sys/kern: Adjust some function declaration vs. definition mismatches.
[dragonfly.git] / sys / kern / kern_resource.c
... / ...
CommitLineData
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94
35 * $FreeBSD: src/sys/kern/kern_resource.c,v 1.55.2.5 2001/11/03 01:41:08 ps Exp $
36 */
37
38#include "opt_compat.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/sysproto.h>
43#include <sys/file.h>
44#include <sys/kern_syscall.h>
45#include <sys/kernel.h>
46#include <sys/resourcevar.h>
47#include <sys/malloc.h>
48#include <sys/proc.h>
49#include <sys/priv.h>
50#include <sys/time.h>
51#include <sys/lockf.h>
52
53#include <vm/vm.h>
54#include <vm/vm_param.h>
55#include <sys/lock.h>
56#include <vm/pmap.h>
57#include <vm/vm_map.h>
58
59#include <sys/thread2.h>
60#include <sys/spinlock2.h>
61
62static int donice (struct proc *chgp, int n);
63static int doionice (struct proc *chgp, int n);
64
65static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
66#define UIHASH(uid) (&uihashtbl[(uid) & uihash])
67static struct spinlock uihash_lock;
68static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
69static u_long uihash; /* size of hash table - 1 */
70
71static struct uidinfo *uicreate (uid_t uid);
72static struct uidinfo *uilookup (uid_t uid);
73
74/*
75 * Resource controls and accounting.
76 */
77
78struct getpriority_info {
79 int low;
80 int who;
81};
82
83static int getpriority_callback(struct proc *p, void *data);
84
85/*
86 * MPALMOSTSAFE
87 */
88int
89sys_getpriority(struct getpriority_args *uap)
90{
91 struct getpriority_info info;
92 thread_t curtd = curthread;
93 struct proc *curp = curproc;
94 struct proc *p;
95 struct pgrp *pg;
96 int low = PRIO_MAX + 1;
97 int error;
98
99 switch (uap->which) {
100 case PRIO_PROCESS:
101 if (uap->who == 0) {
102 low = curp->p_nice;
103 } else {
104 p = pfind(uap->who);
105 if (p) {
106 lwkt_gettoken_shared(&p->p_token);
107 if (PRISON_CHECK(curtd->td_ucred, p->p_ucred))
108 low = p->p_nice;
109 lwkt_reltoken(&p->p_token);
110 PRELE(p);
111 }
112 }
113 break;
114 case PRIO_PGRP:
115 if (uap->who == 0) {
116 lwkt_gettoken_shared(&curp->p_token);
117 pg = curp->p_pgrp;
118 pgref(pg);
119 lwkt_reltoken(&curp->p_token);
120 } else if ((pg = pgfind(uap->who)) == NULL) {
121 break;
122 } /* else ref held from pgfind */
123
124 lwkt_gettoken_shared(&pg->pg_token);
125 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
126 if (PRISON_CHECK(curtd->td_ucred, p->p_ucred) &&
127 p->p_nice < low) {
128 low = p->p_nice;
129 }
130 }
131 lwkt_reltoken(&pg->pg_token);
132 pgrel(pg);
133 break;
134 case PRIO_USER:
135 if (uap->who == 0)
136 uap->who = curtd->td_ucred->cr_uid;
137 info.low = low;
138 info.who = uap->who;
139 allproc_scan(getpriority_callback, &info);
140 low = info.low;
141 break;
142
143 default:
144 error = EINVAL;
145 goto done;
146 }
147 if (low == PRIO_MAX + 1) {
148 error = ESRCH;
149 goto done;
150 }
151 uap->sysmsg_result = low;
152 error = 0;
153done:
154 return (error);
155}
156
157/*
158 * Figure out the current lowest nice priority for processes owned
159 * by the specified user.
