Register keyword removal
[dragonfly.git] / sys / kern / uipc_socket2.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
34 * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.55.2.17 2002/08/31 19:04:55 dwmalone Exp $
35 * $DragonFly: src/sys/kern/uipc_socket2.c,v 1.4 2003/07/19 21:14:39 dillon Exp $
36 */
37
38#include "opt_param.h"
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/domain.h>
42#include <sys/file.h> /* for maxfiles */
43#include <sys/kernel.h>
44#include <sys/proc.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/protosw.h>
48#include <sys/resourcevar.h>
49#include <sys/stat.h>
50#include <sys/socket.h>
51#include <sys/socketvar.h>
52#include <sys/signalvar.h>
53#include <sys/sysctl.h>
54#include <sys/aio.h> /* for aio_swake proto */
55#include <sys/event.h>
56
57int maxsockets;
58
59/*
60 * Primitive routines for operating on sockets and socket buffers
61 */
62
63u_long sb_max = SB_MAX;
64u_long sb_max_adj =
65 SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
66
67static u_long sb_efficiency = 8; /* parameter for sbreserve() */
68
69/*
70 * Procedures to manipulate state flags of socket
71 * and do appropriate wakeups. Normal sequence from the
72 * active (originating) side is that soisconnecting() is
73 * called during processing of connect() call,
74 * resulting in an eventual call to soisconnected() if/when the
75 * connection is established. When the connection is torn down
76 * soisdisconnecting() is called during processing of disconnect() call,
77 * and soisdisconnected() is called when the connection to the peer
78 * is totally severed. The semantics of these routines are such that
79 * connectionless protocols can call soisconnected() and soisdisconnected()
80 * only, bypassing the in-progress calls when setting up a ``connection''
81 * takes no time.
82 *
83 * From the passive side, a socket is created with
84 * two queues of sockets: so_incomp for connections in progress
85 * and so_comp for connections already made and awaiting user acceptance.
86 * As a protocol is preparing incoming connections, it creates a socket
87 * structure queued on so_incomp by calling sonewconn(). When the connection
88 * is established, soisconnected() is called, and transfers the
89 * socket structure to so_comp, making it available to accept().
90 *
91 * If a socket is closed with sockets on either
92 * so_incomp or so_comp, these sockets are dropped.
93 *
94 * If higher level protocols are implemented in
95 * the kernel, the wakeups done here will sometimes
96 * cause software-interrupt process scheduling.
97 */
98
99void
100soisconnecting(so)
101 register struct socket *so;
102{
103
104 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
105 so->so_state |= SS_ISCONNECTING;
106}
107
108void
109soisconnected(so)
110 struct socket *so;
111{
112 struct socket *head = so->so_head;
113
114 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
115 so->so_state |= SS_ISCONNECTED;
116 if (head && (so->so_state & SS_INCOMP)) {
117 if ((so->so_options & SO_ACCEPTFILTER) != 0) {
118 so->so_upcall = head->so_accf->so_accept_filter->accf_callback;
119 so->so_upcallarg = head->so_accf->so_accept_filter_arg;
120 so->so_rcv.sb_flags |= SB_UPCALL;
121 so->so_options &= ~SO_ACCEPTFILTER;
122 so->so_upcall(so, so->so_upcallarg, 0);
123 return;
124 }
125 TAILQ_REMOVE(&head->so_incomp, so, so_list);
126 head->so_incqlen--;
127 so->so_state &= ~SS_INCOMP;
128 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
129 head->so_qlen++;
130 so->so_state |= SS_COMP;
131 sorwakeup(head);
132 wakeup_one(&head->so_timeo);
133 } else {
134 wakeup(&so->so_timeo);
135 sorwakeup(so);
136 sowwakeup(so);
137 }
138}
139
140void
141soisdisconnecting(so)
142 register struct socket *so;
143{
144
145 so->so_state &= ~SS_ISCONNECTING;
146 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
147 wakeup((caddr_t)&so->so_timeo);
148 sowwakeup(so);
149 sorwakeup(so);
150}
151
152void
153soisdisconnected(so)
154 register struct socket *so;
155{
156
157 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
158 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
159 wakeup((caddr_t)&so->so_timeo);
160 sbdrop(&so->so_snd, so->so_snd.sb_cc);
161 sowwakeup(so);
162 sorwakeup(so);
163}
164
165/*
166 * When an attempt at a new connection is noted on a socket
167 * which accepts connections, sonewconn is called. If the
168 * connection is possible (subject to space constraints, etc.)
