Modify ktr(4) to be typesafe
[dragonfly.git] / sys / kern / lwkt_thread.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2003-2011 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35/*
36 * Each cpu in a system has its own self-contained light weight kernel
37 * thread scheduler, which means that generally speaking we only need
38 * to use a critical section to avoid problems. Foreign thread
39 * scheduling is queued via (async) IPIs.
40 */
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/proc.h>
46#include <sys/rtprio.h>
47#include <sys/kinfo.h>
48#include <sys/queue.h>
49#include <sys/sysctl.h>
50#include <sys/kthread.h>
51#include <machine/cpu.h>
52#include <sys/lock.h>
53#include <sys/caps.h>
54#include <sys/spinlock.h>
55#include <sys/ktr.h>
56
57#include <sys/thread2.h>
58#include <sys/spinlock2.h>
59#include <sys/mplock2.h>
60
61#include <sys/dsched.h>
62
63#include <vm/vm.h>
64#include <vm/vm_param.h>
65#include <vm/vm_kern.h>
66#include <vm/vm_object.h>
67#include <vm/vm_page.h>
68#include <vm/vm_map.h>
69#include <vm/vm_pager.h>
70#include <vm/vm_extern.h>
71
72#include <machine/stdarg.h>
73#include <machine/smp.h>
74
75#if !defined(KTR_CTXSW)
76#define KTR_CTXSW KTR_ALL
77#endif
78KTR_INFO_MASTER(ctxsw);
79KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
80KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
81KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
82KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
83
84static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
85
86#ifdef INVARIANTS
87static int panic_on_cscount = 0;
88#endif
89static __int64_t switch_count = 0;
90static __int64_t preempt_hit = 0;
91static __int64_t preempt_miss = 0;
92static __int64_t preempt_weird = 0;
93static __int64_t token_contention_count[TDPRI_MAX+1] __debugvar;
94static int lwkt_use_spin_port;
95static struct objcache *thread_cache;
96
97#ifdef SMP
98static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
99static void lwkt_setcpu_remote(void *arg);
100#endif
101
102extern void cpu_heavy_restore(void);
103extern void cpu_lwkt_restore(void);
104extern void cpu_kthread_restore(void);
105extern void cpu_idle_restore(void);
106
107/*
108 * We can make all thread ports use the spin backend instead of the thread
109 * backend. This should only be set to debug the spin backend.
110 */
111TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
112
113#ifdef INVARIANTS
114SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
115 "Panic if attempting to switch lwkt's while mastering cpusync");
116#endif
117SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
118 "Number of switched threads");
119SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
120 "Successful preemption events");
121SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
122 "Failed preemption events");
123SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
124 "Number of preempted threads.");
125#ifdef INVARIANTS
126SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_00, CTLFLAG_RW,
127 &token_contention_count[0], 0, "spinning due to token contention");
128SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_01, CTLFLAG_RW,
129 &token_contention_count[1], 0, "spinning due to token contention");
130SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_02, CTLFLAG_RW,
131 &token_contention_count[2], 0, "spinning due to token contention");
132SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_03, CTLFLAG_RW,
133 &token_contention_count[3], 0, "spinning due to token contention");
134SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_04, CTLFLAG_RW,
135 &token_contention_count[4], 0, "spinning due to token contention");
136SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_05, CTLFLAG_RW,
137 &token_contention_count[5], 0, "spinning due to token contention");
138SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_06, CTLFLAG_RW,
139 &token_contention_count[6], 0, "spinning due to token contention");
140SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_07, CTLFLAG_RW,
141 &token_contention_count[7], 0, "spinning due to token contention");
142SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_08, CTLFLAG_RW,
143 &token_contention_count[8], 0, "spinning due to token contention");
144SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_09, CTLFLAG_RW,
145 &token_contention_count[9], 0, "spinning due to token contention");
146SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_10, CTLFLAG_RW,
147 &token_contention_count[10], 0, "spinning due to token contention");
148SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_11, CTLFLAG_RW,
149 &token_contention_count[11], 0, "spinning due to token contention");
150SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_12, CTLFLAG_RW,
151 &token_contention_count[12], 0, "spinning due to token contention");
152SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_13, CTLFLAG_RW,
153 &token_contention_count[13], 0, "spinning due to token contention");
154SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_14, CTLFLAG_RW,
155 &token_contention_count[14], 0, "spinning due to token contention");
156SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_15, CTLFLAG_RW,
157 &token_contention_count[15], 0, "spinning due to token contention");
158SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_16, CTLFLAG_RW,
159 &token_contention_count[16], 0, "spinning due to token contention");
160SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_17, CTLFLAG_RW,
161 &token_contention_count[17], 0, "spinning due to token contention");
162SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_18, CTLFLAG_RW,
163 &token_contention_count[18], 0, "spinning due to token contention");
164SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_19, CTLFLAG_RW,
165 &token_contention_count[19], 0, "spinning due to token contention");
166SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_20, CTLFLAG_RW,
167 &token_contention_count[20], 0, "spinning due to token contention");
168SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_21, CTLFLAG_RW,
169 &token_contention_count[21], 0, "spinning due to token contention");
170SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_22, CTLFLAG_RW,
171 &token_contention_count[22], 0, "spinning due to token contention");
172SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_23, CTLFLAG_RW,
173 &token_contention_count[23], 0, "spinning due to token contention");
174SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_24, CTLFLAG_RW,
175 &token_contention_count[24], 0, "spinning due to token contention");
176SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_25, CTLFLAG_RW,
177 &token_contention_count[25], 0, "spinning due to token contention");
178SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_26, CTLFLAG_RW,
179 &token_contention_count[26], 0, "spinning due to token contention");
180SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_27, CTLFLAG_RW,
181 &token_contention_count[27], 0, "spinning due to token contention");
182SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_28, CTLFLAG_RW,
183 &token_contention_count[28], 0, "spinning due to token contention");
184SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_29, CTLFLAG_RW,
185 &token_contention_count[29], 0, "spinning due to token contention");
186SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_30, CTLFLAG_RW,
187 &token_contention_count[30], 0, "spinning due to token contention");
188SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_31, CTLFLAG_RW,
189 &token_contention_count[31], 0, "spinning due to token contention");
190#endif
191static int fairq_enable = 0;
192SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
193 &fairq_enable, 0, "Turn on fairq priority accumulators");
194static int fairq_bypass = -1;
195SYSCTL_INT(_lwkt, OID_AUTO, fairq_bypass, CTLFLAG_RW,
196 &fairq_bypass, 0, "Allow fairq to bypass td on token failure");
197extern int lwkt_sched_debug;
198int lwkt_sched_debug = 0;
199SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
200 &lwkt_sched_debug, 0, "Scheduler debug");
201static int lwkt_spin_loops = 10;
202SYSCTL_INT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
203 &lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
204static int lwkt_spin_reseq = 0;
205SYSCTL_INT(_lwkt, OID_AUTO, spin_reseq, CTLFLAG_RW,
206 &lwkt_spin_reseq, 0, "Scheduler resequencer enable");
207static int lwkt_spin_monitor = 0;
208SYSCTL_INT(_lwkt, OID_AUTO, spin_monitor, CTLFLAG_RW,
209 &lwkt_spin_monitor, 0, "Scheduler uses monitor/mwait");
210static int lwkt_spin_fatal = 0; /* disabled */
211SYSCTL_INT(_lwkt, OID_AUTO, spin_fatal, CTLFLAG_RW,
212 &lwkt_spin_fatal, 0, "LWKT scheduler spin loops till fatal panic");
213static int preempt_enable = 1;
214SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
215 &preempt_enable, 0, "Enable preemption");
216static int lwkt_cache_threads = 0;
217SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
218 &lwkt_cache_threads, 0, "thread+kstack cache");
219
220static __cachealign int lwkt_cseq_rindex;
221static __cachealign int lwkt_cseq_windex;
222
223/*
224 * These helper procedures handle the runq, they can only be called from
225 * within a critical section.
