em/emx: Retry interrupt allocation with MSI
[dragonfly.git] / sys / dev / netif / em / if_em.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>. All rights reserved.
3 *
4 * Copyright (c) 2001-2014, Intel Corporation
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * 3. Neither the name of the Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived from
19 * this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 *
34 * Copyright (c) 2005 The DragonFly Project. All rights reserved.
35 *
36 * This code is derived from software contributed to The DragonFly Project
37 * by Matthew Dillon <dillon@backplane.com>
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 *
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in
47 * the documentation and/or other materials provided with the
48 * distribution.
49 * 3. Neither the name of The DragonFly Project nor the names of its
50 * contributors may be used to endorse or promote products derived
51 * from this software without specific, prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
57 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 */
67/*
68 * SERIALIZATION API RULES:
69 *
70 * - We must call lwkt_serialize_handler_enable() prior to enabling the
71 * hardware interrupt and lwkt_serialize_handler_disable() after disabling
72 * the hardware interrupt in order to avoid handler execution races from
73 * scheduled interrupt threads.
74 */
75
76#include "opt_ifpoll.h"
77
78#include <sys/param.h>
79#include <sys/bus.h>
80#include <sys/endian.h>
81#include <sys/interrupt.h>
82#include <sys/kernel.h>
83#include <sys/ktr.h>
84#include <sys/malloc.h>
85#include <sys/mbuf.h>
86#include <sys/proc.h>
87#include <sys/rman.h>
88#include <sys/serialize.h>
89#include <sys/socket.h>
90#include <sys/sockio.h>
91#include <sys/sysctl.h>
92#include <sys/systm.h>
93
94#include <net/bpf.h>
95#include <net/ethernet.h>
96#include <net/if.h>
97#include <net/if_arp.h>
98#include <net/if_dl.h>
99#include <net/if_media.h>
100#include <net/if_poll.h>
101#include <net/ifq_var.h>
102#include <net/vlan/if_vlan_var.h>
103#include <net/vlan/if_vlan_ether.h>
104
105#include <netinet/ip.h>
106#include <netinet/tcp.h>
107#include <netinet/udp.h>
108
109#include <bus/pci/pcivar.h>
110#include <bus/pci/pcireg.h>
111
112#include <dev/netif/ig_hal/e1000_api.h>
113#include <dev/netif/ig_hal/e1000_82571.h>
114#include <dev/netif/ig_hal/e1000_dragonfly.h>
115#include <dev/netif/em/if_em.h>
116
117#define DEBUG_HW 0
118
119#define EM_NAME "Intel(R) PRO/1000 Network Connection "
120#define EM_VER " 7.4.2"
121
122#define _EM_DEVICE(id, ret) \
123 { EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
124#define EM_EMX_DEVICE(id) _EM_DEVICE(id, -100)
125#define EM_DEVICE(id) _EM_DEVICE(id, 0)
126#define EM_DEVICE_NULL { 0, 0, 0, NULL }
127
128static const struct em_vendor_info em_vendor_info_array[] = {
129 EM_DEVICE(82540EM),
130 EM_DEVICE(82540EM_LOM),
131 EM_DEVICE(82540EP),
132 EM_DEVICE(82540EP_LOM),
133 EM_DEVICE(82540EP_LP),
134
135 EM_DEVICE(82541EI),
136 EM_DEVICE(82541ER),
137 EM_DEVICE(82541ER_LOM),
138 EM_DEVICE(82541EI_MOBILE),
139 EM_DEVICE(82541GI),
140 EM_DEVICE(82541GI_LF),
141 EM_DEVICE(82541GI_MOBILE),
142
143 EM_DEVICE(82542),
144
145 EM_DEVICE(82543GC_FIBER),
146 EM_DEVICE(82543GC_COPPER),
147
148 EM_DEVICE(82544EI_COPPER),
149 EM_DEVICE(82544EI_FIBER),
150 EM_DEVICE(82544GC_COPPER),
151 EM_DEVICE(82544GC_LOM),
152
153 EM_DEVICE(82545EM_COPPER),
154 EM_DEVICE(82545EM_FIBER),
155 EM_DEVICE(82545GM_COPPER),
156 EM_DEVICE(82545GM_FIBER),
157 EM_DEVICE(82545GM_SERDES),
158
159 EM_DEVICE(82546EB_COPPER),
160 EM_DEVICE(82546EB_FIBER),
161 EM_DEVICE(82546EB_QUAD_COPPER),
162 EM_DEVICE(82546GB_COPPER),
163 EM_DEVICE(82546GB_FIBER),
164 EM_DEVICE(82546GB_SERDES),
165 EM_DEVICE(82546GB_PCIE),
166 EM_DEVICE(82546GB_QUAD_COPPER),
167 EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
168
169 EM_DEVICE(82547EI),
170 EM_DEVICE(82547EI_MOBILE),
171 EM_DEVICE(82547GI),
172
173 EM_EMX_DEVICE(82571EB_COPPER),
174 EM_EMX_DEVICE(82571EB_FIBER),
175 EM_EMX_DEVICE(82571EB_SERDES),
176 EM_EMX_DEVICE(82571EB_SERDES_DUAL),
177 EM_EMX_DEVICE(82571EB_SERDES_QUAD),
178 EM_EMX_DEVICE(82571EB_QUAD_COPPER),
179 EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
180 EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
181 EM_EMX_DEVICE(82571EB_QUAD_FIBER),
182 EM_EMX_DEVICE(82571PT_QUAD_COPPER),
183
184 EM_EMX_DEVICE(82572EI_COPPER),
185 EM_EMX_DEVICE(82572EI_FIBER),
186 EM_EMX_DEVICE(82572EI_SERDES),
187 EM_EMX_DEVICE(82572EI),
188
189 EM_EMX_DEVICE(82573E),
190 EM_EMX_DEVICE(82573E_IAMT),
191 EM_EMX_DEVICE(82573L),
192
193 EM_DEVICE(82583V),
194
195 EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
196 EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
197 EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
198 EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
199
200 EM_DEVICE(ICH8_IGP_M_AMT),
201 EM_DEVICE(ICH8_IGP_AMT),
202 EM_DEVICE(ICH8_IGP_C),
203 EM_DEVICE(ICH8_IFE),
204 EM_DEVICE(ICH8_IFE_GT),
205 EM_DEVICE(ICH8_IFE_G),
206 EM_DEVICE(ICH8_IGP_M),
207 EM_DEVICE(ICH8_82567V_3),
208
209 EM_DEVICE(ICH9_IGP_M_AMT),
210 EM_DEVICE(ICH9_IGP_AMT),
211 EM_DEVICE(ICH9_IGP_C),
212 EM_DEVICE(ICH9_IGP_M),
213 EM_DEVICE(ICH9_IGP_M_V),
214 EM_DEVICE(ICH9_IFE),
215 EM_DEVICE(ICH9_IFE_GT),
216 EM_DEVICE(ICH9_IFE_G),
217 EM_DEVICE(ICH9_BM),
218
219 EM_EMX_DEVICE(82574L),
220 EM_EMX_DEVICE(82574LA),
221
222 EM_DEVICE(ICH10_R_BM_LM),
223 EM_DEVICE(ICH10_R_BM_LF),
224 EM_DEVICE(ICH10_R_BM_V),
225 EM_DEVICE(ICH10_D_BM_LM),
226 EM_DEVICE(ICH10_D_BM_LF),
227 EM_DEVICE(ICH10_D_BM_V),
228
229 EM_DEVICE(PCH_M_HV_LM),
230 EM_DEVICE(PCH_M_HV_LC),
231 EM_DEVICE(PCH_D_HV_DM),
232 EM_DEVICE(PCH_D_HV_DC),
233
234 EM_DEVICE(PCH2_LV_LM),
235 EM_DEVICE(PCH2_LV_V),
236
237 EM_EMX_DEVICE(PCH_LPT_I217_LM),
238 EM_EMX_DEVICE(PCH_LPT_I217_V),
239 EM_EMX_DEVICE(PCH_LPTLP_I218_LM),
240 EM_EMX_DEVICE(PCH_LPTLP_I218_V),
241 EM_EMX_DEVICE(PCH_I218_LM2),
242 EM_EMX_DEVICE(PCH_I218_V2),
243 EM_EMX_DEVICE(PCH_I218_LM3),
244 EM_EMX_DEVICE(PCH_I218_V3),
245 EM_EMX_DEVICE(PCH_SPT_I219_LM),
246 EM_EMX_DEVICE(PCH_SPT_I219_V),
247 EM_EMX_DEVICE(PCH_SPT_I219_LM2),
248 EM_EMX_DEVICE(PCH_SPT_I219_V2),
249
250 /* required last entry */
251 EM_DEVICE_NULL
252};
253
254static int em_probe(device_t);
255static int em_attach(device_t);
256static int em_detach(device_t);
257static int em_shutdown(device_t);
258static int em_suspend(device_t);
259static int em_resume(device_t);
260
261static void em_init(void *);
262static void em_stop(struct adapter *);
263static int em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
264static void em_start(struct ifnet *, struct ifaltq_subque *);
265#ifdef IFPOLL_ENABLE
266static void em_npoll(struct ifnet *, struct ifpoll_info *);
267static void em_npoll_compat(struct ifnet *, void *, int);
268#endif
269static void em_watchdog(struct ifnet *);
270static void em_media_status(struct ifnet *, struct ifmediareq *);
271static int em_media_change(struct ifnet *);
272static void em_timer(void *);
273
274static void em_intr(void *);
275static void em_intr_mask(void *);
276static void em_intr_body(struct adapter *, boolean_t);
277static void em_rxeof(struct adapter *, int);
278static void em_txeof(struct adapter *);
279static void em_tx_collect(struct adapter *);
280static void em_tx_purge(struct adapter *);
281static void em_enable_intr(struct adapter *);
282static void em_disable_intr(struct adapter *);
283
284static int em_dma_malloc(struct adapter *, bus_size_t,
285 struct em_dma_alloc *);
286static void em_dma_free(struct adapter *, struct em_dma_alloc *);
287static void em_init_tx_ring(struct adapter *);
288static int em_init_rx_ring(struct adapter *);
289static int em_create_tx_ring(struct adapter *);
290static int em_create_rx_ring(struct adapter *);
291static void em_destroy_tx_ring(struct adapter *, int);
292static void em_destroy_rx_ring(struct adapter *, int);
293static int em_newbuf(struct adapter *, int, int);
294static int em_encap(struct adapter *, struct mbuf **, int *, int *);
295static void em_rxcsum(struct adapter *, struct e1000_rx_desc *,
296 struct mbuf *);
297static int em_txcsum(struct adapter *, struct mbuf *,
298 uint32_t *, uint32_t *);
299static int em_tso_pullup(struct adapter *, struct mbuf **);
300static int em_tso_setup(struct adapter *, struct mbuf *,
301 uint32_t *, uint32_t *);
302
303static int em_get_hw_info(struct adapter *);
304static int em_is_valid_eaddr(const uint8_t *);
305static int em_alloc_pci_res(struct adapter *);
306static void em_free_pci_res(struct adapter *);
307static int em_reset(struct adapter *);
308static void em_setup_ifp(struct adapter *);
309static void em_init_tx_unit(struct adapter *);
310static void em_init_rx_unit(struct adapter *);
311static void em_update_stats(struct adapter *);
312static void em_set_promisc(struct adapter *);
313static void em_disable_promisc(struct adapter *);
314static void em_set_multi(struct adapter *);
315static void em_update_link_status(struct adapter *);
316static void em_smartspeed(struct adapter *);
317static void em_set_itr(struct adapter *, uint32_t);
318static void em_disable_aspm(struct adapter *);
319
320/* Hardware workarounds */
321static int em_82547_fifo_workaround(struct adapter *, int);
322static void em_82547_update_fifo_head(struct adapter *, int);
323static int em_82547_tx_fifo_reset(struct adapter *);
324static void em_82547_move_tail(void *);
325static void em_82547_move_tail_serialized(struct adapter *);
326static uint32_t em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
327
328static void em_print_debug_info(struct adapter *);
329static void em_print_nvm_info(struct adapter *);
330static void em_print_hw_stats(struct adapter *);
331
332static int em_sysctl_stats(SYSCTL_HANDLER_ARGS);
333static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
334static int em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
335static int em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
336static void em_add_sysctl(struct adapter *adapter);
337
338/* Management and WOL Support */
339static void em_get_mgmt(struct adapter *);
340static void em_rel_mgmt(struct adapter *);
341static void em_get_hw_control(struct adapter *);
342static void em_rel_hw_control(struct adapter *);
343static void em_enable_wol(device_t);
344
345static device_method_t em_methods[] = {
346 /* Device interface */
347 DEVMETHOD(device_probe, em_probe),
348 DEVMETHOD(device_attach, em_attach),
349 DEVMETHOD(device_detach, em_detach),
350 DEVMETHOD(device_shutdown, em_shutdown),
351 DEVMETHOD(device_suspend, em_suspend),
352 DEVMETHOD(device_resume, em_resume),
353 DEVMETHOD_END
354};
355
356static driver_t em_driver = {
357 "em",
358 em_methods,
359 sizeof(struct adapter),
360};
361
362static devclass_t em_devclass;
363
364DECLARE_DUMMY_MODULE(if_em);
365MODULE_DEPEND(em, ig_hal, 1, 1, 1);
366DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
367
368/*
369 * Tunables
370 */
371static int em_int_throttle_ceil = EM_DEFAULT_ITR;
372static int em_rxd = EM_DEFAULT_RXD;
373static int em_txd = EM_DEFAULT_TXD;
374static int em_smart_pwr_down = 0;
375
376/* Controls whether promiscuous also shows bad packets */
377static int em_debug_sbp = FALSE;
378
379static int em_82573_workaround = 1;
380static int em_msi_enable = 1;
381
382static char em_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_RXPAUSE;
383
384TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
385TUNABLE_INT("hw.em.rxd", &em_rxd);
386TUNABLE_INT("hw.em.txd", &em_txd);
387TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
388TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
389TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
390TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
391TUNABLE_STR("hw.em.flow_ctrl", em_flowctrl, sizeof(em_flowctrl));
392
393/* Global used in WOL setup with multiport cards */
394static int em_global_quad_port_a = 0;
395
396/* Set this to one to display debug statistics */
397static int em_display_debug_stats = 0;
398
399#if !defined(KTR_IF_EM)
400#define KTR_IF_EM KTR_ALL
401#endif
402KTR_INFO_MASTER(if_em);
403KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
404KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
405KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
406KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
407KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
408#define logif(name) KTR_LOG(if_em_ ## name)
409
410static int
411em_probe(device_t dev)
412{
413 const struct em_vendor_info *ent;
414 uint16_t vid, did;
415
416 vid = pci_get_vendor(dev);
417 did = pci_get_device(dev);
418
419 for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
420 if (vid == ent->vendor_id && did == ent->device_id) {
421 device_set_desc(dev, ent->desc);
422 device_set_async_attach(dev, TRUE);
423 return (ent->ret);
424 }
425 }
426 return (ENXIO);
427}
428
429static int
430em_attach(device_t dev)
431{
432 struct adapter *adapter = device_get_softc(dev);
433 struct ifnet *ifp = &adapter->arpcom.ac_if;
434 int tsize, rsize;
435 int error = 0;
436 uint16_t eeprom_data, device_id, apme_mask;
437 driver_intr_t *intr_func;
438 char flowctrl[IFM_ETH_FC_STRLEN];
439
440 adapter->dev = adapter->osdep.dev = dev;
441
442 callout_init_mp(&adapter->timer);
443 callout_init_mp(&adapter->tx_fifo_timer);
444
445 ifmedia_init(&adapter->media, IFM_IMASK | IFM_ETH_FCMASK,
446 em_media_change, em_media_status);
447
448 /* Determine hardware and mac info */
449 error = em_get_hw_info(adapter);
450 if (error) {
451 device_printf(dev, "Identify hardware failed\n");
452 goto fail;
453 }
454
455 /* Setup PCI resources */
456 error = em_alloc_pci_res(adapter);
457 if (error) {
458 device_printf(dev, "Allocation of PCI resources failed\n");
459 goto fail;
460 }
461
462 /*
463 * For ICH8 and family we need to map the flash memory,
464 * and this must happen after the MAC is identified.
465 *
466 * (SPT does not map the flash with a separate BAR)
467 */
468 if (adapter->hw.mac.type == e1000_ich8lan ||
469 adapter->hw.mac.type == e1000_ich9lan ||
470 adapter->hw.mac.type == e1000_ich10lan ||
471 adapter->hw.mac.type == e1000_pchlan ||
472 adapter->hw.mac.type == e1000_pch2lan ||
473 adapter->hw.mac.type == e1000_pch_lpt) {
474 adapter->flash_rid = EM_BAR_FLASH;
475
476 adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
477 &adapter->flash_rid, RF_ACTIVE);
478 if (adapter->flash == NULL) {
479 device_printf(dev, "Mapping of Flash failed\n");
480 error = ENXIO;
481 goto fail;
482 }
483 adapter->osdep.flash_bus_space_tag =
484 rman_get_bustag(adapter->flash);
485 adapter->osdep.flash_bus_space_handle =
486 rman_get_bushandle(adapter->flash);
487
488 /*
489 * This is used in the shared code
490 * XXX this goof is actually not used.
491 */
492 adapter->hw.flash_address = (uint8_t *)adapter->flash;
493 }
494
495 switch (adapter->hw.mac.type) {
496 case e1000_82571:
497 case e1000_82572:
498 case e1000_pch_lpt:
499 case e1000_pch_spt:
500 /*
501 * Pullup extra 4bytes into the first data segment for
502 * TSO, see:
503 * 82571/82572 specification update errata #7
504 *
505 * Same applies to I217 (and maybe I218 and I219).
