Catch vkernel divide-by-0 traps a bit earlier so they are reported properly.
[dragonfly.git] / sys / vfs / hammer / hammer_disk.h
... / ...
CommitLineData
1/*
2 * Copyright (c) 2007 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $DragonFly: src/sys/vfs/hammer/hammer_disk.h,v 1.8 2007/11/20 22:55:40 dillon Exp $
35 */
36
37#ifndef _SYS_UUID_H_
38#include <sys/uuid.h>
39#endif
40
41/*
42 * The structures below represent the on-disk format for a HAMMER
43 * filesystem. Note that all fields for on-disk structures are naturally
44 * aligned. The host endian format is used - compatibility is possible
45 * if the implementation detects reversed endian and adjusts data accordingly.
46 *
47 * Most of HAMMER revolves around the concept of an object identifier. An
48 * obj_id is a 64 bit quantity which uniquely identifies a filesystem object
49 * FOR THE ENTIRE LIFE OF THE FILESYSTEM. This uniqueness allows backups
50 * and mirrors to retain varying amounts of filesystem history by removing
51 * any possibility of conflict through identifier reuse.
52 *
53 * A HAMMER filesystem may spam multiple volumes.
54 *
55 * A HAMMER filesystem uses a 16K filesystem buffer size. All filesystem
56 * I/O is done in multiples of 16K. Most buffer-sized headers such as those
57 * used by volumes, super-clusters, clusters, and basic filesystem buffers
58 * use fixed-sized A-lists which are heavily dependant on HAMMER_BUFSIZE.
59 */
60#define HAMMER_BUFSIZE 16384
61#define HAMMER_BUFMASK (HAMMER_BUFSIZE - 1)
62
63/*
64 * Hammer transction ids are 64 bit unsigned integers and are usually
65 * synchronized with the time of day in nanoseconds.
66 */
67typedef u_int64_t hammer_tid_t;
68
69#define HAMMER_MAX_TID 0xFFFFFFFFFFFFFFFFULL
70#define HAMMER_MIN_KEY -0x8000000000000000LL
71#define HAMMER_MAX_KEY 0x7FFFFFFFFFFFFFFFLL
72
73/*
74 * Most HAMMER data structures are embedded in 16K filesystem buffers.
75 * All filesystem buffers except those designated as pure-data buffers
76 * contain this 128-byte header.
77 *
78 * This structure contains an embedded A-List used to manage space within
79 * the filesystem buffer. It is not used by volume or cluster header
80 * buffers, or by pure-data buffers. The granularity is variable and
81 * depends on the type of filesystem buffer. BLKSIZE is just a minimum.
82 */
83
84#define HAMMER_FSBUF_HEAD_SIZE 128
85#define HAMMER_FSBUF_MAXBLKS 256
86#define HAMMER_FSBUF_BLKMASK (HAMMER_FSBUF_MAXBLKS - 1)
87#define HAMMER_FSBUF_METAELMS HAMMER_ALIST_METAELMS_256_1LYR /* 11 */
88
89struct hammer_fsbuf_head {
90 u_int64_t buf_type;
91 u_int32_t buf_crc;
92 u_int32_t buf_reserved07;
93 u_int32_t reserved[6];
94 struct hammer_almeta buf_almeta[HAMMER_FSBUF_METAELMS];
95};
96
97typedef struct hammer_fsbuf_head *hammer_fsbuf_head_t;
98
99/*
100 * Note: Pure-data buffers contain pure-data and have no buf_type.
101 * Piecemeal data buffers do have a header and use HAMMER_FSBUF_DATA.
