Silence warnings regarding yyunput being defined and never used.
[dragonfly.git] / sys / platform / pc32 / i386 / machdep.c
... / ...
CommitLineData
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
38 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
39 * $DragonFly: src/sys/platform/pc32/i386/machdep.c,v 1.95 2006/09/03 17:43:59 dillon Exp $
40 */
41
42#include "use_apm.h"
43#include "use_ether.h"
44#include "use_npx.h"
45#include "use_isa.h"
46#include "opt_atalk.h"
47#include "opt_compat.h"
48#include "opt_cpu.h"
49#include "opt_ddb.h"
50#include "opt_directio.h"
51#include "opt_inet.h"
52#include "opt_ipx.h"
53#include "opt_maxmem.h"
54#include "opt_msgbuf.h"
55#include "opt_perfmon.h"
56#include "opt_swap.h"
57#include "opt_userconfig.h"
58
59#include <sys/param.h>
60#include <sys/systm.h>
61#include <sys/sysproto.h>
62#include <sys/signalvar.h>
63#include <sys/kernel.h>
64#include <sys/linker.h>
65#include <sys/malloc.h>
66#include <sys/proc.h>
67#include <sys/buf.h>
68#include <sys/reboot.h>
69#include <sys/mbuf.h>
70#include <sys/msgbuf.h>
71#include <sys/sysent.h>
72#include <sys/sysctl.h>
73#include <sys/vmmeter.h>
74#include <sys/bus.h>
75#include <sys/upcall.h>
76#include <sys/usched.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80#include <sys/lock.h>
81#include <vm/vm_kern.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_map.h>
85#include <vm/vm_pager.h>
86#include <vm/vm_extern.h>
87
88#include <sys/thread2.h>
89
90#include <sys/user.h>
91#include <sys/exec.h>
92#include <sys/cons.h>
93
94#include <ddb/ddb.h>
95
96#include <machine/cpu.h>
97#include <machine/reg.h>
98#include <machine/clock.h>
99#include <machine/specialreg.h>
100#include <machine/bootinfo.h>
101#include <machine/ipl.h>
102#include <machine/md_var.h>
103#include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
104#include <machine/globaldata.h> /* CPU_prvspace */
105#include <machine/smp.h>
106#ifdef PERFMON
107#include <machine/perfmon.h>
108#endif
109#include <machine/cputypes.h>
110
111#ifdef OLD_BUS_ARCH
112#include <bus/isa/i386/isa_device.h>
113#endif
114#include <i386/isa/intr_machdep.h>
115#include <bus/isa/rtc.h>
116#include <machine/vm86.h>
117#include <sys/random.h>
118#include <sys/ptrace.h>
119#include <machine/sigframe.h>
120
121#define PHYSMAP_ENTRIES 10
122
123extern void init386 (int first);
124extern void dblfault_handler (void);
125
126extern void printcpuinfo(void); /* XXX header file */
127extern void finishidentcpu(void);
128extern void panicifcpuunsupported(void);
129extern void initializecpu(void);
130
131static void cpu_startup (void *);
132#ifndef CPU_DISABLE_SSE
133static void set_fpregs_xmm (struct save87 *, struct savexmm *);
134static void fill_fpregs_xmm (struct savexmm *, struct save87 *);
135#endif /* CPU_DISABLE_SSE */
136#ifdef DIRECTIO
137extern void ffs_rawread_setup(void);
138#endif /* DIRECTIO */
139static void init_locks(void);
140
141SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
142
143int _udatasel, _ucodesel;
144u_int atdevbase;
145#ifdef SMP
146int64_t tsc_offsets[MAXCPU];
147#else
148int64_t tsc_offsets[1];
149#endif
150
151#if defined(SWTCH_OPTIM_STATS)
152extern int swtch_optim_stats;
153SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
154 CTLFLAG_RD, &swtch_optim_stats, 0, "");
155SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
156 CTLFLAG_RD, &tlb_flush_count, 0, "");
157#endif
158
159int physmem = 0;
160int cold = 1;
161
162static int
163sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
164{
165 int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
166 return (error);
167}
168
169SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
170 0, 0, sysctl_hw_physmem, "IU", "");
171
172static int
173sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
174{
175 int error = sysctl_handle_int(oidp, 0,
176 ctob(physmem - vmstats.v_wire_count), req);
177 return (error);
178}
179
180SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
181 0, 0, sysctl_hw_usermem, "IU", "");
182
183static int
184sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
185{
186 int error = sysctl_handle_int(oidp, 0,
187 i386_btop(avail_end - avail_start), req);
188 return (error);
189}
190
191SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
192 0, 0, sysctl_hw_availpages, "I", "");
193
194static int
195sysctl_machdep_msgbuf(SYSCTL_HANDLER_ARGS)
196{
197 int error;
198
199 /* Unwind the buffer, so that it's linear (possibly starting with
200 * some initial nulls).
201 */
202 error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
203 msgbufp->msg_size-msgbufp->msg_bufr,req);
204 if(error) return(error);
205 if(msgbufp->msg_bufr>0) {
206 error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
207 msgbufp->msg_bufr,req);
208 }
209 return(error);
210}
211
212SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
213 0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
214
215static int msgbuf_clear;
216
217static int
218sysctl_machdep_msgbuf_clear(SYSCTL_HANDLER_ARGS)
219{
220 int error;
221 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
222 req);
223 if (!error && req->newptr) {
224 /* Clear the buffer and reset write pointer */
225 bzero(msgbufp->msg_ptr,msgbufp->msg_size);
226 msgbufp->msg_bufr=msgbufp->msg_bufx=0;
227 msgbuf_clear=0;
228 }
229 return (error);
230}
231
232SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
233 &msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
234 "Clear kernel message buffer");
235
236int bootverbose = 0;
237vm_paddr_t Maxmem = 0;
238long dumplo;
239
240vm_paddr_t phys_avail[PHYSMAP_ENTRIES*2+2];
241
242static vm_offset_t buffer_sva, buffer_eva;
243vm_offset_t clean_sva, clean_eva;
244static vm_offset_t pager_sva, pager_eva;
245static struct trapframe proc0_tf;
246
247static void
248cpu_startup(dummy)
249 void *dummy;
250{
251 caddr_t v;
252 vm_offset_t minaddr;
253 vm_offset_t maxaddr;
254 vm_size_t size = 0;
255 int firstaddr;
256
257 if (boothowto & RB_VERBOSE)
258 bootverbose++;
259
260 /*
261 * Good {morning,afternoon,evening,night}.
262 */
263 printf("%s", version);
264 startrtclock();
265 printcpuinfo();
266 panicifcpuunsupported();
267#ifdef PERFMON
268 perfmon_init();
269#endif
270 printf("real memory = %llu (%lluK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
271 /*
272 * Display any holes after the first chunk of extended memory.
273 */
274 if (bootverbose) {
275 int indx;
276
277 printf("Physical memory chunk(s):\n");
278 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
279 vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
280
281 printf("0x%08llx - 0x%08llx, %llu bytes (%llu pages)\n",
282 phys_avail[indx], phys_avail[indx + 1] - 1, size1,
283 size1 / PAGE_SIZE);
284 }
285 }
286
287 /*
288 * Allocate space for system data structures.
289 * The first available kernel virtual address is in "v".
290 * As pages of kernel virtual memory are allocated, "v" is incremented.
291 * As pages of memory are allocated and cleared,
292 * "firstaddr" is incremented.
293 * An index into the kernel page table corresponding to the
294 * virtual memory address maintained in "v" is kept in "mapaddr".
295 */
296
297 /*
298 * Make two passes. The first pass calculates how much memory is
299 * needed and allocates it. The second pass assigns virtual
300 * addresses to the various data structures.
301 */
302 firstaddr = 0;
303again:
304 v = (caddr_t)firstaddr;
305
306#define valloc(name, type, num) \
307 (name) = (type *)v; v = (caddr_t)((name)+(num))
308#define valloclim(name, type, num, lim) \
309 (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
310
311 /*
312 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
313 * For the first 64MB of ram nominally allocate sufficient buffers to
314 * cover 1/4 of our ram. Beyond the first 64MB allocate additional
315 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing
316 * the buffer cache we limit the eventual kva reservation to
317 * maxbcache bytes.
318 *
319 * factor represents the 1/4 x ram conversion.
320 */
321 if (nbuf == 0) {
322 int factor = 4 * BKVASIZE / 1024;
323 int kbytes = physmem * (PAGE_SIZE / 1024);
324
325 nbuf = 50;
326 if (kbytes > 4096)
327 nbuf += min((kbytes - 4096) / factor, 65536 / factor);
328 if (kbytes > 65536)
329 nbuf += (kbytes - 65536) * 2 / (factor * 5);
330 if (maxbcache && nbuf > maxbcache / BKVASIZE)
331 nbuf = maxbcache / BKVASIZE;
332 }
333
334 /*
335 * Do not allow the buffer_map to be more then 1/2 the size of the
336 * kernel_map.
337 */
338 if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
339 (BKVASIZE * 2)) {
340 nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
341 (BKVASIZE * 2);
342 printf("Warning: nbufs capped at %d\n", nbuf);
343 }
344
345 nswbuf = max(min(nbuf/4, 256), 16);
346#ifdef NSWBUF_MIN
347 if (nswbuf < NSWBUF_MIN)
348 nswbuf = NSWBUF_MIN;
349#endif
350#ifdef DIRECTIO
351 ffs_rawread_setup();
352#endif
353
354 valloc(swbuf, struct buf, nswbuf);
355 valloc(buf, struct buf, nbuf);
356
357 /*
358 * End of first pass, size has been calculated so allocate memory
359 */
360 if (firstaddr == 0) {
361 size = (vm_size_t)(v - firstaddr);
362 firstaddr = (int)kmem_alloc(kernel_map, round_page(size));
363 if (firstaddr == 0)
364 panic("startup: no room for tables");
365 goto again;
366 }
367
368 /*
369 * End of second pass, addresses have been assigned
370 */
371 if ((vm_size_t)(v - firstaddr) != size)
372 panic("startup: table size inconsistency");
373
374 clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva,
375 (nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
376 buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva,
377 (nbuf*BKVASIZE));
378 buffer_map->system_map = 1;
379 pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva,
380 (nswbuf*MAXPHYS) + pager_map_size);
381 pager_map->system_map = 1;
382 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
383 (16*(ARG_MAX+(PAGE_SIZE*3))));
384
385#if defined(USERCONFIG)
386 userconfig();
387 cninit(); /* the preferred console may have changed */
388#endif
389
390 printf("avail memory = %u (%uK bytes)\n", ptoa(vmstats.v_free_count),
391 ptoa(vmstats.v_free_count) / 1024);
392
393 /*
394 * Set up buffers, so they can be used to read disk labels.
395 */
396 bufinit();
397 vm_pager_bufferinit();
398
399#ifdef SMP
400 /*
401 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
402 */
403 mp_start(); /* fire up the APs and APICs */
404 mp_announce();
405#endif /* SMP */
406 cpu_setregs();
407}
408
409/*
410 * Send an interrupt to process.
411 *
412 * Stack is set up to allow sigcode stored
413 * at top to call routine, followed by kcall
414 * to sigreturn routine below. After sigreturn
415 * resets the signal mask, the stack, and the
416 * frame pointer, it returns to the user
417 * specified pc, psl.