169 * then we allocate a new structure, propoerly linked into the
170 * data structure of the original socket, and return this.
171 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
172 */
173struct socket *
174sonewconn(struct socket *head, int connstatus)
175{
176 register struct socket *so;
177
178 if (head->so_qlen > 3 * head->so_qlimit / 2)
179 return ((struct socket *)0);
180 so = soalloc(0);
181 if (so == NULL)
182 return ((struct socket *)0);
183 if ((head->so_options & SO_ACCEPTFILTER) != 0)
184 connstatus = 0;
185 so->so_head = head;
186 so->so_type = head->so_type;
187 so->so_options = head->so_options &~ SO_ACCEPTCONN;
188 so->so_linger = head->so_linger;
189 so->so_state = head->so_state | SS_NOFDREF;
190 so->so_proto = head->so_proto;
191 so->so_timeo = head->so_timeo;
192 so->so_cred = crhold(head->so_cred);
193 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
194 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
195 sodealloc(so);
196 return ((struct socket *)0);
197 }
198
199 if (connstatus) {
200 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
201 so->so_state |= SS_COMP;
202 head->so_qlen++;
203 } else {
204 if (head->so_incqlen > head->so_qlimit) {
205 struct socket *sp;
206 sp = TAILQ_FIRST(&head->so_incomp);
207 (void) soabort(sp);
208 }
209 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
210 so->so_state |= SS_INCOMP;
211 head->so_incqlen++;
212 }
213 if (connstatus) {
214 sorwakeup(head);
215 wakeup((caddr_t)&head->so_timeo);
216 so->so_state |= connstatus;
217 }
218 return (so);
219}
220
221/*
222 * Socantsendmore indicates that no more data will be sent on the
223 * socket; it would normally be applied to a socket when the user
224 * informs the system that no more data is to be sent, by the protocol
225 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
226 * will be received, and will normally be applied to the socket by a
227 * protocol when it detects that the peer will send no more data.
228 * Data queued for reading in the socket may yet be read.
229 */
230
231void
232socantsendmore(so)
233 struct socket *so;
234{
235
236 so->so_state |= SS_CANTSENDMORE;
237 sowwakeup(so);
238}
239
240void
241socantrcvmore(so)
242 struct socket *so;
243{
244
245 so->so_state |= SS_CANTRCVMORE;
246 sorwakeup(so);
247}
248
249/*
250 * Wait for data to arrive at/drain from a socket buffer.
251 */
252int
253sbwait(sb)
254 struct sockbuf *sb;
255{
256
257 sb->sb_flags |= SB_WAIT;
258 return (tsleep((caddr_t)&sb->sb_cc,
259 ((sb->sb_flags & SB_NOINTR) ? 0 : PCATCH),
260 "sbwait",
261 sb->sb_timeo));
262}
263
264/*
265 * Lock a sockbuf already known to be locked;
266 * return any error returned from sleep (EINTR).
267 */
268int
269sb_lock(sb)
270 register struct sockbuf *sb;
271{
272 int error;
273
274 while (sb->sb_flags & SB_LOCK) {
275 sb->sb_flags |= SB_WANT;
276 error = tsleep((caddr_t)&sb->sb_flags,
277 ((sb->sb_flags & SB_NOINTR) ? 0 : PCATCH),
278 "sblock", 0);
279 if (error)
280 return (error);
281 }
282 sb->sb_flags |= SB_LOCK;
283 return (0);
284}
285
286/*
287 * Wakeup processes waiting on a socket buffer.
288 * Do asynchronous notification via SIGIO
289 * if the socket has the SS_ASYNC flag set.
