pci: Guard against wrong user supplied IRQ assignment
[dragonfly.git] / sys / bus / pci / pci.c
... / ...
CommitLineData
1/*-
2 * Copyright (c) 1997, Stefan Esser <se@kfreebsd.org>
3 * Copyright (c) 2000, Michael Smith <msmith@kfreebsd.org>
4 * Copyright (c) 2000, BSDi
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/dev/pci/pci.c,v 1.355.2.9.2.1 2009/04/15 03:14:26 kensmith Exp $
29 */
30
31#include "opt_acpi.h"
32#include "opt_compat_oldpci.h"
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/malloc.h>
37#include <sys/module.h>
38#include <sys/linker.h>
39#include <sys/fcntl.h>
40#include <sys/conf.h>
41#include <sys/kernel.h>
42#include <sys/queue.h>
43#include <sys/sysctl.h>
44#include <sys/endian.h>
45#include <sys/machintr.h>
46
47#include <machine/msi_machdep.h>
48
49#include <vm/vm.h>
50#include <vm/pmap.h>
51#include <vm/vm_extern.h>
52
53#include <sys/bus.h>
54#include <sys/rman.h>
55#include <sys/device.h>
56
57#include <sys/pciio.h>
58#include <bus/pci/pcireg.h>
59#include <bus/pci/pcivar.h>
60#include <bus/pci/pci_private.h>
61
62#include "pcib_if.h"
63#include "pci_if.h"
64
65#ifdef __HAVE_ACPI
66#include <contrib/dev/acpica/acpi.h>
67#include "acpi_if.h"
68#else
69#define ACPI_PWR_FOR_SLEEP(x, y, z)
70#endif
71
72extern struct dev_ops pcic_ops; /* XXX */
73
74typedef void (*pci_read_cap_t)(device_t, int, int, pcicfgregs *);
75
76static uint32_t pci_mapbase(unsigned mapreg);
77static const char *pci_maptype(unsigned mapreg);
78static int pci_mapsize(unsigned testval);
79static int pci_maprange(unsigned mapreg);
80static void pci_fixancient(pcicfgregs *cfg);
81
82static int pci_porten(device_t pcib, int b, int s, int f);
83static int pci_memen(device_t pcib, int b, int s, int f);
84static void pci_assign_interrupt(device_t bus, device_t dev,
85 int force_route);
86static int pci_add_map(device_t pcib, device_t bus, device_t dev,
87 int b, int s, int f, int reg,
88 struct resource_list *rl, int force, int prefetch);
89static int pci_probe(device_t dev);
90static int pci_attach(device_t dev);
91static void pci_child_detached(device_t, device_t);
92static void pci_load_vendor_data(void);
93static int pci_describe_parse_line(char **ptr, int *vendor,
94 int *device, char **desc);
95static char *pci_describe_device(device_t dev);
96static int pci_modevent(module_t mod, int what, void *arg);
97static void pci_hdrtypedata(device_t pcib, int b, int s, int f,
98 pcicfgregs *cfg);
99static void pci_read_capabilities(device_t pcib, pcicfgregs *cfg);
100static int pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg,
101 int reg, uint32_t *data);
102#if 0
103static int pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg,
104 int reg, uint32_t data);
105#endif
106static void pci_read_vpd(device_t pcib, pcicfgregs *cfg);
107static void pci_disable_msi(device_t dev);
108static void pci_enable_msi(device_t dev, uint64_t address,
109 uint16_t data);
110static void pci_setup_msix_vector(device_t dev, u_int index,
111 uint64_t address, uint32_t data);
112static void pci_mask_msix_vector(device_t dev, u_int index);
113static void pci_unmask_msix_vector(device_t dev, u_int index);
114static void pci_mask_msix_allvectors(device_t dev);
115static struct msix_vector *pci_find_msix_vector(device_t dev, int rid);
116static int pci_msi_blacklisted(void);
117static void pci_resume_msi(device_t dev);
118static void pci_resume_msix(device_t dev);
119static int pcie_slotimpl(const pcicfgregs *);
120static void pci_print_verbose_expr(const pcicfgregs *);
121
122static void pci_read_cap_pmgt(device_t, int, int, pcicfgregs *);
123static void pci_read_cap_ht(device_t, int, int, pcicfgregs *);
124static void pci_read_cap_msi(device_t, int, int, pcicfgregs *);
125static void pci_read_cap_msix(device_t, int, int, pcicfgregs *);
126static void pci_read_cap_vpd(device_t, int, int, pcicfgregs *);
127static void pci_read_cap_subvendor(device_t, int, int,
128 pcicfgregs *);
129static void pci_read_cap_pcix(device_t, int, int, pcicfgregs *);
130static void pci_read_cap_express(device_t, int, int, pcicfgregs *);
131
132static device_method_t pci_methods[] = {
133 /* Device interface */
134 DEVMETHOD(device_probe, pci_probe),
135 DEVMETHOD(device_attach, pci_attach),
136 DEVMETHOD(device_detach, bus_generic_detach),
137 DEVMETHOD(device_shutdown, bus_generic_shutdown),
138 DEVMETHOD(device_suspend, pci_suspend),
139 DEVMETHOD(device_resume, pci_resume),
140
141 /* Bus interface */
142 DEVMETHOD(bus_print_child, pci_print_child),
143 DEVMETHOD(bus_probe_nomatch, pci_probe_nomatch),
144 DEVMETHOD(bus_read_ivar, pci_read_ivar),
145 DEVMETHOD(bus_write_ivar, pci_write_ivar),
146 DEVMETHOD(bus_driver_added, pci_driver_added),
147 DEVMETHOD(bus_child_detached, pci_child_detached),
148 DEVMETHOD(bus_setup_intr, pci_setup_intr),
149 DEVMETHOD(bus_teardown_intr, pci_teardown_intr),
150
151 DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
152 DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource),
153 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
154 DEVMETHOD(bus_delete_resource, pci_delete_resource),
155 DEVMETHOD(bus_alloc_resource, pci_alloc_resource),
156 DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
157 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
158 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
159 DEVMETHOD(bus_child_pnpinfo_str, pci_child_pnpinfo_str_method),
160 DEVMETHOD(bus_child_location_str, pci_child_location_str_method),
161
162 /* PCI interface */
163 DEVMETHOD(pci_read_config, pci_read_config_method),
164 DEVMETHOD(pci_write_config, pci_write_config_method),
165 DEVMETHOD(pci_enable_busmaster, pci_enable_busmaster_method),
166 DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
167 DEVMETHOD(pci_enable_io, pci_enable_io_method),
168 DEVMETHOD(pci_disable_io, pci_disable_io_method),
169 DEVMETHOD(pci_get_vpd_ident, pci_get_vpd_ident_method),
170 DEVMETHOD(pci_get_vpd_readonly, pci_get_vpd_readonly_method),
171 DEVMETHOD(pci_get_powerstate, pci_get_powerstate_method),
172 DEVMETHOD(pci_set_powerstate, pci_set_powerstate_method),
173 DEVMETHOD(pci_assign_interrupt, pci_assign_interrupt_method),
174 DEVMETHOD(pci_find_extcap, pci_find_extcap_method),
175 DEVMETHOD(pci_alloc_msi, pci_alloc_msi_method),
176 DEVMETHOD(pci_release_msi, pci_release_msi_method),
177 DEVMETHOD(pci_alloc_msix_vector, pci_alloc_msix_vector_method),
178 DEVMETHOD(pci_release_msix_vector, pci_release_msix_vector_method),
179 DEVMETHOD(pci_msi_count, pci_msi_count_method),
180 DEVMETHOD(pci_msix_count, pci_msix_count_method),
181
182 { 0, 0 }
183};
184
185DEFINE_CLASS_0(pci, pci_driver, pci_methods, 0);
186
187static devclass_t pci_devclass;
188DRIVER_MODULE(pci, pcib, pci_driver, pci_devclass, pci_modevent, NULL);
189MODULE_VERSION(pci, 1);
190
191static char *pci_vendordata;
192static size_t pci_vendordata_size;
193
194
195static const struct pci_read_cap {
196 int cap;
197 pci_read_cap_t read_cap;
198} pci_read_caps[] = {
199 { PCIY_PMG, pci_read_cap_pmgt },
200 { PCIY_HT, pci_read_cap_ht },
201 { PCIY_MSI, pci_read_cap_msi },
202 { PCIY_MSIX, pci_read_cap_msix },
203 { PCIY_VPD, pci_read_cap_vpd },
204 { PCIY_SUBVENDOR, pci_read_cap_subvendor },
205 { PCIY_PCIX, pci_read_cap_pcix },
206 { PCIY_EXPRESS, pci_read_cap_express },
207 { 0, NULL } /* required last entry */
208};
209
210struct pci_quirk {
211 uint32_t devid; /* Vendor/device of the card */
212 int type;
213#define PCI_QUIRK_MAP_REG 1 /* PCI map register in weird place */
214#define PCI_QUIRK_DISABLE_MSI 2 /* MSI/MSI-X doesn't work */
215 int arg1;
216 int arg2;
217};
218
219struct pci_quirk pci_quirks[] = {
220 /* The Intel 82371AB and 82443MX has a map register at offset 0x90. */
221 { 0x71138086, PCI_QUIRK_MAP_REG, 0x90, 0 },
222 { 0x719b8086, PCI_QUIRK_MAP_REG, 0x90, 0 },
223 /* As does the Serverworks OSB4 (the SMBus mapping register) */
224 { 0x02001166, PCI_QUIRK_MAP_REG, 0x90, 0 },
225
226 /*
227 * MSI doesn't work with the ServerWorks CNB20-HE Host Bridge
228 * or the CMIC-SL (AKA ServerWorks GC_LE).
229 */
230 { 0x00141166, PCI_QUIRK_DISABLE_MSI, 0, 0 },
231 { 0x00171166, PCI_QUIRK_DISABLE_MSI, 0, 0 },
232
233 /*
234 * MSI doesn't work on earlier Intel chipsets including
235 * E7500, E7501, E7505, 845, 865, 875/E7210, and 855.
236 */
237 { 0x25408086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
238 { 0x254c8086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
239 { 0x25508086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
240 { 0x25608086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
241 { 0x25708086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
242 { 0x25788086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
243 { 0x35808086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
244
245 /*
246 * MSI doesn't work with devices behind the AMD 8131 HT-PCIX
247 * bridge.
248 */
249 { 0x74501022, PCI_QUIRK_DISABLE_MSI, 0, 0 },
250
251 { 0 }
252};
253
254/* map register information */
255#define PCI_MAPMEM 0x01 /* memory map */
256#define PCI_MAPMEMP 0x02 /* prefetchable memory map */
257#define PCI_MAPPORT 0x04 /* port map */
258
259#define PCI_MSIX_RID2VEC(rid) ((rid) - 1) /* rid -> MSI-X vector # */
260#define PCI_MSIX_VEC2RID(vec) ((vec) + 1) /* MSI-X vector # -> rid */
261
262struct devlist pci_devq;
263uint32_t pci_generation;
264uint32_t pci_numdevs = 0;
265static int pcie_chipset, pcix_chipset;
266
267/* sysctl vars */
268SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD, 0, "PCI bus tuning parameters");
269
270static int pci_enable_io_modes = 1;
271TUNABLE_INT("hw.pci.enable_io_modes", &pci_enable_io_modes);
272SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RW,
273 &pci_enable_io_modes, 1,
274 "Enable I/O and memory bits in the config register. Some BIOSes do not\n\
275enable these bits correctly. We'd like to do this all the time, but there\n\
276are some peripherals that this causes problems with.");
277
278static int pci_do_power_nodriver = 0;
279TUNABLE_INT("hw.pci.do_power_nodriver", &pci_do_power_nodriver);
280SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RW,
281 &pci_do_power_nodriver, 0,
282 "Place a function into D3 state when no driver attaches to it. 0 means\n\
283disable. 1 means conservatively place devices into D3 state. 2 means\n\
284aggressively place devices into D3 state. 3 means put absolutely everything\n\
285in D3 state.");
286
287static int pci_do_power_resume = 1;
288TUNABLE_INT("hw.pci.do_power_resume", &pci_do_power_resume);
289SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RW,
290 &pci_do_power_resume, 1,
291 "Transition from D3 -> D0 on resume.");
292
293static int pci_do_msi = 1;
294TUNABLE_INT("hw.pci.enable_msi", &pci_do_msi);
295SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RW, &pci_do_msi, 1,
296 "Enable support for MSI interrupts");
297
298static int pci_do_msix = 1;
299TUNABLE_INT("hw.pci.enable_msix", &pci_do_msix);
300SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RW, &pci_do_msix, 1,
301 "Enable support for MSI-X interrupts");
302
303static int pci_honor_msi_blacklist = 1;
304TUNABLE_INT("hw.pci.honor_msi_blacklist", &pci_honor_msi_blacklist);
305SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RD,
306 &pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI");
307
308static int pci_msi_cpuid;
309
310/* Find a device_t by bus/slot/function in domain 0 */
311
312device_t
313pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func)
314{
315
316 return (pci_find_dbsf(0, bus, slot, func));
317}
318
319/* Find a device_t by domain/bus/slot/function */
320
321device_t
322pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func)
323{
324 struct pci_devinfo *dinfo;
325
326 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
327 if ((dinfo->cfg.domain == domain) &&
328 (dinfo->cfg.bus == bus) &&
329 (dinfo->cfg.slot == slot) &&
330 (dinfo->cfg.func == func)) {
331 return (dinfo->cfg.dev);
332 }
333 }
334
335 return (NULL);
336}
337
338/* Find a device_t by vendor/device ID */
339
340device_t
341pci_find_device(uint16_t vendor, uint16_t device)
342{
343 struct pci_devinfo *dinfo;
344
345 STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
346 if ((dinfo->cfg.vendor == vendor) &&
347 (dinfo->cfg.device == device)) {
348 return (dinfo->cfg.dev);
349 }
350 }
351
352 return (NULL);
353}
354
355/* return base address of memory or port map */
356
357static uint32_t
358pci_mapbase(uint32_t mapreg)
359{
360
361 if (PCI_BAR_MEM(mapreg))
362 return (mapreg & PCIM_BAR_MEM_BASE);
363 else
364 return (mapreg & PCIM_BAR_IO_BASE);
365}
366
367/* return map type of memory or port map */
368
369static const char *
370pci_maptype(unsigned mapreg)
371{
372
373 if (PCI_BAR_IO(mapreg))
374 return ("I/O Port");
375 if (mapreg & PCIM_BAR_MEM_PREFETCH)
376 return ("Prefetchable Memory");
377 return ("Memory");
378}
379
380/* return log2 of map size decoded for memory or port map */
381
382static int
383pci_mapsize(uint32_t testval)
384{
385 int ln2size;
386
387 testval = pci_mapbase(testval);
388 ln2size = 0;
389 if (testval != 0) {
390 while ((testval & 1) == 0)
391 {
392 ln2size++;
393 testval >>= 1;
394 }
395 }
396 return (ln2size);
397}
398
399/* return log2 of address range supported by map register */
400
401static int
402pci_maprange(unsigned mapreg)
403{
404 int ln2range = 0;
405
406 if (PCI_BAR_IO(mapreg))
407 ln2range = 32;
408 else
409 switch (mapreg & PCIM_BAR_MEM_TYPE) {
410 case PCIM_BAR_MEM_32:
411 ln2range = 32;
412 break;
413 case PCIM_BAR_MEM_1MB:
414 ln2range = 20;
415 break;
416 case PCIM_BAR_MEM_64:
417 ln2range = 64;
418 break;
419 }
420 return (ln2range);
421}
422
423/* adjust some values from PCI 1.0 devices to match 2.0 standards ... */
424
425static void
426pci_fixancient(pcicfgregs *cfg)
427{
428 if (cfg->hdrtype != 0)
429 return;
430
431 /* PCI to PCI bridges use header type 1 */
432 if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
433 cfg->hdrtype = 1;
434}
435
436/* extract header type specific config data */
437
438static void
439pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
440{
441#define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w)
442 switch (cfg->hdrtype) {
443 case 0:
444 cfg->subvendor = REG(PCIR_SUBVEND_0, 2);
445 cfg->subdevice = REG(PCIR_SUBDEV_0, 2);
446 cfg->nummaps = PCI_MAXMAPS_0;
447 break;
448 case 1:
449 cfg->nummaps = PCI_MAXMAPS_1;
450#ifdef COMPAT_OLDPCI
451 cfg->secondarybus = REG(PCIR_SECBUS_1, 1);
452#endif
453 break;
454 case 2:
455 cfg->subvendor = REG(PCIR_SUBVEND_2, 2);
456 cfg->subdevice = REG(PCIR_SUBDEV_2, 2);
457 cfg->nummaps = PCI_MAXMAPS_2;
458#ifdef COMPAT_OLDPCI
459 cfg->secondarybus = REG(PCIR_SECBUS_2, 1);
460#endif
461 break;
462 }
463#undef REG
464}
465
466/* read configuration header into pcicfgregs structure */
467struct pci_devinfo *
468pci_read_device(device_t pcib, int d, int b, int s, int f, size_t size)
469{
470#define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w)
471 pcicfgregs *cfg = NULL;
472 struct pci_devinfo *devlist_entry;
473 struct devlist *devlist_head;
474
475 devlist_head = &pci_devq;
476
477 devlist_entry = NULL;
478
479 if (REG(PCIR_DEVVENDOR, 4) != -1) {
480 devlist_entry = kmalloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
481
482 cfg = &devlist_entry->cfg;
483
484 cfg->domain = d;
485 cfg->bus = b;
486 cfg->slot = s;
487 cfg->func = f;
488 cfg->vendor = REG(PCIR_VENDOR, 2);
489 cfg->device = REG(PCIR_DEVICE, 2);
490 cfg->cmdreg = REG(PCIR_COMMAND, 2);
491 cfg->statreg = REG(PCIR_STATUS, 2);
492 cfg->baseclass = REG(PCIR_CLASS, 1);
493 cfg->subclass = REG(PCIR_SUBCLASS, 1);
494 cfg->progif = REG(PCIR_PROGIF, 1);
495 cfg->revid = REG(PCIR_REVID, 1);
496 cfg->hdrtype = REG(PCIR_HDRTYPE, 1);
497 cfg->cachelnsz = REG(PCIR_CACHELNSZ, 1);
498 cfg->lattimer = REG(PCIR_LATTIMER, 1);
499 cfg->intpin = REG(PCIR_INTPIN, 1);
500 cfg->intline = REG(PCIR_INTLINE, 1);
501
502 cfg->mingnt = REG(PCIR_MINGNT, 1);
503 cfg->maxlat = REG(PCIR_MAXLAT, 1);
504
505 cfg->mfdev = (cfg->hdrtype & PCIM_MFDEV) != 0;
506 cfg->hdrtype &= ~PCIM_MFDEV;
507
508 pci_fixancient(cfg);
509 pci_hdrtypedata(pcib, b, s, f, cfg);
510
511 pci_read_capabilities(pcib, cfg);
512
513 STAILQ_INSERT_TAIL(devlist_head, devlist_entry, pci_links);
514
515 devlist_entry->conf.pc_sel.pc_domain = cfg->domain;
516 devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
517 devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
518 devlist_entry->conf.pc_sel.pc_func = cfg->func;
519 devlist_entry->conf.pc_hdr = cfg->hdrtype;
520
521 devlist_entry->conf.pc_subvendor = cfg->subvendor;
522 devlist_entry->conf.pc_subdevice = cfg->subdevice;
523 devlist_entry->conf.pc_vendor = cfg->vendor;
524 devlist_entry->conf.pc_device = cfg->device;
525
526 devlist_entry->conf.pc_class = cfg->baseclass;
527 devlist_entry->conf.pc_subclass = cfg->subclass;
528 devlist_entry->conf.pc_progif = cfg->progif;
529 devlist_entry->conf.pc_revid = cfg->revid;
530
531 pci_numdevs++;
532 pci_generation++;
533 }
534 return (devlist_entry);
535#undef REG
536}
537
538static int
539pci_fixup_nextptr(int *nextptr0)
540{
541 int nextptr = *nextptr0;
542
543 /* "Next pointer" is only one byte */
544 KASSERT(nextptr <= 0xff, ("Illegal next pointer %d", nextptr));
545
546 if (nextptr & 0x3) {
547 /*
548 * PCI local bus spec 3.0:
549 *
550 * "... The bottom two bits of all pointers are reserved
551 * and must be implemented as 00b although software must
552 * mask them to allow for future uses of these bits ..."