506 *
507 * NOTE:
508 * 4bytes instead of 2bytes, which are mentioned in the
509 * errata, are pulled; mainly to keep rest of the data
510 * properly aligned.
511 */
512 adapter->flags |= EM_FLAG_TSO_PULLEX;
513 /* FALL THROUGH */
514
515 default:
516 if (pci_is_pcie(dev))
517 adapter->flags |= EM_FLAG_TSO;
518 break;
519 }
520
521 /* Do Shared Code initialization */
522 if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
523 device_printf(dev, "Setup of Shared code failed\n");
524 error = ENXIO;
525 goto fail;
526 }
527
528 e1000_get_bus_info(&adapter->hw);
529
530 /*
531 * Validate number of transmit and receive descriptors. It
532 * must not exceed hardware maximum, and must be multiple
533 * of E1000_DBA_ALIGN.
534 */
535 if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
536 (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
537 (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
538 em_txd < EM_MIN_TXD) {
539 if (adapter->hw.mac.type < e1000_82544)
540 adapter->num_tx_desc = EM_MAX_TXD_82543;
541 else
542 adapter->num_tx_desc = EM_DEFAULT_TXD;
543 device_printf(dev, "Using %d TX descriptors instead of %d!\n",
544 adapter->num_tx_desc, em_txd);
545 } else {
546 adapter->num_tx_desc = em_txd;
547 }
548 if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
549 (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
550 (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
551 em_rxd < EM_MIN_RXD) {
552 if (adapter->hw.mac.type < e1000_82544)
553 adapter->num_rx_desc = EM_MAX_RXD_82543;
554 else
555 adapter->num_rx_desc = EM_DEFAULT_RXD;
556 device_printf(dev, "Using %d RX descriptors instead of %d!\n",
557 adapter->num_rx_desc, em_rxd);
558 } else {
559 adapter->num_rx_desc = em_rxd;
560 }
561
562 adapter->hw.mac.autoneg = DO_AUTO_NEG;
563 adapter->hw.phy.autoneg_wait_to_complete = FALSE;
564 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
565 adapter->rx_buffer_len = MCLBYTES;
566
567 /*
568 * Interrupt throttle rate
569 */
570 if (em_int_throttle_ceil == 0) {
571 adapter->int_throttle_ceil = 0;
572 } else {
573 int throttle = em_int_throttle_ceil;
574
575 if (throttle < 0)
576 throttle = EM_DEFAULT_ITR;
577
578 /* Recalculate the tunable value to get the exact frequency. */
579 throttle = 1000000000 / 256 / throttle;
580
581 /* Upper 16bits of ITR is reserved and should be zero */
582 if (throttle & 0xffff0000)
583 throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
584
585 adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
586 }
587
588 e1000_init_script_state_82541(&adapter->hw, TRUE);
589 e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
590
591 /* Copper options */
592 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
593 adapter->hw.phy.mdix = AUTO_ALL_MODES;
594 adapter->hw.phy.disable_polarity_correction = FALSE;
595 adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
596 }
597
598 /* Set the frame limits assuming standard ethernet sized frames. */
599 adapter->hw.mac.max_frame_size =
600 ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
601 adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
602
603 /* This controls when hardware reports transmit completion status. */
604 adapter->hw.mac.report_tx_early = 1;
605
606 /*
607 * Create top level busdma tag
608 */
609 error = bus_dma_tag_create(NULL, 1, 0,
610 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
611 NULL, NULL,
612 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
613 0, &adapter->parent_dtag);
614 if (error) {
615 device_printf(dev, "could not create top level DMA tag\n");
616 goto fail;
617 }
618
619 /*
620 * Allocate Transmit Descriptor ring
621 */
622 tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
623 EM_DBA_ALIGN);
624 error = em_dma_malloc(adapter, tsize, &adapter->txdma);
625 if (error) {
626 device_printf(dev, "Unable to allocate tx_desc memory\n");
627 goto fail;
628 }
629 adapter->tx_desc_base = adapter->txdma.dma_vaddr;
630
631 /*
632 * Allocate Receive Descriptor ring
633 */
634 rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
635 EM_DBA_ALIGN);
636 error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
637 if (error) {
638 device_printf(dev, "Unable to allocate rx_desc memory\n");
639 goto fail;
640 }
641 adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
642
643 /* Allocate multicast array memory. */
644 adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
645 M_DEVBUF, M_WAITOK);
646
647 /* Indicate SOL/IDER usage */
648 if (e1000_check_reset_block(&adapter->hw)) {
649 device_printf(dev,
650 "PHY reset is blocked due to SOL/IDER session.\n");
651 }
652
653 /* Disable EEE */
654 adapter->hw.dev_spec.ich8lan.eee_disable = 1;
655
656 /*
657 * Start from a known state, this is important in reading the
658 * nvm and mac from that.
659 */
660 e1000_reset_hw(&adapter->hw);
661
662 /* Make sure we have a good EEPROM before we read from it */
663 if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
664 /*
665 * Some PCI-E parts fail the first check due to
666 * the link being in sleep state, call it again,
667 * if it fails a second time its a real issue.
668 */
669 if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
670 device_printf(dev,
671 "The EEPROM Checksum Is Not Valid\n");
672 error = EIO;
673 goto fail;
674 }
675 }
676
677 /* Copy the permanent MAC address out of the EEPROM */
678 if (e1000_read_mac_addr(&adapter->hw) < 0) {
679 device_printf(dev, "EEPROM read error while reading MAC"
680 " address\n");
681 error = EIO;
682 goto fail;
683 }
684 if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
685 device_printf(dev, "Invalid MAC address\n");
686 error = EIO;
687 goto fail;
688 }
689
690 /* Disable ULP support */
691 e1000_disable_ulp_lpt_lp(&adapter->hw, TRUE);
692
693 /* Allocate transmit descriptors and buffers */
694 error = em_create_tx_ring(adapter);
695 if (error) {
696 device_printf(dev, "Could not setup transmit structures\n");
697 goto fail;
698 }
699
700 /* Allocate receive descriptors and buffers */
701 error = em_create_rx_ring(adapter);
702 if (error) {
703 device_printf(dev, "Could not setup receive structures\n");
704 goto fail;
705 }
706
707 /* Manually turn off all interrupts */
708 E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
709
710 /* Determine if we have to control management hardware */
711 if (e1000_enable_mng_pass_thru(&adapter->hw))
712 adapter->flags |= EM_FLAG_HAS_MGMT;
713
714 /*
715 * Setup Wake-on-Lan
716 */
717 apme_mask = EM_EEPROM_APME;
718 eeprom_data = 0;
719 switch (adapter->hw.mac.type) {
720 case e1000_82542:
721 case e1000_82543:
722 break;
723
724 case e1000_82573:
725 case e1000_82583:
726 adapter->flags |= EM_FLAG_HAS_AMT;
727 /* FALL THROUGH */
728
729 case e1000_82546:
730 case e1000_82546_rev_3:
731 case e1000_82571:
732 case e1000_82572:
733 case e1000_80003es2lan:
734 if (adapter->hw.bus.func == 1) {
735 e1000_read_nvm(&adapter->hw,
736 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
737 } else {
738 e1000_read_nvm(&adapter->hw,
739 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
740 }
741 break;
742
743 case e1000_ich8lan:
744 case e1000_ich9lan:
745 case e1000_ich10lan:
746 case e1000_pchlan:
747 case e1000_pch2lan:
748 apme_mask = E1000_WUC_APME;
749 adapter->flags |= EM_FLAG_HAS_AMT;
750 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
751 break;
752
753 default:
754 e1000_read_nvm(&adapter->hw,
755 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
756 break;
757 }
758 if (eeprom_data & apme_mask)
759 adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
760
761 /*
762 * We have the eeprom settings, now apply the special cases
763 * where the eeprom may be wrong or the board won't support
764 * wake on lan on a particular port
765 */
766 device_id = pci_get_device(dev);
767 switch (device_id) {
768 case E1000_DEV_ID_82546GB_PCIE:
769 adapter->wol = 0;
770 break;
771
772 case E1000_DEV_ID_82546EB_FIBER:
773 case E1000_DEV_ID_82546GB_FIBER:
774 case E1000_DEV_ID_82571EB_FIBER:
775 /*
776 * Wake events only supported on port A for dual fiber
777 * regardless of eeprom setting
778 */
779 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
780 E1000_STATUS_FUNC_1)
781 adapter->wol = 0;
782 break;
783
784 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
785 case E1000_DEV_ID_82571EB_QUAD_COPPER:
786 case E1000_DEV_ID_82571EB_QUAD_FIBER:
787 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
788 /* if quad port adapter, disable WoL on all but port A */
789 if (em_global_quad_port_a != 0)
790 adapter->wol = 0;
791 /* Reset for multiple quad port adapters */
792 if (++em_global_quad_port_a == 4)
793 em_global_quad_port_a = 0;
794 break;
795 }
796
797 /* XXX disable wol */
798 adapter->wol = 0;
799
800 /* Setup flow control. */
801 device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
802 em_flowctrl);
803 adapter->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
804 if (adapter->hw.mac.type == e1000_pchlan) {
805 /* Only PAUSE reception is supported on PCH */
806 adapter->ifm_flowctrl &= ~IFM_ETH_TXPAUSE;
807 }
808
809 /* Setup OS specific network interface */
810 em_setup_ifp(adapter);
811
812 /* Add sysctl tree, must after em_setup_ifp() */
813 em_add_sysctl(adapter);
814
815#ifdef IFPOLL_ENABLE
816 /* Polling setup */
817 ifpoll_compat_setup(&adapter->npoll,
818 device_get_sysctl_ctx(dev), device_get_sysctl_tree(dev),
819 device_get_unit(dev), ifp->if_serializer);
820#endif
821
822 /* Reset the hardware */
823 error = em_reset(adapter);
824 if (error) {
825 /*
826 * Some 82573 parts fail the first reset, call it again,
827 * if it fails a second time its a real issue.
828 */
829 error = em_reset(adapter);
830 if (error) {
831 device_printf(dev, "Unable to reset the hardware\n");
832 ether_ifdetach(ifp);
833 goto fail;
834 }
835 }
836
837 /* Initialize statistics */
838 em_update_stats(adapter);
839
840 adapter->hw.mac.get_link_status = 1;
841 em_update_link_status(adapter);
842
843 /* Do we need workaround for 82544 PCI-X adapter? */
844 if (adapter->hw.bus.type == e1000_bus_type_pcix &&
845 adapter->hw.mac.type == e1000_82544)
846 adapter->pcix_82544 = TRUE;
847 else
848 adapter->pcix_82544 = FALSE;
849
850 if (adapter->pcix_82544) {
851 /*
852 * 82544 on PCI-X may split one TX segment
853 * into two TX descs, so we double its number
854 * of spare TX desc here.
855 */
856 adapter->spare_tx_desc = 2 * EM_TX_SPARE;
857 } else {
858 adapter->spare_tx_desc = EM_TX_SPARE;
859 }
860 if (adapter->flags & EM_FLAG_TSO)
861 adapter->spare_tx_desc = EM_TX_SPARE_TSO;
862 adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
863
864 /*
865 * Keep following relationship between spare_tx_desc, oact_tx_desc
866 * and tx_int_nsegs:
867 * (spare_tx_desc + EM_TX_RESERVED) <=
868 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
869 */
870 adapter->oact_tx_desc = adapter->num_tx_desc / 8;
871 if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
872 adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
873 if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
874 adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
875
876 adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
877 if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
878 adapter->tx_int_nsegs = adapter->oact_tx_desc;
879
880 /* Non-AMT based hardware can now take control from firmware */
881 if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
882 EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
883 em_get_hw_control(adapter);
884
885 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
886
887 /*
888 * Missing Interrupt Following ICR read:
889 *
890 * 82571/82572 specification update errata #76
891 * 82573 specification update errata #31
892 * 82574 specification update errata #12
893 * 82583 specification update errata #4
894 */
895 intr_func = em_intr;
896 if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
897 (adapter->hw.mac.type == e1000_82571 ||
898 adapter->hw.mac.type == e1000_82572 ||
899 adapter->hw.mac.type == e1000_82573 ||
900 adapter->hw.mac.type == e1000_82574 ||
901 adapter->hw.mac.type == e1000_82583))
902 intr_func = em_intr_mask;
903
904 error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
905 intr_func, adapter, &adapter->intr_tag,
906 ifp->if_serializer);
907 if (error) {
908 device_printf(dev, "Failed to register interrupt handler");
909 ether_ifdetach(ifp);
910 goto fail;
911 }
912 return (0);
913fail:
914 em_detach(dev);
915 return (error);
916}
917
918static int
919em_detach(device_t dev)
920{
921 struct adapter *adapter = device_get_softc(dev);
922
923 if (device_is_attached(dev)) {
924 struct ifnet *ifp = &adapter->arpcom.ac_if;
925
926 lwkt_serialize_enter(ifp->if_serializer);
927
928 em_stop(adapter);
929
930 e1000_phy_hw_reset(&adapter->hw);
931
932 em_rel_mgmt(adapter);
933 em_rel_hw_control(adapter);
934
935 if (adapter->wol) {
936 E1000_WRITE_REG(&adapter->hw, E1000_WUC,
937 E1000_WUC_PME_EN);
938 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
939 em_enable_wol(dev);
940 }
941
942 bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
943
944 lwkt_serialize_exit(ifp->if_serializer);
945
946 ether_ifdetach(ifp);
947 } else if (adapter->memory != NULL) {
948 em_rel_hw_control(adapter);
949 }
950
951 ifmedia_removeall(&adapter->media);
952 bus_generic_detach(dev);
953
954 em_free_pci_res(adapter);
955
956 em_destroy_tx_ring(adapter, adapter->num_tx_desc);
957 em_destroy_rx_ring(adapter, adapter->num_rx_desc);
958
959 /* Free Transmit Descriptor ring */
960 if (adapter->tx_desc_base)
961 em_dma_free(adapter, &adapter->txdma);
962
963 /* Free Receive Descriptor ring */
964 if (adapter->rx_desc_base)
965 em_dma_free(adapter, &adapter->rxdma);
966
967 /* Free top level busdma tag */
968 if (adapter->parent_dtag != NULL)
969 bus_dma_tag_destroy(adapter->parent_dtag);
970
971 if (adapter->mta != NULL)
972 kfree(adapter->mta, M_DEVBUF);
973
974 return (0);
975}
976
977static int
978em_shutdown(device_t dev)
979{
980 return em_suspend(dev);
981}
982
983static int
984em_suspend(device_t dev)
985{
986 struct adapter *adapter = device_get_softc(dev);
987 struct ifnet *ifp = &adapter->arpcom.ac_if;
988
989 lwkt_serialize_enter(ifp->if_serializer);
990
991 em_stop(adapter);
992
993 em_rel_mgmt(adapter);
994 em_rel_hw_control(adapter);
995
996 if (adapter->wol) {
997 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
998 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
999 em_enable_wol(dev);
1000 }
1001
1002 lwkt_serialize_exit(ifp->if_serializer);
1003
1004 return bus_generic_suspend(dev);
1005}
1006
1007static int
1008em_resume(device_t dev)
1009{
1010 struct adapter *adapter = device_get_softc(dev);
1011 struct ifnet *ifp = &adapter->arpcom.ac_if;
1012
1013 lwkt_serialize_enter(ifp->if_serializer);
1014
1015 if (adapter->hw.mac.type == e1000_pch2lan)
1016 e1000_resume_workarounds_pchlan(&adapter->hw);
1017
1018 em_init(adapter);
1019 em_get_mgmt(adapter);
1020 if_devstart(ifp);
1021
1022 lwkt_serialize_exit(ifp->if_serializer);
1023
1024 return bus_generic_resume(dev);
1025}
1026
1027static void
1028em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1029{
1030 struct adapter *adapter = ifp->if_softc;
1031 struct mbuf *m_head;
1032 int idx = -1, nsegs = 0;
1033
1034 ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1035 ASSERT_SERIALIZED(ifp->if_serializer);
1036
1037 if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1038 return;
1039
1040 if (!adapter->link_active) {
1041 ifq_purge(&ifp->if_snd);
1042 return;
1043 }
1044
1045 while (!ifq_is_empty(&ifp->if_snd)) {
1046 /* Now do we at least have a minimal? */
1047 if (EM_IS_OACTIVE(adapter)) {
1048 em_tx_collect(adapter);
1049 if (EM_IS_OACTIVE(adapter)) {
1050 ifq_set_oactive(&ifp->if_snd);
1051 adapter->no_tx_desc_avail1++;
1052 break;
1053 }
1054 }
1055
1056 logif(pkt_txqueue);
1057 m_head = ifq_dequeue(&ifp->if_snd);
1058 if (m_head == NULL)
1059 break;
1060
1061 if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1062 IFNET_STAT_INC(ifp, oerrors, 1);
1063 em_tx_collect(adapter);
1064 continue;
1065 }
1066
1067 /*
1068 * TX interrupt are aggressively aggregated, so increasing
1069 * opackets at TX interrupt time will make the opackets
1070 * statistics vastly inaccurate; we do the opackets increment
1071 * now.
1072 */
1073 IFNET_STAT_INC(ifp, opackets, 1);
1074
1075 if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1076 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1077 nsegs = 0;
1078 idx = -1;
1079 }
1080
1081 /* Send a copy of the frame to the BPF listener */
1082 ETHER_BPF_MTAP(ifp, m_head);
1083
1084 /* Set timeout in case hardware has problems transmitting. */
1085 ifp->if_timer = EM_TX_TIMEOUT;
1086 }
1087 if (idx >= 0)
1088 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1089}
1090
1091static int
1092em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1093{
1094 struct adapter *adapter = ifp->if_softc;
1095 struct ifreq *ifr = (struct ifreq *)data;
1096 uint16_t eeprom_data = 0;
1097 int max_frame_size, mask, reinit;
1098 int error = 0;
1099
1100 ASSERT_SERIALIZED(ifp->if_serializer);
1101
1102 switch (command) {
1103 case SIOCSIFMTU:
1104 switch (adapter->hw.mac.type) {
1105 case e1000_82573:
1106 /*
1107 * 82573 only supports jumbo frames
1108 * if ASPM is disabled.
