Merge branch 'vendor/DHCPCD'
[dragonfly.git] / sys / vfs / hammer2 / hammer2_chain.c
1 /*
2  * Copyright (c) 2011-2020 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain structure.
38  *
39  * Chains are the in-memory version on media objects (volume header, inodes,
40  * indirect blocks, data blocks, etc).  Chains represent a portion of the
41  * HAMMER2 topology.
42  *
43  * Chains are no-longer delete-duplicated.  Instead, the original in-memory
44  * chain will be moved along with its block reference (e.g. for things like
45  * renames, hardlink operations, modifications, etc), and will be indexed
46  * on a secondary list for flush handling instead of propagating a flag
47  * upward to the root.
48  *
49  * Concurrent front-end operations can still run against backend flushes
50  * as long as they do not cross the current flush boundary.  An operation
51  * running above the current flush (in areas not yet flushed) can become
52  * part of the current flush while ano peration running below the current
53  * flush can become part of the next flush.
54  */
55 #include <sys/cdefs.h>
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/types.h>
59 #include <sys/lock.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/uuid.h>
62
63 #include <crypto/sha2/sha2.h>
64
65 #include "hammer2.h"
66
67 static hammer2_chain_t *hammer2_chain_create_indirect(
68                 hammer2_chain_t *parent,
69                 hammer2_key_t key, int keybits,
70                 hammer2_tid_t mtid, int for_type, int *errorp);
71 static int hammer2_chain_delete_obref(hammer2_chain_t *parent,
72                 hammer2_chain_t *chain,
73                 hammer2_tid_t mtid, int flags,
74                 hammer2_blockref_t *obref);
75 static hammer2_chain_t *hammer2_combined_find(
76                 hammer2_chain_t *parent,
77                 hammer2_blockref_t *base, int count,
78                 hammer2_key_t *key_nextp,
79                 hammer2_key_t key_beg, hammer2_key_t key_end,
80                 hammer2_blockref_t **bresp);
81 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain,
82                                 int depth);
83 static void hammer2_chain_lru_flush(hammer2_pfs_t *pmp);
84
85 /*
86  * There are many degenerate situations where an extreme rate of console
87  * output can occur from warnings and errors.  Make sure this output does
88  * not impede operations.
89  */
90 static struct krate krate_h2chk = { .freq = 5 };
91 static struct krate krate_h2me = { .freq = 1 };
92 static struct krate krate_h2em = { .freq = 1 };
93
94 /*
95  * Basic RBTree for chains (core.rbtree).
96  */
97 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
98
99 int
100 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
101 {
102         hammer2_key_t c1_beg;
103         hammer2_key_t c1_end;
104         hammer2_key_t c2_beg;
105         hammer2_key_t c2_end;
106
107         /*
108          * Compare chains.  Overlaps are not supposed to happen and catch
109          * any software issues early we count overlaps as a match.
110          */
111         c1_beg = chain1->bref.key;
112         c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
113         c2_beg = chain2->bref.key;
114         c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
115
116         if (c1_end < c2_beg)    /* fully to the left */
117                 return(-1);
118         if (c1_beg > c2_end)    /* fully to the right */
119                 return(1);
120         return(0);              /* overlap (must not cross edge boundary) */
121 }
122
123 /*
124  * Assert that a chain has no media data associated with it.
125  */
126 static __inline void
127 hammer2_chain_assert_no_data(hammer2_chain_t *chain)
128 {
129         KKASSERT(chain->dio == NULL);
130         if (chain->bref.type != HAMMER2_BREF_TYPE_VOLUME &&
131             chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP &&
132             chain->data) {
133                 panic("hammer2_chain_assert_no_data: chain %p still has data",
134                     chain);
135         }
136 }
137
138 /*
139  * Make a chain visible to the flusher.  The flusher operates using a top-down
140  * recursion based on the ONFLUSH flag.  It locates MODIFIED and UPDATE chains,
141  * flushes them, and updates blocks back to the volume root.
142  *
143  * This routine sets the ONFLUSH flag upward from the triggering chain until
144  * it hits an inode root or the volume root.  Inode chains serve as inflection
145  * points, requiring the flusher to bridge across trees.  Inodes include
146  * regular inodes, PFS roots (pmp->iroot), and the media super root
147  * (spmp->iroot).
148  */
149 void
150 hammer2_chain_setflush(hammer2_chain_t *chain)
151 {
152         hammer2_chain_t *parent;
153
154         if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
155                 hammer2_spin_sh(&chain->core.spin);
156                 while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
157                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
158                         if (chain->bref.type == HAMMER2_BREF_TYPE_INODE)
159                                 break;
160                         if ((parent = chain->parent) == NULL)
161                                 break;
162                         hammer2_spin_sh(&parent->core.spin);
163                         hammer2_spin_unsh(&chain->core.spin);
164                         chain = parent;
165                 }
166                 hammer2_spin_unsh(&chain->core.spin);
167         }
168 }
169
170 /*
171  * Allocate a new disconnected chain element representing the specified
172  * bref.  chain->refs is set to 1 and the passed bref is copied to
173  * chain->bref.  chain->bytes is derived from the bref.
174  *
175  * chain->pmp inherits pmp unless the chain is an inode (other than the
176  * super-root inode).
177  *
178  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
179  */
180 hammer2_chain_t *
181 hammer2_chain_alloc(hammer2_dev_t *hmp, hammer2_pfs_t *pmp,
182                     hammer2_blockref_t *bref)
183 {
184         hammer2_chain_t *chain;
185         u_int bytes;
186
187         /*
188          * Special case - radix of 0 indicates a chain that does not
189          * need a data reference (context is completely embedded in the
190          * bref).
191          */
192         if ((int)(bref->data_off & HAMMER2_OFF_MASK_RADIX))
193                 bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
194         else
195                 bytes = 0;
196
197         switch(bref->type) {
198         case HAMMER2_BREF_TYPE_INODE:
199         case HAMMER2_BREF_TYPE_INDIRECT:
200         case HAMMER2_BREF_TYPE_DATA:
201         case HAMMER2_BREF_TYPE_DIRENT:
202         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
203         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
204         case HAMMER2_BREF_TYPE_FREEMAP:
205         case HAMMER2_BREF_TYPE_VOLUME:
206                 chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
207                 atomic_add_long(&hammer2_chain_allocs, 1);
208                 break;
209         case HAMMER2_BREF_TYPE_EMPTY:
210         default:
211                 panic("hammer2_chain_alloc: unrecognized blockref type: %d",
212                       bref->type);
213                 break;
214         }
215
216         /*
217          * Initialize the new chain structure.  pmp must be set to NULL for
218          * chains belonging to the super-root topology of a device mount.
219          */
220         if (pmp == hmp->spmp)
221                 chain->pmp = NULL;
222         else
223                 chain->pmp = pmp;
224
225         chain->hmp = hmp;
226         chain->bref = *bref;
227         chain->bytes = bytes;
228         chain->refs = 1;
229         chain->flags = HAMMER2_CHAIN_ALLOCATED;
230         lockinit(&chain->diolk, "chdio", 0, 0);
231
232         /*
233          * Set the PFS boundary flag if this chain represents a PFS root.
234          */
235         if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
236                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_PFSBOUNDARY);
237         hammer2_chain_core_init(chain);
238
239         return (chain);
240 }
241
242 /*
243  * Initialize a chain's core structure.  This structure used to be allocated
244  * but is now embedded.
245  *
246  * The core is not locked.  No additional refs on the chain are made.
247  * (trans) must not be NULL if (core) is not NULL.
248  */
249 void
250 hammer2_chain_core_init(hammer2_chain_t *chain)
251 {
252         /*
253          * Fresh core under nchain (no multi-homing of ochain's
254          * sub-tree).
255          */
256         RB_INIT(&chain->core.rbtree);   /* live chains */
257         hammer2_mtx_init(&chain->lock, "h2chain");
258 }
259
260 /*
261  * Add a reference to a chain element, preventing its destruction.
262  *
263  * (can be called with spinlock held)
264  */
265 void
266 hammer2_chain_ref(hammer2_chain_t *chain)
267 {
268         if (atomic_fetchadd_int(&chain->refs, 1) == 0) {
269                 /*
270                  * Just flag that the chain was used and should be recycled
271                  * on the LRU if it encounters it later.
272                  */
273                 if (chain->flags & HAMMER2_CHAIN_ONLRU)
274                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
275
276 #if 0
277                 /*
278                  * REMOVED - reduces contention, lru_list is more heuristical
279                  * now.
280                  *
281                  * 0->non-zero transition must ensure that chain is removed
282                  * from the LRU list.
283                  *
284                  * NOTE: Already holding lru_spin here so we cannot call
285                  *       hammer2_chain_ref() to get it off lru_list, do
286                  *       it manually.
287                  */
288                 if (chain->flags & HAMMER2_CHAIN_ONLRU) {
289                         hammer2_pfs_t *pmp = chain->pmp;
290                         hammer2_spin_ex(&pmp->lru_spin);
291                         if (chain->flags & HAMMER2_CHAIN_ONLRU) {
292                                 atomic_add_int(&pmp->lru_count, -1);
293                                 atomic_clear_int(&chain->flags,
294                                                  HAMMER2_CHAIN_ONLRU);
295                                 TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
296                         }
297                         hammer2_spin_unex(&pmp->lru_spin);
298                 }
299 #endif
300         }
301 }
302
303 /*
304  * Ref a locked chain and force the data to be held across an unlock.
305  * Chain must be currently locked.  The user of the chain who desires
306  * to release the hold must call hammer2_chain_lock_unhold() to relock
307  * and unhold the chain, then unlock normally, or may simply call
308  * hammer2_chain_drop_unhold() (which is safer against deadlocks).
309  */
310 void
311 hammer2_chain_ref_hold(hammer2_chain_t *chain)
312 {
313         atomic_add_int(&chain->lockcnt, 1);
314         hammer2_chain_ref(chain);
315 }
316
317 /*
318  * Insert the chain in the core rbtree.
319  *
320  * Normal insertions are placed in the live rbtree.  Insertion of a deleted
321  * chain is a special case used by the flush code that is placed on the
322  * unstaged deleted list to avoid confusing the live view.
323  */
324 #define HAMMER2_CHAIN_INSERT_SPIN       0x0001
325 #define HAMMER2_CHAIN_INSERT_LIVE       0x0002
326 #define HAMMER2_CHAIN_INSERT_RACE       0x0004
327
328 static
329 int
330 hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
331                      int flags, int generation)
332 {
333         hammer2_chain_t *xchain;
334         int error = 0;
335
336         if (flags & HAMMER2_CHAIN_INSERT_SPIN)
337                 hammer2_spin_ex(&parent->core.spin);
338
339         /*
340          * Interlocked by spinlock, check for race
341          */
342         if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
343             parent->core.generation != generation) {
344                 error = HAMMER2_ERROR_EAGAIN;
345                 goto failed;
346         }
347
348         /*
349          * Insert chain
350          */
351         xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
352         KASSERT(xchain == NULL,
353                 ("hammer2_chain_insert: collision %p %p (key=%016jx)",
354                 chain, xchain, chain->bref.key));
355         atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
356         chain->parent = parent;
357         ++parent->core.chain_count;
358         ++parent->core.generation;      /* XXX incs for _get() too, XXX */
359
360         /*
361          * We have to keep track of the effective live-view blockref count
362          * so the create code knows when to push an indirect block.
363          */
364         if (flags & HAMMER2_CHAIN_INSERT_LIVE)
365                 atomic_add_int(&parent->core.live_count, 1);
366 failed:
367         if (flags & HAMMER2_CHAIN_INSERT_SPIN)
368                 hammer2_spin_unex(&parent->core.spin);
369         return error;
370 }
371
372 /*
373  * Drop the caller's reference to the chain.  When the ref count drops to
374  * zero this function will try to disassociate the chain from its parent and
375  * deallocate it, then recursely drop the parent using the implied ref
376  * from the chain's chain->parent.
377  *
378  * Nobody should own chain's mutex on the 1->0 transition, unless this drop
379  * races an acquisition by another cpu.  Therefore we can loop if we are
380  * unable to acquire the mutex, and refs is unlikely to be 1 unless we again
381  * race against another drop.
382  */
383 void
384 hammer2_chain_drop(hammer2_chain_t *chain)
385 {
386         u_int refs;
387
388         KKASSERT(chain->refs > 0);
389
390         while (chain) {
391                 refs = chain->refs;
392                 cpu_ccfence();
393                 KKASSERT(refs > 0);
394
395                 if (refs == 1) {
396                         if (hammer2_mtx_ex_try(&chain->lock) == 0)
397                                 chain = hammer2_chain_lastdrop(chain, 0);
398                         /* retry the same chain, or chain from lastdrop */
399                 } else {
400                         if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
401                                 break;
402                         /* retry the same chain */
403                 }
404                 cpu_pause();
405         }
406 }
407
408 /*
409  * Unhold a held and probably not-locked chain, ensure that the data is
410  * dropped on the 1->0 transition of lockcnt by obtaining an exclusive
411  * lock and then simply unlocking the chain.
412  */
413 void
414 hammer2_chain_unhold(hammer2_chain_t *chain)
415 {
416         u_int lockcnt;
417         int iter = 0;
418
419         for (;;) {
420                 lockcnt = chain->lockcnt;
421                 cpu_ccfence();
422                 if (lockcnt > 1) {
423                         if (atomic_cmpset_int(&chain->lockcnt,
424                                               lockcnt, lockcnt - 1)) {
425                                 break;
426                         }
427                 } else if (hammer2_mtx_ex_try(&chain->lock) == 0) {
428                         hammer2_chain_unlock(chain);
429                         break;
430                 } else {
431                         /*
432                          * This situation can easily occur on SMP due to
433                          * the gap inbetween the 1->0 transition and the
434                          * final unlock.  We cannot safely block on the
435                          * mutex because lockcnt might go above 1.
436                          *
437                          * XXX Sleep for one tick if it takes too long.
438                          */
439                         if (++iter > 1000) {
440                                 if (iter > 1000 + hz) {
441                                         kprintf("hammer2: h2race1 %p\n", chain);
442                                         iter = 1000;
443                                 }
444                                 tsleep(&iter, 0, "h2race1", 1);
445                         }
446                         cpu_pause();
447                 }
448         }
449 }
450
451 void
452 hammer2_chain_drop_unhold(hammer2_chain_t *chain)
453 {
454         hammer2_chain_unhold(chain);
455         hammer2_chain_drop(chain);
456 }
457
458 void
459 hammer2_chain_rehold(hammer2_chain_t *chain)
460 {
461         hammer2_chain_lock(chain, HAMMER2_RESOLVE_SHARED);
462         atomic_add_int(&chain->lockcnt, 1);
463         hammer2_chain_unlock(chain);
464 }
465
466 /*
467  * Handles the (potential) last drop of chain->refs from 1->0.  Called with
468  * the mutex exclusively locked, refs == 1, and lockcnt 0.  SMP races are
469  * possible against refs and lockcnt.  We must dispose of the mutex on chain.
470  *
471  * This function returns an unlocked chain for recursive drop or NULL.  It
472  * can return the same chain if it determines it has raced another ref.
473  *
474  * --
475  *
476  * When two chains need to be recursively dropped we use the chain we
477  * would otherwise free to placehold the additional chain.  It's a bit
478  * convoluted but we can't just recurse without potentially blowing out
479  * the kernel stack.
480  *
481  * The chain cannot be freed if it has any children.
482  * The chain cannot be freed if flagged MODIFIED unless we can dispose of it.
483  * The chain cannot be freed if flagged UPDATE unless we can dispose of it.
484  * Any dedup registration can remain intact.
485  *
486  * The core spinlock is allowed to nest child-to-parent (not parent-to-child).
487  */
488 static
489 hammer2_chain_t *
490 hammer2_chain_lastdrop(hammer2_chain_t *chain, int depth)
491 {
492         hammer2_pfs_t *pmp;
493         hammer2_dev_t *hmp;
494         hammer2_chain_t *parent;
495         hammer2_chain_t *rdrop;
496
497         /*
498          * We need chain's spinlock to interlock the sub-tree test.
499          * We already have chain's mutex, protecting chain->parent.
500          *
501          * Remember that chain->refs can be in flux.
502          */
503         hammer2_spin_ex(&chain->core.spin);
504
505         if (chain->parent != NULL) {
506                 /*
507                  * If the chain has a parent the UPDATE bit prevents scrapping
508                  * as the chain is needed to properly flush the parent.  Try
509                  * to complete the 1->0 transition and return NULL.  Retry
510                  * (return chain) if we are unable to complete the 1->0
511                  * transition, else return NULL (nothing more to do).
512                  *
513                  * If the chain has a parent the MODIFIED bit prevents
514                  * scrapping.
515                  *
516                  * Chains with UPDATE/MODIFIED are *not* put on the LRU list!
517                  */
518                 if (chain->flags & (HAMMER2_CHAIN_UPDATE |
519                                     HAMMER2_CHAIN_MODIFIED)) {
520                         if (atomic_cmpset_int(&chain->refs, 1, 0)) {
521                                 hammer2_spin_unex(&chain->core.spin);
522                                 hammer2_chain_assert_no_data(chain);
523                                 hammer2_mtx_unlock(&chain->lock);
524                                 chain = NULL;
525                         } else {
526                                 hammer2_spin_unex(&chain->core.spin);
527                                 hammer2_mtx_unlock(&chain->lock);
528                         }
529                         return (chain);
530                 }
531                 /* spinlock still held */
532         } else if (chain->bref.type == HAMMER2_BREF_TYPE_VOLUME ||
533                    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP) {
534                 /*
535                  * Retain the static vchain and fchain.  Clear bits that
536                  * are not relevant.  Do not clear the MODIFIED bit,
537                  * and certainly do not put it on the delayed-flush queue.
538                  */
539                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
540         } else {
541                 /*
542                  * The chain has no parent and can be flagged for destruction.
543                  * Since it has no parent, UPDATE can also be cleared.
544                  */
545                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
546                 if (chain->flags & HAMMER2_CHAIN_UPDATE)
547                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
548
549                 /*
550                  * If the chain has children we must propagate the DESTROY
551                  * flag downward and rip the disconnected topology apart.
552                  * This is accomplished by calling hammer2_flush() on the
553                  * chain.
554                  *
555                  * Any dedup is already handled by the underlying DIO, so
556                  * we do not have to specifically flush it here.
557                  */
558                 if (chain->core.chain_count) {
559                         hammer2_spin_unex(&chain->core.spin);
560                         hammer2_flush(chain, HAMMER2_FLUSH_TOP |
561                                              HAMMER2_FLUSH_ALL);
562                         hammer2_mtx_unlock(&chain->lock);
563
564                         return(chain);  /* retry drop */
565                 }
566
567                 /*
568                  * Otherwise we can scrap the MODIFIED bit if it is set,
569                  * and continue along the freeing path.
570                  *
571                  * Be sure to clean-out any dedup bits.  Without a parent
572                  * this chain will no longer be visible to the flush code.
573                  * Easy check data_off to avoid the volume root.
574                  */
575                 if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
576                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
577                         atomic_add_long(&hammer2_count_modified_chains, -1);
578                         if (chain->pmp)
579                                 hammer2_pfs_memory_wakeup(chain->pmp, -1);
580                 }
581                 /* spinlock still held */
582         }
583
584         /* spinlock still held */
585
586         /*
587          * If any children exist we must leave the chain intact with refs == 0.
588          * They exist because chains are retained below us which have refs or
589          * may require flushing.
590          *
591          * Retry (return chain) if we fail to transition the refs to 0, else
592          * return NULL indication nothing more to do.
593          *
594          * Chains with children are NOT put on the LRU list.
595          */
596         if (chain->core.chain_count) {
597                 if (atomic_cmpset_int(&chain->refs, 1, 0)) {
598                         hammer2_spin_unex(&chain->core.spin);
599                         hammer2_chain_assert_no_data(chain);
600                         hammer2_mtx_unlock(&chain->lock);
601                         chain = NULL;
602                 } else {
603                         hammer2_spin_unex(&chain->core.spin);
604                         hammer2_mtx_unlock(&chain->lock);
605                 }
606                 return (chain);
607         }
608         /* spinlock still held */
609         /* no chains left under us */
610
611         /*
612          * chain->core has no children left so no accessors can get to our
613          * chain from there.  Now we have to lock the parent core to interlock
614          * remaining possible accessors that might bump chain's refs before
615          * we can safely drop chain's refs with intent to free the chain.
616          */
617         hmp = chain->hmp;
618         pmp = chain->pmp;       /* can be NULL */
619         rdrop = NULL;
620
621         parent = chain->parent;
622
623         /*
624          * WARNING! chain's spin lock is still held here, and other spinlocks
625          *          will be acquired and released in the code below.  We
626          *          cannot be making fancy procedure calls!
627          */
628
629         /*
630          * We can cache the chain if it is associated with a pmp
631          * and not flagged as being destroyed or requesting a full
632          * release.  In this situation the chain is not removed
633          * from its parent, i.e. it can still be looked up.
634          *
635          * We intentionally do not cache DATA chains because these
636          * were likely used to load data into the logical buffer cache
637          * and will not be accessed again for some time.
638          */
639         if ((chain->flags &
640              (HAMMER2_CHAIN_DESTROY | HAMMER2_CHAIN_RELEASE)) == 0 &&
641             chain->pmp &&
642             chain->bref.type != HAMMER2_BREF_TYPE_DATA) {
643                 if (parent)
644                         hammer2_spin_ex(&parent->core.spin);
645                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
646                         /*
647                          * 1->0 transition failed, retry.  Do not drop
648                          * the chain's data yet!
649                          */
650                         if (parent)
651                                 hammer2_spin_unex(&parent->core.spin);
652                         hammer2_spin_unex(&chain->core.spin);
653                         hammer2_mtx_unlock(&chain->lock);
654
655                         return(chain);
656                 }
657
658                 /*
659                  * Success
660                  */
661                 hammer2_chain_assert_no_data(chain);
662
663                 /*
664                  * Make sure we are on the LRU list, clean up excessive
665                  * LRU entries.  We can only really drop one but there might
666                  * be other entries that we can remove from the lru_list
667                  * without dropping.
668                  *
669                  * NOTE: HAMMER2_CHAIN_ONLRU may only be safely set when
670                  *       chain->core.spin AND pmp->lru_spin are held, but
671                  *       can be safely cleared only holding pmp->lru_spin.
672                  */
673                 if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
674                         hammer2_spin_ex(&pmp->lru_spin);
675                         if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
676                                 atomic_set_int(&chain->flags,
677                                                HAMMER2_CHAIN_ONLRU);
678                                 TAILQ_INSERT_TAIL(&pmp->lru_list,
679                                                   chain, lru_node);
680                                 atomic_add_int(&pmp->lru_count, 1);
681                         }
682                         if (pmp->lru_count < HAMMER2_LRU_LIMIT)
683                                 depth = 1;      /* disable lru_list flush */
684                         hammer2_spin_unex(&pmp->lru_spin);
685                 } else {
686                         /* disable lru flush */
687                         depth = 1;
688                 }
689
690                 if (parent) {
691                         hammer2_spin_unex(&parent->core.spin);
692                         parent = NULL;  /* safety */
693                 }
694                 hammer2_spin_unex(&chain->core.spin);
695                 hammer2_mtx_unlock(&chain->lock);
696
697                 /*
698                  * lru_list hysteresis (see above for depth overrides).
699                  * Note that depth also prevents excessive lastdrop recursion.
700                  */
701                 if (depth == 0)
702                         hammer2_chain_lru_flush(pmp);
703
704                 return NULL;
705                 /* NOT REACHED */
706         }
707
708         /*
709          * Make sure we are not on the LRU list.
710          */
711         if (chain->flags & HAMMER2_CHAIN_ONLRU) {
712                 hammer2_spin_ex(&pmp->lru_spin);
713                 if (chain->flags & HAMMER2_CHAIN_ONLRU) {
714                         atomic_add_int(&pmp->lru_count, -1);
715                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
716                         TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
717                 }
718                 hammer2_spin_unex(&pmp->lru_spin);
719         }
720
721         /*
722          * Spinlock the parent and try to drop the last ref on chain.
723          * On success determine if we should dispose of the chain
724          * (remove the chain from its parent, etc).
725          *
726          * (normal core locks are top-down recursive but we define
727          * core spinlocks as bottom-up recursive, so this is safe).
728          */
729         if (parent) {
730                 hammer2_spin_ex(&parent->core.spin);
731                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
732                         /*
733                          * 1->0 transition failed, retry.
734                          */
735                         hammer2_spin_unex(&parent->core.spin);
736                         hammer2_spin_unex(&chain->core.spin);
737                         hammer2_mtx_unlock(&chain->lock);
738
739                         return(chain);
740                 }
741
742                 /*
743                  * 1->0 transition successful, parent spin held to prevent
744                  * new lookups, chain spinlock held to protect parent field.
745                  * Remove chain from the parent.
746                  *
747                  * If the chain is being removed from the parent's btree but
748                  * is not bmapped, we have to adjust live_count downward.  If
749                  * it is bmapped then the blockref is retained in the parent
750                  * as is its associated live_count.  This case can occur when
751                  * a chain added to the topology is unable to flush and is
752                  * then later deleted.
753                  */
754                 if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
755                         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) &&
756                             (chain->flags & HAMMER2_CHAIN_BMAPPED) == 0) {
757                                 atomic_add_int(&parent->core.live_count, -1);
758                         }
759                         RB_REMOVE(hammer2_chain_tree,
760                                   &parent->core.rbtree, chain);
761                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
762                         --parent->core.chain_count;
763                         chain->parent = NULL;
764                 }
765
766                 /*
767                  * If our chain was the last chain in the parent's core the
768                  * core is now empty and its parent might have to be
769                  * re-dropped if it has 0 refs.
770                  */
771                 if (parent->core.chain_count == 0) {
772                         rdrop = parent;
773                         atomic_add_int(&rdrop->refs, 1);
774                         /*
775                         if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0)
776                                 rdrop = NULL;
777                         */
778                 }
779                 hammer2_spin_unex(&parent->core.spin);
780                 parent = NULL;  /* safety */
781                 /* FALL THROUGH */
782         } else {
783                 /*
784                  * No-parent case.
785                  */
786                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
787                         /*
788                          * 1->0 transition failed, retry.
789                          */
790                         hammer2_spin_unex(&parent->core.spin);
791                         hammer2_spin_unex(&chain->core.spin);
792                         hammer2_mtx_unlock(&chain->lock);
793
794                         return(chain);
795                 }
796         }
797
798         /*
799          * Successful 1->0 transition, no parent, no children... no way for
800          * anyone to ref this chain any more.  We can clean-up and free it.
801          *
802          * We still have the core spinlock, and core's chain_count is 0.
803          * Any parent spinlock is gone.