160 */
161static
162int
163getpriority_callback(struct proc *p, void *data)
164{
165 struct getpriority_info *info = data;
166
167 lwkt_gettoken_shared(&p->p_token);
168 if (PRISON_CHECK(curthread->td_ucred, p->p_ucred) &&
169 p->p_ucred->cr_uid == info->who &&
170 p->p_nice < info->low) {
171 info->low = p->p_nice;
172 }
173 lwkt_reltoken(&p->p_token);
174 return(0);
175}
176
177struct setpriority_info {
178 int prio;
179 int who;
180 int error;
181 int found;
182};
183
184static int setpriority_callback(struct proc *p, void *data);
185
186/*
187 * MPALMOSTSAFE
188 */
189int
190sys_setpriority(struct setpriority_args *uap)
191{
192 struct setpriority_info info;
193 thread_t curtd = curthread;
194 struct proc *curp = curproc;
195 struct proc *p;
196 struct pgrp *pg;
197 int found = 0, error = 0;
198
199 switch (uap->which) {
200 case PRIO_PROCESS:
201 if (uap->who == 0) {
202 lwkt_gettoken(&curp->p_token);
203 error = donice(curp, uap->prio);
204 found++;
205 lwkt_reltoken(&curp->p_token);
206 } else {
207 p = pfind(uap->who);
208 if (p) {
209 lwkt_gettoken(&p->p_token);
210 if (PRISON_CHECK(curtd->td_ucred, p->p_ucred)) {
211 error = donice(p, uap->prio);
212 found++;
213 }
214 lwkt_reltoken(&p->p_token);
215 PRELE(p);
216 }
217 }
218 break;
219 case PRIO_PGRP:
220 if (uap->who == 0) {
221 lwkt_gettoken_shared(&curp->p_token);
222 pg = curp->p_pgrp;
223 pgref(pg);
224 lwkt_reltoken(&curp->p_token);
225 } else if ((pg = pgfind(uap->who)) == NULL) {
226 break;
227 } /* else ref held from pgfind */
228
229 lwkt_gettoken(&pg->pg_token);
230restart:
231 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
232 PHOLD(p);
233 lwkt_gettoken(&p->p_token);
234 if (p->p_pgrp == pg &&
235 PRISON_CHECK(curtd->td_ucred, p->p_ucred)) {
236 error = donice(p, uap->prio);
237 found++;
238 }
239 lwkt_reltoken(&p->p_token);
240 if (p->p_pgrp != pg) {
241 PRELE(p);
242 goto restart;
243 }
244 PRELE(p);
245 }
246 lwkt_reltoken(&pg->pg_token);
247 pgrel(pg);
248 break;
249 case PRIO_USER:
250 if (uap->who == 0)
251 uap->who = curtd->td_ucred->cr_uid;
252 info.prio = uap->prio;
253 info.who = uap->who;
254 info.error = 0;
255 info.found = 0;
256 allproc_scan(setpriority_callback, &info);
257 error = info.error;
258 found = info.found;
259 break;
260 default:
261 error = EINVAL;
262 found = 1;
263 break;
264 }
265
266 if (found == 0)
267 error = ESRCH;
268 return (error);
269}
270
271static
272int
273setpriority_callback(struct proc *p, void *data)
274{
275 struct setpriority_info *info = data;
276 int error;
277
278 lwkt_gettoken(&p->p_token);
279 if (p->p_ucred->cr_uid == info->who &&
280 PRISON_CHECK(curthread->td_ucred, p->p_ucred)) {
281 error = donice(p, info->prio);
282 if (error)
283 info->error = error;
284 ++info->found;
285 }
286 lwkt_reltoken(&p->p_token);
287 return(0);
288}
289
290/*
291 * Caller must hold chgp->p_token
292 */
293static int
294donice(struct proc *chgp, int n)
295{
296 struct ucred *cr = curthread->td_ucred;
297 struct lwp *lp;
298
299 if (cr->cr_uid && cr->cr_ruid &&
300 cr->cr_uid != chgp->p_ucred->cr_uid &&
301 cr->cr_ruid != chgp->p_ucred->cr_uid)
302 return (EPERM);
303 if (n > PRIO_MAX)
304 n = PRIO_MAX;
305 if (n < PRIO_MIN)
306 n = PRIO_MIN;
307 if (n < chgp->p_nice && priv_check_cred(cr, PRIV_SCHED_SETPRIORITY, 0))
308 return (EACCES);
309 chgp->p_nice = n;
310 FOREACH_LWP_IN_PROC(lp, chgp) {
311 LWPHOLD(lp);