553 */
554 if (bootverbose) {
555 kprintf("Illegal PCI extended capability "
556 "offset, fixup 0x%02x -> 0x%02x\n",
557 nextptr, nextptr & ~0x3);
558 }
559 nextptr &= ~0x3;
560 }
561 *nextptr0 = nextptr;
562
563 if (nextptr < 0x40) {
564 if (nextptr != 0) {
565 kprintf("Illegal PCI extended capability "
566 "offset 0x%02x", nextptr);
567 }
568 return 0;
569 }
570 return 1;
571}
572
573static void
574pci_read_cap_pmgt(device_t pcib, int ptr, int nextptr, pcicfgregs *cfg)
575{
576#define REG(n, w) \
577 PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
578
579 struct pcicfg_pp *pp = &cfg->pp;
580
581 if (pp->pp_cap)
582 return;
583
584 pp->pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
585 pp->pp_status = ptr + PCIR_POWER_STATUS;
586 pp->pp_pmcsr = ptr + PCIR_POWER_PMCSR;
587
588 if ((nextptr - ptr) > PCIR_POWER_DATA) {
589 /*
590 * XXX
591 * We should write to data_select and read back from
592 * data_scale to determine whether data register is
593 * implemented.
594 */
595#ifdef foo
596 pp->pp_data = ptr + PCIR_POWER_DATA;
597#else
598 pp->pp_data = 0;
599#endif
600 }
601
602#undef REG
603}
604
605static void
606pci_read_cap_ht(device_t pcib, int ptr, int nextptr, pcicfgregs *cfg)
607{
608#if defined(__i386__) || defined(__x86_64__)
609
610#define REG(n, w) \
611 PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
612
613 struct pcicfg_ht *ht = &cfg->ht;
614 uint64_t addr;
615 uint32_t val;
616
617 /* Determine HT-specific capability type. */
618 val = REG(ptr + PCIR_HT_COMMAND, 2);
619
620 if ((val & 0xe000) == PCIM_HTCAP_SLAVE)
621 cfg->ht.ht_slave = ptr;
622
623 if ((val & PCIM_HTCMD_CAP_MASK) != PCIM_HTCAP_MSI_MAPPING)
624 return;
625
626 if (!(val & PCIM_HTCMD_MSI_FIXED)) {
627 /* Sanity check the mapping window. */
628 addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI, 4);
629 addr <<= 32;
630 addr |= REG(ptr + PCIR_HTMSI_ADDRESS_LO, 4);
631 if (addr != MSI_X86_ADDR_BASE) {
632 device_printf(pcib, "HT Bridge at pci%d:%d:%d:%d "
633 "has non-default MSI window 0x%llx\n",
634 cfg->domain, cfg->bus, cfg->slot, cfg->func,
635 (long long)addr);
636 }
637 } else {
638 addr = MSI_X86_ADDR_BASE;
639 }
640
641 ht->ht_msimap = ptr;
642 ht->ht_msictrl = val;
643 ht->ht_msiaddr = addr;
644
645#undef REG
646
647#endif /* __i386__ || __x86_64__ */
648}
649
650static void
651pci_read_cap_msi(device_t pcib, int ptr, int nextptr, pcicfgregs *cfg)
652{
653#define REG(n, w) \
654 PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
655
656 struct pcicfg_msi *msi = &cfg->msi;
657
658 msi->msi_location = ptr;
659 msi->msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2);
660 msi->msi_msgnum = 1 << ((msi->msi_ctrl & PCIM_MSICTRL_MMC_MASK) >> 1);
661
662#undef REG
663}
664
665static void
666pci_read_cap_msix(device_t pcib, int ptr, int nextptr, pcicfgregs *cfg)
667{
668#define REG(n, w) \
669 PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
670
671 struct pcicfg_msix *msix = &cfg->msix;
672 uint32_t val;
673
674 msix->msix_location = ptr;
675 msix->msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2);
676 msix->msix_msgnum = (msix->msix_ctrl & PCIM_MSIXCTRL_TABLE_SIZE) + 1;
677
678 val = REG(ptr + PCIR_MSIX_TABLE, 4);
679 msix->msix_table_bar = PCIR_BAR(val & PCIM_MSIX_BIR_MASK);
680 msix->msix_table_offset = val & ~PCIM_MSIX_BIR_MASK;
681
682 val = REG(ptr + PCIR_MSIX_PBA, 4);
683 msix->msix_pba_bar = PCIR_BAR(val & PCIM_MSIX_BIR_MASK);
684 msix->msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK;
685
686 TAILQ_INIT(&msix->msix_vectors);
687
688#undef REG
689}
690
691static void
692pci_read_cap_vpd(device_t pcib, int ptr, int nextptr, pcicfgregs *cfg)
693{
694 cfg->vpd.vpd_reg = ptr;
695}
696
697static void
698pci_read_cap_subvendor(device_t pcib, int ptr, int nextptr, pcicfgregs *cfg)
699{
700#define REG(n, w) \
701 PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
702
703 /* Should always be true. */
704 if ((cfg->hdrtype & PCIM_HDRTYPE) == 1) {
705 uint32_t val;
706
707 val = REG(ptr + PCIR_SUBVENDCAP_ID, 4);
708 cfg->subvendor = val & 0xffff;
709 cfg->subdevice = val >> 16;
710 }
711
712#undef REG
713}
714
715static void
716pci_read_cap_pcix(device_t pcib, int ptr, int nextptr, pcicfgregs *cfg)
717{
718 /*
719 * Assume we have a PCI-X chipset if we have
720 * at least one PCI-PCI bridge with a PCI-X
721 * capability. Note that some systems with
722 * PCI-express or HT chipsets might match on
723 * this check as well.
724 */
725 if ((cfg->hdrtype & PCIM_HDRTYPE) == 1)
726 pcix_chipset = 1;
727
728 cfg->pcix.pcix_ptr = ptr;
729}
730
731static int
732pcie_slotimpl(const pcicfgregs *cfg)
733{
734 const struct pcicfg_expr *expr = &cfg->expr;
735 uint16_t port_type;
736
737 /*
738 * - Slot implemented bit is meaningful iff current port is
739 * root port or down stream port.
740 * - Testing for root port or down stream port is meanningful
741 * iff PCI configure has type 1 header.
742 */
743
744 if (cfg->hdrtype != 1)
745 return 0;
746
747 port_type = expr->expr_cap & PCIEM_CAP_PORT_TYPE;
748 if (port_type != PCIE_ROOT_PORT && port_type != PCIE_DOWN_STREAM_PORT)
749 return 0;
750
751 if (!(expr->expr_cap & PCIEM_CAP_SLOT_IMPL))
752 return 0;
753
754 return 1;
755}
756
757static void
758pci_read_cap_express(device_t pcib, int ptr, int nextptr, pcicfgregs *cfg)
759{
760#define REG(n, w) \
761 PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
762
763 struct pcicfg_expr *expr = &cfg->expr;
764
765 /*
766 * Assume we have a PCI-express chipset if we have
767 * at least one PCI-express device.
768 */
769 pcie_chipset = 1;
770
771 expr->expr_ptr = ptr;
772 expr->expr_cap = REG(ptr + PCIER_CAPABILITY, 2);
773
774 /*
775 * Read slot capabilities. Slot capabilities exists iff
776 * current port's slot is implemented
777 */
778 if (pcie_slotimpl(cfg))
779 expr->expr_slotcap = REG(ptr + PCIER_SLOTCAP, 4);
780
781#undef REG
782}
783
784static void
785pci_read_capabilities(device_t pcib, pcicfgregs *cfg)
786{
787#define REG(n, w) PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
788#define WREG(n, v, w) PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w)
789
790 uint32_t val;
791 int nextptr, ptrptr;
792
793 if ((REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT) == 0) {
794 /* No capabilities */
795 return;
796 }
797
798 switch (cfg->hdrtype & PCIM_HDRTYPE) {
799 case 0:
800 case 1:
801 ptrptr = PCIR_CAP_PTR;
802 break;
803 case 2:
804 ptrptr = PCIR_CAP_PTR_2; /* cardbus capabilities ptr */
805 break;
806 default:
807 return; /* no capabilities support */
808 }
809 nextptr = REG(ptrptr, 1); /* sanity check? */
810
811 /*
812 * Read capability entries.
813 */
814 while (pci_fixup_nextptr(&nextptr)) {
815 const struct pci_read_cap *rc;
816 int ptr = nextptr;
817
818 /* Find the next entry */
819 nextptr = REG(ptr + PCICAP_NEXTPTR, 1);
820
821 /* Process this entry */
822 val = REG(ptr + PCICAP_ID, 1);
823 for (rc = pci_read_caps; rc->read_cap != NULL; ++rc) {
824 if (rc->cap == val) {
825 rc->read_cap(pcib, ptr, nextptr, cfg);
826 break;
827 }
828 }
829 }
830
831#if defined(__i386__) || defined(__x86_64__)
832 /*
833 * Enable the MSI mapping window for all HyperTransport
834 * slaves. PCI-PCI bridges have their windows enabled via
835 * PCIB_MAP_MSI().
836 */
837 if (cfg->ht.ht_slave != 0 && cfg->ht.ht_msimap != 0 &&
838 !(cfg->ht.ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) {
839 device_printf(pcib,
840 "Enabling MSI window for HyperTransport slave at pci%d:%d:%d:%d\n",
841 cfg->domain, cfg->bus, cfg->slot, cfg->func);
842 cfg->ht.ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
843 WREG(cfg->ht.ht_msimap + PCIR_HT_COMMAND, cfg->ht.ht_msictrl,
844 2);
845 }
846#endif
847
848/* REG and WREG use carry through to next functions */
849}
850
851/*
852 * PCI Vital Product Data
853 */
854
855#define PCI_VPD_TIMEOUT 1000000
856
857static int
858pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data)
859{
860 int count = PCI_VPD_TIMEOUT;
861
862 KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
863
864 WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2);
865
866 while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) {
867 if (--count < 0)
868 return (ENXIO);
869 DELAY(1); /* limit looping */
870 }
871 *data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4));
872
873 return (0);
874}
875
876#if 0
877static int
878pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data)
879{
880 int count = PCI_VPD_TIMEOUT;
881
882 KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
883
884 WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4);
885 WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2);
886 while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) {
887 if (--count < 0)
888 return (ENXIO);
889 DELAY(1); /* limit looping */
890 }
891
892 return (0);
893}
894#endif
895
896#undef PCI_VPD_TIMEOUT
897
898struct vpd_readstate {
899 device_t pcib;
900 pcicfgregs *cfg;
901 uint32_t val;
902 int bytesinval;
903 int off;
904 uint8_t cksum;
905};
906
907static int
908vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data)
909{
910 uint32_t reg;
911 uint8_t byte;
912
913 if (vrs->bytesinval == 0) {
914 if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, &reg))
915 return (ENXIO);
916 vrs->val = le32toh(reg);
917 vrs->off += 4;
918 byte = vrs->val & 0xff;
919 vrs->bytesinval = 3;
920 } else {
921 vrs->val = vrs->val >> 8;
922 byte = vrs->val & 0xff;
923 vrs->bytesinval--;
924 }
925
926 vrs->cksum += byte;
927 *data = byte;
928 return (0);
929}
930
931int
932pcie_slot_implemented(device_t dev)
933{
934 struct pci_devinfo *dinfo = device_get_ivars(dev);
935
936 return pcie_slotimpl(&dinfo->cfg);
937}
938
939void
940pcie_set_max_readrq(device_t dev, uint16_t rqsize)
941{
942 uint8_t expr_ptr;
943 uint16_t val;
944
945 rqsize &= PCIEM_DEVCTL_MAX_READRQ_MASK;
946 if (rqsize > PCIEM_DEVCTL_MAX_READRQ_4096) {
947 panic("%s: invalid max read request size 0x%02x",
948 device_get_nameunit(dev), rqsize);
949 }
950
951 expr_ptr = pci_get_pciecap_ptr(dev);
952 if (!expr_ptr)
953 panic("%s: not PCIe device", device_get_nameunit(dev));
954
955 val = pci_read_config(dev, expr_ptr + PCIER_DEVCTRL, 2);
956 if ((val & PCIEM_DEVCTL_MAX_READRQ_MASK) != rqsize) {
957 if (bootverbose)
958 device_printf(dev, "adjust device control 0x%04x", val);
959
960 val &= ~PCIEM_DEVCTL_MAX_READRQ_MASK;
961 val |= rqsize;
962 pci_write_config(dev, expr_ptr + PCIER_DEVCTRL, val, 2);
963
964 if (bootverbose)
965 kprintf(" -> 0x%04x\n", val);
966 }
967}
968
969uint16_t
970pcie_get_max_readrq(device_t dev)
971{
972 uint8_t expr_ptr;
973 uint16_t val;
974
975 expr_ptr = pci_get_pciecap_ptr(dev);
976 if (!expr_ptr)
977 panic("%s: not PCIe device", device_get_nameunit(dev));
978
979 val = pci_read_config(dev, expr_ptr + PCIER_DEVCTRL, 2);
980 return (val & PCIEM_DEVCTL_MAX_READRQ_MASK);
981}
982
983static void
984pci_read_vpd(device_t pcib, pcicfgregs *cfg)
985{
986 struct vpd_readstate vrs;
987 int state;
988 int name;
989 int remain;
990 int i;
991 int alloc, off; /* alloc/off for RO/W arrays */
992 int cksumvalid;
993 int dflen;
994 uint8_t byte;
995 uint8_t byte2;
996
997 /* init vpd reader */
998 vrs.bytesinval = 0;
999 vrs.off = 0;
1000 vrs.pcib = pcib;
1001 vrs.cfg = cfg;
1002 vrs.cksum = 0;
1003
1004 state = 0;
1005 name = remain = i = 0; /* shut up stupid gcc */
1006 alloc = off = 0; /* shut up stupid gcc */
1007 dflen = 0; /* shut up stupid gcc */
1008 cksumvalid = -1;
1009 while (state >= 0) {
1010 if (vpd_nextbyte(&vrs, &byte)) {
1011 state = -2;
1012 break;
1013 }
1014#if 0
1015 kprintf("vpd: val: %#x, off: %d, bytesinval: %d, byte: %#hhx, " \
1016 "state: %d, remain: %d, name: %#x, i: %d\n", vrs.val,
1017 vrs.off, vrs.bytesinval, byte, state, remain, name, i);
1018#endif
1019 switch (state) {
1020 case 0: /* item name */
1021 if (byte & 0x80) {
1022 if (vpd_nextbyte(&vrs, &byte2)) {
1023 state = -2;
1024 break;
1025 }
1026 remain = byte2;
1027 if (vpd_nextbyte(&vrs, &byte2)) {
1028 state = -2;
1029 break;
1030 }
1031 remain |= byte2 << 8;
1032 if (remain > (0x7f*4 - vrs.off)) {
1033 state = -1;
1034 kprintf(
1035 "pci%d:%d:%d:%d: invalid VPD data, remain %#x\n",
1036 cfg->domain, cfg->bus, cfg->slot,
1037 cfg->func, remain);
1038 }
1039 name = byte & 0x7f;
1040 } else {
1041 remain = byte & 0x7;
1042 name = (byte >> 3) & 0xf;
1043 }
1044 switch (name) {
1045 case 0x2: /* String */
1046 cfg->vpd.vpd_ident = kmalloc(remain + 1,
1047 M_DEVBUF, M_WAITOK);
1048 i = 0;
1049 state = 1;
1050 break;
1051 case 0xf: /* End */
1052 state = -1;
1053 break;
1054 case 0x10: /* VPD-R */
1055 alloc = 8;
1056 off = 0;
1057 cfg->vpd.vpd_ros = kmalloc(alloc *
1058 sizeof(*cfg->vpd.vpd_ros), M_DEVBUF,
1059 M_WAITOK | M_ZERO);
1060 state = 2;
1061 break;
1062 case 0x11: /* VPD-W */
1063 alloc = 8;
1064 off = 0;
1065 cfg->vpd.vpd_w = kmalloc(alloc *
1066 sizeof(*cfg->vpd.vpd_w), M_DEVBUF,
1067 M_WAITOK | M_ZERO);
1068 state = 5;
1069 break;
1070 default: /* Invalid data, abort */
1071 state = -1;
1072 break;
1073 }
1074 break;
1075
1076 case 1: /* Identifier String */
1077 cfg->vpd.vpd_ident[i++] = byte;
1078 remain--;
1079 if (remain == 0) {
1080 cfg->vpd.vpd_ident[i] = '\0';
1081 state = 0;
1082 }
1083 break;
1084
1085 case 2: /* VPD-R Keyword Header */
1086 if (off == alloc) {
1087 cfg->vpd.vpd_ros = krealloc(cfg->vpd.vpd_ros,
1088 (alloc *= 2) * sizeof(*cfg->vpd.vpd_ros),
1089 M_DEVBUF, M_WAITOK | M_ZERO);
1090 }
1091 cfg->vpd.vpd_ros[off].keyword[0] = byte;
1092 if (vpd_nextbyte(&vrs, &byte2)) {
1093 state = -2;
1094 break;
1095 }
1096 cfg->vpd.vpd_ros[off].keyword[1] = byte2;
1097 if (vpd_nextbyte(&vrs, &byte2)) {
1098 state = -2;
1099 break;
1100 }
1101 dflen = byte2;
1102 if (dflen == 0 &&
1103 strncmp(cfg->vpd.vpd_ros[off].keyword, "RV",
1104 2) == 0) {
1105 /*
1106 * if this happens, we can't trust the rest
1107 * of the VPD.
