The thread/proc pointer argument in the VFS subsystem originally existed
[dragonfly.git] / sys / vm / vm_object.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65  * $DragonFly: src/sys/vm/vm_object.c,v 1.23 2006/05/06 02:43:15 dillon Exp $
66  */
67
68 /*
69  *      Virtual memory object module.
70  */
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>           /* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
94
95 #define EASY_SCAN_FACTOR        8
96
97 #define MSYNC_FLUSH_HARDSEQ     0x01
98 #define MSYNC_FLUSH_SOFTSEQ     0x02
99
100 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
101 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
102         CTLFLAG_RW, &msync_flush_flags, 0, "");
103
104 static void     vm_object_qcollapse (vm_object_t object);
105 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
106
107 /*
108  *      Virtual memory objects maintain the actual data
109  *      associated with allocated virtual memory.  A given
110  *      page of memory exists within exactly one object.
111  *
112  *      An object is only deallocated when all "references"
113  *      are given up.  Only one "reference" to a given
114  *      region of an object should be writeable.
115  *
116  *      Associated with each object is a list of all resident
117  *      memory pages belonging to that object; this list is
118  *      maintained by the "vm_page" module, and locked by the object's
119  *      lock.
120  *
121  *      Each object also records a "pager" routine which is
122  *      used to retrieve (and store) pages to the proper backing
123  *      storage.  In addition, objects may be backed by other
124  *      objects from which they were virtual-copied.
125  *
126  *      The only items within the object structure which are
127  *      modified after time of creation are:
128  *              reference count         locked by object's lock
129  *              pager routine           locked by object's lock
130  *
131  */
132
133 struct object_q vm_object_list;
134 static long vm_object_count;            /* count of all objects */
135 vm_object_t kernel_object;
136 vm_object_t kmem_object;
137 static struct vm_object kernel_object_store;
138 static struct vm_object kmem_object_store;
139 extern int vm_pageout_page_count;
140
141 static long object_collapses;
142 static long object_bypasses;
143 static int next_index;
144 static vm_zone_t obj_zone;
145 static struct vm_zone obj_zone_store;
146 static int object_hash_rand;
147 #define VM_OBJECTS_INIT 256
148 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
149
150 void
151 _vm_object_allocate(objtype_t type, vm_size_t size, vm_object_t object)
152 {
153         int incr;
154         TAILQ_INIT(&object->memq);
155         LIST_INIT(&object->shadow_head);
156
157         object->type = type;
158         object->size = size;
159         object->ref_count = 1;
160         object->flags = 0;
161         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
162                 vm_object_set_flag(object, OBJ_ONEMAPPING);
163         object->paging_in_progress = 0;
164         object->resident_page_count = 0;
165         object->shadow_count = 0;
166         object->pg_color = next_index;
167         if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
168                 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
169         else
170                 incr = size;
171         next_index = (next_index + incr) & PQ_L2_MASK;
172         object->handle = NULL;
173         object->backing_object = NULL;
174         object->backing_object_offset = (vm_ooffset_t) 0;
175         /*
176          * Try to generate a number that will spread objects out in the
177          * hash table.  We 'wipe' new objects across the hash in 128 page
178          * increments plus 1 more to offset it a little more by the time
179          * it wraps around.
180          */
181         object->hash_rand = object_hash_rand - 129;
182
183         object->generation++;
184
185         crit_enter();
186         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
187         vm_object_count++;
188         object_hash_rand = object->hash_rand;
189         crit_exit();
190 }
191
192 /*
193  *      vm_object_init:
194  *
195  *      Initialize the VM objects module.
196  */
197 void
198 vm_object_init(void)
199 {
200         TAILQ_INIT(&vm_object_list);
201         
202         kernel_object = &kernel_object_store;
203         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
204             kernel_object);
205
206         kmem_object = &kmem_object_store;
207         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
208             kmem_object);
209
210         obj_zone = &obj_zone_store;
211         zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
212                 vm_objects_init, VM_OBJECTS_INIT);
213 }
214
215 void
216 vm_object_init2(void)
217 {
218         zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
219 }
220
221 /*
222  *      vm_object_allocate:
223  *
224  *      Returns a new object with the given size.
225  */
226
227 vm_object_t
228 vm_object_allocate(objtype_t type, vm_size_t size)
229 {
230         vm_object_t result;
231
232         result = (vm_object_t) zalloc(obj_zone);
233
234         _vm_object_allocate(type, size, result);
235
236         return (result);
237 }
238
239
240 /*
241  *      vm_object_reference:
242  *
243  *      Gets another reference to the given object.
244  */
245 void
246 vm_object_reference(vm_object_t object)
247 {
248         if (object == NULL)
249                 return;
250
251 #if 0
252         /* object can be re-referenced during final cleaning */
253         KASSERT(!(object->flags & OBJ_DEAD),
254             ("vm_object_reference: attempting to reference dead obj"));
255 #endif
256
257         object->ref_count++;
258         if (object->type == OBJT_VNODE) {
259                 vref(object->handle);
260                 /* XXX what if the vnode is being destroyed? */
261 #if 0
262                 while (vget((struct vnode *) object->handle, 
263                     LK_RETRY|LK_NOOBJ, curthread)) {
264                         printf("vm_object_reference: delay in getting object\n");
265                 }
266 #endif
267         }
268 }
269
270 void
271 vm_object_vndeallocate(vm_object_t object)
272 {
273         struct vnode *vp = (struct vnode *) object->handle;
274
275         KASSERT(object->type == OBJT_VNODE,
276             ("vm_object_vndeallocate: not a vnode object"));
277         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
278 #ifdef INVARIANTS
279         if (object->ref_count == 0) {
280                 vprint("vm_object_vndeallocate", vp);
281                 panic("vm_object_vndeallocate: bad object reference count");
282         }
283 #endif
284
285         object->ref_count--;
286         if (object->ref_count == 0) {
287                 vp->v_flag &= ~VTEXT;
288                 vm_object_clear_flag(object, OBJ_OPT);
289         }
290         vrele(vp);
291 }
292
293 /*
294  *      vm_object_deallocate:
295  *
296  *      Release a reference to the specified object,
297  *      gained either through a vm_object_allocate
298  *      or a vm_object_reference call.  When all references
299  *      are gone, storage associated with this object
300  *      may be relinquished.
301  *
302  *      No object may be locked.
303  */
304 void
305 vm_object_deallocate(vm_object_t object)
306 {
307         vm_object_t temp;
308
309         while (object != NULL) {
310
311                 if (object->type == OBJT_VNODE) {
312                         vm_object_vndeallocate(object);
313                         return;
314                 }
315
316                 if (object->ref_count == 0) {
317                         panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
318                 } else if (object->ref_count > 2) {
319                         object->ref_count--;
320                         return;
321                 }
322
323                 /*
324                  * Here on ref_count of one or two, which are special cases for
325                  * objects.