1109 */
1110 e1000_read_nvm(&adapter->hw,
1111 NVM_INIT_3GIO_3, 1, &eeprom_data);
1112 if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1113 max_frame_size = ETHER_MAX_LEN;
1114 break;
1115 }
1116 /* FALL THROUGH */
1117
1118 /* Limit Jumbo Frame size */
1119 case e1000_82571:
1120 case e1000_82572:
1121 case e1000_ich9lan:
1122 case e1000_ich10lan:
1123 case e1000_pch2lan:
1124 case e1000_pch_lpt:
1125 case e1000_pch_spt:
1126 case e1000_82574:
1127 case e1000_82583:
1128 case e1000_80003es2lan:
1129 max_frame_size = 9234;
1130 break;
1131
1132 case e1000_pchlan:
1133 max_frame_size = 4096;
1134 break;
1135
1136 /* Adapters that do not support jumbo frames */
1137 case e1000_82542:
1138 case e1000_ich8lan:
1139 max_frame_size = ETHER_MAX_LEN;
1140 break;
1141
1142 default:
1143 max_frame_size = MAX_JUMBO_FRAME_SIZE;
1144 break;
1145 }
1146 if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1147 ETHER_CRC_LEN) {
1148 error = EINVAL;
1149 break;
1150 }
1151
1152 ifp->if_mtu = ifr->ifr_mtu;
1153 adapter->hw.mac.max_frame_size =
1154 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1155
1156 if (ifp->if_flags & IFF_RUNNING)
1157 em_init(adapter);
1158 break;
1159
1160 case SIOCSIFFLAGS:
1161 if (ifp->if_flags & IFF_UP) {
1162 if ((ifp->if_flags & IFF_RUNNING)) {
1163 if ((ifp->if_flags ^ adapter->if_flags) &
1164 (IFF_PROMISC | IFF_ALLMULTI)) {
1165 em_disable_promisc(adapter);
1166 em_set_promisc(adapter);
1167 }
1168 } else {
1169 em_init(adapter);
1170 }
1171 } else if (ifp->if_flags & IFF_RUNNING) {
1172 em_stop(adapter);
1173 }
1174 adapter->if_flags = ifp->if_flags;
1175 break;
1176
1177 case SIOCADDMULTI:
1178 case SIOCDELMULTI:
1179 if (ifp->if_flags & IFF_RUNNING) {
1180 em_disable_intr(adapter);
1181 em_set_multi(adapter);
1182 if (adapter->hw.mac.type == e1000_82542 &&
1183 adapter->hw.revision_id == E1000_REVISION_2)
1184 em_init_rx_unit(adapter);
1185#ifdef IFPOLL_ENABLE
1186 if (!(ifp->if_flags & IFF_NPOLLING))
1187#endif
1188 em_enable_intr(adapter);
1189 }
1190 break;
1191
1192 case SIOCSIFMEDIA:
1193 /* Check SOL/IDER usage */
1194 if (e1000_check_reset_block(&adapter->hw)) {
1195 device_printf(adapter->dev, "Media change is"
1196 " blocked due to SOL/IDER session.\n");
1197 break;
1198 }
1199 /* FALL THROUGH */
1200
1201 case SIOCGIFMEDIA:
1202 error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1203 break;
1204
1205 case SIOCSIFCAP:
1206 reinit = 0;
1207 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1208 if (mask & IFCAP_RXCSUM) {
1209 ifp->if_capenable ^= IFCAP_RXCSUM;
1210 reinit = 1;
1211 }
1212 if (mask & IFCAP_TXCSUM) {
1213 ifp->if_capenable ^= IFCAP_TXCSUM;
1214 if (ifp->if_capenable & IFCAP_TXCSUM)
1215 ifp->if_hwassist |= EM_CSUM_FEATURES;
1216 else
1217 ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1218 }
1219 if (mask & IFCAP_TSO) {
1220 ifp->if_capenable ^= IFCAP_TSO;
1221 if (ifp->if_capenable & IFCAP_TSO)
1222 ifp->if_hwassist |= CSUM_TSO;
1223 else
1224 ifp->if_hwassist &= ~CSUM_TSO;
1225 }
1226 if (mask & IFCAP_VLAN_HWTAGGING) {
1227 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1228 reinit = 1;
1229 }
1230 if (reinit && (ifp->if_flags & IFF_RUNNING))
1231 em_init(adapter);
1232 break;
1233
1234 default:
1235 error = ether_ioctl(ifp, command, data);
1236 break;
1237 }
1238 return (error);
1239}
1240
1241static void
1242em_watchdog(struct ifnet *ifp)
1243{
1244 struct adapter *adapter = ifp->if_softc;
1245
1246 ASSERT_SERIALIZED(ifp->if_serializer);
1247
1248 /*
1249 * The timer is set to 5 every time start queues a packet.
1250 * Then txeof keeps resetting it as long as it cleans at
1251 * least one descriptor.
1252 * Finally, anytime all descriptors are clean the timer is
1253 * set to 0.
1254 */
1255
1256 if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1257 E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1258 /*
1259 * If we reach here, all TX jobs are completed and
1260 * the TX engine should have been idled for some time.
1261 * We don't need to call if_devstart() here.
1262 */
1263 ifq_clr_oactive(&ifp->if_snd);
1264 ifp->if_timer = 0;
1265 return;
1266 }
1267
1268 /*
1269 * If we are in this routine because of pause frames, then
1270 * don't reset the hardware.
1271 */
1272 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1273 E1000_STATUS_TXOFF) {
1274 ifp->if_timer = EM_TX_TIMEOUT;
1275 return;
1276 }
1277
1278 if (e1000_check_for_link(&adapter->hw) == 0)
1279 if_printf(ifp, "watchdog timeout -- resetting\n");
1280
1281 IFNET_STAT_INC(ifp, oerrors, 1);
1282 adapter->watchdog_events++;
1283
1284 em_init(adapter);
1285
1286 if (!ifq_is_empty(&ifp->if_snd))
1287 if_devstart(ifp);
1288}
1289
1290static void
1291em_init(void *xsc)
1292{
1293 struct adapter *adapter = xsc;
1294 struct ifnet *ifp = &adapter->arpcom.ac_if;
1295 device_t dev = adapter->dev;
1296
1297 ASSERT_SERIALIZED(ifp->if_serializer);
1298
1299 em_stop(adapter);
1300
1301 /* Get the latest mac address, User can use a LAA */
1302 bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1303
1304 /* Put the address into the Receive Address Array */
1305 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1306
1307 /*
1308 * With the 82571 adapter, RAR[0] may be overwritten
1309 * when the other port is reset, we make a duplicate
1310 * in RAR[14] for that eventuality, this assures
1311 * the interface continues to function.
1312 */
1313 if (adapter->hw.mac.type == e1000_82571) {
1314 e1000_set_laa_state_82571(&adapter->hw, TRUE);
1315 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1316 E1000_RAR_ENTRIES - 1);
1317 }
1318
1319 /* Reset the hardware */
1320 if (em_reset(adapter)) {
1321 device_printf(dev, "Unable to reset the hardware\n");
1322 /* XXX em_stop()? */
1323 return;
1324 }
1325 em_update_link_status(adapter);
1326
1327 /* Setup VLAN support, basic and offload if available */
1328 E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1329
1330 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1331 uint32_t ctrl;
1332
1333 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1334 ctrl |= E1000_CTRL_VME;
1335 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1336 }
1337
1338 /* Configure for OS presence */
1339 em_get_mgmt(adapter);
1340
1341 /* Prepare transmit descriptors and buffers */
1342 em_init_tx_ring(adapter);
1343 em_init_tx_unit(adapter);
1344
1345 /* Setup Multicast table */
1346 em_set_multi(adapter);
1347
1348 /* Prepare receive descriptors and buffers */
1349 if (em_init_rx_ring(adapter)) {
1350 device_printf(dev, "Could not setup receive structures\n");
1351 em_stop(adapter);
1352 return;
1353 }
1354 em_init_rx_unit(adapter);
1355
1356 /* Don't lose promiscuous settings */
1357 em_set_promisc(adapter);
1358
1359 ifp->if_flags |= IFF_RUNNING;
1360 ifq_clr_oactive(&ifp->if_snd);
1361
1362 callout_reset(&adapter->timer, hz, em_timer, adapter);
1363 e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1364
1365 /* MSI/X configuration for 82574 */
1366 if (adapter->hw.mac.type == e1000_82574) {
1367 int tmp;
1368
1369 tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1370 tmp |= E1000_CTRL_EXT_PBA_CLR;
1371 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1372 /*
1373 * XXX MSIX
1374 * Set the IVAR - interrupt vector routing.
1375 * Each nibble represents a vector, high bit
1376 * is enable, other 3 bits are the MSIX table
1377 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1378 * Link (other) to 2, hence the magic number.
1379 */
1380 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1381 }
1382
1383#ifdef IFPOLL_ENABLE
1384 /*
1385 * Only enable interrupts if we are not polling, make sure
1386 * they are off otherwise.
1387 */
1388 if (ifp->if_flags & IFF_NPOLLING)
1389 em_disable_intr(adapter);
1390 else
1391#endif /* IFPOLL_ENABLE */
1392 em_enable_intr(adapter);
1393
1394 /* AMT based hardware can now take control from firmware */
1395 if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1396 (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1397 adapter->hw.mac.type >= e1000_82571)
1398 em_get_hw_control(adapter);
1399}
1400
1401#ifdef IFPOLL_ENABLE
1402
1403static void
1404em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1405{
1406 struct adapter *adapter = ifp->if_softc;
1407
1408 ASSERT_SERIALIZED(ifp->if_serializer);
1409
1410 if (adapter->npoll.ifpc_stcount-- == 0) {
1411 uint32_t reg_icr;
1412
1413 adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1414
1415 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1416 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1417 callout_stop(&adapter->timer);
1418 adapter->hw.mac.get_link_status = 1;
1419 em_update_link_status(adapter);
1420 callout_reset(&adapter->timer, hz, em_timer, adapter);
1421 }
1422 }
1423
1424 em_rxeof(adapter, count);
1425 em_txeof(adapter);
1426
1427 if (!ifq_is_empty(&ifp->if_snd))
1428 if_devstart(ifp);
1429}
1430
1431static void
1432em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1433{
1434 struct adapter *adapter = ifp->if_softc;
1435
1436 ASSERT_SERIALIZED(ifp->if_serializer);
1437
1438 if (info != NULL) {
1439 int cpuid = adapter->npoll.ifpc_cpuid;
1440
1441 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1442 info->ifpi_rx[cpuid].arg = NULL;
1443 info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1444
1445 if (ifp->if_flags & IFF_RUNNING)
1446 em_disable_intr(adapter);
1447 ifq_set_cpuid(&ifp->if_snd, cpuid);
1448 } else {
1449 if (ifp->if_flags & IFF_RUNNING)
1450 em_enable_intr(adapter);
1451 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1452 }
1453}
1454
1455#endif /* IFPOLL_ENABLE */
1456
1457static void
1458em_intr(void *xsc)
1459{
1460 em_intr_body(xsc, TRUE);
1461}
1462
1463static void
1464em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1465{
1466 struct ifnet *ifp = &adapter->arpcom.ac_if;
1467 uint32_t reg_icr;
1468
1469 logif(intr_beg);
1470 ASSERT_SERIALIZED(ifp->if_serializer);
1471
1472 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1473
1474 if (chk_asserted &&
1475 ((adapter->hw.mac.type >= e1000_82571 &&
1476 (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1477 reg_icr == 0)) {
1478 logif(intr_end);
1479 return;
1480 }
1481
1482 /*
1483 * XXX: some laptops trigger several spurious interrupts
1484 * on em(4) when in the resume cycle. The ICR register
1485 * reports all-ones value in this case. Processing such
1486 * interrupts would lead to a freeze. I don't know why.
1487 */
1488 if (reg_icr == 0xffffffff) {
1489 logif(intr_end);
1490 return;
1491 }
1492
1493 if (ifp->if_flags & IFF_RUNNING) {
1494 if (reg_icr &
1495 (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1496 em_rxeof(adapter, -1);
1497 if (reg_icr & E1000_ICR_TXDW) {
1498 em_txeof(adapter);
1499 if (!ifq_is_empty(&ifp->if_snd))
1500 if_devstart(ifp);
1501 }
1502 }
1503
1504 /* Link status change */
1505 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1506 callout_stop(&adapter->timer);
1507 adapter->hw.mac.get_link_status = 1;
1508 em_update_link_status(adapter);
1509
1510 /* Deal with TX cruft when link lost */
1511 em_tx_purge(adapter);
1512
1513 callout_reset(&adapter->timer, hz, em_timer, adapter);
1514 }
1515
1516 if (reg_icr & E1000_ICR_RXO)
1517 adapter->rx_overruns++;
1518
1519 logif(intr_end);
1520}
1521
1522static void
1523em_intr_mask(void *xsc)
1524{
1525 struct adapter *adapter = xsc;
1526
1527 E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1528 /*
1529 * NOTE:
1530 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1531 * so don't check it.
1532 */
1533 em_intr_body(adapter, FALSE);
1534 E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1535}
1536
1537static void
1538em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1539{
1540 struct adapter *adapter = ifp->if_softc;
1541
1542 ASSERT_SERIALIZED(ifp->if_serializer);
1543
1544 em_update_link_status(adapter);
1545
1546 ifmr->ifm_status = IFM_AVALID;
1547 ifmr->ifm_active = IFM_ETHER;
1548
1549 if (!adapter->link_active) {
1550 if (adapter->hw.mac.autoneg)
1551 ifmr->ifm_active |= IFM_NONE;
1552 else
1553 ifmr->ifm_active = adapter->media.ifm_media;
1554 return;
1555 }
1556
1557 ifmr->ifm_status |= IFM_ACTIVE;
1558 if (adapter->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1559 ifmr->ifm_active |= adapter->ifm_flowctrl;
1560
1561 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1562 adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1563 u_char fiber_type = IFM_1000_SX;
1564
1565 if (adapter->hw.mac.type == e1000_82545)
1566 fiber_type = IFM_1000_LX;
1567 ifmr->ifm_active |= fiber_type | IFM_FDX;
1568 } else {
1569 switch (adapter->link_speed) {
1570 case 10:
1571 ifmr->ifm_active |= IFM_10_T;
1572 break;
1573 case 100:
1574 ifmr->ifm_active |= IFM_100_TX;
1575 break;
1576
1577 case 1000:
1578 ifmr->ifm_active |= IFM_1000_T;
1579 break;
1580 }
1581 if (adapter->link_duplex == FULL_DUPLEX)
1582 ifmr->ifm_active |= IFM_FDX;
1583 else
1584 ifmr->ifm_active |= IFM_HDX;
1585 }
1586 if (ifmr->ifm_active & IFM_FDX) {
1587 ifmr->ifm_active |=
1588 e1000_fc2ifmedia(adapter->hw.fc.current_mode);
1589 }
1590}
1591
1592static int
1593em_media_change(struct ifnet *ifp)
1594{
1595 struct adapter *adapter = ifp->if_softc;
1596 struct ifmedia *ifm = &adapter->media;
1597
1598 ASSERT_SERIALIZED(ifp->if_serializer);
1599
1600 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1601 return (EINVAL);
1602
1603 if (adapter->hw.mac.type == e1000_pchlan &&
1604 (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)) {
1605 if (bootverbose)
1606 if_printf(ifp, "TX PAUSE is not supported on PCH\n");
1607 return EINVAL;
1608 }
1609
1610 switch (IFM_SUBTYPE(ifm->ifm_media)) {
1611 case IFM_AUTO:
1612 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1613 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1614 break;
1615
1616 case IFM_1000_LX:
1617 case IFM_1000_SX:
1618 case IFM_1000_T:
1619 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1620 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1621 break;
1622
1623 case IFM_100_TX:
1624 if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1625 adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1626 } else {
1627 if (IFM_OPTIONS(ifm->ifm_media) &
1628 (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1629 if (bootverbose) {
1630 if_printf(ifp, "Flow control is not "
1631 "allowed for half-duplex\n");
1632 }
1633 return EINVAL;
1634 }
1635 adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1636 }
1637 adapter->hw.mac.autoneg = FALSE;
1638 adapter->hw.phy.autoneg_advertised = 0;
1639 break;
1640
1641 case IFM_10_T:
1642 if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1643 adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1644 } else {
1645 if (IFM_OPTIONS(ifm->ifm_media) &
1646 (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1647 if (bootverbose) {
1648 if_printf(ifp, "Flow control is not "
1649 "allowed for half-duplex\n");
1650 }
1651 return EINVAL;
1652 }
1653 adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1654 }
1655 adapter->hw.mac.autoneg = FALSE;
1656 adapter->hw.phy.autoneg_advertised = 0;
1657 break;
1658
1659 default:
1660 if (bootverbose) {
1661 if_printf(ifp, "Unsupported media type %d\n",
1662 IFM_SUBTYPE(ifm->ifm_media));
1663 }
1664 return EINVAL;
1665 }
1666 adapter->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1667
1668 if (ifp->if_flags & IFF_RUNNING)
1669 em_init(adapter);
1670
1671 return (0);
1672}
1673
1674static int
1675em_encap(struct adapter *adapter, struct mbuf **m_headp,
1676 int *segs_used, int *idx)
1677{
1678 bus_dma_segment_t segs[EM_MAX_SCATTER];
1679 bus_dmamap_t map;
1680 struct em_buffer *tx_buffer, *tx_buffer_mapped;
1681 struct e1000_tx_desc *ctxd = NULL;
1682 struct mbuf *m_head = *m_headp;
1683 uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1684 int maxsegs, nsegs, i, j, first, last = 0, error;
1685
1686 if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1687 error = em_tso_pullup(adapter, m_headp);
1688 if (error)
1689 return error;
1690 m_head = *m_headp;
1691 }
1692
1693 txd_upper = txd_lower = 0;
1694 txd_used = 0;
1695
1696 /*
1697 * Capture the first descriptor index, this descriptor
1698 * will have the index of the EOP which is the only one
1699 * that now gets a DONE bit writeback.
