092
5093         /*
5094          * Expand keybits to hold at least ncount elements.  ncount will be
5095          * a power of 2.  This is to try to completely fill leaf nodes (at
5096          * least for keys which are not hashes).
5097          *
5098          * We aren't counting 'in' or 'out', we are counting 'high side'
5099          * and 'low side' based on the bit at (1LL << keybits).  We want
5100          * everything to be inside in these cases so shift it all to
5101          * the low or high side depending on the new high bit.
5102          */
5103         while (((hammer2_key_t)1 << keybits) < ncount) {
5104                 ++keybits;
5105                 if (key & ((hammer2_key_t)1 << keybits)) {
5106                         hicount += locount;
5107                         locount = 0;
5108                 } else {
5109                         locount += hicount;
5110                         hicount = 0;
5111                 }
5112         }
5113
5114         if (hicount > locount)
5115                 key |= (hammer2_key_t)1 << keybits;
5116         else
5117                 key &= ~(hammer2_key_t)1 << keybits;
5118
5119         *keyp = key;
5120
5121         return (keybits);
5122 }
5123
5124 #endif
5125
5126 /*
5127  * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
5128  * it exists.
5129  *
5130  * Both parent and chain must be locked exclusively.
5131  *
5132  * This function will modify the parent if the blockref requires removal
5133  * from the parent's block table.
5134  *
5135  * This function is NOT recursive.  Any entity already pushed into the
5136  * chain (such as an inode) may still need visibility into its contents,
5137  * as well as the ability to read and modify the contents.  For example,
5138  * for an unlinked file which is still open.
5139  *
5140  * Also note that the flusher is responsible for cleaning up empty
5141  * indirect blocks.
5142  */
5143 int
5144 hammer2_chain_delete(hammer2_chain_t *parent, hammer2_chain_t *chain,
5145                      hammer2_tid_t mtid, int flags)
5146 {
5147         int error = 0;
5148
5149         KKASSERT(hammer2_mtx_owned(&chain->lock));
5150
5151         /*
5152          * Nothing to do if already marked.
5153          *
5154          * We need the spinlock on the core whos RBTREE contains chain
5155          * to protect against races.
5156          */
5157         if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5158                 KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5159                          chain->parent == parent);
5160                 error = _hammer2_chain_delete_helper(parent, chain,
5161                                                      mtid, flags, NULL);
5162         }
5163
5164         /*
5165          * Permanent deletions mark the chain as destroyed.
5166          *
5167          * NOTE: We do not setflush the chain unless the deletion is
5168          *       permanent, since the deletion of a chain does not actually
5169          *       require it to be flushed.
5170          */
5171         if (error == 0) {
5172                 if (flags & HAMMER2_DELETE_PERMANENT) {
5173                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5174                         hammer2_chain_setflush(chain);
5175                 }
5176         }
5177
5178         return error;
5179 }
5180
5181 static int
5182 hammer2_chain_delete_obref(hammer2_chain_t *parent, hammer2_chain_t *chain,
5183                      hammer2_tid_t mtid, int flags,
5184                      hammer2_blockref_t *obref)
5185 {
5186         int error = 0;
5187
5188         KKASSERT(hammer2_mtx_owned(&chain->lock));
5189
5190         /*
5191          * Nothing to do if already marked.
5192          *
5193          * We need the spinlock on the core whos RBTREE contains chain
5194          * to protect against races.
5195          */
5196         obref->type = HAMMER2_BREF_TYPE_EMPTY;
5197         if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5198                 KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5199                          chain->parent == parent);
5200                 error = _hammer2_chain_delete_helper(parent, chain,
5201                                                      mtid, flags, obref);
5202         }
5203
5204         /*
5205          * Permanent deletions mark the chain as destroyed.
5206          *
5207          * NOTE: We do not setflush the chain unless the deletion is
5208          *       permanent, since the deletion of a chain does not actually
5209          *       require it to be flushed.
5210          */
5211         if (error == 0) {
5212                 if (flags & HAMMER2_DELETE_PERMANENT) {
5213                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5214                         hammer2_chain_setflush(chain);
5215                 }
5216         }
5217
5218         return error;
5219 }
5220
5221 /*
5222  * Returns the index of the nearest element in the blockref array >= elm.
5223  * Returns (count) if no element could be found.
5224  *
5225  * Sets *key_nextp to the next key for loop purposes but does not modify
5226  * it if the next key would be higher than the current value of *key_nextp.
5227  * Note that *key_nexp can overflow to 0, which should be tested by the
5228  * caller.
5229  *
5230  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5231  *           held through the operation.