1108 */
1109 kprintf(
1110 "pci%d:%d:%d:%d: bad keyword length: %d\n",
1111 cfg->domain, cfg->bus, cfg->slot,
1112 cfg->func, dflen);
1113 cksumvalid = 0;
1114 state = -1;
1115 break;
1116 } else if (dflen == 0) {
1117 cfg->vpd.vpd_ros[off].value = kmalloc(1 *
1118 sizeof(*cfg->vpd.vpd_ros[off].value),
1119 M_DEVBUF, M_WAITOK);
1120 cfg->vpd.vpd_ros[off].value[0] = '\x00';
1121 } else
1122 cfg->vpd.vpd_ros[off].value = kmalloc(
1123 (dflen + 1) *
1124 sizeof(*cfg->vpd.vpd_ros[off].value),
1125 M_DEVBUF, M_WAITOK);
1126 remain -= 3;
1127 i = 0;
1128 /* keep in sync w/ state 3's transistions */
1129 if (dflen == 0 && remain == 0)
1130 state = 0;
1131 else if (dflen == 0)
1132 state = 2;
1133 else
1134 state = 3;
1135 break;
1136
1137 case 3: /* VPD-R Keyword Value */
1138 cfg->vpd.vpd_ros[off].value[i++] = byte;
1139 if (strncmp(cfg->vpd.vpd_ros[off].keyword,
1140 "RV", 2) == 0 && cksumvalid == -1) {
1141 if (vrs.cksum == 0)
1142 cksumvalid = 1;
1143 else {
1144 if (bootverbose)
1145 kprintf(
1146 "pci%d:%d:%d:%d: bad VPD cksum, remain %hhu\n",
1147 cfg->domain, cfg->bus,
1148 cfg->slot, cfg->func,
1149 vrs.cksum);
1150 cksumvalid = 0;
1151 state = -1;
1152 break;
1153 }
1154 }
1155 dflen--;
1156 remain--;
1157 /* keep in sync w/ state 2's transistions */
1158 if (dflen == 0)
1159 cfg->vpd.vpd_ros[off++].value[i++] = '\0';
1160 if (dflen == 0 && remain == 0) {
1161 cfg->vpd.vpd_rocnt = off;
1162 cfg->vpd.vpd_ros = krealloc(cfg->vpd.vpd_ros,
1163 off * sizeof(*cfg->vpd.vpd_ros),
1164 M_DEVBUF, M_WAITOK | M_ZERO);
1165 state = 0;
1166 } else if (dflen == 0)
1167 state = 2;
1168 break;
1169
1170 case 4:
1171 remain--;
1172 if (remain == 0)
1173 state = 0;
1174 break;
1175
1176 case 5: /* VPD-W Keyword Header */
1177 if (off == alloc) {
1178 cfg->vpd.vpd_w = krealloc(cfg->vpd.vpd_w,
1179 (alloc *= 2) * sizeof(*cfg->vpd.vpd_w),
1180 M_DEVBUF, M_WAITOK | M_ZERO);
1181 }
1182 cfg->vpd.vpd_w[off].keyword[0] = byte;
1183 if (vpd_nextbyte(&vrs, &byte2)) {
1184 state = -2;
1185 break;
1186 }
1187 cfg->vpd.vpd_w[off].keyword[1] = byte2;
1188 if (vpd_nextbyte(&vrs, &byte2)) {
1189 state = -2;
1190 break;
1191 }
1192 cfg->vpd.vpd_w[off].len = dflen = byte2;
1193 cfg->vpd.vpd_w[off].start = vrs.off - vrs.bytesinval;
1194 cfg->vpd.vpd_w[off].value = kmalloc((dflen + 1) *
1195 sizeof(*cfg->vpd.vpd_w[off].value),
1196 M_DEVBUF, M_WAITOK);
1197 remain -= 3;
1198 i = 0;
1199 /* keep in sync w/ state 6's transistions */
1200 if (dflen == 0 && remain == 0)
1201 state = 0;
1202 else if (dflen == 0)
1203 state = 5;
1204 else
1205 state = 6;
1206 break;
1207
1208 case 6: /* VPD-W Keyword Value */
1209 cfg->vpd.vpd_w[off].value[i++] = byte;
1210 dflen--;
1211 remain--;
1212 /* keep in sync w/ state 5's transistions */
1213 if (dflen == 0)
1214 cfg->vpd.vpd_w[off++].value[i++] = '\0';
1215 if (dflen == 0 && remain == 0) {
1216 cfg->vpd.vpd_wcnt = off;
1217 cfg->vpd.vpd_w = krealloc(cfg->vpd.vpd_w,
1218 off * sizeof(*cfg->vpd.vpd_w),
1219 M_DEVBUF, M_WAITOK | M_ZERO);
1220 state = 0;
1221 } else if (dflen == 0)
1222 state = 5;
1223 break;
1224
1225 default:
1226 kprintf("pci%d:%d:%d:%d: invalid state: %d\n",
1227 cfg->domain, cfg->bus, cfg->slot, cfg->func,
1228 state);
1229 state = -1;
1230 break;
1231 }
1232 }
1233
1234 if (cksumvalid == 0 || state < -1) {
1235 /* read-only data bad, clean up */
1236 if (cfg->vpd.vpd_ros != NULL) {
1237 for (off = 0; cfg->vpd.vpd_ros[off].value; off++)
1238 kfree(cfg->vpd.vpd_ros[off].value, M_DEVBUF);
1239 kfree(cfg->vpd.vpd_ros, M_DEVBUF);
1240 cfg->vpd.vpd_ros = NULL;
1241 }
1242 }
1243 if (state < -1) {
1244 /* I/O error, clean up */
1245 kprintf("pci%d:%d:%d:%d: failed to read VPD data.\n",
1246 cfg->domain, cfg->bus, cfg->slot, cfg->func);
1247 if (cfg->vpd.vpd_ident != NULL) {
1248 kfree(cfg->vpd.vpd_ident, M_DEVBUF);
1249 cfg->vpd.vpd_ident = NULL;
1250 }
1251 if (cfg->vpd.vpd_w != NULL) {
1252 for (off = 0; cfg->vpd.vpd_w[off].value; off++)
1253 kfree(cfg->vpd.vpd_w[off].value, M_DEVBUF);
1254 kfree(cfg->vpd.vpd_w, M_DEVBUF);
1255 cfg->vpd.vpd_w = NULL;
1256 }
1257 }
1258 cfg->vpd.vpd_cached = 1;
1259#undef REG
1260#undef WREG
1261}
1262
1263int
1264pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr)
1265{
1266 struct pci_devinfo *dinfo = device_get_ivars(child);
1267 pcicfgregs *cfg = &dinfo->cfg;
1268
1269 if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1270 pci_read_vpd(device_get_parent(dev), cfg);
1271
1272 *identptr = cfg->vpd.vpd_ident;
1273
1274 if (*identptr == NULL)
1275 return (ENXIO);
1276
1277 return (0);
1278}
1279
1280int
1281pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw,
1282 const char **vptr)
1283{
1284 struct pci_devinfo *dinfo = device_get_ivars(child);
1285 pcicfgregs *cfg = &dinfo->cfg;
1286 int i;
1287
1288 if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1289 pci_read_vpd(device_get_parent(dev), cfg);
1290
1291 for (i = 0; i < cfg->vpd.vpd_rocnt; i++)
1292 if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword,
1293 sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) {
1294 *vptr = cfg->vpd.vpd_ros[i].value;
1295 }
1296
1297 if (i != cfg->vpd.vpd_rocnt)
1298 return (0);
1299
1300 *vptr = NULL;
1301 return (ENXIO);
1302}
1303
1304/*
1305 * Return the offset in configuration space of the requested extended
1306 * capability entry or 0 if the specified capability was not found.
1307 */
1308int
1309pci_find_extcap_method(device_t dev, device_t child, int capability,
1310 int *capreg)
1311{
1312 struct pci_devinfo *dinfo = device_get_ivars(child);
1313 pcicfgregs *cfg = &dinfo->cfg;
1314 u_int32_t status;
1315 u_int8_t ptr;
1316
1317 /*
1318 * Check the CAP_LIST bit of the PCI status register first.
1319 */
1320 status = pci_read_config(child, PCIR_STATUS, 2);
1321 if (!(status & PCIM_STATUS_CAPPRESENT))
1322 return (ENXIO);
1323
1324 /*
1325 * Determine the start pointer of the capabilities list.
1326 */
1327 switch (cfg->hdrtype & PCIM_HDRTYPE) {
1328 case 0:
1329 case 1:
1330 ptr = PCIR_CAP_PTR;
1331 break;
1332 case 2:
1333 ptr = PCIR_CAP_PTR_2;
1334 break;
1335 default:
1336 /* XXX: panic? */
1337 return (ENXIO); /* no extended capabilities support */
1338 }
1339 ptr = pci_read_config(child, ptr, 1);
1340
1341 /*
1342 * Traverse the capabilities list.
1343 */
1344 while (ptr != 0) {
1345 if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1346 if (capreg != NULL)
1347 *capreg = ptr;
1348 return (0);
1349 }
1350 ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1351 }
1352
1353 return (ENOENT);
1354}
1355
1356/*
1357 * Support for MSI-X message interrupts.
1358 */
1359static void
1360pci_setup_msix_vector(device_t dev, u_int index, uint64_t address,
1361 uint32_t data)
1362{
1363 struct pci_devinfo *dinfo = device_get_ivars(dev);
1364 struct pcicfg_msix *msix = &dinfo->cfg.msix;
1365 uint32_t offset;
1366
1367 KASSERT(msix->msix_msgnum > index, ("bogus index"));
1368 offset = msix->msix_table_offset + index * 16;
1369 bus_write_4(msix->msix_table_res, offset, address & 0xffffffff);
1370 bus_write_4(msix->msix_table_res, offset + 4, address >> 32);
1371 bus_write_4(msix->msix_table_res, offset + 8, data);
1372
1373 /* Enable MSI -> HT mapping. */
1374 pci_ht_map_msi(dev, address);
1375}
1376
1377static void
1378pci_mask_msix_vector(device_t dev, u_int index)
1379{
1380 struct pci_devinfo *dinfo = device_get_ivars(dev);
1381 struct pcicfg_msix *msix = &dinfo->cfg.msix;
1382 uint32_t offset, val;
1383
1384 KASSERT(msix->msix_msgnum > index, ("bogus index"));
1385 offset = msix->msix_table_offset + index * 16 + 12;
1386 val = bus_read_4(msix->msix_table_res, offset);
1387 if (!(val & PCIM_MSIX_VCTRL_MASK)) {
1388 val |= PCIM_MSIX_VCTRL_MASK;
1389 bus_write_4(msix->msix_table_res, offset, val);
1390 }
1391}
1392
1393static void
1394pci_unmask_msix_vector(device_t dev, u_int index)
1395{
1396 struct pci_devinfo *dinfo = device_get_ivars(dev);
1397 struct pcicfg_msix *msix = &dinfo->cfg.msix;
1398 uint32_t offset, val;
1399
1400 KASSERT(msix->msix_msgnum > index, ("bogus index"));
1401 offset = msix->msix_table_offset + index * 16 + 12;
1402 val = bus_read_4(msix->msix_table_res, offset);
1403 if (val & PCIM_MSIX_VCTRL_MASK) {
1404 val &= ~PCIM_MSIX_VCTRL_MASK;
1405 bus_write_4(msix->msix_table_res, offset, val);
1406 }
1407}
1408
1409int
1410pci_pending_msix_vector(device_t dev, u_int index)
1411{
1412 struct pci_devinfo *dinfo = device_get_ivars(dev);
1413 struct pcicfg_msix *msix = &dinfo->cfg.msix;
1414 uint32_t offset, bit;
1415
1416 KASSERT(msix->msix_table_res != NULL && msix->msix_pba_res != NULL,
1417 ("MSI-X is not setup yet"));
1418
1419 KASSERT(msix->msix_msgnum > index, ("bogus index"));
1420 offset = msix->msix_pba_offset + (index / 32) * 4;
1421 bit = 1 << index % 32;
1422 return (bus_read_4(msix->msix_pba_res, offset) & bit);
1423}
1424
1425/*
1426 * Restore MSI-X registers and table during resume. If MSI-X is
1427 * enabled then walk the virtual table to restore the actual MSI-X
1428 * table.
1429 */
1430static void
1431pci_resume_msix(device_t dev)
1432{
1433 struct pci_devinfo *dinfo = device_get_ivars(dev);
1434 struct pcicfg_msix *msix = &dinfo->cfg.msix;
1435
1436 if (msix->msix_table_res != NULL) {
1437 const struct msix_vector *mv;
1438
1439 pci_mask_msix_allvectors(dev);
1440
1441 TAILQ_FOREACH(mv, &msix->msix_vectors, mv_link) {
1442 u_int vector;
1443
1444 if (mv->mv_address == 0)
1445 continue;
1446
1447 vector = PCI_MSIX_RID2VEC(mv->mv_rid);
1448 pci_setup_msix_vector(dev, vector,
1449 mv->mv_address, mv->mv_data);
1450 pci_unmask_msix_vector(dev, vector);
1451 }
1452 }
1453 pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL,
1454 msix->msix_ctrl, 2);
1455}
1456
1457/*
1458 * Attempt to allocate one MSI-X message at the specified vector on cpuid.
1459 *
1460 * After this function returns, the MSI-X's rid will be saved in rid0.
1461 */
1462int
1463pci_alloc_msix_vector_method(device_t dev, device_t child, u_int vector,
1464 int *rid0, int cpuid)
1465{
1466 struct pci_devinfo *dinfo = device_get_ivars(child);
1467 struct pcicfg_msix *msix = &dinfo->cfg.msix;
1468 struct msix_vector *mv;
1469 struct resource_list_entry *rle;
1470 int error, irq, rid;
1471
1472 KASSERT(msix->msix_table_res != NULL &&
1473 msix->msix_pba_res != NULL, ("MSI-X is not setup yet"));
1474 KASSERT(cpuid >= 0 && cpuid < ncpus, ("invalid cpuid %d", cpuid));
1475 KASSERT(vector < msix->msix_msgnum,
1476 ("invalid MSI-X vector %u, total %d", vector, msix->msix_msgnum));
1477
1478 if (bootverbose) {
1479 device_printf(child,
1480 "attempting to allocate MSI-X #%u vector (%d supported)\n",
1481 vector, msix->msix_msgnum);
1482 }
1483
1484 /* Set rid according to vector number */
1485 rid = PCI_MSIX_VEC2RID(vector);
1486
1487 /* Vector has already been allocated */
1488 mv = pci_find_msix_vector(child, rid);
1489 if (mv != NULL)
1490 return EBUSY;
1491
1492 /* Allocate a message. */
1493 error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq, cpuid);
1494 if (error)
1495 return error;
1496 resource_list_add(&dinfo->resources, SYS_RES_IRQ, rid,
1497 irq, irq, 1, cpuid);
1498
1499 if (bootverbose) {
1500 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid);
1501 device_printf(child, "using IRQ %lu for MSI-X on cpu%d\n",
1502 rle->start, cpuid);
1503 }
1504
1505 /* Update counts of alloc'd messages. */
1506 msix->msix_alloc++;
1507
1508 mv = kmalloc(sizeof(*mv), M_DEVBUF, M_WAITOK | M_ZERO);
1509 mv->mv_rid = rid;
1510 TAILQ_INSERT_TAIL(&msix->msix_vectors, mv, mv_link);
1511
1512 *rid0 = rid;
1513 return 0;
1514}
1515
1516int
1517pci_release_msix_vector_method(device_t dev, device_t child, int rid)
1518{
1519 struct pci_devinfo *dinfo = device_get_ivars(child);
1520 struct pcicfg_msix *msix = &dinfo->cfg.msix;
1521 struct resource_list_entry *rle;
1522 struct msix_vector *mv;
1523 int irq, cpuid;
1524
1525 KASSERT(msix->msix_table_res != NULL &&
1526 msix->msix_pba_res != NULL, ("MSI-X is not setup yet"));
1527 KASSERT(msix->msix_alloc > 0, ("No MSI-X allocated"));
1528 KASSERT(rid > 0, ("invalid rid %d", rid));
1529
1530 mv = pci_find_msix_vector(child, rid);
1531 KASSERT(mv != NULL, ("MSI-X rid %d is not allocated", rid));
1532 KASSERT(mv->mv_address == 0, ("MSI-X rid %d not teardown", rid));
1533
1534 /* Make sure resource is no longer allocated. */
1535 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid);
1536 KASSERT(rle != NULL, ("missing MSI-X resource, rid %d", rid));
1537 KASSERT(rle->res == NULL,
1538 ("MSI-X resource is still allocated, rid %d", rid));
1539
1540 irq = rle->start;
1541 cpuid = rle->cpuid;
1542
1543 /* Free the resource list entries. */
1544 resource_list_delete(&dinfo->resources, SYS_RES_IRQ, rid);
1545
1546 /* Release the IRQ. */
1547 PCIB_RELEASE_MSIX(device_get_parent(dev), child, irq, cpuid);
1548
1549 TAILQ_REMOVE(&msix->msix_vectors, mv, mv_link);
1550 kfree(mv, M_DEVBUF);
1551
1552 msix->msix_alloc--;
1553 return (0);
1554}
1555
1556/*
1557 * Return the max supported MSI-X messages this device supports.
1558 * Basically, assuming the MD code can alloc messages, this function
1559 * should return the maximum value that pci_alloc_msix() can return.
1560 * Thus, it is subject to the tunables, etc.