326                  */
327                 if ((object->ref_count == 2) && (object->shadow_count == 0)) {
328                         vm_object_set_flag(object, OBJ_ONEMAPPING);
329                         object->ref_count--;
330                         return;
331                 } else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
332                         object->ref_count--;
333                         if ((object->handle == NULL) &&
334                             (object->type == OBJT_DEFAULT ||
335                              object->type == OBJT_SWAP)) {
336                                 vm_object_t robject;
337
338                                 robject = LIST_FIRST(&object->shadow_head);
339                                 KASSERT(robject != NULL,
340                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
341                                          object->ref_count,
342                                          object->shadow_count));
343                                 if ((robject->handle == NULL) &&
344                                     (robject->type == OBJT_DEFAULT ||
345                                      robject->type == OBJT_SWAP)) {
346
347                                         robject->ref_count++;
348
349                                         while (
350                                                 robject->paging_in_progress ||
351                                                 object->paging_in_progress
352                                         ) {
353                                                 vm_object_pip_sleep(robject, "objde1");
354                                                 vm_object_pip_sleep(object, "objde2");
355                                         }
356
357                                         if (robject->ref_count == 1) {
358                                                 robject->ref_count--;
359                                                 object = robject;
360                                                 goto doterm;
361                                         }
362
363                                         object = robject;
364                                         vm_object_collapse(object);
365                                         continue;
366                                 }
367                         }
368
369                         return;
370
371                 } else {
372                         object->ref_count--;
373                         if (object->ref_count != 0)
374                                 return;
375                 }
376
377 doterm:
378
379                 temp = object->backing_object;
380                 if (temp) {
381                         LIST_REMOVE(object, shadow_list);
382                         temp->shadow_count--;
383                         if (temp->ref_count == 0)
384                                 vm_object_clear_flag(temp, OBJ_OPT);
385                         temp->generation++;
386                         object->backing_object = NULL;
387                 }
388
389                 /*
390                  * Don't double-terminate, we could be in a termination
391                  * recursion due to the terminate having to sync data
392                  * to disk.
393                  */
394                 if ((object->flags & OBJ_DEAD) == 0)
395                         vm_object_terminate(object);
396                 object = temp;
397         }
398 }
399
400 /*
401  *      vm_object_terminate actually destroys the specified object, freeing
402  *      up all previously used resources.
403  *
404  *      The object must be locked.
405  *      This routine may block.
406  */
407 void
408 vm_object_terminate(vm_object_t object)
409 {
410         vm_page_t p;
411
412         /*
413          * Make sure no one uses us.
414          */
415         vm_object_set_flag(object, OBJ_DEAD);
416
417         /*
418          * wait for the pageout daemon to be done with the object
419          */
420         vm_object_pip_wait(object, "objtrm");
421
422         KASSERT(!object->paging_in_progress,
423                 ("vm_object_terminate: pageout in progress"));
424
425         /*
426          * Clean and free the pages, as appropriate. All references to the
427          * object are gone, so we don't need to lock it.
428          */
429         if (object->type == OBJT_VNODE) {
430                 struct vnode *vp;
431
432                 /*
433                  * Freeze optimized copies.
434                  */
435                 vm_freeze_copyopts(object, 0, object->size);
436
437                 /*
438                  * Clean pages and flush buffers.
439                  */
440                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
441
442                 vp = (struct vnode *) object->handle;
443                 vinvalbuf(vp, V_SAVE, 0, 0);
444         }
445
446         /*
447          * Wait for any I/O to complete, after which there had better not
448          * be any references left on the object.
449          */
450         vm_object_pip_wait(object, "objtrm");
451
452         if (object->ref_count != 0)
453                 panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
454
455         /*
456          * Now free any remaining pages. For internal objects, this also
457          * removes them from paging queues. Don't free wired pages, just
458          * remove them from the object. 
459          */
460         crit_enter();
461         while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
462                 if (p->busy || (p->flags & PG_BUSY))
463                         panic("vm_object_terminate: freeing busy page %p", p);
464                 if (p->wire_count == 0) {
465                         vm_page_busy(p);
466                         vm_page_free(p);
467                         mycpu->gd_cnt.v_pfree++;
468                 } else {
469                         vm_page_busy(p);
470                         vm_page_remove(p);
471                         vm_page_wakeup(p);
472                 }
473         }
474         crit_exit();
475
476         /*
477          * Let the pager know object is dead.
478          */
479         vm_pager_deallocate(object);
480
481         /*
482          * Remove the object from the global object list.
483          */
484         crit_enter();
485         TAILQ_REMOVE(&vm_object_list, object, object_list);
486         vm_object_count--;
487         crit_exit();
488
489         wakeup(object);
490         if (object->ref_count != 0)
491                 panic("vm_object_terminate2: object with references, ref_count=%d", object->ref_count);
492
493         /*
494          * Free the space for the object.
495          */
496         zfree(obj_zone, object);
497 }
498
499 /*
500  *      vm_object_page_clean
501  *
502  *      Clean all dirty pages in the specified range of object.  Leaves page 
503  *      on whatever queue it is currently on.   If NOSYNC is set then do not
504  *      write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
505  *      leaving the object dirty.
506  *
507  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
508  *      synchronous clustering mode implementation.
509  *
510  *      Odd semantics: if start == end, we clean everything.
511  */
512
513 void
514 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
515     int flags)
516 {
517         vm_page_t p, np;
518         vm_offset_t tstart, tend;
519         vm_pindex_t pi;
520         struct vnode *vp;
521         int clearobjflags;
522         int pagerflags;
523         int curgeneration;
524
525         if (object->type != OBJT_VNODE ||
526                 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
527                 return;
528
529         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
530         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
531
532         vp = object->handle;
533
534         vm_object_set_flag(object, OBJ_CLEANING);
535
536         /*
537          * Handle 'entire object' case
538          */
539         tstart = start;
540         if (end == 0) {
541                 tend = object->size;
542         } else {
543                 tend = end;
544         }
545
546         /*
547          * If the caller is smart and only msync()s a range he knows is
548          * dirty, we may be able to avoid an object scan.  This results in
549          * a phenominal improvement in performance.  We cannot do this
550          * as a matter of course because the object may be huge - e.g.
551          * the size might be in the gigabytes or terrabytes.
552          */
553         if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
554                 vm_offset_t tscan;
555                 int scanlimit;
556                 int scanreset;
557
558                 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
559                 if (scanreset < 16)
560                         scanreset = 16;
561                 pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
562
563                 scanlimit = scanreset;
564                 tscan = tstart;
565
566                 /*
567                  * spl protection is required despite the obj generation
568                  * tracking because we cannot safely call vm_page_test_dirty()
569                  * or avoid page field tests against an interrupt unbusy/free
570                  * race that might occur prior to the busy check in
571                  * vm_object_page_collect_flush().
572                  */
573                 crit_enter();
574                 while (tscan < tend) {
575                         curgeneration = object->generation;
576                         p = vm_page_lookup(object, tscan);
577                         if (p == NULL || p->valid == 0 ||
578                             (p->queue - p->pc) == PQ_CACHE) {
579                                 if (--scanlimit == 0)
580                                         break;
581                                 ++tscan;
582                                 continue;
583                         }
584                         vm_page_test_dirty(p);
585                         if ((p->dirty & p->valid) == 0) {
586                                 if (--scanlimit == 0)
587                                         break;
588                                 ++tscan;
589                                 continue;
590                         }
591                         /*
592                          * If we have been asked to skip nosync pages and 
593                          * this is a nosync page, we can't continue.