226 *
227 * WARNING! Prior to SMP being brought up it is possible to enqueue and
228 * dequeue threads belonging to other cpus, so be sure to use td->td_gd
229 * instead of 'mycpu' when referencing the globaldata structure. Once
230 * SMP live enqueuing and dequeueing only occurs on the current cpu.
231 */
232static __inline
233void
234_lwkt_dequeue(thread_t td)
235{
236 if (td->td_flags & TDF_RUNQ) {
237 struct globaldata *gd = td->td_gd;
238
239 td->td_flags &= ~TDF_RUNQ;
240 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
241 if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
242 atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
243 }
244}
245
246/*
247 * Priority enqueue.
248 *
249 * NOTE: There are a limited number of lwkt threads runnable since user
250 * processes only schedule one at a time per cpu.
251 */
252static __inline
253void
254_lwkt_enqueue(thread_t td)
255{
256 thread_t xtd;
257
258 if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
259 struct globaldata *gd = td->td_gd;
260
261 td->td_flags |= TDF_RUNQ;
262 xtd = TAILQ_FIRST(&gd->gd_tdrunq);
263 if (xtd == NULL) {
264 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
265 atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
266 } else {
267 while (xtd && xtd->td_pri >= td->td_pri)
268 xtd = TAILQ_NEXT(xtd, td_threadq);
269 if (xtd)
270 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
271 else
272 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
273 }
274
275 /*
276 * Request a LWKT reschedule if we are now at the head of the queue.
277 */
278 if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
279 need_lwkt_resched();
280 }
281}
282
283static __boolean_t
284_lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
285{
286 struct thread *td = (struct thread *)obj;
287
288 td->td_kstack = NULL;
289 td->td_kstack_size = 0;
290 td->td_flags = TDF_ALLOCATED_THREAD;
291 td->td_mpflags = 0;
292 return (1);
293}
294
295static void
296_lwkt_thread_dtor(void *obj, void *privdata)
297{
298 struct thread *td = (struct thread *)obj;
299
300 KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
301 ("_lwkt_thread_dtor: not allocated from objcache"));
302 KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
303 td->td_kstack_size > 0,
304 ("_lwkt_thread_dtor: corrupted stack"));
305 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
306 td->td_kstack = NULL;
307 td->td_flags = 0;
308}
309
310/*
311 * Initialize the lwkt s/system.
312 *
313 * Nominally cache up to 32 thread + kstack structures. Cache more on
314 * systems with a lot of cpu cores.
315 */
316void
317lwkt_init(void)
318{
319 TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
320 if (lwkt_cache_threads == 0) {
321 lwkt_cache_threads = ncpus * 4;
322 if (lwkt_cache_threads < 32)
323 lwkt_cache_threads = 32;
324 }
325 thread_cache = objcache_create_mbacked(
326 M_THREAD, sizeof(struct thread),
327 NULL, lwkt_cache_threads,
328 _lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
329}
330
331/*
332 * Schedule a thread to run. As the current thread we can always safely
333 * schedule ourselves, and a shortcut procedure is provided for that
334 * function.
335 *
336 * (non-blocking, self contained on a per cpu basis)
337 */
338void
339lwkt_schedule_self(thread_t td)
340{
341 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
342 crit_enter_quick(td);
343 KASSERT(td != &td->td_gd->gd_idlethread,
344 ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
345 KKASSERT(td->td_lwp == NULL ||
346 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
347 _lwkt_enqueue(td);
348 crit_exit_quick(td);
349}
350
351/*
352 * Deschedule a thread.
353 *
354 * (non-blocking, self contained on a per cpu basis)
355 */
356void
357lwkt_deschedule_self(thread_t td)
358{
359 crit_enter_quick(td);
360 _lwkt_dequeue(td);
361 crit_exit_quick(td);
362}
363
364/*
365 * LWKTs operate on a per-cpu basis
366 *
367 * WARNING! Called from early boot, 'mycpu' may not work yet.
368 */
369void
370lwkt_gdinit(struct globaldata *gd)
371{
372 TAILQ_INIT(&gd->gd_tdrunq);
373 TAILQ_INIT(&gd->gd_tdallq);
374}
375
376/*
377 * Create a new thread. The thread must be associated with a process context
378 * or LWKT start address before it can be scheduled. If the target cpu is
379 * -1 the thread will be created on the current cpu.
380 *
381 * If you intend to create a thread without a process context this function
382 * does everything except load the startup and switcher function.
383 */
384thread_t
385lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
386{
387 static int cpu_rotator;
388 globaldata_t gd = mycpu;
389 void *stack;
390
391 /*
392 * If static thread storage is not supplied allocate a thread. Reuse
393 * a cached free thread if possible. gd_freetd is used to keep an exiting
394 * thread intact through the exit.
395 */
396 if (td == NULL) {
397 crit_enter_gd(gd);
398 if ((td = gd->gd_freetd) != NULL) {
399 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
400 TDF_RUNQ)) == 0);
401 gd->gd_freetd = NULL;
402 } else {
403 td = objcache_get(thread_cache, M_WAITOK);
404 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
405 TDF_RUNQ)) == 0);
406 }
407 crit_exit_gd(gd);
408 KASSERT((td->td_flags &
409 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
410 TDF_ALLOCATED_THREAD,
411 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
412 flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
413 }
414
415 /*
416 * Try to reuse cached stack.
417 */
418 if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
419 if (flags & TDF_ALLOCATED_STACK) {
420 kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
421 stack = NULL;
422 }
423 }
424 if (stack == NULL) {
425 stack = (void *)kmem_alloc_stack(&kernel_map, stksize);
426 flags |= TDF_ALLOCATED_STACK;
427 }
428 if (cpu < 0) {
429 cpu = ++cpu_rotator;
430 cpu_ccfence();
431 cpu %= ncpus;
432 }
433 lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
434 return(td);
435}
436
437/*
438 * Initialize a preexisting thread structure. This function is used by
439 * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
440 *
441 * All threads start out in a critical section at a priority of
442 * TDPRI_KERN_DAEMON. Higher level code will modify the priority as
443 * appropriate. This function may send an IPI message when the
444 * requested cpu is not the current cpu and consequently gd_tdallq may
445 * not be initialized synchronously from the point of view of the originating
446 * cpu.