102 */
103#define HAMMER_FSBUF_VOLUME 0xC8414D4DC5523031ULL /* HAMMER01 */
104#define HAMMER_FSBUF_SUPERCL 0xC8414D52C3555052ULL /* HAMRSUPR */
105#define HAMMER_FSBUF_CLUSTER 0xC8414D52C34C5553ULL /* HAMRCLUS */
106#define HAMMER_FSBUF_RECORDS 0xC8414D52D2454353ULL /* HAMRRECS */
107#define HAMMER_FSBUF_BTREE 0xC8414D52C2545245ULL /* HAMRBTRE */
108#define HAMMER_FSBUF_DATA 0xC8414D52C4415441ULL /* HAMRDATA */
109
110#define HAMMER_FSBUF_VOLUME_REV 0x313052C54D4D41C8ULL /* (reverse endian) */
111
112/*
113 * The B-Tree structures need hammer_fsbuf_head.
114 */
115#include "hammer_btree.h"
116
117/*
118 * HAMMER Volume header
119 *
120 * A HAMMER filesystem is built from any number of block devices, Each block
121 * device contains a volume header followed by however many super-clusters
122 * and clusters fit into the volume. Clusters cannot be migrated but the
123 * data they contain can, so HAMMER can use a truncated cluster for any
124 * extra space at the end of the volume.
125 *
126 * The volume containing the root cluster is designated as the master volume.
127 * The root cluster designation can be moved to any volume.
128 *
129 * The volume header takes up an entire 16K filesystem buffer and includes
130 * a one or two-layered A-list to manage the clusters making up the volume.
131 * A volume containing up to 32768 clusters (2TB) can be managed with a
132 * single-layered A-list. A two-layer A-list is capable of managing up
133 * to 16384 super-clusters with each super-cluster containing 32768 clusters
134 * (32768 TB per volume total). The number of volumes is limited to 32768
135 * but it only takes 512 to fill out a 64 bit address space so for all
136 * intents and purposes the filesystem has no limits.
137 *
138 * cluster addressing within a volume depends on whether a single or
139 * duel-layer A-list is used. If a duel-layer A-list is used a 16K
140 * super-cluster buffer is needed for every 16384 clusters in the volume.
141 * However, because the A-list's hinting is grouped in multiples of 16
142 * we group 16 super-cluster buffers together (starting just after the
143 * volume header), followed by 16384x16 clusters, and repeat.
144 *
145 * NOTE: A 32768-element single-layer and 16384-element duel-layer A-list
146 * is the same size.
147 *
148 * Special field notes:
149 *
150 * vol_bot_beg - offset of boot area (mem_beg - bot_beg bytes)
151 * vol_mem_beg - offset of memory log (clu_beg - mem_beg bytes)
152 * vol_clo_beg - offset of cluster #0 in volume
153 *
154 * The memory log area allows a kernel to cache new records and data
155 * in memory without allocating space in the actual filesystem to hold
156 * the records and data. In the event that a filesystem becomes full,
157 * any records remaining in memory can be flushed to the memory log
158 * area. This allows the kernel to immediately return success.
159 */
160#define HAMMER_VOL_MAXCLUSTERS 32768 /* 1-layer */
161#define HAMMER_VOL_MAXSUPERCLUSTERS 16384 /* 2-layer */
162#define HAMMER_VOL_SUPERCLUSTER_GROUP 16
163#define HAMMER_VOL_METAELMS_1LYR HAMMER_ALIST_METAELMS_32K_1LYR
164#define HAMMER_VOL_METAELMS_2LYR HAMMER_ALIST_METAELMS_16K_2LYR
165
166#define HAMMER_BOOT_MINBYTES (32*1024)
167#define HAMMER_BOOT_NOMBYTES (64LL*1024*1024)
168#define HAMMER_BOOT_MAXBYTES (256LL*1024*1024)
169
170#define HAMMER_MEM_MINBYTES (256*1024)
171#define HAMMER_MEM_NOMBYTES (1LL*1024*1024*1024)
172#define HAMMER_MEM_MAXBYTES (64LL*1024*1024*1024)
173
174struct hammer_volume_ondisk {
175 struct hammer_fsbuf_head head;
176 int64_t vol_bot_beg; /* byte offset of boot area or 0 */