594                          */
595                         if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
596                                 if (--scanlimit == 0)
597                                         break;
598                                 ++tscan;
599                                 continue;
600                         }
601                         scanlimit = scanreset;
602
603                         /*
604                          * This returns 0 if it was unable to busy the first
605                          * page (i.e. had to sleep).
606                          */
607                         tscan += vm_object_page_collect_flush(object, p, 
608                                                 curgeneration, pagerflags);
609                 }
610                 crit_exit();
611
612                 /*
613                  * If everything was dirty and we flushed it successfully,
614                  * and the requested range is not the entire object, we
615                  * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
616                  * return immediately.
617                  */
618                 if (tscan >= tend && (tstart || tend < object->size)) {
619                         vm_object_clear_flag(object, OBJ_CLEANING);
620                         return;
621                 }
622                 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
623         }
624
625         /*
626          * Generally set CLEANCHK interlock and make the page read-only so
627          * we can then clear the object flags.
628          *
629          * However, if this is a nosync mmap then the object is likely to 
630          * stay dirty so do not mess with the page and do not clear the
631          * object flags.
632          *
633          * spl protection is required because an interrupt can remove page
634          * from the object.
635          */
636         clearobjflags = 1;
637
638         crit_enter();
639         for (p = TAILQ_FIRST(&object->memq); p; p = TAILQ_NEXT(p, listq)) {
640                 vm_page_flag_set(p, PG_CLEANCHK);
641                 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
642                         clearobjflags = 0;
643                 else
644                         vm_page_protect(p, VM_PROT_READ);
645         }
646         crit_exit();
647
648         if (clearobjflags && (tstart == 0) && (tend == object->size)) {
649                 struct vnode *vp;
650
651                 vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
652                 if (object->type == OBJT_VNODE &&
653                     (vp = (struct vnode *)object->handle) != NULL) {
654                         if (vp->v_flag & VOBJDIRTY) 
655                                 vclrflags(vp, VOBJDIRTY);
656                 }
657         }
658
659         /*
660          * spl protection is required both to avoid an interrupt unbusy/free
661          * race against a vm_page_lookup(), and also to ensure that the
662          * memq is consistent.  We do not want a busy page to be ripped out
663          * from under us.
664          */
665         crit_enter();
666 rescan:
667         crit_exit();
668         crit_enter();
669         curgeneration = object->generation;
670
671         for (p = TAILQ_FIRST(&object->memq); p; p = np) {
672                 int n;
673
674                 np = TAILQ_NEXT(p, listq);
675
676 again:
677                 pi = p->pindex;
678                 if (((p->flags & PG_CLEANCHK) == 0) ||
679                         (pi < tstart) || (pi >= tend) ||
680                         (p->valid == 0) ||
681                         ((p->queue - p->pc) == PQ_CACHE)) {
682                         vm_page_flag_clear(p, PG_CLEANCHK);
683                         continue;
684                 }
685
686                 vm_page_test_dirty(p);
687                 if ((p->dirty & p->valid) == 0) {
688                         vm_page_flag_clear(p, PG_CLEANCHK);
689                         continue;
690                 }
691
692                 /*
693                  * If we have been asked to skip nosync pages and this is a
694                  * nosync page, skip it.  Note that the object flags were
695                  * not cleared in this case so we do not have to set them.
696                  */
697                 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
698                         vm_page_flag_clear(p, PG_CLEANCHK);
699                         continue;
700                 }
701
702                 n = vm_object_page_collect_flush(object, p,
703                         curgeneration, pagerflags);
704                 if (n == 0)
705                         goto rescan;
706                 if (object->generation != curgeneration)
707                         goto rescan;
708
709                 /*
710                  * Try to optimize the next page.  If we can't we pick up
711                  * our (random) scan where we left off.
712                  */
713                 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
714                         if ((p = vm_page_lookup(object, pi + n)) != NULL)
715                                 goto again;
716                 }
717         }
718         crit_exit();
719
720         vm_object_clear_flag(object, OBJ_CLEANING);
721         return;
722 }
723
724 /*
725  * This routine must be called within a critical section to properly avoid
726  * an interrupt unbusy/free race that can occur prior to the busy check.
727  *
728  * Using the object generation number here to detect page ripout is not
729  * the best idea in the world. XXX
730  *
731  * NOTE: we operate under the assumption that a page found to not be busy
732  * will not be ripped out from under us by an interrupt.  XXX we should
733  * recode this to explicitly busy the pages.
734  */
735 static int
736 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
737 {
738         int runlen;
739         int maxf;
740         int chkb;
741         int maxb;
742         int i;
743         vm_pindex_t pi;
744         vm_page_t maf[vm_pageout_page_count];
745         vm_page_t mab[vm_pageout_page_count];
746         vm_page_t ma[vm_pageout_page_count];
747
748         pi = p->pindex;
749         while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
750                 if (object->generation != curgeneration) {
751                         return(0);
752                 }
753         }
754
755         maxf = 0;
756         for(i = 1; i < vm_pageout_page_count; i++) {
757                 vm_page_t tp;
758
759                 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
760                         if ((tp->flags & PG_BUSY) ||
761                                 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
762                                  (tp->flags & PG_CLEANCHK) == 0) ||
763                                 (tp->busy != 0))
764                                 break;
765                         if((tp->queue - tp->pc) == PQ_CACHE) {
766                                 vm_page_flag_clear(tp, PG_CLEANCHK);
767                                 break;
768                         }
769                         vm_page_test_dirty(tp);
770                         if ((tp->dirty & tp->valid) == 0) {
771                                 vm_page_flag_clear(tp, PG_CLEANCHK);
772                                 break;
773                         }
774                         maf[ i - 1 ] = tp;
775                         maxf++;
776                         continue;
777                 }
778                 break;
779         }
780
781         maxb = 0;
782         chkb = vm_pageout_page_count -  maxf;
783         if (chkb) {
784                 for(i = 1; i < chkb;i++) {
785                         vm_page_t tp;
786
787                         if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
788                                 if ((tp->flags & PG_BUSY) ||
789                                         ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
790                                          (tp->flags & PG_CLEANCHK) == 0) ||
791                                         (tp->busy != 0))
792                                         break;
793                                 if((tp->queue - tp->pc) == PQ_CACHE) {
794                                         vm_page_flag_clear(tp, PG_CLEANCHK);
795                                         break;
796                                 }
797                                 vm_page_test_dirty(tp);
798                                 if ((tp->dirty & tp->valid) == 0) {
799                                         vm_page_flag_clear(tp, PG_CLEANCHK);
800                                         break;
801                                 }
802                                 mab[ i - 1 ] = tp;
803                                 maxb++;
804                                 continue;
805                         }
806                         break;
807                 }
808         }
809
810         for(i = 0; i < maxb; i++) {
811                 int index = (maxb - i) - 1;
812                 ma[index] = mab[i];
813                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
814         }
815         vm_page_flag_clear(p, PG_CLEANCHK);
816         ma[maxb] = p;
817         for(i = 0; i < maxf; i++) {
818                 int index = (maxb + i) + 1;
819                 ma[index] = maf[i];
820                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
821         }
822         runlen = maxb + maxf + 1;
823
824         vm_pageout_flush(ma, runlen, pagerflags);
825         for (i = 0; i < runlen; i++) {
826                 if (ma[i]->valid & ma[i]->dirty) {
827                         vm_page_protect(ma[i], VM_PROT_READ);
828                         vm_page_flag_set(ma[i], PG_CLEANCHK);
829
830                         /*
831                          * maxf will end up being the actual number of pages
832                          * we wrote out contiguously, non-inclusive of the
833                          * first page.  We do not count look-behind pages.
