HAMMER Utilities: enhanced show, timeout option
[dragonfly.git] / sys / vfs / hammer / hammer_inode.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $DragonFly: src/sys/vfs/hammer/hammer_inode.c,v 1.50 2008/05/04 09:06:45 dillon Exp $
35 */
36
37#include "hammer.h"
38#include <vm/vm_extern.h>
39#include <sys/buf.h>
40#include <sys/buf2.h>
41
42static int hammer_unload_inode(struct hammer_inode *ip);
43static void hammer_flush_inode_core(hammer_inode_t ip, int flags);
44static int hammer_setup_child_callback(hammer_record_t rec, void *data);
45static int hammer_setup_parent_inodes(hammer_record_t record);
46
47/*
48 * The kernel is not actively referencing this vnode but is still holding
49 * it cached.
50 *
51 * This is called from the frontend.
52 */
53int
54hammer_vop_inactive(struct vop_inactive_args *ap)
55{
56 struct hammer_inode *ip = VTOI(ap->a_vp);
57
58 /*
59 * Degenerate case
60 */
61 if (ip == NULL) {
62 vrecycle(ap->a_vp);
63 return(0);
64 }
65
66 /*
67 * If the inode no longer has visibility in the filesystem and is
68 * fairly clean, try to recycle it immediately. This can deadlock
69 * in vfsync() if we aren't careful.
70 */
71 hammer_inode_unloadable_check(ip, 0);
72 if (ip->flags & HAMMER_INODE_MODMASK)
73 hammer_flush_inode(ip, 0);
74 else if (ip->ino_rec.ino_nlinks == 0)
75 vrecycle(ap->a_vp);
76 return(0);
77}
78
79/*
80 * Release the vnode association. This is typically (but not always)
81 * the last reference on the inode.
82 *
83 * Once the association is lost we are on our own with regards to
84 * flushing the inode.
85 */
86int
87hammer_vop_reclaim(struct vop_reclaim_args *ap)
88{
89 struct hammer_inode *ip;
90 struct vnode *vp;
91
92 vp = ap->a_vp;
93
94 if ((ip = vp->v_data) != NULL) {
95 vp->v_data = NULL;
96 ip->vp = NULL;
97 hammer_rel_inode(ip, 1);
98 }
99 return(0);
100}
101
102/*
103 * Return a locked vnode for the specified inode. The inode must be
104 * referenced but NOT LOCKED on entry and will remain referenced on
105 * return.
106 *
107 * Called from the frontend.
108 */
109int
110hammer_get_vnode(struct hammer_inode *ip, struct vnode **vpp)
111{
112 struct vnode *vp;
113 int error = 0;
114
115 for (;;) {
116 if ((vp = ip->vp) == NULL) {
117 error = getnewvnode(VT_HAMMER, ip->hmp->mp, vpp, 0, 0);
118 if (error)
119 break;
120 hammer_lock_ex(&ip->lock);
121 if (ip->vp != NULL) {
122 hammer_unlock(&ip->lock);
123 vp->v_type = VBAD;
124 vx_put(vp);
125 continue;
126 }
127 hammer_ref(&ip->lock);
128 vp = *vpp;
129 ip->vp = vp;
130 vp->v_type = hammer_get_vnode_type(
131 ip->ino_rec.base.base.obj_type);
132
133 switch(ip->ino_rec.base.base.obj_type) {
134 case HAMMER_OBJTYPE_CDEV:
135 case HAMMER_OBJTYPE_BDEV:
136 vp->v_ops = &ip->hmp->mp->mnt_vn_spec_ops;
137 addaliasu(vp, ip->ino_data.rmajor,
138 ip->ino_data.rminor);
139 break;
140 case HAMMER_OBJTYPE_FIFO:
141 vp->v_ops = &ip->hmp->mp->mnt_vn_fifo_ops;
142 break;
143 default:
144 break;
145 }
146
147 /*
148 * Only mark as the root vnode if the ip is not
149 * historical, otherwise the VFS cache will get
150 * confused. The other half of the special handling
151 * is in hammer_vop_nlookupdotdot().
152 */
153 if (ip->obj_id == HAMMER_OBJID_ROOT &&
154 ip->obj_asof == ip->hmp->asof) {
155 vp->v_flag |= VROOT;
156 }
157
158 vp->v_data = (void *)ip;
159 /* vnode locked by getnewvnode() */
160 /* make related vnode dirty if inode dirty? */
161 hammer_unlock(&ip->lock);
162 if (vp->v_type == VREG)
163 vinitvmio(vp, ip->ino_rec.ino_size);
164 break;
165 }
166
167 /*
168 * loop if the vget fails (aka races), or if the vp
169 * no longer matches ip->vp.
170 */
171 if (vget(vp, LK_EXCLUSIVE) == 0) {
172 if (vp == ip->vp)
173 break;
174 vput(vp);
175 }
176 }
177 *vpp = vp;
178 return(error);
179}
180
181/*
182 * Acquire a HAMMER inode. The returned inode is not locked. These functions
183 * do not attach or detach the related vnode (use hammer_get_vnode() for
184 * that).
185 *
186 * The flags argument is only applied for newly created inodes, and only
187 * certain flags are inherited.
188 *
189 * Called from the frontend.
190 */
191struct hammer_inode *
192hammer_get_inode(hammer_transaction_t trans, struct hammer_node **cache,
193 u_int64_t obj_id, hammer_tid_t asof, int flags, int *errorp)
194{
195 hammer_mount_t hmp = trans->hmp;
196 struct hammer_inode_info iinfo;
197 struct hammer_cursor cursor;
198 struct hammer_inode *ip;
199
200 /*
201 * Determine if we already have an inode cached. If we do then
202 * we are golden.
203 */
204 iinfo.obj_id = obj_id;
205 iinfo.obj_asof = asof;
206loop:
207 ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
208 if (ip) {
209 hammer_ref(&ip->lock);
210 *errorp = 0;
211 return(ip);
212 }
213
214 ip = kmalloc(sizeof(*ip), M_HAMMER, M_WAITOK|M_ZERO);
215 ++hammer_count_inodes;
216 ip->obj_id = obj_id;
217 ip->obj_asof = iinfo.obj_asof;
218 ip->hmp = hmp;
219 ip->flags = flags & HAMMER_INODE_RO;
220 if (hmp->ronly)
221 ip->flags |= HAMMER_INODE_RO;
222 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
223 RB_INIT(&ip->rec_tree);
224 TAILQ_INIT(&ip->bio_list);
225 TAILQ_INIT(&ip->bio_alt_list);
226 TAILQ_INIT(&ip->target_list);
227
228 /*
229 * Locate the on-disk inode.
230 */
231retry:
232 hammer_init_cursor(trans, &cursor, cache, NULL);
233 cursor.key_beg.obj_id = ip->obj_id;
234 cursor.key_beg.key = 0;
235 cursor.key_beg.create_tid = 0;
236 cursor.key_beg.delete_tid = 0;
237 cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE;
238 cursor.key_beg.obj_type = 0;
239 cursor.asof = iinfo.obj_asof;
240 cursor.flags = HAMMER_CURSOR_GET_RECORD | HAMMER_CURSOR_GET_DATA |
241 HAMMER_CURSOR_ASOF;
242
243 *errorp = hammer_btree_lookup(&cursor);
244 if (*errorp == EDEADLK) {
245 hammer_done_cursor(&cursor);
246 goto retry;
247 }
248
249 /*
250 * On success the B-Tree lookup will hold the appropriate
251 * buffer cache buffers and provide a pointer to the requested
252 * information. Copy the information to the in-memory inode
253 * and cache the B-Tree node to improve future operations.