418 */
419void
420sendsig(catcher, sig, mask, code)
421 sig_t catcher;
422 int sig;
423 sigset_t *mask;
424 u_long code;
425{
426 struct lwp *lp = curthread->td_lwp;
427 struct proc *p = lp->lwp_proc;
428 struct trapframe *regs;
429 struct sigacts *psp = p->p_sigacts;
430 struct sigframe sf, *sfp;
431 int oonstack;
432
433 regs = lp->lwp_md.md_regs;
434 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
435
436 /* save user context */
437 bzero(&sf, sizeof(struct sigframe));
438 sf.sf_uc.uc_sigmask = *mask;
439 sf.sf_uc.uc_stack = lp->lwp_sigstk;
440 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
441 sf.sf_uc.uc_mcontext.mc_gs = rgs();
442 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(struct trapframe));
443
444 /* Allocate and validate space for the signal handler context. */
445 /* XXX lwp flags */
446 if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
447 SIGISMEMBER(psp->ps_sigonstack, sig)) {
448 sfp = (struct sigframe *)(lp->lwp_sigstk.ss_sp +
449 lp->lwp_sigstk.ss_size - sizeof(struct sigframe));
450 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
451 }
452 else
453 sfp = (struct sigframe *)regs->tf_esp - 1;
454
455 /* Translate the signal is appropriate */
456 if (p->p_sysent->sv_sigtbl) {
457 if (sig <= p->p_sysent->sv_sigsize)
458 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
459 }
460
461 /* Build the argument list for the signal handler. */
462 sf.sf_signum = sig;
463 sf.sf_ucontext = (register_t)&sfp->sf_uc;
464 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
465 /* Signal handler installed with SA_SIGINFO. */
466 sf.sf_siginfo = (register_t)&sfp->sf_si;
467 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
468
469 /* fill siginfo structure */
470 sf.sf_si.si_signo = sig;
471 sf.sf_si.si_code = code;
472 sf.sf_si.si_addr = (void*)regs->tf_err;
473 }
474 else {
475 /* Old FreeBSD-style arguments. */
476 sf.sf_siginfo = code;
477 sf.sf_addr = regs->tf_err;
478 sf.sf_ahu.sf_handler = catcher;
479 }
480
481 /*
482 * If we're a vm86 process, we want to save the segment registers.
483 * We also change eflags to be our emulated eflags, not the actual
484 * eflags.
485 */
486 if (regs->tf_eflags & PSL_VM) {
487 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
488 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
489
490 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
491 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
492 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
493 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
494
495 if (vm86->vm86_has_vme == 0)
496 sf.sf_uc.uc_mcontext.mc_eflags =
497 (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
498 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
499
500 /*
501 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
502 * syscalls made by the signal handler. This just avoids
503 * wasting time for our lazy fixup of such faults. PSL_NT
504 * does nothing in vm86 mode, but vm86 programs can set it
505 * almost legitimately in probes for old cpu types.
506 */
507 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
508 }
509
510 /*
511 * Copy the sigframe out to the user's stack.
512 */
513 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
514 /*
515 * Something is wrong with the stack pointer.
516 * ...Kill the process.
517 */
518 sigexit(p, SIGILL);
519 }
520
521 regs->tf_esp = (int)sfp;
522 regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
523 regs->tf_eflags &= ~PSL_T;
524 regs->tf_cs = _ucodesel;
525 regs->tf_ds = _udatasel;
526 regs->tf_es = _udatasel;
527 regs->tf_fs = _udatasel;
528 regs->tf_ss = _udatasel;
529}
530
531/*
532 * sigreturn(ucontext_t *sigcntxp)
533 *
534 * System call to cleanup state after a signal
535 * has been taken. Reset signal mask and
536 * stack state from context left by sendsig (above).
537 * Return to previous pc and psl as specified by
538 * context left by sendsig. Check carefully to
539 * make sure that the user has not modified the
540 * state to gain improper privileges.
541 */
542#define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
543#define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
544
545int
546sys_sigreturn(struct sigreturn_args *uap)
547{
548 struct lwp *lp = curthread->td_lwp;
549 struct trapframe *regs;
550 ucontext_t *ucp;
551 int cs, eflags;
552
553 ucp = uap->sigcntxp;
554
555 if (!useracc((caddr_t)ucp, sizeof(ucontext_t), VM_PROT_READ))
556 return (EFAULT);
557
558 regs = lp->lwp_md.md_regs;
559 eflags = ucp->uc_mcontext.mc_eflags;
560
561 if (eflags & PSL_VM) {
562 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
563 struct vm86_kernel *vm86;
564
565 /*
566 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
567 * set up the vm86 area, and we can't enter vm86 mode.
568 */
569 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
570 return (EINVAL);
571 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
572 if (vm86->vm86_inited == 0)
573 return (EINVAL);
574
575 /* go back to user mode if both flags are set */
576 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
577 trapsignal(lp->lwp_proc, SIGBUS, 0);
578
579 if (vm86->vm86_has_vme) {
580 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
581 (eflags & VME_USERCHANGE) | PSL_VM;
582 } else {
583 vm86->vm86_eflags = eflags; /* save VIF, VIP */
584 eflags = (tf->tf_eflags & ~VM_USERCHANGE) | (eflags & VM_USERCHANGE) | PSL_VM;
585 }
586 bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
587 tf->tf_eflags = eflags;
588 tf->tf_vm86_ds = tf->tf_ds;
589 tf->tf_vm86_es = tf->tf_es;
590 tf->tf_vm86_fs = tf->tf_fs;
591 tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
592 tf->tf_ds = _udatasel;
593 tf->tf_es = _udatasel;
594 tf->tf_fs = _udatasel;
595 } else {
596 /*
597 * Don't allow users to change privileged or reserved flags.
598 */
599 /*
600 * XXX do allow users to change the privileged flag PSL_RF.
601 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
602 * should sometimes set it there too. tf_eflags is kept in
603 * the signal context during signal handling and there is no
604 * other place to remember it, so the PSL_RF bit may be
605 * corrupted by the signal handler without us knowing.
606 * Corruption of the PSL_RF bit at worst causes one more or
607 * one less debugger trap, so allowing it is fairly harmless.
608 */
609 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
610 printf("sigreturn: eflags = 0x%x\n", eflags);
611 return(EINVAL);
612 }
613
614 /*
615 * Don't allow users to load a valid privileged %cs. Let the
616 * hardware check for invalid selectors, excess privilege in
617 * other selectors, invalid %eip's and invalid %esp's.
618 */
619 cs = ucp->uc_mcontext.mc_cs;
620 if (!CS_SECURE(cs)) {
621 printf("sigreturn: cs = 0x%x\n", cs);
622 trapsignal(lp->lwp_proc, SIGBUS, T_PROTFLT);
623 return(EINVAL);
624 }
625 bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(struct trapframe));
626 }
627
628 if (ucp->uc_mcontext.mc_onstack & 1)
629 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
630 else
631 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
632
633 lp->lwp_sigmask = ucp->uc_sigmask;
634 SIG_CANTMASK(lp->lwp_sigmask);
635 return(EJUSTRETURN);
636}
637
638/*
639 * Stack frame on entry to function. %eax will contain the function vector,
640 * %ecx will contain the function data. flags, ecx, and eax will have
641 * already been pushed on the stack.
642 */
643struct upc_frame {
644 register_t eax;
645 register_t ecx;
646 register_t edx;
647 register_t flags;
648 register_t oldip;
649};
650
651void
652sendupcall(struct vmupcall *vu, int morepending)
653{
654 struct lwp *lp = curthread->td_lwp;
655 struct trapframe *regs;
656 struct upcall upcall;
657 struct upc_frame upc_frame;
658 int crit_count = 0;
659
660 /*
661 * Get the upcall data structure
662 */
663 if (copyin(lp->lwp_upcall, &upcall, sizeof(upcall)) ||
664 copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int))
665 ) {
666 vu->vu_pending = 0;
667 printf("bad upcall address\n");
668 return;
669 }
670
671 /*
672 * If the data structure is already marked pending or has a critical
673 * section count, mark the data structure as pending and return
674 * without doing an upcall. vu_pending is left set.
675 */
676 if (upcall.upc_pending || crit_count >= vu->vu_pending) {
677 if (upcall.upc_pending < vu->vu_pending) {
678 upcall.upc_pending = vu->vu_pending;
679 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
680 sizeof(upcall.upc_pending));
681 }
682 return;
683 }
684
685 /*
686 * We can run this upcall now, clear vu_pending.
687 *
688 * Bump our critical section count and set or clear the
689 * user pending flag depending on whether more upcalls are
690 * pending. The user will be responsible for calling
691 * upc_dispatch(-1) to process remaining upcalls.
692 */
693 vu->vu_pending = 0;
694 upcall.upc_pending = morepending;
695 crit_count += TDPRI_CRIT;
696 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
697 sizeof(upcall.upc_pending));
698 copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff,
699 sizeof(int));
700
701 /*
702 * Construct a stack frame and issue the upcall
703 */
704 regs = lp->lwp_md.md_regs;
705 upc_frame.eax = regs->tf_eax;
706 upc_frame.ecx = regs->tf_ecx;
707 upc_frame.edx = regs->tf_edx;
708 upc_frame.flags = regs->tf_eflags;
709 upc_frame.oldip = regs->tf_eip;
710 if (copyout(&upc_frame, (void *)(regs->tf_esp - sizeof(upc_frame)),
711 sizeof(upc_frame)) != 0) {
712 printf("bad stack on upcall\n");
713 } else {
714 regs->tf_eax = (register_t)vu->vu_func;
715 regs->tf_ecx = (register_t)vu->vu_data;
716 regs->tf_edx = (register_t)lp->lwp_upcall;
717 regs->tf_eip = (register_t)vu->vu_ctx;
718 regs->tf_esp -= sizeof(upc_frame);
719 }
720}
721
722/*
723 * fetchupcall occurs in the context of a system call, which means that
724 * we have to return EJUSTRETURN in order to prevent eax and edx from
725 * being overwritten by the syscall return value.
726 *
727 * if vu is not NULL we return the new context in %edx, the new data in %ecx,
728 * and the function pointer in %eax.
729 */
730int
731fetchupcall (struct vmupcall *vu, int morepending, void *rsp)
732{
733 struct upc_frame upc_frame;
734 struct lwp *lp = curthread->td_lwp;
735 struct trapframe *regs;
736 int error;
737 struct upcall upcall;
738 int crit_count;
739
740 regs = lp->lwp_md.md_regs;
741
742 error = copyout(&morepending, &lp->lwp_upcall->upc_pending, sizeof(int));
743 if (error == 0) {
744 if (vu) {
745 /*
746 * This jumps us to the next ready context.
747 */
748 vu->vu_pending = 0;
749 error = copyin(lp->lwp_upcall, &upcall, sizeof(upcall));
750 crit_count = 0;
751 if (error == 0)
752 error = copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int));
753 crit_count += TDPRI_CRIT;
754 if (error == 0)
755 error = copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff, sizeof(int));
756 regs->tf_eax = (register_t)vu->vu_func;
757 regs->tf_ecx = (register_t)vu->vu_data;
758 regs->tf_edx = (register_t)lp->lwp_upcall;
759 regs->tf_eip = (register_t)vu->vu_ctx;
760 regs->tf_esp = (register_t)rsp;
761 } else {
762 /*
763 * This returns us to the originally interrupted code.