290 */
291void
292sowakeup(so, sb)
293 register struct socket *so;
294 register struct sockbuf *sb;
295{
296 selwakeup(&sb->sb_sel);
297 sb->sb_flags &= ~SB_SEL;
298 if (sb->sb_flags & SB_WAIT) {
299 sb->sb_flags &= ~SB_WAIT;
300 wakeup((caddr_t)&sb->sb_cc);
301 }
302 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
303 pgsigio(so->so_sigio, SIGIO, 0);
304 if (sb->sb_flags & SB_UPCALL)
305 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
306 if (sb->sb_flags & SB_AIO)
307 aio_swake(so, sb);
308 KNOTE(&sb->sb_sel.si_note, 0);
309}
310
311/*
312 * Socket buffer (struct sockbuf) utility routines.
313 *
314 * Each socket contains two socket buffers: one for sending data and
315 * one for receiving data. Each buffer contains a queue of mbufs,
316 * information about the number of mbufs and amount of data in the
317 * queue, and other fields allowing select() statements and notification
318 * on data availability to be implemented.
319 *
320 * Data stored in a socket buffer is maintained as a list of records.
321 * Each record is a list of mbufs chained together with the m_next
322 * field. Records are chained together with the m_nextpkt field. The upper
323 * level routine soreceive() expects the following conventions to be
324 * observed when placing information in the receive buffer:
325 *
326 * 1. If the protocol requires each message be preceded by the sender's
327 * name, then a record containing that name must be present before
328 * any associated data (mbuf's must be of type MT_SONAME).
329 * 2. If the protocol supports the exchange of ``access rights'' (really
330 * just additional data associated with the message), and there are
331 * ``rights'' to be received, then a record containing this data
332 * should be present (mbuf's must be of type MT_RIGHTS).
333 * 3. If a name or rights record exists, then it must be followed by
334 * a data record, perhaps of zero length.
335 *
336 * Before using a new socket structure it is first necessary to reserve
337 * buffer space to the socket, by calling sbreserve(). This should commit
338 * some of the available buffer space in the system buffer pool for the
339 * socket (currently, it does nothing but enforce limits). The space
340 * should be released by calling sbrelease() when the socket is destroyed.
341 */
342
343int
344soreserve(so, sndcc, rcvcc)
345 register struct socket *so;
346 u_long sndcc, rcvcc;
347{
348 struct proc *p = curproc;
349
350 if (sbreserve(&so->so_snd, sndcc, so, p) == 0)
351 goto bad;
352 if (sbreserve(&so->so_rcv, rcvcc, so, p) == 0)
353 goto bad2;
354 if (so->so_rcv.sb_lowat == 0)
355 so->so_rcv.sb_lowat = 1;
356 if (so->so_snd.sb_lowat == 0)
357 so->so_snd.sb_lowat = MCLBYTES;
358 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
359 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
360 return (0);
361bad2:
362 sbrelease(&so->so_snd, so);
363bad:
364 return (ENOBUFS);
365}
366
367static int
368sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
369{
370 int error = 0;
371 u_long old_sb_max = sb_max;
372
373 error = SYSCTL_OUT(req, arg1, sizeof(int));
374 if (error || !req->newptr)
375 return (error);
376 error = SYSCTL_IN(req, arg1, sizeof(int));
377 if (error)
378 return (error);
379 if (sb_max < MSIZE + MCLBYTES) {
380 sb_max = old_sb_max;
381 return (EINVAL);
382 }
383 sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
384 return (0);
385}
386
387/*
388 * Allot mbufs to a sockbuf.
389 * Attempt to scale mbmax so that mbcnt doesn't become limiting
390 * if buffering efficiency is near the normal case.
391 */
392int
393sbreserve(sb, cc, so, p)
394 struct sockbuf *sb;
395 u_long cc;
396 struct socket *so;
397 struct proc *p;
398{
399
400 /*
401 * p will only be NULL when we're in an interrupt
402 * (e.g. in tcp_input())
403 */
404 if (cc > sb_max_adj)
405 return (0);
406 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
407 p ? p->p_rlimit[RLIMIT_SBSIZE].rlim_cur : RLIM_INFINITY)) {
408 return (0);
409 }
410 sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
411 if (sb->sb_lowat > sb->sb_hiwat)
412 sb->sb_lowat = sb->sb_hiwat;
413 return (1);
414}
415
416/*
417 * Free mbufs held by a socket, and reserved mbuf space.