254 */
255 if (*errorp == 0) {
256 ip->ino_rec = cursor.record->inode;
257 ip->ino_data = cursor.data->inode;
258 hammer_cache_node(cursor.node, &ip->cache[0]);
259 if (cache)
260 hammer_cache_node(cursor.node, cache);
261 }
262
263 /*
264 * On success load the inode's record and data and insert the
265 * inode into the B-Tree. It is possible to race another lookup
266 * insertion of the same inode so deal with that condition too.
267 *
268 * The cursor's locked node interlocks against others creating and
269 * destroying ip while we were blocked.
270 */
271 if (*errorp == 0) {
272 hammer_ref(&ip->lock);
273 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
274 hammer_uncache_node(&ip->cache[0]);
275 hammer_uncache_node(&ip->cache[1]);
276 KKASSERT(ip->lock.refs == 1);
277 --hammer_count_inodes;
278 kfree(ip, M_HAMMER);
279 hammer_done_cursor(&cursor);
280 goto loop;
281 }
282 ip->flags |= HAMMER_INODE_ONDISK;
283 } else {
284 kprintf("hammer_get_inode: failed ip %p cursor %p error %d\n",
285 ip, &cursor, *errorp);
286 /*Debugger("x");*/
287 --hammer_count_inodes;
288 kfree(ip, M_HAMMER);
289 ip = NULL;
290 }
291 hammer_done_cursor(&cursor);
292 return (ip);
293}
294
295/*
296 * Create a new filesystem object, returning the inode in *ipp. The
297 * returned inode will be referenced.
298 *
299 * The inode is created in-memory.
300 */
301int
302hammer_create_inode(hammer_transaction_t trans, struct vattr *vap,
303 struct ucred *cred, hammer_inode_t dip,
304 struct hammer_inode **ipp)
305{
306 hammer_mount_t hmp;
307 hammer_inode_t ip;
308 uid_t xuid;
309
310 hmp = trans->hmp;
311 ip = kmalloc(sizeof(*ip), M_HAMMER, M_WAITOK|M_ZERO);
312 ++hammer_count_inodes;
313 ip->obj_id = hammer_alloc_objid(trans, dip);
314 KKASSERT(ip->obj_id != 0);
315 ip->obj_asof = hmp->asof;
316 ip->hmp = hmp;
317 ip->flush_state = HAMMER_FST_IDLE;
318 ip->flags = HAMMER_INODE_DDIRTY | HAMMER_INODE_RDIRTY |
319 HAMMER_INODE_ITIMES;
320
321 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
322 RB_INIT(&ip->rec_tree);
323 TAILQ_INIT(&ip->bio_list);
324 TAILQ_INIT(&ip->bio_alt_list);
325 TAILQ_INIT(&ip->target_list);
326
327 ip->ino_rec.ino_atime = trans->time;
328 ip->ino_rec.ino_mtime = trans->time;
329 ip->ino_rec.ino_size = 0;
330 ip->ino_rec.ino_nlinks = 0;
331 /* XXX */
332 ip->ino_rec.base.base.btype = HAMMER_BTREE_TYPE_RECORD;
333 ip->ino_rec.base.base.obj_id = ip->obj_id;
334 ip->ino_rec.base.base.key = 0;
335 ip->ino_rec.base.base.create_tid = 0;
336 ip->ino_rec.base.base.delete_tid = 0;
337 ip->ino_rec.base.base.rec_type = HAMMER_RECTYPE_INODE;
338 ip->ino_rec.base.base.obj_type = hammer_get_obj_type(vap->va_type);
339
340 ip->ino_data.version = HAMMER_INODE_DATA_VERSION;
341 ip->ino_data.mode = vap->va_mode;
342 ip->ino_data.ctime = trans->time;
343 ip->ino_data.parent_obj_id = (dip) ? dip->ino_rec.base.base.obj_id : 0;
344
345 switch(ip->ino_rec.base.base.obj_type) {
346 case HAMMER_OBJTYPE_CDEV:
347 case HAMMER_OBJTYPE_BDEV:
348 ip->ino_data.rmajor = vap->va_rmajor;
349 ip->ino_data.rminor = vap->va_rminor;
350 break;
351 default:
352 break;
353 }
354
355 /*
356 * Calculate default uid/gid and overwrite with information from
357 * the vap.
358 */
359 xuid = hammer_to_unix_xid(&dip->ino_data.uid);
360 ip->ino_data.gid = dip->ino_data.gid;
361 xuid = vop_helper_create_uid(hmp->mp, dip->ino_data.mode, xuid, cred,
362 &vap->va_mode);
363 ip->ino_data.mode = vap->va_mode;
364
365 if (vap->va_vaflags & VA_UID_UUID_VALID)
366 ip->ino_data.uid = vap->va_uid_uuid;
367 else if (vap->va_uid != (uid_t)VNOVAL)
368 hammer_guid_to_uuid(&ip->ino_data.uid, xuid);
369 if (vap->va_vaflags & VA_GID_UUID_VALID)
370 ip->ino_data.gid = vap->va_gid_uuid;
371 else if (vap->va_gid != (gid_t)VNOVAL)
372 hammer_guid_to_uuid(&ip->ino_data.gid, vap->va_gid);
373
374 hammer_ref(&ip->lock);
375 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
376 hammer_unref(&ip->lock);
377 panic("hammer_create_inode: duplicate obj_id %llx", ip->obj_id);
378 }
379 *ipp = ip;
380 return(0);
381}
382
383/*
384 * Called by hammer_sync_inode().
385 */
386static int
387hammer_update_inode(hammer_cursor_t cursor, hammer_inode_t ip)
388{
389 hammer_transaction_t trans = cursor->trans;
390 hammer_record_t record;
391 int error;
392
393retry:
394 error = 0;
395
396 /*
397 * If the inode has a presence on-disk then locate it and mark
398 * it deleted, setting DELONDISK.
399 *
400 * The record may or may not be physically deleted, depending on
401 * the retention policy.
402 */
403 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
404 HAMMER_INODE_ONDISK) {
405 hammer_normalize_cursor(cursor);
406 cursor->key_beg.obj_id = ip->obj_id;
407 cursor->key_beg.key = 0;
408 cursor->key_beg.create_tid = 0;
409 cursor->key_beg.delete_tid = 0;
410 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
411 cursor->key_beg.obj_type = 0;
412 cursor->asof = ip->obj_asof;
413 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
414 cursor->flags |= HAMMER_CURSOR_GET_RECORD | HAMMER_CURSOR_ASOF;
415 cursor->flags |= HAMMER_CURSOR_BACKEND;
416
417 error = hammer_btree_lookup(cursor);
418 if (hammer_debug_inode)
419 kprintf("IPDEL %p %08x %d", ip, ip->flags, error);
420 if (error) {
421 kprintf("error %d\n", error);
422 Debugger("hammer_update_inode");
423 }
424
425 if (error == 0) {
426 error = hammer_ip_delete_record(cursor, trans->tid);
427 if (hammer_debug_inode)
428 kprintf(" error %d\n", error);
429 if (error && error != EDEADLK) {
430 kprintf("error %d\n", error);
431 Debugger("hammer_update_inode2");
432 }
433 if (error == 0) {
434 ip->flags |= HAMMER_INODE_DELONDISK;
435 }
436 if (cursor->node)
437 hammer_cache_node(cursor->node, &ip->cache[0]);
438 }
439 if (error == EDEADLK) {
440 hammer_done_cursor(cursor);
441 error = hammer_init_cursor(trans, cursor,
442 &ip->cache[0], ip);
443 if (hammer_debug_inode)
444 kprintf("IPDED %p %d\n", ip, error);
445 if (error == 0)
446 goto retry;
447 }
448 }
449
450 /*
451 * Ok, write out the initial record or a new record (after deleting
452 * the old one), unless the DELETED flag is set. This routine will
453 * clear DELONDISK if it writes out a record.