834                          */
835                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
836                                 maxf = i - maxb - 1;
837                 }
838         }
839         return(maxf + 1);
840 }
841
842 #ifdef not_used
843 /* XXX I cannot tell if this should be an exported symbol */
844 /*
845  *      vm_object_deactivate_pages
846  *
847  *      Deactivate all pages in the specified object.  (Keep its pages
848  *      in memory even though it is no longer referenced.)
849  *
850  *      The object must be locked.
851  */
852 static void
853 vm_object_deactivate_pages(vm_object_t object)
854 {
855         vm_page_t p, next;
856
857         crit_enter();
858         for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
859                 next = TAILQ_NEXT(p, listq);
860                 vm_page_deactivate(p);
861         }
862         crit_exit();
863 }
864 #endif
865
866 /*
867  * Same as vm_object_pmap_copy, except range checking really
868  * works, and is meant for small sections of an object.
869  *
870  * This code protects resident pages by making them read-only
871  * and is typically called on a fork or split when a page
872  * is converted to copy-on-write.  
873  *
874  * NOTE: If the page is already at VM_PROT_NONE, calling
875  * vm_page_protect will have no effect.
876  */
877 void
878 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
879 {
880         vm_pindex_t idx;
881         vm_page_t p;
882
883         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
884                 return;
885
886         /*
887          * spl protection needed to prevent races between the lookup,
888          * an interrupt unbusy/free, and our protect call.
889          */
890         crit_enter();
891         for (idx = start; idx < end; idx++) {
892                 p = vm_page_lookup(object, idx);
893                 if (p == NULL)
894                         continue;
895                 vm_page_protect(p, VM_PROT_READ);
896         }
897         crit_exit();
898 }
899
900 /*
901  *      vm_object_pmap_remove:
902  *
903  *      Removes all physical pages in the specified
904  *      object range from all physical maps.
905  *
906  *      The object must *not* be locked.
907  */
908 void
909 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
910 {
911         vm_page_t p;
912
913         if (object == NULL)
914                 return;
915
916         /*
917          * spl protection is required because an interrupt can unbusy/free
918          * a page.
919          */
920         crit_enter();
921         for (p = TAILQ_FIRST(&object->memq);
922             p != NULL;
923             p = TAILQ_NEXT(p, listq)
924         ) {
925                 if (p->pindex >= start && p->pindex < end)
926                         vm_page_protect(p, VM_PROT_NONE);
927         }
928         crit_exit();
929         if ((start == 0) && (object->size == end))
930                 vm_object_clear_flag(object, OBJ_WRITEABLE);
931 }
932
933 /*
934  *      vm_object_madvise:
935  *
936  *      Implements the madvise function at the object/page level.
937  *
938  *      MADV_WILLNEED   (any object)
939  *
940  *          Activate the specified pages if they are resident.
941  *
942  *      MADV_DONTNEED   (any object)
943  *
944  *          Deactivate the specified pages if they are resident.
945  *
946  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
947  *                       OBJ_ONEMAPPING only)
948  *
949  *          Deactivate and clean the specified pages if they are
950  *          resident.  This permits the process to reuse the pages
951  *          without faulting or the kernel to reclaim the pages
952  *          without I/O.
953  */
954 void
955 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
956 {
957         vm_pindex_t end, tpindex;
958         vm_object_t tobject;
959         vm_page_t m;
960
961         if (object == NULL)
962                 return;
963
964         end = pindex + count;
965
966         /*
967          * Locate and adjust resident pages
968          */
969
970         for (; pindex < end; pindex += 1) {
971 relookup:
972                 tobject = object;
973                 tpindex = pindex;
974 shadowlookup:
975                 /*
976                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
977                  * and those pages must be OBJ_ONEMAPPING.
978                  */
979                 if (advise == MADV_FREE) {
980                         if ((tobject->type != OBJT_DEFAULT &&
981                              tobject->type != OBJT_SWAP) ||
982                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
983                                 continue;
984                         }
985                 }
986
987                 /*
988                  * spl protection is required to avoid a race between the
989                  * lookup, an interrupt unbusy/free, and our busy check.
990                  */
991
992                 crit_enter();
993                 m = vm_page_lookup(tobject, tpindex);
994
995                 if (m == NULL) {
996                         /*
997                          * There may be swap even if there is no backing page
998                          */
999                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1000                                 swap_pager_freespace(tobject, tpindex, 1);
1001
1002                         /*
1003                          * next object
1004                          */
1005                         crit_exit();
1006                         if (tobject->backing_object == NULL)
1007                                 continue;
1008                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1009                         tobject = tobject->backing_object;
1010                         goto shadowlookup;
1011                 }
1012
1013                 /*
1014                  * If the page is busy or not in a normal active state,
1015                  * we skip it.  If the page is not managed there are no
1016                  * page queues to mess with.  Things can break if we mess
1017                  * with pages in any of the below states.
1018                  */
1019                 if (
1020                     m->hold_count ||
1021                     m->wire_count ||
1022                     (m->flags & PG_UNMANAGED) ||
1023                     m->valid != VM_PAGE_BITS_ALL
1024                 ) {
1025                         crit_exit();
1026                         continue;
1027                 }
1028
1029                 if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
1030                         crit_exit();
1031                         goto relookup;
1032                 }
1033                 crit_exit();
1034
1035                 /*
1036                  * Theoretically once a page is known not to be busy, an
1037                  * interrupt cannot come along and rip it out from under us.
1038                  */
1039
1040                 if (advise == MADV_WILLNEED) {
1041                         vm_page_activate(m);
1042                 } else if (advise == MADV_DONTNEED) {
1043                         vm_page_dontneed(m);
1044                 } else if (advise == MADV_FREE) {
1045                         /*
1046                          * Mark the page clean.  This will allow the page
1047                          * to be freed up by the system.  However, such pages
1048                          * are often reused quickly by malloc()/free()
1049                          * so we do not do anything that would cause
1050                          * a page fault if we can help it.
1051                          *
1052                          * Specifically, we do not try to actually free
1053                          * the page now nor do we try to put it in the
1054                          * cache (which would cause a page fault on reuse).
1055                          *
1056                          * But we do make the page is freeable as we
1057                          * can without actually taking the step of unmapping
1058                          * it.
1059                          */
1060                         pmap_clear_modify(m);
1061                         m->dirty = 0;
1062                         m->act_count = 0;
1063                         vm_page_dontneed(m);
1064                         if (tobject->type == OBJT_SWAP)
1065                                 swap_pager_freespace(tobject, tpindex, 1);
1066                 }
1067         }       
1068 }
1069
1070 /*
1071  *      vm_object_shadow:
1072  *
1073  *      Create a new object which is backed by the
1074  *      specified existing object range.  The source
1075  *      object reference is deallocated.