1561 */
1562int
1563pci_msix_count_method(device_t dev, device_t child)
1564{
1565 struct pci_devinfo *dinfo = device_get_ivars(child);
1566 struct pcicfg_msix *msix = &dinfo->cfg.msix;
1567
1568 if (pci_do_msix && msix->msix_location != 0)
1569 return (msix->msix_msgnum);
1570 return (0);
1571}
1572
1573int
1574pci_setup_msix(device_t dev)
1575{
1576 struct pci_devinfo *dinfo = device_get_ivars(dev);
1577 pcicfgregs *cfg = &dinfo->cfg;
1578 struct resource_list_entry *rle;
1579 struct resource *table_res, *pba_res;
1580
1581 KASSERT(cfg->msix.msix_table_res == NULL &&
1582 cfg->msix.msix_pba_res == NULL, ("MSI-X has been setup yet"));
1583
1584 /* If rid 0 is allocated, then fail. */
1585 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
1586 if (rle != NULL && rle->res != NULL)
1587 return (ENXIO);
1588
1589 /* Already have allocated MSIs? */
1590 if (cfg->msi.msi_alloc != 0)
1591 return (ENXIO);
1592
1593 /* If MSI is blacklisted for this system, fail. */
1594 if (pci_msi_blacklisted())
1595 return (ENXIO);
1596
1597 /* MSI-X capability present? */
1598 if (cfg->msix.msix_location == 0 || cfg->msix.msix_msgnum == 0 ||
1599 !pci_do_msix)
1600 return (ENODEV);
1601
1602 KASSERT(cfg->msix.msix_alloc == 0 &&
1603 TAILQ_EMPTY(&cfg->msix.msix_vectors),
1604 ("MSI-X vector has been allocated"));
1605
1606 /* Make sure the appropriate BARs are mapped. */
1607 rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1608 cfg->msix.msix_table_bar);
1609 if (rle == NULL || rle->res == NULL ||
1610 !(rman_get_flags(rle->res) & RF_ACTIVE))
1611 return (ENXIO);
1612 table_res = rle->res;
1613 if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) {
1614 rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1615 cfg->msix.msix_pba_bar);
1616 if (rle == NULL || rle->res == NULL ||
1617 !(rman_get_flags(rle->res) & RF_ACTIVE))
1618 return (ENXIO);
1619 }
1620 pba_res = rle->res;
1621
1622 cfg->msix.msix_table_res = table_res;
1623 cfg->msix.msix_pba_res = pba_res;
1624
1625 pci_mask_msix_allvectors(dev);
1626
1627 return 0;
1628}
1629
1630void
1631pci_teardown_msix(device_t dev)
1632{
1633 struct pci_devinfo *dinfo = device_get_ivars(dev);
1634 struct pcicfg_msix *msix = &dinfo->cfg.msix;
1635
1636 KASSERT(msix->msix_table_res != NULL &&
1637 msix->msix_pba_res != NULL, ("MSI-X is not setup yet"));
1638 KASSERT(msix->msix_alloc == 0 && TAILQ_EMPTY(&msix->msix_vectors),
1639 ("MSI-X vector is still allocated"));
1640
1641 pci_mask_msix_allvectors(dev);
1642
1643 msix->msix_table_res = NULL;
1644 msix->msix_pba_res = NULL;
1645}
1646
1647void
1648pci_enable_msix(device_t dev)
1649{
1650 struct pci_devinfo *dinfo = device_get_ivars(dev);
1651 struct pcicfg_msix *msix = &dinfo->cfg.msix;
1652
1653 KASSERT(msix->msix_table_res != NULL &&
1654 msix->msix_pba_res != NULL, ("MSI-X is not setup yet"));
1655
1656 /* Update control register to enable MSI-X. */
1657 msix->msix_ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE;
1658 pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL,
1659 msix->msix_ctrl, 2);
1660}
1661
1662void
1663pci_disable_msix(device_t dev)
1664{
1665 struct pci_devinfo *dinfo = device_get_ivars(dev);
1666 struct pcicfg_msix *msix = &dinfo->cfg.msix;
1667
1668 KASSERT(msix->msix_table_res != NULL &&
1669 msix->msix_pba_res != NULL, ("MSI-X is not setup yet"));
1670
1671 /* Disable MSI -> HT mapping. */
1672 pci_ht_map_msi(dev, 0);
1673
1674 /* Update control register to disable MSI-X. */
1675 msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE;
1676 pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL,
1677 msix->msix_ctrl, 2);
1678}
1679
1680static void
1681pci_mask_msix_allvectors(device_t dev)
1682{
1683 struct pci_devinfo *dinfo = device_get_ivars(dev);
1684 u_int i;
1685
1686 for (i = 0; i < dinfo->cfg.msix.msix_msgnum; ++i)
1687 pci_mask_msix_vector(dev, i);
1688}
1689
1690static struct msix_vector *
1691pci_find_msix_vector(device_t dev, int rid)
1692{
1693 struct pci_devinfo *dinfo = device_get_ivars(dev);
1694 struct pcicfg_msix *msix = &dinfo->cfg.msix;
1695 struct msix_vector *mv;
1696
1697 TAILQ_FOREACH(mv, &msix->msix_vectors, mv_link) {
1698 if (mv->mv_rid == rid)
1699 return mv;
1700 }
1701 return NULL;
1702}
1703
1704/*
1705 * HyperTransport MSI mapping control
1706 */
1707void
1708pci_ht_map_msi(device_t dev, uint64_t addr)
1709{
1710 struct pci_devinfo *dinfo = device_get_ivars(dev);
1711 struct pcicfg_ht *ht = &dinfo->cfg.ht;
1712
1713 if (!ht->ht_msimap)
1714 return;
1715
1716 if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) &&
1717 ht->ht_msiaddr >> 20 == addr >> 20) {
1718 /* Enable MSI -> HT mapping. */
1719 ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
1720 pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
1721 ht->ht_msictrl, 2);
1722 }
1723
1724 if (!addr && (ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) {
1725 /* Disable MSI -> HT mapping. */
1726 ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE;
1727 pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
1728 ht->ht_msictrl, 2);
1729 }
1730}
1731
1732/*
1733 * Support for MSI message signalled interrupts.
1734 */
1735void
1736pci_enable_msi(device_t dev, uint64_t address, uint16_t data)
1737{
1738 struct pci_devinfo *dinfo = device_get_ivars(dev);
1739 struct pcicfg_msi *msi = &dinfo->cfg.msi;
1740
1741 /* Write data and address values. */
1742 pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR,
1743 address & 0xffffffff, 4);
1744 if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
1745 pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR_HIGH,
1746 address >> 32, 4);
1747 pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA_64BIT,
1748 data, 2);
1749 } else
1750 pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA, data,
1751 2);
1752
1753 /* Enable MSI in the control register. */
1754 msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE;
1755 pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
1756 2);
1757
1758 /* Enable MSI -> HT mapping. */
1759 pci_ht_map_msi(dev, address);
1760}
1761
1762void
1763pci_disable_msi(device_t dev)
1764{
1765 struct pci_devinfo *dinfo = device_get_ivars(dev);
1766 struct pcicfg_msi *msi = &dinfo->cfg.msi;
1767
1768 /* Disable MSI -> HT mapping. */
1769 pci_ht_map_msi(dev, 0);
1770
1771 /* Disable MSI in the control register. */
1772 msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE;
1773 pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
1774 2);
1775}
1776
1777/*
1778 * Restore MSI registers during resume. If MSI is enabled then
1779 * restore the data and address registers in addition to the control
1780 * register.
1781 */
1782static void
1783pci_resume_msi(device_t dev)
1784{
1785 struct pci_devinfo *dinfo = device_get_ivars(dev);
1786 struct pcicfg_msi *msi = &dinfo->cfg.msi;
1787 uint64_t address;
1788 uint16_t data;
1789
1790 if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) {
1791 address = msi->msi_addr;
1792 data = msi->msi_data;
1793 pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR,
1794 address & 0xffffffff, 4);
1795 if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
1796 pci_write_config(dev, msi->msi_location +
1797 PCIR_MSI_ADDR_HIGH, address >> 32, 4);
1798 pci_write_config(dev, msi->msi_location +
1799 PCIR_MSI_DATA_64BIT, data, 2);
1800 } else
1801 pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA,
1802 data, 2);
1803 }
1804 pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
1805 2);
1806}
1807
1808/*
1809 * Returns true if the specified device is blacklisted because MSI
1810 * doesn't work.
1811 */
1812int
1813pci_msi_device_blacklisted(device_t dev)
1814{
1815 struct pci_quirk *q;
1816
1817 if (!pci_honor_msi_blacklist)
1818 return (0);
1819
1820 for (q = &pci_quirks[0]; q->devid; q++) {
1821 if (q->devid == pci_get_devid(dev) &&
1822 q->type == PCI_QUIRK_DISABLE_MSI)
1823 return (1);
1824 }
1825 return (0);
1826}
1827
1828/*
1829 * Determine if MSI is blacklisted globally on this sytem. Currently,
1830 * we just check for blacklisted chipsets as represented by the
1831 * host-PCI bridge at device 0:0:0. In the future, it may become
1832 * necessary to check other system attributes, such as the kenv values
1833 * that give the motherboard manufacturer and model number.
1834 */
1835static int
1836pci_msi_blacklisted(void)
1837{
1838 device_t dev;
1839
1840 if (!pci_honor_msi_blacklist)
1841 return (0);
1842
1843 /* Blacklist all non-PCI-express and non-PCI-X chipsets. */
1844 if (!(pcie_chipset || pcix_chipset))
1845 return (1);
1846
1847 dev = pci_find_bsf(0, 0, 0);
1848 if (dev != NULL)
1849 return (pci_msi_device_blacklisted(dev));
1850 return (0);
1851}
1852
1853/*
1854 * Attempt to allocate count MSI messages on start_cpuid.
1855 *
1856 * If start_cpuid < 0, then the MSI messages' target CPU will be
1857 * selected automaticly.
1858 *
1859 * If the caller explicitly specified the MSI messages' target CPU,
1860 * i.e. start_cpuid >= 0, then we will try to allocate the count MSI
1861 * messages on the specified CPU, if the allocation fails due to MD
1862 * does not have enough vectors (EMSGSIZE), then we will try next
1863 * available CPU, until the allocation fails on all CPUs.
1864 *
1865 * EMSGSIZE will be returned, if all available CPUs does not have
1866 * enough vectors for the requested amount of MSI messages. Caller
1867 * should either reduce the amount of MSI messages to be requested,
1868 * or simply giving up using MSI.
1869 *
1870 * The available SYS_RES_IRQ resources' rids, which are >= 1, are
1871 * returned in 'rid' array, if the allocation succeeds.
1872 */
1873int
1874pci_alloc_msi_method(device_t dev, device_t child, int *rid, int count,
1875 int start_cpuid)
1876{
1877 struct pci_devinfo *dinfo = device_get_ivars(child);
1878 pcicfgregs *cfg = &dinfo->cfg;
1879 struct resource_list_entry *rle;
1880 int error, i, irqs[32], cpuid = 0;
1881 uint16_t ctrl;
1882
1883 KASSERT(count != 0 && count <= 32 && powerof2(count),
1884 ("invalid MSI count %d", count));
1885 KASSERT(start_cpuid < ncpus, ("invalid cpuid %d", start_cpuid));
1886
1887 /* If rid 0 is allocated, then fail. */
1888 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
1889 if (rle != NULL && rle->res != NULL)
1890 return (ENXIO);
1891
1892 /* Already have allocated messages? */
1893 if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_table_res != NULL)
1894 return (ENXIO);
1895
1896 /* If MSI is blacklisted for this system, fail. */
1897 if (pci_msi_blacklisted())
1898 return (ENXIO);
1899
1900 /* MSI capability present? */
1901 if (cfg->msi.msi_location == 0 || cfg->msi.msi_msgnum == 0 ||
1902 !pci_do_msi)
1903 return (ENODEV);
1904
1905 KASSERT(count <= cfg->msi.msi_msgnum, ("large MSI count %d, max %d",
1906 count, cfg->msi.msi_msgnum));
1907
1908 if (bootverbose) {
1909 device_printf(child,
1910 "attempting to allocate %d MSI vector%s (%d supported)\n",
1911 count, count > 1 ? "s" : "", cfg->msi.msi_msgnum);
1912 }
1913
1914 if (start_cpuid < 0)
1915 start_cpuid = atomic_fetchadd_int(&pci_msi_cpuid, 1) % ncpus;
1916
1917 error = EINVAL;
1918 for (i = 0; i < ncpus; ++i) {
1919 cpuid = (start_cpuid + i) % ncpus;
1920
1921 error = PCIB_ALLOC_MSI(device_get_parent(dev), child, count,
1922 cfg->msi.msi_msgnum, irqs, cpuid);
1923 if (error == 0)
1924 break;
1925 else if (error != EMSGSIZE)
1926 return error;
1927 }
1928 if (error)
1929 return error;
1930
1931 /*
1932 * We now have N messages mapped onto SYS_RES_IRQ resources in
1933 * the irqs[] array, so add new resources starting at rid 1.
1934 */
1935 for (i = 0; i < count; i++) {
1936 rid[i] = i + 1;
1937 resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1,
1938 irqs[i], irqs[i], 1, cpuid);
1939 }
1940
1941 if (bootverbose) {
1942 if (count == 1) {
1943 device_printf(child, "using IRQ %d on cpu%d for MSI\n",
1944 irqs[0], cpuid);
1945 } else {
1946 int run;
1947
1948 /*
1949 * Be fancy and try to print contiguous runs
1950 * of IRQ values as ranges. 'run' is true if
1951 * we are in a range.
1952 */
1953 device_printf(child, "using IRQs %d", irqs[0]);
1954 run = 0;
1955 for (i = 1; i < count; i++) {
1956
1957 /* Still in a run? */
1958 if (irqs[i] == irqs[i - 1] + 1) {
1959 run = 1;
1960 continue;
1961 }
1962
1963 /* Finish previous range. */
1964 if (run) {
1965 kprintf("-%d", irqs[i - 1]);
1966 run = 0;
1967 }
1968
1969 /* Start new range. */
1970 kprintf(",%d", irqs[i]);
1971 }
1972
1973 /* Unfinished range? */
1974 if (run)
1975 kprintf("-%d", irqs[count - 1]);
1976 kprintf(" for MSI on cpu%d\n", cpuid);
1977 }
1978 }
1979
1980 /* Update control register with count. */
1981 ctrl = cfg->msi.msi_ctrl;
1982 ctrl &= ~PCIM_MSICTRL_MME_MASK;
1983 ctrl |= (ffs(count) - 1) << 4;
1984 cfg->msi.msi_ctrl = ctrl;
1985 pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2);
1986
1987 /* Update counts of alloc'd messages. */
1988 cfg->msi.msi_alloc = count;
1989 cfg->msi.msi_handlers = 0;
1990 return (0);
1991}
1992
1993/* Release the MSI messages associated with this device. */
1994int
1995pci_release_msi_method(device_t dev, device_t child)
1996{
1997 struct pci_devinfo *dinfo = device_get_ivars(child);
1998 struct pcicfg_msi *msi = &dinfo->cfg.msi;
1999 struct resource_list_entry *rle;
2000 int i, irqs[32], cpuid = -1;
2001
2002 /* Do we have any messages to release? */
2003 if (msi->msi_alloc == 0)
2004 return (ENODEV);
2005 KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages"));
2006
2007 /* Make sure none of the resources are allocated. */
2008 if (msi->msi_handlers > 0)
2009 return (EBUSY);
2010 for (i = 0; i < msi->msi_alloc; i++) {
2011 rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2012 KASSERT(rle != NULL, ("missing MSI resource"));
2013 if (rle->res != NULL)
2014 return (EBUSY);
2015 if (i == 0) {
2016 cpuid = rle->cpuid;
2017 KASSERT(cpuid >= 0 && cpuid < ncpus,
2018 ("invalid MSI target cpuid %d", cpuid));
2019 } else {
2020 KASSERT(rle->cpuid == cpuid,
2021 ("MSI targets different cpus, "
2022 "was cpu%d, now cpu%d", cpuid, rle->cpuid));
2023 }
2024 irqs[i] = rle->start;
2025 }
2026
2027 /* Update control register with 0 count. */
2028 KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE),
2029 ("%s: MSI still enabled", __func__));
2030 msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK;
2031 pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2032 msi->msi_ctrl, 2);
2033
2034 /* Release the messages. */
2035 PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs,
2036 cpuid);
2037 for (i = 0; i < msi->msi_alloc; i++)
2038 resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2039
2040 /* Update alloc count. */
2041 msi->msi_alloc = 0;
2042 msi->msi_addr = 0;
2043 msi->msi_data = 0;
2044 return (0);
2045}
2046
2047/*
2048 * Return the max supported MSI messages this device supports.
2049 * Basically, assuming the MD code can alloc messages, this function
2050 * should return the maximum value that pci_alloc_msi() can return.
2051 * Thus, it is subject to the tunables, etc.
2052 */
2053int
2054pci_msi_count_method(device_t dev, device_t child)
2055{
2056 struct pci_devinfo *dinfo = device_get_ivars(child);
2057 struct pcicfg_msi *msi = &dinfo->cfg.msi;
2058
2059 if (pci_do_msi && msi->msi_location != 0)
2060 return (msi->msi_msgnum);
2061 return (0);
2062}
2063
2064/* kfree pcicfgregs structure and all depending data structures */
2065
2066int
2067pci_freecfg(struct pci_devinfo *dinfo)
2068{
2069 struct devlist *devlist_head;
2070 int i;
2071
2072 devlist_head = &pci_devq;
2073
2074 if (dinfo->cfg.vpd.vpd_reg) {
2075 kfree(dinfo->cfg.vpd.vpd_ident, M_DEVBUF);
2076 for (i = 0; i < dinfo->cfg.vpd.vpd_rocnt; i++)
2077 kfree(dinfo->cfg.vpd.vpd_ros[i].value, M_DEVBUF);
2078 kfree(dinfo->cfg.vpd.vpd_ros, M_DEVBUF);
2079 for (i = 0; i < dinfo->cfg.vpd.vpd_wcnt; i++)
2080 kfree(dinfo->cfg.vpd.vpd_w[i].value, M_DEVBUF);
2081 kfree(dinfo->cfg.vpd.vpd_w, M_DEVBUF);
2082 }
2083 STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
2084 kfree(dinfo, M_DEVBUF);
2085
2086 /* increment the generation count */
2087 pci_generation++;
2088
2089 /* we're losing one device */
2090 pci_numdevs--;
2091 return (0);
2092}
2093
2094/*
2095 * PCI power manangement
2096 */
2097int
2098pci_set_powerstate_method(device_t dev, device_t child, int state)
2099{
2100 struct pci_devinfo *dinfo = device_get_ivars(child);
2101 pcicfgregs *cfg = &dinfo->cfg;
2102 uint16_t status;
2103 int result, oldstate, highest, delay;
2104
2105 if (cfg->pp.pp_cap == 0)
2106 return (EOPNOTSUPP);
2107
2108 /*
2109 * Optimize a no state change request away. While it would be OK to
2110 * write to the hardware in theory, some devices have shown odd
2111 * behavior when going from D3 -> D3.
2112 */
2113 oldstate = pci_get_powerstate(child);
2114 if (oldstate == state)
2115 return (0);
2116
2117 /*
2118 * The PCI power management specification states that after a state
2119 * transition between PCI power states, system software must
2120 * guarantee a minimal delay before the function accesses the device.
2121 * Compute the worst case delay that we need to guarantee before we
2122 * access the device. Many devices will be responsive much more
2123 * quickly than this delay, but there are some that don't respond
2124 * instantly to state changes. Transitions to/from D3 state require
2125 * 10ms, while D2 requires 200us, and D0/1 require none. The delay
2126 * is done below with DELAY rather than a sleeper function because
2127 * this function can be called from contexts where we cannot sleep.