418 */
419void
420sbrelease(sb, so)
421 struct sockbuf *sb;
422 struct socket *so;
423{
424
425 sbflush(sb);
426 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
427 RLIM_INFINITY);
428 sb->sb_mbmax = 0;
429}
430
431/*
432 * Routines to add and remove
433 * data from an mbuf queue.
434 *
435 * The routines sbappend() or sbappendrecord() are normally called to
436 * append new mbufs to a socket buffer, after checking that adequate
437 * space is available, comparing the function sbspace() with the amount
438 * of data to be added. sbappendrecord() differs from sbappend() in
439 * that data supplied is treated as the beginning of a new record.
440 * To place a sender's address, optional access rights, and data in a
441 * socket receive buffer, sbappendaddr() should be used. To place
442 * access rights and data in a socket receive buffer, sbappendrights()
443 * should be used. In either case, the new data begins a new record.
444 * Note that unlike sbappend() and sbappendrecord(), these routines check
445 * for the caller that there will be enough space to store the data.
446 * Each fails if there is not enough space, or if it cannot find mbufs
447 * to store additional information in.
448 *
449 * Reliable protocols may use the socket send buffer to hold data
450 * awaiting acknowledgement. Data is normally copied from a socket
451 * send buffer in a protocol with m_copy for output to a peer,
452 * and then removing the data from the socket buffer with sbdrop()
453 * or sbdroprecord() when the data is acknowledged by the peer.
454 */
455
456/*
457 * Append mbuf chain m to the last record in the
458 * socket buffer sb. The additional space associated
459 * the mbuf chain is recorded in sb. Empty mbufs are
460 * discarded and mbufs are compacted where possible.
461 */
462void
463sbappend(sb, m)
464 struct sockbuf *sb;
465 struct mbuf *m;
466{
467 register struct mbuf *n;
468
469 if (m == 0)
470 return;
471 n = sb->sb_mb;
472 if (n) {
473 while (n->m_nextpkt)
474 n = n->m_nextpkt;
475 do {
476 if (n->m_flags & M_EOR) {
477 sbappendrecord(sb, m); /* XXXXXX!!!! */
478 return;
479 }
480 } while (n->m_next && (n = n->m_next));
481 }
482 sbcompress(sb, m, n);
483}
484
485#ifdef SOCKBUF_DEBUG
486void
487sbcheck(sb)
488 register struct sockbuf *sb;
489{
490 register struct mbuf *m;
491 register struct mbuf *n = 0;
492 register u_long len = 0, mbcnt = 0;
493
494 for (m = sb->sb_mb; m; m = n) {
495 n = m->m_nextpkt;
496 for (; m; m = m->m_next) {
497 len += m->m_len;
498 mbcnt += MSIZE;
499 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
500 mbcnt += m->m_ext.ext_size;
501 }
502 }
503 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
504 printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
505 mbcnt, sb->sb_mbcnt);
506 panic("sbcheck");
507 }
508}
509#endif
510
511/*
512 * As above, except the mbuf chain
513 * begins a new record.
514 */
515void
516sbappendrecord(sb, m0)
517 register struct sockbuf *sb;
518 register struct mbuf *m0;
519{
520 register struct mbuf *m;
521
522 if (m0 == 0)
523 return;
524 m = sb->sb_mb;
525 if (m)
526 while (m->m_nextpkt)
527 m = m->m_nextpkt;
528 /*
529 * Put the first mbuf on the queue.
530 * Note this permits zero length records.
531 */
532 sballoc(sb, m0);
533 if (m)
534 m->m_nextpkt = m0;
535 else
536 sb->sb_mb = m0;
537 m = m0->m_next;
538 m0->m_next = 0;
539 if (m && (m0->m_flags & M_EOR)) {
540 m0->m_flags &= ~M_EOR;
541 m->m_flags |= M_EOR;
542 }
543 sbcompress(sb, m, m0);
544}
545
546/*
547 * As above except that OOB data
548 * is inserted at the beginning of the sockbuf,
549 * but after any other OOB data.