454 *
455 * Update our inode statistics if this is the first application of
456 * the inode on-disk.
457 */
458 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED) == 0) {
459 /*
460 * Generate a record and write it to the media
461 */
462 record = hammer_alloc_mem_record(ip);
463 record->type = HAMMER_MEM_RECORD_GENERAL;
464 record->flush_state = HAMMER_FST_FLUSH;
465 record->rec.inode = ip->sync_ino_rec;
466 record->rec.inode.base.base.create_tid = trans->tid;
467 record->rec.inode.base.data_len = sizeof(ip->sync_ino_data);
468 record->data = (void *)&ip->sync_ino_data;
469 record->flags |= HAMMER_RECF_INTERLOCK_BE;
470 for (;;) {
471 error = hammer_ip_sync_record_cursor(cursor, record);
472 if (hammer_debug_inode)
473 kprintf("GENREC %p rec %08x %d\n",
474 ip, record->flags, error);
475 if (error != EDEADLK)
476 break;
477 hammer_done_cursor(cursor);
478 error = hammer_init_cursor(trans, cursor,
479 &ip->cache[0], ip);
480 if (hammer_debug_inode)
481 kprintf("GENREC reinit %d\n", error);
482 if (error)
483 break;
484 }
485 if (error) {
486 kprintf("error %d\n", error);
487 Debugger("hammer_update_inode3");
488 }
489
490 /*
491 * The record isn't managed by the inode's record tree,
492 * destroy it whether we succeed or fail.
493 */
494 record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
495 record->flags |= HAMMER_RECF_DELETED_FE;
496 record->flush_state = HAMMER_FST_IDLE;
497 hammer_rel_mem_record(record);
498
499 /*
500 * Finish up.
501 */
502 if (error == 0) {
503 if (hammer_debug_inode)
504 kprintf("CLEANDELOND %p %08x\n", ip, ip->flags);
505 ip->sync_flags &= ~(HAMMER_INODE_RDIRTY |
506 HAMMER_INODE_DDIRTY |
507 HAMMER_INODE_ITIMES);
508 ip->flags &= ~HAMMER_INODE_DELONDISK;
509
510 /*
511 * Root volume count of inodes
512 */
513 if ((ip->flags & HAMMER_INODE_ONDISK) == 0) {
514 hammer_modify_volume_field(trans,
515 trans->rootvol,
516 vol0_stat_inodes);
517 ++ip->hmp->rootvol->ondisk->vol0_stat_inodes;
518 hammer_modify_volume_done(trans->rootvol);
519 ip->flags |= HAMMER_INODE_ONDISK;
520 if (hammer_debug_inode)
521 kprintf("NOWONDISK %p\n", ip);
522 }
523 }
524 }
525
526 /*
527 * If the inode has been destroyed, clean out any left-over flags
528 * that may have been set by the frontend.
529 */
530 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED)) {
531 ip->sync_flags &= ~(HAMMER_INODE_RDIRTY |
532 HAMMER_INODE_DDIRTY |
533 HAMMER_INODE_ITIMES);
534 }
535 return(error);
536}
537
538/*
539 * Update only the itimes fields. This is done no-historically. The
540 * record is updated in-place on the disk.
541 */
542static int
543hammer_update_itimes(hammer_cursor_t cursor, hammer_inode_t ip)
544{
545 hammer_transaction_t trans = cursor->trans;
546 struct hammer_inode_record *rec;
547 int error;
548
549retry:
550 error = 0;
551 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
552 HAMMER_INODE_ONDISK) {
553 hammer_normalize_cursor(cursor);
554 cursor->key_beg.obj_id = ip->obj_id;
555 cursor->key_beg.key = 0;
556 cursor->key_beg.create_tid = 0;
557 cursor->key_beg.delete_tid = 0;
558 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
559 cursor->key_beg.obj_type = 0;
560 cursor->asof = ip->obj_asof;
561 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
562 cursor->flags |= HAMMER_CURSOR_GET_RECORD | HAMMER_CURSOR_ASOF;
563 cursor->flags |= HAMMER_CURSOR_BACKEND;
564
565 error = hammer_btree_lookup(cursor);
566 if (error) {
567 kprintf("error %d\n", error);
568 Debugger("hammer_update_itimes1");
569 }
570 if (error == 0) {
571 /*
572 * Do not generate UNDO records for atime/mtime
573 * updates.
574 */
575 rec = &cursor->record->inode;
576 hammer_modify_buffer(trans, cursor->record_buffer,
577 NULL, 0);
578 rec->ino_atime = ip->sync_ino_rec.ino_atime;
579 rec->ino_mtime = ip->sync_ino_rec.ino_mtime;
580 hammer_modify_buffer_done(cursor->record_buffer);
581 ip->sync_flags &= ~HAMMER_INODE_ITIMES;
582 /* XXX recalculate crc */
583 hammer_cache_node(cursor->node, &ip->cache[0]);
584 }
585 if (error == EDEADLK) {
586 hammer_done_cursor(cursor);
587 error = hammer_init_cursor(trans, cursor,
588 &ip->cache[0], ip);
589 if (error == 0)
590 goto retry;
591 }
592 }
593 return(error);
594}
595
596/*
597 * Release a reference on an inode, flush as requested.
598 *
599 * On the last reference we queue the inode to the flusher for its final
600 * disposition.
601 */
602void
603hammer_rel_inode(struct hammer_inode *ip, int flush)
604{
605 hammer_mount_t hmp = ip->hmp;
606
607 /*
608 * Handle disposition when dropping the last ref.
609 */
610 for (;;) {
611 if (ip->lock.refs == 1) {
612 /*
613 * Determine whether on-disk action is needed for
614 * the inode's final disposition.
615 */
616 KKASSERT(ip->vp == NULL);
617 hammer_inode_unloadable_check(ip, 0);
618 if (ip->flags & HAMMER_INODE_MODMASK) {
619 hammer_flush_inode(ip, 0);
620 } else if (ip->lock.refs == 1) {
621 hammer_unload_inode(ip);
622 break;
623 }
624 } else {
625 if (flush)
626 hammer_flush_inode(ip, 0);
627
628 /*
629 * The inode still has multiple refs, try to drop
630 * one ref.
631 */
632 KKASSERT(ip->lock.refs >= 1);
633 if (ip->lock.refs > 1) {
634 hammer_unref(&ip->lock);
635 break;
636 }
637 }
638 }
639
640 /*
641 * XXX bad hack until I add code to track inodes in SETUP. We
642 * can queue a lot of inodes to the syncer but if we don't wake
643 * it up the undo sets will be too large or too many unflushed
644 * records will build up and blow our malloc limit.
645 */
646 if (++hmp->reclaim_count > 256) {
647 hmp->reclaim_count = 0;
648 hammer_flusher_async(hmp);
649 }
650}
651
652/*
653 * Unload and destroy the specified inode. Must be called with one remaining
654 * reference. The reference is disposed of.
655 *
656 * This can only be called in the context of the flusher.