2128 */
2129 highest = (oldstate > state) ? oldstate : state;
2130 if (highest == PCI_POWERSTATE_D3)
2131 delay = 10000;
2132 else if (highest == PCI_POWERSTATE_D2)
2133 delay = 200;
2134 else
2135 delay = 0;
2136 status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2)
2137 & ~PCIM_PSTAT_DMASK;
2138 result = 0;
2139 switch (state) {
2140 case PCI_POWERSTATE_D0:
2141 status |= PCIM_PSTAT_D0;
2142 break;
2143 case PCI_POWERSTATE_D1:
2144 if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0)
2145 return (EOPNOTSUPP);
2146 status |= PCIM_PSTAT_D1;
2147 break;
2148 case PCI_POWERSTATE_D2:
2149 if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0)
2150 return (EOPNOTSUPP);
2151 status |= PCIM_PSTAT_D2;
2152 break;
2153 case PCI_POWERSTATE_D3:
2154 status |= PCIM_PSTAT_D3;
2155 break;
2156 default:
2157 return (EINVAL);
2158 }
2159
2160 if (bootverbose)
2161 kprintf(
2162 "pci%d:%d:%d:%d: Transition from D%d to D%d\n",
2163 dinfo->cfg.domain, dinfo->cfg.bus, dinfo->cfg.slot,
2164 dinfo->cfg.func, oldstate, state);
2165
2166 PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_status, status, 2);
2167 if (delay)
2168 DELAY(delay);
2169 return (0);
2170}
2171
2172int
2173pci_get_powerstate_method(device_t dev, device_t child)
2174{
2175 struct pci_devinfo *dinfo = device_get_ivars(child);
2176 pcicfgregs *cfg = &dinfo->cfg;
2177 uint16_t status;
2178 int result;
2179
2180 if (cfg->pp.pp_cap != 0) {
2181 status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2);
2182 switch (status & PCIM_PSTAT_DMASK) {
2183 case PCIM_PSTAT_D0:
2184 result = PCI_POWERSTATE_D0;
2185 break;
2186 case PCIM_PSTAT_D1:
2187 result = PCI_POWERSTATE_D1;
2188 break;
2189 case PCIM_PSTAT_D2:
2190 result = PCI_POWERSTATE_D2;
2191 break;
2192 case PCIM_PSTAT_D3:
2193 result = PCI_POWERSTATE_D3;
2194 break;
2195 default:
2196 result = PCI_POWERSTATE_UNKNOWN;
2197 break;
2198 }
2199 } else {
2200 /* No support, device is always at D0 */
2201 result = PCI_POWERSTATE_D0;
2202 }
2203 return (result);
2204}
2205
2206/*
2207 * Some convenience functions for PCI device drivers.
2208 */
2209
2210static __inline void
2211pci_set_command_bit(device_t dev, device_t child, uint16_t bit)
2212{
2213 uint16_t command;
2214
2215 command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2216 command |= bit;
2217 PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
2218}
2219
2220static __inline void
2221pci_clear_command_bit(device_t dev, device_t child, uint16_t bit)
2222{
2223 uint16_t command;
2224
2225 command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2226 command &= ~bit;
2227 PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
2228}
2229
2230int
2231pci_enable_busmaster_method(device_t dev, device_t child)
2232{
2233 pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
2234 return (0);
2235}
2236
2237int
2238pci_disable_busmaster_method(device_t dev, device_t child)
2239{
2240 pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
2241 return (0);
2242}
2243
2244int
2245pci_enable_io_method(device_t dev, device_t child, int space)
2246{
2247 uint16_t command;
2248 uint16_t bit;
2249 char *error;
2250
2251 bit = 0;
2252 error = NULL;
2253
2254 switch(space) {
2255 case SYS_RES_IOPORT:
2256 bit = PCIM_CMD_PORTEN;
2257 error = "port";
2258 break;
2259 case SYS_RES_MEMORY:
2260 bit = PCIM_CMD_MEMEN;
2261 error = "memory";
2262 break;
2263 default:
2264 return (EINVAL);
2265 }
2266 pci_set_command_bit(dev, child, bit);
2267 /* Some devices seem to need a brief stall here, what do to? */
2268 command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2269 if (command & bit)
2270 return (0);
2271 device_printf(child, "failed to enable %s mapping!\n", error);
2272 return (ENXIO);
2273}
2274
2275int
2276pci_disable_io_method(device_t dev, device_t child, int space)
2277{
2278 uint16_t command;
2279 uint16_t bit;
2280 char *error;
2281
2282 bit = 0;
2283 error = NULL;
2284
2285 switch(space) {
2286 case SYS_RES_IOPORT:
2287 bit = PCIM_CMD_PORTEN;
2288 error = "port";
2289 break;
2290 case SYS_RES_MEMORY:
2291 bit = PCIM_CMD_MEMEN;
2292 error = "memory";
2293 break;
2294 default:
2295 return (EINVAL);
2296 }
2297 pci_clear_command_bit(dev, child, bit);
2298 command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2299 if (command & bit) {
2300 device_printf(child, "failed to disable %s mapping!\n", error);
2301 return (ENXIO);
2302 }
2303 return (0);
2304}
2305
2306/*
2307 * New style pci driver. Parent device is either a pci-host-bridge or a
2308 * pci-pci-bridge. Both kinds are represented by instances of pcib.
2309 */
2310
2311void
2312pci_print_verbose(struct pci_devinfo *dinfo)
2313{
2314
2315 if (bootverbose) {
2316 pcicfgregs *cfg = &dinfo->cfg;
2317
2318 kprintf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
2319 cfg->vendor, cfg->device, cfg->revid);
2320 kprintf("\tdomain=%d, bus=%d, slot=%d, func=%d\n",
2321 cfg->domain, cfg->bus, cfg->slot, cfg->func);
2322 kprintf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
2323 cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype,
2324 cfg->mfdev);
2325 kprintf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
2326 cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
2327 kprintf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
2328 cfg->lattimer, cfg->lattimer * 30, cfg->mingnt,
2329 cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
2330 if (cfg->intpin > 0)
2331 kprintf("\tintpin=%c, irq=%d\n",
2332 cfg->intpin +'a' -1, cfg->intline);
2333 if (cfg->pp.pp_cap) {
2334 uint16_t status;
2335
2336 status = pci_read_config(cfg->dev, cfg->pp.pp_status, 2);
2337 kprintf("\tpowerspec %d supports D0%s%s D3 current D%d\n",
2338 cfg->pp.pp_cap & PCIM_PCAP_SPEC,
2339 cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "",
2340 cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "",
2341 status & PCIM_PSTAT_DMASK);
2342 }
2343 if (cfg->msi.msi_location) {
2344 int ctrl;
2345
2346 ctrl = cfg->msi.msi_ctrl;
2347 kprintf("\tMSI supports %d message%s%s%s\n",
2348 cfg->msi.msi_msgnum,
2349 (cfg->msi.msi_msgnum == 1) ? "" : "s",
2350 (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "",
2351 (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":"");
2352 }
2353 if (cfg->msix.msix_location) {
2354 kprintf("\tMSI-X supports %d message%s ",
2355 cfg->msix.msix_msgnum,
2356 (cfg->msix.msix_msgnum == 1) ? "" : "s");
2357 if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar)
2358 kprintf("in map 0x%x\n",
2359 cfg->msix.msix_table_bar);
2360 else
2361 kprintf("in maps 0x%x and 0x%x\n",
2362 cfg->msix.msix_table_bar,
2363 cfg->msix.msix_pba_bar);
2364 }
2365 pci_print_verbose_expr(cfg);
2366 }
2367}
2368
2369static void
2370pci_print_verbose_expr(const pcicfgregs *cfg)
2371{
2372 const struct pcicfg_expr *expr = &cfg->expr;
2373 const char *port_name;
2374 uint16_t port_type;
2375
2376 if (!bootverbose)
2377 return;
2378
2379 if (expr->expr_ptr == 0) /* No PCI Express capability */
2380 return;
2381
2382 kprintf("\tPCI Express ver.%d cap=0x%04x",
2383 expr->expr_cap & PCIEM_CAP_VER_MASK, expr->expr_cap);
2384
2385 port_type = expr->expr_cap & PCIEM_CAP_PORT_TYPE;
2386
2387 switch (port_type) {
2388 case PCIE_END_POINT:
2389 port_name = "DEVICE";
2390 break;
2391 case PCIE_LEG_END_POINT:
2392 port_name = "LEGDEV";
2393 break;
2394 case PCIE_ROOT_PORT:
2395 port_name = "ROOT";
2396 break;
2397 case PCIE_UP_STREAM_PORT:
2398 port_name = "UPSTREAM";
2399 break;
2400 case PCIE_DOWN_STREAM_PORT:
2401 port_name = "DOWNSTRM";
2402 break;
2403 case PCIE_PCIE2PCI_BRIDGE:
2404 port_name = "PCIE2PCI";
2405 break;
2406 case PCIE_PCI2PCIE_BRIDGE:
2407 port_name = "PCI2PCIE";
2408 break;
2409 case PCIE_ROOT_END_POINT:
2410 port_name = "ROOTDEV";
2411 break;
2412 case PCIE_ROOT_EVT_COLL:
2413 port_name = "ROOTEVTC";
2414 break;
2415 default:
2416 port_name = NULL;
2417 break;
2418 }
2419 if ((port_type == PCIE_ROOT_PORT ||
2420 port_type == PCIE_DOWN_STREAM_PORT) &&
2421 !(expr->expr_cap & PCIEM_CAP_SLOT_IMPL))
2422 port_name = NULL;
2423 if (port_name != NULL)
2424 kprintf("[%s]", port_name);
2425
2426 if (pcie_slotimpl(cfg)) {
2427 kprintf(", slotcap=0x%08x", expr->expr_slotcap);
2428 if (expr->expr_slotcap & PCIEM_SLTCAP_HP_CAP)
2429 kprintf("[HOTPLUG]");
2430 }
2431 kprintf("\n");
2432}
2433
2434static int
2435pci_porten(device_t pcib, int b, int s, int f)
2436{
2437 return (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2)
2438 & PCIM_CMD_PORTEN) != 0;
2439}
2440
2441static int
2442pci_memen(device_t pcib, int b, int s, int f)
2443{
2444 return (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2)
2445 & PCIM_CMD_MEMEN) != 0;
2446}
2447
2448/*
2449 * Add a resource based on a pci map register. Return 1 if the map
2450 * register is a 32bit map register or 2 if it is a 64bit register.
2451 */
2452static int
2453pci_add_map(device_t pcib, device_t bus, device_t dev,
2454 int b, int s, int f, int reg, struct resource_list *rl, int force,
2455 int prefetch)
2456{
2457 uint32_t map;
2458 uint16_t old_cmd;
2459 pci_addr_t base;
2460 pci_addr_t start, end, count;
2461 uint8_t ln2size;
2462 uint8_t ln2range;
2463 uint32_t testval;
2464 uint16_t cmd;
2465 int type;
2466 int barlen;
2467 struct resource *res;
2468
2469 map = PCIB_READ_CONFIG(pcib, b, s, f, reg, 4);
2470
2471 /* Disable access to device memory */
2472 old_cmd = 0;
2473 if (PCI_BAR_MEM(map)) {
2474 old_cmd = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2);
2475 cmd = old_cmd & ~PCIM_CMD_MEMEN;
2476 PCIB_WRITE_CONFIG(pcib, b, s, f, PCIR_COMMAND, cmd, 2);
2477 }
2478
2479 PCIB_WRITE_CONFIG(pcib, b, s, f, reg, 0xffffffff, 4);
2480 testval = PCIB_READ_CONFIG(pcib, b, s, f, reg, 4);
2481 PCIB_WRITE_CONFIG(pcib, b, s, f, reg, map, 4);
2482
2483 /* Restore memory access mode */
2484 if (PCI_BAR_MEM(map)) {
2485 PCIB_WRITE_CONFIG(pcib, b, s, f, PCIR_COMMAND, old_cmd, 2);
2486 }
2487
2488 if (PCI_BAR_MEM(map)) {
2489 type = SYS_RES_MEMORY;
2490 if (map & PCIM_BAR_MEM_PREFETCH)
2491 prefetch = 1;
2492 } else
2493 type = SYS_RES_IOPORT;
2494 ln2size = pci_mapsize(testval);
2495 ln2range = pci_maprange(testval);
2496 base = pci_mapbase(map);
2497 barlen = ln2range == 64 ? 2 : 1;
2498
2499 /*
2500 * For I/O registers, if bottom bit is set, and the next bit up
2501 * isn't clear, we know we have a BAR that doesn't conform to the
2502 * spec, so ignore it. Also, sanity check the size of the data
2503 * areas to the type of memory involved. Memory must be at least
2504 * 16 bytes in size, while I/O ranges must be at least 4.
2505 */
2506 if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0)
2507 return (barlen);
2508 if ((type == SYS_RES_MEMORY && ln2size < 4) ||
2509 (type == SYS_RES_IOPORT && ln2size < 2))
2510 return (barlen);
2511
2512 if (ln2range == 64)
2513 /* Read the other half of a 64bit map register */
2514 base |= (uint64_t) PCIB_READ_CONFIG(pcib, b, s, f, reg + 4, 4) << 32;
2515 if (bootverbose) {
2516 kprintf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d",
2517 reg, pci_maptype(map), ln2range, (uintmax_t)base, ln2size);
2518 if (type == SYS_RES_IOPORT && !pci_porten(pcib, b, s, f))
2519 kprintf(", port disabled\n");
2520 else if (type == SYS_RES_MEMORY && !pci_memen(pcib, b, s, f))
2521 kprintf(", memory disabled\n");
2522 else
2523 kprintf(", enabled\n");
2524 }
2525
2526 /*
2527 * If base is 0, then we have problems. It is best to ignore
2528 * such entries for the moment. These will be allocated later if
2529 * the driver specifically requests them. However, some
2530 * removable busses look better when all resources are allocated,
2531 * so allow '0' to be overriden.
2532 *
2533 * Similarly treat maps whose values is the same as the test value
2534 * read back. These maps have had all f's written to them by the
2535 * BIOS in an attempt to disable the resources.
2536 */
2537 if (!force && (base == 0 || map == testval))
2538 return (barlen);
2539 if ((u_long)base != base) {
2540 device_printf(bus,
2541 "pci%d:%d:%d:%d bar %#x too many address bits",
2542 pci_get_domain(dev), b, s, f, reg);
2543 return (barlen);
2544 }
2545
2546 /*
2547 * This code theoretically does the right thing, but has
2548 * undesirable side effects in some cases where peripherals
2549 * respond oddly to having these bits enabled. Let the user
2550 * be able to turn them off (since pci_enable_io_modes is 1 by
2551 * default).
2552 */
2553 if (pci_enable_io_modes) {
2554 /* Turn on resources that have been left off by a lazy BIOS */
2555 if (type == SYS_RES_IOPORT && !pci_porten(pcib, b, s, f)) {
2556 cmd = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2);
2557 cmd |= PCIM_CMD_PORTEN;
2558 PCIB_WRITE_CONFIG(pcib, b, s, f, PCIR_COMMAND, cmd, 2);
2559 }
2560 if (type == SYS_RES_MEMORY && !pci_memen(pcib, b, s, f)) {
2561 cmd = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2);
2562 cmd |= PCIM_CMD_MEMEN;
2563 PCIB_WRITE_CONFIG(pcib, b, s, f, PCIR_COMMAND, cmd, 2);
2564 }
2565 } else {
2566 if (type == SYS_RES_IOPORT && !pci_porten(pcib, b, s, f))
2567 return (barlen);
2568 if (type == SYS_RES_MEMORY && !pci_memen(pcib, b, s, f))
2569 return (barlen);
2570 }
2571
2572 count = 1 << ln2size;
2573 if (base == 0 || base == pci_mapbase(testval)) {
2574 start = 0; /* Let the parent decide. */
2575 end = ~0ULL;
2576 } else {
2577 start = base;
2578 end = base + (1 << ln2size) - 1;
2579 }
2580 resource_list_add(rl, type, reg, start, end, count, -1);
2581
2582 /*
2583 * Try to allocate the resource for this BAR from our parent
2584 * so that this resource range is already reserved. The
2585 * driver for this device will later inherit this resource in
2586 * pci_alloc_resource().
2587 */
2588 res = resource_list_alloc(rl, bus, dev, type, &reg, start, end, count,
2589 prefetch ? RF_PREFETCHABLE : 0, -1);
2590 if (res == NULL) {
2591 /*
2592 * If the allocation fails, delete the resource list
2593 * entry to force pci_alloc_resource() to allocate
2594 * resources from the parent.
2595 */
2596 resource_list_delete(rl, type, reg);
2597#ifdef PCI_BAR_CLEAR
2598 /* Clear the BAR */
2599 start = 0;
2600#else /* !PCI_BAR_CLEAR */
2601 /*
2602 * Don't clear BAR here. Some BIOS lists HPET as a
2603 * PCI function, clearing the BAR causes HPET timer
2604 * stop ticking.
2605 */
2606 if (bootverbose) {
2607 kprintf("pci:%d:%d:%d: resource reservation failed "
2608 "%#jx - %#jx\n", b, s, f,
2609 (intmax_t)start, (intmax_t)end);
2610 }
2611 return (barlen);
2612#endif /* PCI_BAR_CLEAR */
2613 } else {
2614 start = rman_get_start(res);
2615 }
2616 pci_write_config(dev, reg, start, 4);
2617 if (ln2range == 64)
2618 pci_write_config(dev, reg + 4, start >> 32, 4);
2619 return (barlen);
2620}
2621
2622/*
2623 * For ATA devices we need to decide early what addressing mode to use.
2624 * Legacy demands that the primary and secondary ATA ports sits on the
2625 * same addresses that old ISA hardware did. This dictates that we use
2626 * those addresses and ignore the BAR's if we cannot set PCI native
2627 * addressing mode.