312 chgp->p_usched->resetpriority(lp);
313 LWPRELE(lp);
314 }
315 return (0);
316}
317
318
319struct ioprio_get_info {
320 int high;
321 int who;
322};
323
324static int ioprio_get_callback(struct proc *p, void *data);
325
326/*
327 * MPALMOSTSAFE
328 */
329int
330sys_ioprio_get(struct ioprio_get_args *uap)
331{
332 struct ioprio_get_info info;
333 thread_t curtd = curthread;
334 struct proc *curp = curproc;
335 struct proc *p;
336 struct pgrp *pg;
337 int high = IOPRIO_MIN-2;
338 int error;
339
340 switch (uap->which) {
341 case PRIO_PROCESS:
342 if (uap->who == 0) {
343 high = curp->p_ionice;
344 } else {
345 p = pfind(uap->who);
346 if (p) {
347 lwkt_gettoken_shared(&p->p_token);
348 if (PRISON_CHECK(curtd->td_ucred, p->p_ucred))
349 high = p->p_ionice;
350 lwkt_reltoken(&p->p_token);
351 PRELE(p);
352 }
353 }
354 break;
355 case PRIO_PGRP:
356 if (uap->who == 0) {
357 lwkt_gettoken_shared(&curp->p_token);
358 pg = curp->p_pgrp;
359 pgref(pg);
360 lwkt_reltoken(&curp->p_token);
361 } else if ((pg = pgfind(uap->who)) == NULL) {
362 break;
363 } /* else ref held from pgfind */
364
365 lwkt_gettoken_shared(&pg->pg_token);
366 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
367 if (PRISON_CHECK(curtd->td_ucred, p->p_ucred) &&
368 p->p_nice > high)
369 high = p->p_ionice;
370 }
371 lwkt_reltoken(&pg->pg_token);
372 pgrel(pg);
373 break;
374 case PRIO_USER:
375 if (uap->who == 0)
376 uap->who = curtd->td_ucred->cr_uid;
377 info.high = high;
378 info.who = uap->who;
379 allproc_scan(ioprio_get_callback, &info);
380 high = info.high;
381 break;
382 default:
383 error = EINVAL;
384 goto done;
385 }
386 if (high == IOPRIO_MIN-2) {
387 error = ESRCH;
388 goto done;
389 }
390 uap->sysmsg_result = high;
391 error = 0;
392done:
393 return (error);
394}
395
396/*
397 * Figure out the current lowest nice priority for processes owned
398 * by the specified user.
399 */
400static
401int
402ioprio_get_callback(struct proc *p, void *data)
403{
404 struct ioprio_get_info *info = data;
405
406 lwkt_gettoken_shared(&p->p_token);
407 if (PRISON_CHECK(curthread->td_ucred, p->p_ucred) &&
408 p->p_ucred->cr_uid == info->who &&
409 p->p_ionice > info->high) {
410 info->high = p->p_ionice;
411 }
412 lwkt_reltoken(&p->p_token);
413 return(0);
414}
415
416
417struct ioprio_set_info {
418 int prio;
419 int who;
420 int error;
421 int found;
422};
423
424static int ioprio_set_callback(struct proc *p, void *data);
425
426/*
427 * MPALMOSTSAFE
428 */
429int
430sys_ioprio_set(struct ioprio_set_args *uap)
431{
432 struct ioprio_set_info info;
433 thread_t curtd = curthread;
434 struct proc *curp = curproc;
435 struct proc *p;
436 struct pgrp *pg;
437 int found = 0, error = 0;
438
439 switch (uap->which) {
440 case PRIO_PROCESS:
441 if (uap->who == 0) {
442 lwkt_gettoken(&curp->p_token);
443 error = doionice(curp, uap->prio);
444 lwkt_reltoken(&curp->p_token);
445 found++;
446 } else {
447 p = pfind(uap->who);
448 if (p) {
449 lwkt_gettoken(&p->p_token);
450 if (PRISON_CHECK(curtd->td_ucred, p->p_ucred)) {
451 error = doionice(p, uap->prio);
452 found++;
453 }
454 lwkt_reltoken(&p->p_token);
455 PRELE(p);
456 }
457 }
458 break;
459 case PRIO_PGRP:
460 if (uap->who == 0) {
461 lwkt_gettoken_shared(&curp->p_token);
462 pg = curp->p_pgrp;
463 pgref(pg);
464 lwkt_reltoken(&curp->p_token);
465 } else if ((pg = pgfind(uap->who)) == NULL) {
466 break;
467 } /* else ref held from pgfind */