177 int64_t vol_mem_beg; /* byte offset of memory log or 0 */
178 int64_t vol_clo_beg; /* byte offset of first cl/supercl in volume */
179 int64_t vol_clo_end; /* byte offset of volume EOF */
180 int64_t vol_locked; /* reserved clusters are >= this offset */
181
182 uuid_t vol_fsid; /* identify filesystem */
183 uuid_t vol_fstype; /* identify filesystem type */
184 char vol_name[64]; /* Name of volume */
185
186 int32_t vol_no; /* volume number within filesystem */
187 int32_t vol_count; /* number of volumes making up FS */
188
189 u_int32_t vol_version; /* version control information */
190 u_int32_t vol_reserved01;
191 u_int32_t vol_flags; /* volume flags */
192 u_int32_t vol_rootvol; /* which volume is the root volume? */
193
194 int32_t vol_clsize; /* cluster size (same for all volumes) */
195 int32_t vol_nclusters;
196 u_int32_t vol_reserved06;
197 u_int32_t vol_reserved07;
198
199 int32_t vol_stat_blocksize; /* for statfs only */
200 int64_t vol_stat_bytes; /* for statfs only */
201 int64_t vol_stat_inodes; /* for statfs only */
202
203 /*
204 * These fields are initialized and space is reserved in every
205 * volume making up a HAMMER filesytem, but only the master volume
206 * contains valid data.
207 */
208 int32_t vol0_root_clu_no; /* root cluster no (index) in rootvol */
209 hammer_tid_t vol0_root_clu_id; /* root cluster id */
210 hammer_tid_t vol0_nexttid; /* next TID */
211 u_int64_t vol0_recid; /* fs-wide record id allocator */
212 u_int64_t vol0_synchronized_rec_id; /* XXX */
213
214 char reserved[1024];
215
216 /*
217 * Meta elements for the volume header's A-list, which is either a
218 * 1-layer A-list capable of managing 32768 clusters, or a 2-layer
219 * A-list capable of managing 16384 super-clusters (each of which
220 * can handle 32768 clusters).
221 */
222 union {
223 struct hammer_almeta super[HAMMER_VOL_METAELMS_2LYR];
224 struct hammer_almeta normal[HAMMER_VOL_METAELMS_1LYR];
225 } vol_almeta;
226 u_int32_t vol0_bitmap[1024];
227};
228
229typedef struct hammer_volume_ondisk *hammer_volume_ondisk_t;
230
231#define HAMMER_VOLF_VALID 0x0001 /* valid entry */
232#define HAMMER_VOLF_OPEN 0x0002 /* volume is open */
233#define HAMMER_VOLF_USINGSUPERCL 0x0004 /* using superclusters */
234
235/*
236 * HAMMER Super-cluster header
237 *
238 * A super-cluster is used to increase the maximum size of a volume.
239 * HAMMER's volume header can manage up to 32768 direct clusters or
240 * 16384 super-clusters. Each super-cluster (which is basically just
241 * a 16K filesystem buffer) can manage up to 32768 clusters. So adding
242 * a super-cluster layer allows a HAMMER volume to be sized upwards of
243 * around 32768TB instead of 2TB.
244 *
245 * Any volume initially formatted to be over 32G reserves space for the layer
246 * but the layer is only enabled if the volume exceeds 2TB.
247 */
248#define HAMMER_SUPERCL_METAELMS HAMMER_ALIST_METAELMS_32K_1LYR
249#define HAMMER_SCL_MAXCLUSTERS HAMMER_VOL_MAXCLUSTERS
250
251struct hammer_supercl_ondisk {
252 struct hammer_fsbuf_head head;
253 uuid_t vol_fsid; /* identify filesystem - sanity check */
254 uuid_t vol_fstype; /* identify filesystem type - sanity check */
255 int32_t reserved[1024];
256
257 struct hammer_almeta scl_meta[HAMMER_SUPERCL_METAELMS];
258};
259
260typedef struct hammer_supercl_ondisk *hammer_supercl_ondisk_t;
261
262/*
263 * HAMMER Cluster header
264 *
265 * A cluster is limited to 64MB and is made up of 4096 16K filesystem
266 * buffers. The cluster header contains four A-lists to manage these
267 * buffers.