2628 */
2629static void
2630pci_ata_maps(device_t pcib, device_t bus, device_t dev, int b,
2631 int s, int f, struct resource_list *rl, int force, uint32_t prefetchmask)
2632{
2633 int rid, type, progif;
2634#if 0
2635 /* if this device supports PCI native addressing use it */
2636 progif = pci_read_config(dev, PCIR_PROGIF, 1);
2637 if ((progif & 0x8a) == 0x8a) {
2638 if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
2639 pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
2640 kprintf("Trying ATA native PCI addressing mode\n");
2641 pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
2642 }
2643 }
2644#endif
2645 progif = pci_read_config(dev, PCIR_PROGIF, 1);
2646 type = SYS_RES_IOPORT;
2647 if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
2648 pci_add_map(pcib, bus, dev, b, s, f, PCIR_BAR(0), rl, force,
2649 prefetchmask & (1 << 0));
2650 pci_add_map(pcib, bus, dev, b, s, f, PCIR_BAR(1), rl, force,
2651 prefetchmask & (1 << 1));
2652 } else {
2653 rid = PCIR_BAR(0);
2654 resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8, -1);
2655 resource_list_alloc(rl, bus, dev, type, &rid, 0x1f0, 0x1f7, 8,
2656 0, -1);
2657 rid = PCIR_BAR(1);
2658 resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1, -1);
2659 resource_list_alloc(rl, bus, dev, type, &rid, 0x3f6, 0x3f6, 1,
2660 0, -1);
2661 }
2662 if (progif & PCIP_STORAGE_IDE_MODESEC) {
2663 pci_add_map(pcib, bus, dev, b, s, f, PCIR_BAR(2), rl, force,
2664 prefetchmask & (1 << 2));
2665 pci_add_map(pcib, bus, dev, b, s, f, PCIR_BAR(3), rl, force,
2666 prefetchmask & (1 << 3));
2667 } else {
2668 rid = PCIR_BAR(2);
2669 resource_list_add(rl, type, rid, 0x170, 0x177, 8, -1);
2670 resource_list_alloc(rl, bus, dev, type, &rid, 0x170, 0x177, 8,
2671 0, -1);
2672 rid = PCIR_BAR(3);
2673 resource_list_add(rl, type, rid, 0x376, 0x376, 1, -1);
2674 resource_list_alloc(rl, bus, dev, type, &rid, 0x376, 0x376, 1,
2675 0, -1);
2676 }
2677 pci_add_map(pcib, bus, dev, b, s, f, PCIR_BAR(4), rl, force,
2678 prefetchmask & (1 << 4));
2679 pci_add_map(pcib, bus, dev, b, s, f, PCIR_BAR(5), rl, force,
2680 prefetchmask & (1 << 5));
2681}
2682
2683static void
2684pci_assign_interrupt(device_t bus, device_t dev, int force_route)
2685{
2686 struct pci_devinfo *dinfo = device_get_ivars(dev);
2687 pcicfgregs *cfg = &dinfo->cfg;
2688 char tunable_name[64];
2689 int irq;
2690
2691 /* Has to have an intpin to have an interrupt. */
2692 if (cfg->intpin == 0)
2693 return;
2694
2695 /* Let the user override the IRQ with a tunable. */
2696 irq = PCI_INVALID_IRQ;
2697 ksnprintf(tunable_name, sizeof(tunable_name),
2698 "hw.pci%d.%d.%d.%d.INT%c.irq",
2699 cfg->domain, cfg->bus, cfg->slot, cfg->func, cfg->intpin + 'A' - 1);
2700 if (TUNABLE_INT_FETCH(tunable_name, &irq)) {
2701 if (irq >= 255 || irq <= 0) {
2702 irq = PCI_INVALID_IRQ;
2703 } else {
2704 if (machintr_legacy_intr_find(irq,
2705 INTR_TRIGGER_LEVEL, INTR_POLARITY_LOW) < 0) {
2706 device_printf(dev,
2707 "hw.pci%d.%d.%d.%d.INT%c.irq=%d, invalid\n",
2708 cfg->domain, cfg->bus, cfg->slot, cfg->func,
2709 cfg->intpin + 'A' - 1, irq);
2710 irq = PCI_INVALID_IRQ;
2711 } else {
2712 BUS_CONFIG_INTR(bus, dev, irq,
2713 INTR_TRIGGER_LEVEL, INTR_POLARITY_LOW);
2714 }
2715 }
2716 }
2717
2718 /*
2719 * If we didn't get an IRQ via the tunable, then we either use the
2720 * IRQ value in the intline register or we ask the bus to route an
2721 * interrupt for us. If force_route is true, then we only use the
2722 * value in the intline register if the bus was unable to assign an
2723 * IRQ.
2724 */
2725 if (!PCI_INTERRUPT_VALID(irq)) {
2726 if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route)
2727 irq = PCI_ASSIGN_INTERRUPT(bus, dev);
2728 if (!PCI_INTERRUPT_VALID(irq))
2729 irq = cfg->intline;
2730 }
2731
2732 /* If after all that we don't have an IRQ, just bail. */
2733 if (!PCI_INTERRUPT_VALID(irq))
2734 return;
2735
2736 /* Update the config register if it changed. */
2737 if (irq != cfg->intline) {
2738 cfg->intline = irq;
2739 pci_write_config(dev, PCIR_INTLINE, irq, 1);
2740 }
2741
2742 /* Add this IRQ as rid 0 interrupt resource. */
2743 resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1,
2744 machintr_legacy_intr_cpuid(irq));
2745}
2746
2747void
2748pci_add_resources(device_t pcib, device_t bus, device_t dev, int force, uint32_t prefetchmask)
2749{
2750 struct pci_devinfo *dinfo = device_get_ivars(dev);
2751 pcicfgregs *cfg = &dinfo->cfg;
2752 struct resource_list *rl = &dinfo->resources;
2753 struct pci_quirk *q;
2754 int b, i, f, s;
2755
2756 b = cfg->bus;
2757 s = cfg->slot;
2758 f = cfg->func;
2759
2760 /* ATA devices needs special map treatment */
2761 if ((pci_get_class(dev) == PCIC_STORAGE) &&
2762 (pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
2763 ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) ||
2764 (!pci_read_config(dev, PCIR_BAR(0), 4) &&
2765 !pci_read_config(dev, PCIR_BAR(2), 4))) )
2766 pci_ata_maps(pcib, bus, dev, b, s, f, rl, force, prefetchmask);
2767 else
2768 for (i = 0; i < cfg->nummaps;)
2769 i += pci_add_map(pcib, bus, dev, b, s, f, PCIR_BAR(i),
2770 rl, force, prefetchmask & (1 << i));
2771
2772 /*
2773 * Add additional, quirked resources.
2774 */
2775 for (q = &pci_quirks[0]; q->devid; q++) {
2776 if (q->devid == ((cfg->device << 16) | cfg->vendor)
2777 && q->type == PCI_QUIRK_MAP_REG)
2778 pci_add_map(pcib, bus, dev, b, s, f, q->arg1, rl,
2779 force, 0);
2780 }
2781
2782 if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) {
2783 /*
2784 * Try to re-route interrupts. Sometimes the BIOS or
2785 * firmware may leave bogus values in these registers.
2786 * If the re-route fails, then just stick with what we
2787 * have.
2788 */
2789 pci_assign_interrupt(bus, dev, 1);
2790 }
2791}
2792
2793void
2794pci_add_children(device_t dev, int domain, int busno, size_t dinfo_size)
2795{
2796#define REG(n, w) PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
2797 device_t pcib = device_get_parent(dev);
2798 struct pci_devinfo *dinfo;
2799 int maxslots;
2800 int s, f, pcifunchigh;
2801 uint8_t hdrtype;
2802
2803 KASSERT(dinfo_size >= sizeof(struct pci_devinfo),
2804 ("dinfo_size too small"));
2805 maxslots = PCIB_MAXSLOTS(pcib);
2806 for (s = 0; s <= maxslots; s++) {
2807 pcifunchigh = 0;
2808 f = 0;
2809 DELAY(1);
2810 hdrtype = REG(PCIR_HDRTYPE, 1);
2811 if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
2812 continue;
2813 if (hdrtype & PCIM_MFDEV)
2814 pcifunchigh = PCI_FUNCMAX;
2815 for (f = 0; f <= pcifunchigh; f++) {
2816 dinfo = pci_read_device(pcib, domain, busno, s, f,
2817 dinfo_size);
2818 if (dinfo != NULL) {
2819 pci_add_child(dev, dinfo);
2820 }
2821 }
2822 }
2823#undef REG
2824}
2825
2826void
2827pci_add_child(device_t bus, struct pci_devinfo *dinfo)
2828{
2829 device_t pcib;
2830
2831 pcib = device_get_parent(bus);
2832 dinfo->cfg.dev = device_add_child(bus, NULL, -1);
2833 device_set_ivars(dinfo->cfg.dev, dinfo);
2834 resource_list_init(&dinfo->resources);
2835 pci_cfg_save(dinfo->cfg.dev, dinfo, 0);
2836 pci_cfg_restore(dinfo->cfg.dev, dinfo);
2837 pci_print_verbose(dinfo);
2838 pci_add_resources(pcib, bus, dinfo->cfg.dev, 0, 0);
2839}
2840
2841static int
2842pci_probe(device_t dev)
2843{
2844 device_set_desc(dev, "PCI bus");
2845
2846 /* Allow other subclasses to override this driver. */
2847 return (-1000);
2848}
2849
2850static int
2851pci_attach(device_t dev)
2852{
2853 int busno, domain;
2854
2855 /*
2856 * Since there can be multiple independantly numbered PCI
2857 * busses on systems with multiple PCI domains, we can't use
2858 * the unit number to decide which bus we are probing. We ask
2859 * the parent pcib what our domain and bus numbers are.
2860 */
2861 domain = pcib_get_domain(dev);
2862 busno = pcib_get_bus(dev);
2863 if (bootverbose)
2864 device_printf(dev, "domain=%d, physical bus=%d\n",
2865 domain, busno);
2866
2867 pci_add_children(dev, domain, busno, sizeof(struct pci_devinfo));
2868
2869 return (bus_generic_attach(dev));
2870}
2871
2872int
2873pci_suspend(device_t dev)
2874{
2875 int dstate, error, i, numdevs;
2876 device_t acpi_dev, child, *devlist;
2877 struct pci_devinfo *dinfo;
2878
2879 /*
2880 * Save the PCI configuration space for each child and set the
2881 * device in the appropriate power state for this sleep state.
2882 */
2883 acpi_dev = NULL;
2884 if (pci_do_power_resume)
2885 acpi_dev = devclass_get_device(devclass_find("acpi"), 0);
2886 device_get_children(dev, &devlist, &numdevs);
2887 for (i = 0; i < numdevs; i++) {
2888 child = devlist[i];
2889 dinfo = (struct pci_devinfo *) device_get_ivars(child);
2890 pci_cfg_save(child, dinfo, 0);
2891 }
2892
2893 /* Suspend devices before potentially powering them down. */
2894 error = bus_generic_suspend(dev);
2895 if (error) {
2896 kfree(devlist, M_TEMP);
2897 return (error);
2898 }
2899
2900 /*
2901 * Always set the device to D3. If ACPI suggests a different
2902 * power state, use it instead. If ACPI is not present, the
2903 * firmware is responsible for managing device power. Skip
2904 * children who aren't attached since they are powered down
2905 * separately. Only manage type 0 devices for now.
2906 */
2907 for (i = 0; acpi_dev && i < numdevs; i++) {
2908 child = devlist[i];
2909 dinfo = (struct pci_devinfo *) device_get_ivars(child);
2910 if (device_is_attached(child) && dinfo->cfg.hdrtype == 0) {
2911 dstate = PCI_POWERSTATE_D3;
2912 ACPI_PWR_FOR_SLEEP(acpi_dev, child, &dstate);
2913 pci_set_powerstate(child, dstate);
2914 }
2915 }
2916 kfree(devlist, M_TEMP);
2917 return (0);
2918}
2919
2920int
2921pci_resume(device_t dev)
2922{
2923 int i, numdevs;
2924 device_t acpi_dev, child, *devlist;
2925 struct pci_devinfo *dinfo;
2926
2927 /*
2928 * Set each child to D0 and restore its PCI configuration space.
2929 */
2930 acpi_dev = NULL;
2931 if (pci_do_power_resume)
2932 acpi_dev = devclass_get_device(devclass_find("acpi"), 0);
2933 device_get_children(dev, &devlist, &numdevs);
2934 for (i = 0; i < numdevs; i++) {
2935 /*
2936 * Notify ACPI we're going to D0 but ignore the result. If
2937 * ACPI is not present, the firmware is responsible for
2938 * managing device power. Only manage type 0 devices for now.
2939 */
2940 child = devlist[i];
2941 dinfo = (struct pci_devinfo *) device_get_ivars(child);
2942 if (acpi_dev && device_is_attached(child) &&
2943 dinfo->cfg.hdrtype == 0) {
2944 ACPI_PWR_FOR_SLEEP(acpi_dev, child, NULL);
2945 pci_set_powerstate(child, PCI_POWERSTATE_D0);
2946 }
2947
2948 /* Now the device is powered up, restore its config space. */
2949 pci_cfg_restore(child, dinfo);
2950 }
2951 kfree(devlist, M_TEMP);
2952 return (bus_generic_resume(dev));
2953}
2954
2955static void
2956pci_load_vendor_data(void)
2957{
2958 caddr_t vendordata, info;
2959
2960 if ((vendordata = preload_search_by_type("pci_vendor_data")) != NULL) {
2961 info = preload_search_info(vendordata, MODINFO_ADDR);
2962 pci_vendordata = *(char **)info;
2963 info = preload_search_info(vendordata, MODINFO_SIZE);
2964 pci_vendordata_size = *(size_t *)info;
2965 /* terminate the database */
2966 pci_vendordata[pci_vendordata_size] = '\n';
2967 }
2968}
2969
2970void
2971pci_driver_added(device_t dev, driver_t *driver)
2972{
2973 int numdevs;
2974 device_t *devlist;
2975 device_t child;
2976 struct pci_devinfo *dinfo;
2977 int i;
2978
2979 if (bootverbose)
2980 device_printf(dev, "driver added\n");
2981 DEVICE_IDENTIFY(driver, dev);
2982 device_get_children(dev, &devlist, &numdevs);
2983 for (i = 0; i < numdevs; i++) {
2984 child = devlist[i];
2985 if (device_get_state(child) != DS_NOTPRESENT)
2986 continue;
2987 dinfo = device_get_ivars(child);
2988 pci_print_verbose(dinfo);
2989 if (bootverbose)
2990 kprintf("pci%d:%d:%d:%d: reprobing on driver added\n",
2991 dinfo->cfg.domain, dinfo->cfg.bus, dinfo->cfg.slot,
2992 dinfo->cfg.func);
2993 pci_cfg_restore(child, dinfo);
2994 if (device_probe_and_attach(child) != 0)
2995 pci_cfg_save(child, dinfo, 1);
2996 }
2997 kfree(devlist, M_TEMP);
2998}
2999
3000static void
3001pci_child_detached(device_t parent __unused, device_t child)
3002{
3003 /* Turn child's power off */
3004 pci_cfg_save(child, device_get_ivars(child), 1);
3005}
3006
3007int
3008pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
3009 driver_intr_t *intr, void *arg, void **cookiep,
3010 lwkt_serialize_t serializer, const char *desc)
3011{
3012 int rid, error;
3013 void *cookie;
3014
3015 error = bus_generic_setup_intr(dev, child, irq, flags, intr,
3016 arg, &cookie, serializer, desc);
3017 if (error)
3018 return (error);
3019
3020 /* If this is not a direct child, just bail out. */
3021 if (device_get_parent(child) != dev) {
3022 *cookiep = cookie;
3023 return(0);
3024 }
3025
3026 rid = rman_get_rid(irq);
3027 if (rid == 0) {
3028 /* Make sure that INTx is enabled */
3029 pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
3030 } else {
3031 struct pci_devinfo *dinfo = device_get_ivars(child);
3032 uint64_t addr;
3033 uint32_t data;
3034
3035 /*
3036 * Check to see if the interrupt is MSI or MSI-X.
3037 * Ask our parent to map the MSI and give
3038 * us the address and data register values.
3039 * If we fail for some reason, teardown the
3040 * interrupt handler.
3041 */
3042 if (dinfo->cfg.msi.msi_alloc > 0) {
3043 struct pcicfg_msi *msi = &dinfo->cfg.msi;
3044
3045 if (msi->msi_addr == 0) {
3046 KASSERT(msi->msi_handlers == 0,
3047 ("MSI has handlers, but vectors not mapped"));
3048 error = PCIB_MAP_MSI(device_get_parent(dev),
3049 child, rman_get_start(irq), &addr, &data,
3050 rman_get_cpuid(irq));
3051 if (error)
3052 goto bad;
3053 msi->msi_addr = addr;
3054 msi->msi_data = data;
3055 pci_enable_msi(child, addr, data);
3056 }
3057 msi->msi_handlers++;
3058 } else {
3059 struct msix_vector *mv;
3060 u_int vector;
3061
3062 KASSERT(dinfo->cfg.msix.msix_alloc > 0,
3063 ("No MSI-X or MSI rid %d allocated", rid));
3064
3065 mv = pci_find_msix_vector(child, rid);
3066 KASSERT(mv != NULL,
3067 ("MSI-X rid %d is not allocated", rid));
3068 KASSERT(mv->mv_address == 0,
3069 ("MSI-X rid %d has been setup", rid));
3070
3071 error = PCIB_MAP_MSI(device_get_parent(dev),
3072 child, rman_get_start(irq), &addr, &data,
3073 rman_get_cpuid(irq));
3074 if (error)
3075 goto bad;
3076 mv->mv_address = addr;
3077 mv->mv_data = data;
3078
3079 vector = PCI_MSIX_RID2VEC(rid);
3080 pci_setup_msix_vector(child, vector,
3081 mv->mv_address, mv->mv_data);
3082 pci_unmask_msix_vector(child, vector);
3083 }
3084
3085 /* Make sure that INTx is disabled if we are using MSI/MSIX */
3086 pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
3087 bad:
3088 if (error) {
3089 (void)bus_generic_teardown_intr(dev, child, irq,
3090 cookie);
3091 return (error);
3092 }
3093 }
3094 *cookiep = cookie;
3095 return (0);
3096}
3097
3098int
3099pci_teardown_intr(device_t dev, device_t child, struct resource *irq,
3100 void *cookie)
3101{
3102 int rid, error;
3103
3104 if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE))
3105 return (EINVAL);
3106
3107 /* If this isn't a direct child, just bail out */
3108 if (device_get_parent(child) != dev)
3109 return(bus_generic_teardown_intr(dev, child, irq, cookie));
3110
3111 rid = rman_get_rid(irq);
3112 if (rid == 0) {
3113 /* Mask INTx */
3114 pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
3115 } else {
3116 struct pci_devinfo *dinfo = device_get_ivars(child);
3117
3118 /*
3119 * Check to see if the interrupt is MSI or MSI-X. If so,
3120 * decrement the appropriate handlers count and mask the
3121 * MSI-X message, or disable MSI messages if the count
3122 * drops to 0.