657 */
658static int
659hammer_unload_inode(struct hammer_inode *ip)
660{
661 KASSERT(ip->lock.refs == 1,
662 ("hammer_unload_inode: %d refs\n", ip->lock.refs));
663 KKASSERT(ip->vp == NULL);
664 KKASSERT(ip->flush_state == HAMMER_FST_IDLE);
665 KKASSERT(ip->cursor_ip_refs == 0);
666 KKASSERT((ip->flags & HAMMER_INODE_MODMASK) == 0);
667
668 KKASSERT(RB_EMPTY(&ip->rec_tree));
669 KKASSERT(TAILQ_EMPTY(&ip->target_list));
670 KKASSERT(TAILQ_EMPTY(&ip->bio_list));
671 KKASSERT(TAILQ_EMPTY(&ip->bio_alt_list));
672
673 RB_REMOVE(hammer_ino_rb_tree, &ip->hmp->rb_inos_root, ip);
674
675 hammer_uncache_node(&ip->cache[0]);
676 hammer_uncache_node(&ip->cache[1]);
677 if (ip->objid_cache)
678 hammer_clear_objid(ip);
679 --hammer_count_inodes;
680 kfree(ip, M_HAMMER);
681
682 return(0);
683}
684
685/*
686 * A transaction has modified an inode, requiring updates as specified by
687 * the passed flags.
688 *
689 * HAMMER_INODE_RDIRTY: Inode record has been updated
690 * HAMMER_INODE_DDIRTY: Inode data has been updated
691 * HAMMER_INODE_XDIRTY: Dirty in-memory records
692 * HAMMER_INODE_BUFS: Dirty buffer cache buffers
693 * HAMMER_INODE_DELETED: Inode record/data must be deleted
694 * HAMMER_INODE_ITIMES: mtime/atime has been updated
695 */
696void
697hammer_modify_inode(hammer_transaction_t trans, hammer_inode_t ip, int flags)
698{
699 KKASSERT ((ip->flags & HAMMER_INODE_RO) == 0 ||
700 (flags & (HAMMER_INODE_RDIRTY|HAMMER_INODE_DDIRTY|
701 HAMMER_INODE_XDIRTY|HAMMER_INODE_BUFS|
702 HAMMER_INODE_DELETED|HAMMER_INODE_ITIMES)) == 0);
703
704 ip->flags |= flags;
705}
706
707/*
708 * Request that an inode be flushed. This whole mess cannot block and may
709 * recurse. Once requested HAMMER will attempt to actively flush it until
710 * the flush can be done.
711 *
712 * The inode may already be flushing, or may be in a setup state. We can
713 * place the inode in a flushing state if it is currently idle and flag it
714 * to reflush if it is currently flushing.
715 */
716void
717hammer_flush_inode(hammer_inode_t ip, int flags)
718{
719 hammer_record_t depend;
720 int r, good;
721
722 /*
723 * Trivial 'nothing to flush' case. If the inode is ina SETUP
724 * state we have to put it back into an IDLE state so we can
725 * drop the extra ref.
726 */
727 if ((ip->flags & HAMMER_INODE_MODMASK) == 0) {
728 if (ip->flush_state == HAMMER_FST_SETUP) {
729 ip->flush_state = HAMMER_FST_IDLE;
730 hammer_rel_inode(ip, 0);
731 }
732 return;
733 }
734
735 /*
736 * Our flush action will depend on the current state.
737 */
738 switch(ip->flush_state) {
739 case HAMMER_FST_IDLE:
740 /*
741 * We have no dependancies and can flush immediately. Some
742 * our children may not be flushable so we have to re-test
743 * with that additional knowledge.
744 */
745 hammer_flush_inode_core(ip, flags);
746 break;
747 case HAMMER_FST_SETUP:
748 /*
749 * Recurse upwards through dependancies via target_list
750 * and start their flusher actions going if possible.
751 *
752 * 'good' is our connectivity. -1 means we have none and
753 * can't flush, 0 means there weren't any dependancies, and
754 * 1 means we have good connectivity.
755 */
756 good = 0;
757 TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
758 r = hammer_setup_parent_inodes(depend);
759 if (r < 0 && good == 0)
760 good = -1;
761 if (r > 0)
762 good = 1;
763 }
764
765 /*
766 * We can continue if good >= 0. Determine how many records
767 * under our inode can be flushed (and mark them).
768 */
769 if (good >= 0) {
770 hammer_flush_inode_core(ip, flags);
771 } else {
772 ip->flags |= HAMMER_INODE_REFLUSH;
773 if (flags & HAMMER_FLUSH_SIGNAL) {
774 ip->flags |= HAMMER_INODE_RESIGNAL;
775 hammer_flusher_async(ip->hmp);
776 }
777 }
778 break;
779 default:
780 /*
781 * We are already flushing, flag the inode to reflush
782 * if needed after it completes its current flush.
783 */
784 if ((ip->flags & HAMMER_INODE_REFLUSH) == 0)
785 ip->flags |= HAMMER_INODE_REFLUSH;
786 if (flags & HAMMER_FLUSH_SIGNAL) {
787 ip->flags |= HAMMER_INODE_RESIGNAL;
788 hammer_flusher_async(ip->hmp);
789 }
790 break;
791 }
792}
793
794/*
795 * We are asked to recurse upwards and convert the record from SETUP
796 * to FLUSH if possible. record->ip is a parent of the caller's inode,
797 * and record->target_ip is the caller's inode.
798 *
799 * Return 1 if the record gives us connectivity
800 *
801 * Return 0 if the record is not relevant
802 *
803 * Return -1 if we can't resolve the dependancy and there is no connectivity.
804 */
805static int
806hammer_setup_parent_inodes(hammer_record_t record)
807{
808 hammer_mount_t hmp = record->ip->hmp;
809 hammer_record_t depend;
810 hammer_inode_t ip;
811 int r, good;
812
813 KKASSERT(record->flush_state != HAMMER_FST_IDLE);
814 ip = record->ip;
815
816 /*
817 * If the record is already flushing, is it in our flush group?
818 *
819 * If it is in our flush group but it is a general record or a
820 * delete-on-disk, it does not improve our connectivity (return 0),
821 * and if the target inode is not trying to destroy itself we can't
822 * allow the operation yet anyway (the second return -1).
823 */
824 if (record->flush_state == HAMMER_FST_FLUSH) {
825 if (record->flush_group != hmp->flusher_next) {
826 ip->flags |= HAMMER_INODE_REFLUSH;
827 return(-1);
828 }
829 if (record->type == HAMMER_MEM_RECORD_ADD)
830 return(1);
831 /* GENERAL or DEL */
832 return(0);
833 }
834
835 /*
836 * It must be a setup record. Try to resolve the setup dependancies
837 * by recursing upwards so we can place ip on the flush list.
838 */
839 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
840
841 good = 0;
842 TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
843 r = hammer_setup_parent_inodes(depend);
844 if (r < 0 && good == 0)
845 good = -1;
846 if (r > 0)
847 good = 1;
848 }
849
850 /*
851 * We can't flush ip because it has no connectivity (XXX also check
852 * nlinks for pre-existing connectivity!). Flag it so any resolution
853 * recurses back down.
854 */
855 if (good < 0) {
856 ip->flags |= HAMMER_INODE_REFLUSH;
857 return(good);
858 }
859
860 /*
861 * We are go, place the parent inode in a flushing state so we can
862 * place its record in a flushing state. Note that the parent
863 * may already be flushing. The record must be in the same flush
864 * group as the parent.
865 */
866 if (ip->flush_state != HAMMER_FST_FLUSH)
867 hammer_flush_inode_core(ip, HAMMER_FLUSH_RECURSION);
868 KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
869 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
870
871#if 0
872 if (record->type == HAMMER_MEM_RECORD_DEL &&
873 (record->target_ip->flags & (HAMMER_INODE_DELETED|HAMMER_INODE_DELONDISK)) == 0) {
874 /*
875 * Regardless of flushing state we cannot sync this path if the
876 * record represents a delete-on-disk but the target inode
877 * is not ready to sync its own deletion.