268 *
269 * master_alist - This is a non-layered A-list which manages pure-data
270 * allocations and allocations on behalf of other A-lists.
271 *
272 * btree_alist - This is a layered A-list which manages filesystem buffers
273 * containing B-Tree nodes.
274 *
275 * record_alist - This is a layered A-list which manages filesystem buffers
276 * containing records.
277 *
278 * mdata_alist - This is a layered A-list which manages filesystem buffers
279 * containing piecemeal record data.
280 *
281 * General storage management works like this: All the A-lists except the
282 * master start in an all-allocated state. Now lets say you wish to allocate
283 * a B-Tree node out the btree_alist. If the allocation fails you allocate
284 * a pure data block out of master_alist and then free that block in
285 * btree_alist, thereby assigning more space to the btree_alist, and then
286 * retry your allocation out of the btree_alist. In the reverse direction,
287 * filesystem buffers can be garbage collected back to master_alist simply
288 * by doing whole-buffer allocations in btree_alist and then freeing the
289 * space in master_alist. The whole-buffer-allocation approach to garbage
290 * collection works because A-list allocations are always power-of-2 sized
291 * and aligned.
292 */
293#define HAMMER_CLU_MAXBUFFERS 4096
294#define HAMMER_CLU_MASTER_METAELMS HAMMER_ALIST_METAELMS_4K_1LYR
295#define HAMMER_CLU_SLAVE_METAELMS HAMMER_ALIST_METAELMS_4K_2LYR
296#define HAMMER_CLU_MAXBYTES (HAMMER_CLU_MAXBUFFERS * HAMMER_BUFSIZE)
297
298struct hammer_cluster_ondisk {
299 struct hammer_fsbuf_head head;
300 uuid_t vol_fsid; /* identify filesystem - sanity check */
301 uuid_t vol_fstype; /* identify filesystem type - sanity check */
302
303 hammer_tid_t clu_id; /* unique cluster self identification */
304 hammer_tid_t clu_gen; /* generation number */
305 int32_t vol_no; /* cluster contained in volume (sanity) */
306 u_int32_t clu_flags; /* cluster flags */
307
308 int32_t clu_start; /* start of data (byte offset) */
309 int32_t clu_limit; /* end of data (byte offset) */
310 int32_t clu_no; /* cluster index in volume (sanity) */
311 u_int32_t clu_reserved03;
312
313 u_int32_t clu_reserved04;
314 u_int32_t clu_reserved05;
315 u_int32_t clu_reserved06;
316 u_int32_t clu_reserved07;
317
318 int32_t idx_data; /* data append point (element no) */
319 int32_t idx_index; /* index append point (element no) */
320 int32_t idx_record; /* record prepend point (element no) */
321 u_int32_t idx_reserved03;
322
323 /*
324 * Specify the range of information stored in this cluster as two
325 * btree elements. These elements match the left and right
326 * boundary elements in the internal B-Tree node of the parent
327 * cluster that points to the root of our cluster. Because these
328 * are boundary elements, the right boundary is range-NONinclusive.
329 */
330 struct hammer_base_elm clu_btree_beg;
331 struct hammer_base_elm clu_btree_end;
332
333 /*
334 * The cluster's B-Tree root can change as a side effect of insertion
335 * and deletion operations so store an offset instead of embedding
336 * the root node. The parent_offset is stale if the generation number
337 * does not match.
338 *
339 * Parent linkages are explicit.