764 */
765 error = copyin(rsp, &upc_frame, sizeof(upc_frame));
766 regs->tf_eax = upc_frame.eax;
767 regs->tf_ecx = upc_frame.ecx;
768 regs->tf_edx = upc_frame.edx;
769 regs->tf_eflags = (regs->tf_eflags & ~PSL_USERCHANGE) |
770 (upc_frame.flags & PSL_USERCHANGE);
771 regs->tf_eip = upc_frame.oldip;
772 regs->tf_esp = (register_t)((char *)rsp + sizeof(upc_frame));
773 }
774 }
775 if (error == 0)
776 error = EJUSTRETURN;
777 return(error);
778}
779
780/*
781 * Machine dependent boot() routine
782 *
783 * I haven't seen anything to put here yet
784 * Possibly some stuff might be grafted back here from boot()
785 */
786void
787cpu_boot(int howto)
788{
789}
790
791/*
792 * Shutdown the CPU as much as possible
793 */
794void
795cpu_halt(void)
796{
797 for (;;)
798 __asm__ ("hlt");
799}
800
801/*
802 * cpu_idle() represents the idle LWKT. You cannot return from this function
803 * (unless you want to blow things up!). Instead we look for runnable threads
804 * and loop or halt as appropriate. Giant is not held on entry to the thread.
805 *
806 * The main loop is entered with a critical section held, we must release
807 * the critical section before doing anything else. lwkt_switch() will
808 * check for pending interrupts due to entering and exiting its own
809 * critical section.
810 *
811 * Note on cpu_idle_hlt: On an SMP system we rely on a scheduler IPI
812 * to wake a HLTed cpu up. However, there are cases where the idlethread
813 * will be entered with the possibility that no IPI will occur and in such
814 * cases lwkt_switch() sets TDF_IDLE_NOHLT.
815 */
816static int cpu_idle_hlt = 1;
817static int cpu_idle_hltcnt;
818static int cpu_idle_spincnt;
819SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
820 &cpu_idle_hlt, 0, "Idle loop HLT enable");
821SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
822 &cpu_idle_hltcnt, 0, "Idle loop entry halts");
823SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
824 &cpu_idle_spincnt, 0, "Idle loop entry spins");
825
826static void
827cpu_idle_default_hook(void)
828{
829 /*
830 * We must guarentee that hlt is exactly the instruction
831 * following the sti.
832 */
833 __asm __volatile("sti; hlt");
834}
835
836/* Other subsystems (e.g., ACPI) can hook this later. */
837void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
838
839void
840cpu_idle(void)
841{
842 struct thread *td = curthread;
843
844 crit_exit();
845 KKASSERT(td->td_pri < TDPRI_CRIT);
846 for (;;) {
847 /*
848 * See if there are any LWKTs ready to go.
849 */
850 lwkt_switch();
851
852 /*
853 * If we are going to halt call splz unconditionally after
854 * CLIing to catch any interrupt races. Note that we are
855 * at SPL0 and interrupts are enabled.
856 */
857 if (cpu_idle_hlt && !lwkt_runnable() &&
858 (td->td_flags & TDF_IDLE_NOHLT) == 0) {
859 __asm __volatile("cli");
860 splz();
861 if (!lwkt_runnable())
862 cpu_idle_hook();
863#ifdef SMP
864 else
865 __asm __volatile("pause");
866#endif
867 ++cpu_idle_hltcnt;
868 } else {
869 td->td_flags &= ~TDF_IDLE_NOHLT;
870 splz();
871#ifdef SMP
872 __asm __volatile("sti; pause");
873#else
874 __asm __volatile("sti");
875#endif
876 ++cpu_idle_spincnt;
877 }
878 }
879}
880
881/*
882 * Clear registers on exec
883 */
884void
885setregs(p, entry, stack, ps_strings)
886 struct proc *p;
887 u_long entry;
888 u_long stack;
889 u_long ps_strings;
890{
891 struct trapframe *regs = p->p_md.md_regs;
892 struct pcb *pcb = p->p_thread->td_pcb;
893
894 /* Reset pc->pcb_gs and %gs before possibly invalidating it. */
895 pcb->pcb_gs = _udatasel;
896 load_gs(_udatasel);
897
898 /* was i386_user_cleanup() in NetBSD */
899 user_ldt_free(pcb);
900
901 bzero((char *)regs, sizeof(struct trapframe));
902 regs->tf_eip = entry;
903 regs->tf_esp = stack;
904 regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
905 regs->tf_ss = _udatasel;
906 regs->tf_ds = _udatasel;
907 regs->tf_es = _udatasel;
908 regs->tf_fs = _udatasel;
909 regs->tf_cs = _ucodesel;
910
911 /* PS_STRINGS value for BSD/OS binaries. It is 0 for non-BSD/OS. */
912 regs->tf_ebx = ps_strings;
913
914 /*
915 * Reset the hardware debug registers if they were in use.
916 * They won't have any meaning for the newly exec'd process.
917 */
918 if (pcb->pcb_flags & PCB_DBREGS) {
919 pcb->pcb_dr0 = 0;
920 pcb->pcb_dr1 = 0;
921 pcb->pcb_dr2 = 0;
922 pcb->pcb_dr3 = 0;
923 pcb->pcb_dr6 = 0;
924 pcb->pcb_dr7 = 0;
925 if (pcb == curthread->td_pcb) {
926 /*
927 * Clear the debug registers on the running
928 * CPU, otherwise they will end up affecting
929 * the next process we switch to.
930 */
931 reset_dbregs();
932 }
933 pcb->pcb_flags &= ~PCB_DBREGS;
934 }
935
936 /*
937 * Initialize the math emulator (if any) for the current process.
938 * Actually, just clear the bit that says that the emulator has
939 * been initialized. Initialization is delayed until the process
940 * traps to the emulator (if it is done at all) mainly because
941 * emulators don't provide an entry point for initialization.
942 */
943 p->p_thread->td_pcb->pcb_flags &= ~FP_SOFTFP;
944
945 /*
946 * note: do not set CR0_TS here. npxinit() must do it after clearing
947 * gd_npxthread. Otherwise a preemptive interrupt thread may panic
948 * in npxdna().
949 */
950 crit_enter();
951 load_cr0(rcr0() | CR0_MP);
952
953#if NNPX > 0
954 /* Initialize the npx (if any) for the current process. */
955 npxinit(__INITIAL_NPXCW__);
956#endif
957 crit_exit();
958
959 /*
960 * note: linux emulator needs edx to be 0x0 on entry, which is
961 * handled in execve simply by setting the 64 bit syscall
962 * return value to 0.
963 */
964}
965
966void
967cpu_setregs(void)
968{
969 unsigned int cr0;
970
971 cr0 = rcr0();
972 cr0 |= CR0_NE; /* Done by npxinit() */
973 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
974#ifdef I386_CPU
975 if (cpu_class != CPUCLASS_386)
976#endif
977 cr0 |= CR0_WP | CR0_AM;
978 load_cr0(cr0);
979 load_gs(_udatasel);
980}
981
982static int
983sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
984{
985 int error;
986 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
987 req);
988 if (!error && req->newptr)
989 resettodr();
990 return (error);
991}
992
993SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
994 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
995
996SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
997 CTLFLAG_RW, &disable_rtc_set, 0, "");
998
999SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1000 CTLFLAG_RD, &bootinfo, bootinfo, "");
1001
1002SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1003 CTLFLAG_RW, &wall_cmos_clock, 0, "");
1004
1005extern u_long bootdev; /* not a dev_t - encoding is different */
1006SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1007 CTLFLAG_RD, &bootdev, 0, "Boot device (not in dev_t format)");
1008
1009/*
1010 * Initialize 386 and configure to run kernel
1011 */
1012
1013/*
1014 * Initialize segments & interrupt table
1015 */
1016
1017int _default_ldt;
1018union descriptor gdt[NGDT * MAXCPU]; /* global descriptor table */
1019static struct gate_descriptor idt0[NIDT];
1020struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
1021union descriptor ldt[NLDT]; /* local descriptor table */
1022
1023/* table descriptors - used to load tables by cpu */
1024struct region_descriptor r_gdt, r_idt;
1025
1026#if defined(I586_CPU) && !defined(NO_F00F_HACK)
1027extern int has_f00f_bug;
1028#endif
1029
1030static struct i386tss dblfault_tss;
1031static char dblfault_stack[PAGE_SIZE];
1032
1033extern struct user *proc0paddr;
1034
1035
1036/* software prototypes -- in more palatable form */
1037struct soft_segment_descriptor gdt_segs[] = {
1038/* GNULL_SEL 0 Null Descriptor */
1039{ 0x0, /* segment base address */
1040 0x0, /* length */
1041 0, /* segment type */
1042 0, /* segment descriptor priority level */
1043 0, /* segment descriptor present */
1044 0, 0,
1045 0, /* default 32 vs 16 bit size */
1046 0 /* limit granularity (byte/page units)*/ },
1047/* GCODE_SEL 1 Code Descriptor for kernel */
1048{ 0x0, /* segment base address */
1049 0xfffff, /* length - all address space */
1050 SDT_MEMERA, /* segment type */
1051 0, /* segment descriptor priority level */
1052 1, /* segment descriptor present */
1053 0, 0,
1054 1, /* default 32 vs 16 bit size */
1055 1 /* limit granularity (byte/page units)*/ },
1056/* GDATA_SEL 2 Data Descriptor for kernel */
1057{ 0x0, /* segment base address */
1058 0xfffff, /* length - all address space */
1059 SDT_MEMRWA, /* segment type */
1060 0, /* segment descriptor priority level */
1061 1, /* segment descriptor present */
1062 0, 0,
1063 1, /* default 32 vs 16 bit size */
1064 1 /* limit granularity (byte/page units)*/ },
1065/* GPRIV_SEL 3 SMP Per-Processor Private Data Descriptor */
1066{ 0x0, /* segment base address */
1067 0xfffff, /* length - all address space */
1068 SDT_MEMRWA, /* segment type */
1069 0, /* segment descriptor priority level */
1070 1, /* segment descriptor present */
1071 0, 0,
1072 1, /* default 32 vs 16 bit size */
1073 1 /* limit granularity (byte/page units)*/ },
1074/* GPROC0_SEL 4 Proc 0 Tss Descriptor */
1075{
1076 0x0, /* segment base address */
1077 sizeof(struct i386tss)-1,/* length - all address space */
1078 SDT_SYS386TSS, /* segment type */
1079 0, /* segment descriptor priority level */
1080 1, /* segment descriptor present */
1081 0, 0,
1082 0, /* unused - default 32 vs 16 bit size */
1083 0 /* limit granularity (byte/page units)*/ },
1084/* GLDT_SEL 5 LDT Descriptor */
1085{ (int) ldt, /* segment base address */
1086 sizeof(ldt)-1, /* length - all address space */
1087 SDT_SYSLDT, /* segment type */
1088 SEL_UPL, /* segment descriptor priority level */
1089 1, /* segment descriptor present */
1090 0, 0,
1091 0, /* unused - default 32 vs 16 bit size */
1092 0 /* limit granularity (byte/page units)*/ },
1093/* GUSERLDT_SEL 6 User LDT Descriptor per process */
1094{ (int) ldt, /* segment base address */
1095 (512 * sizeof(union descriptor)-1), /* length */