804          */
805         hammer2_spin_unex(&chain->core.spin);
806         hammer2_chain_assert_no_data(chain);
807         hammer2_mtx_unlock(&chain->lock);
808         KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
809                  chain->core.chain_count == 0);
810
811         /*
812          * All locks are gone, no pointers remain to the chain, finish
813          * freeing it.
814          */
815         KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
816                                   HAMMER2_CHAIN_MODIFIED)) == 0);
817
818         /*
819          * Once chain resources are gone we can use the now dead chain
820          * structure to placehold what might otherwise require a recursive
821          * drop, because we have potentially two things to drop and can only
822          * return one directly.
823          */
824         if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
825                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ALLOCATED);
826                 chain->hmp = NULL;
827                 kfree(chain, hmp->mchain);
828         }
829
830         /*
831          * Possible chaining loop when parent re-drop needed.
832          */
833         return(rdrop);
834 }
835
836 /*
837  * Heuristical flush of the LRU, try to reduce the number of entries
838  * on the LRU to (HAMMER2_LRU_LIMIT * 2 / 3).  This procedure is called
839  * only when lru_count exceeds HAMMER2_LRU_LIMIT.
840  */
841 static
842 void
843 hammer2_chain_lru_flush(hammer2_pfs_t *pmp)
844 {
845         hammer2_chain_t *chain;
846
847 again:
848         chain = NULL;
849         hammer2_spin_ex(&pmp->lru_spin);
850         while (pmp->lru_count > HAMMER2_LRU_LIMIT * 2 / 3) {
851                 /*
852                  * Pick a chain off the lru_list, just recycle it quickly
853                  * if LRUHINT is set (the chain was ref'd but left on
854                  * the lru_list, so cycle to the end).
855                  */
856                 chain = TAILQ_FIRST(&pmp->lru_list);
857                 TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
858
859                 if (chain->flags & HAMMER2_CHAIN_LRUHINT) {
860                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
861                         TAILQ_INSERT_TAIL(&pmp->lru_list, chain, lru_node);
862                         chain = NULL;
863                         continue;
864                 }
865
866                 /*
867                  * Ok, we are off the LRU.  We must adjust refs before we
868                  * can safely clear the ONLRU flag.
869                  */
870                 atomic_add_int(&pmp->lru_count, -1);
871                 if (atomic_cmpset_int(&chain->refs, 0, 1)) {
872                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
873                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
874                         break;
875                 }
876                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
877                 chain = NULL;
878         }
879         hammer2_spin_unex(&pmp->lru_spin);
880         if (chain == NULL)
881                 return;
882
883         /*
884          * If we picked a chain off the lru list we may be able to lastdrop
885          * it.  Use a depth of 1 to prevent excessive lastdrop recursion.
886          */
887         while (chain) {
888                 u_int refs;
889
890                 refs = chain->refs;
891                 cpu_ccfence();
892                 KKASSERT(refs > 0);
893
894                 if (refs == 1) {
895                         if (hammer2_mtx_ex_try(&chain->lock) == 0)
896                                 chain = hammer2_chain_lastdrop(chain, 1);
897                         /* retry the same chain, or chain from lastdrop */
898                 } else {
899                         if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
900                                 break;
901                         /* retry the same chain */
902                 }
903                 cpu_pause();
904         }
905         goto again;
906 }
907
908 /*
909  * On last lock release.
910  */
911 static hammer2_io_t *
912 hammer2_chain_drop_data(hammer2_chain_t *chain)
913 {
914         hammer2_io_t *dio;
915
916         if ((dio = chain->dio) != NULL) {
917                 chain->dio = NULL;
918                 chain->data = NULL;
919         } else {
920                 switch(chain->bref.type) {
921                 case HAMMER2_BREF_TYPE_VOLUME:
922                 case HAMMER2_BREF_TYPE_FREEMAP:
923                         break;
924                 default:
925                         if (chain->data != NULL) {
926                                 hammer2_spin_unex(&chain->core.spin);
927                                 panic("chain data not null: "
928                                       "chain %p bref %016jx.%02x "
929                                       "refs %d parent %p dio %p data %p",
930                                       chain, chain->bref.data_off,
931                                       chain->bref.type, chain->refs,
932                                       chain->parent,
933                                       chain->dio, chain->data);
934                         }
935                         KKASSERT(chain->data == NULL);
936                         break;
937                 }
938         }
939         return dio;
940 }
941
942 /*
943  * Lock a referenced chain element, acquiring its data with I/O if necessary,
944  * and specify how you would like the data to be resolved.
945  *
946  * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
947  *
948  * The lock is allowed to recurse, multiple locking ops will aggregate
949  * the requested resolve types.  Once data is assigned it will not be
950  * removed until the last unlock.
951  *
952  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
953  *                         (typically used to avoid device/logical buffer
954  *                          aliasing for data)
955  *
956  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
957  *                         the INITIAL-create state (indirect blocks only).
958  *
959  *                         Do not resolve data elements for DATA chains.
960  *                         (typically used to avoid device/logical buffer
961  *                          aliasing for data)
962  *
963  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
964  *
965  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
966  *                         it will be locked exclusive.
967  *
968  * HAMMER2_RESOLVE_NONBLOCK- (flag) The chain is locked non-blocking.  If
969  *                         the lock fails, EAGAIN is returned.
970  *
971  * NOTE: Embedded elements (volume header, inodes) are always resolved
972  *       regardless.
973  *
974  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
975  *       element will instantiate and zero its buffer, and flush it on
976  *       release.
977  *
978  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
979  *       so as not to instantiate a device buffer, which could alias against
980  *       a logical file buffer.  However, if ALWAYS is specified the
981  *       device buffer will be instantiated anyway.
982  *
983  * NOTE: The return value is always 0 unless NONBLOCK is specified, in which
984  *       case it can be either 0 or EAGAIN.
985  *
986  * WARNING! This function blocks on I/O if data needs to be fetched.  This
987  *          blocking can run concurrent with other compatible lock holders
988  *          who do not need data returning.  The lock is not upgraded to
989  *          exclusive during a data fetch, a separate bit is used to
990  *          interlock I/O.  However, an exclusive lock holder can still count
991  *          on being interlocked against an I/O fetch managed by a shared
992  *          lock holder.
993  */
994 int
995 hammer2_chain_lock(hammer2_chain_t *chain, int how)
996 {
997         KKASSERT(chain->refs > 0);
998
999         if (how & HAMMER2_RESOLVE_NONBLOCK) {
1000                 /*
1001                  * We still have to bump lockcnt before acquiring the lock,
1002                  * even for non-blocking operation, because the unlock code
1003                  * live-loops on lockcnt == 1 when dropping the last lock.
1004                  *
1005                  * If the non-blocking operation fails we have to use an
1006                  * unhold sequence to undo the mess.
1007                  *
1008                  * NOTE: LOCKAGAIN must always succeed without blocking,
1009                  *       even if NONBLOCK is specified.
1010                  */
1011                 atomic_add_int(&chain->lockcnt, 1);
1012                 if (how & HAMMER2_RESOLVE_SHARED) {
1013                         if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1014                                 hammer2_mtx_sh_again(&chain->lock);
1015                         } else {
1016                                 if (hammer2_mtx_sh_try(&chain->lock) != 0) {
1017                                         hammer2_chain_unhold(chain);
1018                                         return EAGAIN;
1019                                 }
1020                         }
1021                 } else {
1022                         if (hammer2_mtx_ex_try(&chain->lock) != 0) {
1023                                 hammer2_chain_unhold(chain);
1024                                 return EAGAIN;
1025                         }
1026                 }
1027         } else {
1028                 /*
1029                  * Get the appropriate lock.  If LOCKAGAIN is flagged with
1030                  * SHARED the caller expects a shared lock to already be
1031                  * present and we are giving it another ref.  This case must
1032                  * importantly not block if there is a pending exclusive lock
1033                  * request.
1034                  */
1035                 atomic_add_int(&chain->lockcnt, 1);
1036                 if (how & HAMMER2_RESOLVE_SHARED) {
1037                         if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1038                                 hammer2_mtx_sh_again(&chain->lock);
1039                         } else {
1040                                 hammer2_mtx_sh(&chain->lock);
1041                         }
1042                 } else {
1043                         hammer2_mtx_ex(&chain->lock);
1044                 }
1045         }
1046
1047         /*
1048          * If we already have a valid data pointer make sure the data is
1049          * synchronized to the current cpu, and then no further action is
1050          * necessary.
1051          */
1052         if (chain->data) {
1053                 if (chain->dio)
1054                         hammer2_io_bkvasync(chain->dio);
1055                 return 0;
1056         }
1057
1058         /*
1059          * Do we have to resolve the data?  This is generally only
1060          * applicable to HAMMER2_BREF_TYPE_DATA which is special-cased.
1061          * Other BREF types expects the data to be there.
1062          */
1063         switch(how & HAMMER2_RESOLVE_MASK) {
1064         case HAMMER2_RESOLVE_NEVER:
1065                 return 0;
1066         case HAMMER2_RESOLVE_MAYBE:
1067                 if (chain->flags & HAMMER2_CHAIN_INITIAL)
1068                         return 0;
1069                 if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
1070                         return 0;
1071 #if 0
1072                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
1073                         return 0;
1074                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
1075                         return 0;
1076 #endif
1077                 /* fall through */
1078         case HAMMER2_RESOLVE_ALWAYS:
1079         default:
1080                 break;
1081         }
1082
1083         /*
1084          * Caller requires data
1085          */
1086         hammer2_chain_load_data(chain);
1087
1088         return 0;
1089 }
1090
1091 /*
1092  * Lock the chain, retain the hold, and drop the data persistence count.
1093  * The data should remain valid because we never transitioned lockcnt
1094  * through 0.
1095  */
1096 void
1097 hammer2_chain_lock_unhold(hammer2_chain_t *chain, int how)
1098 {
1099         hammer2_chain_lock(chain, how);
1100         atomic_add_int(&chain->lockcnt, -1);
1101 }
1102
1103 #if 0
1104 /*
1105  * Downgrade an exclusive chain lock to a shared chain lock.
1106  *
1107  * NOTE: There is no upgrade equivalent due to the ease of
1108  *       deadlocks in that direction.
1109  */
1110 void
1111 hammer2_chain_lock_downgrade(hammer2_chain_t *chain)
1112 {
1113         hammer2_mtx_downgrade(&chain->lock);
1114 }
1115 #endif
1116
1117 /*
1118  * Issue I/O and install chain->data.  Caller must hold a chain lock, lock
1119  * may be of any type.
1120  *
1121  * Once chain->data is set it cannot be disposed of until all locks are
1122  * released.
1123  *
1124  * Make sure the data is synchronized to the current cpu.
1125  */
1126 void
1127 hammer2_chain_load_data(hammer2_chain_t *chain)
1128 {
1129         hammer2_blockref_t *bref;
1130         hammer2_dev_t *hmp;
1131         hammer2_io_t *dio;
1132         char *bdata;
1133         int error;
1134
1135         /*
1136          * Degenerate case, data already present, or chain has no media
1137          * reference to load.
1138          */
1139         KKASSERT(chain->lock.mtx_lock & MTX_MASK);
1140         if (chain->data) {
1141                 if (chain->dio)
1142                         hammer2_io_bkvasync(chain->dio);
1143                 return;
1144         }
1145         if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0)
1146                 return;
1147
1148         hmp = chain->hmp;
1149         KKASSERT(hmp != NULL);
1150
1151         /*
1152          * Gain the IOINPROG bit, interlocked block.
1153          */
1154         for (;;) {
1155                 u_int oflags;
1156                 u_int nflags;
1157
1158                 oflags = chain->flags;
1159                 cpu_ccfence();
1160                 if (oflags & HAMMER2_CHAIN_IOINPROG) {
1161                         nflags = oflags | HAMMER2_CHAIN_IOSIGNAL;
1162                         tsleep_interlock(&chain->flags, 0);
1163                         if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1164                                 tsleep(&chain->flags, PINTERLOCKED,
1165                                         "h2iocw", 0);
1166                         }
1167                         /* retry */
1168                 } else {
1169                         nflags = oflags | HAMMER2_CHAIN_IOINPROG;
1170                         if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1171                                 break;
1172                         }
1173                         /* retry */
1174                 }
1175         }
1176
1177         /*
1178          * We own CHAIN_IOINPROG
1179          *
1180          * Degenerate case if we raced another load.
1181          */
1182         if (chain->data) {
1183                 if (chain->dio)
1184                         hammer2_io_bkvasync(chain->dio);
1185                 goto done;
1186         }
1187
1188         /*
1189          * We must resolve to a device buffer, either by issuing I/O or
1190          * by creating a zero-fill element.  We do not mark the buffer
1191          * dirty when creating a zero-fill element (the hammer2_chain_modify()
1192          * API must still be used to do that).
1193          *
1194          * The device buffer is variable-sized in powers of 2 down
1195          * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
1196          * chunk always contains buffers of the same size. (XXX)
1197          *
1198          * The minimum physical IO size may be larger than the variable
1199          * block size.
1200          */
1201         bref = &chain->bref;
1202
1203         /*
1204          * The getblk() optimization can only be used on newly created
1205          * elements if the physical block size matches the request.
1206          */
1207         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1208                 error = hammer2_io_new(hmp, bref->type,
1209                                        bref->data_off, chain->bytes,
1210                                        &chain->dio);
1211         } else {
1212                 error = hammer2_io_bread(hmp, bref->type,
1213                                          bref->data_off, chain->bytes,
1214                                          &chain->dio);
1215                 hammer2_adjreadcounter(chain->bref.type, chain->bytes);
1216         }
1217         if (error) {
1218                 chain->error = HAMMER2_ERROR_EIO;
1219                 kprintf("hammer2_chain_load_data: I/O error %016jx: %d\n",
1220                         (intmax_t)bref->data_off, error);
1221                 hammer2_io_bqrelse(&chain->dio);
1222                 goto done;
1223         }
1224         chain->error = 0;
1225
1226         /*
1227          * This isn't perfect and can be ignored on OSs which do not have
1228          * an indication as to whether a buffer is coming from cache or
1229          * if I/O was actually issued for the read.  TESTEDGOOD will work
1230          * pretty well without the B_IOISSUED logic because chains are
1231          * cached, but in that situation (without B_IOISSUED) it will not
1232          * detect whether a re-read via I/O is corrupted verses the original
1233          * read.
1234          *
1235          * We can't re-run the CRC on every fresh lock.  That would be
1236          * insanely expensive.
1237          *
1238          * If the underlying kernel buffer covers the entire chain we can
1239          * use the B_IOISSUED indication to determine if we have to re-run
1240          * the CRC on chain data for chains that managed to stay cached
1241          * across the kernel disposal of the original buffer.
1242          */
1243         if ((dio = chain->dio) != NULL && dio->bp) {
1244                 struct buf *bp = dio->bp;
1245
1246                 if (dio->psize == chain->bytes &&
1247                     (bp->b_flags & B_IOISSUED)) {
1248                         atomic_clear_int(&chain->flags,
1249                                          HAMMER2_CHAIN_TESTEDGOOD);
1250                         bp->b_flags &= ~B_IOISSUED;
1251                 }
1252         }
1253
1254         /*
1255          * NOTE: A locked chain's data cannot be modified without first
1256          *       calling hammer2_chain_modify().
1257          */
1258
1259         /*
1260          * NOTE: hammer2_io_data() call issues bkvasync()
1261          */
1262         bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
1263
1264         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1265                 /*
1266                  * Clear INITIAL.  In this case we used io_new() and the
1267                  * buffer has been zero'd and marked dirty.
1268                  *
1269                  * CHAIN_MODIFIED has not been set yet, and we leave it
1270                  * that way for now.  Set a temporary CHAIN_NOTTESTED flag
1271                  * to prevent hammer2_chain_testcheck() from trying to match
1272                  * a check code that has not yet been generated.  This bit
1273                  * should NOT end up on the actual media.
1274                  */
1275                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1276                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_NOTTESTED);
1277         } else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1278                 /*
1279                  * check data not currently synchronized due to
1280                  * modification.  XXX assumes data stays in the buffer
1281                  * cache, which might not be true (need biodep on flush
1282                  * to calculate crc?  or simple crc?).
1283                  */
1284         } else if ((chain->flags & HAMMER2_CHAIN_TESTEDGOOD) == 0) {
1285                 if (hammer2_chain_testcheck(chain, bdata) == 0) {
1286                         chain->error = HAMMER2_ERROR_CHECK;
1287                 } else {
1288                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_TESTEDGOOD);
1289                 }
1290         }
1291
1292         /*
1293          * Setup the data pointer, either pointing it to an embedded data
1294          * structure and copying the data from the buffer, or pointing it
1295          * into the buffer.
1296          *
1297          * The buffer is not retained when copying to an embedded data
1298          * structure in order to avoid potential deadlocks or recursions
1299          * on the same physical buffer.
1300          *
1301          * WARNING! Other threads can start using the data the instant we
1302          *          set chain->data non-NULL.
1303          */
1304         switch (bref->type) {
1305         case HAMMER2_BREF_TYPE_VOLUME:
1306         case HAMMER2_BREF_TYPE_FREEMAP:
1307                 /*
1308                  * Copy data from bp to embedded buffer
1309                  */
1310                 panic("hammer2_chain_load_data: unresolved volume header");
1311                 break;
1312         case HAMMER2_BREF_TYPE_DIRENT:
1313                 KKASSERT(chain->bytes != 0);
1314                 /* fall through */
1315         case HAMMER2_BREF_TYPE_INODE:
1316         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1317         case HAMMER2_BREF_TYPE_INDIRECT:
1318         case HAMMER2_BREF_TYPE_DATA:
1319         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1320         default:
1321                 /*
1322                  * Point data at the device buffer and leave dio intact.
1323                  */
1324                 chain->data = (void *)bdata;
1325                 break;
1326         }
1327
1328         /*
1329          * Release HAMMER2_CHAIN_IOINPROG and signal waiters if requested.
1330          */
1331 done:
1332         for (;;) {
1333                 u_int oflags;
1334                 u_int nflags;
1335
1336                 oflags = chain->flags;
1337                 nflags = oflags & ~(HAMMER2_CHAIN_IOINPROG |
1338                                     HAMMER2_CHAIN_IOSIGNAL);
1339                 KKASSERT(oflags & HAMMER2_CHAIN_IOINPROG);
1340                 if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1341                         if (oflags & HAMMER2_CHAIN_IOSIGNAL)
1342                                 wakeup(&chain->flags);
1343                         break;
1344                 }
1345         }
1346 }
1347
1348 /*
1349  * Unlock and deref a chain element.
1350  *
1351  * Remember that the presence of children under chain prevent the chain's
1352  * destruction but do not add additional references, so the dio will still
1353  * be dropped.
1354  */
1355 void
1356 hammer2_chain_unlock(hammer2_chain_t *chain)
1357 {
1358         hammer2_io_t *dio;
1359         u_int lockcnt;
1360         int iter = 0;
1361
1362         /*
1363          * If multiple locks are present (or being attempted) on this
1364          * particular chain we can just unlock, drop refs, and return.
1365          *
1366          * Otherwise fall-through on the 1->0 transition.
1367          */
1368         for (;;) {
1369                 lockcnt = chain->lockcnt;
1370                 KKASSERT(lockcnt > 0);
1371                 cpu_ccfence();
1372                 if (lockcnt > 1) {
1373                         if (atomic_cmpset_int(&chain->lockcnt,
1374                                               lockcnt, lockcnt - 1)) {
1375                                 hammer2_mtx_unlock(&chain->lock);
1376                                 return;
1377                         }
1378                 } else if (hammer2_mtx_upgrade_try(&chain->lock) == 0) {
1379                         /* while holding the mutex exclusively */
1380                         if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
1381                                 break;
1382                 } else {
1383                         /*
1384                          * This situation can easily occur on SMP due to
1385                          * the gap inbetween the 1->0 transition and the
1386                          * final unlock.  We cannot safely block on the
1387                          * mutex because lockcnt might go above 1.
1388                          *
1389                          * XXX Sleep for one tick if it takes too long.
1390                          */
1391                         if (++iter > 1000) {
1392                                 if (iter > 1000 + hz) {
1393                                         kprintf("hammer2: h2race2 %p\n", chain);
1394                                         iter = 1000;
1395                                 }
1396                                 tsleep(&iter, 0, "h2race2", 1);
1397                         }
1398                         cpu_pause();
1399                 }
1400                 /* retry */
1401         }
1402
1403         /*
1404          * Last unlock / mutex upgraded to exclusive.  Drop the data
1405          * reference.
1406          */
1407         dio = hammer2_chain_drop_data(chain);
1408         if (dio)
1409                 hammer2_io_bqrelse(&dio);
1410         hammer2_mtx_unlock(&chain->lock);
1411 }
1412
1413 /*
1414  * Unlock and hold chain data intact
1415  */
1416 void
1417 hammer2_chain_unlock_hold(hammer2_chain_t *chain)
1418 {
1419         atomic_add_int(&chain->lockcnt, 1);
1420         hammer2_chain_unlock(chain);
1421 }
1422
1423 /*
1424  * Helper to obtain the blockref[] array base and count for a chain.
1425  *
1426  * XXX Not widely used yet, various use cases need to be validated and
1427  *     converted to use this function.
1428  */
1429 static
1430 hammer2_blockref_t *
1431 hammer2_chain_base_and_count(hammer2_chain_t *parent, int *countp)
1432 {
1433         hammer2_blockref_t *base;
1434         int count;
1435
1436         if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1437                 base = NULL;
1438
1439                 switch(parent->bref.type) {
1440                 case HAMMER2_BREF_TYPE_INODE:
1441                         count = HAMMER2_SET_COUNT;
1442                         break;
1443                 case HAMMER2_BREF_TYPE_INDIRECT:
1444                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1445                         count = parent->bytes / sizeof(hammer2_blockref_t);
1446                         break;
1447                 case HAMMER2_BREF_TYPE_VOLUME:
1448                         count = HAMMER2_SET_COUNT;
1449                         break;
1450                 case HAMMER2_BREF_TYPE_FREEMAP:
1451                         count = HAMMER2_SET_COUNT;
1452                         break;
1453                 default:
1454                         panic("hammer2_chain_base_and_count: "
1455                               "unrecognized blockref type: %d",
1456                               parent->bref.type);
1457                         count = 0;
1458                         break;
1459                 }
1460         } else {
1461                 switch(parent->bref.type) {
1462                 case HAMMER2_BREF_TYPE_INODE:
1463                         base = &parent->data->ipdata.u.blockset.blockref[0];
1464                         count = HAMMER2_SET_COUNT;
1465                         break;
1466                 case HAMMER2_BREF_TYPE_INDIRECT:
1467                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1468                         base = &parent->data->npdata[0];
1469                         count = parent->bytes / sizeof(hammer2_blockref_t);
1470                         break;
1471                 case HAMMER2_BREF_TYPE_VOLUME:
1472                         base = &parent->data->voldata.
1473                                         sroot_blockset.blockref[0];
1474                         count = HAMMER2_SET_COUNT;
1475                         break;
1476                 case HAMMER2_BREF_TYPE_FREEMAP:
1477                         base = &parent->data->blkset.blockref[0];
1478                         count = HAMMER2_SET_COUNT;
1479                         break;
1480                 default:
1481                         panic("hammer2_chain_base_and_count: "
1482                               "unrecognized blockref type: %d",
1483                               parent->bref.type);
1484                         base = NULL;
1485                         count = 0;
1486                         break;
1487                 }
1488         }
1489         *countp = count;
1490
1491         return base;
1492 }
1493
1494 /*
1495  * This counts the number of live blockrefs in a block array and
1496  * also calculates the point at which all remaining blockrefs are empty.
1497  * This routine can only be called on a live chain.
1498  *
1499  * Caller holds the chain locked, but possibly with a shared lock.  We
1500  * must use an exclusive spinlock to prevent corruption.
1501  *
1502  * NOTE: Flag is not set until after the count is complete, allowing
1503  *       callers to test the flag without holding the spinlock.
1504  *
1505  * NOTE: If base is NULL the related chain is still in the INITIAL
1506  *       state and there are no blockrefs to count.
1507  *
1508  * NOTE: live_count may already have some counts accumulated due to
1509  *       creation and deletion and could even be initially negative.
1510  */
1511 void
1512 hammer2_chain_countbrefs(hammer2_chain_t *chain,
1513                          hammer2_blockref_t *base, int count)
1514 {
1515         hammer2_spin_ex(&chain->core.spin);
1516         if ((chain->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0) {
1517                 if (base) {
1518                         while (--count >= 0) {
1519                                 if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1520                                         break;
1521                         }
1522                         chain->core.live_zero = count + 1;
1523                         while (count >= 0) {
1524                                 if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1525                                         atomic_add_int(&chain->core.live_count,
1526                                                        1);
1527                                 --count;
1528                         }
1529                 } else {
1530                         chain->core.live_zero = 0;
1531                 }
1532                 /* else do not modify live_count */
1533                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_COUNTEDBREFS);
1534         }
1535         hammer2_spin_unex(&chain->core.spin);
1536 }
1537
1538 /*
1539  * Resize the chain's physical storage allocation in-place.  This function does
1540  * not usually adjust the data pointer and must be followed by (typically) a
1541  * hammer2_chain_modify() call to copy any old data over and adjust the
1542  * data pointer.
1543  *
1544  * Chains can be resized smaller without reallocating the storage.  Resizing
1545  * larger will reallocate the storage.  Excess or prior storage is reclaimed
1546  * asynchronously at a later time.
1547  *
1548  * An nradix value of 0 is special-cased to mean that the storage should
1549  * be disassociated, that is the chain is being resized to 0 bytes (not 1
1550  * byte).
1551  *
1552  * Must be passed an exclusively locked parent and chain.
1553  *
1554  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1555  * to avoid instantiating a device buffer that conflicts with the vnode data
1556  * buffer.  However, because H2 can compress or encrypt data, the chain may
1557  * have a dio assigned to it in those situations, and they do not conflict.
1558  *
1559  * XXX return error if cannot resize.
1560  */
1561 int
1562 hammer2_chain_resize(hammer2_chain_t *chain,
1563                      hammer2_tid_t mtid, hammer2_off_t dedup_off,
1564                      int nradix, int flags)
1565 {
1566         hammer2_dev_t *hmp;
1567         size_t obytes;
1568         size_t nbytes;
1569         int error;
1570
1571         hmp = chain->hmp;
1572
1573         /*
1574          * Only data and indirect blocks can be resized for now.
1575          * (The volu root, inodes, and freemap elements use a fixed size).
1576          */
1577         KKASSERT(chain != &hmp->vchain);
1578         KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1579                  chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1580                  chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1581
1582         /*
1583          * Nothing to do if the element is already the proper size
1584          */
1585         obytes = chain->bytes;
1586         nbytes = (nradix) ? (1U << nradix) : 0;
1587         if (obytes == nbytes)
1588                 return (chain->error);
1589
1590         /*
1591          * Make sure the old data is instantiated so we can copy it.  If this
1592          * is a data block, the device data may be superfluous since the data
1593          * might be in a logical block, but compressed or encrypted data is
1594          * another matter.