340 */
341 int32_t clu_btree_root;
342 int32_t clu_btree_parent_vol_no;
343 int32_t clu_btree_parent_clu_no;
344 int32_t clu_btree_parent_offset;
345 hammer_tid_t clu_btree_parent_clu_gen;
346
347 u_int64_t synchronized_rec_id;
348
349 struct hammer_almeta clu_master_meta[HAMMER_CLU_MASTER_METAELMS];
350 struct hammer_almeta clu_btree_meta[HAMMER_CLU_SLAVE_METAELMS];
351 struct hammer_almeta clu_record_meta[HAMMER_CLU_SLAVE_METAELMS];
352 struct hammer_almeta clu_mdata_meta[HAMMER_CLU_SLAVE_METAELMS];
353};
354
355typedef struct hammer_cluster_ondisk *hammer_cluster_ondisk_t;
356
357/*
358 * HAMMER records are 96 byte entities encoded into 16K filesystem buffers.
359 * Each record has a 64 byte header and a 32 byte extension. 170 records
360 * fit into each buffer. Storage is managed by the buffer's A-List.
361 *
362 * Each record may have an explicit data reference to a block of data up
363 * to 2^31-1 bytes in size within the current cluster. Note that multiple
364 * records may share the same or overlapping data references.
365 */
366
367/*
368 * All HAMMER records have a common 64-byte base and a 32-byte extension.
369 *
370 * Many HAMMER record types reference out-of-band data within the cluster.
371 * This data can also be stored in-band in the record itself if it is small
372 * enough. Either way, (data_offset, data_len) points to it.
373 *
374 * Key comparison order: obj_id, rec_type, key, create_tid
375 */
376struct hammer_base_record {
377 /*
378 * 40 byte base element info - same base as used in B-Tree internal
379 * and leaf node element arrays.
380 *
381 * Fields: obj_id, key, create_tid, delete_tid, rec_type, obj_type,
382 * reserved07.
383 */
384 struct hammer_base_elm base; /* 00 base element info */
385
386 int32_t data_len; /* 28 size of data (remainder zero-fill) */
387 u_int32_t data_crc; /* 2C data sanity check */
388 u_int64_t rec_id; /* 30 record id (iterator for recovery) */
389 int32_t data_offset; /* 38 cluster-relative data reference or 0 */
390 u_int32_t reserved07; /* 3C */
391 /* 40 */
392};
393
394/*
395 * Record types are fairly straightforward. The B-Tree includes the record
396 * type in its index sort.
397 *
398 * In particular please note that it is possible to create a pseudo-
399 * filesystem within a HAMMER filesystem by creating a special object
400 * type within a directory. Pseudo-filesystems are used as replication
401 * targets and even though they are built within a HAMMER filesystem they
402 * get their own obj_id space (and thus can serve as a replication target)
403 * and look like a mount point to the system.
404 *
405 * Inter-cluster records are special-cased in the B-Tree. These records
406 * are referenced from a B-Tree INTERNAL node, NOT A LEAF. This means
407 * that the element in the B-Tree node is actually a boundary element whos
408 * base element fields, including rec_type, reflect the boundary, NOT
409 * the inter-cluster record type.
410 *
411 * HAMMER_RECTYPE_CLUSTER - only set in the actual inter-cluster record,
412 * not set in the left or right boundary elements around the inter-cluster
413 * reference of an internal node in the B-Tree (because doing so would
414 * interfere with the boundary tests).
415 */
416#define HAMMER_RECTYPE_UNKNOWN 0
417#define HAMMER_RECTYPE_LOWEST 1 /* lowest record type avail */
418#define HAMMER_RECTYPE_INODE 1 /* inode in obj_id space */
419#define HAMMER_RECTYPE_PSEUDO_INODE 2 /* pseudo filesysem */
420#define HAMMER_RECTYPE_CLUSTER 3 /* inter-cluster reference */
421#define HAMMER_RECTYPE_DATA 0x10
422#define HAMMER_RECTYPE_DIRENTRY 0x11
423#define HAMMER_RECTYPE_DB 0x12
424#define HAMMER_RECTYPE_EXT 0x13 /* ext attributes */
425
426#define HAMMER_OBJTYPE_UNKNOWN 0 /* (never exists on-disk) */
427#define HAMMER_OBJTYPE_DIRECTORY 1
428#define HAMMER_OBJTYPE_REGFILE 2
429#define HAMMER_OBJTYPE_DBFILE 3
430#define HAMMER_OBJTYPE_FIFO 4
431#define HAMMER_OBJTYPE_CDEV 5
432#define HAMMER_OBJTYPE_BDEV 6
433#define HAMMER_OBJTYPE_SOFTLINK 7
434#define HAMMER_OBJTYPE_PSEUDOFS 8 /* pseudo filesystem obj */
435
436/*
437 * Generic full-sized record
438 */
439struct hammer_generic_record {
440 struct hammer_base_record base;
441 char filler[32];
442};
443
444/*
445 * A HAMMER inode record.