1076  *
1077  *      The new object and offset into that object
1078  *      are returned in the source parameters.
1079  */
1080
1081 void
1082 vm_object_shadow(vm_object_t *object,   /* IN/OUT */
1083                  vm_ooffset_t *offset,  /* IN/OUT */
1084                  vm_size_t length)
1085 {
1086         vm_object_t source;
1087         vm_object_t result;
1088
1089         source = *object;
1090
1091         /*
1092          * Don't create the new object if the old object isn't shared.
1093          */
1094
1095         if (source != NULL &&
1096             source->ref_count == 1 &&
1097             source->handle == NULL &&
1098             (source->type == OBJT_DEFAULT ||
1099              source->type == OBJT_SWAP))
1100                 return;
1101
1102         /*
1103          * Allocate a new object with the given length
1104          */
1105
1106         if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1107                 panic("vm_object_shadow: no object for shadowing");
1108
1109         /*
1110          * The new object shadows the source object, adding a reference to it.
1111          * Our caller changes his reference to point to the new object,
1112          * removing a reference to the source object.  Net result: no change
1113          * of reference count.
1114          *
1115          * Try to optimize the result object's page color when shadowing
1116          * in order to maintain page coloring consistency in the combined 
1117          * shadowed object.
1118          */
1119         result->backing_object = source;
1120         if (source) {
1121                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1122                 source->shadow_count++;
1123                 source->generation++;
1124                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1125         }
1126
1127         /*
1128          * Store the offset into the source object, and fix up the offset into
1129          * the new object.
1130          */
1131
1132         result->backing_object_offset = *offset;
1133
1134         /*
1135          * Return the new things
1136          */
1137
1138         *offset = 0;
1139         *object = result;
1140 }
1141
1142 #define OBSC_TEST_ALL_SHADOWED  0x0001
1143 #define OBSC_COLLAPSE_NOWAIT    0x0002
1144 #define OBSC_COLLAPSE_WAIT      0x0004
1145
1146 static __inline int
1147 vm_object_backing_scan(vm_object_t object, int op)
1148 {
1149         int r = 1;
1150         vm_page_t p;
1151         vm_object_t backing_object;
1152         vm_pindex_t backing_offset_index;
1153
1154         /*
1155          * spl protection is required to avoid races between the memq/lookup,
1156          * an interrupt doing an unbusy/free, and our busy check.  Amoung
1157          * other things.
1158          */
1159         crit_enter();
1160
1161         backing_object = object->backing_object;
1162         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1163
1164         /*
1165          * Initial conditions
1166          */
1167
1168         if (op & OBSC_TEST_ALL_SHADOWED) {
1169                 /*
1170                  * We do not want to have to test for the existence of
1171                  * swap pages in the backing object.  XXX but with the
1172                  * new swapper this would be pretty easy to do.
1173                  *
1174                  * XXX what about anonymous MAP_SHARED memory that hasn't
1175                  * been ZFOD faulted yet?  If we do not test for this, the
1176                  * shadow test may succeed! XXX
1177                  */
1178                 if (backing_object->type != OBJT_DEFAULT) {
1179                         crit_exit();
1180                         return(0);
1181                 }
1182         }
1183         if (op & OBSC_COLLAPSE_WAIT) {
1184                 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1185                 vm_object_set_flag(backing_object, OBJ_DEAD);
1186         }
1187
1188         /*
1189          * Our scan
1190          */
1191
1192         p = TAILQ_FIRST(&backing_object->memq);
1193         while (p) {
1194                 vm_page_t next = TAILQ_NEXT(p, listq);
1195                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1196
1197                 if (op & OBSC_TEST_ALL_SHADOWED) {
1198                         vm_page_t pp;
1199
1200                         /*
1201                          * Ignore pages outside the parent object's range
1202                          * and outside the parent object's mapping of the 
1203                          * backing object.
1204                          *
1205                          * note that we do not busy the backing object's
1206                          * page.
1207                          */
1208
1209                         if (
1210                             p->pindex < backing_offset_index ||
1211                             new_pindex >= object->size
1212                         ) {
1213                                 p = next;
1214                                 continue;
1215                         }
1216
1217                         /*
1218                          * See if the parent has the page or if the parent's
1219                          * object pager has the page.  If the parent has the
1220                          * page but the page is not valid, the parent's
1221                          * object pager must have the page.
1222                          *
1223                          * If this fails, the parent does not completely shadow
1224                          * the object and we might as well give up now.
1225                          */
1226
1227                         pp = vm_page_lookup(object, new_pindex);
1228                         if (
1229                             (pp == NULL || pp->valid == 0) &&
1230                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1231                         ) {
1232                                 r = 0;
1233                                 break;
1234                         }
1235                 }
1236
1237                 /*
1238                  * Check for busy page
1239                  */
1240
1241                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1242                         vm_page_t pp;
1243
1244                         if (op & OBSC_COLLAPSE_NOWAIT) {
1245                                 if (
1246                                     (p->flags & PG_BUSY) ||
1247                                     !p->valid || 
1248                                     p->hold_count || 
1249                                     p->wire_count ||
1250                                     p->busy
1251                                 ) {
1252                                         p = next;
1253                                         continue;
1254                                 }
1255                         } else if (op & OBSC_COLLAPSE_WAIT) {
1256                                 if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1257                                         /*
1258                                          * If we slept, anything could have
1259                                          * happened.  Since the object is
1260                                          * marked dead, the backing offset
1261                                          * should not have changed so we
1262                                          * just restart our scan.
1263                                          */
1264                                         p = TAILQ_FIRST(&backing_object->memq);
1265                                         continue;
1266                                 }
1267                         }
1268
1269                         /* 
1270                          * Busy the page
1271                          */
1272                         vm_page_busy(p);
1273
1274                         KASSERT(
1275                             p->object == backing_object,
1276                             ("vm_object_qcollapse(): object mismatch")
1277                         );
1278
1279                         /*
1280                          * Destroy any associated swap
1281                          */
1282                         if (backing_object->type == OBJT_SWAP) {
1283                                 swap_pager_freespace(
1284                                     backing_object, 
1285                                     p->pindex,
1286                                     1
1287                                 );
1288                         }
1289
1290                         if (
1291                             p->pindex < backing_offset_index ||
1292                             new_pindex >= object->size
1293                         ) {
1294                                 /*
1295                                  * Page is out of the parent object's range, we 
1296                                  * can simply destroy it. 
1297                                  */
1298                                 vm_page_protect(p, VM_PROT_NONE);
1299                                 vm_page_free(p);
1300                                 p = next;
1301                                 continue;
1302                         }
1303
1304                         pp = vm_page_lookup(object, new_pindex);
1305                         if (
1306                             pp != NULL ||
1307                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1308                         ) {
1309                                 /*
1310                                  * page already exists in parent OR swap exists
1311                                  * for this location in the parent.  Destroy 
1312                                  * the original page from the backing object.
1313                                  *
1314                                  * Leave the parent's page alone
1315                                  */
1316                                 vm_page_protect(p, VM_PROT_NONE);
1317                                 vm_page_free(p);
1318                                 p = next;
1319                                 continue;
1320                         }
1321
1322                         /*
1323                          * Page does not exist in parent, rename the
1324                          * page from the backing object to the main object. 
