msgport: Merge several sendmsg functions
[dragonfly.git] / sys / kern / lwkt_thread.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2003-2011 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35/*
36 * Each cpu in a system has its own self-contained light weight kernel
37 * thread scheduler, which means that generally speaking we only need
38 * to use a critical section to avoid problems. Foreign thread
39 * scheduling is queued via (async) IPIs.
40 */
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/proc.h>
46#include <sys/rtprio.h>
47#include <sys/kinfo.h>
48#include <sys/queue.h>
49#include <sys/sysctl.h>
50#include <sys/kthread.h>
51#include <machine/cpu.h>
52#include <sys/lock.h>
53#include <sys/spinlock.h>
54#include <sys/ktr.h>
55
56#include <sys/thread2.h>
57#include <sys/spinlock2.h>
58#include <sys/mplock2.h>
59
60#include <sys/dsched.h>
61
62#include <vm/vm.h>
63#include <vm/vm_param.h>
64#include <vm/vm_kern.h>
65#include <vm/vm_object.h>
66#include <vm/vm_page.h>
67#include <vm/vm_map.h>
68#include <vm/vm_pager.h>
69#include <vm/vm_extern.h>
70
71#include <machine/stdarg.h>
72#include <machine/smp.h>
73
74#ifdef _KERNEL_VIRTUAL
75#include <pthread.h>
76#endif
77
78#if !defined(KTR_CTXSW)
79#define KTR_CTXSW KTR_ALL
80#endif
81KTR_INFO_MASTER(ctxsw);
82KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
83KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
84KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
85KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
86
87static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
88
89#ifdef INVARIANTS
90static int panic_on_cscount = 0;
91#endif
92static __int64_t switch_count = 0;
93static __int64_t preempt_hit = 0;
94static __int64_t preempt_miss = 0;
95static __int64_t preempt_weird = 0;
96static int lwkt_use_spin_port;
97static struct objcache *thread_cache;
98int cpu_mwait_spin = 0;
99
100static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
101static void lwkt_setcpu_remote(void *arg);
102
103extern void cpu_heavy_restore(void);
104extern void cpu_lwkt_restore(void);
105extern void cpu_kthread_restore(void);
106extern void cpu_idle_restore(void);
107
108/*
109 * We can make all thread ports use the spin backend instead of the thread
110 * backend. This should only be set to debug the spin backend.
111 */
112TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
113
114#ifdef INVARIANTS
115SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
116 "Panic if attempting to switch lwkt's while mastering cpusync");
117#endif
118SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RW, &cpu_mwait_spin, 0,
119 "monitor/mwait target state");
120SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
121 "Number of switched threads");
122SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
123 "Successful preemption events");
124SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
125 "Failed preemption events");
126SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
127 "Number of preempted threads.");
128static int fairq_enable = 0;
129SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
130 &fairq_enable, 0, "Turn on fairq priority accumulators");
131static int fairq_bypass = -1;
132SYSCTL_INT(_lwkt, OID_AUTO, fairq_bypass, CTLFLAG_RW,
133 &fairq_bypass, 0, "Allow fairq to bypass td on token failure");
134extern int lwkt_sched_debug;
135int lwkt_sched_debug = 0;
136SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
137 &lwkt_sched_debug, 0, "Scheduler debug");
138static int lwkt_spin_loops = 10;
139SYSCTL_INT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
140 &lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
141static int lwkt_spin_reseq = 0;
142SYSCTL_INT(_lwkt, OID_AUTO, spin_reseq, CTLFLAG_RW,
143 &lwkt_spin_reseq, 0, "Scheduler resequencer enable");
144static int lwkt_spin_monitor = 0;
145SYSCTL_INT(_lwkt, OID_AUTO, spin_monitor, CTLFLAG_RW,
146 &lwkt_spin_monitor, 0, "Scheduler uses monitor/mwait");
147static int lwkt_spin_fatal = 0; /* disabled */
148SYSCTL_INT(_lwkt, OID_AUTO, spin_fatal, CTLFLAG_RW,
149 &lwkt_spin_fatal, 0, "LWKT scheduler spin loops till fatal panic");
150static int preempt_enable = 1;
151SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
152 &preempt_enable, 0, "Enable preemption");
153static int lwkt_cache_threads = 0;
154SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
155 &lwkt_cache_threads, 0, "thread+kstack cache");
156
157#ifndef _KERNEL_VIRTUAL
158static __cachealign int lwkt_cseq_rindex;
159static __cachealign int lwkt_cseq_windex;
160#endif
161
162/*
163 * These helper procedures handle the runq, they can only be called from
164 * within a critical section.
165 *
166 * WARNING! Prior to SMP being brought up it is possible to enqueue and
167 * dequeue threads belonging to other cpus, so be sure to use td->td_gd
168 * instead of 'mycpu' when referencing the globaldata structure. Once
169 * SMP live enqueuing and dequeueing only occurs on the current cpu.
170 */
171static __inline
172void
173_lwkt_dequeue(thread_t td)
174{
175 if (td->td_flags & TDF_RUNQ) {
176 struct globaldata *gd = td->td_gd;
177
178 td->td_flags &= ~TDF_RUNQ;
179 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
180 --gd->gd_tdrunqcount;
181 if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
182 atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
183 }
184}
185
186/*
187 * Priority enqueue.
188 *
189 * There are a limited number of lwkt threads runnable since user
190 * processes only schedule one at a time per cpu. However, there can
191 * be many user processes in kernel mode exiting from a tsleep() which
192 * become runnable.
193 *
194 * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
195 * will ignore user priority. This is to ensure that user threads in
196 * kernel mode get cpu at some point regardless of what the user
197 * scheduler thinks.
198 */
199static __inline
200void
201_lwkt_enqueue(thread_t td)
202{
203 thread_t xtd;
204
205 if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
206 struct globaldata *gd = td->td_gd;
207
208 td->td_flags |= TDF_RUNQ;
209 xtd = TAILQ_FIRST(&gd->gd_tdrunq);
210 if (xtd == NULL) {
211 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
212 atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
213 } else {
214 /*
215 * NOTE: td_upri - higher numbers more desireable, same sense
216 * as td_pri (typically reversed from lwp_upri).
217 *
218 * In the equal priority case we want the best selection
219 * at the beginning so the less desireable selections know
220 * that they have to setrunqueue/go-to-another-cpu, even
221 * though it means switching back to the 'best' selection.
222 * This also avoids degenerate situations when many threads
223 * are runnable or waking up at the same time.
224 *
225 * If upri matches exactly place at end/round-robin.
226 */
227 while (xtd &&
228 (xtd->td_pri >= td->td_pri ||
229 (xtd->td_pri == td->td_pri &&
230 xtd->td_upri >= td->td_upri))) {
231 xtd = TAILQ_NEXT(xtd, td_threadq);
232 }
233 if (xtd)
234 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
235 else
236 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
237 }
238 ++gd->gd_tdrunqcount;
239
240 /*
241 * Request a LWKT reschedule if we are now at the head of the queue.