468
469 lwkt_gettoken(&pg->pg_token);
470restart:
471 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
472 PHOLD(p);
473 lwkt_gettoken(&p->p_token);
474 if (p->p_pgrp == pg &&
475 PRISON_CHECK(curtd->td_ucred, p->p_ucred)) {
476 error = doionice(p, uap->prio);
477 found++;
478 }
479 lwkt_reltoken(&p->p_token);
480 if (p->p_pgrp != pg) {
481 PRELE(p);
482 goto restart;
483 }
484 PRELE(p);
485 }
486 lwkt_reltoken(&pg->pg_token);
487 pgrel(pg);
488 break;
489 case PRIO_USER:
490 if (uap->who == 0)
491 uap->who = curtd->td_ucred->cr_uid;
492 info.prio = uap->prio;
493 info.who = uap->who;
494 info.error = 0;
495 info.found = 0;
496 allproc_scan(ioprio_set_callback, &info);
497 error = info.error;
498 found = info.found;
499 break;
500 default:
501 error = EINVAL;
502 found = 1;
503 break;
504 }
505
506 if (found == 0)
507 error = ESRCH;
508 return (error);
509}
510
511static
512int
513ioprio_set_callback(struct proc *p, void *data)
514{
515 struct ioprio_set_info *info = data;
516 int error;
517
518 lwkt_gettoken(&p->p_token);
519 if (p->p_ucred->cr_uid == info->who &&
520 PRISON_CHECK(curthread->td_ucred, p->p_ucred)) {
521 error = doionice(p, info->prio);
522 if (error)
523 info->error = error;
524 ++info->found;
525 }
526 lwkt_reltoken(&p->p_token);
527 return(0);
528}
529
530static int
531doionice(struct proc *chgp, int n)
532{
533 struct ucred *cr = curthread->td_ucred;
534
535 if (cr->cr_uid && cr->cr_ruid &&
536 cr->cr_uid != chgp->p_ucred->cr_uid &&
537 cr->cr_ruid != chgp->p_ucred->cr_uid)
538 return (EPERM);
539 if (n > IOPRIO_MAX)
540 n = IOPRIO_MAX;
541 if (n < IOPRIO_MIN)
542 n = IOPRIO_MIN;
543 if (n < chgp->p_ionice &&
544 priv_check_cred(cr, PRIV_SCHED_SETPRIORITY, 0))
545 return (EACCES);
546 chgp->p_ionice = n;
547
548 return (0);
549
550}
551
552/*
553 * MPALMOSTSAFE
554 */
555int
556sys_lwp_rtprio(struct lwp_rtprio_args *uap)
557{
558 struct ucred *cr = curthread->td_ucred;
559 struct proc *p;
560 struct lwp *lp;
561 struct rtprio rtp;
562 int error;
563
564 error = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
565 if (error)
566 return error;
567 if (uap->pid < 0)
568 return EINVAL;
569
570 if (uap->pid == 0) {
571 p = curproc;
572 PHOLD(p);
573 } else {
574 p = pfind(uap->pid);
575 }
576 if (p == NULL) {
577 error = ESRCH;
578 goto done;
579 }
580 lwkt_gettoken(&p->p_token);
581
582 if (uap->tid < -1) {
583 error = EINVAL;
584 goto done;
585 }
586 if (uap->tid == -1) {
587 /*
588 * sadly, tid can be 0 so we can't use 0 here
589 * like sys_rtprio()
590 */
591 lp = curthread->td_lwp;
592 } else {
593 lp = lwp_rb_tree_RB_LOOKUP(&p->p_lwp_tree, uap->tid);
594 if (lp == NULL) {
595 error = ESRCH;
596 goto done;
597 }
598 }
599
600 switch (uap->function) {
601 case RTP_LOOKUP:
602 error = copyout(&lp->lwp_rtprio, uap->rtp,
603 sizeof(struct rtprio));
604 break;
605 case RTP_SET:
606 if (cr->cr_uid && cr->cr_ruid &&
607 cr->cr_uid != p->p_ucred->cr_uid &&
608 cr->cr_ruid != p->p_ucred->cr_uid) {
609 error = EPERM;
610 break;
611 }
612 /* disallow setting rtprio in most cases if not superuser */
613 if (priv_check_cred(cr, PRIV_SCHED_RTPRIO, 0)) {
614 /* can't set someone else's */
615 if (uap->pid) { /* XXX */
616 error = EPERM;
617 break;
618 }
619 /* can't set realtime priority */
620/*
621 * Realtime priority has to be restricted for reasons which should be