447 *
448 * NOTE! we have to be careful in regards to creating threads for other cpus
449 * if SMP has not yet been activated.
450 */
451#ifdef SMP
452
453static void
454lwkt_init_thread_remote(void *arg)
455{
456 thread_t td = arg;
457
458 /*
459 * Protected by critical section held by IPI dispatch
460 */
461 TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
462}
463
464#endif
465
466/*
467 * lwkt core thread structural initialization.
468 *
469 * NOTE: All threads are initialized as mpsafe threads.
470 */
471void
472lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
473 struct globaldata *gd)
474{
475 globaldata_t mygd = mycpu;
476
477 bzero(td, sizeof(struct thread));
478 td->td_kstack = stack;
479 td->td_kstack_size = stksize;
480 td->td_flags = flags;
481 td->td_mpflags = 0;
482 td->td_gd = gd;
483 td->td_pri = TDPRI_KERN_DAEMON;
484 td->td_critcount = 1;
485 td->td_toks_have = NULL;
486 td->td_toks_stop = &td->td_toks_base;
487 if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT))
488 lwkt_initport_spin(&td->td_msgport);
489 else
490 lwkt_initport_thread(&td->td_msgport, td);
491 pmap_init_thread(td);
492#ifdef SMP
493 /*
494 * Normally initializing a thread for a remote cpu requires sending an
495 * IPI. However, the idlethread is setup before the other cpus are
496 * activated so we have to treat it as a special case. XXX manipulation
497 * of gd_tdallq requires the BGL.
498 */
499 if (gd == mygd || td == &gd->gd_idlethread) {
500 crit_enter_gd(mygd);
501 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
502 crit_exit_gd(mygd);
503 } else {
504 lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
505 }
506#else
507 crit_enter_gd(mygd);
508 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
509 crit_exit_gd(mygd);
510#endif
511
512 dsched_new_thread(td);
513}
514
515void
516lwkt_set_comm(thread_t td, const char *ctl, ...)
517{
518 __va_list va;
519
520 __va_start(va, ctl);
521 kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
522 __va_end(va);
523 KTR_LOG(ctxsw_newtd, td, td->td_comm);
524}
525
526/*
527 * Prevent the thread from getting destroyed. Note that unlike PHOLD/PRELE
528 * this does not prevent the thread from migrating to another cpu so the
529 * gd_tdallq state is not protected by this.
530 */
531void
532lwkt_hold(thread_t td)
533{
534 atomic_add_int(&td->td_refs, 1);
535}
536
537void
538lwkt_rele(thread_t td)
539{
540 KKASSERT(td->td_refs > 0);
541 atomic_add_int(&td->td_refs, -1);
542}
543
544void
545lwkt_free_thread(thread_t td)
546{
547 KKASSERT(td->td_refs == 0);
548 KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
549 TDF_RUNQ | TDF_TSLEEPQ)) == 0);
550 if (td->td_flags & TDF_ALLOCATED_THREAD) {
551 objcache_put(thread_cache, td);
552 } else if (td->td_flags & TDF_ALLOCATED_STACK) {
553 /* client-allocated struct with internally allocated stack */
554 KASSERT(td->td_kstack && td->td_kstack_size > 0,
555 ("lwkt_free_thread: corrupted stack"));
556 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
557 td->td_kstack = NULL;
558 td->td_kstack_size = 0;
559 }
560 KTR_LOG(ctxsw_deadtd, td);
561}
562
563
564/*
565 * Switch to the next runnable lwkt. If no LWKTs are runnable then
566 * switch to the idlethread. Switching must occur within a critical
567 * section to avoid races with the scheduling queue.
568 *
569 * We always have full control over our cpu's run queue. Other cpus
570 * that wish to manipulate our queue must use the cpu_*msg() calls to
571 * talk to our cpu, so a critical section is all that is needed and
572 * the result is very, very fast thread switching.
573 *
574 * The LWKT scheduler uses a fixed priority model and round-robins at
575 * each priority level. User process scheduling is a totally
576 * different beast and LWKT priorities should not be confused with
577 * user process priorities.
578 *
579 * PREEMPTION NOTE: Preemption occurs via lwkt_preempt(). lwkt_switch()
580 * is not called by the current thread in the preemption case, only when
581 * the preempting thread blocks (in order to return to the original thread).
582 *
583 * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
584 * migration and tsleep deschedule the current lwkt thread and call
585 * lwkt_switch(). In particular, the target cpu of the migration fully
586 * expects the thread to become non-runnable and can deadlock against
587 * cpusync operations if we run any IPIs prior to switching the thread out.
588 *
589 * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
590 * THE CURRENT THREAD HAS BEEN DESCHEDULED!
591 */
592void
593lwkt_switch(void)
594{
595 globaldata_t gd = mycpu;
596 thread_t td = gd->gd_curthread;
597 thread_t ntd;
598 thread_t xtd;
599 int spinning = 0;
600
601 KKASSERT(gd->gd_processing_ipiq == 0);
602 KKASSERT(td->td_flags & TDF_RUNNING);
603
604 /*
605 * Switching from within a 'fast' (non thread switched) interrupt or IPI
606 * is illegal. However, we may have to do it anyway if we hit a fatal
607 * kernel trap or we have paniced.
608 *
609 * If this case occurs save and restore the interrupt nesting level.
610 */
611 if (gd->gd_intr_nesting_level) {
612 int savegdnest;
613 int savegdtrap;
614
615 if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
616 panic("lwkt_switch: Attempt to switch from a "
617 "a fast interrupt, ipi, or hard code section, "
618 "td %p\n",
619 td);
620 } else {
621 savegdnest = gd->gd_intr_nesting_level;
622 savegdtrap = gd->gd_trap_nesting_level;
623 gd->gd_intr_nesting_level = 0;
624 gd->gd_trap_nesting_level = 0;
625 if ((td->td_flags & TDF_PANICWARN) == 0) {
626 td->td_flags |= TDF_PANICWARN;
627 kprintf("Warning: thread switch from interrupt, IPI, "
628 "or hard code section.\n"
629 "thread %p (%s)\n", td, td->td_comm);
630 print_backtrace(-1);
631 }
632 lwkt_switch();
633 gd->gd_intr_nesting_level = savegdnest;
634 gd->gd_trap_nesting_level = savegdtrap;
635 return;
636 }
637 }
638
639 /*
640 * Release our current user process designation if we are blocking
641 * or if a user reschedule was requested.
642 *
643 * NOTE: This function is NOT called if we are switching into or
644 * returning from a preemption.
645 *
646 * NOTE: Releasing our current user process designation may cause
647 * it to be assigned to another thread, which in turn will
648 * cause us to block in the usched acquire code when we attempt
649 * to return to userland.
650 *
651 * NOTE: On SMP systems this can be very nasty when heavy token
652 * contention is present so we want to be careful not to
653 * release the designation gratuitously.
654 */
655 if (td->td_release &&
656 (user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
657 td->td_release(td);
658 }
659
660 /*
661 * Release all tokens
662 */
663 crit_enter_gd(gd);
664 if (TD_TOKS_HELD(td))
665 lwkt_relalltokens(td);
666
667 /*
668 * We had better not be holding any spin locks, but don't get into an
669 * endless panic loop.