242 */
243 if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
244 need_lwkt_resched();
245 }
246}
247
248static __boolean_t
249_lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
250{
251 struct thread *td = (struct thread *)obj;
252
253 td->td_kstack = NULL;
254 td->td_kstack_size = 0;
255 td->td_flags = TDF_ALLOCATED_THREAD;
256 td->td_mpflags = 0;
257 return (1);
258}
259
260static void
261_lwkt_thread_dtor(void *obj, void *privdata)
262{
263 struct thread *td = (struct thread *)obj;
264
265 KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
266 ("_lwkt_thread_dtor: not allocated from objcache"));
267 KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
268 td->td_kstack_size > 0,
269 ("_lwkt_thread_dtor: corrupted stack"));
270 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
271 td->td_kstack = NULL;
272 td->td_flags = 0;
273}
274
275/*
276 * Initialize the lwkt s/system.
277 *
278 * Nominally cache up to 32 thread + kstack structures. Cache more on
279 * systems with a lot of cpu cores.
280 */
281void
282lwkt_init(void)
283{
284 TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
285 if (lwkt_cache_threads == 0) {
286 lwkt_cache_threads = ncpus * 4;
287 if (lwkt_cache_threads < 32)
288 lwkt_cache_threads = 32;
289 }
290 thread_cache = objcache_create_mbacked(
291 M_THREAD, sizeof(struct thread),
292 0, lwkt_cache_threads,
293 _lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
294}
295
296/*
297 * Schedule a thread to run. As the current thread we can always safely
298 * schedule ourselves, and a shortcut procedure is provided for that
299 * function.
300 *
301 * (non-blocking, self contained on a per cpu basis)
302 */
303void
304lwkt_schedule_self(thread_t td)
305{
306 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
307 crit_enter_quick(td);
308 KASSERT(td != &td->td_gd->gd_idlethread,
309 ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
310 KKASSERT(td->td_lwp == NULL ||
311 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
312 _lwkt_enqueue(td);
313 crit_exit_quick(td);
314}
315
316/*
317 * Deschedule a thread.
318 *
319 * (non-blocking, self contained on a per cpu basis)
320 */
321void
322lwkt_deschedule_self(thread_t td)
323{
324 crit_enter_quick(td);
325 _lwkt_dequeue(td);
326 crit_exit_quick(td);
327}
328
329/*
330 * LWKTs operate on a per-cpu basis
331 *
332 * WARNING! Called from early boot, 'mycpu' may not work yet.
333 */
334void
335lwkt_gdinit(struct globaldata *gd)
336{
337 TAILQ_INIT(&gd->gd_tdrunq);
338 TAILQ_INIT(&gd->gd_tdallq);
339}
340
341/*
342 * Create a new thread. The thread must be associated with a process context
343 * or LWKT start address before it can be scheduled. If the target cpu is
344 * -1 the thread will be created on the current cpu.
345 *
346 * If you intend to create a thread without a process context this function
347 * does everything except load the startup and switcher function.
348 */
349thread_t
350lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
351{
352 static int cpu_rotator;
353 globaldata_t gd = mycpu;
354 void *stack;
355
356 /*
357 * If static thread storage is not supplied allocate a thread. Reuse
358 * a cached free thread if possible. gd_freetd is used to keep an exiting
359 * thread intact through the exit.
360 */
361 if (td == NULL) {
362 crit_enter_gd(gd);
363 if ((td = gd->gd_freetd) != NULL) {
364 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
365 TDF_RUNQ)) == 0);
366 gd->gd_freetd = NULL;
367 } else {
368 td = objcache_get(thread_cache, M_WAITOK);
369 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
370 TDF_RUNQ)) == 0);
371 }
372 crit_exit_gd(gd);
373 KASSERT((td->td_flags &
374 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
375 TDF_ALLOCATED_THREAD,
376 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
377 flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
378 }
379
380 /*
381 * Try to reuse cached stack.
382 */
383 if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
384 if (flags & TDF_ALLOCATED_STACK) {
385 kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
386 stack = NULL;
387 }
388 }
389 if (stack == NULL) {
390 stack = (void *)kmem_alloc_stack(&kernel_map, stksize);
391 flags |= TDF_ALLOCATED_STACK;
392 }
393 if (cpu < 0) {
394 cpu = ++cpu_rotator;
395 cpu_ccfence();
396 cpu %= ncpus;
397 }
398 lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
399 return(td);
400}
401
402/*
403 * Initialize a preexisting thread structure. This function is used by
404 * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
405 *
406 * All threads start out in a critical section at a priority of
407 * TDPRI_KERN_DAEMON. Higher level code will modify the priority as
408 * appropriate. This function may send an IPI message when the
409 * requested cpu is not the current cpu and consequently gd_tdallq may
410 * not be initialized synchronously from the point of view of the originating
411 * cpu.
412 *
413 * NOTE! we have to be careful in regards to creating threads for other cpus
414 * if SMP has not yet been activated.
415 */
416static void
417lwkt_init_thread_remote(void *arg)
418{
419 thread_t td = arg;
420
421 /*
422 * Protected by critical section held by IPI dispatch
423 */
424 TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
425}
426
427/*
428 * lwkt core thread structural initialization.
429 *
430 * NOTE: All threads are initialized as mpsafe threads.
431 */
432void
433lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
434 struct globaldata *gd)
435{
436 globaldata_t mygd = mycpu;
437
438 bzero(td, sizeof(struct thread));
439 td->td_kstack = stack;
440 td->td_kstack_size = stksize;
441 td->td_flags = flags;
442 td->td_mpflags = 0;
443 td->td_type = TD_TYPE_GENERIC;
444 td->td_gd = gd;
445 td->td_pri = TDPRI_KERN_DAEMON;
446 td->td_critcount = 1;
447 td->td_toks_have = NULL;
448 td->td_toks_stop = &td->td_toks_base;
449 if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT))
450 lwkt_initport_spin(&td->td_msgport, td);
451 else
452 lwkt_initport_thread(&td->td_msgport, td);
453 pmap_init_thread(td);
454 /*
455 * Normally initializing a thread for a remote cpu requires sending an
456 * IPI. However, the idlethread is setup before the other cpus are
457 * activated so we have to treat it as a special case. XXX manipulation
458 * of gd_tdallq requires the BGL.
459 */
460 if (gd == mygd || td == &gd->gd_idlethread) {
461 crit_enter_gd(mygd);
462 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
463 crit_exit_gd(mygd);
464 } else {
465 lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
466 }
467 dsched_new_thread(td);
468}
469
470void
471lwkt_set_comm(thread_t td, const char *ctl, ...)
472{
473 __va_list va;
474
475 __va_start(va, ctl);
476 kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
477 __va_end(va);
478 KTR_LOG(ctxsw_newtd, td, td->td_comm);
479}
480
481/*
482 * Prevent the thread from getting destroyed. Note that unlike PHOLD/PRELE
483 * this does not prevent the thread from migrating to another cpu so the
484 * gd_tdallq state is not protected by this.