446 *
447 * This forms the basis for a filesystem object. obj_id is the inode number,
448 * key1 represents the pseudo filesystem id for security partitioning
449 * (preventing cross-links and/or restricting a NFS export and specifying the
450 * security policy), and key2 represents the data retention policy id.
451 *
452 * Inode numbers are 64 bit quantities which uniquely identify a filesystem
453 * object for the ENTIRE life of the filesystem, even after the object has
454 * been deleted. For all intents and purposes inode numbers are simply
455 * allocated by incrementing a sequence space.
456 *
457 * There is an important distinction between the data stored in the inode
458 * record and the record's data reference. The record references a
459 * hammer_inode_data structure but the filesystem object size and hard link
460 * count is stored in the inode record itself. This allows multiple inodes
461 * to share the same hammer_inode_data structure. This is possible because
462 * any modifications will lay out new data. The HAMMER implementation need
463 * not use the data-sharing ability when laying down new records.
464 *
465 * A HAMMER inode is subject to the same historical storage requirements
466 * as any other record. In particular any change in filesystem or hard link
467 * count will lay down a new inode record when the filesystem is synced to
468 * disk. This can lead to a lot of junk records which get cleaned up by
469 * the data retention policy.
470 *
471 * The ino_atime and ino_mtime fields are a special case. Modifications to
472 * these fields do NOT lay down a new record by default, though the values
473 * are effectively frozen for snapshots which access historical versions
474 * of the inode record due to other operations. This means that atime will
475 * not necessarily be accurate in snapshots, backups, or mirrors. mtime
476 * will be accurate in backups and mirrors since it can be regenerated from
477 * the mirroring stream.
478 *
479 * Because nlinks is historically retained the hardlink count will be
480 * accurate when accessing a HAMMER filesystem snapshot.
481 */
482struct hammer_inode_record {
483 struct hammer_base_record base;
484 u_int64_t ino_atime; /* last access time (not historical) */
485 u_int64_t ino_mtime; /* last modified time (not historical) */
486 u_int64_t ino_size; /* filesystem object size */
487 u_int64_t ino_nlinks; /* hard links */
488};
489
490/*
491 * Data records specify the entire contents of a regular file object,
492 * including attributes. Small amounts of data can theoretically be
493 * embedded in the record itself but the use of this ability verses using
494 * an out-of-band data reference depends on the implementation.
495 */
496struct hammer_data_record {
497 struct hammer_base_record base;
498 char filler[32];
499};
500
501/*
502 * A directory entry specifies the HAMMER filesystem object id, a copy of
503 * the file type, and file name (either embedded or as out-of-band data).
504 * If the file name is short enough to fit into den_name[] (including a
505 * terminating nul) then it will be embedded in the record, otherwise it
506 * is stored out-of-band. The base record's data reference always points
507 * to the nul-terminated filename regardless.
508 *
509 * Directory entries are indexed with a 128 bit namekey rather then an
510 * offset. A portion of the namekey is an iterator or randomizer to deal
511 * with collisions.
512 *
513 * NOTE: base.base.obj_type holds the filesystem object type of obj_id,
514 * e.g. a den_type equivalent.
515 *
516 * NOTE: den_name / the filename data reference is NOT terminated with \0.