1325                          *
1326                          * If the page was mapped to a process, it can remain 
1327                          * mapped through the rename.
1328                          */
1329                         if ((p->queue - p->pc) == PQ_CACHE)
1330                                 vm_page_deactivate(p);
1331
1332                         vm_page_rename(p, object, new_pindex);
1333                         /* page automatically made dirty by rename */
1334                 }
1335                 p = next;
1336         }
1337         crit_exit();
1338         return(r);
1339 }
1340
1341
1342 /*
1343  * this version of collapse allows the operation to occur earlier and
1344  * when paging_in_progress is true for an object...  This is not a complete
1345  * operation, but should plug 99.9% of the rest of the leaks.
1346  */
1347 static void
1348 vm_object_qcollapse(vm_object_t object)
1349 {
1350         vm_object_t backing_object = object->backing_object;
1351
1352         if (backing_object->ref_count != 1)
1353                 return;
1354
1355         backing_object->ref_count += 2;
1356
1357         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1358
1359         backing_object->ref_count -= 2;
1360 }
1361
1362 /*
1363  *      vm_object_collapse:
1364  *
1365  *      Collapse an object with the object backing it.
1366  *      Pages in the backing object are moved into the
1367  *      parent, and the backing object is deallocated.
1368  */
1369 void
1370 vm_object_collapse(vm_object_t object)
1371 {
1372         while (TRUE) {
1373                 vm_object_t backing_object;
1374
1375                 /*
1376                  * Verify that the conditions are right for collapse:
1377                  *
1378                  * The object exists and the backing object exists.
1379                  */
1380                 if (object == NULL)
1381                         break;
1382
1383                 if ((backing_object = object->backing_object) == NULL)
1384                         break;
1385
1386                 /*
1387                  * we check the backing object first, because it is most likely
1388                  * not collapsable.
1389                  */
1390                 if (backing_object->handle != NULL ||
1391                     (backing_object->type != OBJT_DEFAULT &&
1392                      backing_object->type != OBJT_SWAP) ||
1393                     (backing_object->flags & OBJ_DEAD) ||
1394                     object->handle != NULL ||
1395                     (object->type != OBJT_DEFAULT &&
1396                      object->type != OBJT_SWAP) ||
1397                     (object->flags & OBJ_DEAD)) {
1398                         break;
1399                 }
1400
1401                 if (
1402                     object->paging_in_progress != 0 ||
1403                     backing_object->paging_in_progress != 0
1404                 ) {
1405                         vm_object_qcollapse(object);
1406                         break;
1407                 }
1408
1409                 /*
1410                  * We know that we can either collapse the backing object (if
1411                  * the parent is the only reference to it) or (perhaps) have
1412                  * the parent bypass the object if the parent happens to shadow
1413                  * all the resident pages in the entire backing object.
1414                  *
1415                  * This is ignoring pager-backed pages such as swap pages.
1416                  * vm_object_backing_scan fails the shadowing test in this
1417                  * case.
1418                  */
1419
1420                 if (backing_object->ref_count == 1) {
1421                         /*
1422                          * If there is exactly one reference to the backing
1423                          * object, we can collapse it into the parent.  
1424                          */
1425                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1426
1427                         /*
1428                          * Move the pager from backing_object to object.
1429                          */
1430
1431                         if (backing_object->type == OBJT_SWAP) {
1432                                 vm_object_pip_add(backing_object, 1);
1433
1434                                 /*
1435                                  * scrap the paging_offset junk and do a 
1436                                  * discrete copy.  This also removes major 
1437                                  * assumptions about how the swap-pager 
1438                                  * works from where it doesn't belong.  The
1439                                  * new swapper is able to optimize the
1440                                  * destroy-source case.
1441                                  */
1442
1443                                 vm_object_pip_add(object, 1);
1444                                 swap_pager_copy(
1445                                     backing_object,
1446                                     object,
1447                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1448                                 vm_object_pip_wakeup(object);
1449
1450                                 vm_object_pip_wakeup(backing_object);
1451                         }
1452                         /*
1453                          * Object now shadows whatever backing_object did.
1454                          * Note that the reference to 
1455                          * backing_object->backing_object moves from within 
1456                          * backing_object to within object.
1457                          */
1458
1459                         LIST_REMOVE(object, shadow_list);
1460                         object->backing_object->shadow_count--;
1461                         object->backing_object->generation++;
1462                         if (backing_object->backing_object) {
1463                                 LIST_REMOVE(backing_object, shadow_list);
1464                                 backing_object->backing_object->shadow_count--;
1465                                 backing_object->backing_object->generation++;
1466                         }
1467                         object->backing_object = backing_object->backing_object;
1468                         if (object->backing_object) {
1469                                 LIST_INSERT_HEAD(
1470                                     &object->backing_object->shadow_head,
1471                                     object, 
1472                                     shadow_list
1473                                 );
1474                                 object->backing_object->shadow_count++;
1475                                 object->backing_object->generation++;
1476                         }
1477
1478                         object->backing_object_offset +=
1479                             backing_object->backing_object_offset;
1480
1481                         /*
1482                          * Discard backing_object.
1483                          *
1484                          * Since the backing object has no pages, no pager left,
1485                          * and no object references within it, all that is
1486                          * necessary is to dispose of it.
1487                          */
1488
1489                         KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1490                         KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1491                         crit_enter();
1492                         TAILQ_REMOVE(
1493                             &vm_object_list, 
1494                             backing_object,
1495                             object_list
1496                         );
1497                         vm_object_count--;
1498                         crit_exit();
1499
1500                         zfree(obj_zone, backing_object);
1501
1502                         object_collapses++;
1503                 } else {
1504                         vm_object_t new_backing_object;
1505
1506                         /*
1507                          * If we do not entirely shadow the backing object,
1508                          * there is nothing we can do so we give up.
1509                          */
1510
1511                         if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1512                                 break;
1513                         }
1514
1515                         /*
1516                          * Make the parent shadow the next object in the
1517                          * chain.  Deallocating backing_object will not remove
1518                          * it, since its reference count is at least 2.
1519                          */
1520
1521                         LIST_REMOVE(object, shadow_list);
1522                         backing_object->shadow_count--;
1523                         backing_object->generation++;
1524
1525                         new_backing_object = backing_object->backing_object;
1526                         if ((object->backing_object = new_backing_object) != NULL) {
1527                                 vm_object_reference(new_backing_object);
1528                                 LIST_INSERT_HEAD(
1529                                     &new_backing_object->shadow_head,
1530                                     object,
1531                                     shadow_list
1532                                 );
1533                                 new_backing_object->shadow_count++;
1534                                 new_backing_object->generation++;
1535                                 object->backing_object_offset +=
1536                                         backing_object->backing_object_offset;
1537                         }
1538
1539                         /*
1540                          * Drop the reference count on backing_object. Since
1541                          * its ref_count was at least 2, it will not vanish;
1542                          * so we don't need to call vm_object_deallocate, but
1543                          * we do anyway.
1544                          */
1545                         vm_object_deallocate(backing_object);
1546                         object_bypasses++;
1547                 }
1548
1549                 /*
1550                  * Try again with this object's new backing object.