1595          *
1596          * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
1597          */
1598         error = hammer2_chain_modify(chain, mtid, dedup_off, 0);
1599         if (error)
1600                 return error;
1601
1602         /*
1603          * Reallocate the block, even if making it smaller (because different
1604          * block sizes may be in different regions).
1605          *
1606          * NOTE: Operation does not copy the data and may only be used
1607          *       to resize data blocks in-place, or directory entry blocks
1608          *       which are about to be modified in some manner.
1609          */
1610         error = hammer2_freemap_alloc(chain, nbytes);
1611         if (error)
1612                 return error;
1613
1614         chain->bytes = nbytes;
1615
1616         /*
1617          * We don't want the followup chain_modify() to try to copy data
1618          * from the old (wrong-sized) buffer.  It won't know how much to
1619          * copy.  This case should only occur during writes when the
1620          * originator already has the data to write in-hand.
1621          */
1622         if (chain->dio) {
1623                 KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1624                          chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1625                 hammer2_io_brelse(&chain->dio);
1626                 chain->data = NULL;
1627         }
1628         return (chain->error);
1629 }
1630
1631 /*
1632  * Set the chain modified so its data can be changed by the caller, or
1633  * install deduplicated data.  The caller must call this routine for each
1634  * set of modifications it makes, even if the chain is already flagged
1635  * MODIFIED.
1636  *
1637  * Sets bref.modify_tid to mtid only if mtid != 0.  Note that bref.modify_tid
1638  * is a CLC (cluster level change) field and is not updated by parent
1639  * propagation during a flush.
1640  *
1641  * Returns an appropriate HAMMER2_ERROR_* code, which will generally reflect
1642  * chain->error except for HAMMER2_ERROR_ENOSPC.  If the allocation fails
1643  * due to no space available, HAMMER2_ERROR_ENOSPC is returned and the chain
1644  * remains unmodified with its old data ref intact and chain->error
1645  * unchanged.
1646  *
1647  *                               Dedup Handling
1648  *
1649  * If the DEDUPABLE flag is set in the chain the storage must be reallocated
1650  * even if the chain is still flagged MODIFIED.  In this case the chain's
1651  * DEDUPABLE flag will be cleared once the new storage has been assigned.
1652  *
1653  * If the caller passes a non-zero dedup_off we will use it to assign the
1654  * new storage.  The MODIFIED flag will be *CLEARED* in this case, and
1655  * DEDUPABLE will be set (NOTE: the UPDATE flag is always set).  The caller
1656  * must not modify the data content upon return.
1657  */
1658 int
1659 hammer2_chain_modify(hammer2_chain_t *chain, hammer2_tid_t mtid,
1660                      hammer2_off_t dedup_off, int flags)
1661 {
1662         hammer2_blockref_t obref;
1663         hammer2_dev_t *hmp;
1664         hammer2_io_t *dio;
1665         int error;
1666         int wasinitial;
1667         int setmodified;
1668         int setupdate;
1669         int newmod;
1670         char *bdata;
1671
1672         hmp = chain->hmp;
1673         obref = chain->bref;
1674         KKASSERT(chain->lock.mtx_lock & MTX_EXCLUSIVE);
1675
1676         /*
1677          * Data is not optional for freemap chains (we must always be sure
1678          * to copy the data on COW storage allocations).
1679          */
1680         if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1681             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1682                 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1683                          (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1684         }
1685
1686         /*
1687          * Data must be resolved if already assigned, unless explicitly
1688          * flagged otherwise.  If we cannot safety load the data the
1689          * modification fails and we return early.
1690          */
1691         if (chain->data == NULL && chain->bytes != 0 &&
1692             (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1693             (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1694                 hammer2_chain_load_data(chain);
1695                 if (chain->error)
1696                         return (chain->error);
1697         }
1698         error = 0;
1699
1700         /*
1701          * Set MODIFIED to indicate that the chain has been modified.  A new
1702          * allocation is required when modifying a chain.
1703          *
1704          * Set UPDATE to ensure that the blockref is updated in the parent.
1705          *
1706          * If MODIFIED is already set determine if we can reuse the assigned
1707          * data block or if we need a new data block.
1708          */
1709         if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1710                 /*
1711                  * Must set modified bit.
1712                  */
1713                 atomic_add_long(&hammer2_count_modified_chains, 1);
1714                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1715                 hammer2_pfs_memory_inc(chain->pmp);  /* can be NULL */
1716                 setmodified = 1;
1717
1718                 /*
1719                  * We may be able to avoid a copy-on-write if the chain's
1720                  * check mode is set to NONE and the chain's current
1721                  * modify_tid is beyond the last explicit snapshot tid.
1722                  *
1723                  * This implements HAMMER2's overwrite-in-place feature.
1724                  *
1725                  * NOTE! This data-block cannot be used as a de-duplication
1726                  *       source when the check mode is set to NONE.
1727                  */
1728                 if ((chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1729                      chain->bref.type == HAMMER2_BREF_TYPE_DIRENT) &&
1730                     (chain->flags & HAMMER2_CHAIN_INITIAL) == 0 &&
1731                     (chain->flags & HAMMER2_CHAIN_DEDUPABLE) == 0 &&
1732                     HAMMER2_DEC_CHECK(chain->bref.methods) ==
1733                      HAMMER2_CHECK_NONE &&
1734                     chain->pmp &&
1735                     chain->bref.modify_tid >
1736                      chain->pmp->iroot->meta.pfs_lsnap_tid) {
1737                         /*
1738                          * Sector overwrite allowed.
1739                          */
1740                         newmod = 0;
1741                 } else if ((hmp->hflags & HMNT2_EMERG) &&
1742                            chain->pmp &&
1743                            chain->bref.modify_tid >
1744                             chain->pmp->iroot->meta.pfs_lsnap_tid) {
1745                         /*
1746                          * If in emergency delete mode then do a modify-in-
1747                          * place on any chain type belonging to the PFS as
1748                          * long as it doesn't mess up a snapshot.  We might
1749                          * be forced to do this anyway a little further down
1750                          * in the code if the allocation fails.
1751                          *
1752                          * Also note that in emergency mode, these modify-in-
1753                          * place operations are NOT SAFE.  A storage failure,
1754                          * power failure, or panic can corrupt the filesystem.
1755                          */
1756                         newmod = 0;
1757                 } else {
1758                         /*
1759                          * Sector overwrite not allowed, must copy-on-write.
1760                          */
1761                         newmod = 1;
1762                 }
1763         } else if (chain->flags & HAMMER2_CHAIN_DEDUPABLE) {
1764                 /*
1765                  * If the modified chain was registered for dedup we need
1766                  * a new allocation.  This only happens for delayed-flush
1767                  * chains (i.e. which run through the front-end buffer
1768                  * cache).
1769                  */
1770                 newmod = 1;
1771                 setmodified = 0;
1772         } else {
1773                 /*
1774                  * Already flagged modified, no new allocation is needed.
1775                  */
1776                 newmod = 0;
1777                 setmodified = 0;
1778         }
1779
1780         /*
1781          * Flag parent update required.
1782          */
1783         if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
1784                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1785                 setupdate = 1;
1786         } else {
1787                 setupdate = 0;
1788         }
1789
1790         /*
1791          * The XOP code returns held but unlocked focus chains.  This
1792          * prevents the chain from being destroyed but does not prevent
1793          * it from being modified.  diolk is used to interlock modifications
1794          * against XOP frontend accesses to the focus.
1795          *
1796          * This allows us to theoretically avoid deadlocking the frontend
1797          * if one of the backends lock up by not formally locking the
1798          * focused chain in the frontend.  In addition, the synchronization
1799          * code relies on this mechanism to avoid deadlocking concurrent
1800          * synchronization threads.
1801          */
1802         lockmgr(&chain->diolk, LK_EXCLUSIVE);
1803
1804         /*
1805          * The modification or re-modification requires an allocation and
1806          * possible COW.  If an error occurs, the previous content and data
1807          * reference is retained and the modification fails.
1808          *
1809          * If dedup_off is non-zero, the caller is requesting a deduplication
1810          * rather than a modification.  The MODIFIED bit is not set and the
1811          * data offset is set to the deduplication offset.  The data cannot
1812          * be modified.
1813          *
1814          * NOTE: The dedup offset is allowed to be in a partially free state
1815          *       and we must be sure to reset it to a fully allocated state
1816          *       to force two bulkfree passes to free it again.
1817          *
1818          * NOTE: Only applicable when chain->bytes != 0.
1819          *
1820          * XXX can a chain already be marked MODIFIED without a data
1821          * assignment?  If not, assert here instead of testing the case.
1822          */
1823         if (chain != &hmp->vchain && chain != &hmp->fchain &&
1824             chain->bytes) {
1825                 if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1826                     newmod
1827                 ) {
1828                         /*
1829                          * NOTE: We do not have to remove the dedup
1830                          *       registration because the area is still
1831                          *       allocated and the underlying DIO will
1832                          *       still be flushed.
1833                          */
1834                         if (dedup_off) {
1835                                 chain->bref.data_off = dedup_off;
1836                                 if ((int)(dedup_off & HAMMER2_OFF_MASK_RADIX))
1837                                         chain->bytes = 1 <<
1838                                                 (int)(dedup_off &
1839                                                 HAMMER2_OFF_MASK_RADIX);
1840                                 else
1841                                         chain->bytes = 0;
1842                                 chain->error = 0;
1843                                 atomic_clear_int(&chain->flags,
1844                                                  HAMMER2_CHAIN_MODIFIED);
1845                                 atomic_add_long(&hammer2_count_modified_chains,
1846                                                 -1);
1847                                 if (chain->pmp) {
1848                                         hammer2_pfs_memory_wakeup(
1849                                                 chain->pmp, -1);
1850                                 }
1851                                 hammer2_freemap_adjust(hmp, &chain->bref,
1852                                                 HAMMER2_FREEMAP_DORECOVER);
1853                                 atomic_set_int(&chain->flags,
1854                                                 HAMMER2_CHAIN_DEDUPABLE);
1855                         } else {
1856                                 error = hammer2_freemap_alloc(chain,
1857                                                               chain->bytes);
1858                                 atomic_clear_int(&chain->flags,
1859                                                 HAMMER2_CHAIN_DEDUPABLE);
1860
1861                                 /*
1862                                  * If we are unable to allocate a new block
1863                                  * but we are in emergency mode, issue a
1864                                  * warning to the console and reuse the same
1865                                  * block.
1866                                  *
1867                                  * We behave as if the allocation were
1868                                  * successful.
1869                                  *
1870                                  * THIS IS IMPORTANT: These modifications
1871                                  * are virtually guaranteed to corrupt any
1872                                  * snapshots related to this filesystem.
1873                                  */
1874                                 if (error && (hmp->hflags & HMNT2_EMERG)) {
1875                                         error = 0;
1876                                         chain->bref.flags |=
1877                                                 HAMMER2_BREF_FLAG_EMERG_MIP;
1878
1879                                         krateprintf(&krate_h2em,
1880                                             "hammer2: Emergency Mode WARNING: "
1881                                             "Operation will likely corrupt "
1882                                             "related snapshot: "
1883                                             "%016jx.%02x key=%016jx\n",
1884                                             chain->bref.data_off,
1885                                             chain->bref.type,
1886                                             chain->bref.key);
1887                                 } else if (error == 0) {
1888                                         chain->bref.flags &=
1889                                                 ~HAMMER2_BREF_FLAG_EMERG_MIP;
1890                                 }
1891                         }
1892                 }
1893         }
1894
1895         /*
1896          * Stop here if error.  We have to undo any flag bits we might
1897          * have set above.
1898          */
1899         if (error) {
1900                 if (setmodified) {
1901                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1902                         atomic_add_long(&hammer2_count_modified_chains, -1);
1903                         if (chain->pmp)
1904                                 hammer2_pfs_memory_wakeup(chain->pmp, -1);
1905                 }
1906                 if (setupdate) {
1907                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1908                 }
1909                 lockmgr(&chain->diolk, LK_RELEASE);
1910
1911                 return error;
1912         }
1913
1914         /*
1915          * Update mirror_tid and modify_tid.  modify_tid is only updated
1916          * if not passed as zero (during flushes, parent propagation passes
1917          * the value 0).
1918          *
1919          * NOTE: chain->pmp could be the device spmp.
1920          */
1921         chain->bref.mirror_tid = hmp->voldata.mirror_tid + 1;
1922         if (mtid)
1923                 chain->bref.modify_tid = mtid;
1924
1925         /*
1926          * Set BMAPUPD to tell the flush code that an existing blockmap entry
1927          * requires updating as well as to tell the delete code that the
1928          * chain's blockref might not exactly match (in terms of physical size
1929          * or block offset) the one in the parent's blocktable.  The base key
1930          * of course will still match.
1931          */
1932         if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1933                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1934
1935         /*
1936          * Short-cut data block handling when the caller does not need an
1937          * actual data reference to (aka OPTDATA), as long as the chain does
1938          * not already have a data pointer to the data and no de-duplication
1939          * occurred.
1940          *
1941          * This generally means that the modifications are being done via the
1942          * logical buffer cache.
1943          *
1944          * NOTE: If deduplication occurred we have to run through the data
1945          *       stuff to clear INITIAL, and the caller will likely want to
1946          *       assign the check code anyway.  Leaving INITIAL set on a
1947          *       dedup can be deadly (it can cause the block to be zero'd!).
1948          *
1949          * This code also handles bytes == 0 (most dirents).
1950          */
1951         if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1952             (flags & HAMMER2_MODIFY_OPTDATA) &&
1953             chain->data == NULL) {
1954                 if (dedup_off == 0) {
1955                         KKASSERT(chain->dio == NULL);
1956                         goto skip2;
1957                 }
1958         }
1959
1960         /*
1961          * Clearing the INITIAL flag (for indirect blocks) indicates that
1962          * we've processed the uninitialized storage allocation.
1963          *
1964          * If this flag is already clear we are likely in a copy-on-write
1965          * situation but we have to be sure NOT to bzero the storage if
1966          * no data is present.
1967          *
1968          * Clearing of NOTTESTED is allowed if the MODIFIED bit is set,
1969          */
1970         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1971                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1972                 wasinitial = 1;
1973         } else {
1974                 wasinitial = 0;
1975         }
1976
1977         /*
1978          * Instantiate data buffer and possibly execute COW operation
1979          */
1980         switch(chain->bref.type) {
1981         case HAMMER2_BREF_TYPE_VOLUME:
1982         case HAMMER2_BREF_TYPE_FREEMAP:
1983                 /*
1984                  * The data is embedded, no copy-on-write operation is
1985                  * needed.
1986                  */
1987                 KKASSERT(chain->dio == NULL);
1988                 break;
1989         case HAMMER2_BREF_TYPE_DIRENT:
1990                 /*
1991                  * The data might be fully embedded.
1992                  */
1993                 if (chain->bytes == 0) {
1994                         KKASSERT(chain->dio == NULL);
1995                         break;
1996                 }
1997                 /* fall through */
1998         case HAMMER2_BREF_TYPE_INODE:
1999         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2000         case HAMMER2_BREF_TYPE_DATA:
2001         case HAMMER2_BREF_TYPE_INDIRECT:
2002         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2003                 /*
2004                  * Perform the copy-on-write operation
2005                  *
2006                  * zero-fill or copy-on-write depending on whether
2007                  * chain->data exists or not and set the dirty state for
2008                  * the new buffer.  hammer2_io_new() will handle the
2009                  * zero-fill.
2010                  *
2011                  * If a dedup_off was supplied this is an existing block
2012                  * and no COW, copy, or further modification is required.
2013                  */
2014                 KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
2015
2016                 if (wasinitial && dedup_off == 0) {
2017                         error = hammer2_io_new(hmp, chain->bref.type,
2018                                                chain->bref.data_off,
2019                                                chain->bytes, &dio);
2020                 } else {
2021                         error = hammer2_io_bread(hmp, chain->bref.type,
2022                                                  chain->bref.data_off,
2023                                                  chain->bytes, &dio);
2024                 }
2025                 hammer2_adjreadcounter(chain->bref.type, chain->bytes);
2026
2027                 /*
2028                  * If an I/O error occurs make sure callers cannot accidently
2029                  * modify the old buffer's contents and corrupt the filesystem.
2030                  *
2031                  * NOTE: hammer2_io_data() call issues bkvasync()
2032                  */
2033                 if (error) {
2034                         kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
2035                                 hmp);
2036                         chain->error = HAMMER2_ERROR_EIO;
2037                         hammer2_io_brelse(&dio);
2038                         hammer2_io_brelse(&chain->dio);
2039                         chain->data = NULL;
2040                         break;
2041                 }
2042                 chain->error = 0;
2043                 bdata = hammer2_io_data(dio, chain->bref.data_off);
2044
2045                 if (chain->data) {
2046                         /*
2047                          * COW (unless a dedup).
2048                          */
2049                         KKASSERT(chain->dio != NULL);
2050                         if (chain->data != (void *)bdata && dedup_off == 0) {
2051                                 bcopy(chain->data, bdata, chain->bytes);
2052                         }
2053                 } else if (wasinitial == 0 && dedup_off == 0) {
2054                         /*
2055                          * We have a problem.  We were asked to COW but
2056                          * we don't have any data to COW with!
2057                          */
2058                         panic("hammer2_chain_modify: having a COW %p\n",
2059                               chain);
2060                 }
2061
2062                 /*
2063                  * Retire the old buffer, replace with the new.  Dirty or
2064                  * redirty the new buffer.
2065                  *
2066                  * WARNING! The system buffer cache may have already flushed
2067                  *          the buffer, so we must be sure to [re]dirty it
2068                  *          for further modification.
2069                  *
2070                  *          If dedup_off was supplied, the caller is not
2071                  *          expected to make any further modification to the
2072                  *          buffer.
2073                  *
2074                  * WARNING! hammer2_get_gdata() assumes dio never transitions
2075                  *          through NULL in order to optimize away unnecessary
2076                  *          diolk operations.
2077                  */
2078                 {
2079                         hammer2_io_t *tio;
2080
2081                         if ((tio = chain->dio) != NULL)
2082                                 hammer2_io_bqrelse(&tio);
2083                         chain->data = (void *)bdata;
2084                         chain->dio = dio;
2085                         if (dedup_off == 0)
2086                                 hammer2_io_setdirty(dio);
2087                 }
2088                 break;
2089         default:
2090                 panic("hammer2_chain_modify: illegal non-embedded type %d",
2091                       chain->bref.type);
2092                 break;
2093
2094         }
2095 skip2:
2096         /*
2097          * setflush on parent indicating that the parent must recurse down
2098          * to us.  Do not call on chain itself which might already have it
2099          * set.
2100          */
2101         if (chain->parent)
2102                 hammer2_chain_setflush(chain->parent);
2103         lockmgr(&chain->diolk, LK_RELEASE);
2104
2105         return (chain->error);
2106 }
2107
2108 /*
2109  * Modify the chain associated with an inode.
2110  */
2111 int
2112 hammer2_chain_modify_ip(hammer2_inode_t *ip, hammer2_chain_t *chain,
2113                         hammer2_tid_t mtid, int flags)
2114 {
2115         int error;
2116
2117         hammer2_inode_modify(ip);
2118         error = hammer2_chain_modify(chain, mtid, 0, flags);
2119
2120         return error;
2121 }
2122
2123 /*
2124  * This function returns the chain at the nearest key within the specified
2125  * range.  The returned chain will be referenced but not locked.
2126  *
2127  * This function will recurse through chain->rbtree as necessary and will
2128  * return a *key_nextp suitable for iteration.  *key_nextp is only set if
2129  * the iteration value is less than the current value of *key_nextp.
2130  *
2131  * The caller should use (*key_nextp) to calculate the actual range of
2132  * the returned element, which will be (key_beg to *key_nextp - 1), because
2133  * there might be another element which is superior to the returned element
2134  * and overlaps it.
2135  *
2136  * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
2137  * chains continue to be returned.  On EOF (*key_nextp) may overflow since
2138  * it will wind up being (key_end + 1).
2139  *
2140  * WARNING!  Must be called with child's spinlock held.  Spinlock remains
2141  *           held through the operation.
2142  */
2143 struct hammer2_chain_find_info {
2144         hammer2_chain_t         *best;
2145         hammer2_key_t           key_beg;
2146         hammer2_key_t           key_end;
2147         hammer2_key_t           key_next;
2148 };
2149
2150 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
2151 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
2152
2153 static
2154 hammer2_chain_t *
2155 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
2156                           hammer2_key_t key_beg, hammer2_key_t key_end)
2157 {
2158         struct hammer2_chain_find_info info;
2159
2160         info.best = NULL;
2161         info.key_beg = key_beg;
2162         info.key_end = key_end;
2163         info.key_next = *key_nextp;
2164
2165         RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
2166                 hammer2_chain_find_cmp, hammer2_chain_find_callback,
2167                 &info);
2168         *key_nextp = info.key_next;
2169 #if 0
2170         kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
2171                 parent, key_beg, key_end, *key_nextp);
2172 #endif
2173
2174         return (info.best);
2175 }
2176
2177 static
2178 int
2179 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
2180 {
2181         struct hammer2_chain_find_info *info = data;
2182         hammer2_key_t child_beg;
2183         hammer2_key_t child_end;
2184
2185         child_beg = child->bref.key;
2186         child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
2187
2188         if (child_end < info->key_beg)
2189                 return(-1);
2190         if (child_beg > info->key_end)
2191                 return(1);
2192         return(0);
2193 }
2194
2195 static
2196 int
2197 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
2198 {
2199         struct hammer2_chain_find_info *info = data;
2200         hammer2_chain_t *best;
2201         hammer2_key_t child_end;
2202
2203         /*
2204          * WARNING! Layerq is scanned forwards, exact matches should keep
2205          *          the existing info->best.
2206          */
2207         if ((best = info->best) == NULL) {
2208                 /*
2209                  * No previous best.  Assign best
2210                  */
2211                 info->best = child;
2212         } else if (best->bref.key <= info->key_beg &&
2213                    child->bref.key <= info->key_beg) {
2214                 /*
2215                  * Illegal overlap.
2216                  */
2217                 KKASSERT(0);
2218                 /*info->best = child;*/
2219         } else if (child->bref.key < best->bref.key) {
2220                 /*
2221                  * Child has a nearer key and best is not flush with key_beg.
2222                  * Set best to child.  Truncate key_next to the old best key.
2223                  */
2224                 info->best = child;
2225                 if (info->key_next > best->bref.key || info->key_next == 0)
2226                         info->key_next = best->bref.key;
2227         } else if (child->bref.key == best->bref.key) {
2228                 /*
2229                  * If our current best is flush with the child then this
2230                  * is an illegal overlap.
2231                  *
2232                  * key_next will automatically be limited to the smaller of
2233                  * the two end-points.
2234                  */
2235                 KKASSERT(0);
2236                 info->best = child;
2237         } else {
2238                 /*
2239                  * Keep the current best but truncate key_next to the child's
2240                  * base.
2241                  *
2242                  * key_next will also automatically be limited to the smaller
2243                  * of the two end-points (probably not necessary for this case
2244                  * but we do it anyway).
2245                  */
2246                 if (info->key_next > child->bref.key || info->key_next == 0)
2247                         info->key_next = child->bref.key;
2248         }
2249
2250         /*
2251          * Always truncate key_next based on child's end-of-range.
2252          */
2253         child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
2254         if (child_end && (info->key_next > child_end || info->key_next == 0))
2255                 info->key_next = child_end;
2256
2257         return(0);
2258 }
2259
2260 /*
2261  * Retrieve the specified chain from a media blockref, creating the
2262  * in-memory chain structure which reflects it.  The returned chain is
2263  * held and locked according to (how) (HAMMER2_RESOLVE_*).  The caller must
2264  * handle crc-checks and so forth, and should check chain->error before
2265  * assuming that the data is good.
2266  *
2267  * To handle insertion races pass the INSERT_RACE flag along with the
2268  * generation number of the core.  NULL will be returned if the generation
2269  * number changes before we have a chance to insert the chain.  Insert
2270  * races can occur because the parent might be held shared.
2271  *
2272  * Caller must hold the parent locked shared or exclusive since we may
2273  * need the parent's bref array to find our block.
2274  *
2275  * WARNING! chain->pmp is always set to NULL for any chain representing
2276  *          part of the super-root topology.
2277  */
2278 hammer2_chain_t *
2279 hammer2_chain_get(hammer2_chain_t *parent, int generation,
2280                   hammer2_blockref_t *bref, int how)
2281 {
2282         hammer2_dev_t *hmp = parent->hmp;
2283         hammer2_chain_t *chain;
2284         int error;
2285
2286         /*
2287          * Allocate a chain structure representing the existing media
2288          * entry.  Resulting chain has one ref and is not locked.
2289          */
2290         if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
2291                 chain = hammer2_chain_alloc(hmp, NULL, bref);
2292         else
2293                 chain = hammer2_chain_alloc(hmp, parent->pmp, bref);
2294         /* ref'd chain returned */
2295
2296         /*
2297          * Flag that the chain is in the parent's blockmap so delete/flush
2298          * knows what to do with it.
2299          */
2300         atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
2301
2302         /*
2303          * chain must be locked to avoid unexpected ripouts
2304          */
2305         hammer2_chain_lock(chain, how);
2306
2307         /*
2308          * Link the chain into its parent.  A spinlock is required to safely
2309          * access the RBTREE, and it is possible to collide with another
2310          * hammer2_chain_get() operation because the caller might only hold
2311          * a shared lock on the parent.
2312          *
2313          * NOTE: Get races can occur quite often when we distribute
2314          *       asynchronous read-aheads across multiple threads.
2315          */
2316         KKASSERT(parent->refs > 0);
2317         error = hammer2_chain_insert(parent, chain,
2318                                      HAMMER2_CHAIN_INSERT_SPIN |
2319                                      HAMMER2_CHAIN_INSERT_RACE,
2320                                      generation);
2321         if (error) {
2322                 KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
2323                 /*kprintf("chain %p get race\n", chain);*/
2324                 hammer2_chain_unlock(chain);
2325                 hammer2_chain_drop(chain);
2326                 chain = NULL;
2327         } else {
2328                 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2329         }
2330
2331         /*
2332          * Return our new chain referenced but not locked, or NULL if
2333          * a race occurred.