1096 SDT_SYSLDT, /* segment type */
1097 0, /* segment descriptor priority level */
1098 1, /* segment descriptor present */
1099 0, 0,
1100 0, /* unused - default 32 vs 16 bit size */
1101 0 /* limit granularity (byte/page units)*/ },
1102/* GTGATE_SEL 7 Null Descriptor - Placeholder */
1103{ 0x0, /* segment base address */
1104 0x0, /* length - all address space */
1105 0, /* segment type */
1106 0, /* segment descriptor priority level */
1107 0, /* segment descriptor present */
1108 0, 0,
1109 0, /* default 32 vs 16 bit size */
1110 0 /* limit granularity (byte/page units)*/ },
1111/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1112{ 0x400, /* segment base address */
1113 0xfffff, /* length */
1114 SDT_MEMRWA, /* segment type */
1115 0, /* segment descriptor priority level */
1116 1, /* segment descriptor present */
1117 0, 0,
1118 1, /* default 32 vs 16 bit size */
1119 1 /* limit granularity (byte/page units)*/ },
1120/* GPANIC_SEL 9 Panic Tss Descriptor */
1121{ (int) &dblfault_tss, /* segment base address */
1122 sizeof(struct i386tss)-1,/* length - all address space */
1123 SDT_SYS386TSS, /* segment type */
1124 0, /* segment descriptor priority level */
1125 1, /* segment descriptor present */
1126 0, 0,
1127 0, /* unused - default 32 vs 16 bit size */
1128 0 /* limit granularity (byte/page units)*/ },
1129/* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1130{ 0, /* segment base address (overwritten) */
1131 0xfffff, /* length */
1132 SDT_MEMERA, /* segment type */
1133 0, /* segment descriptor priority level */
1134 1, /* segment descriptor present */
1135 0, 0,
1136 0, /* default 32 vs 16 bit size */
1137 1 /* limit granularity (byte/page units)*/ },
1138/* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1139{ 0, /* segment base address (overwritten) */
1140 0xfffff, /* length */
1141 SDT_MEMERA, /* segment type */
1142 0, /* segment descriptor priority level */
1143 1, /* segment descriptor present */
1144 0, 0,
1145 0, /* default 32 vs 16 bit size */
1146 1 /* limit granularity (byte/page units)*/ },
1147/* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1148{ 0, /* segment base address (overwritten) */
1149 0xfffff, /* length */
1150 SDT_MEMRWA, /* segment type */
1151 0, /* segment descriptor priority level */
1152 1, /* segment descriptor present */
1153 0, 0,
1154 1, /* default 32 vs 16 bit size */
1155 1 /* limit granularity (byte/page units)*/ },
1156/* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1157{ 0, /* segment base address (overwritten) */
1158 0xfffff, /* length */
1159 SDT_MEMRWA, /* segment type */
1160 0, /* segment descriptor priority level */
1161 1, /* segment descriptor present */
1162 0, 0,
1163 0, /* default 32 vs 16 bit size */
1164 1 /* limit granularity (byte/page units)*/ },
1165/* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1166{ 0, /* segment base address (overwritten) */
1167 0xfffff, /* length */
1168 SDT_MEMRWA, /* segment type */
1169 0, /* segment descriptor priority level */
1170 1, /* segment descriptor present */
1171 0, 0,
1172 0, /* default 32 vs 16 bit size */
1173 1 /* limit granularity (byte/page units)*/ },
1174/* GTLS_START 15 TLS */
1175{ 0x0, /* segment base address */
1176 0x0, /* length */
1177 0, /* segment type */
1178 0, /* segment descriptor priority level */
1179 0, /* segment descriptor present */
1180 0, 0,
1181 0, /* default 32 vs 16 bit size */
1182 0 /* limit granularity (byte/page units)*/ },
1183/* GTLS_START+1 16 TLS */
1184{ 0x0, /* segment base address */
1185 0x0, /* length */
1186 0, /* segment type */
1187 0, /* segment descriptor priority level */
1188 0, /* segment descriptor present */
1189 0, 0,
1190 0, /* default 32 vs 16 bit size */
1191 0 /* limit granularity (byte/page units)*/ },
1192/* GTLS_END 17 TLS */
1193{ 0x0, /* segment base address */
1194 0x0, /* length */
1195 0, /* segment type */
1196 0, /* segment descriptor priority level */
1197 0, /* segment descriptor present */
1198 0, 0,
1199 0, /* default 32 vs 16 bit size */
1200 0 /* limit granularity (byte/page units)*/ },
1201};
1202
1203static struct soft_segment_descriptor ldt_segs[] = {
1204 /* Null Descriptor - overwritten by call gate */
1205{ 0x0, /* segment base address */
1206 0x0, /* length - all address space */
1207 0, /* segment type */
1208 0, /* segment descriptor priority level */
1209 0, /* segment descriptor present */
1210 0, 0,
1211 0, /* default 32 vs 16 bit size */
1212 0 /* limit granularity (byte/page units)*/ },
1213 /* Null Descriptor - overwritten by call gate */
1214{ 0x0, /* segment base address */
1215 0x0, /* length - all address space */
1216 0, /* segment type */
1217 0, /* segment descriptor priority level */
1218 0, /* segment descriptor present */
1219 0, 0,
1220 0, /* default 32 vs 16 bit size */
1221 0 /* limit granularity (byte/page units)*/ },
1222 /* Null Descriptor - overwritten by call gate */
1223{ 0x0, /* segment base address */
1224 0x0, /* length - all address space */
1225 0, /* segment type */
1226 0, /* segment descriptor priority level */
1227 0, /* segment descriptor present */
1228 0, 0,
1229 0, /* default 32 vs 16 bit size */
1230 0 /* limit granularity (byte/page units)*/ },
1231 /* Code Descriptor for user */
1232{ 0x0, /* segment base address */
1233 0xfffff, /* length - all address space */
1234 SDT_MEMERA, /* segment type */
1235 SEL_UPL, /* segment descriptor priority level */
1236 1, /* segment descriptor present */
1237 0, 0,
1238 1, /* default 32 vs 16 bit size */
1239 1 /* limit granularity (byte/page units)*/ },
1240 /* Null Descriptor - overwritten by call gate */
1241{ 0x0, /* segment base address */
1242 0x0, /* length - all address space */
1243 0, /* segment type */
1244 0, /* segment descriptor priority level */
1245 0, /* segment descriptor present */
1246 0, 0,
1247 0, /* default 32 vs 16 bit size */
1248 0 /* limit granularity (byte/page units)*/ },
1249 /* Data Descriptor for user */
1250{ 0x0, /* segment base address */
1251 0xfffff, /* length - all address space */
1252 SDT_MEMRWA, /* segment type */
1253 SEL_UPL, /* segment descriptor priority level */
1254 1, /* segment descriptor present */
1255 0, 0,
1256 1, /* default 32 vs 16 bit size */
1257 1 /* limit granularity (byte/page units)*/ },
1258};
1259
1260void
1261setidt(idx, func, typ, dpl, selec)
1262 int idx;
1263 inthand_t *func;
1264 int typ;
1265 int dpl;
1266 int selec;
1267{
1268 struct gate_descriptor *ip;
1269
1270 ip = idt + idx;
1271 ip->gd_looffset = (int)func;
1272 ip->gd_selector = selec;
1273 ip->gd_stkcpy = 0;
1274 ip->gd_xx = 0;
1275 ip->gd_type = typ;
1276 ip->gd_dpl = dpl;
1277 ip->gd_p = 1;
1278 ip->gd_hioffset = ((int)func)>>16 ;
1279}
1280
1281#define IDTVEC(name) __CONCAT(X,name)
1282
1283extern inthand_t
1284 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1285 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1286 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1287 IDTVEC(page), IDTVEC(mchk), IDTVEC(fpu), IDTVEC(align),
1288 IDTVEC(xmm), IDTVEC(syscall),
1289 IDTVEC(rsvd0);
1290extern inthand_t
1291 IDTVEC(int0x80_syscall);
1292
1293#ifdef DEBUG_INTERRUPTS
1294extern inthand_t *Xrsvdary[256];
1295#endif
1296
1297void
1298sdtossd(sd, ssd)
1299 struct segment_descriptor *sd;
1300 struct soft_segment_descriptor *ssd;
1301{
1302 ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
1303 ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1304 ssd->ssd_type = sd->sd_type;
1305 ssd->ssd_dpl = sd->sd_dpl;
1306 ssd->ssd_p = sd->sd_p;
1307 ssd->ssd_def32 = sd->sd_def32;
1308 ssd->ssd_gran = sd->sd_gran;
1309}
1310
1311/*
1312 * Populate the (physmap) array with base/bound pairs describing the
1313 * available physical memory in the system, then test this memory and
1314 * build the phys_avail array describing the actually-available memory.
1315 *
1316 * If we cannot accurately determine the physical memory map, then use
1317 * value from the 0xE801 call, and failing that, the RTC.
1318 *
1319 * Total memory size may be set by the kernel environment variable
1320 * hw.physmem or the compile-time define MAXMEM.
1321 */
1322static void
1323getmemsize(int first)
1324{
1325 int i, physmap_idx, pa_indx;
1326 int hasbrokenint12;
1327 u_int basemem, extmem;
1328 struct vm86frame vmf;
1329 struct vm86context vmc;
1330 vm_offset_t pa;
1331 vm_offset_t physmap[PHYSMAP_ENTRIES*2];
1332 pt_entry_t *pte;
1333 const char *cp;
1334 struct {
1335 u_int64_t base;
1336 u_int64_t length;
1337 u_int32_t type;
1338 } *smap;
1339 quad_t dcons_addr, dcons_size;
1340
1341 hasbrokenint12 = 0;
1342 TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
1343 bzero(&vmf, sizeof(struct vm86frame));
1344 bzero(physmap, sizeof(physmap));
1345 basemem = 0;
1346
1347 /*
1348 * Some newer BIOSes has broken INT 12H implementation which cause
1349 * kernel panic immediately. In this case, we need to scan SMAP
1350 * with INT 15:E820 first, then determine base memory size.
1351 */
1352 if (hasbrokenint12) {
1353 goto int15e820;
1354 }
1355
1356 /*
1357 * Perform "base memory" related probes & setup. If we get a crazy
1358 * value give the bios some scribble space just in case.
1359 */
1360 vm86_intcall(0x12, &vmf);
1361 basemem = vmf.vmf_ax;
1362 if (basemem > 640) {
1363 printf("Preposterous BIOS basemem of %uK, "
1364 "truncating to < 640K\n", basemem);
1365 basemem = 636;
1366 }
1367
1368 /*
1369 * XXX if biosbasemem is now < 640, there is a `hole'
1370 * between the end of base memory and the start of
1371 * ISA memory. The hole may be empty or it may
1372 * contain BIOS code or data. Map it read/write so
1373 * that the BIOS can write to it. (Memory from 0 to
1374 * the physical end of the kernel is mapped read-only
1375 * to begin with and then parts of it are remapped.
1376 * The parts that aren't remapped form holes that
1377 * remain read-only and are unused by the kernel.
1378 * The base memory area is below the physical end of
1379 * the kernel and right now forms a read-only hole.