670 */
671 KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
672 ("lwkt_switch: still holding %d exclusive spinlocks!",
673 gd->gd_spinlocks_wr));
674
675
676#ifdef SMP
677#ifdef INVARIANTS
678 if (td->td_cscount) {
679 kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
680 td);
681 if (panic_on_cscount)
682 panic("switching while mastering cpusync");
683 }
684#endif
685#endif
686
687 /*
688 * If we had preempted another thread on this cpu, resume the preempted
689 * thread. This occurs transparently, whether the preempted thread
690 * was scheduled or not (it may have been preempted after descheduling
691 * itself).
692 *
693 * We have to setup the MP lock for the original thread after backing
694 * out the adjustment that was made to curthread when the original
695 * was preempted.
696 */
697 if ((ntd = td->td_preempted) != NULL) {
698 KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
699 ntd->td_flags |= TDF_PREEMPT_DONE;
700
701 /*
702 * The interrupt may have woken a thread up, we need to properly
703 * set the reschedule flag if the originally interrupted thread is
704 * at a lower priority.
705 *
706 * The interrupt may not have descheduled.
707 */
708 if (TAILQ_FIRST(&gd->gd_tdrunq) != ntd)
709 need_lwkt_resched();
710 goto havethread_preempted;
711 }
712
713 /*
714 * If we cannot obtain ownership of the tokens we cannot immediately
715 * schedule the target thread.
716 *
717 * Reminder: Again, we cannot afford to run any IPIs in this path if
718 * the current thread has been descheduled.
719 */
720 for (;;) {
721 clear_lwkt_resched();
722
723 /*
724 * Hotpath - pull the head of the run queue and attempt to schedule
725 * it.
726 */
727 for (;;) {
728 ntd = TAILQ_FIRST(&gd->gd_tdrunq);
729
730 if (ntd == NULL) {
731 /*
732 * Runq is empty, switch to idle to allow it to halt.
733 */
734 ntd = &gd->gd_idlethread;
735#ifdef SMP
736 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
737 ASSERT_NO_TOKENS_HELD(ntd);
738#endif
739 cpu_time.cp_msg[0] = 0;
740 cpu_time.cp_stallpc = 0;
741 goto haveidle;
742 }
743 break;
744 }
745
746 /*
747 * Hotpath - schedule ntd.
748 *
749 * NOTE: For UP there is no mplock and lwkt_getalltokens()
750 * always succeeds.
751 */
752 if (TD_TOKS_NOT_HELD(ntd) ||
753 lwkt_getalltokens(ntd, (spinning >= lwkt_spin_loops)))
754 {
755 goto havethread;
756 }
757
758 /*
759 * Coldpath (SMP only since tokens always succeed on UP)
760 *
761 * We had some contention on the thread we wanted to schedule.
762 * What we do now is try to find a thread that we can schedule
763 * in its stead.
764 *
765 * The coldpath scan does NOT rearrange threads in the run list.
766 * The lwkt_schedulerclock() will assert need_lwkt_resched() on
767 * the next tick whenever the current head is not the current thread.
768 */
769#ifdef INVARIANTS
770 ++token_contention_count[ntd->td_pri];
771 ++ntd->td_contended;
772#endif
773
774 if (fairq_bypass > 0)
775 goto skip;
776
777 xtd = NULL;
778 while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
779 /*
780 * Never schedule threads returning to userland or the
781 * user thread scheduler helper thread when higher priority
782 * threads are present.
783 */
784 if (ntd->td_pri < TDPRI_KERN_LPSCHED) {
785 ntd = NULL;
786 break;
787 }
788
789 /*
790 * Try this one.
791 */
792 if (TD_TOKS_NOT_HELD(ntd) ||
793 lwkt_getalltokens(ntd, (spinning >= lwkt_spin_loops))) {
794 goto havethread;
795 }
796#ifdef INVARIANTS
797 ++token_contention_count[ntd->td_pri];
798 ++ntd->td_contended;
799#endif
800 }
801
802skip:
803 /*
804 * We exhausted the run list, meaning that all runnable threads
805 * are contested.
806 */
807 cpu_pause();
808 ntd = &gd->gd_idlethread;
809#ifdef SMP
810 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
811 ASSERT_NO_TOKENS_HELD(ntd);
812 /* contention case, do not clear contention mask */
813#endif
814
815 /*
816 * We are going to have to retry but if the current thread is not
817 * on the runq we instead switch through the idle thread to get away
818 * from the current thread. We have to flag for lwkt reschedule
819 * to prevent the idle thread from halting.
820 *
821 * NOTE: A non-zero spinning is passed to lwkt_getalltokens() to
822 * instruct it to deal with the potential for deadlocks by
823 * ordering the tokens by address.
824 */
825 if ((td->td_flags & TDF_RUNQ) == 0) {
826 need_lwkt_resched(); /* prevent hlt */
827 goto haveidle;
828 }
829#if defined(INVARIANTS) && defined(__amd64__)
830 if ((read_rflags() & PSL_I) == 0) {
831 cpu_enable_intr();
832 panic("lwkt_switch() called with interrupts disabled");
833 }
834#endif
835
836 /*
837 * Number iterations so far. After a certain point we switch to
838 * a sorted-address/monitor/mwait version of lwkt_getalltokens()
839 */
840 if (spinning < 0x7FFFFFFF)
841 ++spinning;
842
843#ifdef SMP
844 /*
845 * lwkt_getalltokens() failed in sorted token mode, we can use
846 * monitor/mwait in this case.
847 */
848 if (spinning >= lwkt_spin_loops &&
849 (cpu_mi_feature & CPU_MI_MONITOR) &&
850 lwkt_spin_monitor)
851 {
852 cpu_mmw_pause_int(&gd->gd_reqflags,
853 (gd->gd_reqflags | RQF_SPINNING) &
854 ~RQF_IDLECHECK_WK_MASK);
855 }
856#endif
857
858 /*
859 * We already checked that td is still scheduled so this should be
860 * safe.
861 */
862 splz_check();
863
864 /*
865 * This experimental resequencer is used as a fall-back to reduce
866 * hw cache line contention by placing each core's scheduler into a
867 * time-domain-multplexed slot.
868 *
869 * The resequencer is disabled by default. It's functionality has
870 * largely been superceeded by the token algorithm which limits races
871 * to a subset of cores.
872 *
873 * The resequencer algorithm tends to break down when more than
874 * 20 cores are contending. What appears to happen is that new
875 * tokens can be obtained out of address-sorted order by new cores
876 * while existing cores languish in long delays between retries and
877 * wind up being starved-out of the token acquisition.