2334          */
2335         return (chain);
2336 }
2337
2338 /*
2339  * Lookup initialization/completion API
2340  */
2341 hammer2_chain_t *
2342 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
2343 {
2344         hammer2_chain_ref(parent);
2345         if (flags & HAMMER2_LOOKUP_SHARED) {
2346                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
2347                                            HAMMER2_RESOLVE_SHARED);
2348         } else {
2349                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2350         }
2351         return (parent);
2352 }
2353
2354 void
2355 hammer2_chain_lookup_done(hammer2_chain_t *parent)
2356 {
2357         if (parent) {
2358                 hammer2_chain_unlock(parent);
2359                 hammer2_chain_drop(parent);
2360         }
2361 }
2362
2363 /*
2364  * Take the locked chain and return a locked parent.  The chain remains
2365  * locked on return, but may have to be temporarily unlocked to acquire
2366  * the parent.  Because of this, (chain) must be stable and cannot be
2367  * deleted while it was temporarily unlocked (typically means that (chain)
2368  * is an inode).
2369  *
2370  * Pass HAMMER2_RESOLVE_* flags in flags.
2371  *
2372  * This will work even if the chain is errored, and the caller can check
2373  * parent->error on return if desired since the parent will be locked.
2374  *
2375  * This function handles the lock order reversal.
2376  */
2377 hammer2_chain_t *
2378 hammer2_chain_getparent(hammer2_chain_t *chain, int flags)
2379 {
2380         hammer2_chain_t *parent;
2381
2382         /*
2383          * Be careful of order, chain must be unlocked before parent
2384          * is locked below to avoid a deadlock.  Try it trivially first.
2385          */
2386         parent = chain->parent;
2387         if (parent == NULL)
2388                 panic("hammer2_chain_getparent: no parent");
2389         hammer2_chain_ref(parent);
2390         if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0)
2391                 return parent;
2392
2393         for (;;) {
2394                 hammer2_chain_unlock(chain);
2395                 hammer2_chain_lock(parent, flags);
2396                 hammer2_chain_lock(chain, flags);
2397
2398                 /*
2399                  * Parent relinking races are quite common.  We have to get
2400                  * it right or we will blow up the block table.
2401                  */
2402                 if (chain->parent == parent)
2403                         break;
2404                 hammer2_chain_unlock(parent);
2405                 hammer2_chain_drop(parent);
2406                 cpu_ccfence();
2407                 parent = chain->parent;
2408                 if (parent == NULL)
2409                         panic("hammer2_chain_getparent: no parent");
2410                 hammer2_chain_ref(parent);
2411         }
2412         return parent;
2413 }
2414
2415 /*
2416  * Take the locked chain and return a locked parent.  The chain is unlocked
2417  * and dropped.  *chainp is set to the returned parent as a convenience.
2418  * Pass HAMMER2_RESOLVE_* flags in flags.
2419  *
2420  * This will work even if the chain is errored, and the caller can check
2421  * parent->error on return if desired since the parent will be locked.
2422  *
2423  * The chain does NOT need to be stable.  We use a tracking structure
2424  * to track the expected parent if the chain is deleted out from under us.
2425  *
2426  * This function handles the lock order reversal.
2427  */
2428 hammer2_chain_t *
2429 hammer2_chain_repparent(hammer2_chain_t **chainp, int flags)
2430 {
2431         hammer2_chain_t *chain;
2432         hammer2_chain_t *parent;
2433         struct hammer2_reptrack reptrack;
2434         struct hammer2_reptrack **repp;
2435
2436         /*
2437          * Be careful of order, chain must be unlocked before parent
2438          * is locked below to avoid a deadlock.  Try it trivially first.
2439          */
2440         chain = *chainp;
2441         parent = chain->parent;
2442         if (parent == NULL) {
2443                 hammer2_spin_unex(&chain->core.spin);
2444                 panic("hammer2_chain_repparent: no parent");
2445         }
2446         hammer2_chain_ref(parent);
2447         if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0) {
2448                 hammer2_chain_unlock(chain);
2449                 hammer2_chain_drop(chain);
2450                 *chainp = parent;
2451
2452                 return parent;
2453         }
2454
2455         /*
2456          * Ok, now it gets a bit nasty.  There are multiple situations where
2457          * the parent might be in the middle of a deletion, or where the child
2458          * (chain) might be deleted the instant we let go of its lock.
2459          * We can potentially end up in a no-win situation!
2460          *
2461          * In particular, the indirect_maintenance() case can cause these
2462          * situations.
2463          *
2464          * To deal with this we install a reptrack structure in the parent
2465          * This reptrack structure 'owns' the parent ref and will automatically
2466          * migrate to the parent's parent if the parent is deleted permanently.
2467          */
2468         hammer2_spin_init(&reptrack.spin, "h2reptrk");
2469         reptrack.chain = parent;
2470         hammer2_chain_ref(parent);              /* for the reptrack */
2471
2472         hammer2_spin_ex(&parent->core.spin);
2473         reptrack.next = parent->core.reptrack;
2474         parent->core.reptrack = &reptrack;
2475         hammer2_spin_unex(&parent->core.spin);
2476
2477         hammer2_chain_unlock(chain);
2478         hammer2_chain_drop(chain);
2479         chain = NULL;   /* gone */
2480
2481         /*
2482          * At the top of this loop, chain is gone and parent is refd both
2483          * by us explicitly AND via our reptrack.  We are attempting to
2484          * lock parent.
2485          */
2486         for (;;) {
2487                 hammer2_chain_lock(parent, flags);
2488
2489                 if (reptrack.chain == parent)
2490                         break;
2491                 hammer2_chain_unlock(parent);
2492                 hammer2_chain_drop(parent);
2493
2494                 kprintf("hammer2: debug REPTRACK %p->%p\n",
2495                         parent, reptrack.chain);
2496                 hammer2_spin_ex(&reptrack.spin);
2497                 parent = reptrack.chain;
2498                 hammer2_chain_ref(parent);
2499                 hammer2_spin_unex(&reptrack.spin);
2500         }
2501
2502         /*
2503          * Once parent is locked and matches our reptrack, our reptrack
2504          * will be stable and we have our parent.  We can unlink our
2505          * reptrack.
2506          *
2507          * WARNING!  Remember that the chain lock might be shared.  Chains
2508          *           locked shared have stable parent linkages.
2509          */
2510         hammer2_spin_ex(&parent->core.spin);
2511         repp = &parent->core.reptrack;
2512         while (*repp != &reptrack)
2513                 repp = &(*repp)->next;
2514         *repp = reptrack.next;
2515         hammer2_spin_unex(&parent->core.spin);
2516
2517         hammer2_chain_drop(parent);     /* reptrack ref */
2518         *chainp = parent;               /* return parent lock+ref */
2519
2520         return parent;
2521 }
2522
2523 /*
2524  * Dispose of any linked reptrack structures in (chain) by shifting them to
2525  * (parent).  Both (chain) and (parent) must be exclusively locked.
2526  *
2527  * This is interlocked against any children of (chain) on the other side.
2528  * No children so remain as-of when this is called so we can test
2529  * core.reptrack without holding the spin-lock.
2530  *
2531  * Used whenever the caller intends to permanently delete chains related
2532  * to topological recursions (BREF_TYPE_INDIRECT, BREF_TYPE_FREEMAP_NODE),
2533  * where the chains underneath the node being deleted are given a new parent
2534  * above the node being deleted.
2535  */
2536 static
2537 void
2538 hammer2_chain_repchange(hammer2_chain_t *parent, hammer2_chain_t *chain)
2539 {
2540         struct hammer2_reptrack *reptrack;
2541
2542         KKASSERT(chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree));
2543         while (chain->core.reptrack) {
2544                 hammer2_spin_ex(&parent->core.spin);
2545                 hammer2_spin_ex(&chain->core.spin);
2546                 reptrack = chain->core.reptrack;
2547                 if (reptrack == NULL) {
2548                         hammer2_spin_unex(&chain->core.spin);
2549                         hammer2_spin_unex(&parent->core.spin);
2550                         break;
2551                 }
2552                 hammer2_spin_ex(&reptrack->spin);
2553                 chain->core.reptrack = reptrack->next;
2554                 reptrack->chain = parent;
2555                 reptrack->next = parent->core.reptrack;
2556                 parent->core.reptrack = reptrack;
2557                 hammer2_chain_ref(parent);              /* reptrack */
2558
2559                 hammer2_spin_unex(&chain->core.spin);
2560                 hammer2_spin_unex(&parent->core.spin);
2561                 kprintf("hammer2: debug repchange %p %p->%p\n",
2562                         reptrack, chain, parent);
2563                 hammer2_chain_drop(chain);              /* reptrack */
2564         }
2565 }
2566
2567 /*
2568  * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
2569  * (*parentp) typically points to an inode but can also point to a related
2570  * indirect block and this function will recurse upwards and find the inode
2571  * or the nearest undeleted indirect block covering the key range.
2572  *
2573  * This function unconditionally sets *errorp, replacing any previous value.
2574  *
2575  * (*parentp) must be exclusive or shared locked (depending on flags) and
2576  * referenced and can be an inode or an existing indirect block within the
2577  * inode.
2578  *
2579  * If (*parent) is errored out, this function will not attempt to recurse
2580  * the radix tree and will return NULL along with an appropriate *errorp.
2581  * If NULL is returned and *errorp is 0, the requested lookup could not be
2582  * located.
2583  *
2584  * On return (*parentp) will be modified to point at the deepest parent chain
2585  * element encountered during the search, as a helper for an insertion or
2586  * deletion.
2587  *
2588  * The new (*parentp) will be locked shared or exclusive (depending on flags),
2589  * and referenced, and the old will be unlocked and dereferenced (no change
2590  * if they are both the same).  This is particularly important if the caller
2591  * wishes to insert a new chain, (*parentp) will be set properly even if NULL
2592  * is returned, as long as no error occurred.
2593  *
2594  * The matching chain will be returned locked according to flags.
2595  *
2596  * --
2597  *
2598  * NULL is returned if no match was found, but (*parentp) will still
2599  * potentially be adjusted.
2600  *
2601  * On return (*key_nextp) will point to an iterative value for key_beg.
2602  * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
2603  *
2604  * This function will also recurse up the chain if the key is not within the
2605  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
2606  * can simply allow (*parentp) to float inside the loop.
2607  *
2608  * NOTE!  chain->data is not always resolved.  By default it will not be
2609  *        resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
2610  *        HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
2611  *        BREF_TYPE_DATA as the device buffer can alias the logical file
2612  *        buffer).
2613  */
2614
2615 hammer2_chain_t *
2616 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
2617                      hammer2_key_t key_beg, hammer2_key_t key_end,
2618                      int *errorp, int flags)
2619 {
2620         hammer2_dev_t *hmp;
2621         hammer2_chain_t *parent;
2622         hammer2_chain_t *chain;
2623         hammer2_blockref_t *base;
2624         hammer2_blockref_t *bref;
2625         hammer2_blockref_t bsave;
2626         hammer2_key_t scan_beg;
2627         hammer2_key_t scan_end;
2628         int count = 0;
2629         int how_always = HAMMER2_RESOLVE_ALWAYS;
2630         int how_maybe = HAMMER2_RESOLVE_MAYBE;
2631         int how;
2632         int generation;
2633         int maxloops = 300000;
2634         volatile hammer2_mtx_t save_mtx;
2635
2636         if (flags & HAMMER2_LOOKUP_ALWAYS) {
2637                 how_maybe = how_always;
2638                 how = HAMMER2_RESOLVE_ALWAYS;
2639         } else if (flags & HAMMER2_LOOKUP_NODATA) {
2640                 how = HAMMER2_RESOLVE_NEVER;
2641         } else {
2642                 how = HAMMER2_RESOLVE_MAYBE;
2643         }
2644         if (flags & HAMMER2_LOOKUP_SHARED) {
2645                 how_maybe |= HAMMER2_RESOLVE_SHARED;
2646                 how_always |= HAMMER2_RESOLVE_SHARED;
2647                 how |= HAMMER2_RESOLVE_SHARED;
2648         }
2649
2650         /*
2651          * Recurse (*parentp) upward if necessary until the parent completely
2652          * encloses the key range or we hit the inode.
2653          *
2654          * Handle races against the flusher deleting indirect nodes on its
2655          * way back up by continuing to recurse upward past the deletion.
2656          */
2657         parent = *parentp;
2658         hmp = parent->hmp;
2659         *errorp = 0;
2660
2661         while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2662                parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2663                 scan_beg = parent->bref.key;
2664                 scan_end = scan_beg +
2665                            ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2666                 if ((parent->flags & HAMMER2_CHAIN_DELETED) == 0) {
2667                         if (key_beg >= scan_beg && key_end <= scan_end)
2668                                 break;
2669                 }
2670                 parent = hammer2_chain_repparent(parentp, how_maybe);
2671         }
2672 again:
2673         if (--maxloops == 0)
2674                 panic("hammer2_chain_lookup: maxloops");
2675
2676         /*
2677          * MATCHIND case that does not require parent->data (do prior to
2678          * parent->error check).
2679          */
2680         switch(parent->bref.type) {
2681         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2682         case HAMMER2_BREF_TYPE_INDIRECT:
2683                 if (flags & HAMMER2_LOOKUP_MATCHIND) {
2684                         scan_beg = parent->bref.key;
2685                         scan_end = scan_beg +
2686                                ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2687                         if (key_beg == scan_beg && key_end == scan_end) {
2688                                 chain = parent;
2689                                 hammer2_chain_ref(chain);
2690                                 hammer2_chain_lock(chain, how_maybe);
2691                                 *key_nextp = scan_end + 1;
2692                                 goto done;
2693                         }
2694                 }
2695                 break;
2696         default:
2697                 break;
2698         }
2699
2700         /*
2701          * No lookup is possible if the parent is errored.  We delayed
2702          * this check as long as we could to ensure that the parent backup,
2703          * embedded data, and MATCHIND code could still execute.
2704          */
2705         if (parent->error) {
2706                 *errorp = parent->error;
2707                 return NULL;
2708         }
2709
2710         /*
2711          * Locate the blockref array.  Currently we do a fully associative
2712          * search through the array.
2713          */
2714         switch(parent->bref.type) {
2715         case HAMMER2_BREF_TYPE_INODE:
2716                 /*
2717                  * Special shortcut for embedded data returns the inode
2718                  * itself.  Callers must detect this condition and access
2719                  * the embedded data (the strategy code does this for us).
2720                  *
2721                  * This is only applicable to regular files and softlinks.
2722                  *
2723                  * We need a second lock on parent.  Since we already have
2724                  * a lock we must pass LOCKAGAIN to prevent unexpected
2725                  * blocking (we don't want to block on a second shared
2726                  * ref if an exclusive lock is pending)
2727                  */
2728                 if (parent->data->ipdata.meta.op_flags &
2729                     HAMMER2_OPFLAG_DIRECTDATA) {
2730                         if (flags & HAMMER2_LOOKUP_NODIRECT) {
2731                                 chain = NULL;
2732                                 *key_nextp = key_end + 1;
2733                                 goto done;
2734                         }
2735                         hammer2_chain_ref(parent);
2736                         hammer2_chain_lock(parent, how_always |
2737                                                    HAMMER2_RESOLVE_LOCKAGAIN);
2738                         *key_nextp = key_end + 1;
2739                         return (parent);
2740                 }
2741                 base = &parent->data->ipdata.u.blockset.blockref[0];
2742                 count = HAMMER2_SET_COUNT;
2743                 break;
2744         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2745         case HAMMER2_BREF_TYPE_INDIRECT:
2746                 /*
2747                  * Optimize indirect blocks in the INITIAL state to avoid
2748                  * I/O.
2749                  *
2750                  * Debugging: Enter permanent wait state instead of
2751                  * panicing on unexpectedly NULL data for the moment.
2752                  */
2753                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2754                         base = NULL;
2755                 } else {
2756                         if (parent->data == NULL) {
2757                                 kprintf("hammer2: unexpected NULL data "
2758                                         "on %p\n", parent);
2759                                 while (1)
2760                                         tsleep(parent, 0, "xxx", 0);
2761                         }
2762                         base = &parent->data->npdata[0];
2763                 }
2764                 count = parent->bytes / sizeof(hammer2_blockref_t);
2765                 break;
2766         case HAMMER2_BREF_TYPE_VOLUME:
2767                 base = &parent->data->voldata.sroot_blockset.blockref[0];
2768                 count = HAMMER2_SET_COUNT;
2769                 break;
2770         case HAMMER2_BREF_TYPE_FREEMAP:
2771                 base = &parent->data->blkset.blockref[0];
2772                 count = HAMMER2_SET_COUNT;
2773                 break;
2774         default:
2775                 panic("hammer2_chain_lookup: unrecognized "
2776                       "blockref(B) type: %d",
2777                       parent->bref.type);
2778                 base = NULL;    /* safety */
2779                 count = 0;      /* safety */
2780                 break;
2781         }
2782
2783         /*
2784          * Merged scan to find next candidate.
2785          *
2786          * hammer2_base_*() functions require the parent->core.live_* fields
2787          * to be synchronized.
2788          *
2789          * We need to hold the spinlock to access the block array and RB tree
2790          * and to interlock chain creation.
2791          */
2792         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2793                 hammer2_chain_countbrefs(parent, base, count);
2794
2795         /*
2796          * Combined search
2797          */
2798         hammer2_spin_ex(&parent->core.spin);
2799         chain = hammer2_combined_find(parent, base, count,
2800                                       key_nextp,
2801                                       key_beg, key_end,
2802                                       &bref);
2803         generation = parent->core.generation;
2804
2805         /*
2806          * Exhausted parent chain, iterate.
2807          */
2808         if (bref == NULL) {
2809                 KKASSERT(chain == NULL);
2810                 hammer2_spin_unex(&parent->core.spin);
2811                 if (key_beg == key_end) /* short cut single-key case */
2812                         return (NULL);
2813
2814                 /*
2815                  * Stop if we reached the end of the iteration.
2816                  */
2817                 if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2818                     parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2819                         return (NULL);
2820                 }
2821
2822                 /*
2823                  * Calculate next key, stop if we reached the end of the
2824                  * iteration, otherwise go up one level and loop.
2825                  */
2826                 key_beg = parent->bref.key +
2827                           ((hammer2_key_t)1 << parent->bref.keybits);
2828                 if (key_beg == 0 || key_beg > key_end)
2829                         return (NULL);
2830                 parent = hammer2_chain_repparent(parentp, how_maybe);
2831                 goto again;
2832         }
2833
2834         /*
2835          * Selected from blockref or in-memory chain.
2836          */
2837         bsave = *bref;
2838         if (chain == NULL) {
2839                 hammer2_spin_unex(&parent->core.spin);
2840                 if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2841                     bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2842                         chain = hammer2_chain_get(parent, generation,
2843                                                   &bsave, how_maybe);
2844                 } else {
2845                         chain = hammer2_chain_get(parent, generation,
2846                                                   &bsave, how);
2847                 }
2848                 if (chain == NULL)
2849                         goto again;
2850         } else {
2851                 hammer2_chain_ref(chain);
2852                 hammer2_spin_unex(&parent->core.spin);
2853
2854                 /*
2855                  * chain is referenced but not locked.  We must lock the
2856                  * chain to obtain definitive state.
2857                  */
2858                 if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2859                     bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2860                         hammer2_chain_lock(chain, how_maybe);
2861                 } else {
2862                         hammer2_chain_lock(chain, how);
2863                 }
2864                 KKASSERT(chain->parent == parent);
2865         }
2866         if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
2867             chain->parent != parent) {
2868                 hammer2_chain_unlock(chain);
2869                 hammer2_chain_drop(chain);
2870                 chain = NULL;   /* SAFETY */
2871                 goto again;
2872         }
2873
2874
2875         /*
2876          * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2877          *
2878          * NOTE: Chain's key range is not relevant as there might be
2879          *       one-offs within the range that are not deleted.
2880          *
2881          * NOTE: Lookups can race delete-duplicate because
2882          *       delete-duplicate does not lock the parent's core
2883          *       (they just use the spinlock on the core).
2884          */
2885         if (chain->flags & HAMMER2_CHAIN_DELETED) {
2886                 kprintf("skip deleted chain %016jx.%02x key=%016jx\n",
2887                         chain->bref.data_off, chain->bref.type,
2888                         chain->bref.key);
2889                 hammer2_chain_unlock(chain);
2890                 hammer2_chain_drop(chain);
2891                 chain = NULL;   /* SAFETY */
2892                 key_beg = *key_nextp;
2893                 if (key_beg == 0 || key_beg > key_end)
2894                         return(NULL);
2895                 goto again;
2896         }
2897
2898         /*
2899          * If the chain element is an indirect block it becomes the new
2900          * parent and we loop on it.  We must maintain our top-down locks
2901          * to prevent the flusher from interfering (i.e. doing a
2902          * delete-duplicate and leaving us recursing down a deleted chain).
2903          *
2904          * The parent always has to be locked with at least RESOLVE_MAYBE
2905          * so we can access its data.  It might need a fixup if the caller
2906          * passed incompatible flags.  Be careful not to cause a deadlock
2907          * as a data-load requires an exclusive lock.
2908          *
2909          * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2910          * range is within the requested key range we return the indirect
2911          * block and do NOT loop.  This is usually only used to acquire
2912          * freemap nodes.
2913          */
2914         if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2915             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2916                 save_mtx = parent->lock;
2917                 hammer2_chain_unlock(parent);
2918                 hammer2_chain_drop(parent);
2919                 *parentp = parent = chain;
2920                 chain = NULL;   /* SAFETY */
2921                 goto again;
2922         }
2923 done:
2924         /*
2925          * All done, return the locked chain.
2926          *
2927          * If the caller does not want a locked chain, replace the lock with
2928          * a ref.  Perhaps this can eventually be optimized to not obtain the
2929          * lock in the first place for situations where the data does not
2930          * need to be resolved.
2931          *
2932          * NOTE! A chain->error must be tested by the caller upon return.
2933          *       *errorp is only set based on issues which occur while
2934          *       trying to reach the chain.
2935          */
2936         return (chain);
2937 }
2938
2939 /*
2940  * After having issued a lookup we can iterate all matching keys.
2941  *
2942  * If chain is non-NULL we continue the iteration from just after it's index.
2943  *
2944  * If chain is NULL we assume the parent was exhausted and continue the
2945  * iteration at the next parent.
2946  *
2947  * If a fatal error occurs (typically an I/O error), a dummy chain is
2948  * returned with chain->error and error-identifying information set.  This
2949  * chain will assert if you try to do anything fancy with it.
2950  *
2951  * XXX Depending on where the error occurs we should allow continued iteration.
2952  *
2953  * parent must be locked on entry and remains locked throughout.  chain's
2954  * lock status must match flags.  Chain is always at least referenced.
2955  *
2956  * WARNING!  The MATCHIND flag does not apply to this function.
2957  */
2958 hammer2_chain_t *
2959 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
2960                    hammer2_key_t *key_nextp,
2961                    hammer2_key_t key_beg, hammer2_key_t key_end,
2962                    int *errorp, int flags)
2963 {
2964         hammer2_chain_t *parent;
2965         int how_maybe;
2966
2967         /*
2968          * Calculate locking flags for upward recursion.
2969          */
2970         how_maybe = HAMMER2_RESOLVE_MAYBE;
2971         if (flags & HAMMER2_LOOKUP_SHARED)
2972                 how_maybe |= HAMMER2_RESOLVE_SHARED;
2973
2974         parent = *parentp;
2975         *errorp = 0;
2976
2977         /*
2978          * Calculate the next index and recalculate the parent if necessary.
2979          */
2980         if (chain) {
2981                 key_beg = chain->bref.key +
2982                           ((hammer2_key_t)1 << chain->bref.keybits);
2983                 hammer2_chain_unlock(chain);
2984                 hammer2_chain_drop(chain);
2985
2986                 /*
2987                  * chain invalid past this point, but we can still do a
2988                  * pointer comparison w/parent.
2989                  *
2990                  * Any scan where the lookup returned degenerate data embedded
2991                  * in the inode has an invalid index and must terminate.
2992                  */
2993                 if (chain == parent)
2994                         return(NULL);
2995                 if (key_beg == 0 || key_beg > key_end)
2996                         return(NULL);
2997                 chain = NULL;
2998         } else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2999                    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
3000                 /*
3001                  * We reached the end of the iteration.
3002                  */
3003                 return (NULL);
3004         } else {
3005                 /*
3006                  * Continue iteration with next parent unless the current
3007                  * parent covers the range.
3008                  *
3009                  * (This also handles the case of a deleted, empty indirect
3010                  * node).
3011                  */
3012                 key_beg = parent->bref.key +
3013                           ((hammer2_key_t)1 << parent->bref.keybits);
3014                 if (key_beg == 0 || key_beg > key_end)
3015                         return (NULL);
3016                 parent = hammer2_chain_repparent(parentp, how_maybe);
3017         }
3018
3019         /*
3020          * And execute
3021          */
3022         return (hammer2_chain_lookup(parentp, key_nextp,
3023                                      key_beg, key_end,
3024                                      errorp, flags));
3025 }
3026
3027 /*
3028  * Caller wishes to iterate chains under parent, loading new chains into
3029  * chainp.  Caller must initialize *chainp to NULL and *firstp to 1, and
3030  * then call hammer2_chain_scan() repeatedly until a non-zero return.
3031  * During the scan, *firstp will be set to 0 and (*chainp) will be replaced
3032  * with the returned chain for the scan.  The returned *chainp will be
3033  * locked and referenced.  Any prior contents will be unlocked and dropped.
3034  *
3035  * Caller should check the return value.  A normal scan EOF will return
3036  * exactly HAMMER2_ERROR_EOF.  Any other non-zero value indicates an
3037  * error trying to access parent data.  Any error in the returned chain
3038  * must be tested separately by the caller.
3039  *
3040  * (*chainp) is dropped on each scan, but will only be set if the returned
3041  * element itself can recurse.  Leaf elements are NOT resolved, loaded, or
3042  * returned via *chainp.  The caller will get their bref only.
3043  *
3044  * The raw scan function is similar to lookup/next but does not seek to a key.
3045  * Blockrefs are iterated via first_bref = (parent, NULL) and
3046  * next_chain = (parent, bref).
3047  *
3048  * The passed-in parent must be locked and its data resolved.  The function
3049  * nominally returns a locked and referenced *chainp != NULL for chains
3050  * the caller might need to recurse on (and will dipose of any *chainp passed
3051  * in).  The caller must check the chain->bref.type either way.
3052  */
3053 int
3054 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t **chainp,
3055                    hammer2_blockref_t *bref, int *firstp,
3056                    int flags)
3057 {
3058         hammer2_dev_t *hmp;
3059         hammer2_blockref_t *base;
3060         hammer2_blockref_t *bref_ptr;
3061         hammer2_key_t key;
3062         hammer2_key_t next_key;
3063         hammer2_chain_t *chain = NULL;
3064         int count = 0;
3065         int how_always = HAMMER2_RESOLVE_ALWAYS;
3066         int how_maybe = HAMMER2_RESOLVE_MAYBE;
3067         int how;
3068         int generation;
3069         int maxloops = 300000;
3070         int error;
3071
3072         hmp = parent->hmp;
3073         error = 0;
3074
3075         /*
3076          * Scan flags borrowed from lookup.