3123 */
3124 if (dinfo->cfg.msi.msi_alloc > 0) {
3125 struct pcicfg_msi *msi = &dinfo->cfg.msi;
3126
3127 KASSERT(rid <= msi->msi_alloc,
3128 ("MSI-X index too high"));
3129 KASSERT(msi->msi_handlers > 0,
3130 ("MSI rid %d is not setup", rid));
3131
3132 msi->msi_handlers--;
3133 if (msi->msi_handlers == 0)
3134 pci_disable_msi(child);
3135 } else {
3136 struct msix_vector *mv;
3137
3138 KASSERT(dinfo->cfg.msix.msix_alloc > 0,
3139 ("No MSI or MSI-X rid %d allocated", rid));
3140
3141 mv = pci_find_msix_vector(child, rid);
3142 KASSERT(mv != NULL,
3143 ("MSI-X rid %d is not allocated", rid));
3144 KASSERT(mv->mv_address != 0,
3145 ("MSI-X rid %d has not been setup", rid));
3146
3147 pci_mask_msix_vector(child, PCI_MSIX_RID2VEC(rid));
3148 mv->mv_address = 0;
3149 mv->mv_data = 0;
3150 }
3151 }
3152 error = bus_generic_teardown_intr(dev, child, irq, cookie);
3153 if (rid > 0)
3154 KASSERT(error == 0,
3155 ("%s: generic teardown failed for MSI/MSI-X", __func__));
3156 return (error);
3157}
3158
3159int
3160pci_print_child(device_t dev, device_t child)
3161{
3162 struct pci_devinfo *dinfo;
3163 struct resource_list *rl;
3164 int retval = 0;
3165
3166 dinfo = device_get_ivars(child);
3167 rl = &dinfo->resources;
3168
3169 retval += bus_print_child_header(dev, child);
3170
3171 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#lx");
3172 retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#lx");
3173 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%ld");
3174 if (device_get_flags(dev))
3175 retval += kprintf(" flags %#x", device_get_flags(dev));
3176
3177 retval += kprintf(" at device %d.%d", pci_get_slot(child),
3178 pci_get_function(child));
3179
3180 retval += bus_print_child_footer(dev, child);
3181
3182 return (retval);
3183}
3184
3185static struct
3186{
3187 int class;
3188 int subclass;
3189 char *desc;
3190} pci_nomatch_tab[] = {
3191 {PCIC_OLD, -1, "old"},
3192 {PCIC_OLD, PCIS_OLD_NONVGA, "non-VGA display device"},
3193 {PCIC_OLD, PCIS_OLD_VGA, "VGA-compatible display device"},
3194 {PCIC_STORAGE, -1, "mass storage"},
3195 {PCIC_STORAGE, PCIS_STORAGE_SCSI, "SCSI"},
3196 {PCIC_STORAGE, PCIS_STORAGE_IDE, "ATA"},
3197 {PCIC_STORAGE, PCIS_STORAGE_FLOPPY, "floppy disk"},
3198 {PCIC_STORAGE, PCIS_STORAGE_IPI, "IPI"},
3199 {PCIC_STORAGE, PCIS_STORAGE_RAID, "RAID"},
3200 {PCIC_STORAGE, PCIS_STORAGE_ATA_ADMA, "ATA (ADMA)"},
3201 {PCIC_STORAGE, PCIS_STORAGE_SATA, "SATA"},
3202 {PCIC_STORAGE, PCIS_STORAGE_SAS, "SAS"},
3203 {PCIC_NETWORK, -1, "network"},
3204 {PCIC_NETWORK, PCIS_NETWORK_ETHERNET, "ethernet"},
3205 {PCIC_NETWORK, PCIS_NETWORK_TOKENRING, "token ring"},
3206 {PCIC_NETWORK, PCIS_NETWORK_FDDI, "fddi"},
3207 {PCIC_NETWORK, PCIS_NETWORK_ATM, "ATM"},
3208 {PCIC_NETWORK, PCIS_NETWORK_ISDN, "ISDN"},
3209 {PCIC_DISPLAY, -1, "display"},
3210 {PCIC_DISPLAY, PCIS_DISPLAY_VGA, "VGA"},
3211 {PCIC_DISPLAY, PCIS_DISPLAY_XGA, "XGA"},
3212 {PCIC_DISPLAY, PCIS_DISPLAY_3D, "3D"},
3213 {PCIC_MULTIMEDIA, -1, "multimedia"},
3214 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_VIDEO, "video"},
3215 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_AUDIO, "audio"},
3216 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_TELE, "telephony"},
3217 {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_HDA, "HDA"},
3218 {PCIC_MEMORY, -1, "memory"},
3219 {PCIC_MEMORY, PCIS_MEMORY_RAM, "RAM"},
3220 {PCIC_MEMORY, PCIS_MEMORY_FLASH, "flash"},
3221 {PCIC_BRIDGE, -1, "bridge"},
3222 {PCIC_BRIDGE, PCIS_BRIDGE_HOST, "HOST-PCI"},
3223 {PCIC_BRIDGE, PCIS_BRIDGE_ISA, "PCI-ISA"},
3224 {PCIC_BRIDGE, PCIS_BRIDGE_EISA, "PCI-EISA"},
3225 {PCIC_BRIDGE, PCIS_BRIDGE_MCA, "PCI-MCA"},
3226 {PCIC_BRIDGE, PCIS_BRIDGE_PCI, "PCI-PCI"},
3227 {PCIC_BRIDGE, PCIS_BRIDGE_PCMCIA, "PCI-PCMCIA"},
3228 {PCIC_BRIDGE, PCIS_BRIDGE_NUBUS, "PCI-NuBus"},
3229 {PCIC_BRIDGE, PCIS_BRIDGE_CARDBUS, "PCI-CardBus"},
3230 {PCIC_BRIDGE, PCIS_BRIDGE_RACEWAY, "PCI-RACEway"},
3231 {PCIC_SIMPLECOMM, -1, "simple comms"},
3232 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_UART, "UART"}, /* could detect 16550 */
3233 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_PAR, "parallel port"},
3234 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MULSER, "multiport serial"},
3235 {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MODEM, "generic modem"},
3236 {PCIC_BASEPERIPH, -1, "base peripheral"},
3237 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_PIC, "interrupt controller"},
3238 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_DMA, "DMA controller"},
3239 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_TIMER, "timer"},
3240 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_RTC, "realtime clock"},
3241 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_PCIHOT, "PCI hot-plug controller"},
3242 {PCIC_BASEPERIPH, PCIS_BASEPERIPH_SDHC, "SD host controller"},
3243 {PCIC_INPUTDEV, -1, "input device"},
3244 {PCIC_INPUTDEV, PCIS_INPUTDEV_KEYBOARD, "keyboard"},
3245 {PCIC_INPUTDEV, PCIS_INPUTDEV_DIGITIZER,"digitizer"},
3246 {PCIC_INPUTDEV, PCIS_INPUTDEV_MOUSE, "mouse"},
3247 {PCIC_INPUTDEV, PCIS_INPUTDEV_SCANNER, "scanner"},
3248 {PCIC_INPUTDEV, PCIS_INPUTDEV_GAMEPORT, "gameport"},
3249 {PCIC_DOCKING, -1, "docking station"},
3250 {PCIC_PROCESSOR, -1, "processor"},
3251 {PCIC_SERIALBUS, -1, "serial bus"},
3252 {PCIC_SERIALBUS, PCIS_SERIALBUS_FW, "FireWire"},
3253 {PCIC_SERIALBUS, PCIS_SERIALBUS_ACCESS, "AccessBus"},
3254 {PCIC_SERIALBUS, PCIS_SERIALBUS_SSA, "SSA"},
3255 {PCIC_SERIALBUS, PCIS_SERIALBUS_USB, "USB"},
3256 {PCIC_SERIALBUS, PCIS_SERIALBUS_FC, "Fibre Channel"},
3257 {PCIC_SERIALBUS, PCIS_SERIALBUS_SMBUS, "SMBus"},
3258 {PCIC_WIRELESS, -1, "wireless controller"},
3259 {PCIC_WIRELESS, PCIS_WIRELESS_IRDA, "iRDA"},
3260 {PCIC_WIRELESS, PCIS_WIRELESS_IR, "IR"},
3261 {PCIC_WIRELESS, PCIS_WIRELESS_RF, "RF"},
3262 {PCIC_INTELLIIO, -1, "intelligent I/O controller"},
3263 {PCIC_INTELLIIO, PCIS_INTELLIIO_I2O, "I2O"},
3264 {PCIC_SATCOM, -1, "satellite communication"},
3265 {PCIC_SATCOM, PCIS_SATCOM_TV, "sat TV"},
3266 {PCIC_SATCOM, PCIS_SATCOM_AUDIO, "sat audio"},
3267 {PCIC_SATCOM, PCIS_SATCOM_VOICE, "sat voice"},
3268 {PCIC_SATCOM, PCIS_SATCOM_DATA, "sat data"},
3269 {PCIC_CRYPTO, -1, "encrypt/decrypt"},
3270 {PCIC_CRYPTO, PCIS_CRYPTO_NETCOMP, "network/computer crypto"},
3271 {PCIC_CRYPTO, PCIS_CRYPTO_ENTERTAIN, "entertainment crypto"},
3272 {PCIC_DASP, -1, "dasp"},
3273 {PCIC_DASP, PCIS_DASP_DPIO, "DPIO module"},
3274 {0, 0, NULL}
3275};
3276
3277void
3278pci_probe_nomatch(device_t dev, device_t child)
3279{
3280 int i;
3281 char *cp, *scp, *device;
3282
3283 /*
3284 * Look for a listing for this device in a loaded device database.
3285 */
3286 if ((device = pci_describe_device(child)) != NULL) {
3287 device_printf(dev, "<%s>", device);
3288 kfree(device, M_DEVBUF);
3289 } else {
3290 /*
3291 * Scan the class/subclass descriptions for a general
3292 * description.
3293 */
3294 cp = "unknown";
3295 scp = NULL;
3296 for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) {
3297 if (pci_nomatch_tab[i].class == pci_get_class(child)) {
3298 if (pci_nomatch_tab[i].subclass == -1) {
3299 cp = pci_nomatch_tab[i].desc;
3300 } else if (pci_nomatch_tab[i].subclass ==
3301 pci_get_subclass(child)) {
3302 scp = pci_nomatch_tab[i].desc;
3303 }
3304 }
3305 }
3306 device_printf(dev, "<%s%s%s>",
3307 cp ? cp : "",
3308 ((cp != NULL) && (scp != NULL)) ? ", " : "",
3309 scp ? scp : "");
3310 }
3311 kprintf(" (vendor 0x%04x, dev 0x%04x) at device %d.%d",
3312 pci_get_vendor(child), pci_get_device(child),
3313 pci_get_slot(child), pci_get_function(child));
3314 if (pci_get_intpin(child) > 0) {
3315 int irq;
3316
3317 irq = pci_get_irq(child);
3318 if (PCI_INTERRUPT_VALID(irq))
3319 kprintf(" irq %d", irq);
3320 }
3321 kprintf("\n");
3322
3323 pci_cfg_save(child, (struct pci_devinfo *)device_get_ivars(child), 1);
3324}
3325
3326/*
3327 * Parse the PCI device database, if loaded, and return a pointer to a
3328 * description of the device.
3329 *
3330 * The database is flat text formatted as follows:
3331 *
3332 * Any line not in a valid format is ignored.
3333 * Lines are terminated with newline '\n' characters.
3334 *
3335 * A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then
3336 * the vendor name.
3337 *
3338 * A DEVICE line is entered immediately below the corresponding VENDOR ID.
3339 * - devices cannot be listed without a corresponding VENDOR line.
3340 * A DEVICE line consists of a TAB, the 4 digit (hex) device code,
3341 * another TAB, then the device name.
3342 */
3343
3344/*
3345 * Assuming (ptr) points to the beginning of a line in the database,
3346 * return the vendor or device and description of the next entry.
3347 * The value of (vendor) or (device) inappropriate for the entry type
3348 * is set to -1. Returns nonzero at the end of the database.
3349 *
3350 * Note that this is slightly unrobust in the face of corrupt data;
3351 * we attempt to safeguard against this by spamming the end of the
3352 * database with a newline when we initialise.
3353 */
3354static int
3355pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc)
3356{
3357 char *cp = *ptr;
3358 int left;
3359
3360 *device = -1;
3361 *vendor = -1;
3362 **desc = '\0';
3363 for (;;) {
3364 left = pci_vendordata_size - (cp - pci_vendordata);
3365 if (left <= 0) {
3366 *ptr = cp;
3367 return(1);
3368 }
3369
3370 /* vendor entry? */
3371 if (*cp != '\t' &&
3372 ksscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2)
3373 break;
3374 /* device entry? */
3375 if (*cp == '\t' &&
3376 ksscanf(cp, "%x\t%80[^\n]", device, *desc) == 2)
3377 break;
3378
3379 /* skip to next line */
3380 while (*cp != '\n' && left > 0) {
3381 cp++;
3382 left--;
3383 }
3384 if (*cp == '\n') {
3385 cp++;
3386 left--;
3387 }
3388 }
3389 /* skip to next line */
3390 while (*cp != '\n' && left > 0) {
3391 cp++;
3392 left--;
3393 }
3394 if (*cp == '\n' && left > 0)
3395 cp++;
3396 *ptr = cp;
3397 return(0);
3398}
3399
3400static char *
3401pci_describe_device(device_t dev)
3402{
3403 int vendor, device;
3404 char *desc, *vp, *dp, *line;
3405
3406 desc = vp = dp = NULL;
3407
3408 /*
3409 * If we have no vendor data, we can't do anything.
3410 */
3411 if (pci_vendordata == NULL)
3412 goto out;
3413
3414 /*
3415 * Scan the vendor data looking for this device
3416 */
3417 line = pci_vendordata;
3418 if ((vp = kmalloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
3419 goto out;
3420 for (;;) {
3421 if (pci_describe_parse_line(&line, &vendor, &device, &vp))
3422 goto out;
3423 if (vendor == pci_get_vendor(dev))
3424 break;
3425 }
3426 if ((dp = kmalloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
3427 goto out;
3428 for (;;) {
3429 if (pci_describe_parse_line(&line, &vendor, &device, &dp)) {
3430 *dp = 0;
3431 break;
3432 }
3433 if (vendor != -1) {
3434 *dp = 0;
3435 break;
3436 }
3437 if (device == pci_get_device(dev))
3438 break;
3439 }
3440 if (dp[0] == '\0')
3441 ksnprintf(dp, 80, "0x%x", pci_get_device(dev));
3442 if ((desc = kmalloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) !=
3443 NULL)
3444 ksprintf(desc, "%s, %s", vp, dp);
3445 out:
3446 if (vp != NULL)
3447 kfree(vp, M_DEVBUF);
3448 if (dp != NULL)
3449 kfree(dp, M_DEVBUF);
3450 return(desc);
3451}
3452
3453int
3454pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
3455{
3456 struct pci_devinfo *dinfo;
3457 pcicfgregs *cfg;
3458
3459 dinfo = device_get_ivars(child);
3460 cfg = &dinfo->cfg;
3461
3462 switch (which) {
3463 case PCI_IVAR_ETHADDR:
3464 /*
3465 * The generic accessor doesn't deal with failure, so
3466 * we set the return value, then return an error.
3467 */
3468 *((uint8_t **) result) = NULL;
3469 return (EINVAL);
3470 case PCI_IVAR_SUBVENDOR:
3471 *result = cfg->subvendor;
3472 break;
3473 case PCI_IVAR_SUBDEVICE:
3474 *result = cfg->subdevice;
3475 break;
3476 case PCI_IVAR_VENDOR:
3477 *result = cfg->vendor;
3478 break;
3479 case PCI_IVAR_DEVICE:
3480 *result = cfg->device;
3481 break;
3482 case PCI_IVAR_DEVID:
3483 *result = (cfg->device << 16) | cfg->vendor;
3484 break;
3485 case PCI_IVAR_CLASS:
3486 *result = cfg->baseclass;
3487 break;
3488 case PCI_IVAR_SUBCLASS:
3489 *result = cfg->subclass;
3490 break;
3491 case PCI_IVAR_PROGIF:
3492 *result = cfg->progif;
3493 break;
3494 case PCI_IVAR_REVID:
3495 *result = cfg->revid;
3496 break;
3497 case PCI_IVAR_INTPIN:
3498 *result = cfg->intpin;
3499 break;
3500 case PCI_IVAR_IRQ:
3501 *result = cfg->intline;
3502 break;
3503 case PCI_IVAR_DOMAIN:
3504 *result = cfg->domain;
3505 break;
3506 case PCI_IVAR_BUS:
3507 *result = cfg->bus;
3508 break;
3509 case PCI_IVAR_SLOT:
3510 *result = cfg->slot;
3511 break;
3512 case PCI_IVAR_FUNCTION:
3513 *result = cfg->func;
3514 break;
3515 case PCI_IVAR_CMDREG:
3516 *result = cfg->cmdreg;
3517 break;
3518 case PCI_IVAR_CACHELNSZ:
3519 *result = cfg->cachelnsz;
3520 break;
3521 case PCI_IVAR_MINGNT:
3522 *result = cfg->mingnt;
3523 break;
3524 case PCI_IVAR_MAXLAT:
3525 *result = cfg->maxlat;
3526 break;
3527 case PCI_IVAR_LATTIMER:
3528 *result = cfg->lattimer;
3529 break;
3530 case PCI_IVAR_PCIXCAP_PTR:
3531 *result = cfg->pcix.pcix_ptr;
3532 break;
3533 case PCI_IVAR_PCIECAP_PTR:
3534 *result = cfg->expr.expr_ptr;
3535 break;
3536 case PCI_IVAR_VPDCAP_PTR:
3537 *result = cfg->vpd.vpd_reg;
3538 break;
3539 default:
3540 return (ENOENT);
3541 }
3542 return (0);
3543}
3544
3545int
3546pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
3547{
3548 struct pci_devinfo *dinfo;
3549
3550 dinfo = device_get_ivars(child);
3551
3552 switch (which) {
3553 case PCI_IVAR_INTPIN:
3554 dinfo->cfg.intpin = value;
3555 return (0);
3556 case PCI_IVAR_ETHADDR:
3557 case PCI_IVAR_SUBVENDOR:
3558 case PCI_IVAR_SUBDEVICE:
3559 case PCI_IVAR_VENDOR:
3560 case PCI_IVAR_DEVICE:
3561 case PCI_IVAR_DEVID:
3562 case PCI_IVAR_CLASS:
3563 case PCI_IVAR_SUBCLASS:
3564 case PCI_IVAR_PROGIF:
3565 case PCI_IVAR_REVID:
3566 case PCI_IVAR_IRQ:
3567 case PCI_IVAR_DOMAIN:
3568 case PCI_IVAR_BUS:
3569 case PCI_IVAR_SLOT:
3570 case PCI_IVAR_FUNCTION:
3571 return (EINVAL); /* disallow for now */
3572
3573 default:
3574 return (ENOENT);
3575 }
3576}
3577#ifdef notyet
3578#include "opt_ddb.h"
3579#ifdef DDB
3580#include <ddb/ddb.h>
3581#include <sys/cons.h>
3582
3583/*
3584 * List resources based on pci map registers, used for within ddb
3585 */
3586
3587DB_SHOW_COMMAND(pciregs, db_pci_dump)
3588{
3589 struct pci_devinfo *dinfo;
3590 struct devlist *devlist_head;
3591 struct pci_conf *p;
3592 const char *name;
3593 int i, error, none_count;
3594
3595 none_count = 0;
3596 /* get the head of the device queue */
3597 devlist_head = &pci_devq;
3598
3599 /*
3600 * Go through the list of devices and print out devices
3601 */
3602 for (error = 0, i = 0,
3603 dinfo = STAILQ_FIRST(devlist_head);
3604 (dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit;
3605 dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
3606
3607 /* Populate pd_name and pd_unit */
3608 name = NULL;
3609 if (dinfo->cfg.dev)
3610 name = device_get_name(dinfo->cfg.dev);
3611
3612 p = &dinfo->conf;
3613 db_kprintf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x "
3614 "chip=0x%08x rev=0x%02x hdr=0x%02x\n",
3615 (name && *name) ? name : "none",
3616 (name && *name) ? (int)device_get_unit(dinfo->cfg.dev) :
3617 none_count++,
3618 p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev,
3619 p->pc_sel.pc_func, (p->pc_class << 16) |
3620 (p->pc_subclass << 8) | p->pc_progif,
3621 (p->pc_subdevice << 16) | p->pc_subvendor,
3622 (p->pc_device << 16) | p->pc_vendor,
3623 p->pc_revid, p->pc_hdr);
3624 }
3625}
3626#endif /* DDB */
3627#endif
3628
3629static struct resource *
3630pci_alloc_map(device_t dev, device_t child, int type, int *rid,
3631 u_long start, u_long end, u_long count, u_int flags)
3632{
3633 struct pci_devinfo *dinfo = device_get_ivars(child);
3634 struct resource_list *rl = &dinfo->resources;
3635 struct resource_list_entry *rle;
3636 struct resource *res;
3637 pci_addr_t map, testval;
3638 int mapsize;
3639
3640 /*
3641 * Weed out the bogons, and figure out how large the BAR/map
3642 * is. Bars that read back 0 here are bogus and unimplemented.