5232  */
5233 static int
5234 hammer2_base_find(hammer2_chain_t *parent,
5235                   hammer2_blockref_t *base, int count,
5236                   hammer2_key_t *key_nextp,
5237                   hammer2_key_t key_beg, hammer2_key_t key_end)
5238 {
5239         hammer2_blockref_t *scan;
5240         hammer2_key_t scan_end;
5241         int i;
5242         int limit;
5243
5244         /*
5245          * Require the live chain's already have their core's counted
5246          * so we can optimize operations.
5247          */
5248         KKASSERT(parent->flags & HAMMER2_CHAIN_COUNTEDBREFS);
5249
5250         /*
5251          * Degenerate case
5252          */
5253         if (count == 0 || base == NULL)
5254                 return(count);
5255
5256         /*
5257          * Sequential optimization using parent->cache_index.  This is
5258          * the most likely scenario.
5259          *
5260          * We can avoid trailing empty entries on live chains, otherwise
5261          * we might have to check the whole block array.
5262          */
5263         i = parent->cache_index;        /* SMP RACE OK */
5264         cpu_ccfence();
5265         limit = parent->core.live_zero;
5266         if (i >= limit)
5267                 i = limit - 1;
5268         if (i < 0)
5269                 i = 0;
5270         KKASSERT(i < count);
5271
5272         /*
5273          * Search backwards
5274          */
5275         scan = &base[i];
5276         while (i > 0 && (scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5277             scan->key > key_beg)) {
5278                 --scan;
5279                 --i;
5280         }
5281         parent->cache_index = i;
5282
5283         /*
5284          * Search forwards, stop when we find a scan element which
5285          * encloses the key or until we know that there are no further
5286          * elements.
5287          */
5288         while (i < count) {
5289                 if (scan->type != HAMMER2_BREF_TYPE_EMPTY) {
5290                         scan_end = scan->key +
5291                                    ((hammer2_key_t)1 << scan->keybits) - 1;
5292                         if (scan->key > key_beg || scan_end >= key_beg)
5293                                 break;
5294                 }
5295                 if (i >= limit)
5296                         return (count);
5297                 ++scan;
5298                 ++i;
5299         }
5300         if (i != count) {
5301                 parent->cache_index = i;
5302                 if (i >= limit) {
5303                         i = count;
5304                 } else {
5305                         scan_end = scan->key +
5306                                    ((hammer2_key_t)1 << scan->keybits);
5307                         if (scan_end && (*key_nextp > scan_end ||
5308                                          *key_nextp == 0)) {
5309                                 *key_nextp = scan_end;
5310                         }
5311                 }
5312         }
5313         return (i);
5314 }
5315
5316 /*
5317  * Do a combined search and return the next match either from the blockref
5318  * array or from the in-memory chain.  Sets *bresp to the returned bref in
5319  * both cases, or sets it to NULL if the search exhausted.  Only returns
5320  * a non-NULL chain if the search matched from the in-memory chain.
5321  *
5322  * When no in-memory chain has been found and a non-NULL bref is returned
5323  * in *bresp.
5324  *
5325  *
5326  * The returned chain is not locked or referenced.  Use the returned bref
5327  * to determine if the search exhausted or not.  Iterate if the base find
5328  * is chosen but matches a deleted chain.
5329  *
5330  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5331  *           held through the operation.
5332  */
5333 hammer2_chain_t *
5334 hammer2_combined_find(hammer2_chain_t *parent,
5335                       hammer2_blockref_t *base, int count,
5336                       hammer2_key_t *key_nextp,
5337                       hammer2_key_t key_beg, hammer2_key_t key_end,
5338                       hammer2_blockref_t **bresp)
5339 {
5340         hammer2_blockref_t *bref;
5341         hammer2_chain_t *chain;
5342         int i;
5343
5344         /*
5345          * Lookup in block array and in rbtree.
5346          */
5347         *key_nextp = key_end + 1;
5348         i = hammer2_base_find(parent, base, count, key_nextp,
5349                               key_beg, key_end);
5350         chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
5351
5352         /*
5353          * Neither matched
5354          */
5355         if (i == count && chain == NULL) {
5356                 *bresp = NULL;
5357                 return(NULL);
5358         }
5359
5360         /*
5361          * Only chain matched.
5362          */
5363         if (i == count) {
5364                 bref = &chain->bref;
5365                 goto found;
5366         }
5367
5368         /*
5369          * Only blockref matched.
5370          */
5371         if (chain == NULL) {
5372                 bref = &base[i];
5373                 goto found;
5374         }
5375
5376         /*
5377          * Both in-memory and blockref matched, select the nearer element.
5378          *
5379          * If both are flush with the left-hand side or both are the
5380          * same distance away, select the chain.  In this situation the
5381          * chain must have been loaded from the matching blockmap.