3077          */
3078         if (flags & HAMMER2_LOOKUP_ALWAYS) {
3079                 how_maybe = how_always;
3080                 how = HAMMER2_RESOLVE_ALWAYS;
3081         } else if (flags & HAMMER2_LOOKUP_NODATA) {
3082                 how = HAMMER2_RESOLVE_NEVER;
3083         } else {
3084                 how = HAMMER2_RESOLVE_MAYBE;
3085         }
3086         if (flags & HAMMER2_LOOKUP_SHARED) {
3087                 how_maybe |= HAMMER2_RESOLVE_SHARED;
3088                 how_always |= HAMMER2_RESOLVE_SHARED;
3089                 how |= HAMMER2_RESOLVE_SHARED;
3090         }
3091
3092         /*
3093          * Calculate key to locate first/next element, unlocking the previous
3094          * element as we go.  Be careful, the key calculation can overflow.
3095          *
3096          * (also reset bref to NULL)
3097          */
3098         if (*firstp) {
3099                 key = 0;
3100                 *firstp = 0;
3101         } else {
3102                 key = bref->key + ((hammer2_key_t)1 << bref->keybits);
3103                 if ((chain = *chainp) != NULL) {
3104                         *chainp = NULL;
3105                         hammer2_chain_unlock(chain);
3106                         hammer2_chain_drop(chain);
3107                         chain = NULL;
3108                 }
3109                 if (key == 0) {
3110                         error |= HAMMER2_ERROR_EOF;
3111                         goto done;
3112                 }
3113         }
3114
3115 again:
3116         if (parent->error) {
3117                 error = parent->error;
3118                 goto done;
3119         }
3120         if (--maxloops == 0)
3121                 panic("hammer2_chain_scan: maxloops");
3122
3123         /*
3124          * Locate the blockref array.  Currently we do a fully associative
3125          * search through the array.
3126          */
3127         switch(parent->bref.type) {
3128         case HAMMER2_BREF_TYPE_INODE:
3129                 /*
3130                  * An inode with embedded data has no sub-chains.
3131                  *
3132                  * WARNING! Bulk scan code may pass a static chain marked
3133                  *          as BREF_TYPE_INODE with a copy of the volume
3134                  *          root blockset to snapshot the volume.
3135                  */
3136                 if (parent->data->ipdata.meta.op_flags &
3137                     HAMMER2_OPFLAG_DIRECTDATA) {
3138                         error |= HAMMER2_ERROR_EOF;
3139                         goto done;
3140                 }
3141                 base = &parent->data->ipdata.u.blockset.blockref[0];
3142                 count = HAMMER2_SET_COUNT;
3143                 break;
3144         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3145         case HAMMER2_BREF_TYPE_INDIRECT:
3146                 /*
3147                  * Optimize indirect blocks in the INITIAL state to avoid
3148                  * I/O.
3149                  */
3150                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
3151                         base = NULL;
3152                 } else {
3153                         if (parent->data == NULL)
3154                                 panic("parent->data is NULL");
3155                         base = &parent->data->npdata[0];
3156                 }
3157                 count = parent->bytes / sizeof(hammer2_blockref_t);
3158                 break;
3159         case HAMMER2_BREF_TYPE_VOLUME:
3160                 base = &parent->data->voldata.sroot_blockset.blockref[0];
3161                 count = HAMMER2_SET_COUNT;
3162                 break;
3163         case HAMMER2_BREF_TYPE_FREEMAP:
3164                 base = &parent->data->blkset.blockref[0];
3165                 count = HAMMER2_SET_COUNT;
3166                 break;
3167         default:
3168                 panic("hammer2_chain_scan: unrecognized blockref type: %d",
3169                       parent->bref.type);
3170                 base = NULL;    /* safety */
3171                 count = 0;      /* safety */
3172                 break;
3173         }
3174
3175         /*
3176          * Merged scan to find next candidate.
3177          *
3178          * hammer2_base_*() functions require the parent->core.live_* fields
3179          * to be synchronized.
3180          *
3181          * We need to hold the spinlock to access the block array and RB tree
3182          * and to interlock chain creation.
3183          */
3184         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3185                 hammer2_chain_countbrefs(parent, base, count);
3186
3187         next_key = 0;
3188         bref_ptr = NULL;
3189         hammer2_spin_ex(&parent->core.spin);
3190         chain = hammer2_combined_find(parent, base, count,
3191                                       &next_key,
3192                                       key, HAMMER2_KEY_MAX,
3193                                       &bref_ptr);
3194         generation = parent->core.generation;
3195
3196         /*
3197          * Exhausted parent chain, we're done.
3198          */
3199         if (bref_ptr == NULL) {
3200                 hammer2_spin_unex(&parent->core.spin);
3201                 KKASSERT(chain == NULL);
3202                 error |= HAMMER2_ERROR_EOF;
3203                 goto done;
3204         }
3205
3206         /*
3207          * Copy into the supplied stack-based blockref.
3208          */
3209         *bref = *bref_ptr;
3210
3211         /*
3212          * Selected from blockref or in-memory chain.
3213          */
3214         if (chain == NULL) {
3215                 switch(bref->type) {
3216                 case HAMMER2_BREF_TYPE_INODE:
3217                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3218                 case HAMMER2_BREF_TYPE_INDIRECT:
3219                 case HAMMER2_BREF_TYPE_VOLUME:
3220                 case HAMMER2_BREF_TYPE_FREEMAP:
3221                         /*
3222                          * Recursion, always get the chain
3223                          */
3224                         hammer2_spin_unex(&parent->core.spin);
3225                         chain = hammer2_chain_get(parent, generation,
3226                                                   bref, how);
3227                         if (chain == NULL)
3228                                 goto again;
3229                         break;
3230                 default:
3231                         /*
3232                          * No recursion, do not waste time instantiating
3233                          * a chain, just iterate using the bref.
3234                          */
3235                         hammer2_spin_unex(&parent->core.spin);
3236                         break;
3237                 }
3238         } else {
3239                 /*
3240                  * Recursion or not we need the chain in order to supply
3241                  * the bref.
3242                  */
3243                 hammer2_chain_ref(chain);
3244                 hammer2_spin_unex(&parent->core.spin);
3245                 hammer2_chain_lock(chain, how);
3246         }
3247         if (chain &&
3248             (bcmp(bref, &chain->bref, sizeof(*bref)) ||
3249              chain->parent != parent)) {
3250                 hammer2_chain_unlock(chain);
3251                 hammer2_chain_drop(chain);
3252                 chain = NULL;
3253                 goto again;
3254         }
3255
3256         /*
3257          * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
3258          *
3259          * NOTE: chain's key range is not relevant as there might be
3260          *       one-offs within the range that are not deleted.
3261          *
3262          * NOTE: XXX this could create problems with scans used in
3263          *       situations other than mount-time recovery.
3264          *
3265          * NOTE: Lookups can race delete-duplicate because
3266          *       delete-duplicate does not lock the parent's core
3267          *       (they just use the spinlock on the core).
3268          */
3269         if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3270                 hammer2_chain_unlock(chain);
3271                 hammer2_chain_drop(chain);
3272                 chain = NULL;
3273
3274                 key = next_key;
3275                 if (key == 0) {
3276                         error |= HAMMER2_ERROR_EOF;
3277                         goto done;
3278                 }
3279                 goto again;
3280         }
3281
3282 done:
3283         /*
3284          * All done, return the bref or NULL, supply chain if necessary.
3285          */
3286         if (chain)
3287                 *chainp = chain;
3288         return (error);
3289 }
3290
3291 /*
3292  * Create and return a new hammer2 system memory structure of the specified
3293  * key, type and size and insert it under (*parentp).  This is a full
3294  * insertion, based on the supplied key/keybits, and may involve creating
3295  * indirect blocks and moving other chains around via delete/duplicate.
3296  *
3297  * This call can be made with parent == NULL as long as a non -1 methods
3298  * is supplied.  hmp must also be supplied in this situation (otherwise
3299  * hmp is extracted from the supplied parent).  The chain will be detached
3300  * from the topology.  A later call with both parent and chain can be made
3301  * to attach it.
3302  *
3303  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
3304  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3305  * FULL.  This typically means that the caller is creating the chain after
3306  * doing a hammer2_chain_lookup().
3307  *
3308  * (*parentp) must be exclusive locked and may be replaced on return
3309  * depending on how much work the function had to do.
3310  *
3311  * (*parentp) must not be errored or this function will assert.
3312  *
3313  * (*chainp) usually starts out NULL and returns the newly created chain,
3314  * but if the caller desires the caller may allocate a disconnected chain
3315  * and pass it in instead.
3316  *
3317  * This function should NOT be used to insert INDIRECT blocks.  It is
3318  * typically used to create/insert inodes and data blocks.
3319  *
3320  * Caller must pass-in an exclusively locked parent the new chain is to
3321  * be inserted under, and optionally pass-in a disconnected, exclusively
3322  * locked chain to insert (else we create a new chain).  The function will
3323  * adjust (*parentp) as necessary, create or connect the chain, and
3324  * return an exclusively locked chain in *chainp.
3325  *
3326  * When creating a PFSROOT inode under the super-root, pmp is typically NULL
3327  * and will be reassigned.
3328  *
3329  * NOTE: returns HAMMER_ERROR_* flags
3330  */
3331 int
3332 hammer2_chain_create(hammer2_chain_t **parentp, hammer2_chain_t **chainp,
3333                      hammer2_dev_t *hmp, hammer2_pfs_t *pmp, int methods,
3334                      hammer2_key_t key, int keybits, int type, size_t bytes,
3335                      hammer2_tid_t mtid, hammer2_off_t dedup_off, int flags)
3336 {
3337         hammer2_chain_t *chain;
3338         hammer2_chain_t *parent;
3339         hammer2_blockref_t *base;
3340         hammer2_blockref_t dummy;
3341         int allocated = 0;
3342         int error = 0;
3343         int count;
3344         int maxloops = 300000;
3345
3346         /*
3347          * Topology may be crossing a PFS boundary.
3348          */
3349         parent = *parentp;
3350         if (parent) {
3351                 KKASSERT(hammer2_mtx_owned(&parent->lock));
3352                 KKASSERT(parent->error == 0);
3353                 hmp = parent->hmp;
3354         }
3355         chain = *chainp;
3356
3357         if (chain == NULL) {
3358                 /*
3359                  * First allocate media space and construct the dummy bref,
3360                  * then allocate the in-memory chain structure.  Set the
3361                  * INITIAL flag for fresh chains which do not have embedded
3362                  * data.
3363                  */
3364                 bzero(&dummy, sizeof(dummy));
3365                 dummy.type = type;
3366                 dummy.key = key;
3367                 dummy.keybits = keybits;
3368                 dummy.data_off = hammer2_getradix(bytes);
3369
3370                 /*
3371                  * Inherit methods from parent by default.  Primarily used
3372                  * for BREF_TYPE_DATA.  Non-data types *must* be set to
3373                  * a non-NONE check algorithm.
3374                  */
3375                 if (methods == -1)
3376                         dummy.methods = parent->bref.methods;
3377                 else
3378                         dummy.methods = (uint8_t)methods;
3379
3380                 if (type != HAMMER2_BREF_TYPE_DATA &&
3381                     HAMMER2_DEC_CHECK(dummy.methods) == HAMMER2_CHECK_NONE) {
3382                         dummy.methods |=
3383                                 HAMMER2_ENC_CHECK(HAMMER2_CHECK_DEFAULT);
3384                 }
3385
3386                 chain = hammer2_chain_alloc(hmp, pmp, &dummy);
3387
3388                 /*
3389                  * Lock the chain manually, chain_lock will load the chain
3390                  * which we do NOT want to do.  (note: chain->refs is set
3391                  * to 1 by chain_alloc() for us, but lockcnt is not).
3392                  */
3393                 chain->lockcnt = 1;
3394                 hammer2_mtx_ex(&chain->lock);
3395                 allocated = 1;
3396
3397                 /*
3398                  * Set INITIAL to optimize I/O.  The flag will generally be
3399                  * processed when we call hammer2_chain_modify().
3400                  */
3401                 switch(type) {
3402                 case HAMMER2_BREF_TYPE_VOLUME:
3403                 case HAMMER2_BREF_TYPE_FREEMAP:
3404                         panic("hammer2_chain_create: called with volume type");
3405                         break;
3406                 case HAMMER2_BREF_TYPE_INDIRECT:
3407                         panic("hammer2_chain_create: cannot be used to"
3408                               "create indirect block");
3409                         break;
3410                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3411                         panic("hammer2_chain_create: cannot be used to"
3412                               "create freemap root or node");
3413                         break;
3414                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3415                         KKASSERT(bytes == sizeof(chain->data->bmdata));
3416                         /* fall through */
3417                 case HAMMER2_BREF_TYPE_DIRENT:
3418                 case HAMMER2_BREF_TYPE_INODE:
3419                 case HAMMER2_BREF_TYPE_DATA:
3420                 default:
3421                         /*
3422                          * leave chain->data NULL, set INITIAL
3423                          */
3424                         KKASSERT(chain->data == NULL);
3425                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
3426                         break;
3427                 }
3428         } else {
3429                 /*
3430                  * We are reattaching a previously deleted chain, possibly
3431                  * under a new parent and possibly with a new key/keybits.
3432                  * The chain does not have to be in a modified state.  The
3433                  * UPDATE flag will be set later on in this routine.
3434                  *
3435                  * Do NOT mess with the current state of the INITIAL flag.
3436                  */
3437                 chain->bref.key = key;
3438                 chain->bref.keybits = keybits;
3439                 if (chain->flags & HAMMER2_CHAIN_DELETED)
3440                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3441                 KKASSERT(chain->parent == NULL);
3442         }
3443
3444         /*
3445          * Set the appropriate bref flag if requested.
3446          *
3447          * NOTE! Callers can call this function to move chains without
3448          *       knowing about special flags, so don't clear bref flags
3449          *       here!
3450          */
3451         if (flags & HAMMER2_INSERT_PFSROOT)
3452                 chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
3453
3454         if (parent == NULL)
3455                 goto skip;
3456
3457         /*
3458          * Calculate how many entries we have in the blockref array and
3459          * determine if an indirect block is required when inserting into
3460          * the parent.
3461          */
3462 again:
3463         if (--maxloops == 0)
3464                 panic("hammer2_chain_create: maxloops");
3465
3466         switch(parent->bref.type) {
3467         case HAMMER2_BREF_TYPE_INODE:
3468                 if ((parent->data->ipdata.meta.op_flags &
3469                      HAMMER2_OPFLAG_DIRECTDATA) != 0) {
3470                         kprintf("hammer2: parent set for direct-data! "
3471                                 "pkey=%016jx ckey=%016jx\n",
3472                                 parent->bref.key,
3473                                 chain->bref.key);
3474                 }
3475                 KKASSERT((parent->data->ipdata.meta.op_flags &
3476                           HAMMER2_OPFLAG_DIRECTDATA) == 0);
3477                 KKASSERT(parent->data != NULL);
3478                 base = &parent->data->ipdata.u.blockset.blockref[0];
3479                 count = HAMMER2_SET_COUNT;
3480                 break;
3481         case HAMMER2_BREF_TYPE_INDIRECT:
3482         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3483                 if (parent->flags & HAMMER2_CHAIN_INITIAL)
3484                         base = NULL;
3485                 else
3486                         base = &parent->data->npdata[0];
3487                 count = parent->bytes / sizeof(hammer2_blockref_t);
3488                 break;
3489         case HAMMER2_BREF_TYPE_VOLUME:
3490                 KKASSERT(parent->data != NULL);
3491                 base = &parent->data->voldata.sroot_blockset.blockref[0];
3492                 count = HAMMER2_SET_COUNT;
3493                 break;
3494         case HAMMER2_BREF_TYPE_FREEMAP:
3495                 KKASSERT(parent->data != NULL);
3496                 base = &parent->data->blkset.blockref[0];
3497                 count = HAMMER2_SET_COUNT;
3498                 break;
3499         default:
3500                 panic("hammer2_chain_create: unrecognized blockref type: %d",
3501                       parent->bref.type);
3502                 base = NULL;
3503                 count = 0;
3504                 break;
3505         }
3506
3507         /*
3508          * Make sure we've counted the brefs
3509          */
3510         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3511                 hammer2_chain_countbrefs(parent, base, count);
3512
3513         KASSERT(parent->core.live_count >= 0 &&
3514                 parent->core.live_count <= count,
3515                 ("bad live_count %d/%d (%02x, %d)",
3516                         parent->core.live_count, count,
3517                         parent->bref.type, parent->bytes));
3518
3519         /*
3520          * If no free blockref could be found we must create an indirect
3521          * block and move a number of blockrefs into it.  With the parent
3522          * locked we can safely lock each child in order to delete+duplicate
3523          * it without causing a deadlock.
3524          *
3525          * This may return the new indirect block or the old parent depending
3526          * on where the key falls.  NULL is returned on error.
3527          */
3528         if (parent->core.live_count == count) {
3529                 hammer2_chain_t *nparent;
3530
3531                 KKASSERT((flags & HAMMER2_INSERT_SAMEPARENT) == 0);
3532
3533                 nparent = hammer2_chain_create_indirect(parent, key, keybits,
3534                                                         mtid, type, &error);
3535                 if (nparent == NULL) {
3536                         if (allocated)
3537                                 hammer2_chain_drop(chain);
3538                         chain = NULL;
3539                         goto done;
3540                 }
3541                 if (parent != nparent) {
3542                         hammer2_chain_unlock(parent);
3543                         hammer2_chain_drop(parent);
3544                         parent = *parentp = nparent;
3545                 }
3546                 goto again;
3547         }
3548
3549         /*
3550          * fall through if parent, or skip to here if no parent.
3551          */
3552 skip:
3553         if (chain->flags & HAMMER2_CHAIN_DELETED)
3554                 kprintf("Inserting deleted chain @%016jx\n",
3555                         chain->bref.key);
3556
3557         /*
3558          * Link the chain into its parent.
3559          */
3560         if (chain->parent != NULL)
3561                 panic("hammer2: hammer2_chain_create: chain already connected");
3562         KKASSERT(chain->parent == NULL);
3563         if (parent) {
3564                 KKASSERT(parent->core.live_count < count);
3565                 hammer2_chain_insert(parent, chain,
3566                                      HAMMER2_CHAIN_INSERT_SPIN |
3567                                      HAMMER2_CHAIN_INSERT_LIVE,
3568                                      0);
3569         }
3570
3571         if (allocated) {
3572                 /*
3573                  * Mark the newly created chain modified.  This will cause
3574                  * UPDATE to be set and process the INITIAL flag.
3575                  *
3576                  * Device buffers are not instantiated for DATA elements
3577                  * as these are handled by logical buffers.
3578                  *
3579                  * Indirect and freemap node indirect blocks are handled
3580                  * by hammer2_chain_create_indirect() and not by this
3581                  * function.
3582                  *
3583                  * Data for all other bref types is expected to be
3584                  * instantiated (INODE, LEAF).
3585                  */
3586                 switch(chain->bref.type) {
3587                 case HAMMER2_BREF_TYPE_DATA:
3588                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3589                 case HAMMER2_BREF_TYPE_DIRENT:
3590                 case HAMMER2_BREF_TYPE_INODE:
3591                         error = hammer2_chain_modify(chain, mtid, dedup_off,
3592                                                      HAMMER2_MODIFY_OPTDATA);
3593                         break;
3594                 default:
3595                         /*
3596                          * Remaining types are not supported by this function.
3597                          * In particular, INDIRECT and LEAF_NODE types are
3598                          * handled by create_indirect().
3599                          */
3600                         panic("hammer2_chain_create: bad type: %d",
3601                               chain->bref.type);
3602                         /* NOT REACHED */
3603                         break;
3604                 }
3605         } else {
3606                 /*
3607                  * When reconnecting a chain we must set UPDATE and
3608                  * setflush so the flush recognizes that it must update
3609                  * the bref in the parent.
3610                  */
3611                 if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0)
3612                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3613         }
3614
3615         /*
3616          * We must setflush(parent) to ensure that it recurses through to
3617          * chain.  setflush(chain) might not work because ONFLUSH is possibly
3618          * already set in the chain (so it won't recurse up to set it in the
3619          * parent).
3620          */
3621         if (parent)
3622                 hammer2_chain_setflush(parent);
3623
3624 done:
3625         *chainp = chain;
3626
3627         return (error);
3628 }
3629
3630 /*
3631  * Move the chain from its old parent to a new parent.  The chain must have
3632  * already been deleted or already disconnected (or never associated) with
3633  * a parent.  The chain is reassociated with the new parent and the deleted
3634  * flag will be cleared (no longer deleted).  The chain's modification state
3635  * is not altered.
3636  *
3637  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
3638  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3639  * FULL.  This typically means that the caller is creating the chain after
3640  * doing a hammer2_chain_lookup().
3641  *
3642  * Neither (parent) or (chain) can be errored.
3643  *
3644  * If (parent) is non-NULL then the chain is inserted under the parent.
3645  *
3646  * If (parent) is NULL then the newly duplicated chain is not inserted
3647  * anywhere, similar to if it had just been chain_alloc()'d (suitable for
3648  * passing into hammer2_chain_create() after this function returns).
3649  *
3650  * WARNING! This function calls create which means it can insert indirect
3651  *          blocks.  This can cause other unrelated chains in the parent to
3652  *          be moved to a newly inserted indirect block in addition to the
3653  *          specific chain.
3654  */
3655 void
3656 hammer2_chain_rename(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3657                      hammer2_tid_t mtid, int flags)
3658 {
3659         hammer2_blockref_t *bref;
3660         hammer2_dev_t *hmp;
3661         hammer2_chain_t *parent;
3662
3663         /*
3664          * WARNING!  We should never resolve DATA to device buffers
3665          *           (XXX allow it if the caller did?), and since
3666          *           we currently do not have the logical buffer cache
3667          *           buffer in-hand to fix its cached physical offset
3668          *           we also force the modify code to not COW it. XXX
3669          *
3670          * NOTE!     We allow error'd chains to be renamed.  The bref itself
3671          *           is good and can be renamed.  The content, however, may
3672          *           be inaccessible.
3673          */
3674         hmp = chain->hmp;
3675         KKASSERT(chain->parent == NULL);
3676         /*KKASSERT(chain->error == 0); allow */
3677         bref = &chain->bref;
3678
3679         /*
3680          * If parent is not NULL the duplicated chain will be entered under
3681          * the parent and the UPDATE bit set to tell flush to update
3682          * the blockref.
3683          *
3684          * We must setflush(parent) to ensure that it recurses through to
3685          * chain.  setflush(chain) might not work because ONFLUSH is possibly
3686          * already set in the chain (so it won't recurse up to set it in the
3687          * parent).
3688          *
3689          * Having both chains locked is extremely important for atomicy.
3690          */
3691         if (parentp && (parent = *parentp) != NULL) {
3692                 KKASSERT(hammer2_mtx_owned(&parent->lock));
3693                 KKASSERT(parent->refs > 0);
3694                 KKASSERT(parent->error == 0);
3695
3696                 hammer2_chain_create(parentp, &chain, NULL, chain->pmp,
3697                                      HAMMER2_METH_DEFAULT,
3698                                      bref->key, bref->keybits, bref->type,
3699                                      chain->bytes, mtid, 0, flags);
3700                 KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
3701                 hammer2_chain_setflush(*parentp);
3702         }
3703 }
3704
3705 /*
3706  * This works in tandem with delete_obref() to install a blockref in
3707  * (typically) an indirect block that is associated with the chain being
3708  * moved to *parentp.
3709  *
3710  * The reason we need this function is that the caller needs to maintain
3711  * the blockref as it was, and not generate a new blockref for what might
3712  * be a modified chain.  Otherwise stuff will leak into the flush that
3713  * the flush code's FLUSH_INODE_STOP flag is unable to catch.
3714  *
3715  * It is EXTREMELY important that we properly set CHAIN_BMAPUPD and
3716  * CHAIN_UPDATE.  We must set BMAPUPD if the bref does not match, and
3717  * we must clear CHAIN_UPDATE (that was likely set by the chain_rename) if
3718  * it does.  Otherwise we can end up in a situation where H2 is unable to
3719  * clean up the in-memory chain topology.
3720  *
3721  * The reason for this is that flushes do not generally flush through
3722  * BREF_TYPE_INODE chains and depend on a hammer2_inode_t queued to syncq
3723  * or sideq to properly flush and dispose of the related inode chain's flags.
3724  * Situations where the inode is not actually modified by the frontend,
3725  * but where we have to move the related chains around as we insert or cleanup
3726  * indirect blocks, can leave us with a 'dirty' (non-disposable) in-memory
3727  * inode chain that does not have a hammer2_inode_t associated with it.
3728  */
3729 static void
3730 hammer2_chain_rename_obref(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3731                            hammer2_tid_t mtid, int flags,
3732                            hammer2_blockref_t *obref)
3733 {
3734         hammer2_chain_rename(parentp, chain, mtid, flags);
3735
3736         if (obref->type != HAMMER2_BREF_TYPE_EMPTY) {
3737                 hammer2_blockref_t *tbase;
3738                 int tcount;
3739
3740                 KKASSERT((chain->flags & HAMMER2_CHAIN_BMAPPED) == 0);
3741                 hammer2_chain_modify(*parentp, mtid, 0, 0);
3742                 tbase = hammer2_chain_base_and_count(*parentp, &tcount);
3743                 hammer2_base_insert(*parentp, tbase, tcount, chain, obref);
3744                 if (bcmp(obref, &chain->bref, sizeof(chain->bref))) {
3745                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD |
3746                                                       HAMMER2_CHAIN_UPDATE);
3747                 } else {
3748                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3749                 }
3750         }
3751 }
3752
3753 /*
3754  * Helper function for deleting chains.
3755  *
3756  * The chain is removed from the live view (the RBTREE) as well as the parent's
3757  * blockmap.  Both chain and its parent must be locked.
3758  *
3759  * parent may not be errored.  chain can be errored.
3760  */
3761 static int
3762 _hammer2_chain_delete_helper(hammer2_chain_t *parent, hammer2_chain_t *chain,
3763                              hammer2_tid_t mtid, int flags,
3764                              hammer2_blockref_t *obref)
3765 {
3766         hammer2_dev_t *hmp;
3767         int error = 0;
3768
3769         KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0);
3770         KKASSERT(chain->parent == parent);
3771         hmp = chain->hmp;
3772
3773         if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
3774                 /*
3775                  * Chain is blockmapped, so there must be a parent.
3776                  * Atomically remove the chain from the parent and remove
3777                  * the blockmap entry.  The parent must be set modified
3778                  * to remove the blockmap entry.