517 *
518 */
519struct hammer_entry_record {
520 struct hammer_base_record base;
521 u_int64_t obj_id; /* object being referenced */
522 u_int64_t reserved01;
523 char den_name[16]; /* short file names fit in record */
524};
525
526/*
527 * Hammer rollup record
528 */
529union hammer_record_ondisk {
530 struct hammer_base_record base;
531 struct hammer_generic_record generic;
532 struct hammer_inode_record inode;
533 struct hammer_data_record data;
534 struct hammer_entry_record entry;
535};
536
537typedef union hammer_record_ondisk *hammer_record_ondisk_t;
538
539/*
540 * Filesystem buffer for records
541 */
542#define HAMMER_RECORD_NODES \
543 ((HAMMER_BUFSIZE - sizeof(struct hammer_fsbuf_head)) / \
544 sizeof(union hammer_record_ondisk))
545
546struct hammer_fsbuf_recs {
547 struct hammer_fsbuf_head head;
548 char unused[32];
549 union hammer_record_ondisk recs[HAMMER_RECORD_NODES];
550};
551
552/*
553 * Filesystem buffer for piecemeal data. Note that this does not apply
554 * to dedicated pure-data buffers as such buffers do not have a header.
555 */
556
557#define HAMMER_DATA_SIZE (HAMMER_BUFSIZE - sizeof(struct hammer_fsbuf_head))
558#define HAMMER_DATA_BLKSIZE 64
559#define HAMMER_DATA_BLKMASK (HAMMER_DATA_BLKSIZE-1)
560#define HAMMER_DATA_NODES (HAMMER_DATA_SIZE / HAMMER_DATA_BLKSIZE)
561
562struct hammer_fsbuf_data {
563 struct hammer_fsbuf_head head;
564 u_int8_t data[HAMMER_DATA_NODES][HAMMER_DATA_BLKSIZE];
565};
566
567/*
568 * Filesystem buffer rollup
569 */
570union hammer_fsbuf_ondisk {
571 struct hammer_fsbuf_head head;
572 struct hammer_fsbuf_btree btree;
573 struct hammer_fsbuf_recs record;
574 struct hammer_fsbuf_data data;
575};
576
577typedef union hammer_fsbuf_ondisk *hammer_fsbuf_ondisk_t;
578
579/*
580 * HAMMER UNIX Attribute data
581 *
582 * The data reference in a HAMMER inode record points to this structure. Any
583 * modifications to the contents of this structure will result in a record
584 * replacement operation.
585 *
586 * state_sum allows a filesystem object to be validated to a degree by
587 * generating a checksum of all of its pieces (in no particular order) and
588 * checking it against this field.
589 *
590 * short_data_off allows a small amount of data to be embedded in the
591 * hammer_inode_data structure. HAMMER typically uses this to represent
592 * up to 64 bytes of data, or to hold symlinks. Remember that allocations
593 * are in powers of 2 so 64, 192, 448, or 960 bytes of embedded data is
594 * support (64+64, 64+192, 64+448 64+960).
595 *
596 * parent_obj_id is only valid for directories (which cannot be hard-linked),
597 * and specifies the parent directory obj_id. This field will also be set
598 * for non-directory inodes as a recovery aid, but can wind up specifying
599 * stale information. However, since object id's are not reused, the worse
600 * that happens is that the recovery code is unable to use it.
601 */
602struct hammer_inode_data {
603 u_int16_t version; /* inode data version */
604 u_int16_t mode; /* basic unix permissions */
605 u_int32_t uflags; /* chflags */
606 u_int16_t short_data_off; /* degenerate data case */
607 u_int16_t short_data_len;
608 u_int32_t state_sum;
609 u_int64_t ctime;
610 u_int64_t parent_obj_id;/* parent directory obj_id */
611 uuid_t uid;
612 uuid_t gid;
613 /* XXX device, softlink extension */
614};
615
616#define HAMMER_INODE_DATA_VERSION 1
617
618/*
619 * Rollup various structures embedded as record data
620 */
621union hammer_data_ondisk {
622 struct hammer_inode_data inode;
623};
624