5382          */
5383         if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
5384             chain->bref.key == base[i].key) {
5385                 KKASSERT(chain->bref.key == base[i].key);
5386                 bref = &chain->bref;
5387                 goto found;
5388         }
5389
5390         /*
5391          * Select the nearer key
5392          */
5393         if (chain->bref.key < base[i].key) {
5394                 bref = &chain->bref;
5395         } else {
5396                 bref = &base[i];
5397                 chain = NULL;
5398         }
5399
5400         /*
5401          * If the bref is out of bounds we've exhausted our search.
5402          */
5403 found:
5404         if (bref->key > key_end) {
5405                 *bresp = NULL;
5406                 chain = NULL;
5407         } else {
5408                 *bresp = bref;
5409         }
5410         return(chain);
5411 }
5412
5413 /*
5414  * Locate the specified block array element and delete it.  The element
5415  * must exist.
5416  *
5417  * The spin lock on the related chain must be held.
5418  *
5419  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5420  *       need to be adjusted when we commit the media change.
5421  */
5422 void
5423 hammer2_base_delete(hammer2_chain_t *parent,
5424                     hammer2_blockref_t *base, int count,
5425                     hammer2_chain_t *chain,
5426                     hammer2_blockref_t *obref)
5427 {
5428         hammer2_blockref_t *elm = &chain->bref;
5429         hammer2_blockref_t *scan;
5430         hammer2_key_t key_next;
5431         int i;
5432
5433         /*
5434          * Delete element.  Expect the element to exist.
5435          *
5436          * XXX see caller, flush code not yet sophisticated enough to prevent
5437          *     re-flushed in some cases.
5438          */
5439         key_next = 0; /* max range */
5440         i = hammer2_base_find(parent, base, count, &key_next,
5441                               elm->key, elm->key);
5442         scan = &base[i];
5443         if (i == count || scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5444             scan->key != elm->key ||
5445             ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
5446              scan->keybits != elm->keybits)) {
5447                 hammer2_spin_unex(&parent->core.spin);
5448                 panic("delete base %p element not found at %d/%d elm %p\n",
5449                       base, i, count, elm);
5450                 return;
5451         }
5452
5453         /*
5454          * Update stats and zero the entry.
5455          *
5456          * NOTE: Handle radix == 0 (0 bytes) case.
5457          */
5458         if ((int)(scan->data_off & HAMMER2_OFF_MASK_RADIX)) {
5459                 parent->bref.embed.stats.data_count -= (hammer2_off_t)1 <<
5460                                 (int)(scan->data_off & HAMMER2_OFF_MASK_RADIX);
5461         }
5462         switch(scan->type) {
5463         case HAMMER2_BREF_TYPE_INODE:
5464                 --parent->bref.embed.stats.inode_count;
5465                 /* fall through */
5466         case HAMMER2_BREF_TYPE_DATA:
5467                 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5468                         atomic_set_int(&chain->flags,
5469                                        HAMMER2_CHAIN_HINT_LEAF_COUNT);
5470                 } else {
5471                         if (parent->bref.leaf_count)
5472                                 --parent->bref.leaf_count;
5473                 }
5474                 /* fall through */
5475         case HAMMER2_BREF_TYPE_INDIRECT:
5476                 if (scan->type != HAMMER2_BREF_TYPE_DATA) {
5477                         parent->bref.embed.stats.data_count -=
5478                                 scan->embed.stats.data_count;
5479                         parent->bref.embed.stats.inode_count -=
5480                                 scan->embed.stats.inode_count;
5481                 }
5482                 if (scan->type == HAMMER2_BREF_TYPE_INODE)
5483                         break;
5484                 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5485                         atomic_set_int(&chain->flags,
5486                                        HAMMER2_CHAIN_HINT_LEAF_COUNT);
5487                 } else {
5488                         if (parent->bref.leaf_count <= scan->leaf_count)
5489                                 parent->bref.leaf_count = 0;
5490                         else
5491                                 parent->bref.leaf_count -= scan->leaf_count;
5492                 }
5493                 break;
5494         case HAMMER2_BREF_TYPE_DIRENT:
5495                 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5496                         atomic_set_int(&chain->flags,
5497                                        HAMMER2_CHAIN_HINT_LEAF_COUNT);
5498                 } else {
5499                         if (parent->bref.leaf_count)
5500                                 --parent->bref.leaf_count;
5501                 }
5502         default:
5503                 break;
5504         }
5505
5506         if (obref)
5507                 *obref = *scan;
5508         bzero(scan, sizeof(*scan));
5509
5510         /*
5511          * We can only optimize parent->core.live_zero for live chains.
5512          */
5513         if (parent->core.live_zero == i + 1) {
5514                 while (--i >= 0 && base[i].type == HAMMER2_BREF_TYPE_EMPTY)
5515                         ;
5516                 parent->core.live_zero = i + 1;
5517         }
5518
5519         /*
5520          * Clear appropriate blockmap flags in chain.