550 */
551void
552sbinsertoob(sb, m0)
553 register struct sockbuf *sb;
554 register struct mbuf *m0;
555{
556 register struct mbuf *m;
557 register struct mbuf **mp;
558
559 if (m0 == 0)
560 return;
561 for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
562 m = *mp;
563 again:
564 switch (m->m_type) {
565
566 case MT_OOBDATA:
567 continue; /* WANT next train */
568
569 case MT_CONTROL:
570 m = m->m_next;
571 if (m)
572 goto again; /* inspect THIS train further */
573 }
574 break;
575 }
576 /*
577 * Put the first mbuf on the queue.
578 * Note this permits zero length records.
579 */
580 sballoc(sb, m0);
581 m0->m_nextpkt = *mp;
582 *mp = m0;
583 m = m0->m_next;
584 m0->m_next = 0;
585 if (m && (m0->m_flags & M_EOR)) {
586 m0->m_flags &= ~M_EOR;
587 m->m_flags |= M_EOR;
588 }
589 sbcompress(sb, m, m0);
590}
591
592/*
593 * Append address and data, and optionally, control (ancillary) data
594 * to the receive queue of a socket. If present,
595 * m0 must include a packet header with total length.
596 * Returns 0 if no space in sockbuf or insufficient mbufs.
597 */
598int
599sbappendaddr(sb, asa, m0, control)
600 register struct sockbuf *sb;
601 struct sockaddr *asa;
602 struct mbuf *m0, *control;
603{
604 register struct mbuf *m, *n;
605 int space = asa->sa_len;
606
607if (m0 && (m0->m_flags & M_PKTHDR) == 0)
608panic("sbappendaddr");
609 if (m0)
610 space += m0->m_pkthdr.len;
611 for (n = control; n; n = n->m_next) {
612 space += n->m_len;
613 if (n->m_next == 0) /* keep pointer to last control buf */
614 break;
615 }
616 if (space > sbspace(sb))
617 return (0);
618 if (asa->sa_len > MLEN)
619 return (0);
620 MGET(m, M_DONTWAIT, MT_SONAME);
621 if (m == 0)
622 return (0);
623 m->m_len = asa->sa_len;
624 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
625 if (n)
626 n->m_next = m0; /* concatenate data to control */
627 else
628 control = m0;
629 m->m_next = control;
630 for (n = m; n; n = n->m_next)
631 sballoc(sb, n);
632 n = sb->sb_mb;
633 if (n) {
634 while (n->m_nextpkt)
635 n = n->m_nextpkt;
636 n->m_nextpkt = m;
637 } else
638 sb->sb_mb = m;
639 return (1);
640}
641
642int
643sbappendcontrol(sb, m0, control)
644 struct sockbuf *sb;
645 struct mbuf *control, *m0;
646{
647 register struct mbuf *m, *n;
648 int space = 0;
649
650 if (control == 0)
651 panic("sbappendcontrol");
652 for (m = control; ; m = m->m_next) {
653 space += m->m_len;
654 if (m->m_next == 0)
655 break;
656 }
657 n = m; /* save pointer to last control buffer */
658 for (m = m0; m; m = m->m_next)
659 space += m->m_len;
660 if (space > sbspace(sb))
661 return (0);
662 n->m_next = m0; /* concatenate data to control */
663 for (m = control; m; m = m->m_next)
664 sballoc(sb, m);
665 n = sb->sb_mb;
666 if (n) {
667 while (n->m_nextpkt)
668 n = n->m_nextpkt;
669 n->m_nextpkt = control;
670 } else
671 sb->sb_mb = control;
672 return (1);
673}
674
675/*
676 * Compress mbuf chain m into the socket
677 * buffer sb following mbuf n. If n
678 * is null, the buffer is presumed empty.