1380 * The part of it from PAGE_SIZE to
1381 * (trunc_page(biosbasemem * 1024) - 1) will be
1382 * remapped and used by the kernel later.)
1383 *
1384 * This code is similar to the code used in
1385 * pmap_mapdev, but since no memory needs to be
1386 * allocated we simply change the mapping.
1387 */
1388 for (pa = trunc_page(basemem * 1024);
1389 pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1390 pte = vtopte(pa + KERNBASE);
1391 *pte = pa | PG_RW | PG_V;
1392 }
1393
1394 /*
1395 * if basemem != 640, map pages r/w into vm86 page table so
1396 * that the bios can scribble on it.
1397 */
1398 pte = vm86paddr;
1399 for (i = basemem / 4; i < 160; i++)
1400 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1401
1402int15e820:
1403 /*
1404 * map page 1 R/W into the kernel page table so we can use it
1405 * as a buffer. The kernel will unmap this page later.
1406 */
1407 pte = vtopte(KERNBASE + (1 << PAGE_SHIFT));
1408 *pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
1409
1410 /*
1411 * get memory map with INT 15:E820
1412 */
1413#define SMAPSIZ sizeof(*smap)
1414#define SMAP_SIG 0x534D4150 /* 'SMAP' */
1415
1416 vmc.npages = 0;
1417 smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1418 vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1419
1420 physmap_idx = 0;
1421 vmf.vmf_ebx = 0;
1422 do {
1423 vmf.vmf_eax = 0xE820;
1424 vmf.vmf_edx = SMAP_SIG;
1425 vmf.vmf_ecx = SMAPSIZ;
1426 i = vm86_datacall(0x15, &vmf, &vmc);
1427 if (i || vmf.vmf_eax != SMAP_SIG)
1428 break;
1429 if (boothowto & RB_VERBOSE)
1430 printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1431 smap->type,
1432 *(u_int32_t *)((char *)&smap->base + 4),
1433 (u_int32_t)smap->base,
1434 *(u_int32_t *)((char *)&smap->length + 4),
1435 (u_int32_t)smap->length);
1436
1437 if (smap->type != 0x01)
1438 goto next_run;
1439
1440 if (smap->length == 0)
1441 goto next_run;
1442
1443 if (smap->base >= 0xffffffff) {
1444 printf("%uK of memory above 4GB ignored\n",
1445 (u_int)(smap->length / 1024));
1446 goto next_run;
1447 }
1448
1449 for (i = 0; i <= physmap_idx; i += 2) {
1450 if (smap->base < physmap[i + 1]) {
1451 if (boothowto & RB_VERBOSE)
1452 printf(
1453 "Overlapping or non-montonic memory region, ignoring second region\n");
1454 goto next_run;
1455 }
1456 }
1457
1458 if (smap->base == physmap[physmap_idx + 1]) {
1459 physmap[physmap_idx + 1] += smap->length;
1460 goto next_run;
1461 }
1462
1463 physmap_idx += 2;
1464 if (physmap_idx == PHYSMAP_ENTRIES*2) {
1465 printf(
1466 "Too many segments in the physical address map, giving up\n");
1467 break;
1468 }
1469 physmap[physmap_idx] = smap->base;
1470 physmap[physmap_idx + 1] = smap->base + smap->length;
1471next_run:
1472 ; /* fix GCC3.x warning */
1473 } while (vmf.vmf_ebx != 0);
1474
1475 /*
1476 * Perform "base memory" related probes & setup based on SMAP
1477 */
1478 if (basemem == 0) {
1479 for (i = 0; i <= physmap_idx; i += 2) {
1480 if (physmap[i] == 0x00000000) {
1481 basemem = physmap[i + 1] / 1024;
1482 break;
1483 }
1484 }
1485
1486 if (basemem == 0) {
1487 basemem = 640;
1488 }
1489
1490 if (basemem > 640) {
1491 printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1492 basemem);
1493 basemem = 640;
1494 }
1495
1496 for (pa = trunc_page(basemem * 1024);
1497 pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1498 pte = vtopte(pa + KERNBASE);
1499 *pte = pa | PG_RW | PG_V;
1500 }
1501
1502 pte = vm86paddr;
1503 for (i = basemem / 4; i < 160; i++)
1504 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1505 }
1506
1507 if (physmap[1] != 0)
1508 goto physmap_done;
1509
1510 /*
1511 * If we failed above, try memory map with INT 15:E801
1512 */
1513 vmf.vmf_ax = 0xE801;
1514 if (vm86_intcall(0x15, &vmf) == 0) {
1515 extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1516 } else {
1517#if 0
1518 vmf.vmf_ah = 0x88;
1519 vm86_intcall(0x15, &vmf);
1520 extmem = vmf.vmf_ax;
1521#else
1522 /*
1523 * Prefer the RTC value for extended memory.
1524 */
1525 extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1526#endif
1527 }
1528
1529 /*
1530 * Special hack for chipsets that still remap the 384k hole when
1531 * there's 16MB of memory - this really confuses people that
1532 * are trying to use bus mastering ISA controllers with the
1533 * "16MB limit"; they only have 16MB, but the remapping puts
1534 * them beyond the limit.
1535 *
1536 * If extended memory is between 15-16MB (16-17MB phys address range),
1537 * chop it to 15MB.
1538 */
1539 if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1540 extmem = 15 * 1024;
1541
1542 physmap[0] = 0;
1543 physmap[1] = basemem * 1024;
1544 physmap_idx = 2;
1545 physmap[physmap_idx] = 0x100000;
1546 physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1547
1548physmap_done:
1549 /*
1550 * Now, physmap contains a map of physical memory.
1551 */
1552
1553#ifdef SMP
1554 /* make hole for AP bootstrap code YYY */
1555 physmap[1] = mp_bootaddress(physmap[1] / 1024);
1556
1557 /* look for the MP hardware - needed for apic addresses */
1558 mp_probe();
1559#endif
1560
1561 /*
1562 * Maxmem isn't the "maximum memory", it's one larger than the
1563 * highest page of the physical address space. It should be
1564 * called something like "Maxphyspage". We may adjust this
1565 * based on ``hw.physmem'' and the results of the memory test.
1566 */
1567 Maxmem = atop(physmap[physmap_idx + 1]);
1568
1569#ifdef MAXMEM
1570 Maxmem = MAXMEM / 4;
1571#endif
1572
1573 /*
1574 * hw.physmem is a size in bytes; we also allow k, m, and g suffixes
1575 * for the appropriate modifiers. This overrides MAXMEM.
1576 */
1577 if ((cp = kgetenv("hw.physmem")) != NULL) {
1578 u_int64_t AllowMem, sanity;
1579 char *ep;
1580
1581 sanity = AllowMem = strtouq(cp, &ep, 0);
1582 if ((ep != cp) && (*ep != 0)) {
1583 switch(*ep) {
1584 case 'g':
1585 case 'G':
1586 AllowMem <<= 10;
1587 case 'm':
1588 case 'M':
1589 AllowMem <<= 10;
1590 case 'k':
1591 case 'K':
1592 AllowMem <<= 10;
1593 break;
1594 default:
1595 AllowMem = sanity = 0;
1596 }
1597 if (AllowMem < sanity)
1598 AllowMem = 0;
1599 }
1600 if (AllowMem == 0)
1601 printf("Ignoring invalid memory size of '%s'\n", cp);
1602 else
1603 Maxmem = atop(AllowMem);
1604 }
1605
1606 if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1607 (boothowto & RB_VERBOSE))
1608 printf("Physical memory use set to %lluK\n", Maxmem * 4);
1609
1610 /*
1611 * If Maxmem has been increased beyond what the system has detected,
1612 * extend the last memory segment to the new limit.
1613 */
1614 if (atop(physmap[physmap_idx + 1]) < Maxmem)
1615 physmap[physmap_idx + 1] = ptoa(Maxmem);
1616
1617 /* call pmap initialization to make new kernel address space */
1618 pmap_bootstrap(first, 0);
1619
1620 /*
1621 * Size up each available chunk of physical memory.
1622 */
1623 physmap[0] = PAGE_SIZE; /* mask off page 0 */
1624 pa_indx = 0;
1625 phys_avail[pa_indx++] = physmap[0];
1626 phys_avail[pa_indx] = physmap[0];
1627 pte = CMAP1;
1628
1629 /*
1630 * Get dcons buffer address
1631 */
1632 if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1633 kgetenv_quad("dcons.size", &dcons_size) == 0)
1634 dcons_addr = 0;
1635
1636 /*
1637 * physmap is in bytes, so when converting to page boundaries,
1638 * round up the start address and round down the end address.
1639 */
1640 for (i = 0; i <= physmap_idx; i += 2) {
1641 vm_offset_t end;
1642
1643 end = ptoa(Maxmem);
1644 if (physmap[i + 1] < end)
1645 end = trunc_page(physmap[i + 1]);
1646 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1647 int tmp, page_bad;
1648#if 0
1649 int *ptr = 0;
1650#else
1651 int *ptr = (int *)CADDR1;
1652#endif
1653
1654 /*
1655 * block out kernel memory as not available.
1656 */
1657 if (pa >= 0x100000 && pa < first)
1658 continue;
1659
1660 /*
1661 * block out dcons buffer
1662 */
1663 if (dcons_addr > 0
1664 && pa >= trunc_page(dcons_addr)
1665 && pa < dcons_addr + dcons_size)
1666 continue;
1667
1668 page_bad = FALSE;
1669
1670 /*
1671 * map page into kernel: valid, read/write,non-cacheable
1672 */
1673 *pte = pa | PG_V | PG_RW | PG_N;
1674 cpu_invltlb();
1675
1676 tmp = *(int *)ptr;
1677 /*
1678 * Test for alternating 1's and 0's
1679 */
1680 *(volatile int *)ptr = 0xaaaaaaaa;
1681 if (*(volatile int *)ptr != 0xaaaaaaaa) {
1682 page_bad = TRUE;
1683 }
1684 /*
1685 * Test for alternating 0's and 1's
1686 */
1687 *(volatile int *)ptr = 0x55555555;
1688 if (*(volatile int *)ptr != 0x55555555) {
1689 page_bad = TRUE;
1690 }
1691 /*
1692 * Test for all 1's
1693 */
1694 *(volatile int *)ptr = 0xffffffff;
1695 if (*(volatile int *)ptr != 0xffffffff) {
1696 page_bad = TRUE;
1697 }
1698 /*
1699 * Test for all 0's
1700 */
1701 *(volatile int *)ptr = 0x0;
1702 if (*(volatile int *)ptr != 0x0) {
1703 page_bad = TRUE;
1704 }
1705 /*
1706 * Restore original value.
1707 */
1708 *(int *)ptr = tmp;
1709
1710 /*
1711 * Adjust array of valid/good pages.
1712 */
1713 if (page_bad == TRUE) {
1714 continue;
1715 }
1716 /*
1717 * If this good page is a continuation of the
1718 * previous set of good pages, then just increase
1719 * the end pointer. Otherwise start a new chunk.
1720 * Note that "end" points one higher than end,
1721 * making the range >= start and < end.
1722 * If we're also doing a speculative memory
1723 * test and we at or past the end, bump up Maxmem
1724 * so that we keep going. The first bad page
1725 * will terminate the loop.