5521          */
5522         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
5523                                         HAMMER2_CHAIN_BMAPUPD);
5524 }
5525
5526 /*
5527  * Insert the specified element.  The block array must not already have the
5528  * element and must have space available for the insertion.
5529  *
5530  * The spin lock on the related chain must be held.
5531  *
5532  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5533  *       need to be adjusted when we commit the media change.
5534  */
5535 void
5536 hammer2_base_insert(hammer2_chain_t *parent,
5537                     hammer2_blockref_t *base, int count,
5538                     hammer2_chain_t *chain, hammer2_blockref_t *elm)
5539 {
5540         hammer2_key_t key_next;
5541         hammer2_key_t xkey;
5542         int i;
5543         int j;
5544         int k;
5545         int l;
5546         int u = 1;
5547
5548         /*
5549          * Insert new element.  Expect the element to not already exist
5550          * unless we are replacing it.
5551          *
5552          * XXX see caller, flush code not yet sophisticated enough to prevent
5553          *     re-flushed in some cases.
5554          */
5555         key_next = 0; /* max range */
5556         i = hammer2_base_find(parent, base, count, &key_next,
5557                               elm->key, elm->key);
5558
5559         /*
5560          * Shortcut fill optimization, typical ordered insertion(s) may not
5561          * require a search.
5562          */
5563         KKASSERT(i >= 0 && i <= count);
5564
5565         /*
5566          * Set appropriate blockmap flags in chain (if not NULL)
5567          */
5568         if (chain)
5569                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
5570
5571         /*
5572          * Update stats and zero the entry
5573          */
5574         if ((int)(elm->data_off & HAMMER2_OFF_MASK_RADIX)) {
5575                 parent->bref.embed.stats.data_count += (hammer2_off_t)1 <<
5576                                 (int)(elm->data_off & HAMMER2_OFF_MASK_RADIX);
5577         }
5578         switch(elm->type) {
5579         case HAMMER2_BREF_TYPE_INODE:
5580                 ++parent->bref.embed.stats.inode_count;
5581                 /* fall through */
5582         case HAMMER2_BREF_TYPE_DATA:
5583                 if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5584                         ++parent->bref.leaf_count;
5585                 /* fall through */
5586         case HAMMER2_BREF_TYPE_INDIRECT:
5587                 if (elm->type != HAMMER2_BREF_TYPE_DATA) {
5588                         parent->bref.embed.stats.data_count +=
5589                                 elm->embed.stats.data_count;
5590                         parent->bref.embed.stats.inode_count +=
5591                                 elm->embed.stats.inode_count;
5592                 }
5593                 if (elm->type == HAMMER2_BREF_TYPE_INODE)
5594                         break;
5595                 if (parent->bref.leaf_count + elm->leaf_count <
5596                     HAMMER2_BLOCKREF_LEAF_MAX) {
5597                         parent->bref.leaf_count += elm->leaf_count;
5598                 } else {
5599                         parent->bref.leaf_count = HAMMER2_BLOCKREF_LEAF_MAX;
5600                 }
5601                 break;
5602         case HAMMER2_BREF_TYPE_DIRENT:
5603                 if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5604                         ++parent->bref.leaf_count;
5605                 break;
5606         default:
5607                 break;
5608         }
5609
5610
5611         /*
5612          * We can only optimize parent->core.live_zero for live chains.
5613          */
5614         if (i == count && parent->core.live_zero < count) {
5615                 i = parent->core.live_zero++;
5616                 base[i] = *elm;
5617                 return;
5618         }
5619
5620         xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
5621         if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
5622                 hammer2_spin_unex(&parent->core.spin);
5623                 panic("insert base %p overlapping elements at %d elm %p\n",
5624                       base, i, elm);
5625         }
5626
5627         /*
5628          * Try to find an empty slot before or after.
5629          */
5630         j = i;
5631         k = i;
5632         while (j > 0 || k < count) {
5633                 --j;
5634                 if (j >= 0 && base[j].type == HAMMER2_BREF_TYPE_EMPTY) {
5635                         if (j == i - 1) {
5636                                 base[j] = *elm;
5637                         } else {
5638                                 bcopy(&base[j+1], &base[j],
5639                                       (i - j - 1) * sizeof(*base));
5640                                 base[i - 1] = *elm;
5641                         }
5642                         goto validate;
5643                 }
5644                 ++k;
5645                 if (k < count && base[k].type == HAMMER2_BREF_TYPE_EMPTY) {
5646                         bcopy(&base[i], &base[i+1],
5647                               (k - i) * sizeof(hammer2_blockref_t));
5648                         base[i] = *elm;
5649
5650                         /*
5651                          * We can only update parent->core.live_zero for live
5652                          * chains.