1700 */
1701 first = adapter->next_avail_tx_desc;
1702 tx_buffer = &adapter->tx_buffer_area[first];
1703 tx_buffer_mapped = tx_buffer;
1704 map = tx_buffer->map;
1705
1706 maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1707 KASSERT(maxsegs >= adapter->spare_tx_desc,
1708 ("not enough spare TX desc"));
1709 if (adapter->pcix_82544) {
1710 /* Half it; see the comment in em_attach() */
1711 maxsegs >>= 1;
1712 }
1713 if (maxsegs > EM_MAX_SCATTER)
1714 maxsegs = EM_MAX_SCATTER;
1715
1716 error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1717 segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1718 if (error) {
1719 if (error == ENOBUFS)
1720 adapter->mbuf_alloc_failed++;
1721 else
1722 adapter->no_tx_dma_setup++;
1723
1724 m_freem(*m_headp);
1725 *m_headp = NULL;
1726 return error;
1727 }
1728 bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1729
1730 m_head = *m_headp;
1731 adapter->tx_nsegs += nsegs;
1732 *segs_used += nsegs;
1733
1734 if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1735 /* TSO will consume one TX desc */
1736 i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1737 adapter->tx_nsegs += i;
1738 *segs_used += i;
1739 } else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1740 /* TX csum offloading will consume one TX desc */
1741 i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1742 adapter->tx_nsegs += i;
1743 *segs_used += i;
1744 }
1745
1746 /* Handle VLAN tag */
1747 if (m_head->m_flags & M_VLANTAG) {
1748 /* Set the vlan id. */
1749 txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1750 /* Tell hardware to add tag */
1751 txd_lower |= htole32(E1000_TXD_CMD_VLE);
1752 }
1753
1754 i = adapter->next_avail_tx_desc;
1755
1756 /* Set up our transmit descriptors */
1757 for (j = 0; j < nsegs; j++) {
1758 /* If adapter is 82544 and on PCIX bus */
1759 if(adapter->pcix_82544) {
1760 DESC_ARRAY desc_array;
1761 uint32_t array_elements, counter;
1762
1763 /*
1764 * Check the Address and Length combination and
1765 * split the data accordingly
1766 */
1767 array_elements = em_82544_fill_desc(segs[j].ds_addr,
1768 segs[j].ds_len, &desc_array);
1769 for (counter = 0; counter < array_elements; counter++) {
1770 KKASSERT(txd_used < adapter->num_tx_desc_avail);
1771
1772 tx_buffer = &adapter->tx_buffer_area[i];
1773 ctxd = &adapter->tx_desc_base[i];
1774
1775 ctxd->buffer_addr = htole64(
1776 desc_array.descriptor[counter].address);
1777 ctxd->lower.data = htole32(
1778 E1000_TXD_CMD_IFCS | txd_lower |
1779 desc_array.descriptor[counter].length);
1780 ctxd->upper.data = htole32(txd_upper);
1781
1782 last = i;
1783 if (++i == adapter->num_tx_desc)
1784 i = 0;
1785
1786 txd_used++;
1787 }
1788 } else {
1789 tx_buffer = &adapter->tx_buffer_area[i];
1790 ctxd = &adapter->tx_desc_base[i];
1791
1792 ctxd->buffer_addr = htole64(segs[j].ds_addr);
1793 ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1794 txd_lower | segs[j].ds_len);
1795 ctxd->upper.data = htole32(txd_upper);
1796
1797 last = i;
1798 if (++i == adapter->num_tx_desc)
1799 i = 0;
1800 }
1801 }
1802
1803 adapter->next_avail_tx_desc = i;
1804 if (adapter->pcix_82544) {
1805 KKASSERT(adapter->num_tx_desc_avail > txd_used);
1806 adapter->num_tx_desc_avail -= txd_used;
1807 } else {
1808 KKASSERT(adapter->num_tx_desc_avail > nsegs);
1809 adapter->num_tx_desc_avail -= nsegs;
1810 }
1811
1812 tx_buffer->m_head = m_head;
1813 tx_buffer_mapped->map = tx_buffer->map;
1814 tx_buffer->map = map;
1815
1816 if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1817 adapter->tx_nsegs = 0;
1818
1819 /*
1820 * Report Status (RS) is turned on
1821 * every tx_int_nsegs descriptors.
1822 */
1823 cmd = E1000_TXD_CMD_RS;
1824
1825 /*
1826 * Keep track of the descriptor, which will
1827 * be written back by hardware.
1828 */
1829 adapter->tx_dd[adapter->tx_dd_tail] = last;
1830 EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1831 KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1832 }
1833
1834 /*
1835 * Last Descriptor of Packet needs End Of Packet (EOP)
1836 */
1837 ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1838
1839 if (adapter->hw.mac.type == e1000_82547) {
1840 /*
1841 * Advance the Transmit Descriptor Tail (TDT), this tells the
1842 * E1000 that this frame is available to transmit.
1843 */
1844 if (adapter->link_duplex == HALF_DUPLEX) {
1845 em_82547_move_tail_serialized(adapter);
1846 } else {
1847 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1848 em_82547_update_fifo_head(adapter,
1849 m_head->m_pkthdr.len);
1850 }
1851 } else {
1852 /*
1853 * Defer TDT updating, until enough descriptors are setup
1854 */
1855 *idx = i;
1856 }
1857 return (0);
1858}
1859
1860/*
1861 * 82547 workaround to avoid controller hang in half-duplex environment.
1862 * The workaround is to avoid queuing a large packet that would span
1863 * the internal Tx FIFO ring boundary. We need to reset the FIFO pointers
1864 * in this case. We do that only when FIFO is quiescent.
1865 */
1866static void
1867em_82547_move_tail_serialized(struct adapter *adapter)
1868{
1869 struct e1000_tx_desc *tx_desc;
1870 uint16_t hw_tdt, sw_tdt, length = 0;
1871 bool eop = 0;
1872
1873 ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1874
1875 hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1876 sw_tdt = adapter->next_avail_tx_desc;
1877
1878 while (hw_tdt != sw_tdt) {
1879 tx_desc = &adapter->tx_desc_base[hw_tdt];
1880 length += tx_desc->lower.flags.length;
1881 eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1882 if (++hw_tdt == adapter->num_tx_desc)
1883 hw_tdt = 0;
1884
1885 if (eop) {
1886 if (em_82547_fifo_workaround(adapter, length)) {
1887 adapter->tx_fifo_wrk_cnt++;
1888 callout_reset(&adapter->tx_fifo_timer, 1,
1889 em_82547_move_tail, adapter);
1890 break;
1891 }
1892 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1893 em_82547_update_fifo_head(adapter, length);
1894 length = 0;
1895 }
1896 }
1897}
1898
1899static void
1900em_82547_move_tail(void *xsc)
1901{
1902 struct adapter *adapter = xsc;
1903 struct ifnet *ifp = &adapter->arpcom.ac_if;
1904
1905 lwkt_serialize_enter(ifp->if_serializer);
1906 em_82547_move_tail_serialized(adapter);
1907 lwkt_serialize_exit(ifp->if_serializer);
1908}
1909
1910static int
1911em_82547_fifo_workaround(struct adapter *adapter, int len)
1912{
1913 int fifo_space, fifo_pkt_len;
1914
1915 fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1916
1917 if (adapter->link_duplex == HALF_DUPLEX) {
1918 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1919
1920 if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1921 if (em_82547_tx_fifo_reset(adapter))
1922 return (0);
1923 else
1924 return (1);
1925 }
1926 }
1927 return (0);
1928}
1929
1930static void
1931em_82547_update_fifo_head(struct adapter *adapter, int len)
1932{
1933 int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1934
1935 /* tx_fifo_head is always 16 byte aligned */
1936 adapter->tx_fifo_head += fifo_pkt_len;
1937 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1938 adapter->tx_fifo_head -= adapter->tx_fifo_size;
1939}
1940
1941static int
1942em_82547_tx_fifo_reset(struct adapter *adapter)
1943{
1944 uint32_t tctl;
1945
1946 if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1947 E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1948 (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1949 E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1950 (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1951 E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1952 (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1953 /* Disable TX unit */
1954 tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1955 E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1956 tctl & ~E1000_TCTL_EN);
1957
1958 /* Reset FIFO pointers */
1959 E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1960 adapter->tx_head_addr);
1961 E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1962 adapter->tx_head_addr);
1963 E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1964 adapter->tx_head_addr);
1965 E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1966 adapter->tx_head_addr);
1967
1968 /* Re-enable TX unit */
1969 E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1970 E1000_WRITE_FLUSH(&adapter->hw);
1971
1972 adapter->tx_fifo_head = 0;
1973 adapter->tx_fifo_reset_cnt++;
1974
1975 return (TRUE);
1976 } else {
1977 return (FALSE);
1978 }
1979}
1980
1981static void
1982em_set_promisc(struct adapter *adapter)
1983{
1984 struct ifnet *ifp = &adapter->arpcom.ac_if;
1985 uint32_t reg_rctl;
1986
1987 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1988
1989 if (ifp->if_flags & IFF_PROMISC) {
1990 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1991 /* Turn this on if you want to see bad packets */
1992 if (em_debug_sbp)
1993 reg_rctl |= E1000_RCTL_SBP;
1994 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1995 } else if (ifp->if_flags & IFF_ALLMULTI) {
1996 reg_rctl |= E1000_RCTL_MPE;
1997 reg_rctl &= ~E1000_RCTL_UPE;
1998 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1999 }
2000}
2001
2002static void
2003em_disable_promisc(struct adapter *adapter)
2004{
2005 uint32_t reg_rctl;
2006
2007 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2008
2009 reg_rctl &= ~E1000_RCTL_UPE;
2010 reg_rctl &= ~E1000_RCTL_MPE;
2011 reg_rctl &= ~E1000_RCTL_SBP;
2012 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2013}
2014
2015static void
2016em_set_multi(struct adapter *adapter)
2017{
2018 struct ifnet *ifp = &adapter->arpcom.ac_if;
2019 struct ifmultiaddr *ifma;
2020 uint32_t reg_rctl = 0;
2021 uint8_t *mta;
2022 int mcnt = 0;
2023
2024 mta = adapter->mta;
2025 bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
2026
2027 if (adapter->hw.mac.type == e1000_82542 &&
2028 adapter->hw.revision_id == E1000_REVISION_2) {
2029 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2030 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2031 e1000_pci_clear_mwi(&adapter->hw);
2032 reg_rctl |= E1000_RCTL_RST;
2033 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2034 msec_delay(5);
2035 }
2036
2037 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2038 if (ifma->ifma_addr->sa_family != AF_LINK)
2039 continue;
2040
2041 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
2042 break;
2043
2044 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2045 &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
2046 mcnt++;
2047 }
2048
2049 if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
2050 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2051 reg_rctl |= E1000_RCTL_MPE;
2052 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2053 } else {
2054 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
2055 }
2056
2057 if (adapter->hw.mac.type == e1000_82542 &&
2058 adapter->hw.revision_id == E1000_REVISION_2) {
2059 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2060 reg_rctl &= ~E1000_RCTL_RST;
2061 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2062 msec_delay(5);
2063 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2064 e1000_pci_set_mwi(&adapter->hw);
2065 }
2066}
2067
2068/*
2069 * This routine checks for link status and updates statistics.
2070 */
2071static void
2072em_timer(void *xsc)
2073{
2074 struct adapter *adapter = xsc;
2075 struct ifnet *ifp = &adapter->arpcom.ac_if;
2076
2077 lwkt_serialize_enter(ifp->if_serializer);
2078
2079 em_update_link_status(adapter);
2080 em_update_stats(adapter);
2081
2082 /* Reset LAA into RAR[0] on 82571 */
2083 if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
2084 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2085
2086 if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
2087 em_print_hw_stats(adapter);
2088
2089 em_smartspeed(adapter);
2090
2091 callout_reset(&adapter->timer, hz, em_timer, adapter);
2092
2093 lwkt_serialize_exit(ifp->if_serializer);
2094}
2095
2096static void
2097em_update_link_status(struct adapter *adapter)
2098{
2099 struct e1000_hw *hw = &adapter->hw;
2100 struct ifnet *ifp = &adapter->arpcom.ac_if;
2101 device_t dev = adapter->dev;
2102 uint32_t link_check = 0;
2103
2104 /* Get the cached link value or read phy for real */
2105 switch (hw->phy.media_type) {
2106 case e1000_media_type_copper:
2107 if (hw->mac.get_link_status) {
2108 /* Do the work to read phy */
2109 e1000_check_for_link(hw);
2110 link_check = !hw->mac.get_link_status;
2111 if (link_check) /* ESB2 fix */
2112 e1000_cfg_on_link_up(hw);
2113 } else {
2114 link_check = TRUE;
2115 }
2116 break;
2117
2118 case e1000_media_type_fiber:
2119 e1000_check_for_link(hw);
2120 link_check =
2121 E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2122 break;
2123
2124 case e1000_media_type_internal_serdes:
2125 e1000_check_for_link(hw);
2126 link_check = adapter->hw.mac.serdes_has_link;
2127 break;
2128
2129 case e1000_media_type_unknown:
2130 default:
2131 break;
2132 }
2133
2134 /* Now check for a transition */
2135 if (link_check && adapter->link_active == 0) {
2136 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2137 &adapter->link_duplex);
2138
2139 /*
2140 * Check if we should enable/disable SPEED_MODE bit on
2141 * 82571/82572
2142 */
2143 if (adapter->link_speed != SPEED_1000 &&
2144 (hw->mac.type == e1000_82571 ||
2145 hw->mac.type == e1000_82572)) {
2146 int tarc0;
2147
2148 tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2149 tarc0 &= ~SPEED_MODE_BIT;
2150 E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2151 }
2152 if (bootverbose) {
2153 char flowctrl[IFM_ETH_FC_STRLEN];
2154
2155 e1000_fc2str(hw->fc.current_mode, flowctrl,
2156 sizeof(flowctrl));
2157 device_printf(dev, "Link is up %d Mbps %s, "
2158 "Flow control: %s\n",
2159 adapter->link_speed,
2160 (adapter->link_duplex == FULL_DUPLEX) ?