622 * obvious. However, for idle priority, there is a potential for
623 * system deadlock if an idleprio process gains a lock on a resource
624 * that other processes need (and the idleprio process can't run
625 * due to a CPU-bound normal process). Fix me! XXX
626 */
627 if (RTP_PRIO_IS_REALTIME(rtp.type)) {
628 error = EPERM;
629 break;
630 }
631 }
632 switch (rtp.type) {
633#ifdef RTP_PRIO_FIFO
634 case RTP_PRIO_FIFO:
635#endif
636 case RTP_PRIO_REALTIME:
637 case RTP_PRIO_NORMAL:
638 case RTP_PRIO_IDLE:
639 if (rtp.prio > RTP_PRIO_MAX) {
640 error = EINVAL;
641 } else {
642 lp->lwp_rtprio = rtp;
643 error = 0;
644 }
645 break;
646 default:
647 error = EINVAL;
648 break;
649 }
650 break;
651 default:
652 error = EINVAL;
653 break;
654 }
655
656done:
657 if (p) {
658 lwkt_reltoken(&p->p_token);
659 PRELE(p);
660 }
661 return (error);
662}
663
664/*
665 * Set realtime priority
666 *
667 * MPALMOSTSAFE
668 */
669int
670sys_rtprio(struct rtprio_args *uap)
671{
672 struct ucred *cr = curthread->td_ucred;
673 struct proc *p;
674 struct lwp *lp;
675 struct rtprio rtp;
676 int error;
677
678 error = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
679 if (error)
680 return (error);
681
682 if (uap->pid == 0) {
683 p = curproc;
684 PHOLD(p);
685 } else {
686 p = pfind(uap->pid);
687 }
688
689 if (p == NULL) {
690 error = ESRCH;
691 goto done;
692 }
693 lwkt_gettoken(&p->p_token);
694
695 /* XXX lwp */
696 lp = FIRST_LWP_IN_PROC(p);
697 switch (uap->function) {
698 case RTP_LOOKUP:
699 error = copyout(&lp->lwp_rtprio, uap->rtp,
700 sizeof(struct rtprio));
701 break;
702 case RTP_SET:
703 if (cr->cr_uid && cr->cr_ruid &&
704 cr->cr_uid != p->p_ucred->cr_uid &&
705 cr->cr_ruid != p->p_ucred->cr_uid) {
706 error = EPERM;
707 break;
708 }
709 /* disallow setting rtprio in most cases if not superuser */
710 if (priv_check_cred(cr, PRIV_SCHED_RTPRIO, 0)) {
711 /* can't set someone else's */
712 if (uap->pid) {
713 error = EPERM;
714 break;
715 }
716 /* can't set realtime priority */
717/*
718 * Realtime priority has to be restricted for reasons which should be
719 * obvious. However, for idle priority, there is a potential for
720 * system deadlock if an idleprio process gains a lock on a resource
721 * that other processes need (and the idleprio process can't run
722 * due to a CPU-bound normal process). Fix me! XXX
723 */
724 if (RTP_PRIO_IS_REALTIME(rtp.type)) {
725 error = EPERM;
726 break;
727 }
728 }
729 switch (rtp.type) {
730#ifdef RTP_PRIO_FIFO
731 case RTP_PRIO_FIFO:
732#endif
733 case RTP_PRIO_REALTIME:
734 case RTP_PRIO_NORMAL:
735 case RTP_PRIO_IDLE:
736 if (rtp.prio > RTP_PRIO_MAX) {
737 error = EINVAL;
738 break;
739 }
740 lp->lwp_rtprio = rtp;
741 error = 0;
742 break;
743 default:
744 error = EINVAL;
745 break;
746 }
747 break;
748 default:
749 error = EINVAL;
750 break;
751 }
752done:
753 if (p) {
754 lwkt_reltoken(&p->p_token);
755 PRELE(p);
756 }
757
758 return (error);
759}
760
761/*
762 * MPSAFE
763 */
764int
765sys_setrlimit(struct __setrlimit_args *uap)
766{
767 struct rlimit alim;
768 int error;
769
770 error = copyin(uap->rlp, &alim, sizeof(alim));
771 if (error)
772 return (error);
773
774 error = kern_setrlimit(uap->which, &alim);
775
776 return (error);
777}
778
779/*
780 * MPSAFE
781 */
782int
783sys_getrlimit(struct __getrlimit_args *uap)
784{
785 struct rlimit lim;
786 int error;
787
788 error = kern_getrlimit(uap->which, &lim);
789