5653                          */
5654                         if (parent->core.live_zero <= k)
5655                                 parent->core.live_zero = k + 1;
5656                         u = 2;
5657                         goto validate;
5658                 }
5659         }
5660         panic("hammer2_base_insert: no room!");
5661
5662         /*
5663          * Debugging
5664          */
5665 validate:
5666         key_next = 0;
5667         for (l = 0; l < count; ++l) {
5668                 if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5669                         key_next = base[l].key +
5670                                    ((hammer2_key_t)1 << base[l].keybits) - 1;
5671                         break;
5672                 }
5673         }
5674         while (++l < count) {
5675                 if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5676                         if (base[l].key <= key_next)
5677                                 panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
5678                         key_next = base[l].key +
5679                                    ((hammer2_key_t)1 << base[l].keybits) - 1;
5680
5681                 }
5682         }
5683
5684 }
5685
5686 #if 0
5687
5688 /*
5689  * Sort the blockref array for the chain.  Used by the flush code to
5690  * sort the blockref[] array.
5691  *
5692  * The chain must be exclusively locked AND spin-locked.
5693  */
5694 typedef hammer2_blockref_t *hammer2_blockref_p;
5695
5696 static
5697 int
5698 hammer2_base_sort_callback(const void *v1, const void *v2)
5699 {
5700         hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
5701         hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
5702
5703         /*
5704          * Make sure empty elements are placed at the end of the array
5705          */
5706         if (bref1->type == HAMMER2_BREF_TYPE_EMPTY) {
5707                 if (bref2->type == HAMMER2_BREF_TYPE_EMPTY)
5708                         return(0);
5709                 return(1);
5710         } else if (bref2->type == HAMMER2_BREF_TYPE_EMPTY) {
5711                 return(-1);
5712         }
5713
5714         /*
5715          * Sort by key
5716          */
5717         if (bref1->key < bref2->key)
5718                 return(-1);
5719         if (bref1->key > bref2->key)
5720                 return(1);
5721         return(0);
5722 }
5723
5724 void
5725 hammer2_base_sort(hammer2_chain_t *chain)
5726 {
5727         hammer2_blockref_t *base;
5728         int count;
5729
5730         switch(chain->bref.type) {
5731         case HAMMER2_BREF_TYPE_INODE:
5732                 /*
5733                  * Special shortcut for embedded data returns the inode
5734                  * itself.  Callers must detect this condition and access
5735                  * the embedded data (the strategy code does this for us).
5736                  *
5737                  * This is only applicable to regular files and softlinks.
5738                  */
5739                 if (chain->data->ipdata.meta.op_flags &
5740                     HAMMER2_OPFLAG_DIRECTDATA) {
5741                         return;
5742                 }
5743                 base = &chain->data->ipdata.u.blockset.blockref[0];
5744                 count = HAMMER2_SET_COUNT;
5745                 break;
5746         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
5747         case HAMMER2_BREF_TYPE_INDIRECT:
5748                 /*
5749                  * Optimize indirect blocks in the INITIAL state to avoid
5750                  * I/O.
5751                  */
5752                 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
5753                 base = &chain->data->npdata[0];
5754                 count = chain->bytes / sizeof(hammer2_blockref_t);
5755                 break;
5756         case HAMMER2_BREF_TYPE_VOLUME:
5757                 base = &chain->data->voldata.sroot_blockset.blockref[0];
5758                 count = HAMMER2_SET_COUNT;
5759                 break;
5760         case HAMMER2_BREF_TYPE_FREEMAP:
5761                 base = &chain->data->blkset.blockref[0];
5762                 count = HAMMER2_SET_COUNT;
5763                 break;
5764         default:
5765                 kprintf("hammer2_base_sort: unrecognized "
5766                         "blockref(A) type: %d",
5767                         chain->bref.type);
5768                 while (1)
5769                         tsleep(&base, 0, "dead", 0);
5770                 panic("hammer2_base_sort: unrecognized "
5771                       "blockref(A) type: %d",
5772                       chain->bref.type);
5773                 base = NULL;    /* safety */
5774                 count = 0;      /* safety */
5775         }
5776         kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
5777 }
5778
5779 #endif
5780
5781 /*
5782  * Chain memory management
5783  */
5784 void
5785 hammer2_chain_wait(hammer2_chain_t *chain)
5786 {
5787         tsleep(chain, 0, "chnflw", 1);
5788 }
5789
5790 const hammer2_media_data_t *
5791 hammer2_chain_rdata(hammer2_chain_t *chain)
5792 {
5793         KKASSERT(chain->data != NULL);
5794         return (chain->data);
5795 }
5796
5797 hammer2_media_data_t *
5798 hammer2_chain_wdata(hammer2_chain_t *chain)
5799 {
5800         KKASSERT(chain->data != NULL);
5801         return (chain->data);
5802 }
5803
5804 /*
5805  * Set the check data for a chain.  This can be a heavy-weight operation
5806  * and typically only runs on-flush.  For file data check data is calculated
5807  * when the logical buffers are flushed.