679 */
680void
681sbcompress(sb, m, n)
682 register struct sockbuf *sb;
683 register struct mbuf *m, *n;
684{
685 register int eor = 0;
686 register struct mbuf *o;
687
688 while (m) {
689 eor |= m->m_flags & M_EOR;
690 if (m->m_len == 0 &&
691 (eor == 0 ||
692 (((o = m->m_next) || (o = n)) &&
693 o->m_type == m->m_type))) {
694 m = m_free(m);
695 continue;
696 }
697 if (n && (n->m_flags & M_EOR) == 0 &&
698 M_WRITABLE(n) &&
699 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
700 m->m_len <= M_TRAILINGSPACE(n) &&
701 n->m_type == m->m_type) {
702 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
703 (unsigned)m->m_len);
704 n->m_len += m->m_len;
705 sb->sb_cc += m->m_len;
706 m = m_free(m);
707 continue;
708 }
709 if (n)
710 n->m_next = m;
711 else
712 sb->sb_mb = m;
713 sballoc(sb, m);
714 n = m;
715 m->m_flags &= ~M_EOR;
716 m = m->m_next;
717 n->m_next = 0;
718 }
719 if (eor) {
720 if (n)
721 n->m_flags |= eor;
722 else
723 printf("semi-panic: sbcompress\n");
724 }
725}
726
727/*
728 * Free all mbufs in a sockbuf.
729 * Check that all resources are reclaimed.
730 */
731void
732sbflush(sb)
733 register struct sockbuf *sb;
734{
735
736 if (sb->sb_flags & SB_LOCK)
737 panic("sbflush: locked");
738 while (sb->sb_mbcnt) {
739 /*
740 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
741 * we would loop forever. Panic instead.
742 */
743 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
744 break;
745 sbdrop(sb, (int)sb->sb_cc);
746 }
747 if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
748 panic("sbflush: cc %ld || mb %p || mbcnt %ld", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
749}
750
751/*
752 * Drop data from (the front of) a sockbuf.
753 */
754void
755sbdrop(sb, len)
756 register struct sockbuf *sb;
757 register int len;
758{
759 register struct mbuf *m;
760 struct mbuf *next;
761
762 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
763 while (len > 0) {
764 if (m == 0) {
765 if (next == 0)
766 panic("sbdrop");
767 m = next;
768 next = m->m_nextpkt;
769 continue;
770 }
771 if (m->m_len > len) {
772 m->m_len -= len;
773 m->m_data += len;
774 sb->sb_cc -= len;
775 break;
776 }
777 len -= m->m_len;
778 sbfree(sb, m);
779 m = m_free(m);
780 }
781 while (m && m->m_len == 0) {
782 sbfree(sb, m);
783 m = m_free(m);
784 }
785 if (m) {
786 sb->sb_mb = m;
787 m->m_nextpkt = next;
788 } else
789 sb->sb_mb = next;
790}
791
792/*
793 * Drop a record off the front of a sockbuf
794 * and move the next record to the front.
795 */
796void
797sbdroprecord(sb)
798 register struct sockbuf *sb;
799{
800 register struct mbuf *m;
801
802 m = sb->sb_mb;
803 if (m) {
804 sb->sb_mb = m->m_nextpkt;
805 do {
806 sbfree(sb, m);
807 m = m_free(m);
808 } while (m);
809 }
810}
811
812/*
813 * Create a "control" mbuf containing the specified data
814 * with the specified type for presentation on a socket buffer.
815 */
816struct mbuf *
817sbcreatecontrol(p, size, type, level)
818 caddr_t p;
819 register int size;
820 int type, level;
821{
822 register struct cmsghdr *cp;
823 struct mbuf *m;
824
825 if (CMSG_SPACE((u_int)size) > MCLBYTES)
826 return ((struct mbuf *) NULL);
827 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
828 return ((struct mbuf *) NULL);
829 if (CMSG_SPACE((u_int)size) > MLEN) {
830 MCLGET(m, M_DONTWAIT);
831 if ((m->m_flags & M_EXT) == 0) {
832 m_free(m);
833 return ((struct mbuf *) NULL);
834 }
835 }
836 cp = mtod(m, struct cmsghdr *);
837 m->m_len = 0;
838 KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
839 ("sbcreatecontrol: short mbuf"));
840 if (p != NULL)
841 (void)memcpy(CMSG_DATA(cp), p, size);
842 m->m_len = CMSG_SPACE(size);
843 cp->cmsg_len = CMSG_LEN(size);
844 cp->cmsg_level = level;
845 cp->cmsg_type = type;
846 return (m);
847}
848
849/*
850 * Some routines that return EOPNOTSUPP for entry points that are not
851 * supported by a protocol. Fill in as needed.