878 */
879 if (lwkt_spin_reseq && spinning >= lwkt_spin_reseq) {
880 int cseq = atomic_fetchadd_int(&lwkt_cseq_windex, 1);
881 int oseq;
882
883 while ((oseq = lwkt_cseq_rindex) != cseq) {
884 cpu_ccfence();
885#if 1
886 if (cpu_mi_feature & CPU_MI_MONITOR) {
887 cpu_mmw_pause_int(&lwkt_cseq_rindex, oseq);
888 } else {
889#endif
890 cpu_pause();
891 cpu_lfence();
892#if 1
893 }
894#endif
895 }
896 DELAY(1);
897 atomic_add_int(&lwkt_cseq_rindex, 1);
898 }
899 /* highest level for(;;) loop */
900 }
901
902havethread:
903 /*
904 * Clear gd_idle_repeat when doing a normal switch to a non-idle
905 * thread.
906 */
907 ntd->td_wmesg = NULL;
908 ++gd->gd_cnt.v_swtch;
909 gd->gd_idle_repeat = 0;
910
911havethread_preempted:
912 /*
913 * If the new target does not need the MP lock and we are holding it,
914 * release the MP lock. If the new target requires the MP lock we have
915 * already acquired it for the target.
916 */
917 ;
918haveidle:
919 KASSERT(ntd->td_critcount,
920 ("priority problem in lwkt_switch %d %d",
921 td->td_critcount, ntd->td_critcount));
922
923 if (td != ntd) {
924 /*
925 * Execute the actual thread switch operation. This function
926 * returns to the current thread and returns the previous thread
927 * (which may be different from the thread we switched to).
928 *
929 * We are responsible for marking ntd as TDF_RUNNING.
930 */
931 KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
932 ++switch_count;
933 KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
934 ntd->td_flags |= TDF_RUNNING;
935 lwkt_switch_return(td->td_switch(ntd));
936 /* ntd invalid, td_switch() can return a different thread_t */
937 }
938
939 /*
940 * catch-all. XXX is this strictly needed?
941 */
942 splz_check();
943
944 /* NOTE: current cpu may have changed after switch */
945 crit_exit_quick(td);
946}
947
948/*
949 * Called by assembly in the td_switch (thread restore path) for thread
950 * bootstrap cases which do not 'return' to lwkt_switch().
951 */
952void
953lwkt_switch_return(thread_t otd)
954{
955#ifdef SMP
956 globaldata_t rgd;
957
958 /*
959 * Check if otd was migrating. Now that we are on ntd we can finish
960 * up the migration. This is a bit messy but it is the only place
961 * where td is known to be fully descheduled.
962 *
963 * We can only activate the migration if otd was migrating but not
964 * held on the cpu due to a preemption chain. We still have to
965 * clear TDF_RUNNING on the old thread either way.
966 *
967 * We are responsible for clearing the previously running thread's
968 * TDF_RUNNING.
969 */
970 if ((rgd = otd->td_migrate_gd) != NULL &&
971 (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
972 KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
973 (TDF_MIGRATING | TDF_RUNNING));
974 otd->td_migrate_gd = NULL;
975 otd->td_flags &= ~TDF_RUNNING;
976 lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
977 } else {
978 otd->td_flags &= ~TDF_RUNNING;
979 }
980#else
981 otd->td_flags &= ~TDF_RUNNING;
982#endif
983}
984
985/*
986 * Request that the target thread preempt the current thread. Preemption
987 * can only occur if our only critical section is the one that we were called
988 * with, the relative priority of the target thread is higher, and the target
989 * thread holds no tokens. This also only works if we are not holding any
990 * spinlocks (obviously).
991 *
992 * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION. Typically
993 * this is called via lwkt_schedule() through the td_preemptable callback.
994 * critcount is the managed critical priority that we should ignore in order
995 * to determine whether preemption is possible (aka usually just the crit
996 * priority of lwkt_schedule() itself).
997 *
998 * Preemption is typically limited to interrupt threads.
999 *
1000 * Operation works in a fairly straight-forward manner. The normal
1001 * scheduling code is bypassed and we switch directly to the target
1002 * thread. When the target thread attempts to block or switch away
1003 * code at the base of lwkt_switch() will switch directly back to our
1004 * thread. Our thread is able to retain whatever tokens it holds and
1005 * if the target needs one of them the target will switch back to us
1006 * and reschedule itself normally.
1007 */
1008void
1009lwkt_preempt(thread_t ntd, int critcount)
1010{
1011 struct globaldata *gd = mycpu;
1012 thread_t xtd;
1013 thread_t td;
1014 int save_gd_intr_nesting_level;
1015
1016 /*
1017 * The caller has put us in a critical section. We can only preempt
1018 * if the caller of the caller was not in a critical section (basically
1019 * a local interrupt), as determined by the 'critcount' parameter. We
1020 * also can't preempt if the caller is holding any spinlocks (even if
1021 * he isn't in a critical section). This also handles the tokens test.
1022 *
1023 * YYY The target thread must be in a critical section (else it must
1024 * inherit our critical section? I dunno yet).
1025 */
1026 KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
1027
1028 td = gd->gd_curthread;
1029 if (preempt_enable == 0) {
1030 ++preempt_miss;
1031 return;
1032 }
1033 if (ntd->td_pri <= td->td_pri) {
1034 ++preempt_miss;
1035 return;
1036 }
1037 if (td->td_critcount > critcount) {
1038 ++preempt_miss;
1039 return;
1040 }
1041#ifdef SMP
1042 if (td->td_cscount) {
1043 ++preempt_miss;
1044 return;
1045 }
1046 if (ntd->td_gd != gd) {
1047 ++preempt_miss;
1048 return;
1049 }
1050#endif
1051 /*
1052 * We don't have to check spinlocks here as they will also bump
1053 * td_critcount.
1054 *
1055 * Do not try to preempt if the target thread is holding any tokens.
1056 * We could try to acquire the tokens but this case is so rare there
1057 * is no need to support it.
1058 */
1059 KKASSERT(gd->gd_spinlocks_wr == 0);
1060
1061 if (TD_TOKS_HELD(ntd)) {
1062 ++preempt_miss;
1063 return;
1064 }
1065 if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
1066 ++preempt_weird;
1067 return;
1068 }
1069 if (ntd->td_preempted) {
1070 ++preempt_hit;
1071 return;
1072 }
1073 KKASSERT(gd->gd_processing_ipiq == 0);
1074
1075 /*
1076 * Since we are able to preempt the current thread, there is no need to
1077 * call need_lwkt_resched().
1078 *
1079 * We must temporarily clear gd_intr_nesting_level around the switch
1080 * since switchouts from the target thread are allowed (they will just
1081 * return to our thread), and since the target thread has its own stack.
1082 *
1083 * A preemption must switch back to the original thread, assert the
1084 * case.
1085 */
1086 ++preempt_hit;
1087 ntd->td_preempted = td;
1088 td->td_flags |= TDF_PREEMPT_LOCK;
1089 KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1090 save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
1091 gd->gd_intr_nesting_level = 0;
1092
1093 KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
1094 ntd->td_flags |= TDF_RUNNING;
1095 xtd = td->td_switch(ntd);
1096 KKASSERT(xtd == ntd);
1097 lwkt_switch_return(xtd);
1098 gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1099
1100 KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1101 ntd->td_preempted = NULL;
1102 td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1103}
1104
1105/*
1106 * Conditionally call splz() if gd_reqflags indicates work is pending.
1107 * This will work inside a critical section but not inside a hard code
1108 * section.