1726 */
1727 if (phys_avail[pa_indx] == pa) {
1728 phys_avail[pa_indx] += PAGE_SIZE;
1729 } else {
1730 pa_indx++;
1731 if (pa_indx >= PHYSMAP_ENTRIES*2) {
1732 printf("Too many holes in the physical address space, giving up\n");
1733 pa_indx--;
1734 break;
1735 }
1736 phys_avail[pa_indx++] = pa; /* start */
1737 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1738 }
1739 physmem++;
1740 }
1741 }
1742 *pte = 0;
1743 cpu_invltlb();
1744
1745 /*
1746 * XXX
1747 * The last chunk must contain at least one page plus the message
1748 * buffer to avoid complicating other code (message buffer address
1749 * calculation, etc.).
1750 */
1751 while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1752 round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1753 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1754 phys_avail[pa_indx--] = 0;
1755 phys_avail[pa_indx--] = 0;
1756 }
1757
1758 Maxmem = atop(phys_avail[pa_indx]);
1759
1760 /* Trim off space for the message buffer. */
1761 phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1762
1763 avail_end = phys_avail[pa_indx];
1764}
1765
1766/*
1767 * IDT VECTORS:
1768 * 0 Divide by zero
1769 * 1 Debug
1770 * 2 NMI
1771 * 3 BreakPoint
1772 * 4 OverFlow
1773 * 5 Bound-Range
1774 * 6 Invalid OpCode
1775 * 7 Device Not Available (x87)
1776 * 8 Double-Fault
1777 * 9 Coprocessor Segment overrun (unsupported, reserved)
1778 * 10 Invalid-TSS
1779 * 11 Segment not present
1780 * 12 Stack
1781 * 13 General Protection
1782 * 14 Page Fault
1783 * 15 Reserved
1784 * 16 x87 FP Exception pending
1785 * 17 Alignment Check
1786 * 18 Machine Check
1787 * 19 SIMD floating point
1788 * 20-31 reserved
1789 * 32-255 INTn/external sources
1790 */
1791void
1792init386(int first)
1793{
1794 struct gate_descriptor *gdp;
1795 int gsel_tss, metadata_missing, off, x;
1796 struct mdglobaldata *gd;
1797
1798 /*
1799 * Prevent lowering of the ipl if we call tsleep() early.
1800 */
1801 gd = &CPU_prvspace[0].mdglobaldata;
1802 bzero(gd, sizeof(*gd));
1803
1804 gd->mi.gd_curthread = &thread0;
1805
1806 atdevbase = ISA_HOLE_START + KERNBASE;
1807
1808 metadata_missing = 0;
1809 if (bootinfo.bi_modulep) {
1810 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1811 preload_bootstrap_relocate(KERNBASE);
1812 } else {
1813 metadata_missing = 1;
1814 }
1815 if (bootinfo.bi_envp)
1816 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1817
1818 /*
1819 * start with one cpu. Note: ncpus2_shift and ncpus2_mask are left
1820 * at 0.
1821 */
1822 ncpus = 1;
1823 ncpus2 = 1;
1824 /* Init basic tunables, hz etc */
1825 init_param1();
1826
1827 /*
1828 * make gdt memory segments, the code segment goes up to end of the
1829 * page with etext in it, the data segment goes to the end of
1830 * the address space
1831 */
1832 /*
1833 * XXX text protection is temporarily (?) disabled. The limit was
1834 * i386_btop(round_page(etext)) - 1.
1835 */
1836 gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
1837 gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
1838
1839 gdt_segs[GPRIV_SEL].ssd_limit =
1840 atop(sizeof(struct privatespace) - 1);
1841 gdt_segs[GPRIV_SEL].ssd_base = (int) &CPU_prvspace[0];
1842 gdt_segs[GPROC0_SEL].ssd_base =
1843 (int) &CPU_prvspace[0].mdglobaldata.gd_common_tss;
1844
1845 gd->mi.gd_prvspace = &CPU_prvspace[0];
1846
1847 /*
1848 * Note: on both UP and SMP curthread must be set non-NULL
1849 * early in the boot sequence because the system assumes
1850 * that 'curthread' is never NULL.
1851 */
1852
1853 for (x = 0; x < NGDT; x++) {
1854#ifdef BDE_DEBUGGER
1855 /* avoid overwriting db entries with APM ones */
1856 if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1857 continue;
1858#endif
1859 ssdtosd(&gdt_segs[x], &gdt[x].sd);
1860 }
1861
1862 r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1863 r_gdt.rd_base = (int) gdt;
1864 lgdt(&r_gdt);
1865
1866 mi_gdinit(&gd->mi, 0);
1867 cpu_gdinit(gd, 0);
1868 lwkt_init_thread(&thread0, proc0paddr, LWKT_THREAD_STACK, 0, &gd->mi);
1869 lwkt_set_comm(&thread0, "thread0");
1870 proc0.p_addr = (void *)thread0.td_kstack;
1871 LIST_INIT(&proc0.p_lwps);
1872 LIST_INSERT_HEAD(&proc0.p_lwps, &proc0.p_lwp, lwp_list);
1873 proc0.p_lwp.lwp_thread = &thread0;
1874 proc0.p_lwp.lwp_proc = &proc0;
1875 proc0.p_usched = usched_init();
1876 proc0.p_lwp.lwp_cpumask = 0xFFFFFFFF;
1877 varsymset_init(&proc0.p_varsymset, NULL);
1878 thread0.td_flags |= TDF_RUNNING;
1879 thread0.td_proc = &proc0;
1880 thread0.td_lwp = &proc0.p_lwp;
1881 thread0.td_switch = cpu_heavy_switch; /* YYY eventually LWKT */
1882 safepri = TDPRI_MAX;
1883
1884 /* make ldt memory segments */
1885 /*
1886 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max. And it
1887 * should be spelled ...MAX_USER...
1888 */
1889 ldt_segs[LUCODE_SEL].ssd_limit = atop(VM_MAXUSER_ADDRESS - 1);
1890 ldt_segs[LUDATA_SEL].ssd_limit = atop(VM_MAXUSER_ADDRESS - 1);
1891 for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1892 ssdtosd(&ldt_segs[x], &ldt[x].sd);
1893
1894 _default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1895 lldt(_default_ldt);
1896 gd->gd_currentldt = _default_ldt;
1897 /* spinlocks and the BGL */
1898 init_locks();
1899
1900 /*
1901 * Setup the hardware exception table. Most exceptions use
1902 * SDT_SYS386TGT, known as a 'trap gate'. Trap gates leave
1903 * interrupts enabled. VM page faults use SDT_SYS386IGT, known as
1904 * an 'interrupt trap gate', which disables interrupts on entry,
1905 * in order to be able to poll the appropriate CRn register to
1906 * determine the fault address.
1907 */
1908 for (x = 0; x < NIDT; x++) {
1909#ifdef DEBUG_INTERRUPTS
1910 setidt(x, Xrsvdary[x], SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1911#else
1912 setidt(x, &IDTVEC(rsvd0), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1913#endif
1914 }
1915 setidt(0, &IDTVEC(div), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1916 setidt(1, &IDTVEC(dbg), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1917 setidt(2, &IDTVEC(nmi), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1918 setidt(3, &IDTVEC(bpt), SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1919 setidt(4, &IDTVEC(ofl), SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1920 setidt(5, &IDTVEC(bnd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1921 setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1922 setidt(7, &IDTVEC(dna), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1923 setidt(8, 0, SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1924 setidt(9, &IDTVEC(fpusegm), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1925 setidt(10, &IDTVEC(tss), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1926 setidt(11, &IDTVEC(missing), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1927 setidt(12, &IDTVEC(stk), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1928 setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1929 setidt(14, &IDTVEC(page), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1930 setidt(15, &IDTVEC(rsvd0), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1931 setidt(16, &IDTVEC(fpu), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1932 setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1933 setidt(18, &IDTVEC(mchk), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1934 setidt(19, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1935 setidt(0x80, &IDTVEC(int0x80_syscall),
1936 SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1937
1938 r_idt.rd_limit = sizeof(idt0) - 1;
1939 r_idt.rd_base = (int) idt;
1940 lidt(&r_idt);
1941
1942 /*
1943 * Initialize the console before we print anything out.
1944 */
1945 cninit();
1946
1947 if (metadata_missing)
1948 printf("WARNING: loader(8) metadata is missing!\n");
1949
1950#if NISA >0
1951 isa_defaultirq();
1952#endif
1953 rand_initialize();
1954
1955#ifdef DDB
1956 kdb_init();
1957 if (boothowto & RB_KDB)
1958 Debugger("Boot flags requested debugger");
1959#endif
1960
1961 finishidentcpu(); /* Final stage of CPU initialization */
1962 setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1963 setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1964 initializecpu(); /* Initialize CPU registers */
1965
1966 /*
1967 * make an initial tss so cpu can get interrupt stack on syscall!
1968 * The 16 bytes is to save room for a VM86 context.
1969 */
1970 gd->gd_common_tss.tss_esp0 = (int) thread0.td_pcb - 16;
1971 gd->gd_common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
1972 gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1973 gd->gd_tss_gdt = &gdt[GPROC0_SEL].sd;
1974 gd->gd_common_tssd = *gd->gd_tss_gdt;
1975 gd->gd_common_tss.tss_ioopt = (sizeof gd->gd_common_tss) << 16;
1976 ltr(gsel_tss);
1977
1978 dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
1979 dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
1980 dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
1981 dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
1982 dblfault_tss.tss_cr3 = (int)IdlePTD;
1983 dblfault_tss.tss_eip = (int) dblfault_handler;
1984 dblfault_tss.tss_eflags = PSL_KERNEL;
1985 dblfault_tss.tss_ds = dblfault_tss.tss_es =
1986 dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
1987 dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
1988 dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
1989 dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
1990
1991 vm86_initialize();
1992 getmemsize(first);
1993 init_param2(physmem);
1994
1995 /* now running on new page tables, configured,and u/iom is accessible */
1996
1997 /* Map the message buffer. */
1998 for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1999 pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2000
2001 msgbufinit(msgbufp, MSGBUF_SIZE);
2002
2003 /* make a call gate to reenter kernel with */
2004 gdp = &ldt[LSYS5CALLS_SEL].gd;
2005
2006 x = (int) &IDTVEC(syscall);
2007 gdp->gd_looffset = x++;
2008 gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
2009 gdp->gd_stkcpy = 1;
2010 gdp->gd_type = SDT_SYS386CGT;
2011 gdp->gd_dpl = SEL_UPL;
2012 gdp->gd_p = 1;
2013 gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
2014
2015 /* XXX does this work? */
2016 ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
2017 ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
2018
2019 /* transfer to user mode */
2020
2021 _ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
2022 _udatasel = LSEL(LUDATA_SEL, SEL_UPL);
2023
2024 /* setup proc 0's pcb */
2025 thread0.td_pcb->pcb_flags = 0;
2026 thread0.td_pcb->pcb_cr3 = (int)IdlePTD; /* should already be setup */
2027 thread0.td_pcb->pcb_ext = 0;
2028 proc0.p_lwp.lwp_md.md_regs = &proc0_tf;
2029}
2030
2031/*
2032 * Initialize machine-dependant portions of the global data structure.
2033 * Note that the global data area and cpu0's idlestack in the private
2034 * data space were allocated in locore.
2035 *
2036 * Note: the idlethread's cpl is 0
2037 *
2038 * WARNING! Called from early boot, 'mycpu' may not work yet.