3779                  */
3780                 hammer2_blockref_t *base;
3781                 int count;
3782
3783                 KKASSERT(parent != NULL);
3784                 KKASSERT(parent->error == 0);
3785                 KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
3786                 error = hammer2_chain_modify(parent, mtid, 0, 0);
3787                 if (error)
3788                         goto done;
3789
3790                 /*
3791                  * Calculate blockmap pointer
3792                  */
3793                 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
3794                 hammer2_spin_ex(&chain->core.spin);
3795                 hammer2_spin_ex(&parent->core.spin);
3796
3797                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3798                 atomic_add_int(&parent->core.live_count, -1);
3799                 ++parent->core.generation;
3800                 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3801                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3802                 --parent->core.chain_count;
3803                 chain->parent = NULL;
3804
3805                 switch(parent->bref.type) {
3806                 case HAMMER2_BREF_TYPE_INODE:
3807                         /*
3808                          * Access the inode's block array.  However, there
3809                          * is no block array if the inode is flagged
3810                          * DIRECTDATA.
3811                          */
3812                         if (parent->data &&
3813                             (parent->data->ipdata.meta.op_flags &
3814                              HAMMER2_OPFLAG_DIRECTDATA) == 0) {
3815                                 base =
3816                                    &parent->data->ipdata.u.blockset.blockref[0];
3817                         } else {
3818                                 base = NULL;
3819                         }
3820                         count = HAMMER2_SET_COUNT;
3821                         break;
3822                 case HAMMER2_BREF_TYPE_INDIRECT:
3823                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3824                         if (parent->data)
3825                                 base = &parent->data->npdata[0];
3826                         else
3827                                 base = NULL;
3828                         count = parent->bytes / sizeof(hammer2_blockref_t);
3829                         break;
3830                 case HAMMER2_BREF_TYPE_VOLUME:
3831                         base = &parent->data->voldata.
3832                                         sroot_blockset.blockref[0];
3833                         count = HAMMER2_SET_COUNT;
3834                         break;
3835                 case HAMMER2_BREF_TYPE_FREEMAP:
3836                         base = &parent->data->blkset.blockref[0];
3837                         count = HAMMER2_SET_COUNT;
3838                         break;
3839                 default:
3840                         base = NULL;
3841                         count = 0;
3842                         panic("_hammer2_chain_delete_helper: "
3843                               "unrecognized blockref type: %d",
3844                               parent->bref.type);
3845                         break;
3846                 }
3847
3848                 /*
3849                  * delete blockmapped chain from its parent.
3850                  *
3851                  * The parent is not affected by any statistics in chain
3852                  * which are pending synchronization.  That is, there is
3853                  * nothing to undo in the parent since they have not yet
3854                  * been incorporated into the parent.
3855                  *
3856                  * The parent is affected by statistics stored in inodes.
3857                  * Those have already been synchronized, so they must be
3858                  * undone.  XXX split update possible w/delete in middle?
3859                  */
3860                 if (base) {
3861                         hammer2_base_delete(parent, base, count, chain, obref);
3862                 }
3863                 hammer2_spin_unex(&parent->core.spin);
3864                 hammer2_spin_unex(&chain->core.spin);
3865         } else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
3866                 /*
3867                  * Chain is not blockmapped but a parent is present.
3868                  * Atomically remove the chain from the parent.  There is
3869                  * no blockmap entry to remove.
3870                  *
3871                  * Because chain was associated with a parent but not
3872                  * synchronized, the chain's *_count_up fields contain
3873                  * inode adjustment statistics which must be undone.
3874                  */
3875                 hammer2_spin_ex(&chain->core.spin);
3876                 hammer2_spin_ex(&parent->core.spin);
3877                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3878                 atomic_add_int(&parent->core.live_count, -1);
3879                 ++parent->core.generation;
3880                 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3881                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3882                 --parent->core.chain_count;
3883                 chain->parent = NULL;
3884                 hammer2_spin_unex(&parent->core.spin);
3885                 hammer2_spin_unex(&chain->core.spin);
3886         } else {
3887                 /*
3888                  * Chain is not blockmapped and has no parent.  This
3889                  * is a degenerate case.
3890                  */
3891                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3892         }
3893 done:
3894         return error;
3895 }
3896
3897 /*
3898  * Create an indirect block that covers one or more of the elements in the
3899  * current parent.  Either returns the existing parent with no locking or
3900  * ref changes or returns the new indirect block locked and referenced
3901  * and leaving the original parent lock/ref intact as well.
3902  *
3903  * If an error occurs, NULL is returned and *errorp is set to the H2 error.
3904  *
3905  * The returned chain depends on where the specified key falls.
3906  *
3907  * The key/keybits for the indirect mode only needs to follow three rules:
3908  *
3909  * (1) That all elements underneath it fit within its key space and
3910  *
3911  * (2) That all elements outside it are outside its key space.
3912  *
3913  * (3) When creating the new indirect block any elements in the current
3914  *     parent that fit within the new indirect block's keyspace must be
3915  *     moved into the new indirect block.
3916  *
3917  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
3918  *     keyspace the the current parent, but lookup/iteration rules will
3919  *     ensure (and must ensure) that rule (2) for all parents leading up
3920  *     to the nearest inode or the root volume header is adhered to.  This
3921  *     is accomplished by always recursing through matching keyspaces in
3922  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
3923  *
3924  * The current implementation calculates the current worst-case keyspace by
3925  * iterating the current parent and then divides it into two halves, choosing
3926  * whichever half has the most elements (not necessarily the half containing
3927  * the requested key).
3928  *
3929  * We can also opt to use the half with the least number of elements.  This
3930  * causes lower-numbered keys (aka logical file offsets) to recurse through
3931  * fewer indirect blocks and higher-numbered keys to recurse through more.
3932  * This also has the risk of not moving enough elements to the new indirect
3933  * block and being forced to create several indirect blocks before the element
3934  * can be inserted.
3935  *
3936  * Must be called with an exclusively locked parent.
3937  *
3938  * NOTE: *errorp set to HAMMER_ERROR_* flags
3939  */
3940 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
3941                                 hammer2_key_t *keyp, int keybits,
3942                                 hammer2_blockref_t *base, int count);
3943 static int hammer2_chain_indkey_file(hammer2_chain_t *parent,
3944                                 hammer2_key_t *keyp, int keybits,
3945                                 hammer2_blockref_t *base, int count,
3946                                 int ncount);
3947 static int hammer2_chain_indkey_dir(hammer2_chain_t *parent,
3948                                 hammer2_key_t *keyp, int keybits,
3949                                 hammer2_blockref_t *base, int count,
3950                                 int ncount);
3951 static
3952 hammer2_chain_t *
3953 hammer2_chain_create_indirect(hammer2_chain_t *parent,
3954                               hammer2_key_t create_key, int create_bits,
3955                               hammer2_tid_t mtid, int for_type, int *errorp)
3956 {
3957         hammer2_dev_t *hmp;
3958         hammer2_blockref_t *base;
3959         hammer2_blockref_t *bref;
3960         hammer2_blockref_t bsave;
3961         hammer2_blockref_t dummy;
3962         hammer2_chain_t *chain;
3963         hammer2_chain_t *ichain;
3964         hammer2_key_t key = create_key;
3965         hammer2_key_t key_beg;
3966         hammer2_key_t key_end;
3967         hammer2_key_t key_next;
3968         int keybits = create_bits;
3969         int count;
3970         int ncount;
3971         int nbytes;
3972         int loops;
3973         int error;
3974         int reason;
3975         int generation;
3976         int maxloops = 300000;
3977
3978         /*
3979          * Calculate the base blockref pointer or NULL if the chain
3980          * is known to be empty.  We need to calculate the array count
3981          * for RB lookups either way.
3982          */
3983         hmp = parent->hmp;
3984         KKASSERT(hammer2_mtx_owned(&parent->lock));
3985
3986         /*
3987          * Pre-modify the parent now to avoid having to deal with error
3988          * processing if we tried to later (in the middle of our loop).
3989          *
3990          * We are going to be moving bref's around, the indirect blocks
3991          * cannot be in an initial state.  Do not pass MODIFY_OPTDATA.
3992          */
3993         *errorp = hammer2_chain_modify(parent, mtid, 0, 0);
3994         if (*errorp) {
3995                 kprintf("hammer2_chain_create_indirect: error %08x %s\n",
3996                         *errorp, hammer2_error_str(*errorp));
3997                 return NULL;
3998         }
3999         KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
4000
4001         /*hammer2_chain_modify(&parent, HAMMER2_MODIFY_OPTDATA);*/
4002         base = hammer2_chain_base_and_count(parent, &count);
4003
4004         /*
4005          * How big should our new indirect block be?  It has to be at least
4006          * as large as its parent for splits to work properly.
4007          *
4008          * The freemap uses a specific indirect block size.  The number of
4009          * levels are built dynamically and ultimately depend on the size
4010          * volume.  Because freemap blocks are taken from the reserved areas
4011          * of the volume our goal is efficiency (fewer levels) and not so
4012          * much to save disk space.
4013          *
4014          * The first indirect block level for a directory usually uses
4015          * HAMMER2_IND_BYTES_MIN (4KB = 32 directory entries).  Due to
4016          * the hash mechanism, this typically gives us a nominal
4017          * 32 * 4 entries with one level of indirection.
4018          *
4019          * We use HAMMER2_IND_BYTES_NOM (16KB = 128 blockrefs) for FILE
4020          * indirect blocks.  The initial 4 entries in the inode gives us
4021          * 256KB.  Up to 4 indirect blocks gives us 32MB.  Three levels
4022          * of indirection gives us 137GB, and so forth.  H2 can support
4023          * huge file sizes but they are not typical, so we try to stick
4024          * with compactness and do not use a larger indirect block size.
4025          *
4026          * We could use 64KB (PBUFSIZE), giving us 512 blockrefs, but
4027          * due to the way indirect blocks are created this usually winds
4028          * up being extremely inefficient for small files.  Even though
4029          * 16KB requires more levels of indirection for very large files,
4030          * the 16KB records can be ganged together into 64KB DIOs.
4031          */
4032         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4033             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4034                 nbytes = HAMMER2_FREEMAP_LEVELN_PSIZE;
4035         } else if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4036                 if (parent->data->ipdata.meta.type ==
4037                     HAMMER2_OBJTYPE_DIRECTORY)
4038                         nbytes = HAMMER2_IND_BYTES_MIN; /* 4KB = 32 entries */
4039                 else
4040                         nbytes = HAMMER2_IND_BYTES_NOM; /* 16KB = ~8MB file */
4041
4042         } else {
4043                 nbytes = HAMMER2_IND_BYTES_NOM;
4044         }
4045         if (nbytes < count * sizeof(hammer2_blockref_t)) {
4046                 KKASSERT(for_type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
4047                          for_type != HAMMER2_BREF_TYPE_FREEMAP_LEAF);
4048                 nbytes = count * sizeof(hammer2_blockref_t);
4049         }
4050         ncount = nbytes / sizeof(hammer2_blockref_t);
4051
4052         /*
4053          * When creating an indirect block for a freemap node or leaf
4054          * the key/keybits must be fitted to static radix levels because
4055          * particular radix levels use particular reserved blocks in the
4056          * related zone.
4057          *
4058          * This routine calculates the key/radix of the indirect block
4059          * we need to create, and whether it is on the high-side or the
4060          * low-side.
4061          */
4062         switch(for_type) {
4063         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
4064         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
4065                 keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
4066                                                        base, count);
4067                 break;
4068         case HAMMER2_BREF_TYPE_DATA:
4069                 keybits = hammer2_chain_indkey_file(parent, &key, keybits,
4070                                                     base, count, ncount);
4071                 break;
4072         case HAMMER2_BREF_TYPE_DIRENT:
4073         case HAMMER2_BREF_TYPE_INODE:
4074                 keybits = hammer2_chain_indkey_dir(parent, &key, keybits,
4075                                                    base, count, ncount);
4076                 break;
4077         default:
4078                 panic("illegal indirect block for bref type %d", for_type);
4079                 break;
4080         }
4081
4082         /*
4083          * Normalize the key for the radix being represented, keeping the
4084          * high bits and throwing away the low bits.
4085          */
4086         key &= ~(((hammer2_key_t)1 << keybits) - 1);
4087
4088         /*
4089          * Ok, create our new indirect block
4090          */
4091         bzero(&dummy, sizeof(dummy));
4092         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4093             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4094                 dummy.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
4095         } else {
4096                 dummy.type = HAMMER2_BREF_TYPE_INDIRECT;
4097         }
4098         dummy.key = key;
4099         dummy.keybits = keybits;
4100         dummy.data_off = hammer2_getradix(nbytes);
4101         dummy.methods =
4102                 HAMMER2_ENC_CHECK(HAMMER2_DEC_CHECK(parent->bref.methods)) |
4103                 HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
4104
4105         ichain = hammer2_chain_alloc(hmp, parent->pmp, &dummy);
4106         atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
4107         hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
4108         /* ichain has one ref at this point */
4109
4110         /*
4111          * We have to mark it modified to allocate its block, but use
4112          * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
4113          * it won't be acted upon by the flush code.
4114          *
4115          * XXX remove OPTDATA, we need a fully initialized indirect block to
4116          * be able to move the original blockref.
4117          */
4118         *errorp = hammer2_chain_modify(ichain, mtid, 0, 0);
4119         if (*errorp) {
4120                 kprintf("hammer2_chain_create_indirect: error %08x %s\n",
4121                         *errorp, hammer2_error_str(*errorp));
4122                 hammer2_chain_unlock(ichain);
4123                 hammer2_chain_drop(ichain);
4124                 return NULL;
4125         }
4126         KKASSERT((ichain->flags & HAMMER2_CHAIN_INITIAL) == 0);
4127
4128         /*
4129          * Iterate the original parent and move the matching brefs into
4130          * the new indirect block.
4131          *
4132          * XXX handle flushes.
4133          */
4134         key_beg = 0;
4135         key_end = HAMMER2_KEY_MAX;
4136         key_next = 0;   /* avoid gcc warnings */
4137         hammer2_spin_ex(&parent->core.spin);
4138         loops = 0;
4139         reason = 0;
4140
4141         for (;;) {
4142                 /*
4143                  * Parent may have been modified, relocating its block array.
4144                  * Reload the base pointer.
4145                  */
4146                 base = hammer2_chain_base_and_count(parent, &count);
4147
4148                 if (++loops > 100000) {
4149                     hammer2_spin_unex(&parent->core.spin);
4150                     panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
4151                           reason, parent, base, count, key_next);
4152                 }
4153
4154                 /*
4155                  * NOTE: spinlock stays intact, returned chain (if not NULL)
4156                  *       is not referenced or locked which means that we
4157                  *       cannot safely check its flagged / deletion status
4158                  *       until we lock it.
4159                  */
4160                 chain = hammer2_combined_find(parent, base, count,
4161                                               &key_next,
4162                                               key_beg, key_end,
4163                                               &bref);
4164                 generation = parent->core.generation;
4165                 if (bref == NULL)
4166                         break;
4167                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4168
4169                 /*
4170                  * Skip keys that are not within the key/radix of the new
4171                  * indirect block.  They stay in the parent.
4172                  */
4173                 if (rounddown2(key ^ bref->key, (hammer2_key_t)1 << keybits) != 0) {
4174                         goto next_key_spinlocked;
4175                 }
4176
4177                 /*
4178                  * Load the new indirect block by acquiring the related
4179                  * chains (potentially from media as it might not be
4180                  * in-memory).  Then move it to the new parent (ichain).
4181                  *
4182                  * chain is referenced but not locked.  We must lock the
4183                  * chain to obtain definitive state.
4184                  */
4185                 bsave = *bref;
4186                 if (chain) {
4187                         /*
4188                          * Use chain already present in the RBTREE
4189                          */
4190                         hammer2_chain_ref(chain);
4191                         hammer2_spin_unex(&parent->core.spin);
4192                         hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
4193                 } else {
4194                         /*
4195                          * Get chain for blockref element.  _get returns NULL
4196                          * on insertion race.
4197                          */
4198                         hammer2_spin_unex(&parent->core.spin);
4199                         chain = hammer2_chain_get(parent, generation, &bsave,
4200                                                   HAMMER2_RESOLVE_NEVER);
4201                         if (chain == NULL) {
4202                                 reason = 1;
4203                                 hammer2_spin_ex(&parent->core.spin);
4204                                 continue;
4205                         }
4206                 }
4207
4208                 /*
4209                  * This is always live so if the chain has been deleted
4210                  * we raced someone and we have to retry.
4211                  *
4212                  * NOTE: Lookups can race delete-duplicate because
4213                  *       delete-duplicate does not lock the parent's core
4214                  *       (they just use the spinlock on the core).
4215                  *
4216                  *       (note reversed logic for this one)
4217                  */
4218                 if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
4219                     chain->parent != parent ||
4220                     (chain->flags & HAMMER2_CHAIN_DELETED)) {
4221                         hammer2_chain_unlock(chain);
4222                         hammer2_chain_drop(chain);
4223                         if (hammer2_debug & 0x0040) {
4224                                 kprintf("LOST PARENT RETRY "
4225                                 "RETRY (%p,%p)->%p %08x\n",
4226                                 parent, chain->parent, chain, chain->flags);
4227                         }
4228                         hammer2_spin_ex(&parent->core.spin);
4229                         continue;
4230                 }
4231
4232                 /*
4233                  * Shift the chain to the indirect block.
4234                  *
4235                  * WARNING! No reason for us to load chain data, pass NOSTATS
4236                  *          to prevent delete/insert from trying to access
4237                  *          inode stats (and thus asserting if there is no
4238                  *          chain->data loaded).
4239                  *
4240                  * WARNING! The (parent, chain) deletion may modify the parent
4241                  *          and invalidate the base pointer.
4242                  *
4243                  * WARNING! Parent must already be marked modified, so we
4244                  *          can assume that chain_delete always suceeds.
4245                  *
4246                  * WARNING! hammer2_chain_repchange() does not have to be
4247                  *          called (and doesn't work anyway because we are
4248                  *          only doing a partial shift).  A recursion that is
4249                  *          in-progress can continue at the current parent
4250                  *          and will be able to properly find its next key.
4251                  */
4252                 error = hammer2_chain_delete_obref(parent, chain, mtid, 0,
4253                                                    &bsave);
4254                 KKASSERT(error == 0);
4255                 hammer2_chain_rename_obref(&ichain, chain, mtid, 0, &bsave);
4256                 hammer2_chain_unlock(chain);
4257                 hammer2_chain_drop(chain);
4258                 KKASSERT(parent->refs > 0);
4259                 chain = NULL;
4260                 base = NULL;    /* safety */
4261                 hammer2_spin_ex(&parent->core.spin);
4262 next_key_spinlocked:
4263                 if (--maxloops == 0)
4264                         panic("hammer2_chain_create_indirect: maxloops");
4265                 reason = 4;
4266                 if (key_next == 0 || key_next > key_end)
4267                         break;
4268                 key_beg = key_next;
4269                 /* loop */
4270         }
4271         hammer2_spin_unex(&parent->core.spin);
4272
4273         /*
4274          * Insert the new indirect block into the parent now that we've
4275          * cleared out some entries in the parent.  We calculated a good
4276          * insertion index in the loop above (ichain->index).
4277          *
4278          * We don't have to set UPDATE here because we mark ichain
4279          * modified down below (so the normal modified -> flush -> set-moved
4280          * sequence applies).
4281          *
4282          * The insertion shouldn't race as this is a completely new block
4283          * and the parent is locked.
4284          */
4285         base = NULL;    /* safety, parent modify may change address */
4286         KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
4287         KKASSERT(parent->core.live_count < count);
4288         hammer2_chain_insert(parent, ichain,
4289                              HAMMER2_CHAIN_INSERT_SPIN |
4290                              HAMMER2_CHAIN_INSERT_LIVE,
4291                              0);
4292
4293         /*
4294          * Make sure flushes propogate after our manual insertion.
4295          */
4296         hammer2_chain_setflush(ichain);
4297         hammer2_chain_setflush(parent);
4298
4299         /*
4300          * Figure out what to return.
4301          */
4302         if (rounddown2(create_key ^ key, (hammer2_key_t)1 << keybits)) {
4303                 /*
4304                  * Key being created is outside the key range,
4305                  * return the original parent.
4306                  */
4307                 hammer2_chain_unlock(ichain);
4308                 hammer2_chain_drop(ichain);
4309         } else {
4310                 /*
4311                  * Otherwise its in the range, return the new parent.
4312                  * (leave both the new and old parent locked).
4313                  */
4314                 parent = ichain;
4315         }
4316
4317         return(parent);
4318 }
4319
4320 /*
4321  * Do maintenance on an indirect chain.  Both parent and chain are locked.
4322  *
4323  * Returns non-zero if (chain) is deleted, either due to being empty or
4324  * because its children were safely moved into the parent.
4325  */
4326 int
4327 hammer2_chain_indirect_maintenance(hammer2_chain_t *parent,
4328                                    hammer2_chain_t *chain)
4329 {
4330         hammer2_blockref_t *chain_base;
4331         hammer2_blockref_t *base;
4332         hammer2_blockref_t *bref;
4333         hammer2_blockref_t bsave;
4334         hammer2_key_t key_next;
4335         hammer2_key_t key_beg;
4336         hammer2_key_t key_end;
4337         hammer2_chain_t *sub;
4338         int chain_count;
4339         int count;
4340         int error;
4341         int generation;
4342
4343         /*
4344          * Make sure we have an accurate live_count
4345          */
4346         if ((chain->flags & (HAMMER2_CHAIN_INITIAL |
4347                              HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4348                 base = &chain->data->npdata[0];
4349                 count = chain->bytes / sizeof(hammer2_blockref_t);
4350                 hammer2_chain_countbrefs(chain, base, count);
4351         }
4352
4353         /*
4354          * If the indirect block is empty we can delete it.
4355          * (ignore deletion error)
4356          */
4357         if (chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree)) {
4358                 hammer2_chain_delete(parent, chain,
4359                                      chain->bref.modify_tid,
4360                                      HAMMER2_DELETE_PERMANENT);
4361                 hammer2_chain_repchange(parent, chain);
4362                 return 1;
4363         }
4364
4365         base = hammer2_chain_base_and_count(parent, &count);
4366
4367         if ((parent->flags & (HAMMER2_CHAIN_INITIAL |
4368                              HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4369                 hammer2_chain_countbrefs(parent, base, count);
4370         }
4371
4372         /*
4373          * Determine if we can collapse chain into parent, calculate
4374          * hysteresis for chain emptiness.
4375          */
4376         if (parent->core.live_count + chain->core.live_count - 1 > count)
4377                 return 0;
4378         chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4379         if (chain->core.live_count > chain_count * 3 / 4)
4380                 return 0;
4381
4382         /*
4383          * Ok, theoretically we can collapse chain's contents into
4384          * parent.  chain is locked, but any in-memory children of chain
4385          * are not.  For this to work, we must be able to dispose of any
4386          * in-memory children of chain.
4387          *
4388          * For now require that there are no in-memory children of chain.
4389          *
4390          * WARNING! Both chain and parent must remain locked across this
4391          *          entire operation.
4392          */
4393
4394         /*
4395          * Parent must be marked modified.  Don't try to collapse it if we
4396          * can't mark it modified.  Once modified, destroy chain to make room
4397          * and to get rid of what will be a conflicting key (this is included
4398          * in the calculation above).  Finally, move the children of chain
4399          * into chain's parent.
4400          *
4401          * This order creates an accounting problem for bref.embed.stats
4402          * because we destroy chain before we remove its children.  Any
4403          * elements whos blockref is already synchronized will be counted
4404          * twice.  To deal with the problem we clean out chain's stats prior
4405          * to deleting it.
4406          */
4407         error = hammer2_chain_modify(parent, 0, 0, 0);
4408         if (error) {
4409                 krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4410                             hammer2_error_str(error));
4411                 return 0;
4412         }
4413         error = hammer2_chain_modify(chain, chain->bref.modify_tid, 0, 0);
4414         if (error) {
4415                 krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4416                             hammer2_error_str(error));
4417                 return 0;
4418         }
4419
4420         chain->bref.embed.stats.inode_count = 0;
4421         chain->bref.embed.stats.data_count = 0;
4422         error = hammer2_chain_delete(parent, chain,
4423                                      chain->bref.modify_tid,
4424                                      HAMMER2_DELETE_PERMANENT);
4425         KKASSERT(error == 0);
4426
4427         /*
4428          * The combined_find call requires core.spin to be held.  One would
4429          * think there wouldn't be any conflicts since we hold chain
4430          * exclusively locked, but the caching mechanism for 0-ref children
4431          * does not require a chain lock.
4432          */
4433         hammer2_spin_ex(&chain->core.spin);
4434
4435         key_next = 0;
4436         key_beg = 0;
4437         key_end = HAMMER2_KEY_MAX;
4438         for (;;) {
4439                 chain_base = &chain->data->npdata[0];
4440                 chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4441                 sub = hammer2_combined_find(chain, chain_base, chain_count,
4442                                             &key_next,
4443                                             key_beg, key_end,
4444                                             &bref);
4445                 generation = chain->core.generation;
4446                 if (bref == NULL)
4447                         break;
4448                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4449
4450                 bsave = *bref;
4451                 if (sub) {
4452                         hammer2_chain_ref(sub);
4453                         hammer2_spin_unex(&chain->core.spin);
4454                         hammer2_chain_lock(sub, HAMMER2_RESOLVE_NEVER);
4455                 } else {
4456                         hammer2_spin_unex(&chain->core.spin);
4457                         sub = hammer2_chain_get(chain, generation, &bsave,
4458                                                 HAMMER2_RESOLVE_NEVER);
4459                         if (sub == NULL) {
4460                                 hammer2_spin_ex(&chain->core.spin);
4461                                 continue;
4462                         }
4463                 }
4464                 if (bcmp(&bsave, &sub->bref, sizeof(bsave)) ||
4465                     sub->parent != chain ||
4466                     (sub->flags & HAMMER2_CHAIN_DELETED)) {
4467                         hammer2_chain_unlock(sub);
4468                         hammer2_chain_drop(sub);
4469                         hammer2_spin_ex(&chain->core.spin);
4470                         sub = NULL;     /* safety */
4471                         continue;
4472                 }
4473                 error = hammer2_chain_delete_obref(chain, sub,
4474                                                    sub->bref.modify_tid, 0,
4475                                                    &bsave);
4476                 KKASSERT(error == 0);
4477                 hammer2_chain_rename_obref(&parent, sub,
4478                                      sub->bref.modify_tid,
4479                                      HAMMER2_INSERT_SAMEPARENT, &bsave);
4480                 hammer2_chain_unlock(sub);
4481                 hammer2_chain_drop(sub);
4482                 hammer2_spin_ex(&chain->core.spin);
4483
4484                 if (key_next == 0)
4485                         break;
4486                 key_beg = key_next;
4487         }
4488         hammer2_spin_unex(&chain->core.spin);
4489
4490         hammer2_chain_repchange(parent, chain);
4491
4492         return 1;
4493 }
4494
4495 /*
4496  * Freemap indirect blocks
4497  *
4498  * Calculate the keybits and highside/lowside of the freemap node the
4499  * caller is creating.