2161 "Full Duplex" : "Half Duplex",
2162 flowctrl);
2163 }
2164 if (adapter->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
2165 e1000_force_flowctrl(hw, adapter->ifm_flowctrl);
2166 adapter->link_active = 1;
2167 adapter->smartspeed = 0;
2168 ifp->if_baudrate = adapter->link_speed * 1000000;
2169 ifp->if_link_state = LINK_STATE_UP;
2170 if_link_state_change(ifp);
2171 } else if (!link_check && adapter->link_active == 1) {
2172 ifp->if_baudrate = adapter->link_speed = 0;
2173 adapter->link_duplex = 0;
2174 if (bootverbose)
2175 device_printf(dev, "Link is Down\n");
2176 adapter->link_active = 0;
2177#if 0
2178 /* Link down, disable watchdog */
2179 if->if_timer = 0;
2180#endif
2181 ifp->if_link_state = LINK_STATE_DOWN;
2182 if_link_state_change(ifp);
2183 }
2184}
2185
2186static void
2187em_stop(struct adapter *adapter)
2188{
2189 struct ifnet *ifp = &adapter->arpcom.ac_if;
2190 int i;
2191
2192 ASSERT_SERIALIZED(ifp->if_serializer);
2193
2194 em_disable_intr(adapter);
2195
2196 callout_stop(&adapter->timer);
2197 callout_stop(&adapter->tx_fifo_timer);
2198
2199 ifp->if_flags &= ~IFF_RUNNING;
2200 ifq_clr_oactive(&ifp->if_snd);
2201 ifp->if_timer = 0;
2202
2203 e1000_reset_hw(&adapter->hw);
2204 if (adapter->hw.mac.type >= e1000_82544)
2205 E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2206
2207 for (i = 0; i < adapter->num_tx_desc; i++) {
2208 struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2209
2210 if (tx_buffer->m_head != NULL) {
2211 bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2212 m_freem(tx_buffer->m_head);
2213 tx_buffer->m_head = NULL;
2214 }
2215 }
2216
2217 for (i = 0; i < adapter->num_rx_desc; i++) {
2218 struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2219
2220 if (rx_buffer->m_head != NULL) {
2221 bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2222 m_freem(rx_buffer->m_head);
2223 rx_buffer->m_head = NULL;
2224 }
2225 }
2226
2227 if (adapter->fmp != NULL)
2228 m_freem(adapter->fmp);
2229 adapter->fmp = NULL;
2230 adapter->lmp = NULL;
2231
2232 adapter->csum_flags = 0;
2233 adapter->csum_lhlen = 0;
2234 adapter->csum_iphlen = 0;
2235 adapter->csum_thlen = 0;
2236 adapter->csum_mss = 0;
2237 adapter->csum_pktlen = 0;
2238
2239 adapter->tx_dd_head = 0;
2240 adapter->tx_dd_tail = 0;
2241 adapter->tx_nsegs = 0;
2242}
2243
2244static int
2245em_get_hw_info(struct adapter *adapter)
2246{
2247 device_t dev = adapter->dev;
2248
2249 /* Save off the information about this board */
2250 adapter->hw.vendor_id = pci_get_vendor(dev);
2251 adapter->hw.device_id = pci_get_device(dev);
2252 adapter->hw.revision_id = pci_get_revid(dev);
2253 adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2254 adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2255
2256 /* Do Shared Code Init and Setup */
2257 if (e1000_set_mac_type(&adapter->hw))
2258 return ENXIO;
2259 return 0;
2260}
2261
2262static int
2263em_alloc_pci_res(struct adapter *adapter)
2264{
2265 device_t dev = adapter->dev;
2266 u_int intr_flags;
2267 int val, rid, msi_enable;
2268
2269 /* Enable bus mastering */
2270 pci_enable_busmaster(dev);
2271
2272 adapter->memory_rid = EM_BAR_MEM;
2273 adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2274 &adapter->memory_rid, RF_ACTIVE);
2275 if (adapter->memory == NULL) {
2276 device_printf(dev, "Unable to allocate bus resource: memory\n");
2277 return (ENXIO);
2278 }
2279 adapter->osdep.mem_bus_space_tag =
2280 rman_get_bustag(adapter->memory);
2281 adapter->osdep.mem_bus_space_handle =
2282 rman_get_bushandle(adapter->memory);
2283
2284 /* XXX This is quite goofy, it is not actually used */
2285 adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2286
2287 /* Only older adapters use IO mapping */
2288 if (adapter->hw.mac.type > e1000_82543 &&
2289 adapter->hw.mac.type < e1000_82571) {
2290 /* Figure our where our IO BAR is ? */
2291 for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2292 val = pci_read_config(dev, rid, 4);
2293 if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2294 adapter->io_rid = rid;
2295 break;
2296 }
2297 rid += 4;
2298 /* check for 64bit BAR */
2299 if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2300 rid += 4;
2301 }
2302 if (rid >= PCIR_CARDBUSCIS) {
2303 device_printf(dev, "Unable to locate IO BAR\n");
2304 return (ENXIO);
2305 }
2306 adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2307 &adapter->io_rid, RF_ACTIVE);
2308 if (adapter->ioport == NULL) {
2309 device_printf(dev, "Unable to allocate bus resource: "
2310 "ioport\n");
2311 return (ENXIO);
2312 }
2313 adapter->hw.io_base = 0;
2314 adapter->osdep.io_bus_space_tag =
2315 rman_get_bustag(adapter->ioport);
2316 adapter->osdep.io_bus_space_handle =
2317 rman_get_bushandle(adapter->ioport);
2318 }
2319
2320 /*
2321 * Don't enable MSI-X on 82574, see:
2322 * 82574 specification update errata #15
2323 *
2324 * Don't enable MSI on PCI/PCI-X chips, see:
2325 * 82540 specification update errata #6
2326 * 82545 specification update errata #4
2327 *
2328 * Don't enable MSI on 82571/82572, see:
2329 * 82571/82572 specification update errata #63
2330 */
2331 msi_enable = em_msi_enable;
2332 if (msi_enable &&
2333 (!pci_is_pcie(dev) ||
2334 adapter->hw.mac.type == e1000_82571 ||
2335 adapter->hw.mac.type == e1000_82572))
2336 msi_enable = 0;
2337again:
2338 adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2339 &adapter->intr_rid, &intr_flags);
2340
2341 if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2342 int unshared;
2343
2344 unshared = device_getenv_int(dev, "irq.unshared", 0);
2345 if (!unshared) {
2346 adapter->flags |= EM_FLAG_SHARED_INTR;
2347 if (bootverbose)
2348 device_printf(dev, "IRQ shared\n");
2349 } else {
2350 intr_flags &= ~RF_SHAREABLE;
2351 if (bootverbose)
2352 device_printf(dev, "IRQ unshared\n");
2353 }
2354 }
2355
2356 adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2357 &adapter->intr_rid, intr_flags);
2358 if (adapter->intr_res == NULL) {
2359 device_printf(dev, "Unable to allocate bus resource: %s\n",
2360 adapter->intr_type == PCI_INTR_TYPE_MSI ?
2361 "MSI" : "legacy intr");
2362 if (!msi_enable) {
2363 /* Retry with MSI. */
2364 msi_enable = 1;
2365 adapter->flags &= ~EM_FLAG_SHARED_INTR;
2366 goto again;
2367 }
2368 return (ENXIO);
2369 }
2370
2371 adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2372 adapter->hw.back = &adapter->osdep;
2373 return (0);
2374}
2375
2376static void
2377em_free_pci_res(struct adapter *adapter)
2378{
2379 device_t dev = adapter->dev;
2380
2381 if (adapter->intr_res != NULL) {
2382 bus_release_resource(dev, SYS_RES_IRQ,
2383 adapter->intr_rid, adapter->intr_res);
2384 }
2385
2386 if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2387 pci_release_msi(dev);
2388
2389 if (adapter->memory != NULL) {
2390 bus_release_resource(dev, SYS_RES_MEMORY,
2391 adapter->memory_rid, adapter->memory);
2392 }
2393
2394 if (adapter->flash != NULL) {
2395 bus_release_resource(dev, SYS_RES_MEMORY,
2396 adapter->flash_rid, adapter->flash);
2397 }
2398
2399 if (adapter->ioport != NULL) {
2400 bus_release_resource(dev, SYS_RES_IOPORT,
2401 adapter->io_rid, adapter->ioport);
2402 }
2403}
2404
2405static int
2406em_reset(struct adapter *adapter)
2407{
2408 device_t dev = adapter->dev;
2409 uint16_t rx_buffer_size;
2410 uint32_t pba;
2411
2412 /* When hardware is reset, fifo_head is also reset */
2413 adapter->tx_fifo_head = 0;
2414
2415 /* Set up smart power down as default off on newer adapters. */
2416 if (!em_smart_pwr_down &&
2417 (adapter->hw.mac.type == e1000_82571 ||
2418 adapter->hw.mac.type == e1000_82572)) {
2419 uint16_t phy_tmp = 0;
2420
2421 /* Speed up time to link by disabling smart power down. */
2422 e1000_read_phy_reg(&adapter->hw,
2423 IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2424 phy_tmp &= ~IGP02E1000_PM_SPD;
2425 e1000_write_phy_reg(&adapter->hw,
2426 IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2427 }
2428
2429 /*
2430 * Packet Buffer Allocation (PBA)
2431 * Writing PBA sets the receive portion of the buffer
2432 * the remainder is used for the transmit buffer.
2433 *
2434 * Devices before the 82547 had a Packet Buffer of 64K.
2435 * Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2436 * After the 82547 the buffer was reduced to 40K.
2437 * Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2438 * Note: default does not leave enough room for Jumbo Frame >10k.
2439 */
2440 switch (adapter->hw.mac.type) {
2441 case e1000_82547:
2442 case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2443 if (adapter->hw.mac.max_frame_size > 8192)
2444 pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2445 else
2446 pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2447 adapter->tx_fifo_head = 0;
2448 adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2449 adapter->tx_fifo_size =
2450 (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2451 break;
2452
2453 /* Total Packet Buffer on these is 48K */
2454 case e1000_82571:
2455 case e1000_82572:
2456 case e1000_80003es2lan:
2457 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2458 break;
2459
2460 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2461 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2462 break;
2463
2464 case e1000_82574:
2465 case e1000_82583:
2466 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2467 break;
2468
2469 case e1000_ich8lan:
2470 pba = E1000_PBA_8K;
2471 break;
2472
2473 case e1000_ich9lan:
2474 case e1000_ich10lan:
2475#define E1000_PBA_10K 0x000A
2476 pba = E1000_PBA_10K;
2477 break;
2478
2479 case e1000_pchlan:
2480 case e1000_pch2lan:
2481 case e1000_pch_lpt:
2482 case e1000_pch_spt:
2483 pba = E1000_PBA_26K;
2484 break;
2485
2486 default:
2487 /* Devices before 82547 had a Packet Buffer of 64K. */
2488 if (adapter->hw.mac.max_frame_size > 8192)
2489 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2490 else
2491 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2492 }
2493 E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2494
2495 /*
2496 * These parameters control the automatic generation (Tx) and
2497 * response (Rx) to Ethernet PAUSE frames.
2498 * - High water mark should allow for at least two frames to be
2499 * received after sending an XOFF.
2500 * - Low water mark works best when it is very near the high water mark.
2501 * This allows the receiver to restart by sending XON when it has
2502 * drained a bit. Here we use an arbitary value of 1500 which will
2503 * restart after one full frame is pulled from the buffer. There
2504 * could be several smaller frames in the buffer and if so they will
2505 * not trigger the XON until their total number reduces the buffer
2506 * by 1500.
2507 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2508 */
2509 rx_buffer_size =
2510 (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2511
2512 adapter->hw.fc.high_water = rx_buffer_size -
2513 roundup2(adapter->hw.mac.max_frame_size, 1024);
2514 adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2515
2516 if (adapter->hw.mac.type == e1000_80003es2lan)
2517 adapter->hw.fc.pause_time = 0xFFFF;
2518 else
2519 adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2520
2521 adapter->hw.fc.send_xon = TRUE;
2522
2523 adapter->hw.fc.requested_mode = e1000_ifmedia2fc(adapter->ifm_flowctrl);
2524
2525 /*
2526 * Device specific overrides/settings
2527 */
2528 switch (adapter->hw.mac.type) {
2529 case e1000_pchlan:
2530 KASSERT(adapter->hw.fc.requested_mode == e1000_fc_rx_pause ||
2531 adapter->hw.fc.requested_mode == e1000_fc_none,
2532 ("unsupported flow control on PCH %d",
2533 adapter->hw.fc.requested_mode));
2534 adapter->hw.fc.pause_time = 0xFFFF; /* override */
2535 if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2536 adapter->hw.fc.high_water = 0x3500;
2537 adapter->hw.fc.low_water = 0x1500;
2538 } else {
2539 adapter->hw.fc.high_water = 0x5000;
2540 adapter->hw.fc.low_water = 0x3000;
2541 }
2542 adapter->hw.fc.refresh_time = 0x1000;
2543 break;
2544
2545 case e1000_pch2lan:
2546 case e1000_pch_lpt:
2547 case e1000_pch_spt:
2548 adapter->hw.fc.high_water = 0x5C20;
2549 adapter->hw.fc.low_water = 0x5048;
2550 adapter->hw.fc.pause_time = 0x0650;
2551 adapter->hw.fc.refresh_time = 0x0400;
2552 /* Jumbos need adjusted PBA */
2553 if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2554 E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2555 else
2556 E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2557 break;
2558
2559 case e1000_ich9lan:
2560 case e1000_ich10lan:
2561 if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2562 adapter->hw.fc.high_water = 0x2800;
2563 adapter->hw.fc.low_water =
2564 adapter->hw.fc.high_water - 8;
2565 break;
2566 }
2567 /* FALL THROUGH */
2568 default:
2569 if (adapter->hw.mac.type == e1000_80003es2lan)
2570 adapter->hw.fc.pause_time = 0xFFFF;
2571 break;
2572 }
2573
2574 /* Issue a global reset */
2575 e1000_reset_hw(&adapter->hw);
2576 if (adapter->hw.mac.type >= e1000_82544)
2577 E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2578 em_disable_aspm(adapter);
2579
2580 if (e1000_init_hw(&adapter->hw) < 0) {
2581 device_printf(dev, "Hardware Initialization Failed\n");
2582 return (EIO);
2583 }
2584
2585 E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2586 e1000_get_phy_info(&adapter->hw);
2587 e1000_check_for_link(&adapter->hw);
2588
2589 return (0);
2590}
2591
2592static void
2593em_setup_ifp(struct adapter *adapter)
2594{
2595 struct ifnet *ifp = &adapter->arpcom.ac_if;
2596
2597 if_initname(ifp, device_get_name(adapter->dev),
2598 device_get_unit(adapter->dev));
2599 ifp->if_softc = adapter;
2600 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2601 ifp->if_init = em_init;
2602 ifp->if_ioctl = em_ioctl;
2603 ifp->if_start = em_start;
2604#ifdef IFPOLL_ENABLE
2605 ifp->if_npoll = em_npoll;
2606#endif
2607 ifp->if_watchdog = em_watchdog;
2608 ifp->if_nmbclusters = adapter->num_rx_desc;
2609 ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2610 ifq_set_ready(&ifp->if_snd);
2611
2612 ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2613
2614 ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2615 if (adapter->hw.mac.type >= e1000_82543)
2616 ifp->if_capabilities |= IFCAP_HWCSUM;
2617 if (adapter->flags & EM_FLAG_TSO)
2618 ifp->if_capabilities |= IFCAP_TSO;
2619 ifp->if_capenable = ifp->if_capabilities;
2620
2621 if (ifp->if_capenable & IFCAP_TXCSUM)
2622 ifp->if_hwassist |= EM_CSUM_FEATURES;
2623 if (ifp->if_capenable & IFCAP_TSO)
2624 ifp->if_hwassist |= CSUM_TSO;
2625
2626 /*
2627 * Tell the upper layer(s) we support long frames.
2628 */
2629 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2630
2631 /*
2632 * Specify the media types supported by this adapter and register
2633 * callbacks to update media and link information
2634 */
2635 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2636 adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2637 u_char fiber_type = IFM_1000_SX; /* default type */
2638
2639 if (adapter->hw.mac.type == e1000_82545)
2640 fiber_type = IFM_1000_LX;
2641 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2642 0, NULL);
2643 } else {
2644 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2645 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2646 0, NULL);
2647 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2648 0, NULL);
2649 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2650 0, NULL);
2651 if (adapter->hw.phy.type != e1000_phy_ife) {
2652 ifmedia_add(&adapter->media,
2653 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2654 }
2655 }
2656 ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2657 ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO |
2658 adapter->ifm_flowctrl);
2659}
2660
2661
2662/*
2663 * Workaround for SmartSpeed on 82541 and 82547 controllers
2664 */
2665static void
2666em_smartspeed(struct adapter *adapter)
2667{
2668 uint16_t phy_tmp;
2669
2670 if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2671 adapter->hw.mac.autoneg == 0 ||
2672 (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2673 return;
2674
2675 if (adapter->smartspeed == 0) {
2676 /*
2677 * If Master/Slave config fault is asserted twice,
2678 * we assume back-to-back
2679 */
2680 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2681 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2682 return;
2683 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2684 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2685 e1000_read_phy_reg(&adapter->hw,
2686 PHY_1000T_CTRL, &phy_tmp);
2687 if (phy_tmp & CR_1000T_MS_ENABLE) {
2688 phy_tmp &= ~CR_1000T_MS_ENABLE;
2689 e1000_write_phy_reg(&adapter->hw,
2690 PHY_1000T_CTRL, phy_tmp);
2691 adapter->smartspeed++;
2692 if (adapter->hw.mac.autoneg &&
2693 !e1000_phy_setup_autoneg(&adapter->hw) &&
2694 !e1000_read_phy_reg(&adapter->hw,
2695 PHY_CONTROL, &phy_tmp)) {
2696 phy_tmp |= MII_CR_AUTO_NEG_EN |
2697 MII_CR_RESTART_AUTO_NEG;
2698 e1000_write_phy_reg(&adapter->hw,
2699 PHY_CONTROL, phy_tmp);
2700 }
2701 }
2702 }
2703 return;
2704 } else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2705 /* If still no link, perhaps using 2/3 pair cable */
2706 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2707 phy_tmp |= CR_1000T_MS_ENABLE;
2708 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2709 if (adapter->hw.mac.autoneg &&
2710 !e1000_phy_setup_autoneg(&adapter->hw) &&
2711 !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2712 phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2713 e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2714 }
2715 }
2716
2717 /* Restart process after EM_SMARTSPEED_MAX iterations */
2718 if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2719 adapter->smartspeed = 0;
2720}
2721
2722static int
2723em_dma_malloc(struct adapter *adapter, bus_size_t size,
2724 struct em_dma_alloc *dma)
2725{
2726 dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2727 EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2728 &dma->dma_tag, &dma->dma_map,
2729 &dma->dma_paddr);
2730 if (dma->dma_vaddr == NULL)
2731 return ENOMEM;
2732 else
2733 return 0;
2734}
2735
2736static void
2737em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2738{
2739 if (dma->dma_tag == NULL)
2740 return;
2741 bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2742 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2743 bus_dma_tag_destroy(dma->dma_tag);
2744}
2745
2746static int
2747em_create_tx_ring(struct adapter *adapter)
2748{
2749 device_t dev = adapter->dev;
2750 struct em_buffer *tx_buffer;
2751 int error, i;
2752
2753 adapter->tx_buffer_area =
2754 kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2755 M_DEVBUF, M_WAITOK | M_ZERO);
2756
2757 /*
2758 * Create DMA tags for tx buffers
2759 */
2760 error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2761 1, 0, /* alignment, bounds */
2762 BUS_SPACE_MAXADDR, /* lowaddr */
2763 BUS_SPACE_MAXADDR, /* highaddr */
2764 NULL, NULL, /* filter, filterarg */
2765 EM_TSO_SIZE, /* maxsize */
2766 EM_MAX_SCATTER, /* nsegments */
2767 PAGE_SIZE, /* maxsegsize */
2768 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2769 BUS_DMA_ONEBPAGE, /* flags */
2770 &adapter->txtag);
2771 if (error) {
2772 device_printf(dev, "Unable to allocate TX DMA tag\n");
2773 kfree(adapter->tx_buffer_area, M_DEVBUF);
2774 adapter->tx_buffer_area = NULL;
2775 return error;
2776 }
2777
2778 /*
2779 * Create DMA maps for tx buffers
2780 */
2781 for (i = 0; i < adapter->num_tx_desc; i++) {
2782 tx_buffer = &adapter->tx_buffer_area[i];
2783
2784 error = bus_dmamap_create(adapter->txtag,
2785 BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2786 &tx_buffer->map);
2787 if (error) {
2788 device_printf(dev, "Unable to create TX DMA map\n");
2789 em_destroy_tx_ring(adapter, i);
2790 return error;
2791 }
2792 }
2793 return (0);
2794}
2795
2796static void
2797em_init_tx_ring(struct adapter *adapter)
2798{
2799 /* Clear the old ring contents */
2800 bzero(adapter->tx_desc_base,
2801 (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2802
2803 /* Reset state */
2804 adapter->next_avail_tx_desc = 0;
2805 adapter->next_tx_to_clean = 0;
2806 adapter->num_tx_desc_avail = adapter->num_tx_desc;
2807}
2808
2809static void
2810em_init_tx_unit(struct adapter *adapter)
2811{
2812 uint32_t tctl, tarc, tipg = 0;
2813 uint64_t bus_addr;
2814
2815 /* Setup the Base and Length of the Tx Descriptor Ring */
2816 bus_addr = adapter->txdma.dma_paddr;
2817 E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2818 adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2819 E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2820 (uint32_t)(bus_addr >> 32));
2821 E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2822 (uint32_t)bus_addr);
2823 /* Setup the HW Tx Head and Tail descriptor pointers */
2824 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2825 E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2826
2827 /* Set the default values for the Tx Inter Packet Gap timer */
2828 switch (adapter->hw.mac.type) {
2829 case e1000_82542:
2830 tipg = DEFAULT_82542_TIPG_IPGT;
2831 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2832 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2833 break;
2834
2835 case e1000_80003es2lan:
2836 tipg = DEFAULT_82543_TIPG_IPGR1;
2837 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2838 E1000_TIPG_IPGR2_SHIFT;
2839 break;
2840
2841 default:
2842 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2843 adapter->hw.phy.media_type ==
2844 e1000_media_type_internal_serdes)
2845 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2846 else
2847 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2848 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2849 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2850 break;
2851 }
2852
2853 E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2854
2855 /* NOTE: 0 is not allowed for TIDV */
2856 E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2857 if(adapter->hw.mac.type >= e1000_82540)
2858 E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2859
2860 if (adapter->hw.mac.type == e1000_82571 ||
2861 adapter->hw.mac.type == e1000_82572) {
2862 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2863 tarc |= SPEED_MODE_BIT;
2864 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2865 } else if (adapter->hw.mac.type == e1000_80003es2lan) {
2866 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2867 tarc |= 1;
2868 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2869 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2870 tarc |= 1;
2871 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2872 }
2873
2874 /* Program the Transmit Control Register */
2875 tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2876 tctl &= ~E1000_TCTL_CT;
2877 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2878 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2879
2880 if (adapter->hw.mac.type >= e1000_82571)
2881 tctl |= E1000_TCTL_MULR;
2882
2883 /* This write will effectively turn on the transmit unit. */
2884 E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2885
2886 if (adapter->hw.mac.type == e1000_82571 ||
2887 adapter->hw.mac.type == e1000_82572 ||
2888 adapter->hw.mac.type == e1000_80003es2lan) {
2889 /* Bit 28 of TARC1 must be cleared when MULR is enabled */
2890 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2891 tarc &= ~(1 << 28);
2892 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2893 }
2894}
2895
2896static void
2897em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2898{
2899 struct em_buffer *tx_buffer;
2900 int i;
2901
2902 if (adapter->tx_buffer_area == NULL)
2903 return;
2904
2905 for (i = 0; i < ndesc; i++) {
2906 tx_buffer = &adapter->tx_buffer_area[i];
2907
2908 KKASSERT(tx_buffer->m_head == NULL);
2909 bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2910 }
2911 bus_dma_tag_destroy(adapter->txtag);
2912
2913 kfree(adapter->tx_buffer_area, M_DEVBUF);
2914 adapter->tx_buffer_area = NULL;
2915}
2916
2917/*
2918 * The offload context needs to be set when we transfer the first
2919 * packet of a particular protocol (TCP/UDP). This routine has been
2920 * enhanced to deal with inserted VLAN headers.