5808  */
5809 void
5810 hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
5811 {
5812         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_NOTTESTED);
5813
5814         switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5815         case HAMMER2_CHECK_NONE:
5816                 break;
5817         case HAMMER2_CHECK_DISABLED:
5818                 break;
5819         case HAMMER2_CHECK_ISCSI32:
5820                 chain->bref.check.iscsi32.value =
5821                         hammer2_icrc32(bdata, chain->bytes);
5822                 break;
5823         case HAMMER2_CHECK_XXHASH64:
5824                 chain->bref.check.xxhash64.value =
5825                         XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5826                 break;
5827         case HAMMER2_CHECK_SHA192:
5828                 {
5829                         SHA256_CTX hash_ctx;
5830                         union {
5831                                 uint8_t digest[SHA256_DIGEST_LENGTH];
5832                                 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5833                         } u;
5834
5835                         SHA256_Init(&hash_ctx);
5836                         SHA256_Update(&hash_ctx, bdata, chain->bytes);
5837                         SHA256_Final(u.digest, &hash_ctx);
5838                         u.digest64[2] ^= u.digest64[3];
5839                         bcopy(u.digest,
5840                               chain->bref.check.sha192.data,
5841                               sizeof(chain->bref.check.sha192.data));
5842                 }
5843                 break;
5844         case HAMMER2_CHECK_FREEMAP:
5845                 chain->bref.check.freemap.icrc32 =
5846                         hammer2_icrc32(bdata, chain->bytes);
5847                 break;
5848         default:
5849                 kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5850                         chain->bref.methods);
5851                 break;
5852         }
5853 }
5854
5855 /*
5856  * Characterize a failed check code and try to trace back to the inode.
5857  */
5858 static void
5859 hammer2_characterize_failed_chain(hammer2_chain_t *chain, uint64_t check,
5860                                   int bits)
5861 {
5862         hammer2_chain_t *lchain;
5863         hammer2_chain_t *ochain;
5864         int did;
5865
5866         did = krateprintf(&krate_h2chk,
5867                 "chain %016jx.%02x (%s) meth=%02x CHECK FAIL "
5868                 "(flags=%08x, bref/data ",
5869                 chain->bref.data_off,
5870                 chain->bref.type,
5871                 hammer2_bref_type_str(chain->bref.type),
5872                 chain->bref.methods,
5873                 chain->flags);
5874         if (did == 0)
5875                 return;
5876
5877         if (bits == 32) {
5878                 kprintf("%08x/%08x)\n",
5879                         chain->bref.check.iscsi32.value,
5880                         (uint32_t)check);
5881         } else {
5882                 kprintf("%016jx/%016jx)\n",
5883                         chain->bref.check.xxhash64.value,
5884                         check);
5885         }
5886
5887         /*
5888          * Run up the chains to try to find the governing inode so we
5889          * can report it.
5890          *
5891          * XXX This error reporting is not really MPSAFE
5892          */
5893         ochain = chain;
5894         lchain = chain;
5895         while (chain && chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
5896                 lchain = chain;
5897                 chain = chain->parent;
5898         }
5899
5900         if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
5901             ((chain->bref.flags & HAMMER2_BREF_FLAG_PFSROOT) == 0 ||
5902              (lchain->bref.key & HAMMER2_DIRHASH_VISIBLE))) {
5903                 kprintf("   Resides at/in inode %ld\n",
5904                         chain->bref.key);
5905         } else if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
5906                 kprintf("   Resides in inode index - CRITICAL!!!\n");
5907         } else {
5908                 kprintf("   Resides in root index - CRITICAL!!!\n");
5909         }
5910         if (ochain->hmp) {
5911                 const char *pfsname = "UNKNOWN";
5912                 int i;
5913
5914                 if (ochain->pmp) {
5915                         for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
5916                                 if (ochain->pmp->pfs_hmps[i] == ochain->hmp &&
5917                                     ochain->pmp->pfs_names[i]) {
5918                                         pfsname = ochain->pmp->pfs_names[i];
5919                                         break;
5920                                 }
5921                         }
5922                 }
5923                 kprintf("   In pfs %s on device %s\n",
5924                         pfsname, ochain->hmp->devrepname);
5925         }
5926 }
5927
5928 /*
5929  * Returns non-zero on success, 0 on failure.