3643 * Note: atapci in legacy mode are special and handled elsewhere
3644 * in the code. If you have a atapci device in legacy mode and
3645 * it fails here, that other code is broken.
3646 */
3647 res = NULL;
3648 map = pci_read_config(child, *rid, 4);
3649 pci_write_config(child, *rid, 0xffffffff, 4);
3650 testval = pci_read_config(child, *rid, 4);
3651 if (pci_maprange(testval) == 64)
3652 map |= (pci_addr_t)pci_read_config(child, *rid + 4, 4) << 32;
3653 if (pci_mapbase(testval) == 0)
3654 goto out;
3655
3656 /*
3657 * Restore the original value of the BAR. We may have reprogrammed
3658 * the BAR of the low-level console device and when booting verbose,
3659 * we need the console device addressable.
3660 */
3661 pci_write_config(child, *rid, map, 4);
3662
3663 if (PCI_BAR_MEM(testval)) {
3664 if (type != SYS_RES_MEMORY) {
3665 if (bootverbose)
3666 device_printf(dev,
3667 "child %s requested type %d for rid %#x,"
3668 " but the BAR says it is an memio\n",
3669 device_get_nameunit(child), type, *rid);
3670 goto out;
3671 }
3672 } else {
3673 if (type != SYS_RES_IOPORT) {
3674 if (bootverbose)
3675 device_printf(dev,
3676 "child %s requested type %d for rid %#x,"
3677 " but the BAR says it is an ioport\n",
3678 device_get_nameunit(child), type, *rid);
3679 goto out;
3680 }
3681 }
3682 /*
3683 * For real BARs, we need to override the size that
3684 * the driver requests, because that's what the BAR
3685 * actually uses and we would otherwise have a
3686 * situation where we might allocate the excess to
3687 * another driver, which won't work.
3688 */
3689 mapsize = pci_mapsize(testval);
3690 count = 1UL << mapsize;
3691 if (RF_ALIGNMENT(flags) < mapsize)
3692 flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize);
3693 if (PCI_BAR_MEM(testval) && (testval & PCIM_BAR_MEM_PREFETCH))
3694 flags |= RF_PREFETCHABLE;
3695
3696 /*
3697 * Allocate enough resource, and then write back the
3698 * appropriate bar for that resource.
3699 */
3700 res = BUS_ALLOC_RESOURCE(device_get_parent(dev), child, type, rid,
3701 start, end, count, flags, -1);
3702 if (res == NULL) {
3703 device_printf(child,
3704 "%#lx bytes of rid %#x res %d failed (%#lx, %#lx).\n",
3705 count, *rid, type, start, end);
3706 goto out;
3707 }
3708 resource_list_add(rl, type, *rid, start, end, count, -1);
3709 rle = resource_list_find(rl, type, *rid);
3710 if (rle == NULL)
3711 panic("pci_alloc_map: unexpectedly can't find resource.");
3712 rle->res = res;
3713 rle->start = rman_get_start(res);
3714 rle->end = rman_get_end(res);
3715 rle->count = count;
3716 if (bootverbose)
3717 device_printf(child,
3718 "Lazy allocation of %#lx bytes rid %#x type %d at %#lx\n",
3719 count, *rid, type, rman_get_start(res));
3720 map = rman_get_start(res);
3721out:;
3722 pci_write_config(child, *rid, map, 4);
3723 if (pci_maprange(testval) == 64)
3724 pci_write_config(child, *rid + 4, map >> 32, 4);
3725 return (res);
3726}
3727
3728
3729struct resource *
3730pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
3731 u_long start, u_long end, u_long count, u_int flags, int cpuid)
3732{
3733 struct pci_devinfo *dinfo = device_get_ivars(child);
3734 struct resource_list *rl = &dinfo->resources;
3735 struct resource_list_entry *rle;
3736 pcicfgregs *cfg = &dinfo->cfg;
3737
3738 /*
3739 * Perform lazy resource allocation
3740 */
3741 if (device_get_parent(child) == dev) {
3742 switch (type) {
3743 case SYS_RES_IRQ:
3744 /*
3745 * Can't alloc legacy interrupt once MSI messages
3746 * have been allocated.
3747 */
3748 if (*rid == 0 && (cfg->msi.msi_alloc > 0 ||
3749 cfg->msix.msix_alloc > 0))
3750 return (NULL);
3751 /*
3752 * If the child device doesn't have an
3753 * interrupt routed and is deserving of an
3754 * interrupt, try to assign it one.
3755 */
3756 if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) &&
3757 (cfg->intpin != 0))
3758 pci_assign_interrupt(dev, child, 0);
3759 break;
3760 case SYS_RES_IOPORT:
3761 case SYS_RES_MEMORY:
3762 if (*rid < PCIR_BAR(cfg->nummaps)) {
3763 /*
3764 * Enable the I/O mode. We should
3765 * also be assigning resources too
3766 * when none are present. The
3767 * resource_list_alloc kind of sorta does
3768 * this...
3769 */
3770 if (PCI_ENABLE_IO(dev, child, type))
3771 return (NULL);
3772 }
3773 rle = resource_list_find(rl, type, *rid);
3774 if (rle == NULL)
3775 return (pci_alloc_map(dev, child, type, rid,
3776 start, end, count, flags));
3777 break;
3778 }
3779 /*
3780 * If we've already allocated the resource, then
3781 * return it now. But first we may need to activate
3782 * it, since we don't allocate the resource as active
3783 * above. Normally this would be done down in the
3784 * nexus, but since we short-circuit that path we have
3785 * to do its job here. Not sure if we should kfree the
3786 * resource if it fails to activate.
3787 */
3788 rle = resource_list_find(rl, type, *rid);
3789 if (rle != NULL && rle->res != NULL) {
3790 if (bootverbose)
3791 device_printf(child,
3792 "Reserved %#lx bytes for rid %#x type %d at %#lx\n",
3793 rman_get_size(rle->res), *rid, type,
3794 rman_get_start(rle->res));
3795 if ((flags & RF_ACTIVE) &&
3796 bus_generic_activate_resource(dev, child, type,
3797 *rid, rle->res) != 0)
3798 return (NULL);
3799 return (rle->res);
3800 }
3801 }
3802 return (resource_list_alloc(rl, dev, child, type, rid,
3803 start, end, count, flags, cpuid));
3804}
3805
3806void
3807pci_delete_resource(device_t dev, device_t child, int type, int rid)
3808{
3809 struct pci_devinfo *dinfo;
3810 struct resource_list *rl;
3811 struct resource_list_entry *rle;
3812
3813 if (device_get_parent(child) != dev)
3814 return;
3815
3816 dinfo = device_get_ivars(child);
3817 rl = &dinfo->resources;
3818 rle = resource_list_find(rl, type, rid);
3819 if (rle) {
3820 if (rle->res) {
3821 if (rman_get_device(rle->res) != dev ||
3822 rman_get_flags(rle->res) & RF_ACTIVE) {
3823 device_printf(dev, "delete_resource: "
3824 "Resource still owned by child, oops. "
3825 "(type=%d, rid=%d, addr=%lx)\n",
3826 rle->type, rle->rid,
3827 rman_get_start(rle->res));
3828 return;
3829 }
3830 bus_release_resource(dev, type, rid, rle->res);
3831 }
3832 resource_list_delete(rl, type, rid);
3833 }
3834 /*
3835 * Why do we turn off the PCI configuration BAR when we delete a
3836 * resource? -- imp
3837 */
3838 pci_write_config(child, rid, 0, 4);
3839 BUS_DELETE_RESOURCE(device_get_parent(dev), child, type, rid);
3840}
3841
3842struct resource_list *
3843pci_get_resource_list (device_t dev, device_t child)
3844{
3845 struct pci_devinfo *dinfo = device_get_ivars(child);
3846
3847 if (dinfo == NULL)
3848 return (NULL);
3849
3850 return (&dinfo->resources);
3851}
3852
3853uint32_t
3854pci_read_config_method(device_t dev, device_t child, int reg, int width)
3855{
3856 struct pci_devinfo *dinfo = device_get_ivars(child);
3857 pcicfgregs *cfg = &dinfo->cfg;
3858
3859 return (PCIB_READ_CONFIG(device_get_parent(dev),
3860 cfg->bus, cfg->slot, cfg->func, reg, width));
3861}
3862
3863void
3864pci_write_config_method(device_t dev, device_t child, int reg,
3865 uint32_t val, int width)
3866{
3867 struct pci_devinfo *dinfo = device_get_ivars(child);
3868 pcicfgregs *cfg = &dinfo->cfg;
3869
3870 PCIB_WRITE_CONFIG(device_get_parent(dev),
3871 cfg->bus, cfg->slot, cfg->func, reg, val, width);
3872}
3873
3874int
3875pci_child_location_str_method(device_t dev, device_t child, char *buf,
3876 size_t buflen)
3877{
3878
3879 ksnprintf(buf, buflen, "slot=%d function=%d", pci_get_slot(child),
3880 pci_get_function(child));
3881 return (0);
3882}
3883
3884int
3885pci_child_pnpinfo_str_method(device_t dev, device_t child, char *buf,
3886 size_t buflen)
3887{
3888 struct pci_devinfo *dinfo;
3889 pcicfgregs *cfg;
3890
3891 dinfo = device_get_ivars(child);
3892 cfg = &dinfo->cfg;
3893 ksnprintf(buf, buflen, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
3894 "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
3895 cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
3896 cfg->progif);
3897 return (0);
3898}
3899
3900int
3901pci_assign_interrupt_method(device_t dev, device_t child)
3902{
3903 struct pci_devinfo *dinfo = device_get_ivars(child);
3904 pcicfgregs *cfg = &dinfo->cfg;
3905
3906 return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
3907 cfg->intpin));
3908}
3909
3910static int
3911pci_modevent(module_t mod, int what, void *arg)
3912{
3913 static struct cdev *pci_cdev;
3914
3915 switch (what) {
3916 case MOD_LOAD:
3917 STAILQ_INIT(&pci_devq);
3918 pci_generation = 0;
3919 pci_cdev = make_dev(&pcic_ops, 0, UID_ROOT, GID_WHEEL, 0644,
3920 "pci");
3921 pci_load_vendor_data();
3922 break;
3923
3924 case MOD_UNLOAD:
3925 destroy_dev(pci_cdev);
3926 break;
3927 }
3928
3929 return (0);
3930}
3931
3932void
3933pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo)
3934{
3935 int i;
3936
3937 /*
3938 * Only do header type 0 devices. Type 1 devices are bridges,
3939 * which we know need special treatment. Type 2 devices are
3940 * cardbus bridges which also require special treatment.
3941 * Other types are unknown, and we err on the side of safety
3942 * by ignoring them.
3943 */
3944 if (dinfo->cfg.hdrtype != 0)
3945 return;
3946
3947 /*
3948 * Restore the device to full power mode. We must do this
3949 * before we restore the registers because moving from D3 to
3950 * D0 will cause the chip's BARs and some other registers to
3951 * be reset to some unknown power on reset values. Cut down
3952 * the noise on boot by doing nothing if we are already in
3953 * state D0.
3954 */
3955 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
3956 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
3957 }
3958 for (i = 0; i < dinfo->cfg.nummaps; i++)
3959 pci_write_config(dev, PCIR_BAR(i), dinfo->cfg.bar[i], 4);
3960 pci_write_config(dev, PCIR_BIOS, dinfo->cfg.bios, 4);
3961 pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2);
3962 pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1);
3963 pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1);
3964 pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1);
3965 pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1);
3966 pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1);
3967 pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1);
3968 pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1);
3969 pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1);
3970
3971 /* Restore MSI and MSI-X configurations if they are present. */
3972 if (dinfo->cfg.msi.msi_location != 0)
3973 pci_resume_msi(dev);
3974 if (dinfo->cfg.msix.msix_location != 0)
3975 pci_resume_msix(dev);
3976}
3977
3978void
3979pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate)
3980{
3981 int i;
3982 uint32_t cls;
3983 int ps;
3984
3985 /*
3986 * Only do header type 0 devices. Type 1 devices are bridges, which
3987 * we know need special treatment. Type 2 devices are cardbus bridges
3988 * which also require special treatment. Other types are unknown, and
3989 * we err on the side of safety by ignoring them. Powering down
3990 * bridges should not be undertaken lightly.
3991 */
3992 if (dinfo->cfg.hdrtype != 0)
3993 return;
3994 for (i = 0; i < dinfo->cfg.nummaps; i++)
3995 dinfo->cfg.bar[i] = pci_read_config(dev, PCIR_BAR(i), 4);
3996 dinfo->cfg.bios = pci_read_config(dev, PCIR_BIOS, 4);
3997
3998 /*
3999 * Some drivers apparently write to these registers w/o updating our
4000 * cached copy. No harm happens if we update the copy, so do so here
4001 * so we can restore them. The COMMAND register is modified by the
4002 * bus w/o updating the cache. This should represent the normally
4003 * writable portion of the 'defined' part of type 0 headers. In
4004 * theory we also need to save/restore the PCI capability structures
4005 * we know about, but apart from power we don't know any that are
4006 * writable.
4007 */
4008 dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2);
4009 dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2);
4010 dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2);
4011 dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2);
4012 dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2);
4013 dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1);
4014 dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1);
4015 dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1);
4016 dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1);
4017 dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
4018 dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
4019 dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1);
4020 dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1);
4021 dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1);
4022 dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1);
4023
4024 /*
4025 * don't set the state for display devices, base peripherals and
4026 * memory devices since bad things happen when they are powered down.
4027 * We should (a) have drivers that can easily detach and (b) use
4028 * generic drivers for these devices so that some device actually
4029 * attaches. We need to make sure that when we implement (a) we don't
4030 * power the device down on a reattach.
4031 */
4032 cls = pci_get_class(dev);
4033 if (!setstate)
4034 return;
4035 switch (pci_do_power_nodriver)
4036 {
4037 case 0: /* NO powerdown at all */
4038 return;
4039 case 1: /* Conservative about what to power down */
4040 if (cls == PCIC_STORAGE)
4041 return;
4042 /*FALLTHROUGH*/
4043 case 2: /* Agressive about what to power down */
4044 if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY ||
4045 cls == PCIC_BASEPERIPH)
4046 return;
4047 /*FALLTHROUGH*/
4048 case 3: /* Power down everything */
4049 break;
4050 }
4051 /*
4052 * PCI spec says we can only go into D3 state from D0 state.
4053 * Transition from D[12] into D0 before going to D3 state.
4054 */
4055 ps = pci_get_powerstate(dev);
4056 if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
4057 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
4058 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3)
4059 pci_set_powerstate(dev, PCI_POWERSTATE_D3);
4060}
4061
4062#ifdef COMPAT_OLDPCI
4063
4064/*
4065 * Locate the parent of a PCI device by scanning the PCI devlist
4066 * and return the entry for the parent.
4067 * For devices on PCI Bus 0 (the host bus), this is the PCI Host.
4068 * For devices on secondary PCI busses, this is that bus' PCI-PCI Bridge.
4069 */
4070pcicfgregs *
4071pci_devlist_get_parent(pcicfgregs *cfg)
4072{
4073 struct devlist *devlist_head;
4074 struct pci_devinfo *dinfo;
4075 pcicfgregs *bridge_cfg;
4076 int i;
4077
4078 dinfo = STAILQ_FIRST(devlist_head = &pci_devq);
4079
4080 /* If the device is on PCI bus 0, look for the host */
4081 if (cfg->bus == 0) {
4082 for (i = 0; (dinfo != NULL) && (i < pci_numdevs);
4083 dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
4084 bridge_cfg = &dinfo->cfg;
4085 if (bridge_cfg->baseclass == PCIC_BRIDGE
4086 && bridge_cfg->subclass == PCIS_BRIDGE_HOST
4087 && bridge_cfg->bus == cfg->bus) {
4088 return bridge_cfg;
4089 }
4090 }
4091 }
4092
4093 /* If the device is not on PCI bus 0, look for the PCI-PCI bridge */
4094 if (cfg->bus > 0) {
4095 for (i = 0; (dinfo != NULL) && (i < pci_numdevs);
4096 dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
4097 bridge_cfg = &dinfo->cfg;
4098 if (bridge_cfg->baseclass == PCIC_BRIDGE
4099 && bridge_cfg->subclass == PCIS_BRIDGE_PCI
4100 && bridge_cfg->secondarybus == cfg->bus) {
4101 return bridge_cfg;
4102 }
4103 }
4104 }
4105
4106 return NULL;
4107}
4108
4109#endif /* COMPAT_OLDPCI */
4110
4111int
4112pci_alloc_1intr(device_t dev, int msi_enable, int *rid0, u_int *flags0)
4113{
4114 int rid, type;
4115 u_int flags;
4116
4117 rid = 0;
4118 type = PCI_INTR_TYPE_LEGACY;
4119 flags = RF_SHAREABLE | RF_ACTIVE;
4120
4121 msi_enable = device_getenv_int(dev, "msi.enable", msi_enable);
4122 if (msi_enable) {
4123 int cpu;
4124
4125 cpu = device_getenv_int(dev, "msi.cpu", -1);
4126 if (cpu >= ncpus)
4127 cpu = ncpus - 1;
4128
4129 if (pci_alloc_msi(dev, &rid, 1, cpu) == 0) {
4130 flags &= ~RF_SHAREABLE;
4131 type = PCI_INTR_TYPE_MSI;
4132 }
4133 }
4134
4135 *rid0 = rid;
4136 *flags0 = flags;
4137
4138 return type;
4139}