1551                  */
1552         }
1553 }
1554
1555 /*
1556  *      vm_object_page_remove: [internal]
1557  *
1558  *      Removes all physical pages in the specified
1559  *      object range from the object's list of pages.
1560  */
1561 void
1562 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1563     boolean_t clean_only)
1564 {
1565         vm_page_t p, next;
1566         unsigned int size;
1567         int all;
1568
1569         if (object == NULL || object->resident_page_count == 0)
1570                 return;
1571
1572         all = ((end == 0) && (start == 0));
1573
1574         /*
1575          * Since physically-backed objects do not use managed pages, we can't
1576          * remove pages from the object (we must instead remove the page
1577          * references, and then destroy the object).
1578          */
1579         KASSERT(object->type != OBJT_PHYS, 
1580                 ("attempt to remove pages from a physical object"));
1581
1582         /*
1583          * Indicating that the object is undergoing paging.
1584          *
1585          * spl protection is required to avoid a race between the memq scan,
1586          * an interrupt unbusy/free, and the busy check.
1587          */
1588         vm_object_pip_add(object, 1);
1589         crit_enter();
1590 again:
1591         size = end - start;
1592         if (all || size > object->resident_page_count / 4) {
1593                 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1594                         next = TAILQ_NEXT(p, listq);
1595                         if (all || ((start <= p->pindex) && (p->pindex < end))) {
1596                                 if (p->wire_count != 0) {
1597                                         vm_page_protect(p, VM_PROT_NONE);
1598                                         if (!clean_only)
1599                                                 p->valid = 0;
1600                                         continue;
1601                                 }
1602
1603                                 /*
1604                                  * The busy flags are only cleared at
1605                                  * interrupt -- minimize the spl transitions
1606                                  */
1607
1608                                 if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1609                                         goto again;
1610
1611                                 if (clean_only && p->valid) {
1612                                         vm_page_test_dirty(p);
1613                                         if (p->valid & p->dirty)
1614                                                 continue;
1615                                 }
1616
1617                                 vm_page_busy(p);
1618                                 vm_page_protect(p, VM_PROT_NONE);
1619                                 vm_page_free(p);
1620                         }
1621                 }
1622         } else {
1623                 while (size > 0) {
1624                         if ((p = vm_page_lookup(object, start)) != 0) {
1625                                 if (p->wire_count != 0) {
1626                                         vm_page_protect(p, VM_PROT_NONE);
1627                                         if (!clean_only)
1628                                                 p->valid = 0;
1629                                         start += 1;
1630                                         size -= 1;
1631                                         continue;
1632                                 }
1633
1634                                 /*
1635                                  * The busy flags are only cleared at
1636                                  * interrupt -- minimize the spl transitions
1637                                  */
1638                                 if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1639                                         goto again;
1640
1641                                 if (clean_only && p->valid) {
1642                                         vm_page_test_dirty(p);
1643                                         if (p->valid & p->dirty) {
1644                                                 start += 1;
1645                                                 size -= 1;
1646                                                 continue;
1647                                         }
1648                                 }
1649
1650                                 vm_page_busy(p);
1651                                 vm_page_protect(p, VM_PROT_NONE);
1652                                 vm_page_free(p);
1653                         }
1654                         start += 1;
1655                         size -= 1;
1656                 }
1657         }
1658         crit_exit();
1659         vm_object_pip_wakeup(object);
1660 }
1661
1662 /*
1663  *      Routine:        vm_object_coalesce
1664  *      Function:       Coalesces two objects backing up adjoining
1665  *                      regions of memory into a single object.
1666  *
1667  *      returns TRUE if objects were combined.
1668  *
1669  *      NOTE:   Only works at the moment if the second object is NULL -
1670  *              if it's not, which object do we lock first?
1671  *
1672  *      Parameters:
1673  *              prev_object     First object to coalesce
1674  *              prev_offset     Offset into prev_object
1675  *              next_object     Second object into coalesce
1676  *              next_offset     Offset into next_object
1677  *
1678  *              prev_size       Size of reference to prev_object
1679  *              next_size       Size of reference to next_object
1680  *
1681  *      Conditions:
1682  *      The object must *not* be locked.
1683  */
1684 boolean_t
1685 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1686     vm_size_t prev_size, vm_size_t next_size)
1687 {
1688         vm_pindex_t next_pindex;
1689
1690         if (prev_object == NULL) {
1691                 return (TRUE);
1692         }
1693
1694         if (prev_object->type != OBJT_DEFAULT &&
1695             prev_object->type != OBJT_SWAP) {
1696                 return (FALSE);
1697         }
1698
1699         /*
1700          * Try to collapse the object first
1701          */
1702         vm_object_collapse(prev_object);
1703
1704         /*
1705          * Can't coalesce if: . more than one reference . paged out . shadows
1706          * another object . has a copy elsewhere (any of which mean that the
1707          * pages not mapped to prev_entry may be in use anyway)
1708          */
1709
1710         if (prev_object->backing_object != NULL) {
1711                 return (FALSE);
1712         }
1713
1714         prev_size >>= PAGE_SHIFT;
1715         next_size >>= PAGE_SHIFT;
1716         next_pindex = prev_pindex + prev_size;
1717
1718         if ((prev_object->ref_count > 1) &&
1719             (prev_object->size != next_pindex)) {
1720                 return (FALSE);
1721         }
1722
1723         /*
1724          * Remove any pages that may still be in the object from a previous
1725          * deallocation.
1726          */
1727         if (next_pindex < prev_object->size) {
1728                 vm_object_page_remove(prev_object,
1729                                       next_pindex,
1730                                       next_pindex + next_size, FALSE);
1731                 if (prev_object->type == OBJT_SWAP)
1732                         swap_pager_freespace(prev_object,
1733                                              next_pindex, next_size);
1734         }
1735
1736         /*
1737          * Extend the object if necessary.