790 if (error == 0)
791 error = copyout(&lim, uap->rlp, sizeof(*uap->rlp));
792 return error;
793}
794
795/*
796 * Transform the running time and tick information in lwp lp's thread into user,
797 * system, and interrupt time usage.
798 *
799 * Since we are limited to statclock tick granularity this is a statisical
800 * calculation which will be correct over the long haul, but should not be
801 * expected to measure fine grained deltas.
802 *
803 * It is possible to catch a lwp in the midst of being created, so
804 * check whether lwp_thread is NULL or not.
805 */
806void
807calcru(struct lwp *lp, struct timeval *up, struct timeval *sp)
808{
809 struct thread *td;
810
811 /*
812 * Calculate at the statclock level. YYY if the thread is owned by
813 * another cpu we need to forward the request to the other cpu, or
814 * have a token to interlock the information in order to avoid racing
815 * thread destruction.
816 */
817 if ((td = lp->lwp_thread) != NULL) {
818 crit_enter();
819 up->tv_sec = td->td_uticks / 1000000;
820 up->tv_usec = td->td_uticks % 1000000;
821 sp->tv_sec = td->td_sticks / 1000000;
822 sp->tv_usec = td->td_sticks % 1000000;
823 crit_exit();
824 }
825}
826
827/*
828 * Aggregate resource statistics of all lwps of a process.
829 *
830 * proc.p_ru keeps track of all statistics directly related to a proc. This
831 * consists of RSS usage and nswap information and aggregate numbers for all
832 * former lwps of this proc.
833 *
834 * proc.p_cru is the sum of all stats of reaped children.
835 *
836 * lwp.lwp_ru contains the stats directly related to one specific lwp, meaning
837 * packet, scheduler switch or page fault counts, etc. This information gets
838 * added to lwp.lwp_proc.p_ru when the lwp exits.
839 */
840void
841calcru_proc(struct proc *p, struct rusage *ru)
842{
843 struct timeval upt, spt;
844 long *rip1, *rip2;
845 struct lwp *lp;
846
847 *ru = p->p_ru;
848
849 FOREACH_LWP_IN_PROC(lp, p) {
850 calcru(lp, &upt, &spt);
851 timevaladd(&ru->ru_utime, &upt);
852 timevaladd(&ru->ru_stime, &spt);
853 for (rip1 = &ru->ru_first, rip2 = &lp->lwp_ru.ru_first;
854 rip1 <= &ru->ru_last;
855 rip1++, rip2++)
856 *rip1 += *rip2;
857 }
858}
859
860
861/*
862 * MPALMOSTSAFE
863 */
864int
865sys_getrusage(struct getrusage_args *uap)
866{
867 struct proc *p = curproc;
868 struct rusage ru;
869 struct rusage *rup;
870 int error;
871
872 lwkt_gettoken(&p->p_token);
873
874 switch (uap->who) {
875 case RUSAGE_SELF:
876 rup = &ru;
877 calcru_proc(p, rup);
878 error = 0;
879 break;
880 case RUSAGE_CHILDREN:
881 rup = &p->p_cru;
882 error = 0;
883 break;
884 default:
885 error = EINVAL;
886 break;
887 }
888 lwkt_reltoken(&p->p_token);
889
890 if (error == 0)
891 error = copyout(rup, uap->rusage, sizeof(struct rusage));
892 return (error);
893}
894
895void
896ruadd(struct rusage *ru, struct rusage *ru2)
897{
898 long *ip, *ip2;
899 int i;
900
901 timevaladd(&ru->ru_utime, &ru2->ru_utime);
902 timevaladd(&ru->ru_stime, &ru2->ru_stime);
903 if (ru->ru_maxrss < ru2->ru_maxrss)
904 ru->ru_maxrss = ru2->ru_maxrss;
905 ip = &ru->ru_first; ip2 = &ru2->ru_first;
906 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
907 *ip++ += *ip2++;
908}
909
910/*
911 * Find the uidinfo structure for a uid. This structure is used to
912 * track the total resource consumption (process count, socket buffer
913 * size, etc.) for the uid and impose limits.