5930  */
5931 int
5932 hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
5933 {
5934         uint32_t check32;
5935         uint64_t check64;
5936         int r;
5937
5938         if (chain->flags & HAMMER2_CHAIN_NOTTESTED)
5939                 return 1;
5940
5941         switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5942         case HAMMER2_CHECK_NONE:
5943                 r = 1;
5944                 break;
5945         case HAMMER2_CHECK_DISABLED:
5946                 r = 1;
5947                 break;
5948         case HAMMER2_CHECK_ISCSI32:
5949                 check32 = hammer2_icrc32(bdata, chain->bytes);
5950                 r = (chain->bref.check.iscsi32.value == check32);
5951                 if (r == 0) {
5952                         hammer2_characterize_failed_chain(chain, check32, 32);
5953                 }
5954                 hammer2_process_icrc32 += chain->bytes;
5955                 break;
5956         case HAMMER2_CHECK_XXHASH64:
5957                 check64 = XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5958                 r = (chain->bref.check.xxhash64.value == check64);
5959                 if (r == 0) {
5960                         hammer2_characterize_failed_chain(chain, check64, 64);
5961                 }
5962                 hammer2_process_xxhash64 += chain->bytes;
5963                 break;
5964         case HAMMER2_CHECK_SHA192:
5965                 {
5966                         SHA256_CTX hash_ctx;
5967                         union {
5968                                 uint8_t digest[SHA256_DIGEST_LENGTH];
5969                                 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5970                         } u;
5971
5972                         SHA256_Init(&hash_ctx);
5973                         SHA256_Update(&hash_ctx, bdata, chain->bytes);
5974                         SHA256_Final(u.digest, &hash_ctx);
5975                         u.digest64[2] ^= u.digest64[3];
5976                         if (bcmp(u.digest,
5977                                  chain->bref.check.sha192.data,
5978                                  sizeof(chain->bref.check.sha192.data)) == 0) {
5979                                 r = 1;
5980                         } else {
5981                                 r = 0;
5982                                 krateprintf(&krate_h2chk,
5983                                         "chain %016jx.%02x meth=%02x "
5984                                         "CHECK FAIL\n",
5985                                         chain->bref.data_off,
5986                                         chain->bref.type,
5987                                         chain->bref.methods);
5988                         }
5989                 }
5990                 break;
5991         case HAMMER2_CHECK_FREEMAP:
5992                 r = (chain->bref.check.freemap.icrc32 ==
5993                      hammer2_icrc32(bdata, chain->bytes));
5994                 if (r == 0) {
5995                         int did;
5996
5997                         did = krateprintf(&krate_h2chk,
5998                                           "chain %016jx.%02x meth=%02x "
5999                                           "CHECK FAIL\n",
6000                                           chain->bref.data_off,
6001                                           chain->bref.type,
6002                                           chain->bref.methods);
6003                         if (did) {
6004                                 kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
6005                                         chain->bref.check.freemap.icrc32,
6006                                         hammer2_icrc32(bdata, chain->bytes),
6007                                         chain->bytes);
6008                                 if (chain->dio) {
6009                                         kprintf("dio %p buf %016jx,%d "
6010                                                 "bdata %p/%p\n",
6011                                                 chain->dio,
6012                                                 chain->dio->bp->b_loffset,
6013                                                 chain->dio->bp->b_bufsize,
6014                                                 bdata,
6015                                                 chain->dio->bp->b_data);
6016                                 }
6017                         }
6018                 }
6019                 break;
6020         default:
6021                 kprintf("hammer2_chain_testcheck: unknown check type %02x\n",
6022                         chain->bref.methods);
6023                 r = 1;
6024                 break;
6025         }
6026         return r;
6027 }
6028
6029 /*
6030  * Acquire the chain and parent representing the specified inode for the
6031  * device at the specified cluster index.
6032  *
6033  * The flags passed in are LOOKUP flags, not RESOLVE flags.
6034  *
6035  * If we are unable to locate the inode, HAMMER2_ERROR_EIO is returned and
6036  * *chainp will be NULL.  *parentp may still be set error or not, or NULL
6037  * if the parent itself could not be resolved.
6038  *
6039  * The caller may pass-in a locked *parentp and/or *chainp, or neither.
6040  * They will be unlocked and released by this function.  The *parentp and
6041  * *chainp representing the located inode are returned locked.
6042  */
6043 int
6044 hammer2_chain_inode_find(hammer2_pfs_t *pmp, hammer2_key_t inum,
6045                          int clindex, int flags,
6046                          hammer2_chain_t **parentp, hammer2_chain_t **chainp)
6047 {
6048         hammer2_chain_t *parent;
6049         hammer2_chain_t *rchain;
6050         hammer2_key_t key_dummy;
6051         hammer2_inode_t *ip;
6052         int resolve_flags;
6053         int error;
6054
6055         resolve_flags = (flags & HAMMER2_LOOKUP_SHARED) ?