485 */
486void
487lwkt_hold(thread_t td)
488{
489 atomic_add_int(&td->td_refs, 1);
490}
491
492void
493lwkt_rele(thread_t td)
494{
495 KKASSERT(td->td_refs > 0);
496 atomic_add_int(&td->td_refs, -1);
497}
498
499void
500lwkt_free_thread(thread_t td)
501{
502 KKASSERT(td->td_refs == 0);
503 KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
504 TDF_RUNQ | TDF_TSLEEPQ)) == 0);
505 if (td->td_flags & TDF_ALLOCATED_THREAD) {
506 objcache_put(thread_cache, td);
507 } else if (td->td_flags & TDF_ALLOCATED_STACK) {
508 /* client-allocated struct with internally allocated stack */
509 KASSERT(td->td_kstack && td->td_kstack_size > 0,
510 ("lwkt_free_thread: corrupted stack"));
511 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
512 td->td_kstack = NULL;
513 td->td_kstack_size = 0;
514 }
515
516 KTR_LOG(ctxsw_deadtd, td);
517}
518
519
520/*
521 * Switch to the next runnable lwkt. If no LWKTs are runnable then
522 * switch to the idlethread. Switching must occur within a critical
523 * section to avoid races with the scheduling queue.
524 *
525 * We always have full control over our cpu's run queue. Other cpus
526 * that wish to manipulate our queue must use the cpu_*msg() calls to
527 * talk to our cpu, so a critical section is all that is needed and
528 * the result is very, very fast thread switching.
529 *
530 * The LWKT scheduler uses a fixed priority model and round-robins at
531 * each priority level. User process scheduling is a totally
532 * different beast and LWKT priorities should not be confused with
533 * user process priorities.
534 *
535 * PREEMPTION NOTE: Preemption occurs via lwkt_preempt(). lwkt_switch()
536 * is not called by the current thread in the preemption case, only when
537 * the preempting thread blocks (in order to return to the original thread).
538 *
539 * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
540 * migration and tsleep deschedule the current lwkt thread and call
541 * lwkt_switch(). In particular, the target cpu of the migration fully
542 * expects the thread to become non-runnable and can deadlock against
543 * cpusync operations if we run any IPIs prior to switching the thread out.
544 *
545 * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
546 * THE CURRENT THREAD HAS BEEN DESCHEDULED!
547 */
548void
549lwkt_switch(void)
550{
551 globaldata_t gd = mycpu;
552 thread_t td = gd->gd_curthread;
553 thread_t ntd;
554 int spinning = 0;
555
556 KKASSERT(gd->gd_processing_ipiq == 0);
557 KKASSERT(td->td_flags & TDF_RUNNING);
558
559 /*
560 * Switching from within a 'fast' (non thread switched) interrupt or IPI
561 * is illegal. However, we may have to do it anyway if we hit a fatal
562 * kernel trap or we have paniced.
563 *
564 * If this case occurs save and restore the interrupt nesting level.
565 */
566 if (gd->gd_intr_nesting_level) {
567 int savegdnest;
568 int savegdtrap;
569
570 if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
571 panic("lwkt_switch: Attempt to switch from a "
572 "fast interrupt, ipi, or hard code section, "
573 "td %p\n",
574 td);
575 } else {
576 savegdnest = gd->gd_intr_nesting_level;
577 savegdtrap = gd->gd_trap_nesting_level;
578 gd->gd_intr_nesting_level = 0;
579 gd->gd_trap_nesting_level = 0;
580 if ((td->td_flags & TDF_PANICWARN) == 0) {
581 td->td_flags |= TDF_PANICWARN;
582 kprintf("Warning: thread switch from interrupt, IPI, "
583 "or hard code section.\n"
584 "thread %p (%s)\n", td, td->td_comm);
585 print_backtrace(-1);
586 }
587 lwkt_switch();
588 gd->gd_intr_nesting_level = savegdnest;
589 gd->gd_trap_nesting_level = savegdtrap;
590 return;
591 }
592 }
593
594 /*
595 * Release our current user process designation if we are blocking
596 * or if a user reschedule was requested.
597 *
598 * NOTE: This function is NOT called if we are switching into or
599 * returning from a preemption.
600 *
601 * NOTE: Releasing our current user process designation may cause
602 * it to be assigned to another thread, which in turn will
603 * cause us to block in the usched acquire code when we attempt
604 * to return to userland.
605 *
606 * NOTE: On SMP systems this can be very nasty when heavy token
607 * contention is present so we want to be careful not to
608 * release the designation gratuitously.
609 */
610 if (td->td_release &&
611 (user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
612 td->td_release(td);
613 }
614
615 /*
616 * Release all tokens
617 */
618 crit_enter_gd(gd);
619 if (TD_TOKS_HELD(td))
620 lwkt_relalltokens(td);
621
622 /*
623 * We had better not be holding any spin locks, but don't get into an
624 * endless panic loop.
625 */
626 KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
627 ("lwkt_switch: still holding %d exclusive spinlocks!",
628 gd->gd_spinlocks));
629
630
631#ifdef INVARIANTS
632 if (td->td_cscount) {
633 kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
634 td);
635 if (panic_on_cscount)
636 panic("switching while mastering cpusync");
637 }
638#endif
639
640 /*
641 * If we had preempted another thread on this cpu, resume the preempted
642 * thread. This occurs transparently, whether the preempted thread
643 * was scheduled or not (it may have been preempted after descheduling
644 * itself).
645 *
646 * We have to setup the MP lock for the original thread after backing
647 * out the adjustment that was made to curthread when the original
648 * was preempted.
649 */
650 if ((ntd = td->td_preempted) != NULL) {
651 KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
652 ntd->td_flags |= TDF_PREEMPT_DONE;
653
654 /*
655 * The interrupt may have woken a thread up, we need to properly
656 * set the reschedule flag if the originally interrupted thread is
657 * at a lower priority.
658 *
659 * The interrupt may not have descheduled.
660 */
661 if (TAILQ_FIRST(&gd->gd_tdrunq) != ntd)
662 need_lwkt_resched();
663 goto havethread_preempted;
664 }
665
666 /*
667 * If we cannot obtain ownership of the tokens we cannot immediately
668 * schedule the target thread.
669 *
670 * Reminder: Again, we cannot afford to run any IPIs in this path if
671 * the current thread has been descheduled.
672 */
673 for (;;) {
674 clear_lwkt_resched();
675
676 /*
677 * Hotpath - pull the head of the run queue and attempt to schedule
678 * it.
679 */
680 ntd = TAILQ_FIRST(&gd->gd_tdrunq);
681
682 if (ntd == NULL) {
683 /*
684 * Runq is empty, switch to idle to allow it to halt.
685 */
686 ntd = &gd->gd_idlethread;
687 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
688 ASSERT_NO_TOKENS_HELD(ntd);
689 cpu_time.cp_msg[0] = 0;
690 cpu_time.cp_stallpc = 0;
691 goto haveidle;
692 }
693
694 /*
695 * Hotpath - schedule ntd.