1738          */
1739         if (next_pindex + next_size > prev_object->size)
1740                 prev_object->size = next_pindex + next_size;
1741
1742         return (TRUE);
1743 }
1744
1745 void
1746 vm_object_set_writeable_dirty(vm_object_t object)
1747 {
1748         struct vnode *vp;
1749
1750         vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1751         if (object->type == OBJT_VNODE &&
1752             (vp = (struct vnode *)object->handle) != NULL) {
1753                 if ((vp->v_flag & VOBJDIRTY) == 0) {
1754                         vsetflags(vp, VOBJDIRTY);
1755                 }
1756         }
1757 }
1758
1759
1760
1761 #include "opt_ddb.h"
1762 #ifdef DDB
1763 #include <sys/kernel.h>
1764
1765 #include <sys/cons.h>
1766
1767 #include <ddb/ddb.h>
1768
1769 static int      _vm_object_in_map (vm_map_t map, vm_object_t object,
1770                                        vm_map_entry_t entry);
1771 static int      vm_object_in_map (vm_object_t object);
1772
1773 static int
1774 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1775 {
1776         vm_map_t tmpm;
1777         vm_map_entry_t tmpe;
1778         vm_object_t obj;
1779         int entcount;
1780
1781         if (map == 0)
1782                 return 0;
1783
1784         if (entry == 0) {
1785                 tmpe = map->header.next;
1786                 entcount = map->nentries;
1787                 while (entcount-- && (tmpe != &map->header)) {
1788                         if( _vm_object_in_map(map, object, tmpe)) {
1789                                 return 1;
1790                         }
1791                         tmpe = tmpe->next;
1792                 }
1793         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1794                 tmpm = entry->object.sub_map;
1795                 tmpe = tmpm->header.next;
1796                 entcount = tmpm->nentries;
1797                 while (entcount-- && tmpe != &tmpm->header) {
1798                         if( _vm_object_in_map(tmpm, object, tmpe)) {
1799                                 return 1;
1800                         }
1801                         tmpe = tmpe->next;
1802                 }
1803         } else if ((obj = entry->object.vm_object) != NULL) {
1804                 for(; obj; obj=obj->backing_object)
1805                         if( obj == object) {
1806                                 return 1;
1807                         }
1808         }
1809         return 0;
1810 }
1811
1812 static int
1813 vm_object_in_map(vm_object_t object)
1814 {
1815         struct proc *p;
1816         for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1817                 if( !p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1818                         continue;
1819                 if( _vm_object_in_map(&p->p_vmspace->vm_map, object, 0))
1820                         return 1;
1821         }
1822         if( _vm_object_in_map( kernel_map, object, 0))
1823                 return 1;
1824         if( _vm_object_in_map( pager_map, object, 0))
1825                 return 1;
1826         if( _vm_object_in_map( buffer_map, object, 0))
1827                 return 1;
1828         return 0;
1829 }
1830
1831 DB_SHOW_COMMAND(vmochk, vm_object_check)
1832 {
1833         vm_object_t object;
1834
1835         /*
1836          * make sure that internal objs are in a map somewhere
1837          * and none have zero ref counts.
1838          */
1839         for (object = TAILQ_FIRST(&vm_object_list);
1840                         object != NULL;
1841                         object = TAILQ_NEXT(object, object_list)) {
1842                 if (object->handle == NULL &&
1843                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1844                         if (object->ref_count == 0) {
1845                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1846                                         (long)object->size);
1847                         }
1848                         if (!vm_object_in_map(object)) {
1849                                 db_printf(
1850                         "vmochk: internal obj is not in a map: "
1851                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1852                                     object->ref_count, (u_long)object->size, 
1853                                     (u_long)object->size,
1854                                     (void *)object->backing_object);
1855                         }
1856                 }
1857         }
1858 }
1859
1860 /*
1861  *      vm_object_print:        [ debug ]
1862  */
1863 DB_SHOW_COMMAND(object, vm_object_print_static)
1864 {
1865         /* XXX convert args. */
1866         vm_object_t object = (vm_object_t)addr;
1867         boolean_t full = have_addr;
1868
1869         vm_page_t p;
1870
1871         /* XXX count is an (unused) arg.  Avoid shadowing it. */
1872 #define count   was_count
1873
1874         int count;
1875
1876         if (object == NULL)
1877                 return;
1878
1879         db_iprintf(
1880             "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1881             object, (int)object->type, (u_long)object->size,
1882             object->resident_page_count, object->ref_count, object->flags);
1883         /*
1884          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1885          */
1886         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1887             object->shadow_count, 
1888             object->backing_object ? object->backing_object->ref_count : 0,
1889             object->backing_object, (long)object->backing_object_offset);
1890
1891         if (!full)
1892                 return;
1893
1894         db_indent += 2;
1895         count = 0;
1896         for (p = TAILQ_FIRST(&object->memq); p != NULL; p = TAILQ_NEXT(p, listq)) {
1897                 if (count == 0)
1898                         db_iprintf("memory:=");
1899                 else if (count == 6) {
1900                         db_printf("\n");
1901                         db_iprintf(" ...");
1902                         count = 0;
1903                 } else
1904                         db_printf(",");
1905                 count++;
1906
1907                 db_printf("(off=0x%lx,page=0x%lx)",
1908                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1909         }
1910         if (count != 0)
1911                 db_printf("\n");
1912         db_indent -= 2;
1913 }
1914
1915 /* XXX. */
1916 #undef count
1917
1918 /* XXX need this non-static entry for calling from vm_map_print. */
1919 void
1920 vm_object_print(/* db_expr_t */ long addr,
1921                 boolean_t have_addr,
1922                 /* db_expr_t */ long count,
1923                 char *modif)
1924 {
1925         vm_object_print_static(addr, have_addr, count, modif);
1926 }
1927
1928 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1929 {
1930         vm_object_t object;
1931         int nl = 0;
1932         int c;
1933         for (object = TAILQ_FIRST(&vm_object_list);
1934                         object != NULL;
1935                         object = TAILQ_NEXT(object, object_list)) {
1936                 vm_pindex_t idx, fidx;
1937                 vm_pindex_t osize;
1938                 vm_paddr_t pa = -1, padiff;
1939                 int rcount;
1940                 vm_page_t m;
1941
1942                 db_printf("new object: %p\n", (void *)object);
1943                 if ( nl > 18) {
1944                         c = cngetc();
1945                         if (c != ' ')
1946                                 return;
1947                         nl = 0;
1948                 }
1949                 nl++;
1950                 rcount = 0;
1951                 fidx = 0;
1952                 osize = object->size;
1953                 if (osize > 128)
1954                         osize = 128;
1955                 for (idx = 0; idx < osize; idx++) {
1956                         m = vm_page_lookup(object, idx);
1957                         if (m == NULL) {
1958                                 if (rcount) {
1959                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1960                                                 (long)fidx, rcount, (long)pa);
1961                                         if ( nl > 18) {
1962                                                 c = cngetc();
1963                                                 if (c != ' ')
1964                                                         return;
1965                                                 nl = 0;
1966                                         }
1967                                         nl++;
1968                                         rcount = 0;
1969                                 }
1970                                 continue;
1971                         }
1972
1973                                 
1974                         if (rcount &&
1975                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1976                                 ++rcount;
1977                                 continue;
1978                         }
1979                         if (rcount) {
1980                                 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1981                                 padiff >>= PAGE_SHIFT;
1982                                 padiff &= PQ_L2_MASK;
1983                                 if (padiff == 0) {
1984                                         pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1985                                         ++rcount;
1986                                         continue;
1987                                 }
1988                                 db_printf(" index(%ld)run(%d)pa(0x%lx)",
1989                                         (long)fidx, rcount, (long)pa);
1990                                 db_printf("pd(%ld)\n", (long)padiff);
1991                                 if ( nl > 18) {
1992                                         c = cngetc();
1993                                         if (c != ' ')
1994                                                 return;
1995                                         nl = 0;
1996                                 }
1997                                 nl++;
1998                         }
1999                         fidx = idx;
2000                         pa = VM_PAGE_TO_PHYS(m);
2001                         rcount = 1;
2002                 }
2003                 if (rcount) {
2004                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2005                                 (long)fidx, rcount, (long)pa);
2006                         if ( nl > 18) {
2007                                 c = cngetc();
2008                                 if (c != ' ')
2009                                         return;
2010                                 nl = 0;
2011                         }
2012                         nl++;
2013                 }
2014         }
2015 }
2016 #endif /* DDB */