6056                         HAMMER2_RESOLVE_SHARED : 0;
6057
6058         /*
6059          * Caller expects us to replace these.
6060          */
6061         if (*chainp) {
6062                 hammer2_chain_unlock(*chainp);
6063                 hammer2_chain_drop(*chainp);
6064                 *chainp = NULL;
6065         }
6066         if (*parentp) {
6067                 hammer2_chain_unlock(*parentp);
6068                 hammer2_chain_drop(*parentp);
6069                 *parentp = NULL;
6070         }
6071
6072         /*
6073          * Be very careful, this is a backend function and we CANNOT
6074          * lock any frontend inode structure we find.  But we have to
6075          * look the inode up this way first in case it exists but is
6076          * detached from the radix tree.
6077          */
6078         ip = hammer2_inode_lookup(pmp, inum);
6079         if (ip) {
6080                 *chainp = hammer2_inode_chain_and_parent(ip, clindex,
6081                                                        parentp,
6082                                                        resolve_flags);
6083                 hammer2_inode_drop(ip);
6084                 if (*chainp)
6085                         return 0;
6086                 hammer2_chain_unlock(*chainp);
6087                 hammer2_chain_drop(*chainp);
6088                 *chainp = NULL;
6089                 if (*parentp) {
6090                         hammer2_chain_unlock(*parentp);
6091                         hammer2_chain_drop(*parentp);
6092                         *parentp = NULL;
6093                 }
6094         }
6095
6096         /*
6097          * Inodes hang off of the iroot (bit 63 is clear, differentiating
6098          * inodes from root directory entries in the key lookup).
6099          */
6100         parent = hammer2_inode_chain(pmp->iroot, clindex, resolve_flags);
6101         rchain = NULL;
6102         if (parent) {
6103                 rchain = hammer2_chain_lookup(&parent, &key_dummy,
6104                                               inum, inum,
6105                                               &error, flags);
6106         } else {
6107                 error = HAMMER2_ERROR_EIO;
6108         }
6109         *parentp = parent;
6110         *chainp = rchain;
6111
6112         return error;
6113 }
6114
6115 /*
6116  * Used by the bulkscan code to snapshot the synchronized storage for
6117  * a volume, allowing it to be scanned concurrently against normal
6118  * operation.
6119  */
6120 hammer2_chain_t *
6121 hammer2_chain_bulksnap(hammer2_dev_t *hmp)
6122 {
6123         hammer2_chain_t *copy;
6124
6125         copy = hammer2_chain_alloc(hmp, hmp->spmp, &hmp->vchain.bref);
6126         copy->data = kmalloc(sizeof(copy->data->voldata),
6127                              hmp->mchain,
6128                              M_WAITOK | M_ZERO);
6129         hammer2_voldata_lock(hmp);
6130         copy->data->voldata = hmp->volsync;
6131         hammer2_voldata_unlock(hmp);
6132
6133         return copy;
6134 }
6135
6136 void
6137 hammer2_chain_bulkdrop(hammer2_chain_t *copy)
6138 {
6139         KKASSERT(copy->bref.type == HAMMER2_BREF_TYPE_VOLUME);
6140         KKASSERT(copy->data);
6141         kfree(copy->data, copy->hmp->mchain);
6142         copy->data = NULL;
6143         atomic_add_long(&hammer2_chain_allocs, -1);
6144         hammer2_chain_drop(copy);
6145 }
6146
6147 /*
6148  * Returns non-zero if the chain (INODE or DIRENT) matches the
6149  * filename.
6150  */
6151 int
6152 hammer2_chain_dirent_test(hammer2_chain_t *chain, const char *name,
6153                           size_t name_len)
6154 {
6155         const hammer2_inode_data_t *ripdata;
6156         const hammer2_dirent_head_t *den;
6157
6158         if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
6159                 ripdata = &chain->data->ipdata;
6160                 if (ripdata->meta.name_len == name_len &&
6161                     bcmp(ripdata->filename, name, name_len) == 0) {
6162                         return 1;
6163                 }
6164         }
6165         if (chain->bref.type == HAMMER2_BREF_TYPE_DIRENT &&
6166            chain->bref.embed.dirent.namlen == name_len) {
6167                 den = &chain->bref.embed.dirent;
6168                 if (name_len > sizeof(chain->bref.check.buf) &&
6169                     bcmp(chain->data->buf, name, name_len) == 0) {
6170                         return 1;
6171                 }
6172                 if (name_len <= sizeof(chain->bref.check.buf) &&
6173                     bcmp(chain->bref.check.buf, name, name_len) == 0) {
6174                         return 1;
6175                 }
6176         }
6177         return 0;
6178 }