1109 *
1110 * (self contained on a per cpu basis)
1111 */
1112void
1113splz_check(void)
1114{
1115 globaldata_t gd = mycpu;
1116 thread_t td = gd->gd_curthread;
1117
1118 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1119 gd->gd_intr_nesting_level == 0 &&
1120 td->td_nest_count < 2)
1121 {
1122 splz();
1123 }
1124}
1125
1126/*
1127 * This version is integrated into crit_exit, reqflags has already
1128 * been tested but td_critcount has not.
1129 *
1130 * We only want to execute the splz() on the 1->0 transition of
1131 * critcount and not in a hard code section or if too deeply nested.
1132 */
1133void
1134lwkt_maybe_splz(thread_t td)
1135{
1136 globaldata_t gd = td->td_gd;
1137
1138 if (td->td_critcount == 0 &&
1139 gd->gd_intr_nesting_level == 0 &&
1140 td->td_nest_count < 2)
1141 {
1142 splz();
1143 }
1144}
1145
1146/*
1147 * Drivers which set up processing co-threads can call this function to
1148 * run the co-thread at a higher priority and to allow it to preempt
1149 * normal threads.
1150 */
1151void
1152lwkt_set_interrupt_support_thread(void)
1153{
1154 thread_t td = curthread;
1155
1156 lwkt_setpri_self(TDPRI_INT_SUPPORT);
1157 td->td_flags |= TDF_INTTHREAD;
1158 td->td_preemptable = lwkt_preempt;
1159}
1160
1161
1162/*
1163 * This function is used to negotiate a passive release of the current
1164 * process/lwp designation with the user scheduler, allowing the user
1165 * scheduler to schedule another user thread. The related kernel thread
1166 * (curthread) continues running in the released state.
1167 */
1168void
1169lwkt_passive_release(struct thread *td)
1170{
1171 struct lwp *lp = td->td_lwp;
1172
1173 td->td_release = NULL;
1174 lwkt_setpri_self(TDPRI_KERN_USER);
1175 lp->lwp_proc->p_usched->release_curproc(lp);
1176}
1177
1178
1179/*
1180 * This implements a LWKT yield, allowing a kernel thread to yield to other
1181 * kernel threads at the same or higher priority. This function can be
1182 * called in a tight loop and will typically only yield once per tick.
1183 *
1184 * Most kernel threads run at the same priority in order to allow equal
1185 * sharing.
1186 *
1187 * (self contained on a per cpu basis)
1188 */
1189void
1190lwkt_yield(void)
1191{
1192 globaldata_t gd = mycpu;
1193 thread_t td = gd->gd_curthread;
1194
1195 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1196 splz();
1197 if (lwkt_resched_wanted()) {
1198 lwkt_schedule_self(curthread);
1199 lwkt_switch();
1200 }
1201}
1202
1203/*
1204 * This yield is designed for kernel threads with a user context.
1205 *
1206 * The kernel acting on behalf of the user is potentially cpu-bound,
1207 * this function will efficiently allow other threads to run and also
1208 * switch to other processes by releasing.
1209 *
1210 * The lwkt_user_yield() function is designed to have very low overhead
1211 * if no yield is determined to be needed.
1212 */
1213void
1214lwkt_user_yield(void)
1215{
1216 globaldata_t gd = mycpu;
1217 thread_t td = gd->gd_curthread;
1218
1219 /*
1220 * Always run any pending interrupts in case we are in a critical
1221 * section.
1222 */
1223 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1224 splz();
1225
1226 /*
1227 * Switch (which forces a release) if another kernel thread needs
1228 * the cpu, if userland wants us to resched, or if our kernel
1229 * quantum has run out.
1230 */
1231 if (lwkt_resched_wanted() ||
1232 user_resched_wanted())
1233 {
1234 lwkt_switch();
1235 }
1236
1237#if 0
1238 /*
1239 * Reacquire the current process if we are released.
1240 *
1241 * XXX not implemented atm. The kernel may be holding locks and such,
1242 * so we want the thread to continue to receive cpu.
1243 */
1244 if (td->td_release == NULL && lp) {
1245 lp->lwp_proc->p_usched->acquire_curproc(lp);
1246 td->td_release = lwkt_passive_release;
1247 lwkt_setpri_self(TDPRI_USER_NORM);
1248 }
1249#endif
1250}
1251
1252/*
1253 * Generic schedule. Possibly schedule threads belonging to other cpus and
1254 * deal with threads that might be blocked on a wait queue.
1255 *
1256 * We have a little helper inline function which does additional work after
1257 * the thread has been enqueued, including dealing with preemption and
1258 * setting need_lwkt_resched() (which prevents the kernel from returning
1259 * to userland until it has processed higher priority threads).
1260 *
1261 * It is possible for this routine to be called after a failed _enqueue
1262 * (due to the target thread migrating, sleeping, or otherwise blocked).
1263 * We have to check that the thread is actually on the run queue!
1264 */
1265static __inline
1266void
1267_lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1268{
1269 if (ntd->td_flags & TDF_RUNQ) {
1270 if (ntd->td_preemptable) {
1271 ntd->td_preemptable(ntd, ccount); /* YYY +token */
1272 }
1273 }
1274}
1275
1276static __inline
1277void
1278_lwkt_schedule(thread_t td)
1279{
1280 globaldata_t mygd = mycpu;
1281
1282 KASSERT(td != &td->td_gd->gd_idlethread,
1283 ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1284 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1285 crit_enter_gd(mygd);
1286 KKASSERT(td->td_lwp == NULL ||
1287 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1288
1289 if (td == mygd->gd_curthread) {
1290 _lwkt_enqueue(td);
1291 } else {
1292 /*
1293 * If we own the thread, there is no race (since we are in a
1294 * critical section). If we do not own the thread there might
1295 * be a race but the target cpu will deal with it.
1296 */
1297#ifdef SMP
1298 if (td->td_gd == mygd) {
1299 _lwkt_enqueue(td);
1300 _lwkt_schedule_post(mygd, td, 1);
1301 } else {
1302 lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1303 }
1304#else
1305 _lwkt_enqueue(td);
1306 _lwkt_schedule_post(mygd, td, 1);
1307#endif
1308 }
1309 crit_exit_gd(mygd);
1310}
1311
1312void
1313lwkt_schedule(thread_t td)
1314{
1315 _lwkt_schedule(td);
1316}
1317
1318void
1319lwkt_schedule_noresched(thread_t td) /* XXX not impl */
1320{
1321 _lwkt_schedule(td);
1322}
1323
1324#ifdef SMP
1325
1326/*
1327 * When scheduled remotely if frame != NULL the IPIQ is being
1328 * run via doreti or an interrupt then preemption can be allowed.
1329 *
1330 * To allow preemption we have to drop the critical section so only
1331 * one is present in _lwkt_schedule_post.
1332 */
1333static void
1334lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1335{
1336 thread_t td = curthread;
1337 thread_t ntd = arg;
1338
1339 if (frame && ntd->td_preemptable) {
1340 crit_exit_noyield(td);
1341 _lwkt_schedule(ntd);
1342 crit_enter_quick(td);
1343 } else {
1344 _lwkt_schedule(ntd);
1345 }
1346}
1347
1348/*
1349 * Thread migration using a 'Pull' method. The thread may or may not be
1350 * the current thread. It MUST be descheduled and in a stable state.