696 *
697 * NOTE: For UP there is no mplock and lwkt_getalltokens()
698 * always succeeds.
699 */
700 if (TD_TOKS_NOT_HELD(ntd) ||
701 lwkt_getalltokens(ntd, (spinning >= lwkt_spin_loops)))
702 {
703 goto havethread;
704 }
705
706 /*
707 * Coldpath (SMP only since tokens always succeed on UP)
708 *
709 * We had some contention on the thread we wanted to schedule.
710 * What we do now is try to find a thread that we can schedule
711 * in its stead.
712 *
713 * The coldpath scan does NOT rearrange threads in the run list.
714 * The lwkt_schedulerclock() will assert need_lwkt_resched() on
715 * the next tick whenever the current head is not the current thread.
716 */
717#ifdef INVARIANTS
718 ++ntd->td_contended;
719#endif
720 ++gd->gd_cnt.v_token_colls;
721
722 if (fairq_bypass > 0)
723 goto skip;
724
725 while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
726#ifndef NO_LWKT_SPLIT_USERPRI
727 /*
728 * Never schedule threads returning to userland or the
729 * user thread scheduler helper thread when higher priority
730 * threads are present. The runq is sorted by priority
731 * so we can give up traversing it when we find the first
732 * low priority thread.
733 */
734 if (ntd->td_pri < TDPRI_KERN_LPSCHED) {
735 ntd = NULL;
736 break;
737 }
738#endif
739
740 /*
741 * Try this one.
742 */
743 if (TD_TOKS_NOT_HELD(ntd) ||
744 lwkt_getalltokens(ntd, (spinning >= lwkt_spin_loops))) {
745 goto havethread;
746 }
747#ifdef INVARIANTS
748 ++ntd->td_contended;
749#endif
750 ++gd->gd_cnt.v_token_colls;
751 }
752
753skip:
754 /*
755 * We exhausted the run list, meaning that all runnable threads
756 * are contested.
757 */
758 cpu_pause();
759#ifdef _KERNEL_VIRTUAL
760 pthread_yield();
761#endif
762 ntd = &gd->gd_idlethread;
763 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
764 ASSERT_NO_TOKENS_HELD(ntd);
765 /* contention case, do not clear contention mask */
766
767 /*
768 * We are going to have to retry but if the current thread is not
769 * on the runq we instead switch through the idle thread to get away
770 * from the current thread. We have to flag for lwkt reschedule
771 * to prevent the idle thread from halting.
772 *
773 * NOTE: A non-zero spinning is passed to lwkt_getalltokens() to
774 * instruct it to deal with the potential for deadlocks by
775 * ordering the tokens by address.
776 */
777 if ((td->td_flags & TDF_RUNQ) == 0) {
778 need_lwkt_resched(); /* prevent hlt */
779 goto haveidle;
780 }
781#if defined(INVARIANTS) && defined(__x86_64__)
782 if ((read_rflags() & PSL_I) == 0) {
783 cpu_enable_intr();
784 panic("lwkt_switch() called with interrupts disabled");
785 }
786#endif
787
788 /*
789 * Number iterations so far. After a certain point we switch to
790 * a sorted-address/monitor/mwait version of lwkt_getalltokens()
791 */
792 if (spinning < 0x7FFFFFFF)
793 ++spinning;
794
795#ifndef _KERNEL_VIRTUAL
796 /*
797 * lwkt_getalltokens() failed in sorted token mode, we can use
798 * monitor/mwait in this case.
799 */
800 if (spinning >= lwkt_spin_loops &&
801 (cpu_mi_feature & CPU_MI_MONITOR) &&
802 lwkt_spin_monitor)
803 {
804 cpu_mmw_pause_int(&gd->gd_reqflags,
805 (gd->gd_reqflags | RQF_SPINNING) &
806 ~RQF_IDLECHECK_WK_MASK,
807 cpu_mwait_spin);
808 }
809#endif
810
811 /*
812 * We already checked that td is still scheduled so this should be
813 * safe.
814 */
815 splz_check();
816
817#ifndef _KERNEL_VIRTUAL
818 /*
819 * This experimental resequencer is used as a fall-back to reduce
820 * hw cache line contention by placing each core's scheduler into a
821 * time-domain-multplexed slot.
822 *
823 * The resequencer is disabled by default. It's functionality has
824 * largely been superceeded by the token algorithm which limits races
825 * to a subset of cores.
826 *
827 * The resequencer algorithm tends to break down when more than
828 * 20 cores are contending. What appears to happen is that new
829 * tokens can be obtained out of address-sorted order by new cores
830 * while existing cores languish in long delays between retries and
831 * wind up being starved-out of the token acquisition.
832 */
833 if (lwkt_spin_reseq && spinning >= lwkt_spin_reseq) {
834 int cseq = atomic_fetchadd_int(&lwkt_cseq_windex, 1);
835 int oseq;
836
837 while ((oseq = lwkt_cseq_rindex) != cseq) {
838 cpu_ccfence();
839#if 1
840 if (cpu_mi_feature & CPU_MI_MONITOR) {
841 cpu_mmw_pause_int(&lwkt_cseq_rindex, oseq, cpu_mwait_spin);
842 } else {
843#endif
844 cpu_pause();
845 cpu_lfence();
846#if 1
847 }
848#endif
849 }
850 DELAY(1);
851 atomic_add_int(&lwkt_cseq_rindex, 1);
852 }
853#endif
854 /* highest level for(;;) loop */
855 }
856
857havethread:
858 /*
859 * Clear gd_idle_repeat when doing a normal switch to a non-idle
860 * thread.
861 */
862 ntd->td_wmesg = NULL;
863 ++gd->gd_cnt.v_swtch;
864 gd->gd_idle_repeat = 0;
865
866havethread_preempted:
867 /*
868 * If the new target does not need the MP lock and we are holding it,
869 * release the MP lock. If the new target requires the MP lock we have
870 * already acquired it for the target.
871 */
872 ;
873haveidle:
874 KASSERT(ntd->td_critcount,
875 ("priority problem in lwkt_switch %d %d",
876 td->td_critcount, ntd->td_critcount));
877
878 if (td != ntd) {
879 /*
880 * Execute the actual thread switch operation. This function
881 * returns to the current thread and returns the previous thread
882 * (which may be different from the thread we switched to).
883 *
884 * We are responsible for marking ntd as TDF_RUNNING.
885 */
886 KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
887 ++switch_count;
888 KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
889 ntd->td_flags |= TDF_RUNNING;
890 lwkt_switch_return(td->td_switch(ntd));
891 /* ntd invalid, td_switch() can return a different thread_t */
892 }
893
894 /*
895 * catch-all. XXX is this strictly needed?