878 *
879 * XXX need to count effective nlinks to determine whether
880 * the flush is ok, otherwise removing a hardlink will
881 * just leave the DEL record to rot.
882 */
883 record->target_ip->flags |= HAMMER_INODE_REFLUSH;
884 return(-1);
885 } else
886#endif
887 if (ip->flush_group == ip->hmp->flusher_next) {
888 /*
889 * This is the record we wanted to synchronize.
890 */
891 record->flush_state = HAMMER_FST_FLUSH;
892 record->flush_group = ip->flush_group;
893 hammer_ref(&record->lock);
894 if (record->type == HAMMER_MEM_RECORD_ADD)
895 return(1);
896
897 /*
898 * A general or delete-on-disk record does not contribute
899 * to our visibility. We can still flush it, however.
900 */
901 return(0);
902 } else {
903 /*
904 * We couldn't resolve the dependancies, request that the
905 * inode be flushed when the dependancies can be resolved.
906 */
907 ip->flags |= HAMMER_INODE_REFLUSH;
908 return(-1);
909 }
910}
911
912/*
913 * This is the core routine placing an inode into the FST_FLUSH state.
914 */
915static void
916hammer_flush_inode_core(hammer_inode_t ip, int flags)
917{
918 int go_count;
919
920 /*
921 * Set flush state and prevent the flusher from cycling into
922 * the next flush group. Do not place the ip on the list yet.
923 * Inodes not in the idle state get an extra reference.
924 */
925 KKASSERT(ip->flush_state != HAMMER_FST_FLUSH);
926 if (ip->flush_state == HAMMER_FST_IDLE)
927 hammer_ref(&ip->lock);
928 ip->flush_state = HAMMER_FST_FLUSH;
929 ip->flush_group = ip->hmp->flusher_next;
930 ++ip->hmp->flusher_lock;
931
932 /*
933 * We need to be able to vfsync/truncate from the backend.
934 */
935 KKASSERT((ip->flags & HAMMER_INODE_VHELD) == 0);
936 if (ip->vp && (ip->vp->v_flag & VINACTIVE) == 0) {
937 ip->flags |= HAMMER_INODE_VHELD;
938 vref(ip->vp);
939 }
940
941 /*
942 * Figure out how many in-memory records we can actually flush
943 * (not including inode meta-data, buffers, etc).
944 */
945 if (flags & HAMMER_FLUSH_RECURSION) {
946 go_count = 1;
947 } else {
948 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
949 hammer_setup_child_callback, NULL);
950 }
951
952 /*
953 * This is a more involved test that includes go_count. If we
954 * can't flush, flag the inode and return. If go_count is 0 we
955 * were are unable to flush any records in our rec_tree and
956 * must ignore the XDIRTY flag.
957 */
958 if (go_count == 0) {
959 if ((ip->flags & HAMMER_INODE_MODMASK_NOXDIRTY) == 0) {
960 ip->flags |= HAMMER_INODE_REFLUSH;
961 ip->flush_state = HAMMER_FST_SETUP;
962 if (ip->flags & HAMMER_INODE_VHELD) {
963 ip->flags &= ~HAMMER_INODE_VHELD;
964 vrele(ip->vp);
965 }
966 if (flags & HAMMER_FLUSH_SIGNAL) {
967 ip->flags |= HAMMER_INODE_RESIGNAL;
968 hammer_flusher_async(ip->hmp);
969 }
970 if (--ip->hmp->flusher_lock == 0)
971 wakeup(&ip->hmp->flusher_lock);
972 return;
973 }
974 }
975
976 /*
977 * Snapshot the state of the inode for the backend flusher.
978 *
979 * The truncation must be retained in the frontend until after
980 * we've actually performed the record deletion.
981 *
982 * NOTE: The DELETING flag is a mod flag, but it is also sticky,
983 * and stays in ip->flags. Once set, it stays set until the
984 * inode is destroyed.
985 */
986 ip->sync_flags = (ip->flags & HAMMER_INODE_MODMASK);
987 ip->sync_trunc_off = ip->trunc_off;
988 ip->sync_ino_rec = ip->ino_rec;
989 ip->sync_ino_data = ip->ino_data;
990 ip->flags &= ~HAMMER_INODE_MODMASK | HAMMER_INODE_TRUNCATED;
991
992 /*
993 * The flusher list inherits our inode and reference.
994 */
995 TAILQ_INSERT_TAIL(&ip->hmp->flush_list, ip, flush_entry);
996 if (--ip->hmp->flusher_lock == 0)
997 wakeup(&ip->hmp->flusher_lock);
998
999 if (flags & HAMMER_FLUSH_SIGNAL)
1000 hammer_flusher_async(ip->hmp);
1001}
1002
1003/*
1004 * Callback for scan of ip->rec_tree. Try to include each record in our
1005 * flush. ip->flush_group has been set but the inode has not yet been
1006 * moved into a flushing state.
1007 *
1008 * If we get stuck on a record we have to set HAMMER_INODE_REFLUSH on
1009 * both inodes.
1010 *
1011 * We return 1 for any record placed or found in FST_FLUSH, which prevents
1012 * the caller from shortcutting the flush.
1013 */
1014static int
1015hammer_setup_child_callback(hammer_record_t rec, void *data)
1016{
1017 hammer_inode_t target_ip;
1018 hammer_inode_t ip;
1019 int r;
1020
1021 /*
1022 * If the record has been deleted by the backend (it's being held
1023 * by the frontend in a race), just ignore it.
1024 */
1025 if (rec->flags & HAMMER_RECF_DELETED_BE)
1026 return(0);
1027
1028 /*
1029 * If the record is in an idle state it has no dependancies and
1030 * can be flushed.
1031 */
1032 ip = rec->ip;
1033 r = 0;
1034
1035 switch(rec->flush_state) {
1036 case HAMMER_FST_IDLE:
1037 /*
1038 * Record has no setup dependancy, we can flush it.
1039 */
1040 KKASSERT(rec->target_ip == NULL);
1041 rec->flush_state = HAMMER_FST_FLUSH;
1042 rec->flush_group = ip->flush_group;
1043 hammer_ref(&rec->lock);
1044 r = 1;
1045 break;
1046 case HAMMER_FST_SETUP:
1047 /*
1048 * Record has a setup dependancy. Try to include the
1049 * target ip in the flush.
1050 *
1051 * We have to be careful here, if we do not do the right
1052 * thing we can lose track of dirty inodes and the system
1053 * will lockup trying to allocate buffers.
1054 */
1055 target_ip = rec->target_ip;
1056 KKASSERT(target_ip != NULL);
1057 KKASSERT(target_ip->flush_state != HAMMER_FST_IDLE);
1058 if (target_ip->flush_state == HAMMER_FST_FLUSH) {
1059 /*
1060 * If the target IP is already flushing in our group
1061 * we are golden, otherwise make sure the target
1062 * reflushes.
1063 */
1064 if (target_ip->flush_group == ip->flush_group) {
1065 rec->flush_state = HAMMER_FST_FLUSH;
1066 rec->flush_group = ip->flush_group;
1067 hammer_ref(&rec->lock);
1068 r = 1;
1069 } else {
1070 target_ip->flags |= HAMMER_INODE_REFLUSH;
1071 }
1072 } else if (rec->type == HAMMER_MEM_RECORD_ADD) {
1073 /*
1074 * If the target IP is not flushing we can force
1075 * it to flush, even if it is unable to write out
1076 * any of its own records we have at least one in
1077 * hand that we CAN deal with.