2039 */
2040void
2041cpu_gdinit(struct mdglobaldata *gd, int cpu)
2042{
2043 if (cpu)
2044 gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2045
2046 lwkt_init_thread(&gd->mi.gd_idlethread,
2047 gd->mi.gd_prvspace->idlestack,
2048 sizeof(gd->mi.gd_prvspace->idlestack),
2049 TDF_MPSAFE, &gd->mi);
2050 lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2051 gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2052 gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2053 *(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2054}
2055
2056int
2057is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2058{
2059 if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2060 eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2061 return (TRUE);
2062 }
2063 return (FALSE);
2064}
2065
2066struct globaldata *
2067globaldata_find(int cpu)
2068{
2069 KKASSERT(cpu >= 0 && cpu < ncpus);
2070 return(&CPU_prvspace[cpu].mdglobaldata.mi);
2071}
2072
2073#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2074static void f00f_hack(void *unused);
2075SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
2076
2077static void
2078f00f_hack(void *unused)
2079{
2080 struct gate_descriptor *new_idt;
2081 vm_offset_t tmp;
2082
2083 if (!has_f00f_bug)
2084 return;
2085
2086 printf("Intel Pentium detected, installing workaround for F00F bug\n");
2087
2088 r_idt.rd_limit = sizeof(idt0) - 1;
2089
2090 tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2);
2091 if (tmp == 0)
2092 panic("kmem_alloc returned 0");
2093 if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
2094 panic("kmem_alloc returned non-page-aligned memory");
2095 /* Put the first seven entries in the lower page */
2096 new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
2097 bcopy(idt, new_idt, sizeof(idt0));
2098 r_idt.rd_base = (int)new_idt;
2099 lidt(&r_idt);
2100 idt = new_idt;
2101 if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE,
2102 VM_PROT_READ, FALSE) != KERN_SUCCESS)
2103 panic("vm_map_protect failed");
2104 return;
2105}
2106#endif /* defined(I586_CPU) && !NO_F00F_HACK */
2107
2108int
2109ptrace_set_pc(p, addr)
2110 struct proc *p;
2111 unsigned long addr;
2112{
2113 p->p_md.md_regs->tf_eip = addr;
2114 return (0);
2115}
2116
2117int
2118ptrace_single_step(struct lwp *lp)
2119{
2120 lp->lwp_md.md_regs->tf_eflags |= PSL_T;
2121 return (0);
2122}
2123
2124int ptrace_read_u_check(p, addr, len)
2125 struct proc *p;
2126 vm_offset_t addr;
2127 size_t len;
2128{
2129 vm_offset_t gap;
2130
2131 if ((vm_offset_t) (addr + len) < addr)
2132 return EPERM;
2133 if ((vm_offset_t) (addr + len) <= sizeof(struct user))
2134 return 0;
2135
2136 gap = (char *) p->p_md.md_regs - (char *) p->p_addr;
2137
2138 if ((vm_offset_t) addr < gap)
2139 return EPERM;
2140 if ((vm_offset_t) (addr + len) <=
2141 (vm_offset_t) (gap + sizeof(struct trapframe)))
2142 return 0;
2143 return EPERM;
2144}
2145
2146int ptrace_write_u(p, off, data)
2147 struct proc *p;
2148 vm_offset_t off;
2149 long data;
2150{
2151 struct trapframe frame_copy;
2152 vm_offset_t min;
2153 struct trapframe *tp;
2154
2155 /*
2156 * Privileged kernel state is scattered all over the user area.
2157 * Only allow write access to parts of regs and to fpregs.
2158 */
2159 min = (char *)p->p_md.md_regs - (char *)p->p_addr;
2160 if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) {
2161 tp = p->p_md.md_regs;
2162 frame_copy = *tp;
2163 *(int *)((char *)&frame_copy + (off - min)) = data;
2164 if (!EFL_SECURE(frame_copy.tf_eflags, tp->tf_eflags) ||
2165 !CS_SECURE(frame_copy.tf_cs))
2166 return (EINVAL);
2167 *(int*)((char *)p->p_addr + off) = data;
2168 return (0);
2169 }
2170
2171 /*
2172 * The PCB is at the end of the user area YYY
2173 */
2174 min = (char *)p->p_thread->td_pcb - (char *)p->p_addr;
2175 min += offsetof(struct pcb, pcb_save);
2176 if (off >= min && off <= min + sizeof(union savefpu) - sizeof(int)) {
2177 *(int*)((char *)p->p_addr + off) = data;
2178 return (0);
2179 }
2180 return (EFAULT);
2181}
2182
2183int
2184fill_regs(struct lwp *lp, struct reg *regs)
2185{
2186 struct pcb *pcb;
2187 struct trapframe *tp;
2188
2189 tp = lp->lwp_md.md_regs;
2190 regs->r_fs = tp->tf_fs;
2191 regs->r_es = tp->tf_es;
2192 regs->r_ds = tp->tf_ds;
2193 regs->r_edi = tp->tf_edi;
2194 regs->r_esi = tp->tf_esi;
2195 regs->r_ebp = tp->tf_ebp;
2196 regs->r_ebx = tp->tf_ebx;
2197 regs->r_edx = tp->tf_edx;
2198 regs->r_ecx = tp->tf_ecx;
2199 regs->r_eax = tp->tf_eax;
2200 regs->r_eip = tp->tf_eip;
2201 regs->r_cs = tp->tf_cs;
2202 regs->r_eflags = tp->tf_eflags;
2203 regs->r_esp = tp->tf_esp;
2204 regs->r_ss = tp->tf_ss;
2205 pcb = lp->lwp_thread->td_pcb;
2206 regs->r_gs = pcb->pcb_gs;
2207 return (0);
2208}
2209
2210int
2211set_regs(struct lwp *lp, struct reg *regs)
2212{
2213 struct pcb *pcb;
2214 struct trapframe *tp;
2215
2216 tp = lp->lwp_md.md_regs;
2217 if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2218 !CS_SECURE(regs->r_cs))
2219 return (EINVAL);
2220 tp->tf_fs = regs->r_fs;
2221 tp->tf_es = regs->r_es;
2222 tp->tf_ds = regs->r_ds;
2223 tp->tf_edi = regs->r_edi;
2224 tp->tf_esi = regs->r_esi;
2225 tp->tf_ebp = regs->r_ebp;
2226 tp->tf_ebx = regs->r_ebx;
2227 tp->tf_edx = regs->r_edx;
2228 tp->tf_ecx = regs->r_ecx;
2229 tp->tf_eax = regs->r_eax;
2230 tp->tf_eip = regs->r_eip;
2231 tp->tf_cs = regs->r_cs;
2232 tp->tf_eflags = regs->r_eflags;
2233 tp->tf_esp = regs->r_esp;
2234 tp->tf_ss = regs->r_ss;
2235 pcb = lp->lwp_thread->td_pcb;
2236 pcb->pcb_gs = regs->r_gs;
2237 return (0);
2238}
2239
2240#ifndef CPU_DISABLE_SSE
2241static void
2242fill_fpregs_xmm(sv_xmm, sv_87)
2243 struct savexmm *sv_xmm;
2244 struct save87 *sv_87;
2245{
2246 struct env87 *penv_87 = &sv_87->sv_env;
2247 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2248 int i;
2249
2250 /* FPU control/status */
2251 penv_87->en_cw = penv_xmm->en_cw;
2252 penv_87->en_sw = penv_xmm->en_sw;
2253 penv_87->en_tw = penv_xmm->en_tw;
2254 penv_87->en_fip = penv_xmm->en_fip;
2255 penv_87->en_fcs = penv_xmm->en_fcs;
2256 penv_87->en_opcode = penv_xmm->en_opcode;
2257 penv_87->en_foo = penv_xmm->en_foo;
2258 penv_87->en_fos = penv_xmm->en_fos;
2259
2260 /* FPU registers */
2261 for (i = 0; i < 8; ++i)
2262 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2263
2264 sv_87->sv_ex_sw = sv_xmm->sv_ex_sw;
2265}
2266
2267static void
2268set_fpregs_xmm(sv_87, sv_xmm)
2269 struct save87 *sv_87;
2270 struct savexmm *sv_xmm;
2271{
2272 struct env87 *penv_87 = &sv_87->sv_env;
2273 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2274 int i;
2275
2276 /* FPU control/status */
2277 penv_xmm->en_cw = penv_87->en_cw;
2278 penv_xmm->en_sw = penv_87->en_sw;
2279 penv_xmm->en_tw = penv_87->en_tw;
2280 penv_xmm->en_fip = penv_87->en_fip;
2281 penv_xmm->en_fcs = penv_87->en_fcs;
2282 penv_xmm->en_opcode = penv_87->en_opcode;
2283 penv_xmm->en_foo = penv_87->en_foo;
2284 penv_xmm->en_fos = penv_87->en_fos;
2285
2286 /* FPU registers */
2287 for (i = 0; i < 8; ++i)
2288 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2289
2290 sv_xmm->sv_ex_sw = sv_87->sv_ex_sw;
2291}
2292#endif /* CPU_DISABLE_SSE */
2293
2294int
2295fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2296{
2297#ifndef CPU_DISABLE_SSE
2298 if (cpu_fxsr) {
2299 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2300 (struct save87 *)fpregs);
2301 return (0);
2302 }
2303#endif /* CPU_DISABLE_SSE */
2304 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2305 return (0);
2306}
2307
2308int
2309set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2310{
2311#ifndef CPU_DISABLE_SSE
2312 if (cpu_fxsr) {
2313 set_fpregs_xmm((struct save87 *)fpregs,
2314 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2315 return (0);
2316 }
2317#endif /* CPU_DISABLE_SSE */
2318 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2319 return (0);
2320}
2321
2322int
2323fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2324{
2325 if (lp == NULL) {
2326 dbregs->dr0 = rdr0();
2327 dbregs->dr1 = rdr1();
2328 dbregs->dr2 = rdr2();
2329 dbregs->dr3 = rdr3();
2330 dbregs->dr4 = rdr4();
2331 dbregs->dr5 = rdr5();
2332 dbregs->dr6 = rdr6();
2333 dbregs->dr7 = rdr7();
2334 } else {
2335 struct pcb *pcb;
2336
2337 pcb = lp->lwp_thread->td_pcb;
2338 dbregs->dr0 = pcb->pcb_dr0;
2339 dbregs->dr1 = pcb->pcb_dr1;
2340 dbregs->dr2 = pcb->pcb_dr2;
2341 dbregs->dr3 = pcb->pcb_dr3;
2342 dbregs->dr4 = 0;
2343 dbregs->dr5 = 0;
2344 dbregs->dr6 = pcb->pcb_dr6;
2345 dbregs->dr7 = pcb->pcb_dr7;
2346 }
2347 return (0);
2348}
2349
2350int
2351set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2352{
2353 if (lp == NULL) {
2354 load_dr0(dbregs->dr0);
2355 load_dr1(dbregs->dr1);
2356 load_dr2(dbregs->dr2);
2357 load_dr3(dbregs->dr3);
2358 load_dr4(dbregs->dr4);
2359 load_dr5(dbregs->dr5);
2360 load_dr6(dbregs->dr6);
2361 load_dr7(dbregs->dr7);
2362 } else {
2363 struct pcb *pcb;
2364 struct ucred *ucred;
2365 int i;
2366 uint32_t mask1, mask2;
2367
2368 /*
2369 * Don't let an illegal value for dr7 get set. Specifically,
2370 * check for undefined settings. Setting these bit patterns
2371 * result in undefined behaviour and can lead to an unexpected
2372 * TRCTRAP.