896 */
897 splz_check();
898
899 /* NOTE: current cpu may have changed after switch */
900 crit_exit_quick(td);
901}
902
903/*
904 * Called by assembly in the td_switch (thread restore path) for thread
905 * bootstrap cases which do not 'return' to lwkt_switch().
906 */
907void
908lwkt_switch_return(thread_t otd)
909{
910 globaldata_t rgd;
911
912 /*
913 * Check if otd was migrating. Now that we are on ntd we can finish
914 * up the migration. This is a bit messy but it is the only place
915 * where td is known to be fully descheduled.
916 *
917 * We can only activate the migration if otd was migrating but not
918 * held on the cpu due to a preemption chain. We still have to
919 * clear TDF_RUNNING on the old thread either way.
920 *
921 * We are responsible for clearing the previously running thread's
922 * TDF_RUNNING.
923 */
924 if ((rgd = otd->td_migrate_gd) != NULL &&
925 (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
926 KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
927 (TDF_MIGRATING | TDF_RUNNING));
928 otd->td_migrate_gd = NULL;
929 otd->td_flags &= ~TDF_RUNNING;
930 lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
931 } else {
932 otd->td_flags &= ~TDF_RUNNING;
933 }
934
935 /*
936 * Final exit validations (see lwp_wait()). Note that otd becomes
937 * invalid the *instant* we set TDF_MP_EXITSIG.
938 */
939 while (otd->td_flags & TDF_EXITING) {
940 u_int mpflags;
941
942 mpflags = otd->td_mpflags;
943 cpu_ccfence();
944
945 if (mpflags & TDF_MP_EXITWAIT) {
946 if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
947 mpflags | TDF_MP_EXITSIG)) {
948 wakeup(otd);
949 break;
950 }
951 } else {
952 if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
953 mpflags | TDF_MP_EXITSIG)) {
954 wakeup(otd);
955 break;
956 }
957 }
958 }
959}
960
961/*
962 * Request that the target thread preempt the current thread. Preemption
963 * can only occur if our only critical section is the one that we were called
964 * with, the relative priority of the target thread is higher, and the target
965 * thread holds no tokens. This also only works if we are not holding any
966 * spinlocks (obviously).
967 *
968 * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION. Typically
969 * this is called via lwkt_schedule() through the td_preemptable callback.
970 * critcount is the managed critical priority that we should ignore in order
971 * to determine whether preemption is possible (aka usually just the crit
972 * priority of lwkt_schedule() itself).
973 *
974 * Preemption is typically limited to interrupt threads.
975 *
976 * Operation works in a fairly straight-forward manner. The normal
977 * scheduling code is bypassed and we switch directly to the target
978 * thread. When the target thread attempts to block or switch away
979 * code at the base of lwkt_switch() will switch directly back to our
980 * thread. Our thread is able to retain whatever tokens it holds and
981 * if the target needs one of them the target will switch back to us
982 * and reschedule itself normally.
983 */
984void
985lwkt_preempt(thread_t ntd, int critcount)
986{
987 struct globaldata *gd = mycpu;
988 thread_t xtd;
989 thread_t td;
990 int save_gd_intr_nesting_level;
991
992 /*
993 * The caller has put us in a critical section. We can only preempt
994 * if the caller of the caller was not in a critical section (basically
995 * a local interrupt), as determined by the 'critcount' parameter. We
996 * also can't preempt if the caller is holding any spinlocks (even if
997 * he isn't in a critical section). This also handles the tokens test.
998 *
999 * YYY The target thread must be in a critical section (else it must
1000 * inherit our critical section? I dunno yet).
1001 */
1002 KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
1003
1004 td = gd->gd_curthread;
1005 if (preempt_enable == 0) {
1006 ++preempt_miss;
1007 return;
1008 }
1009 if (ntd->td_pri <= td->td_pri) {
1010 ++preempt_miss;
1011 return;
1012 }
1013 if (td->td_critcount > critcount) {
1014 ++preempt_miss;
1015 return;
1016 }
1017 if (td->td_cscount) {
1018 ++preempt_miss;
1019 return;
1020 }
1021 if (ntd->td_gd != gd) {
1022 ++preempt_miss;
1023 return;
1024 }
1025 /*
1026 * We don't have to check spinlocks here as they will also bump
1027 * td_critcount.
1028 *
1029 * Do not try to preempt if the target thread is holding any tokens.
1030 * We could try to acquire the tokens but this case is so rare there
1031 * is no need to support it.
1032 */
1033 KKASSERT(gd->gd_spinlocks == 0);
1034
1035 if (TD_TOKS_HELD(ntd)) {
1036 ++preempt_miss;
1037 return;
1038 }
1039 if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
1040 ++preempt_weird;
1041 return;
1042 }
1043 if (ntd->td_preempted) {
1044 ++preempt_hit;
1045 return;
1046 }
1047 KKASSERT(gd->gd_processing_ipiq == 0);
1048
1049 /*
1050 * Since we are able to preempt the current thread, there is no need to
1051 * call need_lwkt_resched().
1052 *
1053 * We must temporarily clear gd_intr_nesting_level around the switch
1054 * since switchouts from the target thread are allowed (they will just
1055 * return to our thread), and since the target thread has its own stack.
1056 *
1057 * A preemption must switch back to the original thread, assert the
1058 * case.
1059 */
1060 ++preempt_hit;
1061 ntd->td_preempted = td;
1062 td->td_flags |= TDF_PREEMPT_LOCK;
1063 KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1064 save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
1065 gd->gd_intr_nesting_level = 0;
1066
1067 KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
1068 ntd->td_flags |= TDF_RUNNING;
1069 xtd = td->td_switch(ntd);
1070 KKASSERT(xtd == ntd);
1071 lwkt_switch_return(xtd);
1072 gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1073
1074 KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1075 ntd->td_preempted = NULL;
1076 td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1077}
1078
1079/*
1080 * Conditionally call splz() if gd_reqflags indicates work is pending.
1081 * This will work inside a critical section but not inside a hard code
1082 * section.
1083 *
1084 * (self contained on a per cpu basis)
1085 */
1086void
1087splz_check(void)
1088{
1089 globaldata_t gd = mycpu;
1090 thread_t td = gd->gd_curthread;
1091
1092 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1093 gd->gd_intr_nesting_level == 0 &&
1094 td->td_nest_count < 2)
1095 {
1096 splz();
1097 }
1098}
1099
1100/*
1101 * This version is integrated into crit_exit, reqflags has already
1102 * been tested but td_critcount has not.
1103 *
1104 * We only want to execute the splz() on the 1->0 transition of
1105 * critcount and not in a hard code section or if too deeply nested.
1106 *
1107 * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
1108 */
1109void
1110lwkt_maybe_splz(thread_t td)
1111{
1112 globaldata_t gd = td->td_gd;
1113
1114 if (td->td_critcount == 0 &&
1115 gd->gd_intr_nesting_level == 0 &&
1116 td->td_nest_count < 2)
1117 {
1118 splz();
1119 }
1120}
1121
1122/*
1123 * Drivers which set up processing co-threads can call this function to
1124 * run the co-thread at a higher priority and to allow it to preempt
1125 * normal threads.