1078 */
1079 rec->flush_state = HAMMER_FST_FLUSH;
1080 rec->flush_group = ip->flush_group;
1081 hammer_ref(&rec->lock);
1082 hammer_flush_inode_core(target_ip,
1083 HAMMER_FLUSH_RECURSION);
1084 r = 1;
1085 } else {
1086 /*
1087 * General or delete-on-disk record.
1088 *
1089 * XXX this needs help. If a delete-on-disk we could
1090 * disconnect the target. If the target has its own
1091 * dependancies they really need to be flushed.
1092 *
1093 * XXX
1094 */
1095 rec->flush_state = HAMMER_FST_FLUSH;
1096 rec->flush_group = ip->flush_group;
1097 hammer_ref(&rec->lock);
1098 hammer_flush_inode_core(target_ip,
1099 HAMMER_FLUSH_RECURSION);
1100 r = 1;
1101 }
1102 break;
1103 case HAMMER_FST_FLUSH:
1104 /*
1105 * Record already associated with a flush group. It had
1106 * better be ours.
1107 */
1108 KKASSERT(rec->flush_group == ip->flush_group);
1109 r = 1;
1110 break;
1111 }
1112 return(r);
1113}
1114
1115/*
1116 * Wait for a previously queued flush to complete
1117 */
1118void
1119hammer_wait_inode(hammer_inode_t ip)
1120{
1121 while (ip->flush_state != HAMMER_FST_IDLE) {
1122 ip->flags |= HAMMER_INODE_FLUSHW;
1123 tsleep(&ip->flags, 0, "hmrwin", 0);
1124 }
1125}
1126
1127/*
1128 * Called by the backend code when a flush has been completed.
1129 * The inode has already been removed from the flush list.
1130 *
1131 * A pipelined flush can occur, in which case we must re-enter the
1132 * inode on the list and re-copy its fields.
1133 */
1134void
1135hammer_flush_inode_done(hammer_inode_t ip)
1136{
1137 struct bio *bio;
1138 int dorel = 0;
1139
1140 KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
1141
1142 /*
1143 * Allow BIOs to queue to the inode's primary bioq again.
1144 */
1145 ip->flags &= ~HAMMER_INODE_WRITE_ALT;
1146
1147 /*
1148 * Merge left-over flags back into the frontend and fix the state.
1149 */
1150 ip->flags |= ip->sync_flags;
1151
1152 /*
1153 * The backend may have adjusted nlinks, so if the adjusted nlinks
1154 * does not match the fronttend set the frontend's RDIRTY flag again.
1155 */
1156 if (ip->ino_rec.ino_nlinks != ip->sync_ino_rec.ino_nlinks)
1157 ip->flags |= HAMMER_INODE_RDIRTY;
1158
1159 /*
1160 * Reflush any BIOs that wound up in the alt list. Our inode will
1161 * also wind up at the end of the flusher's list.
1162 */
1163 while ((bio = TAILQ_FIRST(&ip->bio_alt_list)) != NULL) {
1164 TAILQ_REMOVE(&ip->bio_alt_list, bio, bio_act);
1165 TAILQ_INSERT_TAIL(&ip->bio_list, bio, bio_act);
1166 }
1167 /*
1168 * Fix up the dirty buffer status.
1169 */
1170 if (TAILQ_FIRST(&ip->bio_list) ||
1171 (ip->vp && RB_ROOT(&ip->vp->v_rbdirty_tree))) {
1172 ip->flags |= HAMMER_INODE_BUFS;
1173 }
1174
1175 /*
1176 * Re-set the XDIRTY flag if some of the inode's in-memory records
1177 * could not be flushed.
1178 */
1179 if (RB_ROOT(&ip->rec_tree))
1180 ip->flags |= HAMMER_INODE_XDIRTY;
1181
1182 /*
1183 * Do not lose track of inodes which no longer have vnode
1184 * assocations, otherwise they may never get flushed again.
1185 */
1186 if ((ip->flags & HAMMER_INODE_MODMASK) && ip->vp == NULL)
1187 ip->flags |= HAMMER_INODE_REFLUSH;
1188
1189 /*
1190 * Adjust flush_state. The target state (idle or setup) shouldn't
1191 * be terribly important since we will reflush if we really need
1192 * to do anything. XXX
1193 */
1194 if (TAILQ_EMPTY(&ip->target_list) && RB_EMPTY(&ip->rec_tree)) {
1195 ip->flush_state = HAMMER_FST_IDLE;
1196 dorel = 1;
1197 } else {
1198 ip->flush_state = HAMMER_FST_SETUP;
1199 }
1200
1201 /*
1202 * Clean up the vnode ref
1203 */
1204 if (ip->flags & HAMMER_INODE_VHELD) {
1205 ip->flags &= ~HAMMER_INODE_VHELD;
1206 vrele(ip->vp);
1207 }
1208
1209 /*
1210 * If the frontend made more changes and requested another flush,
1211 * then try to get it running.
1212 */
1213 if (ip->flags & HAMMER_INODE_REFLUSH) {
1214 ip->flags &= ~HAMMER_INODE_REFLUSH;
1215 if (ip->flags & HAMMER_INODE_RESIGNAL) {
1216 ip->flags &= ~HAMMER_INODE_RESIGNAL;
1217 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
1218 } else {
1219 hammer_flush_inode(ip, 0);
1220 }
1221 }
1222
1223 /*
1224 * Finally, if the frontend is waiting for a flush to complete,
1225 * wake it up.
1226 */
1227 if (ip->flush_state != HAMMER_FST_FLUSH) {
1228 if (ip->flags & HAMMER_INODE_FLUSHW) {
1229 ip->flags &= ~HAMMER_INODE_FLUSHW;
1230 wakeup(&ip->flags);
1231 }
1232 }
1233 if (dorel)
1234 hammer_rel_inode(ip, 0);
1235}
1236
1237/*
1238 * Called from hammer_sync_inode() to synchronize in-memory records
1239 * to the media.
1240 */
1241static int
1242hammer_sync_record_callback(hammer_record_t record, void *data)
1243{
1244 hammer_cursor_t cursor = data;
1245 hammer_transaction_t trans = cursor->trans;
1246 int error;
1247
1248 /*
1249 * Skip records that do not belong to the current flush.
1250 */
1251 if (record->flush_state != HAMMER_FST_FLUSH)
1252 return(0);
1253 KKASSERT((record->flags & HAMMER_RECF_DELETED_BE) == 0);
1254#if 1
1255 if (record->flush_group != record->ip->flush_group) {
1256 kprintf("sync_record %p ip %p bad flush group %d %d\n", record, record->ip, record->flush_group ,record->ip->flush_group);
1257 Debugger("blah2");
1258 return(0);
1259 }
1260#endif
1261 KKASSERT(record->flush_group == record->ip->flush_group);
1262
1263 /*
1264 * Interlock the record using the BE flag. Once BE is set the
1265 * frontend cannot change the state of FE.
1266 *
1267 * NOTE: If FE is set prior to us setting BE we still sync the
1268 * record out, but the flush completion code converts it to
1269 * a delete-on-disk record instead of destroying it.
1270 */
1271 KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
1272 record->flags |= HAMMER_RECF_INTERLOCK_BE;
1273
1274 /*
1275 * If DELETED_FE is set we may have already sent dependant pieces
1276 * to the disk and we must flush the record as if it hadn't been
1277 * deleted. This creates a bit of a mess because we have to
1278 * have ip_sync_record convert the record to MEM_RECORD_DEL before
1279 * it inserts the B-Tree record. Otherwise the media sync might
1280 * be visible to the frontend.