1351 * lwkt_giveaway() must be called on the cpu owning the thread.
1352 *
1353 * At any point after lwkt_giveaway() is called, the target cpu may
1354 * 'pull' the thread by calling lwkt_acquire().
1355 *
1356 * We have to make sure the thread is not sitting on a per-cpu tsleep
1357 * queue or it will blow up when it moves to another cpu.
1358 *
1359 * MPSAFE - must be called under very specific conditions.
1360 */
1361void
1362lwkt_giveaway(thread_t td)
1363{
1364 globaldata_t gd = mycpu;
1365
1366 crit_enter_gd(gd);
1367 if (td->td_flags & TDF_TSLEEPQ)
1368 tsleep_remove(td);
1369 KKASSERT(td->td_gd == gd);
1370 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1371 td->td_flags |= TDF_MIGRATING;
1372 crit_exit_gd(gd);
1373}
1374
1375void
1376lwkt_acquire(thread_t td)
1377{
1378 globaldata_t gd;
1379 globaldata_t mygd;
1380 int retry = 10000000;
1381
1382 KKASSERT(td->td_flags & TDF_MIGRATING);
1383 gd = td->td_gd;
1384 mygd = mycpu;
1385 if (gd != mycpu) {
1386 cpu_lfence();
1387 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1388 crit_enter_gd(mygd);
1389 DEBUG_PUSH_INFO("lwkt_acquire");
1390 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1391#ifdef SMP
1392 lwkt_process_ipiq();
1393#endif
1394 cpu_lfence();
1395 if (--retry == 0) {
1396 kprintf("lwkt_acquire: stuck: td %p td->td_flags %08x\n",
1397 td, td->td_flags);
1398 retry = 10000000;
1399 }
1400 }
1401 DEBUG_POP_INFO();
1402 cpu_mfence();
1403 td->td_gd = mygd;
1404 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1405 td->td_flags &= ~TDF_MIGRATING;
1406 crit_exit_gd(mygd);
1407 } else {
1408 crit_enter_gd(mygd);
1409 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1410 td->td_flags &= ~TDF_MIGRATING;
1411 crit_exit_gd(mygd);
1412 }
1413}
1414
1415#endif
1416
1417/*
1418 * Generic deschedule. Descheduling threads other then your own should be
1419 * done only in carefully controlled circumstances. Descheduling is
1420 * asynchronous.
1421 *
1422 * This function may block if the cpu has run out of messages.
1423 */
1424void
1425lwkt_deschedule(thread_t td)
1426{
1427 crit_enter();
1428#ifdef SMP
1429 if (td == curthread) {
1430 _lwkt_dequeue(td);
1431 } else {
1432 if (td->td_gd == mycpu) {
1433 _lwkt_dequeue(td);
1434 } else {
1435 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1436 }
1437 }
1438#else
1439 _lwkt_dequeue(td);
1440#endif
1441 crit_exit();
1442}
1443
1444/*
1445 * Set the target thread's priority. This routine does not automatically
1446 * switch to a higher priority thread, LWKT threads are not designed for
1447 * continuous priority changes. Yield if you want to switch.
1448 */
1449void
1450lwkt_setpri(thread_t td, int pri)
1451{
1452 if (td->td_pri != pri) {
1453 KKASSERT(pri >= 0);
1454 crit_enter();
1455 if (td->td_flags & TDF_RUNQ) {
1456 KKASSERT(td->td_gd == mycpu);
1457 _lwkt_dequeue(td);
1458 td->td_pri = pri;
1459 _lwkt_enqueue(td);
1460 } else {
1461 td->td_pri = pri;
1462 }
1463 crit_exit();
1464 }
1465}
1466
1467/*
1468 * Set the initial priority for a thread prior to it being scheduled for
1469 * the first time. The thread MUST NOT be scheduled before or during
1470 * this call. The thread may be assigned to a cpu other then the current
1471 * cpu.
1472 *
1473 * Typically used after a thread has been created with TDF_STOPPREQ,
1474 * and before the thread is initially scheduled.
1475 */
1476void
1477lwkt_setpri_initial(thread_t td, int pri)
1478{
1479 KKASSERT(pri >= 0);
1480 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1481 td->td_pri = pri;
1482}
1483
1484void
1485lwkt_setpri_self(int pri)
1486{
1487 thread_t td = curthread;
1488
1489 KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1490 crit_enter();
1491 if (td->td_flags & TDF_RUNQ) {
1492 _lwkt_dequeue(td);
1493 td->td_pri = pri;
1494 _lwkt_enqueue(td);
1495 } else {
1496 td->td_pri = pri;
1497 }
1498 crit_exit();
1499}
1500
1501/*
1502 * hz tick scheduler clock for LWKT threads
1503 */
1504void
1505lwkt_schedulerclock(thread_t td)
1506{
1507 globaldata_t gd = td->td_gd;
1508 thread_t xtd;
1509
1510 if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1511 /*
1512 * If the current thread is at the head of the runq shift it to the
1513 * end of any equal-priority threads and request a LWKT reschedule
1514 * if it moved.
1515 */
1516 xtd = TAILQ_NEXT(td, td_threadq);
1517 if (xtd && xtd->td_pri == td->td_pri) {
1518 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1519 while (xtd && xtd->td_pri == td->td_pri)
1520 xtd = TAILQ_NEXT(xtd, td_threadq);
1521 if (xtd)
1522 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1523 else
1524 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1525 need_lwkt_resched();
1526 }
1527 } else {
1528 /*
1529 * If we scheduled a thread other than the one at the head of the
1530 * queue always request a reschedule every tick.
1531 */
1532 need_lwkt_resched();
1533 }
1534}
1535
1536/*
1537 * Migrate the current thread to the specified cpu.
1538 *
1539 * This is accomplished by descheduling ourselves from the current cpu
1540 * and setting td_migrate_gd. The lwkt_switch() code will detect that the
1541 * 'old' thread wants to migrate after it has been completely switched out
1542 * and will complete the migration.
1543 *
1544 * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1545 *
1546 * We must be sure to release our current process designation (if a user
1547 * process) before clearing out any tsleepq we are on because the release
1548 * code may re-add us.
1549 *
1550 * We must be sure to remove ourselves from the current cpu's tsleepq
1551 * before potentially moving to another queue. The thread can be on
1552 * a tsleepq due to a left-over tsleep_interlock().
1553 */
1554
1555void
1556lwkt_setcpu_self(globaldata_t rgd)
1557{
1558#ifdef SMP
1559 thread_t td = curthread;
1560
1561 if (td->td_gd != rgd) {
1562 crit_enter_quick(td);
1563
1564 if (td->td_release)
1565 td->td_release(td);
1566 if (td->td_flags & TDF_TSLEEPQ)
1567 tsleep_remove(td);
1568
1569 /*
1570 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1571 * trying to deschedule ourselves and switch away, then deschedule
1572 * ourself, remove us from tdallq, and set td_migrate_gd. Finally,
1573 * call lwkt_switch() to complete the operation.