1126 */
1127void
1128lwkt_set_interrupt_support_thread(void)
1129{
1130 thread_t td = curthread;
1131
1132 lwkt_setpri_self(TDPRI_INT_SUPPORT);
1133 td->td_flags |= TDF_INTTHREAD;
1134 td->td_preemptable = lwkt_preempt;
1135}
1136
1137
1138/*
1139 * This function is used to negotiate a passive release of the current
1140 * process/lwp designation with the user scheduler, allowing the user
1141 * scheduler to schedule another user thread. The related kernel thread
1142 * (curthread) continues running in the released state.
1143 */
1144void
1145lwkt_passive_release(struct thread *td)
1146{
1147 struct lwp *lp = td->td_lwp;
1148
1149#ifndef NO_LWKT_SPLIT_USERPRI
1150 td->td_release = NULL;
1151 lwkt_setpri_self(TDPRI_KERN_USER);
1152#endif
1153
1154 lp->lwp_proc->p_usched->release_curproc(lp);
1155}
1156
1157
1158/*
1159 * This implements a LWKT yield, allowing a kernel thread to yield to other
1160 * kernel threads at the same or higher priority. This function can be
1161 * called in a tight loop and will typically only yield once per tick.
1162 *
1163 * Most kernel threads run at the same priority in order to allow equal
1164 * sharing.
1165 *
1166 * (self contained on a per cpu basis)
1167 */
1168void
1169lwkt_yield(void)
1170{
1171 globaldata_t gd = mycpu;
1172 thread_t td = gd->gd_curthread;
1173
1174 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1175 splz();
1176 if (lwkt_resched_wanted()) {
1177 lwkt_schedule_self(curthread);
1178 lwkt_switch();
1179 }
1180}
1181
1182/*
1183 * The quick version processes pending interrupts and higher-priority
1184 * LWKT threads but will not round-robin same-priority LWKT threads.
1185 *
1186 * When called while attempting to return to userland the only same-pri
1187 * threads are the ones which have already tried to become the current
1188 * user process.
1189 */
1190void
1191lwkt_yield_quick(void)
1192{
1193 globaldata_t gd = mycpu;
1194 thread_t td = gd->gd_curthread;
1195
1196 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1197 splz();
1198 if (lwkt_resched_wanted()) {
1199 crit_enter();
1200 if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1201 clear_lwkt_resched();
1202 } else {
1203 lwkt_schedule_self(curthread);
1204 lwkt_switch();
1205 }
1206 crit_exit();
1207 }
1208}
1209
1210/*
1211 * This yield is designed for kernel threads with a user context.
1212 *
1213 * The kernel acting on behalf of the user is potentially cpu-bound,
1214 * this function will efficiently allow other threads to run and also
1215 * switch to other processes by releasing.
1216 *
1217 * The lwkt_user_yield() function is designed to have very low overhead
1218 * if no yield is determined to be needed.
1219 */
1220void
1221lwkt_user_yield(void)
1222{
1223 globaldata_t gd = mycpu;
1224 thread_t td = gd->gd_curthread;
1225
1226 /*
1227 * Always run any pending interrupts in case we are in a critical
1228 * section.
1229 */
1230 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1231 splz();
1232
1233 /*
1234 * Switch (which forces a release) if another kernel thread needs
1235 * the cpu, if userland wants us to resched, or if our kernel
1236 * quantum has run out.
1237 */
1238 if (lwkt_resched_wanted() ||
1239 user_resched_wanted())
1240 {
1241 lwkt_switch();
1242 }
1243
1244#if 0
1245 /*
1246 * Reacquire the current process if we are released.
1247 *
1248 * XXX not implemented atm. The kernel may be holding locks and such,
1249 * so we want the thread to continue to receive cpu.
1250 */
1251 if (td->td_release == NULL && lp) {
1252 lp->lwp_proc->p_usched->acquire_curproc(lp);
1253 td->td_release = lwkt_passive_release;
1254 lwkt_setpri_self(TDPRI_USER_NORM);
1255 }
1256#endif
1257}
1258
1259/*
1260 * Generic schedule. Possibly schedule threads belonging to other cpus and
1261 * deal with threads that might be blocked on a wait queue.
1262 *
1263 * We have a little helper inline function which does additional work after
1264 * the thread has been enqueued, including dealing with preemption and
1265 * setting need_lwkt_resched() (which prevents the kernel from returning
1266 * to userland until it has processed higher priority threads).
1267 *
1268 * It is possible for this routine to be called after a failed _enqueue
1269 * (due to the target thread migrating, sleeping, or otherwise blocked).
1270 * We have to check that the thread is actually on the run queue!
1271 */
1272static __inline
1273void
1274_lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1275{
1276 if (ntd->td_flags & TDF_RUNQ) {
1277 if (ntd->td_preemptable) {
1278 ntd->td_preemptable(ntd, ccount); /* YYY +token */
1279 }
1280 }
1281}
1282
1283static __inline
1284void
1285_lwkt_schedule(thread_t td)
1286{
1287 globaldata_t mygd = mycpu;
1288
1289 KASSERT(td != &td->td_gd->gd_idlethread,
1290 ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1291 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1292 crit_enter_gd(mygd);
1293 KKASSERT(td->td_lwp == NULL ||
1294 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1295
1296 if (td == mygd->gd_curthread) {
1297 _lwkt_enqueue(td);
1298 } else {
1299 /*
1300 * If we own the thread, there is no race (since we are in a
1301 * critical section). If we do not own the thread there might
1302 * be a race but the target cpu will deal with it.
1303 */
1304 if (td->td_gd == mygd) {
1305 _lwkt_enqueue(td);
1306 _lwkt_schedule_post(mygd, td, 1);
1307 } else {
1308 lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1309 }
1310 }
1311 crit_exit_gd(mygd);
1312}
1313
1314void
1315lwkt_schedule(thread_t td)
1316{
1317 _lwkt_schedule(td);
1318}
1319
1320void
1321lwkt_schedule_noresched(thread_t td) /* XXX not impl */
1322{
1323 _lwkt_schedule(td);
1324}
1325
1326/*
1327 * When scheduled remotely if frame != NULL the IPIQ is being
1328 * run via doreti or an interrupt then preemption can be allowed.
1329 *
1330 * To allow preemption we have to drop the critical section so only
1331 * one is present in _lwkt_schedule_post.
1332 */
1333static void
1334lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1335{
1336 thread_t td = curthread;
1337 thread_t ntd = arg;
1338
1339 if (frame && ntd->td_preemptable) {
1340 crit_exit_noyield(td);
1341 _lwkt_schedule(ntd);
1342 crit_enter_quick(td);
1343 } else {
1344 _lwkt_schedule(ntd);
1345 }
1346}
1347
1348/*
1349 * Thread migration using a 'Pull' method. The thread may or may not be
1350 * the current thread. It MUST be descheduled and in a stable state.