1281 */
1282 if (record->flags & HAMMER_RECF_DELETED_FE) {
1283 if (record->type == HAMMER_MEM_RECORD_ADD) {
1284 record->flags |= HAMMER_RECF_CONVERT_DELETE;
1285 } else {
1286 KKASSERT(record->type != HAMMER_MEM_RECORD_DEL);
1287 return(0);
1288 }
1289 }
1290
1291 /*
1292 * Assign the create_tid for new records. Deletions already
1293 * have the record's entire key properly set up.
1294 */
1295 if (record->type != HAMMER_MEM_RECORD_DEL)
1296 record->rec.inode.base.base.create_tid = trans->tid;
1297 for (;;) {
1298 error = hammer_ip_sync_record_cursor(cursor, record);
1299 if (error != EDEADLK)
1300 break;
1301 hammer_done_cursor(cursor);
1302 error = hammer_init_cursor(trans, cursor, &record->ip->cache[0],
1303 record->ip);
1304 if (error)
1305 break;
1306 }
1307 record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
1308
1309 if (error) {
1310 error = -error;
1311 if (error != -ENOSPC) {
1312 kprintf("hammer_sync_record_callback: sync failed rec "
1313 "%p, error %d\n", record, error);
1314 Debugger("sync failed rec");
1315 }
1316 }
1317 hammer_flush_record_done(record, error);
1318 return(error);
1319}
1320
1321/*
1322 * XXX error handling
1323 */
1324int
1325hammer_sync_inode(hammer_inode_t ip)
1326{
1327 struct hammer_transaction trans;
1328 struct hammer_cursor cursor;
1329 struct bio *bio;
1330 hammer_record_t depend;
1331 hammer_record_t next;
1332 int error, tmp_error;
1333 u_int64_t nlinks;
1334
1335 if ((ip->sync_flags & HAMMER_INODE_MODMASK) == 0)
1336 return(0);
1337
1338 hammer_start_transaction_fls(&trans, ip->hmp);
1339 error = hammer_init_cursor(&trans, &cursor, &ip->cache[0], ip);
1340 if (error)
1341 goto done;
1342
1343 /*
1344 * Any directory records referencing this inode which are not in
1345 * our current flush group must adjust our nlink count for the
1346 * purposes of synchronization to disk.
1347 *
1348 * Records which are in our flush group can be unlinked from our
1349 * inode now, allowing the inode to be physically deleted.
1350 */
1351 nlinks = ip->ino_rec.ino_nlinks;
1352 next = TAILQ_FIRST(&ip->target_list);
1353 while ((depend = next) != NULL) {
1354 next = TAILQ_NEXT(depend, target_entry);
1355 if (depend->flush_state == HAMMER_FST_FLUSH &&
1356 depend->flush_group == ip->hmp->flusher_act) {
1357 TAILQ_REMOVE(&ip->target_list, depend, target_entry);
1358 depend->target_ip = NULL;
1359 /* no need to signal target_ip, it is us */
1360 } else if ((depend->flags & HAMMER_RECF_DELETED_FE) == 0) {
1361 switch(depend->type) {
1362 case HAMMER_MEM_RECORD_ADD:
1363 --nlinks;
1364 break;
1365 case HAMMER_MEM_RECORD_DEL:
1366 ++nlinks;
1367 break;
1368 default:
1369 break;
1370 }
1371 }
1372 }
1373
1374 /*
1375 * Set dirty if we had to modify the link count.
1376 */
1377 if (ip->sync_ino_rec.ino_nlinks != nlinks) {
1378 KKASSERT((int64_t)nlinks >= 0);
1379 ip->sync_ino_rec.ino_nlinks = nlinks;
1380 ip->sync_flags |= HAMMER_INODE_RDIRTY;
1381 }
1382
1383 /*
1384 * Queue up as many dirty buffers as we can then set a flag to
1385 * cause any further BIOs to go to the alternative queue.
1386 */
1387 if (ip->flags & HAMMER_INODE_VHELD)
1388 error = vfsync(ip->vp, MNT_NOWAIT, 1, NULL, NULL);
1389 ip->flags |= HAMMER_INODE_WRITE_ALT;
1390
1391 /*
1392 * The buffer cache may contain dirty buffers beyond the inode
1393 * state we copied from the frontend to the backend. Because
1394 * we are syncing our buffer cache on the backend, resync
1395 * the truncation point and the file size so we don't wipe out
1396 * any data.
1397 *
1398 * Syncing the buffer cache on the frontend has serious problems
1399 * because it prevents us from passively queueing dirty inodes
1400 * to the backend (the BIO's could stall indefinitely).
1401 */
1402 if (ip->flags & HAMMER_INODE_TRUNCATED) {
1403 ip->sync_trunc_off = ip->trunc_off;
1404 ip->sync_flags |= HAMMER_INODE_TRUNCATED;
1405 }
1406 if (ip->sync_ino_rec.ino_size != ip->ino_rec.ino_size) {
1407 ip->sync_ino_rec.ino_size = ip->ino_rec.ino_size;
1408 ip->sync_flags |= HAMMER_INODE_RDIRTY;
1409 }
1410
1411 /*
1412 * If there is a trunction queued destroy any data past the (aligned)
1413 * truncation point. Userland will have dealt with the buffer
1414 * containing the truncation point for us.
1415 *
1416 * We don't flush pending frontend data buffers until after we've
1417 * dealth with the truncation.
1418 *
1419 * Don't bother if the inode is or has been deleted.
1420 */
1421 if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
1422 /*
1423 * Interlock trunc_off. The VOP front-end may continue to
1424 * make adjustments to it while we are blocked.
1425 */
1426 off_t trunc_off;
1427 off_t aligned_trunc_off;
1428
1429 trunc_off = ip->sync_trunc_off;
1430 aligned_trunc_off = (trunc_off + HAMMER_BUFMASK) &
1431 ~HAMMER_BUFMASK64;
1432
1433 /*
1434 * Delete any whole blocks on-media. The front-end has
1435 * already cleaned out any partial block and made it
1436 * pending. The front-end may have updated trunc_off
1437 * while we were blocked so do not just unconditionally
1438 * set it to the maximum offset.
1439 */
1440 error = hammer_ip_delete_range(&cursor, ip,
1441 aligned_trunc_off,
1442 0x7FFFFFFFFFFFFFFFLL);
1443 if (error)
1444 Debugger("hammer_ip_delete_range errored");
1445 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
1446 if (ip->trunc_off >= trunc_off) {
1447 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
1448 ip->flags &= ~HAMMER_INODE_TRUNCATED;
1449 }
1450 } else {
1451 error = 0;
1452 }
1453
1454 /*
1455 * Now sync related records. These will typically be directory
1456 * entries or delete-on-disk records.
1457 *
1458 * Not all records will be flushed, but clear XDIRTY anyway. We
1459 * will set it again in the frontend hammer_flush_inode_done()
1460 * if records remain.
1461 */
1462 if (error == 0) {
1463 tmp_error = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1464 hammer_sync_record_callback, &cursor);
1465 if (tmp_error < 0)
1466 tmp_error = -error;
1467 if (tmp_error)
1468 error = tmp_error;
1469 if (error == 0)
1470 ip->sync_flags &= ~HAMMER_INODE_XDIRTY;
1471 }
1472
1473 /*
1474 * If we are deleting the inode the frontend had better not have
1475 * any active references on elements making up the inode.
1476 */
1477 if (error == 0 && ip->sync_ino_rec.ino_nlinks == 0 &&
1478 RB_EMPTY(&ip->rec_tree) &&
1479 (ip->sync_flags & HAMMER_INODE_DELETING) &&
1480 (ip->flags & HAMMER_INODE_DELETED) == 0) {
1481 int count1 = 0;
1482
1483 kprintf("Y");
1484 ip->flags |= HAMMER_INODE_DELETED;
1485 error = hammer_ip_delete_range_all(&cursor, ip, &count1);
1486 if (error == 0) {
1487 ip->sync_flags &= ~HAMMER_INODE_DELETING;
1488 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
1489 KKASSERT(RB_EMPTY(&ip->rec_tree));
1490
1491 /*
1492 * Set delete_tid in both the frontend and backend
1493 * copy of the inode record. The DELETED flag handles
1494 * this, do not set RDIRTY.