2373 */
2374 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
2375 i++, mask1 <<= 2, mask2 <<= 2)
2376 if ((dbregs->dr7 & mask1) == mask2)
2377 return (EINVAL);
2378
2379 pcb = lp->lwp_thread->td_pcb;
2380 ucred = lp->lwp_proc->p_ucred;
2381
2382 /*
2383 * Don't let a process set a breakpoint that is not within the
2384 * process's address space. If a process could do this, it
2385 * could halt the system by setting a breakpoint in the kernel
2386 * (if ddb was enabled). Thus, we need to check to make sure
2387 * that no breakpoints are being enabled for addresses outside
2388 * process's address space, unless, perhaps, we were called by
2389 * uid 0.
2390 *
2391 * XXX - what about when the watched area of the user's
2392 * address space is written into from within the kernel
2393 * ... wouldn't that still cause a breakpoint to be generated
2394 * from within kernel mode?
2395 */
2396
2397 if (suser_cred(ucred, 0) != 0) {
2398 if (dbregs->dr7 & 0x3) {
2399 /* dr0 is enabled */
2400 if (dbregs->dr0 >= VM_MAXUSER_ADDRESS)
2401 return (EINVAL);
2402 }
2403
2404 if (dbregs->dr7 & (0x3<<2)) {
2405 /* dr1 is enabled */
2406 if (dbregs->dr1 >= VM_MAXUSER_ADDRESS)
2407 return (EINVAL);
2408 }
2409
2410 if (dbregs->dr7 & (0x3<<4)) {
2411 /* dr2 is enabled */
2412 if (dbregs->dr2 >= VM_MAXUSER_ADDRESS)
2413 return (EINVAL);
2414 }
2415
2416 if (dbregs->dr7 & (0x3<<6)) {
2417 /* dr3 is enabled */
2418 if (dbregs->dr3 >= VM_MAXUSER_ADDRESS)
2419 return (EINVAL);
2420 }
2421 }
2422
2423 pcb->pcb_dr0 = dbregs->dr0;
2424 pcb->pcb_dr1 = dbregs->dr1;
2425 pcb->pcb_dr2 = dbregs->dr2;
2426 pcb->pcb_dr3 = dbregs->dr3;
2427 pcb->pcb_dr6 = dbregs->dr6;
2428 pcb->pcb_dr7 = dbregs->dr7;
2429
2430 pcb->pcb_flags |= PCB_DBREGS;
2431 }
2432
2433 return (0);
2434}
2435
2436/*
2437 * Return > 0 if a hardware breakpoint has been hit, and the
2438 * breakpoint was in user space. Return 0, otherwise.
2439 */
2440int
2441user_dbreg_trap(void)
2442{
2443 u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
2444 u_int32_t bp; /* breakpoint bits extracted from dr6 */
2445 int nbp; /* number of breakpoints that triggered */
2446 caddr_t addr[4]; /* breakpoint addresses */
2447 int i;
2448
2449 dr7 = rdr7();
2450 if ((dr7 & 0x000000ff) == 0) {
2451 /*
2452 * all GE and LE bits in the dr7 register are zero,
2453 * thus the trap couldn't have been caused by the
2454 * hardware debug registers
2455 */
2456 return 0;
2457 }
2458
2459 nbp = 0;
2460 dr6 = rdr6();
2461 bp = dr6 & 0x0000000f;
2462
2463 if (!bp) {
2464 /*
2465 * None of the breakpoint bits are set meaning this
2466 * trap was not caused by any of the debug registers
2467 */
2468 return 0;
2469 }
2470
2471 /*
2472 * at least one of the breakpoints were hit, check to see
2473 * which ones and if any of them are user space addresses
2474 */
2475
2476 if (bp & 0x01) {
2477 addr[nbp++] = (caddr_t)rdr0();
2478 }
2479 if (bp & 0x02) {
2480 addr[nbp++] = (caddr_t)rdr1();
2481 }
2482 if (bp & 0x04) {
2483 addr[nbp++] = (caddr_t)rdr2();
2484 }
2485 if (bp & 0x08) {
2486 addr[nbp++] = (caddr_t)rdr3();
2487 }
2488
2489 for (i=0; i<nbp; i++) {
2490 if (addr[i] <
2491 (caddr_t)VM_MAXUSER_ADDRESS) {
2492 /*
2493 * addr[i] is in user space
2494 */
2495 return nbp;
2496 }
2497 }
2498
2499 /*
2500 * None of the breakpoints are in user space.
2501 */
2502 return 0;
2503}
2504
2505
2506#ifndef DDB
2507void
2508Debugger(const char *msg)
2509{
2510 printf("Debugger(\"%s\") called.\n", msg);
2511}
2512#endif /* no DDB */
2513
2514#include <sys/disklabel.h>
2515
2516/*
2517 * Determine the size of the transfer, and make sure it is
2518 * within the boundaries of the partition. Adjust transfer
2519 * if needed, and signal errors or early completion.
2520 *
2521 * On success a new bio layer is pushed with the translated
2522 * block number, and returned.
2523 */
2524struct bio *
2525bounds_check_with_label(dev_t dev, struct bio *bio,
2526 struct disklabel *lp, int wlabel)
2527{
2528 struct bio *nbio;
2529 struct buf *bp = bio->bio_buf;
2530 struct partition *p = lp->d_partitions + dkpart(dev);
2531 int labelsect = lp->d_partitions[0].p_offset;
2532 int maxsz = p->p_size,
2533 sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
2534 daddr_t blkno = (daddr_t)(bio->bio_offset >> DEV_BSHIFT);
2535
2536 /* overwriting disk label ? */
2537 /* XXX should also protect bootstrap in first 8K */
2538 if (blkno + p->p_offset <= LABELSECTOR + labelsect &&
2539#if LABELSECTOR != 0
2540 blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
2541#endif
2542 bp->b_cmd != BUF_CMD_READ && wlabel == 0) {
2543 bp->b_error = EROFS;
2544 goto error;
2545 }
2546
2547#if defined(DOSBBSECTOR) && defined(notyet)
2548 /* overwriting master boot record? */
2549 if (blkno + p->p_offset <= DOSBBSECTOR &&
2550 bp->b_cmd != BUF_CMD_READ && wlabel == 0) {
2551 bp->b_error = EROFS;
2552 goto error;
2553 }
2554#endif
2555
2556 /*
2557 * Check for out of bounds, EOF, and EOF clipping.
2558 */
2559 if (bio->bio_offset < 0)
2560 goto bad;
2561 if (blkno + sz > maxsz) {
2562 /*
2563 * Past EOF or B_BNOCLIP flag was set, the request is bad.
2564 */
2565 if (blkno > maxsz || (bp->b_flags & B_BNOCLIP))
2566 goto bad;
2567
2568 /*
2569 * If exactly on EOF just complete the I/O with no bytes
2570 * transfered. B_INVAL must be set to throw away the
2571 * contents of the buffer. Otherwise clip b_bcount.
2572 */
2573 if (blkno == maxsz) {
2574 bp->b_resid = bp->b_bcount;
2575 bp->b_flags |= B_INVAL;
2576 goto done;
2577 }
2578 bp->b_bcount = (maxsz - blkno) << DEV_BSHIFT;
2579 }
2580 nbio = push_bio(bio);
2581 nbio->bio_offset = bio->bio_offset + ((off_t)p->p_offset << DEV_BSHIFT);
2582 return (nbio);
2583
2584 /*
2585 * The caller is responsible for calling biodone() on the passed bio
2586 * when we return NULL.
2587 */
2588bad:
2589 bp->b_error = EINVAL;
2590error:
2591 bp->b_resid = bp->b_bcount;
2592 bp->b_flags |= B_ERROR | B_INVAL;
2593done:
2594 return (NULL);
2595}
2596
2597#ifdef DDB
2598
2599/*
2600 * Provide inb() and outb() as functions. They are normally only
2601 * available as macros calling inlined functions, thus cannot be
2602 * called inside DDB.
2603 *
2604 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2605 */
2606
2607#undef inb
2608#undef outb
2609
2610/* silence compiler warnings */
2611u_char inb(u_int);
2612void outb(u_int, u_char);
2613
2614u_char
2615inb(u_int port)
2616{
2617 u_char data;
2618 /*
2619 * We use %%dx and not %1 here because i/o is done at %dx and not at
2620 * %edx, while gcc generates inferior code (movw instead of movl)
2621 * if we tell it to load (u_short) port.
2622 */
2623 __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2624 return (data);
2625}
2626
2627void
2628outb(u_int port, u_char data)
2629{
2630 u_char al;
2631 /*
2632 * Use an unnecessary assignment to help gcc's register allocator.
2633 * This make a large difference for gcc-1.40 and a tiny difference
2634 * for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
2635 * best results. gcc-2.6.0 can't handle this.
2636 */
2637 al = data;
2638 __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2639}
2640
2641#endif /* DDB */
2642
2643
2644
2645#include "opt_cpu.h"
2646
2647
2648/*
2649 * initialize all the SMP locks
2650 */
2651
2652/* critical region when masking or unmasking interupts */
2653struct spinlock_deprecated imen_spinlock;
2654
2655/* Make FAST_INTR() routines sequential */
2656struct spinlock_deprecated fast_intr_spinlock;
2657
2658/* critical region for old style disable_intr/enable_intr */
2659struct spinlock_deprecated mpintr_spinlock;
2660
2661/* critical region around INTR() routines */
2662struct spinlock_deprecated intr_spinlock;
2663
2664/* lock region used by kernel profiling */
2665struct spinlock_deprecated mcount_spinlock;
2666
2667/* locks com (tty) data/hardware accesses: a FASTINTR() */
2668struct spinlock_deprecated com_spinlock;
2669
2670/* locks kernel printfs */
2671struct spinlock_deprecated cons_spinlock;
2672
2673/* lock regions around the clock hardware */
2674struct spinlock_deprecated clock_spinlock;
2675
2676/* lock around the MP rendezvous */
2677struct spinlock_deprecated smp_rv_spinlock;
2678
2679static void
2680init_locks(void)
2681{
2682 /*
2683 * mp_lock = 0; BSP already owns the MP lock
2684 */
2685 /*
2686 * Get the initial mp_lock with a count of 1 for the BSP.
2687 * This uses a LOGICAL cpu ID, ie BSP == 0.
2688 */
2689#ifdef SMP
2690 cpu_get_initial_mplock();
2691#endif
2692 /* DEPRECATED */
2693 spin_lock_init(&mcount_spinlock);
2694 spin_lock_init(&fast_intr_spinlock);
2695 spin_lock_init(&intr_spinlock);
2696 spin_lock_init(&mpintr_spinlock);
2697 spin_lock_init(&imen_spinlock);
2698 spin_lock_init(&smp_rv_spinlock);
2699 spin_lock_init(&com_spinlock);
2700 spin_lock_init(&clock_spinlock);
2701 spin_lock_init(&cons_spinlock);
2702
2703 /* our token pool needs to work early */
2704 lwkt_token_pool_init();
2705}
2706