914 */
915void
916uihashinit(void)
917{
918 spin_init(&uihash_lock, "uihashinit");
919 uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
920}
921
922/*
923 * NOTE: Must be called with uihash_lock held
924 *
925 * MPSAFE
926 */
927static struct uidinfo *
928uilookup(uid_t uid)
929{
930 struct uihashhead *uipp;
931 struct uidinfo *uip;
932
933 uipp = UIHASH(uid);
934 LIST_FOREACH(uip, uipp, ui_hash) {
935 if (uip->ui_uid == uid)
936 break;
937 }
938 return (uip);
939}
940
941/*
942 * Helper function to creat ea uid that could not be found.
943 * This function will properly deal with races.
944 *
945 * MPSAFE
946 */
947static struct uidinfo *
948uicreate(uid_t uid)
949{
950 struct uidinfo *uip, *tmp;
951
952 /*
953 * Allocate space and check for a race
954 */
955 uip = kmalloc(sizeof(*uip), M_UIDINFO, M_WAITOK|M_ZERO);
956
957 /*
958 * Initialize structure and enter it into the hash table
959 */
960 spin_init(&uip->ui_lock, "uicreate");
961 uip->ui_uid = uid;
962 uip->ui_ref = 1; /* we're returning a ref */
963 varsymset_init(&uip->ui_varsymset, NULL);
964
965 /*
966 * Somebody may have already created the uidinfo for this
967 * uid. If so, return that instead.
968 */
969 spin_lock(&uihash_lock);
970 tmp = uilookup(uid);
971 if (tmp != NULL) {
972 uihold(tmp);
973 spin_unlock(&uihash_lock);
974
975 spin_uninit(&uip->ui_lock);
976 varsymset_clean(&uip->ui_varsymset);
977 kfree(uip, M_UIDINFO);
978 uip = tmp;
979 } else {
980 LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash);
981 spin_unlock(&uihash_lock);
982 }
983 return (uip);
984}
985
986/*
987 *
988 *
989 * MPSAFE
990 */
991struct uidinfo *
992uifind(uid_t uid)
993{
994 struct uidinfo *uip;
995
996 spin_lock(&uihash_lock);
997 uip = uilookup(uid);
998 if (uip == NULL) {
999 spin_unlock(&uihash_lock);
1000 uip = uicreate(uid);
1001 } else {
1002 uihold(uip);
1003 spin_unlock(&uihash_lock);
1004 }
1005 return (uip);
1006}
1007
1008/*
1009 * Helper funtion to remove a uidinfo whos reference count is
1010 * transitioning from 1->0. The reference count is 1 on call.
1011 *
1012 * Zero is returned on success, otherwise non-zero and the
1013 * uiphas not been removed.
1014 *
1015 * MPSAFE
1016 */
1017static __inline int
1018uifree(struct uidinfo *uip)
1019{
1020 /*
1021 * If we are still the only holder after acquiring the uihash_lock
1022 * we can safely unlink the uip and destroy it. Otherwise we lost
1023 * a race and must fail.