4500  *
4501  * This routine will specify the next higher-level freemap key/radix
4502  * representing the lowest-ordered set.  By doing so, eventually all
4503  * low-ordered sets will be moved one level down.
4504  *
4505  * We have to be careful here because the freemap reserves a limited
4506  * number of blocks for a limited number of levels.  So we can't just
4507  * push indiscriminately.
4508  */
4509 int
4510 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
4511                              int keybits, hammer2_blockref_t *base, int count)
4512 {
4513         hammer2_chain_t *chain;
4514         hammer2_blockref_t *bref;
4515         hammer2_key_t key;
4516         hammer2_key_t key_beg;
4517         hammer2_key_t key_end;
4518         hammer2_key_t key_next;
4519         int locount;
4520         int hicount;
4521         int maxloops = 300000;
4522
4523         key = *keyp;
4524         locount = 0;
4525         hicount = 0;
4526         keybits = 64;
4527
4528         /*
4529          * Calculate the range of keys in the array being careful to skip
4530          * slots which are overridden with a deletion.
4531          */
4532         key_beg = 0;
4533         key_end = HAMMER2_KEY_MAX;
4534         hammer2_spin_ex(&parent->core.spin);
4535
4536         for (;;) {
4537                 if (--maxloops == 0) {
4538                         panic("indkey_freemap shit %p %p:%d\n",
4539                               parent, base, count);
4540                 }
4541                 chain = hammer2_combined_find(parent, base, count,
4542                                               &key_next,
4543                                               key_beg, key_end,
4544                                               &bref);
4545
4546                 /*
4547                  * Exhausted search
4548                  */
4549                 if (bref == NULL)
4550                         break;
4551
4552                 /*
4553                  * Skip deleted chains.
4554                  */
4555                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4556                         if (key_next == 0 || key_next > key_end)
4557                                 break;
4558                         key_beg = key_next;
4559                         continue;
4560                 }
4561
4562                 /*
4563                  * Use the full live (not deleted) element for the scan
4564                  * iteration.  HAMMER2 does not allow partial replacements.
4565                  *
4566                  * XXX should be built into hammer2_combined_find().
4567                  */
4568                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4569
4570                 if (keybits > bref->keybits) {
4571                         key = bref->key;
4572                         keybits = bref->keybits;
4573                 } else if (keybits == bref->keybits && bref->key < key) {
4574                         key = bref->key;
4575                 }
4576                 if (key_next == 0)
4577                         break;
4578                 key_beg = key_next;
4579         }
4580         hammer2_spin_unex(&parent->core.spin);
4581
4582         /*
4583          * Return the keybits for a higher-level FREEMAP_NODE covering
4584          * this node.
4585          */
4586         switch(keybits) {
4587         case HAMMER2_FREEMAP_LEVEL0_RADIX:
4588                 keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
4589                 break;
4590         case HAMMER2_FREEMAP_LEVEL1_RADIX:
4591                 keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
4592                 break;
4593         case HAMMER2_FREEMAP_LEVEL2_RADIX:
4594                 keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
4595                 break;
4596         case HAMMER2_FREEMAP_LEVEL3_RADIX:
4597                 keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
4598                 break;
4599         case HAMMER2_FREEMAP_LEVEL4_RADIX:
4600                 keybits = HAMMER2_FREEMAP_LEVEL5_RADIX;
4601                 break;
4602         case HAMMER2_FREEMAP_LEVEL5_RADIX:
4603                 panic("hammer2_chain_indkey_freemap: level too high");
4604                 break;
4605         default:
4606                 panic("hammer2_chain_indkey_freemap: bad radix");
4607                 break;
4608         }
4609         *keyp = key;
4610
4611         return (keybits);
4612 }
4613
4614 /*
4615  * File indirect blocks
4616  *
4617  * Calculate the key/keybits for the indirect block to create by scanning
4618  * existing keys.  The key being created is also passed in *keyp and can be
4619  * inside or outside the indirect block.  Regardless, the indirect block
4620  * must hold at least two keys in order to guarantee sufficient space.
4621  *
4622  * We use a modified version of the freemap's fixed radix tree, but taylored
4623  * for file data.  Basically we configure an indirect block encompassing the
4624  * smallest key.
4625  */
4626 static int
4627 hammer2_chain_indkey_file(hammer2_chain_t *parent, hammer2_key_t *keyp,
4628                             int keybits, hammer2_blockref_t *base, int count,
4629                             int ncount)
4630 {
4631         hammer2_chain_t *chain;
4632         hammer2_blockref_t *bref;
4633         hammer2_key_t key;
4634         hammer2_key_t key_beg;
4635         hammer2_key_t key_end;
4636         hammer2_key_t key_next;
4637         int nradix;
4638         int locount;
4639         int hicount;
4640         int maxloops = 300000;
4641
4642         key = *keyp;
4643         locount = 0;
4644         hicount = 0;
4645         keybits = 64;
4646
4647         /*
4648          * Calculate the range of keys in the array being careful to skip
4649          * slots which are overridden with a deletion.
4650          *
4651          * Locate the smallest key.
4652          */
4653         key_beg = 0;
4654         key_end = HAMMER2_KEY_MAX;
4655         hammer2_spin_ex(&parent->core.spin);
4656
4657         for (;;) {
4658                 if (--maxloops == 0) {
4659                         panic("indkey_freemap shit %p %p:%d\n",
4660                               parent, base, count);
4661                 }
4662                 chain = hammer2_combined_find(parent, base, count,
4663                                               &key_next,
4664                                               key_beg, key_end,
4665                                               &bref);
4666
4667                 /*
4668                  * Exhausted search
4669                  */
4670                 if (bref == NULL)
4671                         break;
4672
4673                 /*
4674                  * Skip deleted chains.
4675                  */
4676                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4677                         if (key_next == 0 || key_next > key_end)
4678                                 break;
4679                         key_beg = key_next;
4680                         continue;
4681                 }
4682
4683                 /*
4684                  * Use the full live (not deleted) element for the scan
4685                  * iteration.  HAMMER2 does not allow partial replacements.
4686                  *
4687                  * XXX should be built into hammer2_combined_find().
4688                  */
4689                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4690
4691                 if (keybits > bref->keybits) {
4692                         key = bref->key;
4693                         keybits = bref->keybits;
4694                 } else if (keybits == bref->keybits && bref->key < key) {
4695                         key = bref->key;
4696                 }
4697                 if (key_next == 0)
4698                         break;
4699                 key_beg = key_next;
4700         }
4701         hammer2_spin_unex(&parent->core.spin);
4702
4703         /*
4704          * Calculate the static keybits for a higher-level indirect block
4705          * that contains the key.
4706          */
4707         *keyp = key;
4708
4709         switch(ncount) {
4710         case HAMMER2_IND_BYTES_MIN / sizeof(hammer2_blockref_t):
4711                 nradix = HAMMER2_IND_RADIX_MIN - HAMMER2_BLOCKREF_RADIX;
4712                 break;
4713         case HAMMER2_IND_BYTES_NOM / sizeof(hammer2_blockref_t):
4714                 nradix = HAMMER2_IND_RADIX_NOM - HAMMER2_BLOCKREF_RADIX;
4715                 break;
4716         case HAMMER2_IND_BYTES_MAX / sizeof(hammer2_blockref_t):
4717                 nradix = HAMMER2_IND_RADIX_MAX - HAMMER2_BLOCKREF_RADIX;
4718                 break;
4719         default:
4720                 panic("bad ncount %d\n", ncount);
4721                 nradix = 0;
4722                 break;
4723         }
4724
4725         /*
4726          * The largest radix that can be returned for an indirect block is
4727          * 63 bits.  (The largest practical indirect block radix is actually
4728          * 62 bits because the top-level inode or volume root contains four
4729          * entries, but allow 63 to be returned).
4730          */
4731         if (nradix >= 64)
4732                 nradix = 63;
4733
4734         return keybits + nradix;
4735 }
4736
4737 #if 1
4738
4739 /*
4740  * Directory indirect blocks.
4741  *
4742  * Covers both the inode index (directory of inodes), and directory contents
4743  * (filenames hardlinked to inodes).
4744  *
4745  * Because directory keys are hashed we generally try to cut the space in
4746  * half.  We accomodate the inode index (which tends to have linearly
4747  * increasing inode numbers) by ensuring that the keyspace is at least large
4748  * enough to fill up the indirect block being created.
4749  */
4750 static int
4751 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4752                          int keybits, hammer2_blockref_t *base, int count,
4753                          int ncount)
4754 {
4755         hammer2_blockref_t *bref;
4756         hammer2_chain_t *chain;
4757         hammer2_key_t key_beg;
4758         hammer2_key_t key_end;
4759         hammer2_key_t key_next;
4760         hammer2_key_t key;
4761         int nkeybits;
4762         int locount;
4763         int hicount;
4764         int maxloops = 300000;
4765
4766         /*
4767          * NOTE: We can't take a shortcut here anymore for inodes because
4768          *       the root directory can contain a mix of inodes and directory
4769          *       entries (we used to just return 63 if parent->bref.type was
4770          *       HAMMER2_BREF_TYPE_INODE.
4771          */
4772         key = *keyp;
4773         locount = 0;
4774         hicount = 0;
4775
4776         /*
4777          * Calculate the range of keys in the array being careful to skip
4778          * slots which are overridden with a deletion.
4779          */
4780         key_beg = 0;
4781         key_end = HAMMER2_KEY_MAX;
4782         hammer2_spin_ex(&parent->core.spin);
4783
4784         for (;;) {
4785                 if (--maxloops == 0) {
4786                         panic("indkey_freemap shit %p %p:%d\n",
4787                               parent, base, count);
4788                 }
4789                 chain = hammer2_combined_find(parent, base, count,
4790                                               &key_next,
4791                                               key_beg, key_end,
4792                                               &bref);
4793
4794                 /*
4795                  * Exhausted search
4796                  */
4797                 if (bref == NULL)
4798                         break;
4799
4800                 /*
4801                  * Deleted object
4802                  */
4803                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4804                         if (key_next == 0 || key_next > key_end)
4805                                 break;
4806                         key_beg = key_next;
4807                         continue;
4808                 }
4809
4810                 /*
4811                  * Use the full live (not deleted) element for the scan
4812                  * iteration.  HAMMER2 does not allow partial replacements.
4813                  *
4814                  * XXX should be built into hammer2_combined_find().
4815                  */
4816                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4817
4818                 /*
4819                  * Expand our calculated key range (key, keybits) to fit
4820                  * the scanned key.  nkeybits represents the full range
4821                  * that we will later cut in half (two halves @ nkeybits - 1).
4822                  */
4823                 nkeybits = keybits;
4824                 if (nkeybits < bref->keybits) {
4825                         if (bref->keybits > 64) {
4826                                 kprintf("bad bref chain %p bref %p\n",
4827                                         chain, bref);
4828                                 Debugger("fubar");
4829                         }
4830                         nkeybits = bref->keybits;
4831                 }
4832                 while (nkeybits < 64 &&
4833                        rounddown2(key ^ bref->key, (hammer2_key_t)1 << nkeybits) != 0) {
4834                         ++nkeybits;
4835                 }
4836
4837                 /*
4838                  * If the new key range is larger we have to determine
4839                  * which side of the new key range the existing keys fall
4840                  * under by checking the high bit, then collapsing the
4841                  * locount into the hicount or vise-versa.
4842                  */
4843                 if (keybits != nkeybits) {
4844                         if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
4845                                 hicount += locount;
4846                                 locount = 0;
4847                         } else {
4848                                 locount += hicount;
4849                                 hicount = 0;
4850                         }
4851                         keybits = nkeybits;
4852                 }
4853
4854                 /*
4855                  * The newly scanned key will be in the lower half or the
4856                  * upper half of the (new) key range.
4857                  */
4858                 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
4859                         ++hicount;
4860                 else
4861                         ++locount;
4862
4863                 if (key_next == 0)
4864                         break;
4865                 key_beg = key_next;
4866         }
4867         hammer2_spin_unex(&parent->core.spin);
4868         bref = NULL;    /* now invalid (safety) */
4869
4870         /*
4871          * Adjust keybits to represent half of the full range calculated
4872          * above (radix 63 max) for our new indirect block.
4873          */
4874         --keybits;
4875
4876         /*
4877          * Expand keybits to hold at least ncount elements.  ncount will be
4878          * a power of 2.  This is to try to completely fill leaf nodes (at
4879          * least for keys which are not hashes).
4880          *
4881          * We aren't counting 'in' or 'out', we are counting 'high side'
4882          * and 'low side' based on the bit at (1LL << keybits).  We want
4883          * everything to be inside in these cases so shift it all to
4884          * the low or high side depending on the new high bit.
4885          */
4886         while (((hammer2_key_t)1 << keybits) < ncount) {
4887                 ++keybits;
4888                 if (key & ((hammer2_key_t)1 << keybits)) {
4889                         hicount += locount;
4890                         locount = 0;
4891                 } else {
4892                         locount += hicount;
4893                         hicount = 0;
4894                 }
4895         }
4896
4897         if (hicount > locount)
4898                 key |= (hammer2_key_t)1 << keybits;
4899         else
4900                 key &= ~(hammer2_key_t)1 << keybits;
4901
4902         *keyp = key;
4903
4904         return (keybits);
4905 }
4906
4907 #else
4908
4909 /*
4910  * Directory indirect blocks.
4911  *
4912  * Covers both the inode index (directory of inodes), and directory contents
4913  * (filenames hardlinked to inodes).
4914  *
4915  * Because directory keys are hashed we generally try to cut the space in
4916  * half.  We accomodate the inode index (which tends to have linearly
4917  * increasing inode numbers) by ensuring that the keyspace is at least large
4918  * enough to fill up the indirect block being created.
4919  */
4920 static int
4921 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4922                          int keybits, hammer2_blockref_t *base, int count,
4923                          int ncount)
4924 {
4925         hammer2_blockref_t *bref;
4926         hammer2_chain_t *chain;
4927         hammer2_key_t key_beg;
4928         hammer2_key_t key_end;
4929         hammer2_key_t key_next;
4930         hammer2_key_t key;
4931         int nkeybits;
4932         int locount;
4933         int hicount;
4934         int maxloops = 300000;
4935
4936         /*
4937          * Shortcut if the parent is the inode.  In this situation the
4938          * parent has 4+1 directory entries and we are creating an indirect
4939          * block capable of holding many more.
4940          */
4941         if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4942                 return 63;
4943         }
4944
4945         key = *keyp;
4946         locount = 0;
4947         hicount = 0;
4948
4949         /*
4950          * Calculate the range of keys in the array being careful to skip
4951          * slots which are overridden with a deletion.
4952          */
4953         key_beg = 0;
4954         key_end = HAMMER2_KEY_MAX;
4955         hammer2_spin_ex(&parent->core.spin);
4956
4957         for (;;) {
4958                 if (--maxloops == 0) {
4959                         panic("indkey_freemap shit %p %p:%d\n",
4960                               parent, base, count);
4961                 }
4962                 chain = hammer2_combined_find(parent, base, count,
4963                                               &key_next,
4964                                               key_beg, key_end,
4965                                               &bref);
4966
4967                 /*
4968                  * Exhausted search
4969                  */
4970                 if (bref == NULL)
4971                         break;
4972
4973                 /*
4974                  * Deleted object
4975                  */
4976                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4977                         if (key_next == 0 || key_next > key_end)
4978                                 break;
4979                         key_beg = key_next;
4980                         continue;
4981                 }
4982
4983                 /*
4984                  * Use the full live (not deleted) element for the scan
4985                  * iteration.  HAMMER2 does not allow partial replacements.
4986                  *
4987                  * XXX should be built into hammer2_combined_find().
4988                  */
4989                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4990
4991                 /*
4992                  * Expand our calculated key range (key, keybits) to fit
4993                  * the scanned key.  nkeybits represents the full range
4994                  * that we will later cut in half (two halves @ nkeybits - 1).
4995                  */
4996                 nkeybits = keybits;
4997                 if (nkeybits < bref->keybits) {
4998                         if (bref->keybits > 64) {
4999                                 kprintf("bad bref chain %p bref %p\n",
5000                                         chain, bref);
5001                                 Debugger("fubar");
5002                         }
5003                         nkeybits = bref->keybits;
5004                 }
5005                 while (nkeybits < 64 &&
5006                        (~(((hammer2_key_t)1 << nkeybits) - 1) &
5007                         (key ^ bref->key)) != 0) {
5008                         ++nkeybits;
5009                 }
5010
5011                 /*
5012                  * If the new key range is larger we have to determine
5013                  * which side of the new key range the existing keys fall
5014                  * under by checking the high bit, then collapsing the
5015                  * locount into the hicount or vise-versa.
5016                  */
5017                 if (keybits != nkeybits) {
5018                         if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
5019                                 hicount += locount;
5020                                 locount = 0;
5021                         } else {
5022                                 locount += hicount;
5023                                 hicount = 0;
5024                         }
5025                         keybits = nkeybits;
5026                 }
5027
5028                 /*
5029                  * The newly scanned key will be in the lower half or the
5030                  * upper half of the (new) key range.
5031                  */
5032                 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
5033                         ++hicount;
5034                 else
5035                         ++locount;
5036
5037                 if (key_next == 0)
5038                         break;
5039                 key_beg = key_next;
5040         }
5041         hammer2_spin_unex(&parent->core.spin);
5042         bref = NULL;    /* now invalid (safety) */
5043
5044         /*
5045          * Adjust keybits to represent half of the full range calculated
5046          * above (radix 63 max) for our new indirect block.
5047          */
5048         --keybits;
5049
5050         /*
5051          * Expand keybits to hold at least ncount elements.  ncount will be
5052          * a power of 2.  This is to try to completely fill leaf nodes (at
5053          * least for keys which are not hashes).
5054          *
5055          * We aren't counting 'in' or 'out', we are counting 'high side'
5056          * and 'low side' based on the bit at (1LL << keybits).  We want
5057          * everything to be inside in these cases so shift it all to
5058          * the low or high side depending on the new high bit.
5059          */
5060         while (((hammer2_key_t)1 << keybits) < ncount) {
5061                 ++keybits;
5062                 if (key & ((hammer2_key_t)1 << keybits)) {
5063                         hicount += locount;
5064                         locount = 0;
5065                 } else {
5066                         locount += hicount;
5067                         hicount = 0;
5068                 }
5069         }
5070
5071         if (hicount > locount)
5072                 key |= (hammer2_key_t)1 << keybits;
5073         else
5074                 key &= ~(hammer2_key_t)1 << keybits;
5075
5076         *keyp = key;
5077
5078         return (keybits);
5079 }
5080
5081 #endif
5082
5083 /*
5084  * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
5085  * it exists.
5086  *
5087  * Both parent and chain must be locked exclusively.
5088  *
5089  * This function will modify the parent if the blockref requires removal
5090  * from the parent's block table.
5091  *
5092  * This function is NOT recursive.  Any entity already pushed into the
5093  * chain (such as an inode) may still need visibility into its contents,
5094  * as well as the ability to read and modify the contents.  For example,
5095  * for an unlinked file which is still open.
5096  *
5097  * Also note that the flusher is responsible for cleaning up empty
5098  * indirect blocks.
5099  */
5100 int
5101 hammer2_chain_delete(hammer2_chain_t *parent, hammer2_chain_t *chain,
5102                      hammer2_tid_t mtid, int flags)
5103 {
5104         int error = 0;
5105
5106         KKASSERT(hammer2_mtx_owned(&chain->lock));
5107
5108         /*
5109          * Nothing to do if already marked.
5110          *
5111          * We need the spinlock on the core whos RBTREE contains chain
5112          * to protect against races.
5113          */
5114         if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5115                 KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5116                          chain->parent == parent);
5117                 error = _hammer2_chain_delete_helper(parent, chain,
5118                                                      mtid, flags, NULL);
5119         }
5120
5121         /*
5122          * Permanent deletions mark the chain as destroyed.
5123          *
5124          * NOTE: We do not setflush the chain unless the deletion is
5125          *       permanent, since the deletion of a chain does not actually
5126          *       require it to be flushed.
5127          */
5128         if (error == 0) {
5129                 if (flags & HAMMER2_DELETE_PERMANENT) {
5130                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5131                         hammer2_chain_setflush(chain);
5132                 }
5133         }
5134
5135         return error;
5136 }
5137
5138 static int
5139 hammer2_chain_delete_obref(hammer2_chain_t *parent, hammer2_chain_t *chain,
5140                      hammer2_tid_t mtid, int flags,
5141                      hammer2_blockref_t *obref)
5142 {
5143         int error = 0;
5144
5145         KKASSERT(hammer2_mtx_owned(&chain->lock));
5146
5147         /*
5148          * Nothing to do if already marked.
5149          *
5150          * We need the spinlock on the core whos RBTREE contains chain
5151          * to protect against races.
5152          */
5153         obref->type = HAMMER2_BREF_TYPE_EMPTY;
5154         if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5155                 KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5156                          chain->parent == parent);
5157                 error = _hammer2_chain_delete_helper(parent, chain,
5158                                                      mtid, flags, obref);
5159         }
5160
5161         /*
5162          * Permanent deletions mark the chain as destroyed.
5163          *
5164          * NOTE: We do not setflush the chain unless the deletion is
5165          *       permanent, since the deletion of a chain does not actually
5166          *       require it to be flushed.
5167          */
5168         if (error == 0) {
5169                 if (flags & HAMMER2_DELETE_PERMANENT) {
5170                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5171                         hammer2_chain_setflush(chain);
5172                 }
5173         }
5174
5175         return error;
5176 }
5177
5178 /*
5179  * Returns the index of the nearest element in the blockref array >= elm.
5180  * Returns (count) if no element could be found.
5181  *
5182  * Sets *key_nextp to the next key for loop purposes but does not modify
5183  * it if the next key would be higher than the current value of *key_nextp.
5184  * Note that *key_nexp can overflow to 0, which should be tested by the
5185  * caller.
5186  *
5187  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5188  *           held through the operation.
5189  */
5190 static int
5191 hammer2_base_find(hammer2_chain_t *parent,
5192                   hammer2_blockref_t *base, int count,
5193                   hammer2_key_t *key_nextp,
5194                   hammer2_key_t key_beg, hammer2_key_t key_end)
5195 {
5196         hammer2_blockref_t *scan;
5197         hammer2_key_t scan_end;
5198         int i;
5199         int limit;
5200
5201         /*
5202          * Require the live chain's already have their core's counted
5203          * so we can optimize operations.
5204          */
5205         KKASSERT(parent->flags & HAMMER2_CHAIN_COUNTEDBREFS);
5206
5207         /*
5208          * Degenerate case
5209          */
5210         if (count == 0 || base == NULL)
5211                 return(count);
5212
5213         /*
5214          * Sequential optimization using parent->cache_index.  This is
5215          * the most likely scenario.
5216          *
5217          * We can avoid trailing empty entries on live chains, otherwise
5218          * we might have to check the whole block array.
5219          */
5220         i = parent->cache_index;        /* SMP RACE OK */
5221         cpu_ccfence();
5222         limit = parent->core.live_zero;
5223         if (i >= limit)
5224                 i = limit - 1;
5225         if (i < 0)
5226                 i = 0;
5227         KKASSERT(i < count);
5228
5229         /*
5230          * Search backwards
5231          */
5232         scan = &base[i];
5233         while (i > 0 && (scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5234             scan->key > key_beg)) {
5235                 --scan;
5236                 --i;
5237         }
5238         parent->cache_index = i;
5239
5240         /*
5241          * Search forwards, stop when we find a scan element which
5242          * encloses the key or until we know that there are no further
5243          * elements.
5244          */
5245         while (i < count) {
5246                 if (scan->type != HAMMER2_BREF_TYPE_EMPTY) {
5247                         scan_end = scan->key +
5248                                    ((hammer2_key_t)1 << scan->keybits) - 1;
5249                         if (scan->key > key_beg || scan_end >= key_beg)
5250                                 break;
5251                 }
5252                 if (i >= limit)
5253                         return (count);
5254                 ++scan;
5255                 ++i;
5256         }
5257         if (i != count) {
5258                 parent->cache_index = i;
5259                 if (i >= limit) {
5260                         i = count;
5261                 } else {
5262                         scan_end = scan->key +
5263                                    ((hammer2_key_t)1 << scan->keybits);
5264                         if (scan_end && (*key_nextp > scan_end ||
5265                                          *key_nextp == 0)) {
5266                                 *key_nextp = scan_end;
5267                         }
5268                 }
5269         }
5270         return (i);
5271 }
5272
5273 /*
5274  * Do a combined search and return the next match either from the blockref
5275  * array or from the in-memory chain.  Sets *bresp to the returned bref in
5276  * both cases, or sets it to NULL if the search exhausted.  Only returns
5277  * a non-NULL chain if the search matched from the in-memory chain.
5278  *
5279  * When no in-memory chain has been found and a non-NULL bref is returned
5280  * in *bresp.
5281  *
5282  *
5283  * The returned chain is not locked or referenced.  Use the returned bref
5284  * to determine if the search exhausted or not.  Iterate if the base find
5285  * is chosen but matches a deleted chain.
5286  *
5287  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5288  *           held through the operation.
5289  */
5290 hammer2_chain_t *
5291 hammer2_combined_find(hammer2_chain_t *parent,
5292                       hammer2_blockref_t *base, int count,
5293                       hammer2_key_t *key_nextp,
5294                       hammer2_key_t key_beg, hammer2_key_t key_end,
5295                       hammer2_blockref_t **bresp)
5296 {
5297         hammer2_blockref_t *bref;
5298         hammer2_chain_t *chain;
5299         int i;
5300
5301         /*
5302          * Lookup in block array and in rbtree.
5303          */
5304         *key_nextp = key_end + 1;
5305         i = hammer2_base_find(parent, base, count, key_nextp,
5306                               key_beg, key_end);
5307         chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
5308
5309         /*
5310          * Neither matched
5311          */
5312         if (i == count && chain == NULL) {
5313                 *bresp = NULL;
5314                 return(NULL);
5315         }
5316
5317         /*
5318          * Only chain matched.
5319          */
5320         if (i == count) {
5321                 bref = &chain->bref;
5322                 goto found;
5323         }
5324
5325         /*
5326          * Only blockref matched.
5327          */
5328         if (chain == NULL) {
5329                 bref = &base[i];
5330                 goto found;
5331         }
5332
5333         /*
5334          * Both in-memory and blockref matched, select the nearer element.