2921 *
2922 * If the new packet's ether header length, ip header length and
2923 * csum offloading type are same as the previous packet, we should
2924 * avoid allocating a new csum context descriptor; mainly to take
2925 * advantage of the pipeline effect of the TX data read request.
2926 *
2927 * This function returns number of TX descrptors allocated for
2928 * csum context.
2929 */
2930static int
2931em_txcsum(struct adapter *adapter, struct mbuf *mp,
2932 uint32_t *txd_upper, uint32_t *txd_lower)
2933{
2934 struct e1000_context_desc *TXD;
2935 int curr_txd, ehdrlen, csum_flags;
2936 uint32_t cmd, hdr_len, ip_hlen;
2937
2938 csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2939 ip_hlen = mp->m_pkthdr.csum_iphlen;
2940 ehdrlen = mp->m_pkthdr.csum_lhlen;
2941
2942 if (adapter->csum_lhlen == ehdrlen &&
2943 adapter->csum_iphlen == ip_hlen &&
2944 adapter->csum_flags == csum_flags) {
2945 /*
2946 * Same csum offload context as the previous packets;
2947 * just return.
2948 */
2949 *txd_upper = adapter->csum_txd_upper;
2950 *txd_lower = adapter->csum_txd_lower;
2951 return 0;
2952 }
2953
2954 /*
2955 * Setup a new csum offload context.
2956 */
2957
2958 curr_txd = adapter->next_avail_tx_desc;
2959 TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2960
2961 cmd = 0;
2962
2963 /* Setup of IP header checksum. */
2964 if (csum_flags & CSUM_IP) {
2965 /*
2966 * Start offset for header checksum calculation.
2967 * End offset for header checksum calculation.
2968 * Offset of place to put the checksum.
2969 */
2970 TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2971 TXD->lower_setup.ip_fields.ipcse =
2972 htole16(ehdrlen + ip_hlen - 1);
2973 TXD->lower_setup.ip_fields.ipcso =
2974 ehdrlen + offsetof(struct ip, ip_sum);
2975 cmd |= E1000_TXD_CMD_IP;
2976 *txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2977 }
2978 hdr_len = ehdrlen + ip_hlen;
2979
2980 if (csum_flags & CSUM_TCP) {
2981 /*
2982 * Start offset for payload checksum calculation.
2983 * End offset for payload checksum calculation.
2984 * Offset of place to put the checksum.
2985 */
2986 TXD->upper_setup.tcp_fields.tucss = hdr_len;
2987 TXD->upper_setup.tcp_fields.tucse = htole16(0);
2988 TXD->upper_setup.tcp_fields.tucso =
2989 hdr_len + offsetof(struct tcphdr, th_sum);
2990 cmd |= E1000_TXD_CMD_TCP;
2991 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2992 } else if (csum_flags & CSUM_UDP) {
2993 /*
2994 * Start offset for header checksum calculation.
2995 * End offset for header checksum calculation.
2996 * Offset of place to put the checksum.
2997 */
2998 TXD->upper_setup.tcp_fields.tucss = hdr_len;
2999 TXD->upper_setup.tcp_fields.tucse = htole16(0);
3000 TXD->upper_setup.tcp_fields.tucso =
3001 hdr_len + offsetof(struct udphdr, uh_sum);
3002 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3003 }
3004
3005 *txd_lower = E1000_TXD_CMD_DEXT | /* Extended descr type */
3006 E1000_TXD_DTYP_D; /* Data descr */
3007
3008 /* Save the information for this csum offloading context */
3009 adapter->csum_lhlen = ehdrlen;
3010 adapter->csum_iphlen = ip_hlen;
3011 adapter->csum_flags = csum_flags;
3012 adapter->csum_txd_upper = *txd_upper;
3013 adapter->csum_txd_lower = *txd_lower;
3014
3015 TXD->tcp_seg_setup.data = htole32(0);
3016 TXD->cmd_and_length =
3017 htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
3018
3019 if (++curr_txd == adapter->num_tx_desc)
3020 curr_txd = 0;
3021
3022 KKASSERT(adapter->num_tx_desc_avail > 0);
3023 adapter->num_tx_desc_avail--;
3024
3025 adapter->next_avail_tx_desc = curr_txd;
3026 return 1;
3027}
3028
3029static void
3030em_txeof(struct adapter *adapter)
3031{
3032 struct ifnet *ifp = &adapter->arpcom.ac_if;
3033 struct em_buffer *tx_buffer;
3034 int first, num_avail;
3035
3036 if (adapter->tx_dd_head == adapter->tx_dd_tail)
3037 return;
3038
3039 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3040 return;
3041
3042 num_avail = adapter->num_tx_desc_avail;
3043 first = adapter->next_tx_to_clean;
3044
3045 while (adapter->tx_dd_head != adapter->tx_dd_tail) {
3046 struct e1000_tx_desc *tx_desc;
3047 int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3048
3049 tx_desc = &adapter->tx_desc_base[dd_idx];
3050 if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
3051 EM_INC_TXDD_IDX(adapter->tx_dd_head);
3052
3053 if (++dd_idx == adapter->num_tx_desc)
3054 dd_idx = 0;
3055
3056 while (first != dd_idx) {
3057 logif(pkt_txclean);
3058
3059 num_avail++;
3060
3061 tx_buffer = &adapter->tx_buffer_area[first];
3062 if (tx_buffer->m_head) {
3063 bus_dmamap_unload(adapter->txtag,
3064 tx_buffer->map);
3065 m_freem(tx_buffer->m_head);
3066 tx_buffer->m_head = NULL;
3067 }
3068
3069 if (++first == adapter->num_tx_desc)
3070 first = 0;
3071 }
3072 } else {
3073 break;
3074 }
3075 }
3076 adapter->next_tx_to_clean = first;
3077 adapter->num_tx_desc_avail = num_avail;
3078
3079 if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3080 adapter->tx_dd_head = 0;
3081 adapter->tx_dd_tail = 0;
3082 }
3083
3084 if (!EM_IS_OACTIVE(adapter)) {
3085 ifq_clr_oactive(&ifp->if_snd);
3086
3087 /* All clean, turn off the timer */
3088 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3089 ifp->if_timer = 0;
3090 }
3091}
3092
3093static void
3094em_tx_collect(struct adapter *adapter)
3095{
3096 struct ifnet *ifp = &adapter->arpcom.ac_if;
3097 struct em_buffer *tx_buffer;
3098 int tdh, first, num_avail, dd_idx = -1;
3099
3100 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3101 return;
3102
3103 tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
3104 if (tdh == adapter->next_tx_to_clean)
3105 return;
3106
3107 if (adapter->tx_dd_head != adapter->tx_dd_tail)
3108 dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3109
3110 num_avail = adapter->num_tx_desc_avail;
3111 first = adapter->next_tx_to_clean;
3112
3113 while (first != tdh) {
3114 logif(pkt_txclean);
3115
3116 num_avail++;
3117
3118 tx_buffer = &adapter->tx_buffer_area[first];
3119 if (tx_buffer->m_head) {
3120 bus_dmamap_unload(adapter->txtag,
3121 tx_buffer->map);
3122 m_freem(tx_buffer->m_head);
3123 tx_buffer->m_head = NULL;
3124 }
3125
3126 if (first == dd_idx) {
3127 EM_INC_TXDD_IDX(adapter->tx_dd_head);
3128 if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3129 adapter->tx_dd_head = 0;
3130 adapter->tx_dd_tail = 0;
3131 dd_idx = -1;
3132 } else {
3133 dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3134 }
3135 }
3136
3137 if (++first == adapter->num_tx_desc)
3138 first = 0;
3139 }
3140 adapter->next_tx_to_clean = first;
3141 adapter->num_tx_desc_avail = num_avail;
3142
3143 if (!EM_IS_OACTIVE(adapter)) {
3144 ifq_clr_oactive(&ifp->if_snd);
3145
3146 /* All clean, turn off the timer */
3147 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3148 ifp->if_timer = 0;
3149 }
3150}
3151
3152/*
3153 * When Link is lost sometimes there is work still in the TX ring
3154 * which will result in a watchdog, rather than allow that do an
3155 * attempted cleanup and then reinit here. Note that this has been
3156 * seens mostly with fiber adapters.
3157 */
3158static void
3159em_tx_purge(struct adapter *adapter)
3160{
3161 struct ifnet *ifp = &adapter->arpcom.ac_if;
3162
3163 if (!adapter->link_active && ifp->if_timer) {
3164 em_tx_collect(adapter);
3165 if (ifp->if_timer) {
3166 if_printf(ifp, "Link lost, TX pending, reinit\n");
3167 ifp->if_timer = 0;
3168 em_init(adapter);
3169 }
3170 }
3171}
3172
3173static int
3174em_newbuf(struct adapter *adapter, int i, int init)
3175{
3176 struct mbuf *m;
3177 bus_dma_segment_t seg;
3178 bus_dmamap_t map;
3179 struct em_buffer *rx_buffer;
3180 int error, nseg;
3181
3182 m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
3183 if (m == NULL) {
3184 adapter->mbuf_cluster_failed++;
3185 if (init) {
3186 if_printf(&adapter->arpcom.ac_if,
3187 "Unable to allocate RX mbuf\n");
3188 }
3189 return (ENOBUFS);
3190 }
3191 m->m_len = m->m_pkthdr.len = MCLBYTES;
3192
3193 if (adapter->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
3194 m_adj(m, ETHER_ALIGN);
3195
3196 error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3197 adapter->rx_sparemap, m,
3198 &seg, 1, &nseg, BUS_DMA_NOWAIT);
3199 if (error) {
3200 m_freem(m);
3201 if (init) {
3202 if_printf(&adapter->arpcom.ac_if,
3203 "Unable to load RX mbuf\n");
3204 }
3205 return (error);
3206 }
3207
3208 rx_buffer = &adapter->rx_buffer_area[i];
3209 if (rx_buffer->m_head != NULL)
3210 bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3211
3212 map = rx_buffer->map;
3213 rx_buffer->map = adapter->rx_sparemap;
3214 adapter->rx_sparemap = map;
3215
3216 rx_buffer->m_head = m;
3217
3218 adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3219 return (0);
3220}
3221
3222static int
3223em_create_rx_ring(struct adapter *adapter)
3224{
3225 device_t dev = adapter->dev;
3226 struct em_buffer *rx_buffer;
3227 int i, error;
3228
3229 adapter->rx_buffer_area =
3230 kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3231 M_DEVBUF, M_WAITOK | M_ZERO);
3232
3233 /*
3234 * Create DMA tag for rx buffers
3235 */
3236 error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3237 1, 0, /* alignment, bounds */
3238 BUS_SPACE_MAXADDR, /* lowaddr */
3239 BUS_SPACE_MAXADDR, /* highaddr */
3240 NULL, NULL, /* filter, filterarg */
3241 MCLBYTES, /* maxsize */
3242 1, /* nsegments */
3243 MCLBYTES, /* maxsegsize */
3244 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3245 &adapter->rxtag);
3246 if (error) {
3247 device_printf(dev, "Unable to allocate RX DMA tag\n");
3248 kfree(adapter->rx_buffer_area, M_DEVBUF);
3249 adapter->rx_buffer_area = NULL;
3250 return error;
3251 }
3252
3253 /*
3254 * Create spare DMA map for rx buffers
3255 */
3256 error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3257 &adapter->rx_sparemap);
3258 if (error) {
3259 device_printf(dev, "Unable to create spare RX DMA map\n");
3260 bus_dma_tag_destroy(adapter->rxtag);
3261 kfree(adapter->rx_buffer_area, M_DEVBUF);
3262 adapter->rx_buffer_area = NULL;
3263 return error;
3264 }
3265
3266 /*
3267 * Create DMA maps for rx buffers
3268 */
3269 for (i = 0; i < adapter->num_rx_desc; i++) {
3270 rx_buffer = &adapter->rx_buffer_area[i];
3271
3272 error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3273 &rx_buffer->map);
3274 if (error) {
3275 device_printf(dev, "Unable to create RX DMA map\n");
3276 em_destroy_rx_ring(adapter, i);
3277 return error;
3278 }
3279 }
3280 return (0);
3281}
3282
3283static int
3284em_init_rx_ring(struct adapter *adapter)
3285{
3286 int i, error;
3287
3288 /* Reset descriptor ring */
3289 bzero(adapter->rx_desc_base,
3290 (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3291
3292 /* Allocate new ones. */
3293 for (i = 0; i < adapter->num_rx_desc; i++) {
3294 error = em_newbuf(adapter, i, 1);
3295 if (error)
3296 return (error);
3297 }
3298
3299 /* Setup our descriptor pointers */
3300 adapter->next_rx_desc_to_check = 0;
3301
3302 return (0);
3303}
3304
3305static void
3306em_init_rx_unit(struct adapter *adapter)
3307{
3308 struct ifnet *ifp = &adapter->arpcom.ac_if;
3309 uint64_t bus_addr;
3310 uint32_t rctl;
3311
3312 /*
3313 * Make sure receives are disabled while setting
3314 * up the descriptor ring
3315 */
3316 rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3317 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3318
3319 if (adapter->hw.mac.type >= e1000_82540) {
3320 uint32_t itr;
3321
3322 /*
3323 * Set the interrupt throttling rate. Value is calculated
3324 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3325 */
3326 if (adapter->int_throttle_ceil)
3327 itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3328 else
3329 itr = 0;
3330 em_set_itr(adapter, itr);
3331 }
3332
3333 /* Disable accelerated ackknowledge */
3334 if (adapter->hw.mac.type == e1000_82574) {
3335 E1000_WRITE_REG(&adapter->hw,
3336 E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3337 }
3338
3339 /* Receive Checksum Offload for TCP and UDP */
3340 if (ifp->if_capenable & IFCAP_RXCSUM) {
3341 uint32_t rxcsum;
3342
3343 rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3344 rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3345 E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3346 }
3347
3348 /*
3349 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3350 * long latencies are observed, like Lenovo X60. This
3351 * change eliminates the problem, but since having positive
3352 * values in RDTR is a known source of problems on other
3353 * platforms another solution is being sought.