1024 */
1025 spin_lock(&uihash_lock);
1026 if (uip->ui_ref != 1) {
1027 spin_unlock(&uihash_lock);
1028 return(-1);
1029 }
1030 LIST_REMOVE(uip, ui_hash);
1031 spin_unlock(&uihash_lock);
1032
1033 /*
1034 * The uip is now orphaned and we can destroy it at our
1035 * leisure.
1036 */
1037 if (uip->ui_sbsize != 0)
1038 kprintf("freeing uidinfo: uid = %d, sbsize = %jd\n",
1039 uip->ui_uid, (intmax_t)uip->ui_sbsize);
1040 if (uip->ui_proccnt != 0)
1041 kprintf("freeing uidinfo: uid = %d, proccnt = %ld\n",
1042 uip->ui_uid, uip->ui_proccnt);
1043
1044 varsymset_clean(&uip->ui_varsymset);
1045 lockuninit(&uip->ui_varsymset.vx_lock);
1046 spin_uninit(&uip->ui_lock);
1047 kfree(uip, M_UIDINFO);
1048 return(0);
1049}
1050
1051/*
1052 * MPSAFE
1053 */
1054void
1055uihold(struct uidinfo *uip)
1056{
1057 atomic_add_int(&uip->ui_ref, 1);
1058 KKASSERT(uip->ui_ref >= 0);
1059}
1060
1061/*
1062 * NOTE: It is important for us to not drop the ref count to 0
1063 * because this can cause a 2->0/2->0 race with another
1064 * concurrent dropper. Losing the race in that situation
1065 * can cause uip to become stale for one of the other
1066 * threads.
1067 *
1068 * MPSAFE
1069 */
1070void
1071uidrop(struct uidinfo *uip)
1072{
1073 int ref;
1074
1075 KKASSERT(uip->ui_ref > 0);
1076
1077 for (;;) {
1078 ref = uip->ui_ref;
1079 cpu_ccfence();
1080 if (ref == 1) {
1081 if (uifree(uip) == 0)
1082 break;
1083 } else if (atomic_cmpset_int(&uip->ui_ref, ref, ref - 1)) {
1084 break;
1085 }
1086 /* else retry */
1087 }
1088}
1089
1090void
1091uireplace(struct uidinfo **puip, struct uidinfo *nuip)
1092{
1093 uidrop(*puip);
1094 *puip = nuip;
1095}
1096
1097/*
1098 * Change the count associated with number of processes
1099 * a given user is using. When 'max' is 0, don't enforce a limit
1100 */
1101int
1102chgproccnt(struct uidinfo *uip, int diff, int max)
1103{
1104 int ret;
1105 spin_lock(&uip->ui_lock);
1106 /* don't allow them to exceed max, but allow subtraction */
1107 if (diff > 0 && uip->ui_proccnt + diff > max && max != 0) {
1108 ret = 0;
1109 } else {
1110 uip->ui_proccnt += diff;
1111 if (uip->ui_proccnt < 0)
1112 kprintf("negative proccnt for uid = %d\n", uip->ui_uid);
1113 ret = 1;
1114 }
1115 spin_unlock(&uip->ui_lock);
1116 return ret;
1117}
1118
1119/*
1120 * Change the total socket buffer size a user has used.
1121 */
1122int
1123chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t max)
1124{
1125 rlim_t new;
1126
1127#ifdef __x86_64__
1128 rlim_t sbsize;
1129
1130 sbsize = atomic_fetchadd_long(&uip->ui_sbsize, to - *hiwat);
1131 new = sbsize + to - *hiwat;
1132#else
1133 spin_lock(&uip->ui_lock);
1134 new = uip->ui_sbsize + to - *hiwat;
1135 uip->ui_sbsize = new;
1136 spin_unlock(&uip->ui_lock);
1137#endif
1138 KKASSERT(new >= 0);
1139
1140 /*
1141 * If we are trying to increase the socket buffer size
1142 * Scale down the hi water mark when we exceed the user's
1143 * allowed socket buffer space.
1144 *
1145 * We can't scale down too much or we will blow up atomic packet
1146 * operations.
1147 */
1148 if (to > *hiwat && to > MCLBYTES && new > max) {
1149 to = to * max / new;
1150 if (to < MCLBYTES)
1151 to = MCLBYTES;
1152 }
1153 *hiwat = to;
1154 return (1);
1155}