852 */
853int
854pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
855{
856 return EOPNOTSUPP;
857}
858
859int
860pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
861{
862 return EOPNOTSUPP;
863}
864
865int
866pru_connect2_notsupp(struct socket *so1, struct socket *so2)
867{
868 return EOPNOTSUPP;
869}
870
871int
872pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
873 struct ifnet *ifp, struct thread *td)
874{
875 return EOPNOTSUPP;
876}
877
878int
879pru_listen_notsupp(struct socket *so, struct thread *td)
880{
881 return EOPNOTSUPP;
882}
883
884int
885pru_rcvd_notsupp(struct socket *so, int flags)
886{
887 return EOPNOTSUPP;
888}
889
890int
891pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
892{
893 return EOPNOTSUPP;
894}
895
896/*
897 * This isn't really a ``null'' operation, but it's the default one
898 * and doesn't do anything destructive.
899 */
900int
901pru_sense_null(struct socket *so, struct stat *sb)
902{
903 sb->st_blksize = so->so_snd.sb_hiwat;
904 return 0;
905}
906
907/*
908 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
909 */
910struct sockaddr *
911dup_sockaddr(sa, canwait)
912 struct sockaddr *sa;
913 int canwait;
914{
915 struct sockaddr *sa2;
916
917 MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
918 canwait ? M_WAITOK : M_NOWAIT);
919 if (sa2)
920 bcopy(sa, sa2, sa->sa_len);
921 return sa2;
922}
923
924/*
925 * Create an external-format (``xsocket'') structure using the information
926 * in the kernel-format socket structure pointed to by so. This is done
927 * to reduce the spew of irrelevant information over this interface,
928 * to isolate user code from changes in the kernel structure, and
929 * potentially to provide information-hiding if we decide that
930 * some of this information should be hidden from users.
931 */
932void
933sotoxsocket(struct socket *so, struct xsocket *xso)
934{
935 xso->xso_len = sizeof *xso;
936 xso->xso_so = so;
937 xso->so_type = so->so_type;
938 xso->so_options = so->so_options;
939 xso->so_linger = so->so_linger;
940 xso->so_state = so->so_state;
941 xso->so_pcb = so->so_pcb;
942 xso->xso_protocol = so->so_proto->pr_protocol;
943 xso->xso_family = so->so_proto->pr_domain->dom_family;
944 xso->so_qlen = so->so_qlen;
945 xso->so_incqlen = so->so_incqlen;
946 xso->so_qlimit = so->so_qlimit;
947 xso->so_timeo = so->so_timeo;
948 xso->so_error = so->so_error;
949 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
950 xso->so_oobmark = so->so_oobmark;
951 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
952 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
953 xso->so_uid = so->so_cred->cr_uid;
954}
955
956/*
957 * This does the same for sockbufs. Note that the xsockbuf structure,
958 * since it is always embedded in a socket, does not include a self
959 * pointer nor a length. We make this entry point public in case
960 * some other mechanism needs it.
961 */
962void
963sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
964{
965 xsb->sb_cc = sb->sb_cc;
966 xsb->sb_hiwat = sb->sb_hiwat;
967 xsb->sb_mbcnt = sb->sb_mbcnt;
968 xsb->sb_mbmax = sb->sb_mbmax;
969 xsb->sb_lowat = sb->sb_lowat;
970 xsb->sb_flags = sb->sb_flags;
971 xsb->sb_timeo = sb->sb_timeo;
972}
973
974/*
975 * Here is the definition of some of the basic objects in the kern.ipc
976 * branch of the MIB.
977 */
978SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
979
980/* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
981static int dummy;
982SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
983SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_INT|CTLFLAG_RW,
984 &sb_max, 0, sysctl_handle_sb_max, "I", "Maximum socket buffer size");
985SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD,
986 &maxsockets, 0, "Maximum number of sockets avaliable");
987SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
988 &sb_efficiency, 0, "");
989
990/*
991 * Initialise maxsockets
992 */
993static void init_maxsockets(void *ignored)
994{
995 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
996 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
997}
998SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);