1574 */
1575 td->td_flags |= TDF_MIGRATING;
1576 lwkt_deschedule_self(td);
1577 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1578 td->td_migrate_gd = rgd;
1579 lwkt_switch();
1580
1581 /*
1582 * We are now on the target cpu
1583 */
1584 KKASSERT(rgd == mycpu);
1585 TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1586 crit_exit_quick(td);
1587 }
1588#endif
1589}
1590
1591void
1592lwkt_migratecpu(int cpuid)
1593{
1594#ifdef SMP
1595 globaldata_t rgd;
1596
1597 rgd = globaldata_find(cpuid);
1598 lwkt_setcpu_self(rgd);
1599#endif
1600}
1601
1602#ifdef SMP
1603/*
1604 * Remote IPI for cpu migration (called while in a critical section so we
1605 * do not have to enter another one).
1606 *
1607 * The thread (td) has already been completely descheduled from the
1608 * originating cpu and we can simply assert the case. The thread is
1609 * assigned to the new cpu and enqueued.
1610 *
1611 * The thread will re-add itself to tdallq when it resumes execution.
1612 */
1613static void
1614lwkt_setcpu_remote(void *arg)
1615{
1616 thread_t td = arg;
1617 globaldata_t gd = mycpu;
1618
1619 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1620 td->td_gd = gd;
1621 cpu_mfence();
1622 td->td_flags &= ~TDF_MIGRATING;
1623 KKASSERT(td->td_migrate_gd == NULL);
1624 KKASSERT(td->td_lwp == NULL ||
1625 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1626 _lwkt_enqueue(td);
1627}
1628#endif
1629
1630struct lwp *
1631lwkt_preempted_proc(void)
1632{
1633 thread_t td = curthread;
1634 while (td->td_preempted)
1635 td = td->td_preempted;
1636 return(td->td_lwp);
1637}
1638
1639/*
1640 * Create a kernel process/thread/whatever. It shares it's address space
1641 * with proc0 - ie: kernel only.
1642 *
1643 * If the cpu is not specified one will be selected. In the future
1644 * specifying a cpu of -1 will enable kernel thread migration between
1645 * cpus.
1646 */
1647int
1648lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1649 thread_t template, int tdflags, int cpu, const char *fmt, ...)
1650{
1651 thread_t td;
1652 __va_list ap;
1653
1654 td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1655 tdflags);
1656 if (tdp)
1657 *tdp = td;
1658 cpu_set_thread_handler(td, lwkt_exit, func, arg);
1659
1660 /*
1661 * Set up arg0 for 'ps' etc
1662 */
1663 __va_start(ap, fmt);
1664 kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1665 __va_end(ap);
1666
1667 /*
1668 * Schedule the thread to run
1669 */
1670 if (td->td_flags & TDF_NOSTART)
1671 td->td_flags &= ~TDF_NOSTART;
1672 else
1673 lwkt_schedule(td);
1674 return 0;
1675}
1676
1677/*
1678 * Destroy an LWKT thread. Warning! This function is not called when
1679 * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1680 * uses a different reaping mechanism.
1681 */
1682void
1683lwkt_exit(void)
1684{
1685 thread_t td = curthread;
1686 thread_t std;
1687 globaldata_t gd;
1688
1689 /*
1690 * Do any cleanup that might block here
1691 */
1692 if (td->td_flags & TDF_VERBOSE)
1693 kprintf("kthread %p %s has exited\n", td, td->td_comm);
1694 caps_exit(td);
1695 biosched_done(td);
1696 dsched_exit_thread(td);
1697
1698 /*
1699 * Get us into a critical section to interlock gd_freetd and loop
1700 * until we can get it freed.
1701 *
1702 * We have to cache the current td in gd_freetd because objcache_put()ing
1703 * it would rip it out from under us while our thread is still active.
1704 *
1705 * We are the current thread so of course our own TDF_RUNNING bit will
1706 * be set, so unlike the lwp reap code we don't wait for it to clear.
1707 */
1708 gd = mycpu;
1709 crit_enter_quick(td);
1710 for (;;) {
1711 if (td->td_refs) {
1712 tsleep(td, 0, "tdreap", 1);
1713 continue;
1714 }
1715 if ((std = gd->gd_freetd) != NULL) {
1716 KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1717 gd->gd_freetd = NULL;
1718 objcache_put(thread_cache, std);
1719 continue;
1720 }
1721 break;
1722 }
1723
1724 /*
1725 * Remove thread resources from kernel lists and deschedule us for
1726 * the last time. We cannot block after this point or we may end
1727 * up with a stale td on the tsleepq.
1728 *
1729 * None of this may block, the critical section is the only thing
1730 * protecting tdallq and the only thing preventing new lwkt_hold()
1731 * thread refs now.
1732 */
1733 if (td->td_flags & TDF_TSLEEPQ)
1734 tsleep_remove(td);
1735 lwkt_deschedule_self(td);
1736 lwkt_remove_tdallq(td);
1737 KKASSERT(td->td_refs == 0);
1738
1739 /*
1740 * Final cleanup
1741 */
1742 KKASSERT(gd->gd_freetd == NULL);
1743 if (td->td_flags & TDF_ALLOCATED_THREAD)
1744 gd->gd_freetd = td;
1745 cpu_thread_exit();
1746}
1747
1748void
1749lwkt_remove_tdallq(thread_t td)
1750{
1751 KKASSERT(td->td_gd == mycpu);
1752 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1753}
1754
1755/*
1756 * Code reduction and branch prediction improvements. Call/return
1757 * overhead on modern cpus often degenerates into 0 cycles due to
1758 * the cpu's branch prediction hardware and return pc cache. We
1759 * can take advantage of this by not inlining medium-complexity
1760 * functions and we can also reduce the branch prediction impact
1761 * by collapsing perfectly predictable branches into a single
1762 * procedure instead of duplicating it.
1763 *
1764 * Is any of this noticeable? Probably not, so I'll take the
1765 * smaller code size.
1766 */
1767void
1768crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1769{
1770 _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1771}
1772
1773void
1774crit_panic(void)
1775{
1776 thread_t td = curthread;
1777 int lcrit = td->td_critcount;
1778
1779 td->td_critcount = 0;
1780 panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1781 /* NOT REACHED */
1782}
1783
1784#ifdef SMP
1785
1786/*
1787 * Called from debugger/panic on cpus which have been stopped. We must still
1788 * process the IPIQ while stopped, even if we were stopped while in a critical
1789 * section (XXX).
1790 *
1791 * If we are dumping also try to process any pending interrupts. This may
1792 * or may not work depending on the state of the cpu at the point it was
1793 * stopped.
1794 */
1795void
1796lwkt_smp_stopped(void)
1797{
1798 globaldata_t gd = mycpu;
1799
1800 crit_enter_gd(gd);
1801 if (dumping) {
1802 lwkt_process_ipiq();
1803 splz();
1804 } else {
1805 lwkt_process_ipiq();
1806 }
1807 crit_exit_gd(gd);
1808}
1809
1810#endif