5335          *
5336          * If both are flush with the left-hand side or both are the
5337          * same distance away, select the chain.  In this situation the
5338          * chain must have been loaded from the matching blockmap.
5339          */
5340         if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
5341             chain->bref.key == base[i].key) {
5342                 KKASSERT(chain->bref.key == base[i].key);
5343                 bref = &chain->bref;
5344                 goto found;
5345         }
5346
5347         /*
5348          * Select the nearer key
5349          */
5350         if (chain->bref.key < base[i].key) {
5351                 bref = &chain->bref;
5352         } else {
5353                 bref = &base[i];
5354                 chain = NULL;
5355         }
5356
5357         /*
5358          * If the bref is out of bounds we've exhausted our search.
5359          */
5360 found:
5361         if (bref->key > key_end) {
5362                 *bresp = NULL;
5363                 chain = NULL;
5364         } else {
5365                 *bresp = bref;
5366         }
5367         return(chain);
5368 }
5369
5370 /*
5371  * Locate the specified block array element and delete it.  The element
5372  * must exist.
5373  *
5374  * The spin lock on the related chain must be held.
5375  *
5376  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5377  *       need to be adjusted when we commit the media change.
5378  */
5379 void
5380 hammer2_base_delete(hammer2_chain_t *parent,
5381                     hammer2_blockref_t *base, int count,
5382                     hammer2_chain_t *chain,
5383                     hammer2_blockref_t *obref)
5384 {
5385         hammer2_blockref_t *elm = &chain->bref;
5386         hammer2_blockref_t *scan;
5387         hammer2_key_t key_next;
5388         int i;
5389
5390         /*
5391          * Delete element.  Expect the element to exist.
5392          *
5393          * XXX see caller, flush code not yet sophisticated enough to prevent
5394          *     re-flushed in some cases.
5395          */
5396         key_next = 0; /* max range */
5397         i = hammer2_base_find(parent, base, count, &key_next,
5398                               elm->key, elm->key);
5399         scan = &base[i];
5400         if (i == count || scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5401             scan->key != elm->key ||
5402             ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
5403              scan->keybits != elm->keybits)) {
5404                 hammer2_spin_unex(&parent->core.spin);
5405                 panic("delete base %p element not found at %d/%d elm %p\n",
5406                       base, i, count, elm);
5407                 return;
5408         }
5409
5410         /*
5411          * Update stats and zero the entry.
5412          *
5413          * NOTE: Handle radix == 0 (0 bytes) case.
5414          */
5415         if ((int)(scan->data_off & HAMMER2_OFF_MASK_RADIX)) {
5416                 parent->bref.embed.stats.data_count -= (hammer2_off_t)1 <<
5417                                 (int)(scan->data_off & HAMMER2_OFF_MASK_RADIX);
5418         }
5419         switch(scan->type) {
5420         case HAMMER2_BREF_TYPE_INODE:
5421                 --parent->bref.embed.stats.inode_count;
5422                 /* fall through */
5423         case HAMMER2_BREF_TYPE_DATA:
5424                 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5425                         atomic_set_int(&chain->flags,
5426                                        HAMMER2_CHAIN_HINT_LEAF_COUNT);
5427                 } else {
5428                         if (parent->bref.leaf_count)
5429                                 --parent->bref.leaf_count;
5430                 }
5431                 /* fall through */
5432         case HAMMER2_BREF_TYPE_INDIRECT:
5433                 if (scan->type != HAMMER2_BREF_TYPE_DATA) {
5434                         parent->bref.embed.stats.data_count -=
5435                                 scan->embed.stats.data_count;
5436                         parent->bref.embed.stats.inode_count -=
5437                                 scan->embed.stats.inode_count;
5438                 }
5439                 if (scan->type == HAMMER2_BREF_TYPE_INODE)
5440                         break;
5441                 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5442                         atomic_set_int(&chain->flags,
5443                                        HAMMER2_CHAIN_HINT_LEAF_COUNT);
5444                 } else {
5445                         if (parent->bref.leaf_count <= scan->leaf_count)
5446                                 parent->bref.leaf_count = 0;
5447                         else
5448                                 parent->bref.leaf_count -= scan->leaf_count;
5449                 }
5450                 break;
5451         case HAMMER2_BREF_TYPE_DIRENT:
5452                 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5453                         atomic_set_int(&chain->flags,
5454                                        HAMMER2_CHAIN_HINT_LEAF_COUNT);
5455                 } else {
5456                         if (parent->bref.leaf_count)
5457                                 --parent->bref.leaf_count;
5458                 }
5459         default:
5460                 break;
5461         }
5462
5463         if (obref)
5464                 *obref = *scan;
5465         bzero(scan, sizeof(*scan));
5466
5467         /*
5468          * We can only optimize parent->core.live_zero for live chains.
5469          */
5470         if (parent->core.live_zero == i + 1) {
5471                 while (--i >= 0 && base[i].type == HAMMER2_BREF_TYPE_EMPTY)
5472                         ;
5473                 parent->core.live_zero = i + 1;
5474         }
5475
5476         /*
5477          * Clear appropriate blockmap flags in chain.
5478          */
5479         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
5480                                         HAMMER2_CHAIN_BMAPUPD);
5481 }
5482
5483 /*
5484  * Insert the specified element.  The block array must not already have the
5485  * element and must have space available for the insertion.
5486  *
5487  * The spin lock on the related chain must be held.
5488  *
5489  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5490  *       need to be adjusted when we commit the media change.
5491  */
5492 void
5493 hammer2_base_insert(hammer2_chain_t *parent,
5494                     hammer2_blockref_t *base, int count,
5495                     hammer2_chain_t *chain, hammer2_blockref_t *elm)
5496 {
5497         hammer2_key_t key_next;
5498         hammer2_key_t xkey;
5499         int i;
5500         int j;
5501         int k;
5502         int l;
5503         int u = 1;
5504
5505         /*
5506          * Insert new element.  Expect the element to not already exist
5507          * unless we are replacing it.
5508          *
5509          * XXX see caller, flush code not yet sophisticated enough to prevent
5510          *     re-flushed in some cases.
5511          */
5512         key_next = 0; /* max range */
5513         i = hammer2_base_find(parent, base, count, &key_next,
5514                               elm->key, elm->key);
5515
5516         /*
5517          * Shortcut fill optimization, typical ordered insertion(s) may not
5518          * require a search.
5519          */
5520         KKASSERT(i >= 0 && i <= count);
5521
5522         /*
5523          * Set appropriate blockmap flags in chain (if not NULL)
5524          */
5525         if (chain)
5526                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
5527
5528         /*
5529          * Update stats and zero the entry
5530          */
5531         if ((int)(elm->data_off & HAMMER2_OFF_MASK_RADIX)) {
5532                 parent->bref.embed.stats.data_count += (hammer2_off_t)1 <<
5533                                 (int)(elm->data_off & HAMMER2_OFF_MASK_RADIX);
5534         }
5535         switch(elm->type) {
5536         case HAMMER2_BREF_TYPE_INODE:
5537                 ++parent->bref.embed.stats.inode_count;
5538                 /* fall through */
5539         case HAMMER2_BREF_TYPE_DATA:
5540                 if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5541                         ++parent->bref.leaf_count;
5542                 /* fall through */
5543         case HAMMER2_BREF_TYPE_INDIRECT:
5544                 if (elm->type != HAMMER2_BREF_TYPE_DATA) {
5545                         parent->bref.embed.stats.data_count +=
5546                                 elm->embed.stats.data_count;
5547                         parent->bref.embed.stats.inode_count +=
5548                                 elm->embed.stats.inode_count;
5549                 }
5550                 if (elm->type == HAMMER2_BREF_TYPE_INODE)
5551                         break;
5552                 if (parent->bref.leaf_count + elm->leaf_count <
5553                     HAMMER2_BLOCKREF_LEAF_MAX) {
5554                         parent->bref.leaf_count += elm->leaf_count;
5555                 } else {
5556                         parent->bref.leaf_count = HAMMER2_BLOCKREF_LEAF_MAX;
5557                 }
5558                 break;
5559         case HAMMER2_BREF_TYPE_DIRENT:
5560                 if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5561                         ++parent->bref.leaf_count;
5562                 break;
5563         default:
5564                 break;
5565         }
5566
5567
5568         /*
5569          * We can only optimize parent->core.live_zero for live chains.
5570          */
5571         if (i == count && parent->core.live_zero < count) {
5572                 i = parent->core.live_zero++;
5573                 base[i] = *elm;
5574                 return;
5575         }
5576
5577         xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
5578         if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
5579                 hammer2_spin_unex(&parent->core.spin);
5580                 panic("insert base %p overlapping elements at %d elm %p\n",
5581                       base, i, elm);
5582         }
5583
5584         /*
5585          * Try to find an empty slot before or after.
5586          */
5587         j = i;
5588         k = i;
5589         while (j > 0 || k < count) {
5590                 --j;
5591                 if (j >= 0 && base[j].type == HAMMER2_BREF_TYPE_EMPTY) {
5592                         if (j == i - 1) {
5593                                 base[j] = *elm;
5594                         } else {
5595                                 bcopy(&base[j+1], &base[j],
5596                                       (i - j - 1) * sizeof(*base));
5597                                 base[i - 1] = *elm;
5598                         }
5599                         goto validate;
5600                 }
5601                 ++k;
5602                 if (k < count && base[k].type == HAMMER2_BREF_TYPE_EMPTY) {
5603                         bcopy(&base[i], &base[i+1],
5604                               (k - i) * sizeof(hammer2_blockref_t));
5605                         base[i] = *elm;
5606
5607                         /*
5608                          * We can only update parent->core.live_zero for live
5609                          * chains.
5610                          */
5611                         if (parent->core.live_zero <= k)
5612                                 parent->core.live_zero = k + 1;
5613                         u = 2;
5614                         goto validate;
5615                 }
5616         }
5617         panic("hammer2_base_insert: no room!");
5618
5619         /*
5620          * Debugging
5621          */
5622 validate:
5623         key_next = 0;
5624         for (l = 0; l < count; ++l) {
5625                 if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5626                         key_next = base[l].key +
5627                                    ((hammer2_key_t)1 << base[l].keybits) - 1;
5628                         break;
5629                 }
5630         }
5631         while (++l < count) {
5632                 if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5633                         if (base[l].key <= key_next)
5634                                 panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
5635                         key_next = base[l].key +
5636                                    ((hammer2_key_t)1 << base[l].keybits) - 1;
5637
5638                 }
5639         }
5640
5641 }
5642
5643 #if 0
5644
5645 /*
5646  * Sort the blockref array for the chain.  Used by the flush code to
5647  * sort the blockref[] array.
5648  *
5649  * The chain must be exclusively locked AND spin-locked.
5650  */
5651 typedef hammer2_blockref_t *hammer2_blockref_p;
5652
5653 static
5654 int
5655 hammer2_base_sort_callback(const void *v1, const void *v2)
5656 {
5657         hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
5658         hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
5659
5660         /*
5661          * Make sure empty elements are placed at the end of the array
5662          */
5663         if (bref1->type == HAMMER2_BREF_TYPE_EMPTY) {
5664                 if (bref2->type == HAMMER2_BREF_TYPE_EMPTY)
5665                         return(0);
5666                 return(1);
5667         } else if (bref2->type == HAMMER2_BREF_TYPE_EMPTY) {
5668                 return(-1);
5669         }
5670
5671         /*
5672          * Sort by key
5673          */
5674         if (bref1->key < bref2->key)
5675                 return(-1);
5676         if (bref1->key > bref2->key)
5677                 return(1);
5678         return(0);
5679 }
5680
5681 void
5682 hammer2_base_sort(hammer2_chain_t *chain)
5683 {
5684         hammer2_blockref_t *base;
5685         int count;
5686
5687         switch(chain->bref.type) {
5688         case HAMMER2_BREF_TYPE_INODE:
5689                 /*
5690                  * Special shortcut for embedded data returns the inode
5691                  * itself.  Callers must detect this condition and access
5692                  * the embedded data (the strategy code does this for us).
5693                  *
5694                  * This is only applicable to regular files and softlinks.
5695                  */
5696                 if (chain->data->ipdata.meta.op_flags &
5697                     HAMMER2_OPFLAG_DIRECTDATA) {
5698                         return;
5699                 }
5700                 base = &chain->data->ipdata.u.blockset.blockref[0];
5701                 count = HAMMER2_SET_COUNT;
5702                 break;
5703         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
5704         case HAMMER2_BREF_TYPE_INDIRECT:
5705                 /*
5706                  * Optimize indirect blocks in the INITIAL state to avoid
5707                  * I/O.
5708                  */
5709                 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
5710                 base = &chain->data->npdata[0];
5711                 count = chain->bytes / sizeof(hammer2_blockref_t);
5712                 break;
5713         case HAMMER2_BREF_TYPE_VOLUME:
5714                 base = &chain->data->voldata.sroot_blockset.blockref[0];
5715                 count = HAMMER2_SET_COUNT;
5716                 break;
5717         case HAMMER2_BREF_TYPE_FREEMAP:
5718                 base = &chain->data->blkset.blockref[0];
5719                 count = HAMMER2_SET_COUNT;
5720                 break;
5721         default:
5722                 panic("hammer2_base_sort: unrecognized "
5723                       "blockref(A) type: %d",
5724                       chain->bref.type);
5725                 base = NULL;    /* safety */
5726                 count = 0;      /* safety */
5727                 break;
5728         }
5729         kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
5730 }
5731
5732 #endif
5733
5734 /*
5735  * Set the check data for a chain.  This can be a heavy-weight operation
5736  * and typically only runs on-flush.  For file data check data is calculated
5737  * when the logical buffers are flushed.
5738  */
5739 void
5740 hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
5741 {
5742         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_NOTTESTED);
5743
5744         switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5745         case HAMMER2_CHECK_NONE:
5746                 break;
5747         case HAMMER2_CHECK_DISABLED:
5748                 break;
5749         case HAMMER2_CHECK_ISCSI32:
5750                 chain->bref.check.iscsi32.value =
5751                         hammer2_icrc32(bdata, chain->bytes);
5752                 break;
5753         case HAMMER2_CHECK_XXHASH64:
5754                 chain->bref.check.xxhash64.value =
5755                         XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5756                 break;
5757         case HAMMER2_CHECK_SHA192:
5758                 {
5759                         SHA256_CTX hash_ctx;
5760                         union {
5761                                 uint8_t digest[SHA256_DIGEST_LENGTH];
5762                                 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5763                         } u;
5764
5765                         SHA256_Init(&hash_ctx);
5766                         SHA256_Update(&hash_ctx, bdata, chain->bytes);
5767                         SHA256_Final(u.digest, &hash_ctx);
5768                         u.digest64[2] ^= u.digest64[3];
5769                         bcopy(u.digest,
5770                               chain->bref.check.sha192.data,
5771                               sizeof(chain->bref.check.sha192.data));
5772                 }
5773                 break;
5774         case HAMMER2_CHECK_FREEMAP:
5775                 chain->bref.check.freemap.icrc32 =
5776                         hammer2_icrc32(bdata, chain->bytes);
5777                 break;
5778         default:
5779                 kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5780                         chain->bref.methods);
5781                 break;
5782         }
5783 }
5784
5785 /*
5786  * Characterize a failed check code and try to trace back to the inode.
5787  */
5788 static void
5789 hammer2_characterize_failed_chain(hammer2_chain_t *chain, uint64_t check,
5790                                   int bits)
5791 {
5792         hammer2_chain_t *lchain;
5793         hammer2_chain_t *ochain;
5794         int did;
5795
5796         did = krateprintf(&krate_h2chk,
5797                 "chain %016jx.%02x (%s) meth=%02x CHECK FAIL "
5798                 "(flags=%08x, bref/data ",
5799                 chain->bref.data_off,
5800                 chain->bref.type,
5801                 hammer2_bref_type_str(chain->bref.type),
5802                 chain->bref.methods,
5803                 chain->flags);
5804         if (did == 0)
5805                 return;
5806
5807         if (bits == 32) {
5808                 kprintf("%08x/%08x)\n",
5809                         chain->bref.check.iscsi32.value,
5810                         (uint32_t)check);
5811         } else {
5812                 kprintf("%016jx/%016jx)\n",
5813                         chain->bref.check.xxhash64.value,
5814                         check);
5815         }
5816
5817         /*
5818          * Run up the chains to try to find the governing inode so we
5819          * can report it.
5820          *
5821          * XXX This error reporting is not really MPSAFE
5822          */
5823         ochain = chain;
5824         lchain = chain;
5825         while (chain && chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
5826                 lchain = chain;
5827                 chain = chain->parent;
5828         }
5829
5830         if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
5831             ((chain->bref.flags & HAMMER2_BREF_FLAG_PFSROOT) == 0 ||
5832              (lchain->bref.key & HAMMER2_DIRHASH_VISIBLE))) {
5833                 kprintf("   Resides at/in inode %ld\n",
5834                         chain->bref.key);
5835         } else if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
5836                 kprintf("   Resides in inode index - CRITICAL!!!\n");
5837         } else {
5838                 kprintf("   Resides in root index - CRITICAL!!!\n");
5839         }
5840         if (ochain->hmp) {
5841                 const char *pfsname = "UNKNOWN";
5842                 int i;
5843
5844                 if (ochain->pmp) {
5845                         for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
5846                                 if (ochain->pmp->pfs_hmps[i] == ochain->hmp &&
5847                                     ochain->pmp->pfs_names[i]) {
5848                                         pfsname = ochain->pmp->pfs_names[i];
5849                                         break;
5850                                 }
5851                         }
5852                 }
5853                 kprintf("   In pfs %s on device %s\n",
5854                         pfsname, ochain->hmp->devrepname);
5855         }
5856 }
5857
5858 /*
5859  * Returns non-zero on success, 0 on failure.
5860  */
5861 int
5862 hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
5863 {
5864         uint32_t check32;
5865         uint64_t check64;
5866         int r;
5867
5868         if (chain->flags & HAMMER2_CHAIN_NOTTESTED)
5869                 return 1;
5870
5871         switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5872         case HAMMER2_CHECK_NONE:
5873                 r = 1;
5874                 break;
5875         case HAMMER2_CHECK_DISABLED:
5876                 r = 1;
5877                 break;
5878         case HAMMER2_CHECK_ISCSI32:
5879                 check32 = hammer2_icrc32(bdata, chain->bytes);
5880                 r = (chain->bref.check.iscsi32.value == check32);
5881                 if (r == 0) {
5882                         hammer2_characterize_failed_chain(chain, check32, 32);
5883                 }
5884                 hammer2_process_icrc32 += chain->bytes;
5885                 break;
5886         case HAMMER2_CHECK_XXHASH64:
5887                 check64 = XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5888                 r = (chain->bref.check.xxhash64.value == check64);
5889                 if (r == 0) {
5890                         hammer2_characterize_failed_chain(chain, check64, 64);
5891                 }
5892                 hammer2_process_xxhash64 += chain->bytes;
5893                 break;
5894         case HAMMER2_CHECK_SHA192:
5895                 {
5896                         SHA256_CTX hash_ctx;
5897                         union {
5898                                 uint8_t digest[SHA256_DIGEST_LENGTH];
5899                                 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5900                         } u;
5901
5902                         SHA256_Init(&hash_ctx);
5903                         SHA256_Update(&hash_ctx, bdata, chain->bytes);
5904                         SHA256_Final(u.digest, &hash_ctx);
5905                         u.digest64[2] ^= u.digest64[3];
5906                         if (bcmp(u.digest,
5907                                  chain->bref.check.sha192.data,
5908                                  sizeof(chain->bref.check.sha192.data)) == 0) {
5909                                 r = 1;
5910                         } else {
5911                                 r = 0;
5912                                 krateprintf(&krate_h2chk,
5913                                         "chain %016jx.%02x meth=%02x "
5914                                         "CHECK FAIL\n",
5915                                         chain->bref.data_off,
5916                                         chain->bref.type,
5917                                         chain->bref.methods);
5918                         }
5919                 }
5920                 break;
5921         case HAMMER2_CHECK_FREEMAP:
5922                 r = (chain->bref.check.freemap.icrc32 ==
5923                      hammer2_icrc32(bdata, chain->bytes));
5924                 if (r == 0) {
5925                         int did;
5926
5927                         did = krateprintf(&krate_h2chk,
5928                                           "chain %016jx.%02x meth=%02x "
5929                                           "CHECK FAIL\n",
5930                                           chain->bref.data_off,
5931                                           chain->bref.type,
5932                                           chain->bref.methods);
5933                         if (did) {
5934                                 kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
5935                                         chain->bref.check.freemap.icrc32,
5936                                         hammer2_icrc32(bdata, chain->bytes),
5937                                         chain->bytes);
5938                                 if (chain->dio) {
5939                                         kprintf("dio %p buf %016jx,%d "
5940                                                 "bdata %p/%p\n",
5941                                                 chain->dio,
5942                                                 chain->dio->bp->b_loffset,
5943                                                 chain->dio->bp->b_bufsize,
5944                                                 bdata,
5945                                                 chain->dio->bp->b_data);
5946                                 }
5947                         }
5948                 }
5949                 break;
5950         default:
5951                 kprintf("hammer2_chain_testcheck: unknown check type %02x\n",
5952                         chain->bref.methods);
5953                 r = 1;
5954                 break;
5955         }
5956         return r;
5957 }
5958
5959 /*
5960  * Acquire the chain and parent representing the specified inode for the
5961  * device at the specified cluster index.
5962  *
5963  * The flags passed in are LOOKUP flags, not RESOLVE flags.
5964  *
5965  * If we are unable to locate the inode, HAMMER2_ERROR_EIO is returned and
5966  * *chainp will be NULL.  *parentp may still be set error or not, or NULL
5967  * if the parent itself could not be resolved.
5968  *
5969  * The caller may pass-in a locked *parentp and/or *chainp, or neither.
5970  * They will be unlocked and released by this function.  The *parentp and
5971  * *chainp representing the located inode are returned locked.
5972  */
5973 int
5974 hammer2_chain_inode_find(hammer2_pfs_t *pmp, hammer2_key_t inum,
5975                          int clindex, int flags,
5976                          hammer2_chain_t **parentp, hammer2_chain_t **chainp)
5977 {
5978         hammer2_chain_t *parent;
5979         hammer2_chain_t *rchain;
5980         hammer2_key_t key_dummy;
5981         hammer2_inode_t *ip;
5982         int resolve_flags;
5983         int error;
5984
5985         resolve_flags = (flags & HAMMER2_LOOKUP_SHARED) ?
5986                         HAMMER2_RESOLVE_SHARED : 0;
5987
5988         /*
5989          * Caller expects us to replace these.
5990          */
5991         if (*chainp) {
5992                 hammer2_chain_unlock(*chainp);
5993                 hammer2_chain_drop(*chainp);
5994                 *chainp = NULL;
5995         }
5996         if (*parentp) {
5997                 hammer2_chain_unlock(*parentp);
5998                 hammer2_chain_drop(*parentp);
5999                 *parentp = NULL;
6000         }
6001
6002         /*
6003          * Be very careful, this is a backend function and we CANNOT
6004          * lock any frontend inode structure we find.  But we have to
6005          * look the inode up this way first in case it exists but is
6006          * detached from the radix tree.
6007          */
6008         ip = hammer2_inode_lookup(pmp, inum);
6009         if (ip) {
6010                 *chainp = hammer2_inode_chain_and_parent(ip, clindex,
6011                                                        parentp,
6012                                                        resolve_flags);
6013                 hammer2_inode_drop(ip);
6014                 if (*chainp)
6015                         return 0;
6016                 hammer2_chain_unlock(*chainp);
6017                 hammer2_chain_drop(*chainp);
6018                 *chainp = NULL;
6019                 if (*parentp) {
6020                         hammer2_chain_unlock(*parentp);
6021                         hammer2_chain_drop(*parentp);
6022                         *parentp = NULL;
6023                 }
6024         }
6025
6026         /*
6027          * Inodes hang off of the iroot (bit 63 is clear, differentiating
6028          * inodes from root directory entries in the key lookup).
6029          */
6030         parent = hammer2_inode_chain(pmp->iroot, clindex, resolve_flags);
6031         rchain = NULL;
6032         if (parent) {
6033                 rchain = hammer2_chain_lookup(&parent, &key_dummy,
6034                                               inum, inum,
6035                                               &error, flags);
6036         } else {
6037                 error = HAMMER2_ERROR_EIO;
6038         }
6039         *parentp = parent;
6040         *chainp = rchain;
6041
6042         return error;
6043 }
6044
6045 /*
6046  * Used by the bulkscan code to snapshot the synchronized storage for
6047  * a volume, allowing it to be scanned concurrently against normal
6048  * operation.
6049  */
6050 hammer2_chain_t *
6051 hammer2_chain_bulksnap(hammer2_dev_t *hmp)
6052 {
6053         hammer2_chain_t *copy;
6054
6055         copy = hammer2_chain_alloc(hmp, hmp->spmp, &hmp->vchain.bref);
6056         copy->data = kmalloc(sizeof(copy->data->voldata),
6057                              hmp->mchain,
6058                              M_WAITOK | M_ZERO);
6059         hammer2_voldata_lock(hmp);
6060         copy->data->voldata = hmp->volsync;
6061         hammer2_voldata_unlock(hmp);
6062
6063         return copy;
6064 }
6065
6066 void
6067 hammer2_chain_bulkdrop(hammer2_chain_t *copy)
6068 {
6069         KKASSERT(copy->bref.type == HAMMER2_BREF_TYPE_VOLUME);
6070         KKASSERT(copy->data);
6071         kfree(copy->data, copy->hmp->mchain);
6072         copy->data = NULL;
6073         atomic_add_long(&hammer2_chain_allocs, -1);
6074         hammer2_chain_drop(copy);
6075 }
6076
6077 /*
6078  * Returns non-zero if the chain (INODE or DIRENT) matches the
6079  * filename.
6080  */
6081 int
6082 hammer2_chain_dirent_test(hammer2_chain_t *chain, const char *name,
6083                           size_t name_len)
6084 {
6085         const hammer2_inode_data_t *ripdata;
6086
6087         if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
6088                 ripdata = &chain->data->ipdata;
6089                 if (ripdata->meta.name_len == name_len &&
6090                     bcmp(ripdata->filename, name, name_len) == 0) {
6091                         return 1;
6092                 }
6093         }
6094         if (chain->bref.type == HAMMER2_BREF_TYPE_DIRENT &&
6095             chain->bref.embed.dirent.namlen == name_len) {
6096                 if (name_len > sizeof(chain->bref.check.buf) &&
6097                     bcmp(chain->data->buf, name, name_len) == 0) {
6098                         return 1;
6099                 }
6100                 if (name_len <= sizeof(chain->bref.check.buf) &&
6101                     bcmp(chain->bref.check.buf, name, name_len) == 0) {
6102                         return 1;
6103                 }
6104         }
6105         return 0;
6106 }