1351 * lwkt_giveaway() must be called on the cpu owning the thread.
1352 *
1353 * At any point after lwkt_giveaway() is called, the target cpu may
1354 * 'pull' the thread by calling lwkt_acquire().
1355 *
1356 * We have to make sure the thread is not sitting on a per-cpu tsleep
1357 * queue or it will blow up when it moves to another cpu.
1358 *
1359 * MPSAFE - must be called under very specific conditions.
1360 */
1361void
1362lwkt_giveaway(thread_t td)
1363{
1364 globaldata_t gd = mycpu;
1365
1366 crit_enter_gd(gd);
1367 if (td->td_flags & TDF_TSLEEPQ)
1368 tsleep_remove(td);
1369 KKASSERT(td->td_gd == gd);
1370 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1371 td->td_flags |= TDF_MIGRATING;
1372 crit_exit_gd(gd);
1373}
1374
1375void
1376lwkt_acquire(thread_t td)
1377{
1378 globaldata_t gd;
1379 globaldata_t mygd;
1380 int retry = 10000000;
1381
1382 KKASSERT(td->td_flags & TDF_MIGRATING);
1383 gd = td->td_gd;
1384 mygd = mycpu;
1385 if (gd != mycpu) {
1386 cpu_lfence();
1387 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1388 crit_enter_gd(mygd);
1389 DEBUG_PUSH_INFO("lwkt_acquire");
1390 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1391 lwkt_process_ipiq();
1392 cpu_lfence();
1393 if (--retry == 0) {
1394 kprintf("lwkt_acquire: stuck: td %p td->td_flags %08x\n",
1395 td, td->td_flags);
1396 retry = 10000000;
1397 }
1398#ifdef _KERNEL_VIRTUAL
1399 pthread_yield();
1400#endif
1401 }
1402 DEBUG_POP_INFO();
1403 cpu_mfence();
1404 td->td_gd = mygd;
1405 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1406 td->td_flags &= ~TDF_MIGRATING;
1407 crit_exit_gd(mygd);
1408 } else {
1409 crit_enter_gd(mygd);
1410 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1411 td->td_flags &= ~TDF_MIGRATING;
1412 crit_exit_gd(mygd);
1413 }
1414}
1415
1416/*
1417 * Generic deschedule. Descheduling threads other then your own should be
1418 * done only in carefully controlled circumstances. Descheduling is
1419 * asynchronous.
1420 *
1421 * This function may block if the cpu has run out of messages.
1422 */
1423void
1424lwkt_deschedule(thread_t td)
1425{
1426 crit_enter();
1427 if (td == curthread) {
1428 _lwkt_dequeue(td);
1429 } else {
1430 if (td->td_gd == mycpu) {
1431 _lwkt_dequeue(td);
1432 } else {
1433 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1434 }
1435 }
1436 crit_exit();
1437}
1438
1439/*
1440 * Set the target thread's priority. This routine does not automatically
1441 * switch to a higher priority thread, LWKT threads are not designed for
1442 * continuous priority changes. Yield if you want to switch.
1443 */
1444void
1445lwkt_setpri(thread_t td, int pri)
1446{
1447 if (td->td_pri != pri) {
1448 KKASSERT(pri >= 0);
1449 crit_enter();
1450 if (td->td_flags & TDF_RUNQ) {
1451 KKASSERT(td->td_gd == mycpu);
1452 _lwkt_dequeue(td);
1453 td->td_pri = pri;
1454 _lwkt_enqueue(td);
1455 } else {
1456 td->td_pri = pri;
1457 }
1458 crit_exit();
1459 }
1460}
1461
1462/*
1463 * Set the initial priority for a thread prior to it being scheduled for
1464 * the first time. The thread MUST NOT be scheduled before or during
1465 * this call. The thread may be assigned to a cpu other then the current
1466 * cpu.
1467 *
1468 * Typically used after a thread has been created with TDF_STOPPREQ,
1469 * and before the thread is initially scheduled.
1470 */
1471void
1472lwkt_setpri_initial(thread_t td, int pri)
1473{
1474 KKASSERT(pri >= 0);
1475 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1476 td->td_pri = pri;
1477}
1478
1479void
1480lwkt_setpri_self(int pri)
1481{
1482 thread_t td = curthread;
1483
1484 KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1485 crit_enter();
1486 if (td->td_flags & TDF_RUNQ) {
1487 _lwkt_dequeue(td);
1488 td->td_pri = pri;
1489 _lwkt_enqueue(td);
1490 } else {
1491 td->td_pri = pri;
1492 }
1493 crit_exit();
1494}
1495
1496/*
1497 * hz tick scheduler clock for LWKT threads
1498 */
1499void
1500lwkt_schedulerclock(thread_t td)
1501{
1502 globaldata_t gd = td->td_gd;
1503 thread_t xtd;
1504
1505 if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1506 /*
1507 * If the current thread is at the head of the runq shift it to the
1508 * end of any equal-priority threads and request a LWKT reschedule
1509 * if it moved.
1510 *
1511 * Ignore upri in this situation. There will only be one user thread
1512 * in user mode, all others will be user threads running in kernel
1513 * mode and we have to make sure they get some cpu.
1514 */
1515 xtd = TAILQ_NEXT(td, td_threadq);
1516 if (xtd && xtd->td_pri == td->td_pri) {
1517 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1518 while (xtd && xtd->td_pri == td->td_pri)
1519 xtd = TAILQ_NEXT(xtd, td_threadq);
1520 if (xtd)
1521 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1522 else
1523 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1524 need_lwkt_resched();
1525 }
1526 } else {
1527 /*
1528 * If we scheduled a thread other than the one at the head of the
1529 * queue always request a reschedule every tick.
1530 */
1531 need_lwkt_resched();
1532 }
1533}
1534
1535/*
1536 * Migrate the current thread to the specified cpu.
1537 *
1538 * This is accomplished by descheduling ourselves from the current cpu
1539 * and setting td_migrate_gd. The lwkt_switch() code will detect that the
1540 * 'old' thread wants to migrate after it has been completely switched out
1541 * and will complete the migration.
1542 *
1543 * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1544 *
1545 * We must be sure to release our current process designation (if a user
1546 * process) before clearing out any tsleepq we are on because the release
1547 * code may re-add us.
1548 *
1549 * We must be sure to remove ourselves from the current cpu's tsleepq
1550 * before potentially moving to another queue. The thread can be on
1551 * a tsleepq due to a left-over tsleep_interlock().
1552 */
1553
1554void
1555lwkt_setcpu_self(globaldata_t rgd)
1556{
1557 thread_t td = curthread;
1558
1559 if (td->td_gd != rgd) {
1560 crit_enter_quick(td);
1561
1562 if (td->td_release)
1563 td->td_release(td);
1564 if (td->td_flags & TDF_TSLEEPQ)
1565 tsleep_remove(td);
1566
1567 /*
1568 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1569 * trying to deschedule ourselves and switch away, then deschedule
1570 * ourself, remove us from tdallq, and set td_migrate_gd. Finally,
1571 * call lwkt_switch() to complete the operation.