3354 */
3355 if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3356 E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3357 E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3358 }
3359
3360 /*
3361 * Setup the Base and Length of the Rx Descriptor Ring
3362 */
3363 bus_addr = adapter->rxdma.dma_paddr;
3364 E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3365 adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3366 E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3367 (uint32_t)(bus_addr >> 32));
3368 E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3369 (uint32_t)bus_addr);
3370
3371 /*
3372 * Setup the HW Rx Head and Tail Descriptor Pointers
3373 */
3374 E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3375 E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3376
3377 /* Set PTHRESH for improved jumbo performance */
3378 if (((adapter->hw.mac.type == e1000_ich9lan) ||
3379 (adapter->hw.mac.type == e1000_pch2lan) ||
3380 (adapter->hw.mac.type == e1000_ich10lan)) &&
3381 (ifp->if_mtu > ETHERMTU)) {
3382 uint32_t rxdctl;
3383
3384 rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3385 E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3386 }
3387
3388 if (adapter->hw.mac.type >= e1000_pch2lan) {
3389 if (ifp->if_mtu > ETHERMTU)
3390 e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3391 else
3392 e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3393 }
3394
3395 /* Setup the Receive Control Register */
3396 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3397 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3398 E1000_RCTL_RDMTS_HALF |
3399 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3400
3401 /* Make sure VLAN Filters are off */
3402 rctl &= ~E1000_RCTL_VFE;
3403
3404 if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3405 rctl |= E1000_RCTL_SBP;
3406 else
3407 rctl &= ~E1000_RCTL_SBP;
3408
3409 switch (adapter->rx_buffer_len) {
3410 default:
3411 case 2048:
3412 rctl |= E1000_RCTL_SZ_2048;
3413 break;
3414
3415 case 4096:
3416 rctl |= E1000_RCTL_SZ_4096 |
3417 E1000_RCTL_BSEX | E1000_RCTL_LPE;
3418 break;
3419
3420 case 8192:
3421 rctl |= E1000_RCTL_SZ_8192 |
3422 E1000_RCTL_BSEX | E1000_RCTL_LPE;
3423 break;
3424
3425 case 16384:
3426 rctl |= E1000_RCTL_SZ_16384 |
3427 E1000_RCTL_BSEX | E1000_RCTL_LPE;
3428 break;
3429 }
3430
3431 if (ifp->if_mtu > ETHERMTU)
3432 rctl |= E1000_RCTL_LPE;
3433 else
3434 rctl &= ~E1000_RCTL_LPE;
3435
3436 /* Enable Receives */
3437 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3438}
3439
3440static void
3441em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3442{
3443 struct em_buffer *rx_buffer;
3444 int i;
3445
3446 if (adapter->rx_buffer_area == NULL)
3447 return;
3448
3449 for (i = 0; i < ndesc; i++) {
3450 rx_buffer = &adapter->rx_buffer_area[i];
3451
3452 KKASSERT(rx_buffer->m_head == NULL);
3453 bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3454 }
3455 bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3456 bus_dma_tag_destroy(adapter->rxtag);
3457
3458 kfree(adapter->rx_buffer_area, M_DEVBUF);
3459 adapter->rx_buffer_area = NULL;
3460}
3461
3462static void
3463em_rxeof(struct adapter *adapter, int count)
3464{
3465 struct ifnet *ifp = &adapter->arpcom.ac_if;
3466 uint8_t status, accept_frame = 0, eop = 0;
3467 uint16_t len, desc_len, prev_len_adj;
3468 struct e1000_rx_desc *current_desc;
3469 struct mbuf *mp;
3470 int i;
3471
3472 i = adapter->next_rx_desc_to_check;
3473 current_desc = &adapter->rx_desc_base[i];
3474
3475 if (!(current_desc->status & E1000_RXD_STAT_DD))
3476 return;
3477
3478 while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3479 struct mbuf *m = NULL;
3480
3481 logif(pkt_receive);
3482
3483 mp = adapter->rx_buffer_area[i].m_head;
3484
3485 /*
3486 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3487 * needs to access the last received byte in the mbuf.
3488 */
3489 bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3490 BUS_DMASYNC_POSTREAD);
3491
3492 accept_frame = 1;
3493 prev_len_adj = 0;
3494 desc_len = le16toh(current_desc->length);
3495 status = current_desc->status;
3496 if (status & E1000_RXD_STAT_EOP) {
3497 count--;
3498 eop = 1;
3499 if (desc_len < ETHER_CRC_LEN) {
3500 len = 0;
3501 prev_len_adj = ETHER_CRC_LEN - desc_len;
3502 } else {
3503 len = desc_len - ETHER_CRC_LEN;
3504 }
3505 } else {
3506 eop = 0;
3507 len = desc_len;
3508 }
3509
3510 if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3511 uint8_t last_byte;
3512 uint32_t pkt_len = desc_len;
3513
3514 if (adapter->fmp != NULL)
3515 pkt_len += adapter->fmp->m_pkthdr.len;
3516
3517 last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3518 if (TBI_ACCEPT(&adapter->hw, status,
3519 current_desc->errors, pkt_len, last_byte,
3520 adapter->min_frame_size,
3521 adapter->hw.mac.max_frame_size)) {
3522 e1000_tbi_adjust_stats_82543(&adapter->hw,
3523 &adapter->stats, pkt_len,
3524 adapter->hw.mac.addr,
3525 adapter->hw.mac.max_frame_size);
3526 if (len > 0)
3527 len--;
3528 } else {
3529 accept_frame = 0;
3530 }
3531 }
3532
3533 if (accept_frame) {
3534 if (em_newbuf(adapter, i, 0) != 0) {
3535 IFNET_STAT_INC(ifp, iqdrops, 1);
3536 goto discard;
3537 }
3538
3539 /* Assign correct length to the current fragment */
3540 mp->m_len = len;
3541
3542 if (adapter->fmp == NULL) {
3543 mp->m_pkthdr.len = len;
3544 adapter->fmp = mp; /* Store the first mbuf */
3545 adapter->lmp = mp;
3546 } else {
3547 /*
3548 * Chain mbuf's together
3549 */
3550
3551 /*
3552 * Adjust length of previous mbuf in chain if
3553 * we received less than 4 bytes in the last
3554 * descriptor.
3555 */
3556 if (prev_len_adj > 0) {
3557 adapter->lmp->m_len -= prev_len_adj;
3558 adapter->fmp->m_pkthdr.len -=
3559 prev_len_adj;
3560 }
3561 adapter->lmp->m_next = mp;
3562 adapter->lmp = adapter->lmp->m_next;
3563 adapter->fmp->m_pkthdr.len += len;
3564 }
3565
3566 if (eop) {
3567 adapter->fmp->m_pkthdr.rcvif = ifp;
3568 IFNET_STAT_INC(ifp, ipackets, 1);
3569
3570 if (ifp->if_capenable & IFCAP_RXCSUM) {
3571 em_rxcsum(adapter, current_desc,
3572 adapter->fmp);
3573 }
3574
3575 if (status & E1000_RXD_STAT_VP) {
3576 adapter->fmp->m_pkthdr.ether_vlantag =
3577 (le16toh(current_desc->special) &
3578 E1000_RXD_SPC_VLAN_MASK);
3579 adapter->fmp->m_flags |= M_VLANTAG;
3580 }
3581 m = adapter->fmp;
3582 adapter->fmp = NULL;
3583 adapter->lmp = NULL;
3584 }
3585 } else {
3586 IFNET_STAT_INC(ifp, ierrors, 1);
3587discard:
3588#ifdef foo
3589 /* Reuse loaded DMA map and just update mbuf chain */
3590 mp = adapter->rx_buffer_area[i].m_head;
3591 mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3592 mp->m_data = mp->m_ext.ext_buf;
3593 mp->m_next = NULL;
3594 if (adapter->hw.mac.max_frame_size <=
3595 (MCLBYTES - ETHER_ALIGN))
3596 m_adj(mp, ETHER_ALIGN);
3597#endif
3598 if (adapter->fmp != NULL) {
3599 m_freem(adapter->fmp);
3600 adapter->fmp = NULL;
3601 adapter->lmp = NULL;
3602 }
3603 m = NULL;
3604 }
3605
3606 /* Zero out the receive descriptors status. */
3607 current_desc->status = 0;
3608
3609 if (m != NULL)
3610 ifp->if_input(ifp, m, NULL, -1);
3611
3612 /* Advance our pointers to the next descriptor. */
3613 if (++i == adapter->num_rx_desc)
3614 i = 0;
3615 current_desc = &adapter->rx_desc_base[i];
3616 }
3617 adapter->next_rx_desc_to_check = i;
3618
3619 /* Advance the E1000's Receive Queue #0 "Tail Pointer". */
3620 if (--i < 0)
3621 i = adapter->num_rx_desc - 1;
3622 E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3623}
3624
3625static void
3626em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3627 struct mbuf *mp)
3628{
3629 /* 82543 or newer only */
3630 if (adapter->hw.mac.type < e1000_82543 ||
3631 /* Ignore Checksum bit is set */
3632 (rx_desc->status & E1000_RXD_STAT_IXSM))
3633 return;
3634
3635 if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3636 !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3637 /* IP Checksum Good */
3638 mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3639 }
3640
3641 if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3642 !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3643 mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3644 CSUM_PSEUDO_HDR |
3645 CSUM_FRAG_NOT_CHECKED;
3646 mp->m_pkthdr.csum_data = htons(0xffff);
3647 }
3648}
3649
3650static void
3651em_enable_intr(struct adapter *adapter)
3652{
3653 uint32_t ims_mask = IMS_ENABLE_MASK;
3654
3655 lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3656
3657#if 0
3658 /* XXX MSIX */
3659 if (adapter->hw.mac.type == e1000_82574) {
3660 E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3661 ims_mask |= EM_MSIX_MASK;
3662 }
3663#endif
3664 E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3665}
3666
3667static void
3668em_disable_intr(struct adapter *adapter)
3669{
3670 uint32_t clear = 0xffffffff;
3671
3672 /*
3673 * The first version of 82542 had an errata where when link was forced
3674 * it would stay up even up even if the cable was disconnected.
3675 * Sequence errors were used to detect the disconnect and then the
3676 * driver would unforce the link. This code in the in the ISR. For
3677 * this to work correctly the Sequence error interrupt had to be
3678 * enabled all the time.
3679 */
3680 if (adapter->hw.mac.type == e1000_82542 &&
3681 adapter->hw.revision_id == E1000_REVISION_2)
3682 clear &= ~E1000_ICR_RXSEQ;
3683 else if (adapter->hw.mac.type == e1000_82574)
3684 E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3685
3686 E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3687
3688 adapter->npoll.ifpc_stcount = 0;
3689
3690 lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3691}
3692
3693/*
3694 * Bit of a misnomer, what this really means is
3695 * to enable OS management of the system... aka
3696 * to disable special hardware management features
3697 */
3698static void
3699em_get_mgmt(struct adapter *adapter)
3700{
3701 /* A shared code workaround */
3702#define E1000_82542_MANC2H E1000_MANC2H
3703 if (adapter->flags & EM_FLAG_HAS_MGMT) {
3704 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3705 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3706
3707 /* disable hardware interception of ARP */
3708 manc &= ~(E1000_MANC_ARP_EN);
3709
3710 /* enable receiving management packets to the host */
3711 if (adapter->hw.mac.type >= e1000_82571) {
3712 manc |= E1000_MANC_EN_MNG2HOST;
3713#define E1000_MNG2HOST_PORT_623 (1 << 5)
3714#define E1000_MNG2HOST_PORT_664 (1 << 6)
3715 manc2h |= E1000_MNG2HOST_PORT_623;
3716 manc2h |= E1000_MNG2HOST_PORT_664;
3717 E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3718 }
3719
3720 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3721 }
3722}
3723
3724/*
3725 * Give control back to hardware management
3726 * controller if there is one.
3727 */
3728static void
3729em_rel_mgmt(struct adapter *adapter)
3730{
3731 if (adapter->flags & EM_FLAG_HAS_MGMT) {
3732 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3733
3734 /* re-enable hardware interception of ARP */
3735 manc |= E1000_MANC_ARP_EN;
3736
3737 if (adapter->hw.mac.type >= e1000_82571)
3738 manc &= ~E1000_MANC_EN_MNG2HOST;
3739
3740 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3741 }
3742}
3743
3744/*
3745 * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3746 * For ASF and Pass Through versions of f/w this means that
3747 * the driver is loaded. For AMT version (only with 82573)
3748 * of the f/w this means that the network i/f is open.
3749 */
3750static void
3751em_get_hw_control(struct adapter *adapter)
3752{
3753 /* Let firmware know the driver has taken over */
3754 if (adapter->hw.mac.type == e1000_82573) {
3755 uint32_t swsm;
3756
3757 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3758 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3759 swsm | E1000_SWSM_DRV_LOAD);
3760 } else {
3761 uint32_t ctrl_ext;
3762
3763 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3764 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3765 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3766 }
3767 adapter->flags |= EM_FLAG_HW_CTRL;
3768}
3769
3770/*
3771 * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3772 * For ASF and Pass Through versions of f/w this means that the
3773 * driver is no longer loaded. For AMT version (only with 82573)
3774 * of the f/w this means that the network i/f is closed.
3775 */
3776static void
3777em_rel_hw_control(struct adapter *adapter)
3778{
3779 if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3780 return;
3781 adapter->flags &= ~EM_FLAG_HW_CTRL;
3782
3783 /* Let firmware taken over control of h/w */
3784 if (adapter->hw.mac.type == e1000_82573) {
3785 uint32_t swsm;
3786
3787 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3788 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3789 swsm & ~E1000_SWSM_DRV_LOAD);
3790 } else {
3791 uint32_t ctrl_ext;
3792
3793 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3794 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3795 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3796 }
3797}
3798
3799static int
3800em_is_valid_eaddr(const uint8_t *addr)
3801{
3802 char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3803
3804 if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3805 return (FALSE);
3806
3807 return (TRUE);
3808}
3809
3810/*
3811 * Enable PCI Wake On Lan capability
3812 */
3813void
3814em_enable_wol(device_t dev)
3815{
3816 uint16_t cap, status;
3817 uint8_t id;
3818
3819 /* First find the capabilities pointer*/
3820 cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3821
3822 /* Read the PM Capabilities */
3823 id = pci_read_config(dev, cap, 1);
3824 if (id != PCIY_PMG) /* Something wrong */
3825 return;
3826
3827 /*
3828 * OK, we have the power capabilities,
3829 * so now get the status register
3830 */
3831 cap += PCIR_POWER_STATUS;
3832 status = pci_read_config(dev, cap, 2);
3833 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3834 pci_write_config(dev, cap, status, 2);
3835}
3836
3837
3838/*
3839 * 82544 Coexistence issue workaround.
3840 * There are 2 issues.
3841 * 1. Transmit Hang issue.
3842 * To detect this issue, following equation can be used...
3843 * SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3844 * If SUM[3:0] is in between 1 to 4, we will have this issue.
3845 *
3846 * 2. DAC issue.
3847 * To detect this issue, following equation can be used...
3848 * SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3849 * If SUM[3:0] is in between 9 to c, we will have this issue.
3850 *
3851 * WORKAROUND:
3852 * Make sure we do not have ending address
3853 * as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3854 */
3855static uint32_t
3856em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3857{
3858 uint32_t safe_terminator;
3859
3860 /*
3861 * Since issue is sensitive to length and address.
3862 * Let us first check the address...