1495 */
1496 ip->ino_rec.base.base.delete_tid = trans.tid;
1497 ip->sync_ino_rec.base.base.delete_tid = trans.tid;
1498
1499 /*
1500 * Adjust the inode count in the volume header
1501 */
1502 hammer_modify_volume_field(&trans, trans.rootvol,
1503 vol0_stat_inodes);
1504 --ip->hmp->rootvol->ondisk->vol0_stat_inodes;
1505 hammer_modify_volume_done(trans.rootvol);
1506 } else {
1507 ip->flags &= ~HAMMER_INODE_DELETED;
1508 Debugger("hammer_ip_delete_range_all errored");
1509 }
1510 }
1511
1512 /*
1513 * Flush any queued BIOs. These will just biodone() the IO's if
1514 * the inode has been deleted.
1515 */
1516 while ((bio = TAILQ_FIRST(&ip->bio_list)) != NULL) {
1517 TAILQ_REMOVE(&ip->bio_list, bio, bio_act);
1518 tmp_error = hammer_dowrite(&cursor, ip, bio);
1519 if (tmp_error)
1520 error = tmp_error;
1521 }
1522 ip->sync_flags &= ~HAMMER_INODE_BUFS;
1523
1524 if (error)
1525 Debugger("RB_SCAN errored");
1526
1527 /*
1528 * Now update the inode's on-disk inode-data and/or on-disk record.
1529 * DELETED and ONDISK are managed only in ip->flags.
1530 */
1531 switch(ip->flags & (HAMMER_INODE_DELETED | HAMMER_INODE_ONDISK)) {
1532 case HAMMER_INODE_DELETED|HAMMER_INODE_ONDISK:
1533 /*
1534 * If deleted and on-disk, don't set any additional flags.
1535 * the delete flag takes care of things.
1536 *
1537 * Clear flags which may have been set by the frontend.
1538 */
1539 ip->sync_flags &= ~(HAMMER_INODE_RDIRTY|HAMMER_INODE_DDIRTY|
1540 HAMMER_INODE_XDIRTY|HAMMER_INODE_ITIMES|
1541 HAMMER_INODE_DELETING);
1542 break;
1543 case HAMMER_INODE_DELETED:
1544 /*
1545 * Take care of the case where a deleted inode was never
1546 * flushed to the disk in the first place.
1547 *
1548 * Clear flags which may have been set by the frontend.
1549 */
1550 ip->sync_flags &= ~(HAMMER_INODE_RDIRTY|HAMMER_INODE_DDIRTY|
1551 HAMMER_INODE_XDIRTY|HAMMER_INODE_ITIMES|
1552 HAMMER_INODE_DELETING);
1553 while (RB_ROOT(&ip->rec_tree)) {
1554 hammer_record_t record = RB_ROOT(&ip->rec_tree);
1555 hammer_ref(&record->lock);
1556 KKASSERT(record->lock.refs == 1);
1557 record->flags |= HAMMER_RECF_DELETED_FE;
1558 record->flags |= HAMMER_RECF_DELETED_BE;
1559 hammer_rel_mem_record(record);
1560 }
1561 break;
1562 case HAMMER_INODE_ONDISK:
1563 /*
1564 * If already on-disk, do not set any additional flags.
1565 */
1566 break;
1567 default:
1568 /*
1569 * If not on-disk and not deleted, set both dirty flags
1570 * to force an initial record to be written. Also set
1571 * the create_tid for the inode.
1572 *
1573 * Set create_tid in both the frontend and backend
1574 * copy of the inode record.
1575 */
1576 ip->ino_rec.base.base.create_tid = trans.tid;
1577 ip->sync_ino_rec.base.base.create_tid = trans.tid;
1578 ip->sync_flags |= HAMMER_INODE_RDIRTY | HAMMER_INODE_DDIRTY;
1579 break;
1580 }
1581
1582 /*
1583 * If RDIRTY or DDIRTY is set, write out a new record. If the inode
1584 * is already on-disk the old record is marked as deleted.
1585 *
1586 * If DELETED is set hammer_update_inode() will delete the existing
1587 * record without writing out a new one.
1588 *
1589 * If *ONLY* the ITIMES flag is set we can update the record in-place.
1590 */
1591 if (ip->flags & HAMMER_INODE_DELETED) {
1592 error = hammer_update_inode(&cursor, ip);
1593 } else
1594 if ((ip->sync_flags & (HAMMER_INODE_RDIRTY | HAMMER_INODE_DDIRTY |
1595 HAMMER_INODE_ITIMES)) == HAMMER_INODE_ITIMES) {
1596 error = hammer_update_itimes(&cursor, ip);
1597 } else
1598 if (ip->sync_flags & (HAMMER_INODE_RDIRTY | HAMMER_INODE_DDIRTY |
1599 HAMMER_INODE_ITIMES)) {
1600 error = hammer_update_inode(&cursor, ip);
1601 }
1602 if (error)
1603 Debugger("hammer_update_itimes/inode errored");
1604done:
1605 /*
1606 * Save the TID we used to sync the inode with to make sure we
1607 * do not improperly reuse it.
1608 */
1609 hammer_done_cursor(&cursor);
1610 hammer_done_transaction(&trans);
1611 return(error);
1612}
1613
1614/*
1615 * This routine is called when the OS is no longer actively referencing
1616 * the inode (but might still be keeping it cached), or when releasing
1617 * the last reference to an inode.
1618 *
1619 * At this point if the inode's nlinks count is zero we want to destroy
1620 * it, which may mean destroying it on-media too.
1621 */
1622void
1623hammer_inode_unloadable_check(hammer_inode_t ip, int getvp)
1624{
1625 struct vnode *vp;
1626
1627 /*
1628 * If the inode is on-media and the link count is 0 we MUST delete
1629 * it on-media. DELETING is a mod flag, DELETED is a state flag.
1630 */
1631 if (ip->ino_rec.ino_nlinks == 0 &&
1632 (ip->flags & (HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) == 0) {
1633 ip->flags |= HAMMER_INODE_DELETING;
1634 ip->flags |= HAMMER_INODE_TRUNCATED;
1635 ip->trunc_off = 0;
1636 vp = NULL;
1637 if (getvp) {
1638 if (hammer_get_vnode(ip, &vp) != 0)
1639 return;
1640 }
1641 if (ip->vp) {
1642 vtruncbuf(ip->vp, 0, HAMMER_BUFSIZE);
1643 vnode_pager_setsize(ip->vp, 0);
1644 }
1645 if (getvp) {
1646 vput(vp);
1647 }
1648 }
1649}
1650
1651/*
1652 * Re-test an inode when a dependancy had gone away to see if we
1653 * can chain flush it.
1654 */
1655void
1656hammer_test_inode(hammer_inode_t ip)
1657{
1658 if (ip->flags & HAMMER_INODE_REFLUSH) {
1659 ip->flags &= ~HAMMER_INODE_REFLUSH;
1660 hammer_ref(&ip->lock);
1661 if (ip->flags & HAMMER_INODE_RESIGNAL) {
1662 ip->flags &= ~HAMMER_INODE_RESIGNAL;
1663 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
1664 } else {
1665 hammer_flush_inode(ip, 0);
1666 }
1667 hammer_rel_inode(ip, 0);
1668 }
1669}
1670