1572 */
1573 td->td_flags |= TDF_MIGRATING;
1574 lwkt_deschedule_self(td);
1575 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1576 td->td_migrate_gd = rgd;
1577 lwkt_switch();
1578
1579 /*
1580 * We are now on the target cpu
1581 */
1582 KKASSERT(rgd == mycpu);
1583 TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1584 crit_exit_quick(td);
1585 }
1586}
1587
1588void
1589lwkt_migratecpu(int cpuid)
1590{
1591 globaldata_t rgd;
1592
1593 rgd = globaldata_find(cpuid);
1594 lwkt_setcpu_self(rgd);
1595}
1596
1597/*
1598 * Remote IPI for cpu migration (called while in a critical section so we
1599 * do not have to enter another one).
1600 *
1601 * The thread (td) has already been completely descheduled from the
1602 * originating cpu and we can simply assert the case. The thread is
1603 * assigned to the new cpu and enqueued.
1604 *
1605 * The thread will re-add itself to tdallq when it resumes execution.
1606 */
1607static void
1608lwkt_setcpu_remote(void *arg)
1609{
1610 thread_t td = arg;
1611 globaldata_t gd = mycpu;
1612
1613 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1614 td->td_gd = gd;
1615 cpu_mfence();
1616 td->td_flags &= ~TDF_MIGRATING;
1617 KKASSERT(td->td_migrate_gd == NULL);
1618 KKASSERT(td->td_lwp == NULL ||
1619 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1620 _lwkt_enqueue(td);
1621}
1622
1623struct lwp *
1624lwkt_preempted_proc(void)
1625{
1626 thread_t td = curthread;
1627 while (td->td_preempted)
1628 td = td->td_preempted;
1629 return(td->td_lwp);
1630}
1631
1632/*
1633 * Create a kernel process/thread/whatever. It shares it's address space
1634 * with proc0 - ie: kernel only.
1635 *
1636 * If the cpu is not specified one will be selected. In the future
1637 * specifying a cpu of -1 will enable kernel thread migration between
1638 * cpus.
1639 */
1640int
1641lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1642 thread_t template, int tdflags, int cpu, const char *fmt, ...)
1643{
1644 thread_t td;
1645 __va_list ap;
1646
1647 td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1648 tdflags);
1649 if (tdp)
1650 *tdp = td;
1651 cpu_set_thread_handler(td, lwkt_exit, func, arg);
1652
1653 /*
1654 * Set up arg0 for 'ps' etc
1655 */
1656 __va_start(ap, fmt);
1657 kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1658 __va_end(ap);
1659
1660 /*
1661 * Schedule the thread to run
1662 */
1663 if (td->td_flags & TDF_NOSTART)
1664 td->td_flags &= ~TDF_NOSTART;
1665 else
1666 lwkt_schedule(td);
1667 return 0;
1668}
1669
1670/*
1671 * Destroy an LWKT thread. Warning! This function is not called when
1672 * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1673 * uses a different reaping mechanism.
1674 */
1675void
1676lwkt_exit(void)
1677{
1678 thread_t td = curthread;
1679 thread_t std;
1680 globaldata_t gd;
1681
1682 /*
1683 * Do any cleanup that might block here
1684 */
1685 if (td->td_flags & TDF_VERBOSE)
1686 kprintf("kthread %p %s has exited\n", td, td->td_comm);
1687 biosched_done(td);
1688 dsched_exit_thread(td);
1689
1690 /*
1691 * Get us into a critical section to interlock gd_freetd and loop
1692 * until we can get it freed.
1693 *
1694 * We have to cache the current td in gd_freetd because objcache_put()ing
1695 * it would rip it out from under us while our thread is still active.
1696 *
1697 * We are the current thread so of course our own TDF_RUNNING bit will
1698 * be set, so unlike the lwp reap code we don't wait for it to clear.
1699 */
1700 gd = mycpu;
1701 crit_enter_quick(td);
1702 for (;;) {
1703 if (td->td_refs) {
1704 tsleep(td, 0, "tdreap", 1);
1705 continue;
1706 }
1707 if ((std = gd->gd_freetd) != NULL) {
1708 KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1709 gd->gd_freetd = NULL;
1710 objcache_put(thread_cache, std);
1711 continue;
1712 }
1713 break;
1714 }
1715
1716 /*
1717 * Remove thread resources from kernel lists and deschedule us for
1718 * the last time. We cannot block after this point or we may end
1719 * up with a stale td on the tsleepq.
1720 *
1721 * None of this may block, the critical section is the only thing
1722 * protecting tdallq and the only thing preventing new lwkt_hold()
1723 * thread refs now.
1724 */
1725 if (td->td_flags & TDF_TSLEEPQ)
1726 tsleep_remove(td);
1727 lwkt_deschedule_self(td);
1728 lwkt_remove_tdallq(td);
1729 KKASSERT(td->td_refs == 0);
1730
1731 /*
1732 * Final cleanup
1733 */
1734 KKASSERT(gd->gd_freetd == NULL);
1735 if (td->td_flags & TDF_ALLOCATED_THREAD)
1736 gd->gd_freetd = td;
1737 cpu_thread_exit();
1738}
1739
1740void
1741lwkt_remove_tdallq(thread_t td)
1742{
1743 KKASSERT(td->td_gd == mycpu);
1744 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1745}
1746
1747/*
1748 * Code reduction and branch prediction improvements. Call/return
1749 * overhead on modern cpus often degenerates into 0 cycles due to
1750 * the cpu's branch prediction hardware and return pc cache. We
1751 * can take advantage of this by not inlining medium-complexity
1752 * functions and we can also reduce the branch prediction impact
1753 * by collapsing perfectly predictable branches into a single
1754 * procedure instead of duplicating it.
1755 *
1756 * Is any of this noticeable? Probably not, so I'll take the
1757 * smaller code size.
1758 */
1759void
1760crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1761{
1762 _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1763}
1764
1765void
1766crit_panic(void)
1767{
1768 thread_t td = curthread;
1769 int lcrit = td->td_critcount;
1770
1771 td->td_critcount = 0;
1772 panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1773 /* NOT REACHED */
1774}
1775
1776/*
1777 * Called from debugger/panic on cpus which have been stopped. We must still
1778 * process the IPIQ while stopped, even if we were stopped while in a critical
1779 * section (XXX).
1780 *
1781 * If we are dumping also try to process any pending interrupts. This may
1782 * or may not work depending on the state of the cpu at the point it was
1783 * stopped.
1784 */
1785void
1786lwkt_smp_stopped(void)
1787{
1788 globaldata_t gd = mycpu;
1789
1790 crit_enter_gd(gd);
1791 if (dumping) {
1792 lwkt_process_ipiq();
1793 splz();
1794 } else {
1795 lwkt_process_ipiq();
1796 }
1797 crit_exit_gd(gd);
1798}