3863 */
3864 if (length <= 4) {
3865 desc_array->descriptor[0].address = address;
3866 desc_array->descriptor[0].length = length;
3867 desc_array->elements = 1;
3868 return (desc_array->elements);
3869 }
3870
3871 safe_terminator =
3872 (uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3873
3874 /* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3875 if (safe_terminator == 0 ||
3876 (safe_terminator > 4 && safe_terminator < 9) ||
3877 (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3878 desc_array->descriptor[0].address = address;
3879 desc_array->descriptor[0].length = length;
3880 desc_array->elements = 1;
3881 return (desc_array->elements);
3882 }
3883
3884 desc_array->descriptor[0].address = address;
3885 desc_array->descriptor[0].length = length - 4;
3886 desc_array->descriptor[1].address = address + (length - 4);
3887 desc_array->descriptor[1].length = 4;
3888 desc_array->elements = 2;
3889 return (desc_array->elements);
3890}
3891
3892static void
3893em_update_stats(struct adapter *adapter)
3894{
3895 struct ifnet *ifp = &adapter->arpcom.ac_if;
3896
3897 if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3898 (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3899 adapter->stats.symerrs +=
3900 E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3901 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3902 }
3903 adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3904 adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3905 adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3906 adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3907
3908 adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3909 adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3910 adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3911 adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3912 adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3913 adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3914 adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3915 adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3916 adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3917 adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3918 adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3919 adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3920 adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3921 adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3922 adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3923 adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3924 adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3925 adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3926 adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3927 adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3928
3929 /* For the 64-bit byte counters the low dword must be read first. */
3930 /* Both registers clear on the read of the high dword */
3931
3932 adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3933 adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3934
3935 adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3936 adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3937 adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3938 adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3939 adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3940
3941 adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3942 adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3943
3944 adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3945 adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3946 adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3947 adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3948 adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3949 adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3950 adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3951 adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3952 adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3953 adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3954
3955 if (adapter->hw.mac.type >= e1000_82543) {
3956 adapter->stats.algnerrc +=
3957 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3958 adapter->stats.rxerrc +=
3959 E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3960 adapter->stats.tncrs +=
3961 E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3962 adapter->stats.cexterr +=
3963 E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3964 adapter->stats.tsctc +=
3965 E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3966 adapter->stats.tsctfc +=
3967 E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3968 }
3969
3970 IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
3971
3972 /* Rx Errors */
3973 IFNET_STAT_SET(ifp, ierrors,
3974 adapter->dropped_pkts + adapter->stats.rxerrc +
3975 adapter->stats.crcerrs + adapter->stats.algnerrc +
3976 adapter->stats.ruc + adapter->stats.roc +
3977 adapter->stats.mpc + adapter->stats.cexterr);
3978
3979 /* Tx Errors */
3980 IFNET_STAT_SET(ifp, oerrors,
3981 adapter->stats.ecol + adapter->stats.latecol +
3982 adapter->watchdog_events);
3983}
3984
3985static void
3986em_print_debug_info(struct adapter *adapter)
3987{
3988 device_t dev = adapter->dev;
3989 uint8_t *hw_addr = adapter->hw.hw_addr;
3990
3991 device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3992 device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3993 E1000_READ_REG(&adapter->hw, E1000_CTRL),
3994 E1000_READ_REG(&adapter->hw, E1000_RCTL));
3995 device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3996 ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3997 (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3998 device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3999 adapter->hw.fc.high_water,
4000 adapter->hw.fc.low_water);
4001 device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
4002 E1000_READ_REG(&adapter->hw, E1000_TIDV),
4003 E1000_READ_REG(&adapter->hw, E1000_TADV));
4004 device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
4005 E1000_READ_REG(&adapter->hw, E1000_RDTR),
4006 E1000_READ_REG(&adapter->hw, E1000_RADV));
4007 device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
4008 (long long)adapter->tx_fifo_wrk_cnt,
4009 (long long)adapter->tx_fifo_reset_cnt);
4010 device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4011 E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
4012 E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
4013 device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4014 E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
4015 E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
4016 device_printf(dev, "Num Tx descriptors avail = %d\n",
4017 adapter->num_tx_desc_avail);
4018 device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
4019 adapter->no_tx_desc_avail1);
4020 device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
4021 adapter->no_tx_desc_avail2);
4022 device_printf(dev, "Std mbuf failed = %ld\n",
4023 adapter->mbuf_alloc_failed);
4024 device_printf(dev, "Std mbuf cluster failed = %ld\n",
4025 adapter->mbuf_cluster_failed);
4026 device_printf(dev, "Driver dropped packets = %ld\n",
4027 adapter->dropped_pkts);
4028 device_printf(dev, "Driver tx dma failure in encap = %ld\n",
4029 adapter->no_tx_dma_setup);
4030}
4031
4032static void
4033em_print_hw_stats(struct adapter *adapter)
4034{
4035 device_t dev = adapter->dev;
4036
4037 device_printf(dev, "Excessive collisions = %lld\n",
4038 (long long)adapter->stats.ecol);
4039#if (DEBUG_HW > 0) /* Dont output these errors normally */
4040 device_printf(dev, "Symbol errors = %lld\n",
4041 (long long)adapter->stats.symerrs);
4042#endif
4043 device_printf(dev, "Sequence errors = %lld\n",
4044 (long long)adapter->stats.sec);
4045 device_printf(dev, "Defer count = %lld\n",
4046 (long long)adapter->stats.dc);
4047 device_printf(dev, "Missed Packets = %lld\n",
4048 (long long)adapter->stats.mpc);
4049 device_printf(dev, "Receive No Buffers = %lld\n",
4050 (long long)adapter->stats.rnbc);
4051 /* RLEC is inaccurate on some hardware, calculate our own. */
4052 device_printf(dev, "Receive Length Errors = %lld\n",
4053 ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
4054 device_printf(dev, "Receive errors = %lld\n",
4055 (long long)adapter->stats.rxerrc);
4056 device_printf(dev, "Crc errors = %lld\n",
4057 (long long)adapter->stats.crcerrs);
4058 device_printf(dev, "Alignment errors = %lld\n",
4059 (long long)adapter->stats.algnerrc);
4060 device_printf(dev, "Collision/Carrier extension errors = %lld\n",
4061 (long long)adapter->stats.cexterr);
4062 device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
4063 device_printf(dev, "watchdog timeouts = %ld\n",
4064 adapter->watchdog_events);
4065 device_printf(dev, "XON Rcvd = %lld\n",
4066 (long long)adapter->stats.xonrxc);
4067 device_printf(dev, "XON Xmtd = %lld\n",
4068 (long long)adapter->stats.xontxc);
4069 device_printf(dev, "XOFF Rcvd = %lld\n",
4070 (long long)adapter->stats.xoffrxc);
4071 device_printf(dev, "XOFF Xmtd = %lld\n",
4072 (long long)adapter->stats.xofftxc);
4073 device_printf(dev, "Good Packets Rcvd = %lld\n",
4074 (long long)adapter->stats.gprc);
4075 device_printf(dev, "Good Packets Xmtd = %lld\n",
4076 (long long)adapter->stats.gptc);
4077}
4078
4079static void
4080em_print_nvm_info(struct adapter *adapter)
4081{
4082 uint16_t eeprom_data;
4083 int i, j, row = 0;
4084
4085 /* Its a bit crude, but it gets the job done */
4086 kprintf("\nInterface EEPROM Dump:\n");
4087 kprintf("Offset\n0x0000 ");
4088 for (i = 0, j = 0; i < 32; i++, j++) {
4089 if (j == 8) { /* Make the offset block */
4090 j = 0; ++row;
4091 kprintf("\n0x00%x0 ",row);
4092 }
4093 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4094 kprintf("%04x ", eeprom_data);
4095 }
4096 kprintf("\n");
4097}
4098
4099static int
4100em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4101{
4102 struct adapter *adapter;
4103 struct ifnet *ifp;
4104 int error, result;
4105
4106 result = -1;
4107 error = sysctl_handle_int(oidp, &result, 0, req);
4108 if (error || !req->newptr)
4109 return (error);
4110
4111 adapter = (struct adapter *)arg1;
4112 ifp = &adapter->arpcom.ac_if;
4113
4114 lwkt_serialize_enter(ifp->if_serializer);
4115
4116 if (result == 1)
4117 em_print_debug_info(adapter);
4118
4119 /*
4120 * This value will cause a hex dump of the
4121 * first 32 16-bit words of the EEPROM to
4122 * the screen.
4123 */
4124 if (result == 2)
4125 em_print_nvm_info(adapter);
4126
4127 lwkt_serialize_exit(ifp->if_serializer);
4128
4129 return (error);
4130}
4131
4132static int
4133em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4134{
4135 int error, result;
4136
4137 result = -1;
4138 error = sysctl_handle_int(oidp, &result, 0, req);
4139 if (error || !req->newptr)
4140 return (error);
4141
4142 if (result == 1) {
4143 struct adapter *adapter = (struct adapter *)arg1;
4144 struct ifnet *ifp = &adapter->arpcom.ac_if;
4145
4146 lwkt_serialize_enter(ifp->if_serializer);
4147 em_print_hw_stats(adapter);
4148 lwkt_serialize_exit(ifp->if_serializer);
4149 }
4150 return (error);
4151}
4152
4153static void
4154em_add_sysctl(struct adapter *adapter)
4155{
4156 struct sysctl_ctx_list *ctx;
4157 struct sysctl_oid *tree;
4158
4159 ctx = device_get_sysctl_ctx(adapter->dev);
4160 tree = device_get_sysctl_tree(adapter->dev);
4161 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4162 OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4163 em_sysctl_debug_info, "I", "Debug Information");
4164
4165 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4166 OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4167 em_sysctl_stats, "I", "Statistics");
4168
4169 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4170 OID_AUTO, "rxd", CTLFLAG_RD,
4171 &adapter->num_rx_desc, 0, NULL);
4172 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4173 OID_AUTO, "txd", CTLFLAG_RD,
4174 &adapter->num_tx_desc, 0, NULL);
4175
4176 if (adapter->hw.mac.type >= e1000_82540) {
4177 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4178 OID_AUTO, "int_throttle_ceil",
4179 CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4180 em_sysctl_int_throttle, "I",
4181 "interrupt throttling rate");
4182 }
4183 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4184 OID_AUTO, "int_tx_nsegs",
4185 CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4186 em_sysctl_int_tx_nsegs, "I",
4187 "# segments per TX interrupt");
4188 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4189 OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4190 &adapter->tx_wreg_nsegs, 0,
4191 "# segments before write to hardware register");
4192}
4193
4194static int
4195em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4196{
4197 struct adapter *adapter = (void *)arg1;
4198 struct ifnet *ifp = &adapter->arpcom.ac_if;
4199 int error, throttle;
4200
4201 throttle = adapter->int_throttle_ceil;
4202 error = sysctl_handle_int(oidp, &throttle, 0, req);
4203 if (error || req->newptr == NULL)
4204 return error;
4205 if (throttle < 0 || throttle > 1000000000 / 256)
4206 return EINVAL;
4207
4208 if (throttle) {
4209 /*
4210 * Set the interrupt throttling rate in 256ns increments,
4211 * recalculate sysctl value assignment to get exact frequency.
4212 */
4213 throttle = 1000000000 / 256 / throttle;
4214
4215 /* Upper 16bits of ITR is reserved and should be zero */
4216 if (throttle & 0xffff0000)
4217 return EINVAL;
4218 }
4219
4220 lwkt_serialize_enter(ifp->if_serializer);
4221
4222 if (throttle)
4223 adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4224 else
4225 adapter->int_throttle_ceil = 0;
4226
4227 if (ifp->if_flags & IFF_RUNNING)
4228 em_set_itr(adapter, throttle);
4229
4230 lwkt_serialize_exit(ifp->if_serializer);
4231
4232 if (bootverbose) {
4233 if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4234 adapter->int_throttle_ceil);
4235 }
4236 return 0;
4237}
4238
4239static int
4240em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4241{
4242 struct adapter *adapter = (void *)arg1;
4243 struct ifnet *ifp = &adapter->arpcom.ac_if;
4244 int error, segs;
4245
4246 segs = adapter->tx_int_nsegs;
4247 error = sysctl_handle_int(oidp, &segs, 0, req);
4248 if (error || req->newptr == NULL)
4249 return error;
4250 if (segs <= 0)
4251 return EINVAL;
4252
4253 lwkt_serialize_enter(ifp->if_serializer);
4254
4255 /*
4256 * Don't allow int_tx_nsegs to become:
4257 * o Less the oact_tx_desc
4258 * o Too large that no TX desc will cause TX interrupt to
4259 * be generated (OACTIVE will never recover)
4260 * o Too small that will cause tx_dd[] overflow
4261 */
4262 if (segs < adapter->oact_tx_desc ||
4263 segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4264 segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4265 error = EINVAL;
4266 } else {
4267 error = 0;
4268 adapter->tx_int_nsegs = segs;
4269 }
4270
4271 lwkt_serialize_exit(ifp->if_serializer);
4272
4273 return error;
4274}
4275
4276static void
4277em_set_itr(struct adapter *adapter, uint32_t itr)
4278{
4279 E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4280 if (adapter->hw.mac.type == e1000_82574) {
4281 int i;
4282
4283 /*
4284 * When using MSIX interrupts we need to
4285 * throttle using the EITR register
4286 */
4287 for (i = 0; i < 4; ++i) {
4288 E1000_WRITE_REG(&adapter->hw,
4289 E1000_EITR_82574(i), itr);
4290 }
4291 }
4292}
4293
4294static void
4295em_disable_aspm(struct adapter *adapter)
4296{
4297 uint16_t link_cap, link_ctrl, disable;
4298 uint8_t pcie_ptr, reg;
4299 device_t dev = adapter->dev;
4300
4301 switch (adapter->hw.mac.type) {
4302 case e1000_82571:
4303 case e1000_82572:
4304 case e1000_82573:
4305 /*
4306 * 82573 specification update
4307 * errata #8 disable L0s
4308 * errata #41 disable L1
4309 *
4310 * 82571/82572 specification update
4311 # errata #13 disable L1
4312 * errata #68 disable L0s
4313 */
4314 disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4315 break;
4316
4317 case e1000_82574:
4318 case e1000_82583:
4319 /*
4320 * 82574 specification update errata #20
4321 * 82583 specification update errata #9
4322 *
4323 * There is no need to disable L1
4324 */
4325 disable = PCIEM_LNKCTL_ASPM_L0S;
4326 break;
4327
4328 default:
4329 return;
4330 }
4331
4332 pcie_ptr = pci_get_pciecap_ptr(dev);
4333 if (pcie_ptr == 0)
4334 return;
4335
4336 link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4337 if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4338 return;
4339
4340 if (bootverbose) {
4341 if_printf(&adapter->arpcom.ac_if,
4342 "disable ASPM %#02x\n", disable);
4343 }
4344
4345 reg = pcie_ptr + PCIER_LINKCTRL;
4346 link_ctrl = pci_read_config(dev, reg, 2);
4347 link_ctrl &= ~disable;
4348 pci_write_config(dev, reg, link_ctrl, 2);
4349}
4350
4351static int
4352em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4353{
4354 int iphlen, hoff, thoff, ex = 0;
4355 struct mbuf *m;
4356 struct ip *ip;
4357
4358 m = *mp;
4359 KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4360
4361 iphlen = m->m_pkthdr.csum_iphlen;
4362 thoff = m->m_pkthdr.csum_thlen;
4363 hoff = m->m_pkthdr.csum_lhlen;
4364
4365 KASSERT(iphlen > 0, ("invalid ip hlen"));
4366 KASSERT(thoff > 0, ("invalid tcp hlen"));
4367 KASSERT(hoff > 0, ("invalid ether hlen"));
4368
4369 if (adapter->flags & EM_FLAG_TSO_PULLEX)
4370 ex = 4;
4371
4372 if (m->m_len < hoff + iphlen + thoff + ex) {
4373 m = m_pullup(m, hoff + iphlen + thoff + ex);
4374 if (m == NULL) {
4375 *mp = NULL;
4376 return ENOBUFS;
4377 }
4378 *mp = m;
4379 }
4380 ip = mtodoff(m, struct ip *, hoff);
4381 ip->ip_len = 0;
4382
4383 return 0;
4384}
4385
4386static int
4387em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4388 uint32_t *txd_upper, uint32_t *txd_lower)
4389{
4390 struct e1000_context_desc *TXD;
4391 int hoff, iphlen, thoff, hlen;
4392 int mss, pktlen, curr_txd;
4393
4394 iphlen = mp->m_pkthdr.csum_iphlen;
4395 thoff = mp->m_pkthdr.csum_thlen;
4396 hoff = mp->m_pkthdr.csum_lhlen;
4397 mss = mp->m_pkthdr.tso_segsz;
4398 pktlen = mp->m_pkthdr.len;
4399
4400 if (adapter->csum_flags == CSUM_TSO &&
4401 adapter->csum_iphlen == iphlen &&
4402 adapter->csum_lhlen == hoff &&
4403 adapter->csum_thlen == thoff &&
4404 adapter->csum_mss == mss &&
4405 adapter->csum_pktlen == pktlen) {
4406 *txd_upper = adapter->csum_txd_upper;
4407 *txd_lower = adapter->csum_txd_lower;
4408 return 0;
4409 }
4410 hlen = hoff + iphlen + thoff;
4411
4412 /*
4413 * Setup a new TSO context.
4414 */
4415
4416 curr_txd = adapter->next_avail_tx_desc;
4417 TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4418
4419 *txd_lower = E1000_TXD_CMD_DEXT | /* Extended descr type */
4420 E1000_TXD_DTYP_D | /* Data descr type */
4421 E1000_TXD_CMD_TSE; /* Do TSE on this packet */
4422
4423 /* IP and/or TCP header checksum calculation and insertion. */
4424 *txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4425
4426 /*
4427 * Start offset for header checksum calculation.
4428 * End offset for header checksum calculation.
4429 * Offset of place put the checksum.
4430 */
4431 TXD->lower_setup.ip_fields.ipcss = hoff;
4432 TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4433 TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4434
4435 /*
4436 * Start offset for payload checksum calculation.
4437 * End offset for payload checksum calculation.
4438 * Offset of place to put the checksum.
4439 */
4440 TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4441 TXD->upper_setup.tcp_fields.tucse = 0;
4442 TXD->upper_setup.tcp_fields.tucso =
4443 hoff + iphlen + offsetof(struct tcphdr, th_sum);
4444
4445 /*
4446 * Payload size per packet w/o any headers.
4447 * Length of all headers up to payload.
4448 */
4449 TXD->tcp_seg_setup.fields.mss = htole16(mss);
4450 TXD->tcp_seg_setup.fields.hdr_len = hlen;
4451 TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4452 E1000_TXD_CMD_DEXT | /* Extended descr */
4453 E1000_TXD_CMD_TSE | /* TSE context */
4454 E1000_TXD_CMD_IP | /* Do IP csum */
4455 E1000_TXD_CMD_TCP | /* Do TCP checksum */
4456 (pktlen - hlen)); /* Total len */
4457
4458 /* Save the information for this TSO context */
4459 adapter->csum_flags = CSUM_TSO;
4460 adapter->csum_lhlen = hoff;
4461 adapter->csum_iphlen = iphlen;
4462 adapter->csum_thlen = thoff;
4463 adapter->csum_mss = mss;
4464 adapter->csum_pktlen = pktlen;
4465 adapter->csum_txd_upper = *txd_upper;
4466 adapter->csum_txd_lower = *txd_lower;
4467
4468 if (++curr_txd == adapter->num_tx_desc)
4469 curr_txd = 0;
4470
4471 KKASSERT(adapter->num_tx_desc_avail > 0);
4472 adapter->num_tx_desc_avail--;
4473
4474 adapter->next_avail_tx_desc = curr_txd;
4475 return 1;
4476}